Generating functions for modular graphs and
Burgers equation.

[.V.Artamkin

1 Introduction.

A Deligne-Mumford stable pointed curve is an algebraic curve having at most
nodal singularities and n > 0 ordered nonsingular points. Stability means
that each rational irreducible component has at least three singular or marked
points, and each elliptic component has at least one such a point. The dual
modular graph of a pointed nodal curve X is a graph whose set of vertices is
the set of irreducible components of the curve X, the set of edges is the set
of its nodal points and the set of half-edges is the set its of marked points.
For each modular graph I' consider the moduli space Mt of curves whose
dual modular graph is I'. Then the Deligne-Mumford compactification M,
of the moduli space My, of n-pointed genus g curves has the stratification

M,, = U Mp. (1.1)
all genus ¢
modular graphs I'
with n half-edges

Forgally _s)peaking a modular graph I" may be defined by the following data
(V> Ea i> E_, s, 9, l), where:

(1) V is the finite set of vertices of I';

(2) E is the finite set of oriented edges of the modular graph T

— —
(3) i: E — FE is an orientation-changing involution, (that is fixed point

free).



(4) E_ is the set of outgoing oriented edges of the modular graph I'; it is
— = —
claimed that F = E_ Ui(E_), so that each edge is either incoming
or outgoing;

H
(5) s: E_ — V is a surjective source map, assigning to every outgoing

edge from Z_*?)_ its source vertex.
(6) g: V—{0,1,2,3,...} — the genus function;

(7) the set H =E_ \ z(ﬁ_) is the set of outgoing half-edges (inci-
dent to only one vertex), for a nonempty H_ the bijection [: H —
{1,2,3,...,n} defines the ordering of the set of half-edges of the mod-
ular graph I'.

T_h)e set _o)f non-oriented edges of a modular graph I' is the quotient set £ =
(E Ni(E))/i. An isomorphism of two modular graphs is given by a pair of
bijections between the corresponding sets of vertices and corresponding sets
of oriented edges, preserving all the described data. Note that a non-trivial
automorphism of a modular graph may be identic both on the set of vertices
and on the set of non-oriented edges. The number v(v) = |s~!(v)| of outgoing
oriented edges incident to a given vertex v is called the wvalence of the vertex
v. A modular graph is called stable if 2(g(v) — 1) + v(v) > 0 for any vertex
v € V(D). The number g(I') = > cy(py 9(v) +dim Hy(I') is the genus of the
connected modular graph I'; n(T") is the number of half-edges of the modular
graph I'. Suppose that g(v) = 0 for all vertices of the modular graph I'; such
graphs will be called combinatorial graphs or simply graphs; stability in this
case means that the valency of every vertex is at least three. In this article
all the graphs are supposed to be connected.

Let {gtgn , 2(g — 1) +n > 0} be a set of (commutative) variables, I' — a
modular graph. Consider the monomial:

1
)= v),v(v) > 1.2

veV(T)

where Aut ' is the automorphism group of the modular graph T,
Denote by g};n the set of all genus g modular graphs with k£ edges and n
half-edges, consider the polynomials

o= > n(l) (1.3)

regk .,



and the generating functions

oo oo 39g—3+n

(s,t,h) = ZZ Z ugngskhg_l (1.4)

g=0 n=0 =
and
S t h oo oo 3g—3+n
®(s,t,h) = => Y Z ugn s, (1.5)
g=0 n=1 = !
Note that

U(1,t,h) = ZZ > ul 'hg—l (1.6)

9=0 n=0T¢€Gy n

is the partition function, usually considered in the quantum field theory (here
Gon = Us g};n is the set of all genus g modular graphs with n half-edges).
We prove that the functions ® and W satisfy the Burgers equation:

Theorem 1.1 The function V (s, t, h) satisfies the potential form of the Burg-
ers equation:

o U (oU\?
and the function ®(s,t, h) satisfies the Burgers equation:
0d h[0*D 0P
9 2 {W + 2@5} . (1.8)

Note that the initial condition W(0,¢, k) for the Burgers equation is the
sum over the set of all edgeless graphs G . For each pair (g,n) such that
2(g — 1) +n > 0 the set G, has only one element — the modular tree Sy,
that haves one genus ¢ vertex and n half-edges. This tree corresponds to the
moduli space of all nonsingular n-pointed curves: Mg, , = M. Therefore

(0, t,h) = > Mg,n%hg—l. (1.9)
g>0 '
n>0
20-1)+n>0

There are many ways of specializing the variables {j,,} that provide
interesting generating functions ¥ (or ®).



(1) Counting functions for combinatorial graphs of definite type.

(a) For an integer d > 3 put

1 ifg=0n=d
Hom = { 0 cither (1.10)
Then W is the counting functions for all d-valent (combinatorial)

graphs:

1 " kxg—1
Uis,th) =) 2 Awr] | "
gm.k All genus g d-valent

graphs [ with k edges
and N half-edges

(1.11)
(Note that the sum in brackets is nonzero only for
(d—2k=n+d(g—1).)
In this case the initial condition is:
td td_l
U(0,t,h) = — ®(0,t,h) = ——=. 1.12
060 =3 o 2000 =G (1.12)

Below we present explicit formulas for the most interesting case
of trivalent graphs (d = 3).
(b) Put

1 ifg=0
Hon = { 0 cither (1.13)

We obtain the counting series for all stable (combinatorial) graphs:

1 n
U(s,t,h) =) > TAuiT] %skhg—l (1.14)
gm:k All genus g
stable graphs I’
with k£ edges and
N half-edges




Initial condition for this case is:

2
WO, 68) = (¢ — = —t 1)

5 - (1.15)

(c) Putting p,, = 1 for all g, n provides the counting function for all
modular graphs:

1 t"
/] — Y o kpg—1
(.2, 2) Z Z | Aut T'| nl’ L

gk | all modular graphs I’
genus ¢ with k£ edges

and N half-edges

(1.16)
Initial condition for this case is:
12 1 et
Y =(el—=——t—1)= -1 . 1.1

(2) Virtual motivic measure of M,

Choose some motivic measure v, attaching to every nonsingular alge-
braic variety X an element v(X) of a certain commutative Q-algebra,
satisfying the following conditions:

(a) v(X\Y)+ oY) = v(X) for any closed nonsingular subvariety
Y CX;

(m) v(X x Z) =v(X)v(Z).

The corresponding virtual motivic measure ¢ of an orbifold X is de-

fined by 9(X) = v(X)/N, where X — X is an unramified covering of

orbifolds and X is nonsingular. (It is sufficient to have such a covering

for each strata of some stratification of X). Denote p,, = 0(M,,).
Then it is not hard to deduce that

u(T) = o(Mr) (1.18)

and
fg = O(MY},), (1.19)



where M kn is the moduli space of Deligne-Mumford stable n-pointed
curves, having exactly & nodal points. Note that for fixed g and n the
spaces My, form a stratification of M, and codimy; =My, = k. So

the generating functions (1.4) for this case is

oo oo 3g—3+n

U(s,t,h) =) > > 0 ’fhg L (1.20)

g=0 n=0 k=0

Thus the partition function (1.6) for this case is the generating function
for the values of the virtual motivic measure (M) of the compacti-
fied moduli space M ,:

U(1,t,h) = ii@(ﬁgm)ﬁhg—l, (1.21)

and the initial condition (1.9) is the generating function for the values of
the virtual motivic measure 0(,,,) of the moduli space of nonsingular
curves M,

U(0,t,h) = iiﬁ(Mgm)Ehg_l. (1.22)

g=0 n=0

For such virtual motivic measure v we may take the virtual Poincare
polynomial of X (see [8] or [7]), or the virtual Euler characteristic of
X, or the number of points of X(F,) over a finite field F,. But an
explicit formula for the initial condition is known only for the case of
virtual Euler characteristic. It is given by the well-known result by
Harer-Zagier [9]: for g > 0

(29 —3+n)l(29 — 1)
(29)!

forg>2 n>0o0rg=1,n>1 Adding the g = 0 case (see [7] or
section 6), we obtain the generating functions

X(Mg,n) = (_Dn

Ba, (1.23)

2 . 942
2(14+¢)°In(1 +1¢) — 2t — 3¢ —%ln(1+t)+

(e} hg_l
+gz:;2g (29 —2) (14 t)%9—2

(1.24)



and

h9—

(1.25)

1 tl )—t B
(0,1, 1) = 10 Z 2 it

29—1°
g=1 £
In all the described cases we need to solve the Cauchy problem for the
Burgers equation with the initial condition given by one of the formulas
(1.12), (1.15), (1.17) or (1.25).
The equation (1.7) may be linearized by the Cole-Hopf transform (see [5],

[6]):

U=InF (1.26)
Substituting in (1.7) we obtain the heat equation
OF ho*F
o5 208 (1.27)
with the initial condition
g—1
F(0,t,h) = e O41) — 2 gm0 Do Houn e (1.28)

The solution of the Cauchy problem for (1.27) with the initial condition
(1.28), formally expressed by the Poisson integral is known for s = 1 as
Wick’s theorem (see [1]):

U(s,t,h) =In (VO35 dg . (1.29)

e

Of course (1.29) should be considered as an equality of formal Laurent series
in A, but unfortunately the usage of the Poisson integral can not be justified
because the initial conditions (1.12), (1.15), (1.17) and (1.25) are unbounded,
so that (1.29) diverges. Moreover, A.N.Tykhonov in 1935 (see [11]) has
proved that the solution of the Cauchy problem for the heath equation with
the initial condition growing faster than e’ is no longer unique. That is just
the case for all our examples. For instance for the virtual number of trivalent
graphs we have the following integral:

U(s,t,h) = In /%—— 5 ae | (1.30)

v 2mhs



In (1.57) we present an explicit formula for a one-parametric family of solu-
tions of (1.27) with the initial condition %.

Of course (1.29) may be considered as a distribution but this can hardly
help us to get the coefficients of the generating function. Instead of that we
may try to expand the solution by the powers of h:

O(s,t,h) = Py(s,t)h", (1.31)
g=0
and .
U(s,t,h) =Y _ Wy(s,t)h", (1.32)
g=0
where ¢, = %, and then try to find a recursive formula for the functions
®, or V.
In this way we get quasi-linear equation for ®:
09, 0P
— = $p——. 1.33
gs " ot (1.33)

and recursive quasi-linear equation for ®, and ¥, for g > 0:

9%, 190, 0d, 0by TN 0D, .

e T3 ar TR0 T8y +;<I>i s (1.34)
ov, 10*0, 1& aq/g i
ds 2 o 5; ‘ (1.35)

Solving (1.33) with the initial condition ®4(0,¢) = ®(0,¢,0) we obtain
the following description of generating functions for modular trees (g = 0).
Note that the moduli space M, is smooth and modular trees have no auto-
morphisms, so for g = 0 we obtain the decent Poincare polynomials or Euler
characteristics or the number of trees.

Theorem 1.2 The formal series

(e}

as(t) =t —sP(0,t) =t —s Z (M)

n=3

tn_l

e (1.36)



and

Bs(t) =t + sPo(s,t) =t + s f: (”_ U(M(lin)sk> r (1.37)

prt (n—1)!

are inverse to each other with respect to the composition of functions; the
function ®g(s,t) satisfies the functional equations

n=3

Do(s,t) = Po(0,t + sPy(s,1)) (1.38)

and
Du(0,t) = Do(s,t — sPp(0,1)). (1.39)

Corollary 1.1 (1) The counting function for the number of trivalent trees
18

1—st—+/1—2st

Dy(s, 1) = > and ®o(1,1) =1—t—+/T— 2t (1.40)
S

(2) The counting function for the number of stable trees ®o(s,t) satisfies
the functional equation

etHs®olsh — 1 4t 4 (14 5)Bg(s, 1) (1.41)
and the differential equation

, t+ (s+1)Py(s,t)
(®o(s,8)); = 7= TG Ddu(e ) (1.42)

(3) The generating function ®g(s,t) for the Poincare polynomial of Mg,
satisfies the functional equation

(L+t+5Py(s,t)? =q(qg+s—1)Pgy(s,t) + gt + 1, (1.43)

and the differential equation

(Do(s, 1)) = t+ (g +5)Po(s, 1)

= . 1.44
14+t —st—s(g+s—1)Py(s,t) (1.44)
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(4) The generating function ®q(s,t) for the Euler characteristic of Mg,
satisfies the functional equation

t+ (s+1)Py(s,1)

1+t+ sPg(s,t)

In(1+t+ sPy(s,t)) = (1.45)

and the differential equation

(Po(s,t)); = 1:?2 f; i)ioq()j(? 5 (1.46)

The equations for Poincare polynomial and Euler characteristic are well-
known for s = 1 (see [7] or [2].

The function ®y(s,t) is essentially used in the recursive formulas for the
solutions of the equations (1.35) for g > 0 based on the following integral
representation.

Theorem 1.3 The solution
U(s,t,h) =Y _ Wy(s,t)h". (1.47)
g=0

of the potential Burgers equation (1.7) with the initial condition ¥(0,t, k) is
given by

U(s,t,h) =U(0,t+ sPy(s,t)),h)+

+§ASW@+<mw—%v2

— —0)P 1.4
5 5 (o, t+ (s — 0)Po(s,t),h)do (1.48)
As the result we obtain explicit recursive formulas.

Corollary 1.2 For g >0

\DQ(Svt) = \Ilg(o>t+ 5(130(3715)) +
1

5 o | (@t (5= 0)Pu(s,t))do (149)

82\119_1 + Z 8\I/Z 8\Ifg_z-
1

Now we are in position to apply (1.49) to any case, for which we are able
to find ®g(s,t) and the initial condition W(0,t, ).
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1.1 Trivalent graphs.

We have seen that for stable trivalent graphs ®g(s,t) = Ht_si\{m and
U(0,t,h) = t3/6h.

In this case we present a one-parametric family of explicit solutions of the
equations (1.34) in terms of modified Bessel functions I, (z) or Airy functions
Ai(z) and Bi(z) (see the definitions in [4]). All these solutions are analytic
outside the line s = 0, and have infinitely many derivatives on this line, and

each solution provides the same (divergent) expansion in s and ¢.

Theorem 1.4 The counting function ® for trivalent graphs

0o oo 3g—3+n 1 = 1

_ kg—1
st 1) = 2 2 At | o

genus g trivalent

graphs I with k edges
| and n labelled half-edges

15 the asymptotic expansion of

1—st _ v1—2st 011_2/3((;732;15)3) + 02[2/3(( 1;:,;32;t)3) o
She (Y + 021-1/30%)%] )
C1-st 2 [CLAT (heBes) + CLBY (Res) |
C Sh o sBPB | A (ph2ls) + CyBi (mh2tss) ] B

_1—st—\/1—2st+ s W sh
B s2h 1 — 2st (V1 —2st)3

where Oy, Cy, C1, Cy are arbitrary constants (O = /3(Cy — C1) and Cfy =
Cy+Ch), and

) . (1.50)

1

w1 CMam%ﬂ+@Mﬂiq

il (L) + ol (2)

The counting function for trivalent graphs with one half-edge (see also table 1)
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is the asymptotic expansion of W (u):

oo 1 B
OEDY ) At | YT

g=1 genus g trivalent
graphs I' with
| one half-edge ]
1 1 — (16/9' 1)3 u—+ (16/9—1)('16/9—9) (§u)2 . (16/9— 1)(16/9 9)(16/9—25) (§u)3 +
— _ _ 1! 2! 8 S e
u 1 1— (4/9' 1)3 u+ @O 1)('4/9 9)( u)? — (4/9— 1)(4/9'9)(4/9 25)(§ )3+
1! 8 2! 8 3! 8
ZO 3(2n)1(3n)! 3n)| 2887 1 §u Eu2 1105u3+ 1695u4+414125u5
ZO 2n6”3n ' Qggn 2 8 8 128 32 1024
(1.51)
Denote .
u) = ZTgug_l, (1.52)
g=1
then!
| (2n =51 forg=0, n>3
Z AT - %((Qn - 2))!'!' forg=1 n>1
3g9+2n—>5)!!
genus g trivalent T~ Bg—3) for g > 2,

graphs I' with k edges
and N labelled half-edges
(1.53)

For g > 1 the numbers 7, g > 1 satisfy the following recurrence:

1 —
=3 <(3g — )11 + Z Tﬂ'g_i> : (1.54)

=1

Don Zagier has noticed that the right side of (1.53) may be uniformly written in the
form Tg% for all such g and n such that n 4+ 2g > 2, putting 7 = % T = —1,

since it is natural to extend 0!! = 1 and (=3)!! = —1.
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Corollary 1.3 The counting function V for trivalent graphs

oo oo 3g—3+n

1 t" _
U(s,t,h) = Z Z Z AT mskhg !

g=0 n=0 k=0

genus g trivalent
graphs I with k edges
| and n labelled half-edges

1s the asymptotic expansion of

— 1 1 — 2st 1 — 2st
242 3 . »
1 1 1
= o7 [~2+ st — 35°¢°] = S In(s°h) + S In(1 — 2st) —In3 — 32+

_ b [2 (VI—2st) =2+ 6st — 332t2] —i In(1-2st)+V ((\/18—377712‘%)3) ’
(1.55)

V() = In Ciliy3 (i) +Col_y/3 (i) "
3v2v/u

The counting function for trivalent graphs without half-edges (see also table 2)
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g=1 g=2
Graph T’
[Autl| ) 1 8 1
e : N
Table 1: First two terms of the expansion W(u) = 3 + 2u+ - - -

is the asymptotic expansion of V(u):

82825 .

3072u+...,

> 1
~Y - g—l —
w0~ 2 TRar|"
9=2 genus g trivalent
graphs T’ i
F-13 (EF-1DE-9/3\ G-DE-9(2-25 /3 \°
—In|1-2_ /2 2u) =22 9 9 2 =
o T 9] 8" 3] st) T
[ & 5 5 . 1105 . 565
—1 Q9 o LU0 g u
n j%: 3n '288”] j{; = 24" 16" 152" T128"

where 7,, C; and C! are the same as in the theorem 1.4.?

Causally we have constructed a one-parametric family of solutions of
the Cauchy problem for the heath equation (1.27) with the initial condi-
tion F(0,t) = ¢t*/6" Non-uniqueness of the solutions of the Cauchy problem

2Don Zagier communicated to me a nice direct combinatorial proof of the formula

V() =In |5 o5 s

(2n)!(3n)! 288"

(1.56)
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e @Bz

[AutT| 2 8 51 16 8 16 18
7/39-3) %5 ts5=%| 2 T 1 T s

Table 2: First two terms of the expansion V(u) = Zu+ u® + - -

for the heath equation with rapidly increasing initial conditions (greater than
¢’’) was observed by A.N.Tikhonov in 1935 [11].

1 — 2st —2+65t—352¢2 V1 —2st)3 m 3
R {0111/3 (%) Gl <( 359N ) )} -

665#3}‘1[2(\/1—2st)3—2+65t—3s2t2] Cilys <(\/1—2st)3> + ol s <(\/1—2s_t)3> )

3s3h 3s3h (vI=2s%)3
- VT =25t 8 3ﬁ ¢
s (v/1-2st)3
(1.57)

The second representation in (1.57) is given to show that F' is defined and
infinitely differentiable on the real axe s = 0: this is evident about the first

product, and the second is V((\/ls_siizt)g,) (see (1.56)).

1.2 Counting series for all combinatorial graphs.

In this case the function ®q satisfies the functional equation (1.41) and the
differential equation (1.42) The initial condition for the Burgers equation
(1.7) is given by (1.15).
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Theorem 1.5 Terms ¥, of the expansion of the counting function

U(s,t,h) =Y Wy(s,t)h". (1.58)
g=0
for all (combinatorial) graphs are expressed as follows:
o forg=1
1
Uy (s,t) = 3 In(1 —s(t+ (s + 1)Po(s,1))); (1.59)
o forg>1
9(1 1Ho
W, (s1) = sI(1+t+ (s+ 1)Pg(s,t))

(1 =s(t+ (s+1)Pg(s,1)))9

y s(1+t4+ (s+1)Py(s,1))
by ((1 P 1><1>o<s,t>>>) - (160)

where P, is a polynomial of degree 2g — 2, satisfying the following re-

currence’:

gPy(u) + uP(u) =

-1 [u2(u £ 2P () + ulu+ 1) (2 + u+ 3] Py (u)+
+ [(¢* — Du® — (39 — 2)u + 1] Pyey(u)+
+u Z [u(u+ 1) P (u) + (iu+ 1) P;(u)] [u(u+1)P,_i(u) + ((g — ))u+ 1) Py_y(u)]

(1.61)

Here we present first three functions ¥,, calculated using the package
MAPLE.

1 11
Uy (s,t) = 55+ (—s + —32) 2+

4 2
T2 25 1 3 M 3 39, 4, 1 4
— = —s |t — = —s |t
+<12s —|—3s —|—12s) + 488 +8$ + s +48$ +

8. 121 , 19 , 41 , 1 \. ;
—l—(5s T TS T Tamd)! +0 (%) (1.62)

3Here we formally put P;(u) = —ln(gj O3
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1 b} b} 2 1
\IJQ(S,t) = (gS + ﬂ 83) + <§84 + 383 + §82) t+

41 1 25 109 175 93 133 47 1
+(—s+ 2+—85+—S4)t2+(—86+—85+—84+—83+4—882)t3+

R TR TR 48 8 36 0 72
3419 ;1885 15 , 525 ; 203 , 1 )

= o= — )t
(192 Ry i T TR s

7943 1 , 53 ., 7901 , 593 . 1001 . 1155 .\ .
RO 2y 20 8 [0 O £10 (t
(1928+9608+3608+28808+368+24s+648 ()

(1.63)

1 25 ) 25 1
Uals )= (ot 23425, 2 6 29 4, 1 10 109
3(s,t) (48s+483+48$+16$ —|—48s+483—|—8$—|—483+
241 . 9 , 1 5 15 1745 . 727 o\
St Pt T )
+(485+16s+963+2s+963+485 +
1505 295 5 113, 1 20357 , o 2225 .\ .,
25 — t
(144 TR Tt ot T T T Tt )T

40465 s g, B00T5 o 6365 , 184405 . 1 29, 6101
- S S - S ) S — =
144 128 144 1152 11527 T 144 T 1152
794353 . 93555 ., 385201 , 258589 , 31815 .

210
<1152S+128S+ S 38 T o0 0 T 18 0

1, 157 , 20159 .\ . ;
£ 40 (19 (1.64
+57608+19208+57608) +O(#) (164

1.3 Virtual Euler characteristic M.

In this case the function @ satisfies the functional equation (1.45) and the

differential equation (1.46) The initial conditions for the Burgers equation
(1.7) or (1.8) are given by (1.24) (1.25).

Theorem 1.6 The terms V, of the expansion of the generating function
U(s,t,h) =Y Wy(s,t)h". (1.65)
g=0

for the virtual euler characteristic of may be expressed as follows:

15 185 119
3 7 6, 117 5
18 ° )t+

85) tr+
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o forg=1
1 d
Uy (s, t) = —3 ln(l—l—t—s(t—i—s@o(s,t)))—i-ﬁ In(14+t+sP(s,t)); (1.66)
o forg>1
1 s(1+t+ sPq(s,t))
v, (s, t)= v 0
o(5:1) (1+t+s5Pg(s,t))29-2 7 <1+t—s(t+s<1>0(s,t))’ ’

(1.67)
and V,(s,0) are polynomials in s of degree 3g — 3, satisfying the fol-
lowing recurrence:

Ugi1(s,0) =
B By, 1 [ 0%y, 9 ov,
T ED) + 2/0 {U 92 (0,0) +0°(30 + 3 — 4g) 5 (0,0)

<—ﬂg—1XJ—2g+lﬁhme%+§:<?2ii%m0)—2@——nwxain)x

x(ﬁg%gﬁqaoy—mg—nwwﬁgmm)}w (1.68)

S

The coefficient of the leading term of W ,(s,0) equals 351733 (see the def-

inition of T, in the theorem 1.4).

In section 6 we present the results of calculations based on these formulas,
performed with the package MAPLE.

2 Cutting and clutching modular graphs.

Consider the set Q;“,n of genus ¢ stable modular graphs with k edges and n
half-edges. For &k > 0, n > 0 and g > 0 there is the uniquely defined clutching
map

&: g;f—_ll,n+2 - ggl;,m (2.1)

gluing together the first and the last half-edges of the modular graph I' €
Gr ! 1o into one edge ¥ of a new modular graph &(I') € Gi=} ., (the
ordering of the remaining n — 2 half-edges is inherited from I'). Note that
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the edge ¥ possess a uniquely defined orientation (directed from the first
half-edge to the last one ), so we have defined the clutching map

& : ggl;—_llm—i-Q - g~§,n7 (22>
where G* is the set of genus ¢ stable modular graphs having k edges, n
g,n

half-edges and one marked oriented edge. The mapping & is injective: we
may reconstruct I' by cutting the marked edge of &(I).

Now for k > 0, n > 0, g > 0 fix some nonnegative integers ny, ns, k1, k2, g1, go,
such that ny +ny =n, ky + ks = k — 1, g1 + go = g and some partition
(I1, 1) of the set {1,2,...,n} = I U I such that |[;| = ny, |I3] = ny. Put
I, = {il,ig,...,inl} and I, = {jl,jg,...,jnz}, where 11 < 15 < ... < inl
J1 < J2 < ... < Jp,- Choose two modular graphs I'y € Q;?,nlﬂ and
Iy € 95227”2 41 and glue together the first half-edge of the modular graph
I'; and the last half-edge of the modular graph I's. Define the labelling of
the half-edges of the joint graph I'1&I'y as follows: m-th half-edge of the
modular graph I'y becomes i,, ;-th half-edge of the modular graph I';&I',
for 2 < m < n; + 1 and m-th half-edge of the modular graph I'; becomes
Jm-th half-edge of the modular graph I'1&I'; for 1 < m < ny. Thus we have
defined the clutching maps:

.k k k
& gfhl,nﬁrl X g922,712+1 X Priny = gg,n’ (2.3)
and
0. . rk k S5k
& ggll,m-i-l X gg22,m+1 X P”h"? - gg,n’ (24>

where P,, ,, is the set of all partitions. Repeating the above arguments it is
easy to see that the map (2.4) is injective. For fixed n and g we may arrange
all the clutching maps (2.1), (2.3) (and, respectively (2.2), (2.4) ) into one
map

. k-1 k k k
&g,n ' gg—l,n+2 U U (ggll,m—i-l X ggj,nﬂ-l X 7)"17"2) - ggv”’ (25>
k1+ko=k—1
g1+9g2=9g

ni1+ns=n

and, respectively

. k-1 k k >k
&g,n ) gg—l,n+2 U U (ggll,m—i-l x ggzg,nz—i-l X Pnl,nz) - gg,n' (26>
k1+ko=k—1

g1+9g2=9g

ni1+ns=n
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The last mapping &,.n, is obviously bijective: for (&,T) € Q~§n the inverse
mapping is & ., given by cutting the marked oriented edge € of the graph
e gg’m into two half-edges. The ordering of the half-edges is inherited from
the graph I', and the two new half-edges get the first and the last number

according to the orientation of the marked edge.
Consider the projection

Tgn' gk —>gk (2.7)

Choose a modular graph T' € Q;“,n; the group Aut(f) acts on the set of its

oriented edges E (T'). There is one to one correspondence between the set of
orbits of this action and the set of the pairs (€,T') € 7, \(I"). Choose one
representative {€,} from each orbit, then

- . (f)
F)\:§|Aut(F)-ea\:g<Aut( ) - Aut(D)z ):ZAut(f)
(2.8)

where Aut(T)z, is the stabilizer of the oriented edge €,. Each pair (eq,I)
belongs to a uniquely defined image of one of the mappings &: (2.4) if the
edge e, disconnects the modular graph T, or (2.2) if it does not. In the first
case

Aut(D)z, = Aut(Ty) x Aut(Ty), (2.9)

and in the second .
Aut(T)g, = Aut(D). (2.10)

(T = I'1&T, for (2.9) and I’ = &(T") for (2.10).) Combining (2.10), (2.9) and
(2.8) we obtain

2%k 1 1 1
[ Aut(T)] 2 TAmm)] 2 | Aut(T)] | Aut(Ty)

Fe&gn(T) (T'1,Ta, (I, 12)) €& 5 b (
(2.11)

Let {ttgn , 2(g—1)+n > 0} be a set of (commutative) variables. In (1.2)
and (1.3) we have defined the monomials

1
r 2.12
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and the polynomials

pea= > wl). (2.13)

regk,

Each of the modular graphs (or each of the pairs of the modular graphs) in
&g_n(F) has the same collection of vertices with the same valences, therefore

multiplying (2.11) by [T,cv (i Hg(w)v(v)We obtain:

du(P)= 3 D+ 3 ) (24)

re&y (D) (T1,T2,(I1,12)) &g 1 (D)

Taking the sum (2.14) over all T € G ,we obtain:

n
TUR S NERD DU () I IR )
k1+ko=k—1 '
g1+g2=9g
ni1+na=n

Using the definition of the generating function (1.4)

oo oo 3g—3+n

Uis,t,h) =Y > > ub, "“hg ! (2.16)

g=0 n=0 k=0

and multiplying( 2.15) by 155" 'h9~!, we obtain the potential Burgers equa-

tion:
y@+zmz
ot? ot
Theorem 1.1 is proved.

Similar arguments may be used to prove the formula (1.18): for any
virtual motivic measure v

oV h

=3 (2.17)

1
v(Myp) = O(My(0) v0))- 2.1
U( F) |Aut 1—1‘ UGH(F)/U( 9( )7 ( )) ( 8)

This is evident for the case when I' is a tree; any modular graph may be
constructed from a tree by a sequence of clutching maps (2.1). So to com-
plete the proof it is sufficient to compare o(Mr) and 0(Mgry) in (2.1). Put
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(€,T) = &(T') (this simply means that I' = &(I') and € is the marked ori-
ented edge, obtained by gluing two half-edges together). Consider the moduli
space fo parameterizing Deligne-Mumford stable nodal pointed curves with
one marked branch of one of its nodal points, whose dual graph is [. The
projection 7 : Mz — Mz is a 2k-fold unramified covering of orbifolds. The
space Mf splits into disjoint union of components, corresponding to the or-
bits of the action of the group Aut(I") on the set of oriented edges E(T) of
the modular graph T'. The component corresponding to the orbit of & will be
denoted by Mf\’g, then 7 : J\;[f’é. — M5 is an unramified covering of orbifolds

of degree (Aut(T) : Aut(T)z) = ‘| :;t(g)J|. Therefore

P | Aut(D)] _, -
O(M: J) = ———L5(My). 2.19
(o) = e ) (219)

The clutching maps (2.1) and (2.2) define the clutching maps

&FI MF — fo (220)
and . 3

&r: My — Mg, (2.21)
Mié» is the image of &, and

&r: Mp = Mz, (2.22)

is an isomorphism, hence o(Mrp) = 6(]\%75). This completes the proof of
(1.18).
3 Solving the Burgers equation.

In this section we solve the Burgers equations (1.7) or (1.8) using the expan-
sions (1.32) and (1.31):

U(s,t, h) W, (s, t)h97 1, (3.1)

O(s,t, h) D, (s, t)RI" (3.2)

e 10

Q
Il
o
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Substituting (1.7) into (1.8), we get a quasi-linear equation for ®:

0By 0%,
=0 (3.3)

and recursive quasi-linear equation for ®, and ¥, for g > 0:

-1
0, _10°®1 . 0P, Dy QZ q)iacbg_,-.

9%y _ ® 4
gs 2 o o o e ot (3-4)
o, 10°W,, IV, 150V, 09,
0s 2 oz TP T2 a (3.5)

For g = 0 we have only the quasi-linear equation (3.3). The equations for
the characteristics are

L _%i -4, (3.6)

The two first integrals for (3.6) are
Dy=Cy 45Dy = Cy. (3.7)

Then the general solution of (3.3) is
fo(@o,t +sPg) =0, (3.8)

for some function fy. Using the initial conditions ®4(0,%), we see that for
s =0 fo(Po(0,t),t) = 0; this means that fy(a,b) = 0 is equivalent to
a = P¢(0,b). Thus the equation (3.8) provides the functional equation for
Do (s, t):
Do(s,t) = Py(0,t 4 sPy(s,1)). (3.9)
Put
as(t) =t —sPg(0,t) and [,(t) =t + sPy(s,1). (3.10)

From (3.9) we obtain ¢t + s®q(s,t) — sPo(0,t + sPy(s,t)) = t, so the function
«s 1s inverse to the 3, with respect to the composition of functions:

o, (B(t) =t and  Bya(t) = ¢, (3.11)

Thus the theorem 1.2 is proved.
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Now let us study the quasi-linear equation (3.5). The equations for the
characteristics for (3.5) are

ds dt av,
B ) 3.12)
82\Pg—1 -1 8\111 a\Ilg—i (
L & =+ X S
The equations for the characteristics for (3.4) are
ds dt dd,
o ) 3.13)
82q>g_1 -1 aq}g—i (
1 o @g% + % oz T Zzgzl i
Let us denote the denominator in (3.12) by
1020, , 1320w, 00, ,
H S L g (3.14)

o5 = 5 50 T2l o

note that H, depends only on ¥; for i < g. We have already found one first
integral for (3.13) and (3.12) for all ¢:

Dy(s,t) = C1. (3.15)
Substituting into (3.9) we see that
(1)0(0,t+301) = Cl. (316)

Let us denote one of the branches of the function inverse to ®4(0,¢) by ¢, then
t = p(C1) — sCy. Now the second first integral for (3.5) may be (recursively)
found by simple integration:

v, — /Hg(s, o(Ch) — sCy)ds = Cs. (3.17)
Eliminating C} we obtain:
U, — Z,(s,1) = Cy (3.18)
where .
=, (s, 1) = / Hy (ot + (s — 0)Do(s, 1)) dor (3.19)
0

Note that we choose the integration constant so that =,(0,¢) = 0. Thus the
general solution of (3.5) may be written as:

U, (s,t) = Z,(s,t) + U, (Do(s, 1)) (3.20)
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for an arbitrary function U,. The function U, then may be determined from
the initial condition:
Uy(90(0,1)) = ¥, (0,1). (3.21)

Substituting ¢ + s®y(s,t) instead of ¢ in Py(0,¢) and using (3.9) we obtain
the following recurrence formula for the solution of the Burgers equation.

U (s,t) =W,(0,t+ S(I)o( )))

+3 1%
2.Jo

The theorem 1.3 is proved.

o, t+(s—0)Po(s,t))do (3.22)

8152 t

4 g=0.

In this section we use Theorem 1.2 to obtain in a uniform way functional
equations for ®g(s,t) for all the cases we have discussed.
1) Counting functions for trivalent trees.
. 2 . .
In this case ®o(0,1) = 5 (see (1.12) for d = 3). The inverse function for
as(t) =1t — s% is the solution of the quadratic equation [4(t) — s%’t)? = 1.

The solution is 3,(t) = oy '(t) = ==2L and therefore

1—st—+/1—2st

52

CI)()(S, t) =

and ®o(1,t)=1—t—VI—2t. (4.1

This is a well-known generating function for the number of trivalent trees
with labelled half-edges.

2) Counting functions for all stable trees.

In this case (see (1.15))

Dy(0,t) =" —t — 1. (4.2)

Substituting into (1.38), we obtain the functional equation (1.41). The dif-
ferential equation (1.42) is deduced from it in a standard way.

3) The Poincare polynomial and the Euler characteristic for My,,.

The Poincare polynomial for My, in variable y coincides with the number
of points in My, (F,) for a finite field F, (after the substitution ¢ = y?). There
are ¢ + 1 point on the projective line; the first three of them we may send
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to 0, 1 and oo by some projective automorphism; the remaining ¢ — 3 points
may be chosen in

(¢—2)(g—3)...(¢—n+2) (4.3)
ways. Hence the generating function is
N (¢ - 2)! (4t —gt—1
Dy(0,1) = " = . 4.4
0= 2 g dla—1) o

Substituting into (1.38) we obtain the functional equation (1.43). The dif-
ferential equation (1.44) is deduced from it in a standard way.
For the Euler characteristic we may simply put ¢ = 1 in (4.4).

5 Counting function for trivalent graphs.

In this case it is better to begin with the equation (1.8) on the function
®(s,t,h). For any genus g trivalent graph with & edges and n half-edges
k = 3g — 3 + n, therefore ® contains only monomials

g3 ngn =gl — g(s3h)9(st)" (5.1)

and hence
®(s,t, h) = sZ(s°h, st) (5.2)

for some function Z(z,y). Substituting (5.2) into (1.8) we obtain the equation
0Z  0Z x9°Z 0Z

Z + 3r— — == 4—. 5.3
+ m&z—i_y@y 28y2+x dy (5:3)

Similarly to (1.31) consider the expansion
Z(x,y) =Y Zy(y)a™". (5.4)

g=0
Then for Zy(y) we have the homogeneous equation
—270 +yZb = ZoZ!. (5.5)

The solution we need (with the initial condition Z,(0) = 0) is

Zo(y) =1—y—+/1—2y, (5.6)
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which of course coincides with (1.40). For g > 0 (5.3) provides the following
recursive linear equation for Z,(y), which is equivalent to (1.34):

1 .
=22, + 392y +yZy = 5 7]\ + DoZy + ZyZg + > ZiZ,. (5.7)
=1

It is not hard to find Z; and the general form of Z, (as well we could use
(1.49), which would lead to a bit cumbersome transformations):

1 Ty

- d 72— "9
21 —2y) 97 (VT 2yt

for some constants 7,, where 7, = % The equation (5.7) provides the recursive
formula for 7,, g > 1:

7y = (5.8)

S (%(39 —9)(3g — 4)ry_y + i(:ﬁ _ 1)mg_z-> , (5.9)

39 — 2 —

It is not hard to transform (5.9) to a better form:

1 —
Ty = 5 <(39 — 4)7'9_1 + Z TiTg—i> . (510)

i=1
Here are the four first values of 7,:

15 15 1105
2) 7—2_87 T3_87 Ty = 128

Substituting (5.8) into (5.4) we express of the solution Z in the following
form :

(5.11)

T =

- x9 T — x S9—1
P/ . S 2(7) _
H (VI =2yt =2y &= "\ (VI-2)°

= 7o+ 1—72@/W(<W) . (5.12)

where W is some function in one variable. Substituting into (5.3), we get an
ordinary differential the equation for W (u):

1+ (8u —2)W + (27u? — 62)W' 4+ 9u*W” + 4uW? + 6u*W'W = 0. (5.13)
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2/3

Multiplying by u~*/® and integrating we get:

=20 W () + 2u*PW (u) + W () + 3uTPW (w) + 0P+ C =0 (5.14)

Since W is regular at w = 0 then C' = 0. Dividing by u'/? we get the Riccati
equation
2(u — D)W (u) + uW (u)? + 1 + 3u*W'(u) = 0. (5.15)

For the equation (5.15) u = 0 is a singular point and it has the unique formal
series solution
1 5 15 5 1105 5 1695 , 414125 |

W(u):§+gu+§u + 128u + 2 u* + 1094 U

+0 (u°). (5.16)

The general solution of (5.15) may be expressed analytically via modified
Bessel functions:

> (5.17)

Wi = 3 (1- o)t Sl )
01]1/3(3 ) + 02]—1/3(3u>

for any C7, Cy. Using asymptotic expansion of Bessel functions (see [4]) the
solution (for any C and C5) may be represented as a quotient of two power
series:

W(u) =
_ 1 L 1 — (16/19!—1)%u+ (16/9—1)2(!16/9—4)(%u) (16/9— 1)(16/9 4)(16/9—25) (%u)3+
U 1— (4/?!—1)%u+ (4/9—1)2(!4/9—4)(%u)2 _(4/9- 1)(4/93!4)(4/9 25) (% )34

(5.18)
Now we can present the answer:

e 3991

1—8t—\/1—28t]+%27'g i =

h[ st T (VL = 2st)P0

_ l—st—/T—2s s ig(( 1335 . )9—1

s2h + 1 —2st K — 2st)3
g=1

O(s,t,h) =

1—st—+/1—2st 3h
= i LIS N, (N C— (5.19)
s?h 1—2st (V1 —2st)3
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It is also useful to express the solution ®(s,t, i) by the Airy functions
(see [4]):

13 [ At (—L=2st 1 gl (—1=2st _
1—st B 21/ C1AZ (22/352h2/3> + C2BZ (22/332h2/3>
2 2/3 I As 1—2st ! R 1-—2st
s2h sh / CIAZ (W> + CQBZ (22/332h2/3>

O(s,t,h) = . (5.20)

where O} = v/3(Cy — Cy) and Cy = Cy + C;. Now it is easy to find the ana-
lytical expression (1.55) for W(s, ¢, h) by integration; the integration constant
(depending on s and &) can be found from the Burgers equation (1.7).

The proof of Theorem 1.4 and Corollary 1.3 is completed.

6 Virtual Euler characteristic of M.

The main step in the proof of theorem 1.6 is to notice that the solutions
U, (s,t) may be represented in the following form:

B 1 s(1+1t+ sPo(s,t))
Wy(s,t) = (1 —l—t—l—s@o(s,t))Qg_QPg (1 T S(t—l—S(I)o(S,t))) ; (6.1)

where P, is some polynomial. It is sufficient for that to find W,(s,t) using
formulas (1.49) for several first values of g, and then prove the statement by
induction, using (1.33). (Use (1.46) to find the derivatives of ®y.) After that
we only need to notice that for ¢ = 0 the equation (6.1) provides ¥,(s,0) =
Py(s).

Note that for the leading coefficients of P,(s) the recurrence (1.68) gives
exactly the recurrence (1.54), defining the numbers 7,. This has a clear
geometric explanation: the leading coefficients of P,(s) are exactly the co-
efficients of s73h9~1 in the expansion of W,(s,t). But these coefficients
represent the contribution to the Euler characteristic of the O-dimensional
strata Mg:)’gb_g corresponding to the discrete set of maximally degenerated
curves. These are exactly the curves, whose dual graph is trivalent and all
the irreducible components are rational ( ll-curves in terms of A.N.Tyurin’s
book [3]).

Here we present the results of calculations based on formulas (1.68), per-
formed with the package MAPLE.

Polynomials VU (s,0) ¢ =2,3,4,5,6.

5 1

13 1
Wy(s,0) = — 8 — = s> +

0 e 2
24 6 288 240 (6.2)
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5 55 . 35 2539 1307 19 1
\I] O _ = 6 v 5 4 3 2 _ 63
300 =165 56t 2% “ 1036z ® 1720 1420 ° 1008 (6P

1105 O 1045 8+8549 7 66773 o6 182341 . 2235257 ,

Wy(s.0 _
(50) = 17555 380 ° T2304° 20736° T 02160 ° 2488320 °
| ISTO51 ;17063 , 6221 L
622080 ° 241920 ° " 604800 ° 1440
565 26015 145883 3182161
e (5.0 12 11 10 9
(500 = 195° ~ 536 ° 1608 ° 82044 °
2805265 220328000 ; 374564131 , 5TEST2613
S — S —_——————
82944 9953280 20859840 104509440 °
| LL641081 667100 82821 , 8L 1 65
S — S S — S .
58060800 1209600 ° " 290304 12096 ° " 1056

82825 ;400565 ,, 1266935 5

\\J —
o(5,0) = 55759 5072 ° T 1096
| 159107020, 241682111 9702562787 ,, 253843871663

331776 ° T 442368 19906560 ° 716636160 =
1079372228279 835330878797 ,  G14429790997 ;6419764103

5016453120 ° | 7524679680 ° 12541132800 ° | 348364800 °

3031168109 4+106613887 g 24719227 &2 441541 . 691
522547200 72576000 88704000 12700800 3276(0é)6>

First terms of expansion of the functions ¥ ,(s,?) for g =1,2,3.

1 7 1
Uy (s,t) = (1/25— E)t+ <1/282—ﬂ8+ 24) 2+

1 41 199 1
3_ 2 T R 4 = 902 4
+(2/35 5/8s°+2/9s 36)t+(s D) +2888 3/165+48)t +

83 89 533 1
5_ 2204y 273 1 _ 45 6 .
+<8/5s 325 T 1% "7 2+1/6s GO)t +0(t°) (6.7
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Uy(s,t) = (2543 —1/65%+ 21838 Q}TO) +
109 , 13 1
+ (5/85 —3/45° LT Ry +EO) t+
25 5 39 ., 325 5 3719, 1
+(ES 167 T2’ "5’ @ R0
175 , 167 . 3497 , 677 , 4393 , T 1)\ .,
+<488 o7 %s—%s +M3_363+@)t+
+(@ o 354T o 4519 o 0439 , 17933 , 5065
64 192 2304 768 3456 3456
. (1155 o 1123 o 1579 o 5485
64 24 256 128
LSST | 383, 5801, o7
540 480 2880

1 5 6
300 +4O)t +0(t°) (6.8)
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\113(815):(386—@854—3—584—@83—}- 1307 s% — 19 5+ ! )

’ 16 96 72 10368 17280 1440 1008

(987_@86 305 5 9250 , 29311 ; 31 82+£8__)t+
8 96 72 3456 25920 1080 360 252

3665 . 4415 , 119495
15/2 s g VY 7 TooY 6 5
( 5/ 02 Tt T ez T T
028913 , 171107 , 1819 15 5
4 3 $2_ st )2y

T 103680° B840 ° T2160° 1128 T h04
(25 o 4625 o 28655 ;1790105 ;1360669 ; 1821137 ,

61 5 T oss T 20m36 ° T 020 T 7m0 O
66737 5 27401 , 415 5\
252

T 3640 * T 1207 T 1120
62075 , 864475 , 1131595 . 35398361 , 5165251
75 510 _ 9 8 _ 7 6 _ 5
+( T 56 ° T o T 302 C T 13240 0 3ess0
16351757 , 141479 , 69679 , 2095 5 ) oy

311020 ° 8960 ° 20160 6048 T 144

(210 192115 4 247385 4 13001167 o 76135781 , 3737291 ¢

256 ° T 192 ° 9216 ° T o120 ° 5760

11534753 . 165193453 , n 17647 5 911023 24 155 1 P10 (tﬁ))
N s — S [
38880 1555200 600 ° 151200 ° ' 180" 18

(6.9)

Values y(M,,) and Y(M,1), g < 20. Note that for g < 20 the Euler

characteristic grows approximately as C (gg 11 , and the quotient

X(Mg,l)
X(Mg,O)(Qg —2)

grows from 1.025 for g = 3 to 1.038 for g = 20.
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g ;i(jiig,o)

2 o ~0.0826

3 ST~ 0.0442

! 2L 00482
5 119510;02076646070 ~ 0.0785

6 £§§§g§§%§g§g§3% ~ 0.170

g Mool 0,457
s ISMSTINII 1470168428
9 gﬁ?%ﬁ%ﬁ%ﬁéﬁ;ﬁ%g = 5.505334564
10 ﬁgiggﬁgﬁﬁﬁiggiggigﬁi%? R~ 23.51633844
n LTSS 112.8556462
12 l%ﬁﬁ%gggﬁ%ﬁ;gﬁ%?%gﬁigﬁ%ﬁiﬁ?1 ~ 601.1934804
13 LSOOI 3590, 407975
14 OTSOMTOSTISTISOIASIONS  , 99,76,8350)
15 l7%ﬁQg2ig?ﬁ%Zi%ﬁiﬁ?%ﬁﬁ%ggﬁﬁﬁiigiﬁﬁiﬁ%7 ~ 155406.7904
16 SUSTUTOAIRD TSR UIIONSN 1156803059
17 DISTAOCTTONN IR OSSO 1 923809.073
18 17198235432952170987858390769814893434655150721674671445771265141 ~~ 78434807.68

219267898302032160155302114911031967019769528320000000000
19 13050435425469643163551878925079739017685769865160451968198706727723 ~ 708550260.6
18418503457370701453045377652526685229660640378380000000000
20 137014760506364785741048203429669320537974177259444567259217133497233731 ~ 6776448582.0

20219257750768810601193019037621586300795818606592000000000000
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J $(M,1)

' o ~0.4166666667
’ 2T~ 0.1715277778
’ 119 ~0.1813133818
: BIG000L  ().2962756857
° 1060344499 () 6456495042
0 A303TT90BST 1, 1 749599367
’ ZHTSS1090L 1, 5659799095
s Sheingerosisooon. < 21.27456417
’ oorosssoosaaomong. A 91.12686159
10 15??429061(;399148668:;16672;57905952771;;210507()7()6090l7 ~ 438.2075777
H e IoR135 133330 00672000000~ > 2337.900215
12 A OrsssasToscTaea0sTGa0Ra sod00000 < 1370572766
13 664;:5782615296756?54616341291290538??3565391401264?3333248%209010902(?0069 ~~ 87584.99615
1 307383 123000356 1618151 1200880000000~ 605995.7784
1 14623?2218(}39(?973217;;682397508140967759219;154092939835;‘%%352784(2143020561010%900511 ~~ 4513415.173
16 s 3001582080 7008805 172007 41070 436000000000 A 36004648.83
17 2@1%g%ﬁ%ﬁ%gﬁgﬁ?ﬁ%ﬁ%gﬁﬁﬁégg%g%ﬁiﬁ%ﬁ%ﬁ?ﬁ57 213062853278
18 123136066030368677688394485156439501180080883329398977909415435779 ~ 27677781450

44489138785919568727162747952963007801112657920000000000
19 975371306046856089312443646349848042163131041618448148820157981265999 ~ 264780281500
36837006914741402906090755305053370459321280757760000000000
20 183782438297282310449428294736692535953487484512586556016473804299555114127 ~ 2673375007000

687454763526139560440562647279133934227057832624128000000000000




Values

n =2

n =3

(M), 2<g<7,2<n<6.

n =4

n=>=5

35

n==6

2

4T3
720

~ 0.5736111111

g9
32

~ 2.781250000

1243T
720

~ 17.26527778

189443
1440

~ 131.5576389

53541
720

~ 1185.473611

T7965T
181440

~ 0.9901399912

495611
72576

~ 6.828855269

6846471
12096

~ 56.60061177

1990140719
362880

~ 548.4292852

1103123803
181440

~ 6079.826957

~ 78.07522622

~ 1186.539445

~ 19694.04775

~ 354433.0480

4 O7A7I547 T747463783 9056350741 71024755087 TZ02182822991
43545600 87091200 43545600 29030400 43545600
= 2.238378780 = 20.06475721 ~ 207.9739570 ~ 2446.564842 ~ 32200.33305
5 35763130021 157928041517 701735503159 T35072856739213 TT5110462356893
5748019200 2299207680 821145600 11496038400 638668800
~ 6.221818121 =~ 68.68802801 ~ 854.5810915 ~ 11827.80120 ~ 180234.9862
6 350875518070697 14466239804532061 105018494553645409 Z680800827073885069 15587244161672916947
17118646272000 53801459712000 26900729856000 75322043596800 14485008384000
=~ 20.49668609 =~ 268.8819220 ~ 3903.927333 =~ 62143.83736 ~ 1076094.935
7 53401 330 Z45018777042660668461 1601797
68474585088000 645617516544000 2259661307904000 4519322615808000 451932261580800

~ 6874218.475

In conclusion I wish to thank G.B.Shabat for drawing my attention to
the generating functions for modular trees and Yu.l.Manin for useful dis-
cussions. Especially I am grateful to Don Zagier for many corrections and
simplifications. I also wish to thank the Max Plank Institute in Bonn, whose
hospitality I enjoyed while I was completing this work.
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