A p-adic property of Cohen's numbers

P. Guerzhoy

Department of Mathematics
Technion
Israel Institute of Technology
32000 Haifa
ISRAEL

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

Introduction

The generalized class numbers $H(r, N)$ were inveted by H . Cohen [1]. They coinside with the usual class numbers of the binary positive defined quadratic forms when $r=1$. Since they are Fourier coefficients of the Eisenstein series of half integral weight $r+1 / 2$,

$$
\mathcal{H}_{r+1 / 2}(\tau)=\sum_{N \geq 0} H(r, N) q^{N} \quad q=\exp (2 \pi i \tau)
$$

one can prove their nice properties. In particular, generalizations of the Kronecker - Hurwitz class number relation

$$
\sum_{s \in \mathbf{Z}} H\left(1,4 N-s^{2}\right)+\sum_{\substack{N=\lambda \lambda^{\prime} \\ \lambda, \lambda^{\prime}>0}} \min \left(\lambda, \lambda^{\prime}\right)=\sigma_{1}(n) \quad N>0
$$

are investigated in [1]. These generalizations are based on the explicite construction of spaces of modular forms of weight $r+1$. The relations obtained in [1] involve the numbers $H(r, N)$ for $r \leq 5$. The basis problem becomes more complicated when the weight increases. It yields that one can not hope to obtain nice relations of this type when r is considerably large. In the present note we get p-adic information about the numbers $H(r, N)$ for arbitrary r.

Throughout the paper we fix an odd regular prime p.
For positive integers m, n we introduce the finite sets of non-negative integers:

$$
\begin{gathered}
S(m, n)=\left\{4 m p^{n}-s^{2} \geq 0 \mid s \in \mathbf{Z}\right\} \\
S^{*}(m, n)=\left\{4 m p^{n}-s^{2} \geq 0 \mid s \in \mathbf{Z}, p \nmid s\right\}
\end{gathered}
$$

Theorem 1 Let r, m be positive integers such that m is nol a perfect square and is not divisible by p. Denote by χ_{-N} the quadratic character associated with $\mathbf{Q}(\sqrt{-N})$.
a. Suppose that

$$
\begin{equation*}
r \equiv 3,5,7,9,13 \bmod p-1 \tag{1}
\end{equation*}
$$

Then the double series

$$
\mathcal{F}(l)=\sum_{n \geq 0} \sum_{N \in S^{*}(m, n)}\left(1-\chi-N(p) p^{r-1}\right) H(r, N) N^{(p-1) t}
$$

converges p-adically for every non-negative integer l.
Its value at $l=0$ is

$$
\mathcal{F}(0)=2 \sigma_{r}(m) \frac{1-p^{2 r-1}}{1-p^{r}} \frac{\zeta(1-2 r)}{\zeta(-r)}
$$

b. Suppose that $p=(-1)^{r+1} \bmod 4$ and

$$
\begin{equation*}
r+\frac{p-1}{2} \equiv 3,5,7,9,13 \bmod p-1 \tag{2}
\end{equation*}
$$

Then the double series

$$
\mathcal{G}(l)=\sum_{n \geq 1} \sum_{N \in S^{*}(m . n)} H(r, p N) N^{(p-1) l}
$$

converges p-adically for every non-negative integer l.
Its value at $l=0$ is

$$
\mathcal{G}(0)=2 \sigma_{r}(m) \frac{1-p^{2 r-1}}{1-p^{r}} \frac{\zeta(1-2 r)}{\zeta(-r)}
$$

If $p=3,5,7$ then one can omit the conditions (1) and (2).

Remark

The condition that m is not a perfect square is technical. The case when m is a square, and in particular $m=1$ brings nothing essential new but slight modifications of the formulae.

The proof of the Theorem 1 is based on the methods and results of [1] and [3].

The contents of the paper are as follows. In Chapter 1 we recall (slightly modified) propositions from [1] and [3]. These propositions will be used in the proof of Theorem 2. This theorem asserts some p-adic properties of Fourier coefficients of modular forms of half integral weight. p-adic analytic functions associated with a modular form of half integral weight are constructed in Corollary 1. Theorem 2 and Corollary 1 are formulated and proven in Chapter 2. These constructions might be of independent interest. The proof of Theorem 1 concludes Chapter 2.

Notations

Let X denote the group of continious p-adic characters of $\mathbf{Z}_{p}{ }^{*}$. For $t \in \mathbf{Z}_{p}$, $u \in \mathbf{Z} /(p-1) \mathbf{Z}$ we let $(t, u) \in X$ be the character which sends $z \in \mathbf{Z}_{p}$ to $\langle z\rangle^{t} \omega(z)^{u}$, where ω is the Teichmüller character and $\langle z\rangle=z / \omega(z) \in$ $1+p \mathbf{Z}_{p}$. All elements of X are of the form (t, u). For a residue r modulo $p-1$ we write $(t, u) \equiv r \bmod p-1$ iff $u \equiv r \bmod p-1$.

For a formal power series

$$
\begin{equation*}
g=\sum_{n \geq 0} b(n) q^{n} \quad b(n) \in \mathbf{Q}_{p} \tag{3}
\end{equation*}
$$

we define $v_{p}(g)$ be the minimum p-adic ordinal of its Fourier coefficients $b(n)$.
We call the series (3) a p-adic modular form of integral (half integral) weight if there exists a sequence of modular forms of even weights k_{i} on $S L(2, \mathbf{Z})$ (of half integral weights $r_{i}+1 / 2$ on $\Gamma_{0}(4)$) with rational Fourier coefficients such that $\lim _{i \rightarrow \infty} f_{i}=g$ i.e. $v_{p}\left(f_{i}-g\right)$ tends to infinity. It is known [3], [2] that in this case the sequence $k_{i}\left(r_{i}\right)$ converges in X.

The symbol lim will denote p-adic limit.
We denote by ζ^{*} the Kubota - Leoplodt p-adic ζ-function. The group X is its area of definition.

Chapter 1.

For non-negative integers l, r, s, N put

$$
P_{2 l}^{(r)}(s, N)=\sum_{l \geq \mu \geq 0}(-1)^{\mu} \frac{(2 l)!}{\mu!(2 l-2 \mu)!} \frac{(r+2 l-\mu-1)!}{(r+l-1)!} s^{2 l-2 \mu} N^{\mu}
$$

Proposition 1 Let $\phi=\sum_{N \geq 0} c(N) q^{N}$ be a modular form of half integral weight $r+1 / 2 \geq 5 / 2$ on congruence subgroup $\Gamma_{0}(4)$.

Let D be an positive integer such that $D \equiv(-1)^{r-1} \bmod 4$; let l be a positive integer.

Then

$$
F=\sum_{N \geq 0} q^{N} \sum_{s \in \mathbf{Z}} P_{2 l}^{(r)}(s, N) c\left(\frac{4 N-s^{2}}{D}\right)
$$

is a modular form of weight $2 l+r+1$ on congruence subgroup $\Gamma_{0}(D)$ with character $\chi_{(-1)^{r-1} D}$. It is a cusp form if $l>0$.

This Proposition essentially coinside with Theorem 6.2 from [1]. We change the normalization of the Gegenbauer polinomial $P_{2 l}^{(r)}$ and consider arbitrary modular form of half integral weight ϕ instead of the Cohen series \mathcal{H}. The argument atays the same as in [1] up to the described modifications.

Proposition 2 Let $f=\sum_{n \geq 0} a(n) q^{n}$ be a p-adic modular form of even weight $k \neq 0$. Let m be a positive integer not divisible by p. Suppose that

$$
\begin{equation*}
k \equiv 4,6,8,10,14 \bmod p-1 \tag{4}
\end{equation*}
$$

Then

$$
2 a(0) \sigma_{k-1}(m)=\zeta^{*}(1-k) \lim _{n \rightarrow \infty} a\left(m p^{n}\right)
$$

If $p=3,5,7$ then one can omit the condition (4).

Proof.

Acting as in [3], proof of Theorem 4, p.209-210, one gets a p-adic modular form $\left.f\right|_{k} T(m)$ of the same weight k :

$$
\left.f\right|_{k} T(m)=\sum_{n \geq 0} q^{n} \sum_{d \mid(m, n)} d^{k-1} a\left(m n / d^{2}\right)
$$

Application of Theorem 7 of [3] (see also Remark, p. 216) completes the proof.

Chapter 2.

Theorem 2 Let $f=\sum_{n \geq 0}$ be a p-adic modular form of half integral weight $r+1 / 2$. Let l, m be positive integers, m is not divisible by p.
a. Suppose that

$$
\begin{equation*}
r+2 l \equiv 3,5,7,9,13 \bmod p-1 \tag{5}
\end{equation*}
$$

Then for $2 l+r+1 \neq 0$ in X, one has
1a. $\quad \lim _{n \rightarrow \infty} \sum_{N \in S^{*}(m, n)} c(N) N^{l}=0$
2a. $\lim _{n \rightarrow \infty} \sum_{N \in S(m, n)} c(N)=2 \frac{\sigma_{r}(m) c(0)}{\zeta^{*}(-r)}$
b. Suppose that

$$
\begin{equation*}
r+2 l+\frac{p-1}{2} \equiv 3,5,7,9,13 \bmod p-1 \tag{6}
\end{equation*}
$$

Then for $p=(-1)^{r+1} \bmod 4$, one has
1b

$$
\lim _{n \rightarrow \infty} \sum_{N \in S^{*}(m, n)} c(p N) N^{l}=0
$$

2b. $\lim _{n \rightarrow \infty} \sum_{N \in S(m, n)} c(N)=2 \frac{\sigma_{r}(m) c(0)}{\zeta^{*}(-r,-r-(p-1) / 2)}$
If $p=3,5,7$ then one can omit the conditions (5), (6).
Corollary 1 Let $f=\sum_{N \geq 0} c(N) q^{N}$ be a p-adic modular form of weight $r+1 / 2$. Let m be an integer not divisible by p. Denote by l the element $\left(s, l_{0}\right)$ of X, where l_{0} is a fixed residue modulo $p-1$ and s is a p-adic integer.
a. Let r be odd and $2 l+r+1 \neq 0$. Suppose that

$$
\begin{equation*}
r+2 l_{0} \equiv 3,5,7,9,13 \bmod p-1 \tag{7}
\end{equation*}
$$

Then the series

$$
\Phi_{f, m, l_{0}}(s)=\sum_{n \geq 0} \sum_{N \in S^{*}(m, n)} c(N) N^{l}
$$

converge p-adically for every $s \in \mathbf{Z}_{p}$ and the function $\Phi_{j, m, l_{0}}(s)$ is analytic in variable s.
b. Suppose that $p=(-1)^{r+1} \bmod 4$ and

$$
\begin{equation*}
r+2 l_{0}+\frac{p-1}{2} \equiv 3,5,7,9,13 \bmod p-1 . \tag{8}
\end{equation*}
$$

Then the series

$$
\Psi_{f, m, l_{0}}(s)=\sum_{n \geq 0} \sum_{N \in S^{*}(m, n)} c(p N) N^{l}
$$

converge p-adically for every $s \in \mathbf{Z}_{p}$ and the function $\Psi_{f, m, l_{0}}(s)$ is analytic in variable s.

If $p=3,5,7$ then one can omit the conditions (7) and (8).

Proof of the Corollary 1

Let us assume that part a of Theorem 2 is valid and prove part a of the Corollary. Part b is similar.

It follows from 1a of Theorem 2 that the series in question converges for $s \in \mathbf{Z}_{p}$. The finite sum $\sum_{0 \leq n \leq n_{0}} \sum_{N \in S^{*}(m, n)} c(N) N^{l}$ is an analytic function. It follows that the function $\Phi_{f, m, l_{0}}$ is the limit of the sequence of analytic functions. The application of [3], Lemma 12 completes the proof.

Proof of the Theorem 2

Consider the sequence $f_{i}=\sum_{n \geq 0} c_{i}(n) q^{n}$ of modular forms of half integral weights $r_{i}+1 / 2$ which defines the p-adic modular form f.

Since $\lim _{i \rightarrow \infty} c_{i}(N)=c(N)$ uniformly in N, it is enough to prove the assertion of the Theorem for the forms f_{i}.
a. Applying to these forms Proposition 1 with $D=1$ we obtain the modular forms

$$
F_{i, l}=\sum_{N \geq 0} q^{N} \sum_{s \in \mathbf{Z}} P_{2 l}^{\left(r_{i}\right)}(s, N) c_{i}\left(4 N-s^{2}\right)
$$

of weights $2 l+r_{i}+1$ on $S L_{2}(\mathbf{Z})$. The constant term of the q expansion of $F_{i, l}$ is equal to $c_{i}(0)$ if $l=0$ and vanishes if $l>0$. Let us denote this number by $a_{i, l}$ and apply Proposition 2 to modular forms $F_{i, l}$:

$$
\begin{equation*}
2 a_{i, l} \sigma_{2 l+r_{i}}(m)=\zeta^{*}\left(-2 l-r_{i}\right) \lim _{n \rightarrow \infty} \sum_{s \in \mathbb{Z}} P_{2 l}^{\left(r_{i}\right)}\left(s, 4 m p^{n}\right) c_{i}\left(4 m p^{n}-s^{2}\right) \tag{9}
\end{equation*}
$$

Since p is regular, $\zeta^{*}\left(-2 l-r_{i}\right) \neq 0$. Computation of the limit in the right hand side of (9) yields:

$$
\begin{equation*}
2 a_{i, l} \sigma_{2 l+r_{i}}(m)=\zeta^{*}\left(-2 l-r_{i}\right) \lim _{n \rightarrow \infty} \frac{\left(r_{i}+2 l-1\right)!}{\left(r_{i}+l-1\right)!} \sum_{s \in \mathbf{Z}} c_{i}\left(4 m p^{n}-s^{2}\right) s^{2 l} \tag{10}
\end{equation*}
$$

It follows that the assertion 2a of the Theorem holds for half the integral weight form f_{i}.

When $l>0$ (10) yields

$$
\begin{align*}
0 & =\lim _{n \rightarrow \infty} \sum_{s \in \mathbf{Z}} c_{i}\left(4 m p^{n}-s^{2}\right) s^{2 l} \\
& =\lim _{n \rightarrow \infty}\left(\sum_{N \in S^{*}(m, n)} c_{i}(N) N^{l}+p^{2 l} \sum_{N \in S^{*}(m, n-2)} c_{i}\left(p^{2} N\right) N^{l}\right) . \tag{11}
\end{align*}
$$

Consider a sequence of rational integers $l_{j} \rightarrow \infty$ such that $\lim _{j \rightarrow \infty} l_{j}=l$ in X. To be more specific one can pick $l_{j}=l+p^{j}(p-1), \quad j=1,2,3, \ldots$. Since (11) holds for $l=l_{j}$ for arbitrary j, the denominators of the Fourier coefficients $c_{i}(N)$ of modular forms f_{i} are bounded, and N^{s} is p-adically continious function on s when N is not divisible by p, the assertion 1a of Theorem 2 for $f=f_{i}$ follows.
b. Applying to the modular forms f_{i} Proposition 1 with $D=p$ we obtain modular forms

$$
F_{i, l}=\sum_{N \geq 0} q^{N} \sum_{s \in \mathbf{Z}} P_{2 l}^{\left(r_{i}\right)}(s, N) c_{i}\left(\frac{4 N-s^{2}}{p}\right)
$$

of weights $2 l+r_{i}+1$ on congruence subgroup $\Gamma_{0}(p)$ with character $\chi_{(-1)^{r_{i}+1} p}$. It follows from [3], Theorem 12 that $F_{i, l}$ is a p-adic modular form of weight $\left(l+r_{i}+1, l+r_{i}+\frac{p+1}{2}\right) \in X$. The rest of the proof is essentially the same as of part a.

Proof of Theorem 1

It is known ([2], Theorem 4) that for any sequence of positive integers $r_{i} \rightarrow \infty$ converging to $r \in X$, the sequence of Eisenstein sries $\mathcal{H}_{r_{i}+1 / 2}$ converges p-adically to a limit $\mathcal{H}_{r+1 / 2}^{*}=\sum_{N \geq 0} H^{*}(r, N) q^{N}$. Moreover, the p adic Eisenstein series $\mathcal{H}_{r+1 / 2}^{*}$ is invariant under U_{p}^{2} operator. In other words, $H^{*}\left(r, p^{2} N\right)=H^{*}(r, N)$. It follows that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{N \in S(m, n)} H^{*}(r, N)= \\
& \lim _{n \rightarrow \infty}\left(\sum_{N \in S^{*}(m, n)} H^{*}(r, N)+\sum_{N \in S^{*}(m, n-2)} H^{*}\left(r, p^{2} N\right)+\ldots\right)=\Phi_{\mathcal{H}_{r+1 / 2}^{*}, m, 0}(0) .
\end{aligned}
$$

In the case under consideration Theorem 2, a yields that

$$
\begin{equation*}
\Phi_{\mathcal{H}_{r+1 / 2}^{*}, m, 0}(0)=2 \sigma_{r}(m) \frac{\zeta^{*}(1-2 r)}{\zeta^{*}(-r)} \tag{12}
\end{equation*}
$$

It means that we succeeded to calculate the value at $s=0$ of the p-adic analytic function on $\mathbf{Z}_{p} \Phi_{\mathcal{H}_{r+1 / 2}^{*}, m, 0}(s)$. Let $r=(s, 0) \in X$ for a positive integer s. Using the identities ([2], Remark 3, p. 207)

$$
H^{*}(r, 0)=\zeta(1-2 s)\left(1-p^{2 s-1}\right),
$$

$$
H^{*}(r, N)=\left(1-\chi_{(-1)^{r} N}(p) p^{s-1}\right) H(s, N)
$$

and taking in account (12) we derive the assertion of Theorem 1 from Corollary 1 , a.

Acknowledgement

The author is very grateful to Max-Planck-Institut für Mathematik, Bonn for its hospitality and finacial support.

References

[1] Cohen, H., Sums involving the values at negative integers of L-functions of quadratic characters, Math. Ann. 217 (1975), 271-285.
[2] Koblitz, N., p-Adic congruences and modular forms of half integer weight, Math. Ann. 274 (1986), 199-220.
[3] Serre, J.-P., Formes modulaires et fonctir Functions in One Variable, III, Lecture Notes in Mathematics 350, Springer-Verlag, Berlin - Heidelberg - New York, 1973, pp.191-268.

