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Abstract. During a saddle-node bifurcation for real analytic interval maps, a pair
of fixed points, attracting and repelling, collide and disappear. From the complex
point of view, they do not disappear, but just become complex conjugate. The
question is whether those new complex fixed points are attracting or repelling. We
prove that this depends on the Schwarzian derivative of the map. If the Schwarzian
derivative is positive, both fixed points are attracting, if it is negative, they are
repelling.

1. Introduction

For the family of double standard maps,

(1) fa,b(x) = 2x+ a +
b

π
sin(2πx) (mod 1)

(a is also taken modulo 1 and b varies from 0 to 1), introduced in [3], the values of the
parameters for which there is an attracting periodic orbit are grouped into cusp-like
sets, called tongues. Let us concentrate our attention on the tongue of period 1; that
is, on the set T of parameters for which there is an attracting fixed point. When we
vary the parameter a, the graph of fa,b moves up or down, so if we start in T , we
leave it via a classical saddle-node bifurcation. This means that a pair of fixed points,
an attracting one and a repelling one, collide and disappear. But do they indeed
disappear? This depends on the point of view. From the real viewpoint they do, but
from the complex one, they do not. They just go off the real line.

Complexification of the family of double standard maps was studied by Fagella
and Garijo [1]. It turns out that when we take into account complex attracting fixed
points, T develops a big bulb at the end of the tongue. Similar shapes have been
reported by many authors in other families (see for instance, [2] or [4]).

Let us look at the tongue with a bulb in Figure 1. The Mandelbrot-like shapes
attached to the bulb correspond to parameter values for which there are (complex)
attracting periodic orbits of higher periods. We did not shade the real tongue black
in order to distinguish it from the bulb. Yet it is clear from the picture that they
touch each other. In particular, for a substantial interval of values of b, escaping
the real tongue in the a-direction makes both complex fixed points attracting. See
Example 1.4 for a computationally simple family of this type.
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Figure 1. The parameter plane of complex double standard maps,
with horizontal a-axis, and vertical b-axis.
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Figure 2. A saddle-node bifurcation.

On the other hand, for quadratic maps such phenomenon is impossible (see Exam-
ple 1.3), since for a real quadratic polynomial any attracting fixed point must be real
in order to attract the orbit of the unique critical point. The aim of this paper is to
investigate the distinction between those two cases.

Throughout the paper, f will be a real analytic map, defined in a neighborhood
of 0, with f(0) = 0, f ′(0) = 1, and f ′′(0) > 0, so 0 is a parabolic fixed point of
multiplicity 2.

Because f is convex, a small perturbation f −λ2 with real λ 6= 0 has two real fixed
points, one attracting and one repelling. For f + λ2, the fixed point at 0 vanishes
instead of bifurcating; see Figure 2. This is a standard saddle-node bifurcation, except
that we use parameter λ2 rather than λ.

For r > 0, let Dr be the open disk of radius r, centered at 0, and let Cr be its
boundary. Abusing notation, we denote the complexification of f also by f . Then, if
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its power series expansion at 0 is

f(z) =

∞∑

n=1

anz
n,

we have a1 = 1, a2 > 0, and an ∈ R for all n. Fix a positive number R, smaller
than the radius of convergence of f . Then f belongs to the space AR of all analytic
functions defined in a neighborhood of the closure of DR, which take real values on
the intersection of the real axis with their domain.

In the complex plane, fλ := f + λ2 has a pair of fixed points near 0. Since the
coefficients an are real, the fixed points are complex conjugate and have the same
type (attracting - neutral - repelling). What can be said about this type?

Proposition 1.1. Let z± be the conjugate fixed points of fλ (for λ real and small)
near 0. The absolute values of the multipliers at z± are

(2)
∣∣(fλ)

′(z±)
∣∣ = 1 + 2

(
a2 − a3

a2

)
λ2 +O(λ3).

If λ is sufficiently small, z± are both attracting or both repelling according to
the sign of a2 − (a3/a2). Note that the Schwarzian derivative of f at 0 is Sf(0) =
6(a3 − a2

2) = −6a2(a2 − a3/a2). Thus, the sign of Sf(0) rules the fixed point type
for small (constant) perturbations. To generalize Proposition 1.1 to a larger space of
perturbations, we need some definitions.

For all r > 0 and h ∈ Ar we denote by ‖h‖r the supremum of |h| on the closure of
the disk Dr. Clearly, ‖h‖r < ∞. For a given ε > 0, let Pε,R (f) be the space of all

functions f̃ ∈ AR such that
∥∥∥f − f̃

∥∥∥
R
< ε.

If ε is small enough, and f̃ ∈ Pε,R (f), there is a small real number c ∈ DR such

that f̃ ′(c) = 1. Precise conditions on ε will be given in Section 4. Then, if f̃(c) > c,

the map f̃ has no real fixed points near 0. We say in this case that f̃ has complex
nature.

Theorem 1.2. There exist r ∈ (0, R) and ε > 0 such that every function f̃ ∈ Pε,R (f)
with complex nature has exactly two fixed points in Dr. If Sf(0) > 0, they are both
attracting, and if Sf(0) < 0, they are both repelling.

Example 1.3. Set f(z) = z2 + z, and consider the family fε(z) = f(z) + ε (ε > 0).
The fixed points of fε are ±√

εi, and since f ′
ε(z) = 2z + 1, both fixed points are

repelling. In this case, Sf(0) = 6(a3 − a2
2) = −6.

Example 1.4. Now let f(z) = 2z3 + z2 + z, and fε(z) = 2z3 + z2 + z + (1 + 2z)ε.
As ε increases, the fixed point at 0 bifurcates again into the pair ±√

εi. This time
however, f ′

ε(z) = 6z2 +2z+(1+2ε), so the multipliers are 1−4ε±2
√
εi, and the fixed

points are attracting for small enough ε > 0. In this case, Sf(0) = 6(a3 − a2
2) = 6.

2. Preliminaries

For ease of reference, we collect here the basic facts and definitions that are used
in the proof. In this section, ϕ and ψ are functions from Ar for some r > 0, and

ϕ(z) =

∞∑

n=0

cnz
n.
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2.1. Cauchy estimates. If ‖ϕ‖r ≤ ε, the derivatives satisfy |ϕ(n)(0)| ≤ n!ε
rn . It

follows that the power series coefficients of ϕ satisfy

(3) |cn| ≤
ε

rn
.

If 0 < r′ < r, the same estimate, applied in all disks of radius r−r′ centered at points
of Dr′, shows that

(4)
∥∥ϕ(n)

∥∥
r′
≤ n!ε

(r − r′)n
.

2.2. Tail estimates. Define the nth order tail of ϕ as the function ϕ[n] that satisfies

ϕ(z) =

(
n−1∑

k=0

ckz
k

)
+ zn · ϕ[n](z).

Lemma 2.1. Assume that ‖ϕ‖r < ε. Then for all n we have

(5)
∥∥ϕ[n]

∥∥
r
<

(
2

r

)n

ε.

Proof. The disk Dr contains 0, so |ϕ(0)| < ε. Together with |ϕ(z)| = |ϕ(0) + z ·
ϕ[1](z)| < ε, this implies |z ·ϕ[1](z)| < 2ε, so |ϕ[1](z)| < 2ε

|z| for all z 6= 0. However, ϕ[1]

attains its maximum on the boundary of the disk, so
∥∥ϕ[1]

∥∥
r
< 2

r
ε. Since (ϕ[n])

[1]
=

ϕ[n+1], it follows by induction that
∥∥ϕ[n]

∥∥
r
<
(

2
r

)n
ε. �

2.3. Bound on the difference of square roots. If ϕ(0) 6= 0, then ϕ has two well
defined square root branches around 0 and their radius of convergence is min{|z| :
ϕ(z) = 0} > 0.

Lemma 2.2. Let ϕ, ψ ∈ Ar. Assume that there is ∆ > 0 such that ‖ϕ− ψ‖r < ∆
and |ϕ(z)| > ∆, |ψ(z)| > 0 for all z ∈ Dr. Let

√
ψ be a branch of the square root

of ψ in Dr. Then there is a branch
√
ϕ of the square root of ϕ in Dr, such that∥∥√ϕ−

√
ψ
∥∥

r
<

√
∆.

Proof. Fix a branch η of the square root of ϕ in Dr. For every z ∈ Dr we have
∣∣η(z) −

√
ψ(z)

∣∣ ·
∣∣η(z) +

√
ψ(z)

∣∣ = |ϕ(z) − ψ(z)| < ∆,

so either
∣∣η(z) −

√
ψ(z)

∣∣ <
√

∆ or
∣∣η(z) +

√
ψ(z)

∣∣ <
√

∆.
The sets of the points where each of those inequalities holds, are open. If both sets

were nonempty, there would be a point z ∈ Dr at which both inequalities hold. Then

2
∣∣η(z)

∣∣ ≤
∣∣η(z) −

√
ψ(z)

∣∣ +
∣∣η(z) +

√
ψ(z)

∣∣ < 2
√

∆,

which contradicts |ϕ(z)| > ∆. Thus, one of the inequalities holds for every z ∈ Dr,
and we choose as

√
ϕ either η, if the first inequality holds, or −η, if the second

inequality holds. �
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2.4. Bound on the difference of inverses.

Lemma 2.3. Suppose that ϕ′ is bounded away from 0 in the sense that there is a
complex number a 6= 0 such that |ϕ′(z)− a| < |a|/2 for every z ∈ Dr. Then for every
distinct w, z ∈ Dr we have

|ϕ(z) − ϕ(w)| > |a|
2

· |z − w|.

Proof. Consider the segment joining w with z, parametrized by γ(t) = w + t(z − w)
(0 ≤ t ≤ 1). By the chain rule,

ϕ(z) − ϕ(w) = ϕ(γ(1)) − ϕ(γ(0)) =

∫ 1

0

(ϕ ◦ γ)′(t) dt,=
∫ 1

0

(ϕ′(γ(t)) · (z − w) dt,

so

∣∣ϕ(z) − ϕ(w) − a · (z − w)
∣∣ =

∣∣∣∣
∫ 1

0

(
(ϕ′(γ(t)) − a

)
dt

∣∣∣∣ · |z − w| < |a|
2

· |z − w|.

Thus,

|ϕ(z) − ϕ(w)| > |a · (z − w)| − |a|
2

· |z − w| =
|a|
2

· |z − w|. �

Now assume that ϕ and ψ satisfy the conditions of Lemma 2.3 with the same a.
In particular, this implies that ϕ and ψ are univalent. The following result gives a
bound on the difference of the inverses ϕ−1, ψ−1 when ϕ and ψ are close.

Lemma 2.4. If ϕ and ψ satisfy the conditions of Lemma 2.3 with the same a and
‖ϕ− ψ‖r < |a|r/4, then ϕ(Dr/2) ⊂ ψ(Dr). Moreover, if the radius s > 0 is such that
Ds ⊂ ϕ(Dr/2), then ‖ϕ−1 − ψ−1‖s ≤ r/2.

Proof. Fix a point z ∈ Dr/2 and denote by C ⊂ Dr the circle of radius r/2 centered
at z. Then the winding number of ϕ(C) around ϕ(z) is 1. By Lemma 2.3 and the
bound on ϕ− ψ, all points w ∈ C satisfy

|ϕ(z) − ϕ(w)| > |a|
2

· |z − w| =
|a|r
4

> |ϕ(w) − ψ(w)|,

so the winding number of ψ(C) around ϕ(z) is also 1. Hence, there exists a point ζ in
the disk bounded by C, such that ψ(ζ) = ϕ(z). This proves that ϕ(Dr/2) ⊂ ψ(Dr).
Moreover, |ζ − z| < r/2, so taking the supremum over all z such that ϕ(z) ∈ Ds,
yields ∥∥ϕ−1 − ψ−1

∥∥
s
≤ r/2. �

3. Proof of the Proposition

The idea of the proof is to show that there is an expansion of the fixed points of fλ

as power series of λ. The resulting formula (8) can then be inserted in the expansion
of f ′

λ to express the multipliers, and then their absolute values, as power series in λ.

Proof of Proposition 1.1. The fixed points of fλ satisfy the equation

(6) λ2 = −z2 · f [2](z) = −
∞∑

n=2

anz
n.
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Since a2 > 0, the square root of f [2] has a well defined branch in a neighborhood
of 0, see Subsection 2.3: √

f [2] =
√
a2 +O(z).

Thus, the fixed points of fλ are roots of the equation

λ = (±i√a2) z +O(z2),

and since the right hand side is an analytic function with value 0 at 0 and non-zero
derivative at 0, it can be solved for z± in terms of λ in a neighborhood of 0:

(7) z± = Aλ+Bλ2 +O(λ3).

The coefficients A and B can be determined by substituting (7) into (6):

λ2 = −
∞∑

n=2

an

(
Aλ+Bλ2 +O(λ3)

)n

=
(
− a2A

2
)
λ2 +

(
− 2a2AB − a3A

3
)
λ3 +O(λ4).

Comparing the corresponding coefficients, we find that

A = ± i√
a2

, B =
a3

2a2
2

,

and thus, the two fixed points of fλ are

(8) z± = z±(λ) = ± i√
a2

λ+ a3

2a2

2

λ2 +O(λ3).

We substitute (8) into the formula for f ′
λ to find the fixed point multipliers:

f ′
λ(z±(λ)) = 1 + 2a2

(
± i√

a2

λ+ a3

2a2

2

λ2 +O
(
λ3
))

+ 3a3

(
± i√

a2

λ+ a3

2a2

2

λ2 +O
(
λ3
))2

+O
(
λ3
)

= 1 ±
(
2i
√
a2

)
λ−

(
2a3

a2

)
λ2 +O

(
λ3
)
.

By the triangle inequality
∣∣∣|f ′

λ(z±)| −
∣∣1 ±

(
2i
√
a2

)
λ−

(
2a3

a2

)
λ2
∣∣
∣∣∣ < O

(
λ3
)
,

so the absolute values of the multipliers at the fixed points are approximated to third
order by

∣∣1 ± (2i
√
a2)λ−

(
2a3

a2

)
λ2
∣∣. Since

∣∣∣1 ±
(
2i
√
a2

)
λ−

(
2a3

a2

)
λ2
∣∣∣
2

=
∣∣∣
(
1 −

(
2a3

a2

)
λ2
)
± i
(
2
√
a2λ
)∣∣∣

2

(9)

=
(
1 − 2a3

a2

λ2
)2

+
(
2
√
a2λ
)2

= 1 + 4
(
a2 − a3

a2

)
λ2 +O

(
λ4
)
,

the absolute value of the multipliers is approximated by the square root of (9) up to
order three: ∣∣fλ

′(z±)
∣∣ = 1 + 2

(
a2 − a3

a2

)
λ2 +O

(
λ3
)
. �
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4. Smallness Conditions

Theorem 1.2 claims the existence of “small enough” ε and r for which the conclusion
holds. In this section we will describe a sufficient set of smallness conditions on ε and
r that make the result true. Each condition is expressed in terms of the original map
f . Moreover, conditions on ε may depend on the value of r, but not the other way.
This prevents a logical loop.

To state the first condition, we need a lemma.

Lemma 4.1. There exists r0 ∈ (0, R) such that for every r ∈ (0, r0] there exists ε > 0

such that if f̃ ∈ Pε,R (f) then

(a) f̃(z) − z has exactly two zeros (counting multiplicities) in Dr,

(b) f̃ ′ − 1 has exactly one zero c ∈ Dr, and this zero is real,

(c) f̃ ′′(c) > 0.

Proof. Set h(z) = f(z) − z. Then h(0) = h′(0) = 0 and h′′(0) > 0. Therefore, there
exists r0 ∈ (0, R) such that for every r ∈ (0, r0] the winding number of h(Cr) around

0 is 2 and the winding number of h′(Cr) around 0 is 1. If f̃ ∈ Pε,R (f) then for

h̃(z) = f̃(z) − z we have

(10)
∥∥∥h̃− h

∥∥∥
R
< ε.

Thus, if ε is sufficiently small, then the winding number of h̃(Cr) around 0 is 2, and

thus h̃ has exactly two zeros in Dr. This proves (a). By (4) and (10),
∥∥∥h̃′ − h′

∥∥∥
r
<

ε/(R − r), so if ε is sufficiently small, the winding number of h̃′(Cr) around 0 is 1.

Since c is also a zero of h̃′, c must be real. This proves (b). Finally, by (4) and (10),∥∥∥h̃′′ − h′′
∥∥∥

r
< 2ε/(R−r)2, so if ε is sufficiently small, then Re(f̃ ′′(z)) = Re(h̃′′(z)) > 0

for all z ∈ Dr. Since c is real and belongs to Dr, we get (c). �

Now, the first condition for r and ε is:

(C 1) r0, r and ε are as in Lemma 4.1.

Note that for a given r we can make ε smaller without violating this condition.

Let f̃ and c be as in Lemma 4.1. If f̃(c)− c > 0, we say that f̃ has complex nature,
and set

Λ :=

√
f̃(c) − c.

Set

(11) ξ(ε) := 2 sup
ef∈Pε,R(f)

|c|.

By Lemma 4.1 (b), for every r > 0 there is ε > 0 such that if f̃ ∈ Pε,R (f) then
|c| < r. Therefore ξ is a finite monotone function of ε with

(12) lim
ε→0

ξ(ε) = 0.

We require

(C 2) ξ(ε) < r <
R

2
.
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Set

(13) δ := 2
(
ξ(ε) · (‖f ′‖R + 2ε/R+ 1) + ε

)
.

Note that by (12), δ = δ(ε) goes to 0 when ε→ 0.
Now we list several conditions that tell us how small r should be. Since a2 6= 0,

the radius r can be chosen small enough that

(C 3) inf
z∈Dr

∣∣f [2](z)
∣∣ > 0.

Then there are two well defined branches of the square root of f [2]. Notice that(
z ·
√
f [2](z)

)′
|z=0

= ±√
a2, where the sign depends on the choice of a branch. Let

√
f [2] be the branch that makes the derivative equal to

√
a2. Let r be small enough

that

(C 4) sup
z∈Dr

∣∣∣∣
(
z ·
√
f [2](z)

)′
−√

a2

∣∣∣∣ <
√
a2

2
.

Similarly, since
√
f [2](0) =

√
a2, we may assume that r is small enough, so that

(C 5)
∥∥∥
√
f [2] −√

a2

∥∥∥
r
<

√
a2

8
.

We also may assume that r is small enough, so that

(C 6) r ·
∥∥∥∥
(√

f [2]
)′∥∥∥∥

r

<

√
a2

8
.

Now that r is fixed, we list several conditions that tell us how small ε should be.
Remember that if ε is small, δ is also small.

Using Lemmas 2.1 and 2.2, we see that we can require ε to be small enough, so
that

(C 7)
∥∥∥
√
g[2] −√

a2

∥∥∥
r
<
∥∥∥
√
f [2] −√

a2

∥∥∥
r
+

√
a2

8

and

(C 8) r ·
∥∥∥∥
(√

g[2]
)′∥∥∥∥

r

< r ·
∥∥∥∥
(√

f [2]
)′∥∥∥∥

r

+

√
a2

8

for every g ∈ Pε,R (f) and one of the branches of
√
g[2].

Condition (C 3) can be strengthened by letting ε be small enough, so that

(C 9) inf
z∈Dr

∣∣f [2](z)
∣∣

2
>

4δ

r2
.

The coefficient a2 is fixed beforehand. We require ε to be small enough, so that

(C 10) 2
√
δ <

√
a2 r

4
.
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Finally, we require ε to be small enough, so that if g(z) =
∑∞

n=1 cnz
n stands for an

arbitrary function in Pε,R (f), then

(C 11) c2 >
a2

2
.

5. Proof of the Theorem

Let ε, r satisfy conditions (C 1) – (C 11), and select a function f̃ ∈ Pε,R (f) with

complex nature (i.e., Λ2 = f̃(c) − c > 0).

Consider the functions gλ(z) := λ2 + f̃(z + c) − f̃(c) with λ ∈ [0,Λ]. We will show
that the elements of this family are uniformly close to f .

Lemma 5.1. Regardless of the choice of f̃ ∈ Pε,R (f), the family {gλ}λ∈[0,Λ] is con-
tained in Pδ,r (f), where δ is as in (13).

Proof. First we estimate
∥∥∥gΛ − f̃

∥∥∥
r
. By Lemma 2.1 we have

∥∥∥f̃ ′ − f ′
∥∥∥

r
≤
∥∥∥f̃ ′ − f ′

∥∥∥
R
<

2ε

R
.

Moreover, gΛ(z) = f̃(z + c) − c. Therefore,
∥∥∥gΛ − f̃

∥∥∥
r
≤ sup

z∈Dr

∣∣∣f̃(z + c) − f̃(z)
∣∣∣ + |c|

≤ |c| ·
∥∥∥f̃ ′
∥∥∥

r
+ |c| < ξ(ε) · (‖f ′‖R + 2ε/R+ 1) .

Then we obtain a uniform bound for gΛ:

‖gΛ − f‖r ≤
∥∥∥gΛ − f̃

∥∥∥
r
+
∥∥∥f̃ − f

∥∥∥
R
< ξ(ε) · (‖f ′‖R + 2ε/R+ 1) + ε.

In particular, the right-hand expression above is a bound for Λ2 = gΛ(0), since
f(0) = 0. The uniform bound for all gλ follows now from the above inequality
since ‖gλ − gΛ‖r = Λ2 − λ2 ≤ Λ2:

�(14) ‖gλ − f‖r ≤ ‖gλ − gΛ‖r +‖gΛ − f‖r ≤ 2
(
ξ(ε)·(‖f ′‖R + 2ε/R+ 1)+ε

)
= δ.

Note that δ depends on ε, but not on the choice of f̃ . Moreover, Λ is uniformly
bounded.

Observe that g0(0) = 0, g′0(0) = 1, g′′0(0) > 0, and gλ = g0 + λ2. In particular,
gλ has complex nature for all λ ∈ (0,Λ]. Thus, Proposition 1.1 applies to the family

{gλ}λ∈[0,Λ]. Note also that gΛ(z) = f̃(z + c) − c; i.e., gΛ is smoothly conjugate to f̃ .
This implies that the fixed point multipliers are the same for both maps.

Write

gλ(z) = λ2 +
∞∑

n=1

cnz
n.

Our next goal is to estimate how close the fixed points of fλ and gλ are. Those fixed
points satisfy the equations

λ = ±iz ·
√
f [2](z) =: Q±

f (z)



10 MICHA L MISIUREWICZ AND RODRIGO A. PÉREZ

and

λ = ±iz ·
√
g[2](z) =: Q±

g (z)

respectively. The subindex λ is omitted from f [2] and g[2] since the tails do not depend
on the constant term.

By Lemma 5.1, ‖f − g0‖r < δ. Thus, by Lemma 2.1,

(15)
∥∥f [2] − g[2]

∥∥
r
<

4δ

r2
.

From (15) and Condition (C 9) we get

(16)
∣∣g[2](z)

∣∣ > 4δ

r2

for all z ∈ Dr. Now, inequalities (15) and (16), together with Condition (C 3), allow

us to apply Lemma 2.2 to g[2], and we obtain a branch
√
g[2] of the square root of g[2]

such that ∥∥∥
√
f [2] −

√
g[2]

∥∥∥
r
<

2
√
δ

r
.

Therefore, using Condition (C 10), we get

(17)
∥∥Q±

f −Q±
g

∥∥
r
< 2

√
δ <

√
a2 r

4
=

|a±| r
4

,

where

a± := ±i√a2.

With this notation, Condition (C 4) states that

(18)
∥∥∥
(
Q±

f

)′ − a±
∥∥∥

r
<

|a±|
2
.

In particular, Lemma 2.3 applies to Q±
f .

On the other hand, conditions (C 5) – (C 8) together imply

(19)
∥∥∥
(
Q±

g

)′ − a±
∥∥∥

r
= sup

z∈Dr

∣∣∣∣
[√

g[2](z) + z ·
(√

g[2](z)

)′]
−√

a2

∣∣∣∣ < 2

√
a2

4
=

|a±|
2
.

Thus, by (17), (18) and (19), we can apply Lemma 2.4 to obtain a bound on the
inverses of Q±

f and Q±
g ; i.e., on the functions χ±

f , χ
±
g that represent the fixed points

of fλ, gλ in terms of λ. Namely, if we fix some s > 0 such that Ds ⊂ Q±
f (Dr/2) (note

that such s exists and it does not depend on gλ), then

(20)
∥∥χ±

f − χ±
g

∥∥
s
≤ r

2
.

In particular, the functions χ±
f and χ±

g belong to As. As in the proof of Proposi-
tion 1.1 (see (8)), we get

(21) χ±
f (λ) = ± i√

a2

λ + a3

2a2

2

λ2 + λ3 · χ±
f

[3]
(λ)

and

(22) χ±
g (λ) = ± i√

c2
λ+ c3

2c2
2

λ2 + λ3 · χ±
g

[3]
(λ).
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We insert the right hand side of (22) as the argument in the formula for the deriv-
ative

g′λ(z) = 1 + 2c2z + 3c3z
2 +

(
z4 · gλ

[4](z)
)′
,

to yield the multipliers

g′λ(χ
±
g (λ)) = 1 ± 2i

√
c2λ− 2c3

c2
2

λ2 + λ3 · κ(λ),

where κ is an analytic function with a rather complicated formula involving c2, c3, c
−1
2 ,

the functions gλ
[4], χ±

g
[3]

, and their first derivatives.
Now, Cauchy’s estimate (3), together with Lemma 5.1, gives a uniform bound on

c2 and c3, and Condition (C 11) does a similar job with c−1
2 . Moreover, Lemma 5.1

and formula (20), together with the tail estimate (5), give uniform bounds for the

functions gλ
[4] and χ±

g
[3]

. Then, the global Cauchy estimate (4) gives uniform bounds

for the derivatives
(
gλ

[4]
)′

and
(
χ±

g
[3])′

. All in all, these bounds imply that

‖κ‖s < C

for some constant C independent of g and λ.
By the triangle inequality

(23)
∣∣∣
∣∣g′λ(χ±

g (λ))
∣∣−
∣∣∣1 ± 2i

√
c2λ− 2c3

c2
λ2
∣∣∣
∣∣∣ < Cλ3

for all λ ∈ [0, s] and g ∈ Pr,δ (f). We have
∣∣∣1 ± 2i

√
c2λ− 2c3

c2
λ2
∣∣∣
2

=
(
1 + 2c3

c2
λ2
)2

+ (2
√
c2λ)

2

= 1 + 4
(
c2 − c3

c2

)
λ2 +

4c2
3

c2
2

λ4 =
(
1 + 2

(
c2 − c3

c2

)
λ2
)2

+ 4(2c3 − c22)λ
4.

As before, all coefficients in this formula are bounded (in absolute value) by con-
stants independent of g ∈ Pδ,r (f), so

∣∣∣1 ± 2i
√
c2λ− 2c3

c2
λ2
∣∣∣+
(
1 + 2

(
c2 − c3

c2

)
λ2
)

is bounded away from 0 by such a constant. Similarly, 4(2c3 − c22) is also bounded by
such a constant, so∣∣∣∣∣

∣∣∣1 ± 2i
√
c2λ− 2c3

c2
λ2
∣∣∣−
(
1 + 2

(
c2 − c3

c2

)
λ2
) ∣∣∣∣∣ < C1λ

4

for some constant C1 independent of g ∈ Pδ,r (f). Together with (23), this gives
∣∣∣∣
∣∣g′λ(χ±

g (λ))
∣∣−
(

1 + 2

(
c2 −

c3
c2

)
λ2

)∣∣∣∣ < C2λ
3

for some constant C2 independent of g ∈ Pδ,r (f). Again, c2 − c3/c2 is bounded (in
absolute value) by a constant independent of g ∈ Pδ,r (f), so there is ρ > 0 such that
if λ ∈ (0, ρ] and g ∈ Pδ,r (f) then the sign of

∣∣g′λ(χ±
g (λ))

∣∣− 1 is the same as the sign
of c2 − c3/c2. Moreover, the sign of c2 − c3/c2 is the same as the sign of a2 − a3/a2

for all g ∈ Pδ,r (f).
To apply this result to gΛ, we need Λ ≤ ρ. However, in view of Lemma 4.1 and the

definition of Λ, this can be achieved by taking ε sufficiently small (and independent

of f̃).
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Since gΛ is conjugate to f̃ , the multipliers of their fixed points coincide, and the
result follows. �
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