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Abstract

In this paper, we estimate the eigenvalues of the twisted Dirac operator
on Kähler submanifolds of the complex projective space CPm and we
discuss the sharpness of this estimate for the embedding CP d → CPm.

1 Introduction

In his Ph.D. thesis [4], N. Ginoux gave an upper bound for the eigenvalues
of the twisted Dirac operator for a Kähler spin submanifold M2d of a Kähler
spin manifold M̃2m carrying Kählerian Killing spinors (see Eq.(3)). More
precisely, he showed that there are at least µ eigenvalues λ1, λ2, · · · , λµ of the
square of the twisted Dirac operator satisfying

λ 6


(d+ 1)2 if d is odd,

d(d+ 2) if d is even.
(1)

Here µ denotes the dimension of the space of Kählerian Killing spinors
on M̃2m. Recall that the normal bundle is endowed with the induced spin
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structure coming from both manifolds M and M̃ . The idea consists in
computing the so-called Rayleigh-quotient applied to the Kählerian Killing
spinor restricted to the submanifold M . The upper bound is then deduced
by using the min-max principle. This technique was used by C. Bär in [1]
for submanifolds in Rn+1,Sn+1 and Hn+1.

The complex projective space CPm is a spin manifold if and only m
is odd. In this case, the sharpness of the upper bound (1) was studied in [5]
for the canonical embedding CP d → CPm, where d is also odd. In fact, it is
shown that for d = 1, the upper estimate is optimal for m = 3, 5, 7 while it
is not for m ≥ 9.

Kähler manifolds are not necessary spin but every Kähler manifold
has a canonical Spinc structure (see Section 2) and any other Spinc structure
can be expressed in terms of the canonical one. Moreover, O. Hijazi, S.
Montiel and F. Urbano [7] constructed on Kähler-Einstein manifolds with
positive scalar curvature, Spinc structures carrying Kählerian Killing spinors.
Thus one can consider the result of N. Ginoux for Spinc manifolds.

Section 2 is devoted to recall some basic facts on Spinc structures on
Kähler manifolds. In Section 3, we extend the estimate (1) to the eigenvalues
of the twisted Dirac operator for a Kähler submanifold of the complex
projective space (see Theorem 3.1). Finally, we discuss the sharpness for the
embedding CP d → CPm with different values of m.

2 Kähler Submanifolds of Kähler manifolds

Let (M2m, g, J) be a Kähler manifold of complex dimension m. Recall that
the complexified tangent bundle splits into the orthogonal sum TCM =
T1,0M ⊕ T0,1M where T1,0M (resp. T0,1M) denotes the eigenbundle of TCM
corresponding to the eigenvalue i (resp. −i) of the extension of J . Using this
decomposition, we define Λ0,rM := Λr(T ∗0,1M) (resp. Λr,0M) as being the
bundle of complex r-forms of type (0, r) (resp. of type (r, 0)). Recall also
that every Kähler manifold has a canonical Spinc structure whose complex
spinorial bundle is given by ΣM = Λ0,∗M = ⊕mr=0Λ0,rM, where the auxiliary
bundle of this Spinc structure is given by K−1

M . Here KM is the canonical
bundle of M defined by KM = Λm,0M [3, 10]. On the other hand, the spinor
bundle of any other Spinc structure can be written as [3, 7]:

ΣM = Λ0,∗M ⊗ L,
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where L2 = KM ⊗L and L is the auxiliary bundle associated with this Spinc

structure. Moreover, the action of the Kähler form Ω of M splits the spinor
bundle into [3, 9, 8]:

ΣM = ⊕mr=0ΣrM,

where ΣrM denotes the eigensubbundle corresponding to the eigenvalue

i(2r − m) of Ω with complex rank
(m
k

)
. For any vector field X ∈ Γ(TM)

and ψ ∈ Γ(ΣrM), we have the following property p±(X) · ψ ∈ Γ(Σr±1M),
where p±(X) = 1

2
(X ∓ iJX).

Let (M2d, g, J) be an immersed Kähler submanifold in a Kähler mani-

fold (M̃2m, g, J) with the induced complex structure J (i.e. J(TM) = TM)

and denote respectively by ΩM̃ , Ω and ΩN the Kähler form of M̃, M and
of the normal bundle NM −→ M of the immersion. Since the manifolds
M and M̃2n are Kähler, they carry Spinc structures with corresponding
auxiliary line bundles LM and LM̃ . This induces a Spinc structure on the

bundle NM such that the restricted complex spinor bundle ΣM̃|M of M̃ can
be identified with ΣM ⊗ ΣN , where ΣM and ΣN are the spinor bundles of
M and NM respectively ([1], [6]). Moreover, the auxiliary line bundle LN
of this Spinc structure on NM is given by LN := (LM)−1 ⊗ (LM̃)|M . Given
connections 1-form on LM and LM̃ , they induce a connection ∇ := ∇ΣM⊗ΣN

on ΣM ⊗ ΣN . Thus one can state a Gauss-type formula for the spinorial
Levi-Civita connections ∇̃ and ∇ on ΣM̃ and ΣM ⊗ ΣN respectively [12].

That is, for all X ∈ TM and ϕ ∈ Γ(ΣM̃|M ), we have

∇̃Xϕ = ∇Xϕ+
1

2

2d∑
j=1

ej · II(X, ej) · ϕ, (2)

where (ej)1≤j≤2d is any local orthonormal basis of TM and II is the second
fundamental form of the immersion. As a consequence of the Gauss formula,
the square of the auxiliary Dirac-type operator D̂ :=

∑2d
j=1 ej · ∇̃ej is related

to the square of the twisted Dirac operator DΣN
M :=

∑2d
j=1 ej · ∇ej by [4,

Lemme 4.1]:

D̂2ϕ = (DΣN
M )2ϕ− d2|H|2ϕ− d

2d∑
j=1

ej · ∇N
ej
H · ϕ,

where H := 1
2d

tr(II) is the mean curvature vector field of the immersion.

But in our case H = 0, then D̂2 and (DΣN
M )2 coincide.
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In the sequel, take the manifold M̃ as the complex projective space
CPm endowed with its Fubini-Study metric of constant holomorphic
sectional curvature 4. In [7], the authors proved that for every q ∈ Z, such
that q +m+ 1 ∈ 2Z, there exists a Spinc structure on CPm whose auxiliary
line bundle is given by Lqm. Here Lm denotes the tautological bundle of
CPm. In particular for q = −m − 1 (resp. q = m + 1), the Spinc structure
is the canonical one (resp. anti-canonical) [11] and for q = 0 it corresponds
to the unique spin structure. Let us denote by ΣqCPm the spinor bundle
of the corresponding Spinc structure with Lq as auxiliary line bundle. Take
an integer r in {0, · · · ,m + 1} and define q := 2r − (m + 1). For such a q,
the bundle ΣqCPm carries a Kählerian Killing spinor field ψ = ψr−1 + ψr
satisfying, for all X ∈ Γ(TCPm) [7]

∇̃Xψr = −p+(X) · ψr−1,

∇̃Xψr−1 = −p−(X) · ψr, (3)

The space of Kählerian Killing spinors is of rank

(
m+ 1
r

)
. We point out

that for r = 0 (resp. r = m+1) the Kählerian Killing spinor is a parallel spinor
which is carried by the canonical structure (resp. anti-canonical). Moreover,
for r = m+1

2
, i.e. m is odd, the Kählerian Killing spinor is the usual one lying

in Σ0
m−1

2

CPm ⊕ Σ0
m+1

2

CPm defined in [8, 9].

3 Main result

In this section, we establish the estimates for the eigenvalues of the twisted
Dirac operator of complex submanifolds of the complex projective space. We
have

Theorem 3.1 Let (M2d, g, J) be a closed Kähler submanifold of the complex
projective space CPm. For r ∈ {0, · · · ,m + 1} let q = 2r − (m + 1). There

are at least

(
m+ 1
r

)
-eigenvalues λ of (DΣN

M )2 satisfying

λ 6


−(q2 − (d+ 1)2) + 2|q|(m− d)− 1 if m− d is odd

−(q2 − (d+ 1)2) + 2|q|(m− d) if m− d is even.
(4)

Proof. The proof relies on computing the Rayleigh-quotient∫
M

Re〈(DΣN
M )2ψ, ψ〉vg∫

M
|ψ|2vg
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applied to any non-zero Kählerian Killing spinor ψ = ψr−1 + ψr on CPm. A
straightforward computation of the auxiliary Dirac operator leads to

D̂ψr−1 = (q + d+ 1)ψr + iΩN · ψr.

D̂ψr = −(q − d− 1)ψr−1 − iΩN · ψr−1.

Summing up the above two equations, we deduce after using the fact that
the auxiliary Dirac operator commutes with the normal Kähler form [5], that

D̂2ψ = −(q2 − (d+ 1)2)ψ − 2iqΩN · ψ + ΩN · ΩN · ψ.

Taking the hermitian product with ψ and using the fact that the seond term
can be bounded from above by 2|q|(m− d), we get our estimates after using
|ΩN · ψ| ≥ |ψ| if m− d is odd and 0 otherwise. �

In the following, we will test the sharpness of Inequality (4) for the
canonical embedding CP d → CPm as in [5]. Recall first that the complex
projective space CP d can be seen as the symmetric space SUd+1/S(Ud×U1)

where S(Ud × U1) := {
(
B 0
0 det(B)−1

)
|B ∈ Ud}. The tangent bundle of

CP d can be described as a homogeneous bundle which is associated with the
S(Ud × U1)-principal bundle SUd+1 → CP d via the isotropy representation

α : S(Ud × U1) −→ Ud(
B 0
0 det(B)−1

)
7−→ det(B)B.

The normal bundle T⊥CP d of the embedding is isomorphic to L∗d ⊗ Cm−d

where Ld is the tautological bundle of CP d. The bundle Ld is isomorphic to
the homogeneous bundle which is associated with the S(Ud × U1)-principal
bundle SUd+1 via the representation

ρ : S(Ud × U1) −→ U1(
B 0
0 det(B)−1

)
7−→ (det(B))−1.

Thus the normal bundle is associated with the S(Ud × U1)-principal bundle
SUd+1 → CP d via the representation

ρ : S(Ud × U1) −→ Um−d(
B 0
0 det(B)−1

)
7−→ det(B)Im−d.
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Consider now the case where d is odd and CP d is endowed with its canonical
spin structure. The normal bundle of the embedding carries a Spinc struc-
ture with auxiliary line bundle given by Lqm|CP d which is isomorphic to the
qth-power of the tautological bundle Ld of CP d. Therefore the Lie-group ho-
momorphism

ρ : S(Ud × U1) −→ Um−d × U1(
B 0
0 det(B)−1

)
7−→ (det(B)Im−d, det(B)−q)

can be lifted through the non-trivial two-fold covering map Spinc2(m−d) −→
SO2(m−d) × U1 to the homomorphism

ρ̃ : S(Ud × U1) −→ Spinc2(m−d)(
B 0
0 det(B)−1

)
7−→ (det(B))−

q+m−d
2 j(det(B)Im−d),

where for any positive integer k, we recall that j : Uk −→ Spinc2k is given on
elements of diagonal form of Uk as

j(diag(eiλ1 , · · · , eiλk)) = e
i
2

(
∑k

j=1 λj)R̃e1,Je1(
λ1

2
) · · · R̃ek,Jek(

λk
2

).

Here J is the canonical complex structure on Ck and R̃v,w(λ) = cos(λ) +
sin(λ)v ·w ∈ Spin2k is defined for any orthonormal system {v, w} ∈ R2k. We
point out that the integer q+m− d = 2r− d− 1 is even. Following the same
proof as in [5, Cor. 4.4], the complex spinor bundle of T⊥CP d splits into the
orthogonal sum

Σ(T⊥CP d) ∼=
m−d⊕
s=0

(
m− d
s

)
L

q+m−d
2
−s

d .

Thus one should replace m in Theorem 4.5 of [5] (see also [2]) by q+m−d
2
− s.

In this case, we get the following families of eigenvalues for the square of the
twisted Dirac operator:

1. 2(v+l)(1+2l−q−m+2d+2s−2ε) where v ∈ {1, · · · , d−1}, ε ∈ {0, 1}
and l ≥ max(ε, q+m+1

2
− v − s).

2. 2l(2l + 2d− 1− q −m+ 2s) where l ≥ max(0, q+m+1
2
− s).

3. 2(d+ l)(2d+ 1 + 2l − q −m+ 2s) where l ≥ max(0, q+m−2d−1
2

− s).
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We will now treat the simplest case where d = 1 and q > 0 (the same can
be done for q < 0). That means we are considering the last two families of
eigenvalues. By a straightforward computation, the first eigenvalue is 0 with
multiplicity equal to

q+m−3
2∑

s=0

(
m− 1
s

)
(
q +m− 1

2
− s) +

m−1∑
s= q+m+1

2

(
m− 1
s

)
(−q +m− 1

2
+ s)

and the second eigenvalue is 4 with multiplicity equal to 4

(
m− 1
q+m−1

2

)
.

Consider the particular case where m = 2 and q = 1 (i.e. r = 2). By
Inequality (4), there are at least 3 eigenvalues satisfying the estimate λ ≤ 4.
The multiplicity of 0 is equal to 1 and the multiplicity of the eigenvalue 4
is 4 which means that the estimate is optimal. For m = 3 and q = 2, the
estimate λ ≤ 8 is satisfied for at least 4 eigenvalues. But the multiplicity
of 0 is equal to 4 which means that the upper bound is not achieved. For
m = 4 and q = 1, the estimate λ ≤ 8 is satisfied for at least 10 eigenvalues.
The multiplicity of 0 is equal to 6 and of 4 is equal to 12. For q = 3, we have
λ ≤ 12 with 5 eigenvalues. The multiplicity of 0 is 12 which means that the
estimate is not optimal.
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