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1 Introduction.

A Deligne-Mumford stable pointed curve is an algebraic curve having at most
nodal singularities and n ≥ 0 ordered nonsingular points. Stability means
that each rational irreducible component has at least three singular or marked
points, and each elliptic component has at least one such a point. The dual
modular graph of a pointed nodal curve X is a graph whose set of vertices is
the set of irreducible components of the curve X, the set of edges is the set
of its nodal points and the set of half-edges is the set its of marked points.
For each modular graph Γ consider the moduli space MΓ of curves whose
dual modular graph is Γ. Then the Deligne-Mumford compactification M g,n

of the moduli space Mg,n of n-pointed genus g curves has the stratification

M g,n =
⋃

all genus g
modular graphs Γ
with n half-edges

MΓ. (1.1)

Formally speaking a modular graph Γ may be defined by the following data

(V,
−→
E , i,

−→
E −, s, g, l), where:

(1) V is the finite set of vertices of Γ;

(2)
−→
E is the finite set of oriented edges of the modular graph Γ;

(3) i :
−→
E → −→

E is an orientation-changing involution, (that is fixed point
free).
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(4)
−→
E − is the set of outgoing oriented edges of the modular graph Γ; it is

claimed that
−→
E =

−→
E − ∪ i(

−→
E −), so that each edge is either incoming

or outgoing;

(5) s :
−→
E − → V is a surjective source map, assigning to every outgoing

edge from
−→
E − its source vertex.

(6) g : V → {0, 1, 2, 3, . . .} — the genus function;

(7) the set
−→
H− =

−→
E − \ i(

−→
E −) is the set of outgoing half-edges (inci-

dent to only one vertex), for a nonempty
−→
H− the bijection l :

−→
H− →

{1, 2, 3, . . . , n} defines the ordering of the set of half-edges of the mod-
ular graph Γ.

The set of non-oriented edges of a modular graph Γ is the quotient set E =

(
−→
E ∩ i(

−→
E ))/i. An isomorphism of two modular graphs is given by a pair of

bijections between the corresponding sets of vertices and corresponding sets
of oriented edges, preserving all the described data. Note that a non-trivial
automorphism of a modular graph may be identic both on the set of vertices
and on the set of non-oriented edges. The number ν(v) = |s−1(v)| of outgoing
oriented edges incident to a given vertex v is called the valence of the vertex
v. A modular graph is called stable if 2(g(v) − 1) + ν(v) > 0 for any vertex
v ∈ V (Γ). The number g(Γ) =

∑

v∈V (Γ) g(v)+dim H1(Γ) is the genus of the

connected modular graph Γ; n(Γ) is the number of half-edges of the modular
graph Γ. Suppose that g(v) = 0 for all vertices of the modular graph Γ, such
graphs will be called combinatorial graphs or simply graphs; stability in this
case means that the valency of every vertex is at least three. In this article
all the graphs are supposed to be connected.

Let {µg,n , 2(g − 1) + n > 0} be a set of (commutative) variables, Γ — a
modular graph. Consider the monomial:

µ(Γ) =
1

|Aut Γ|
∏

v∈V (Γ)

µg(v),ν(v), (1.2)

where AutΓ is the automorphism group of the modular graph Γ.
Denote by Gk

g,n the set of all genus g modular graphs with k edges and n
half-edges, consider the polynomials

µk
g,n =

∑

Γ∈Gk
g,n

µ(Γ) (1.3)
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and the generating functions

Ψ(s, t, ~) =
∞
∑

g=0

∞
∑

n=0

3g−3+n
∑

k=0

µk
g,n

tn

n!
sk~g−1 (1.4)

and

Φ(s, t, ~) =
∂Ψ(s, t, ~)

∂t
=

∞
∑

g=0

∞
∑

n=1

3g−3+n
∑

k=0

µk
g,n

tn−1

(n − 1)!
sk~g−1. (1.5)

Note that

Ψ(1, t, ~) =
∞
∑

g=0

∞
∑

n=0

∑

Γ∈Gg,n

µ(Γ)
tn

n!
~g−1 (1.6)

is the partition function, usually considered in the quantum field theory (here
Gg,n =

⋃

k Gk
g,n is the set of all genus g modular graphs with n half-edges).

We prove that the functions Φ and Ψ satisfy the Burgers equation:

Theorem 1.1 The function Ψ(s, t, ~) satisfies the potential form of the Burg-
ers equation:

∂Ψ

∂s
=

~

2

[

∂2Ψ

∂t2
+

(

∂Ψ

∂t

)2
]

; (1.7)

and the function Φ(s, t, ~) satisfies the Burgers equation:

∂Φ

∂s
=

~

2

[

∂2Φ

∂t2
+ 2Φ

∂Φ

∂t

]

. (1.8)

Note that the initial condition Ψ(0, t, ~) for the Burgers equation is the
sum over the set of all edgeless graphs G0

g,n. For each pair (g, n) such that
2(g − 1) + n > 0 the set G0

g,n has only one element — the modular tree Sg,n

that haves one genus g vertex and n half-edges. This tree corresponds to the
moduli space of all nonsingular n-pointed curves: MSg,n = Mg,n. Therefore

Ψ(0, t, ~) =
∑

g ≥ 0
n ≥ 0

2(g − 1) + n > 0

µg,n
tn

n!
~g−1. (1.9)

There are many ways of specializing the variables {µg,n} that provide
interesting generating functions Ψ (or Φ).
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(1) Counting functions for combinatorial graphs of definite type.

(a) For an integer d ≥ 3 put

µg,n =

{

1 if g = 0 n = d
0 either

(1.10)

Then Ψ is the counting functions for all d-valent (combinatorial)
graphs:

Ψ(s, t, ~) =
∑

g,n,k























∑

All genus g d-valent

graphs Γ with k edges

and n half-edges

1

|AutΓ|























tn

n!
sk~g−1

(1.11)
(Note that the sum in brackets is nonzero only for
(d − 2)k = n + d(g − 1).)

In this case the initial condition is:

Ψ(0, t, ~) =
td

d!~
or Φ(0, t, ~) =

td−1

(d − 1)!~
. (1.12)

Below we present explicit formulas for the most interesting case
of trivalent graphs (d = 3).

(b) Put

µg,n =

{

1 if g = 0
0 either

(1.13)

We obtain the counting series for all stable (combinatorial) graphs:

Ψ(s, t, ~) =
∑

g,n,k































∑

All genus g
stable graphs Γ

with k edges and

n half-edges

1

|AutΓ|































tn

n!
sk~g−1 (1.14)
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Initial condition for this case is:

Ψ(0, t, ~) = (et − t2

2
− t − 1)

1

~
. (1.15)

(c) Putting µg,n = 1 for all g, n provides the counting function for all
modular graphs:

Ψ(s, t, ~) =
∑

g,n,k























∑

all modular graphs Γ
genus g with k edges

and n half-edges

1

|AutΓ|























tn

n!
sk~g−1

(1.16)
Initial condition for this case is:

Ψ(0, t, ~) = (et − t2

2
− t − 1)

1

~
− 1 +

et

1 − ~
. (1.17)

(2) Virtual motivic measure of Mg,n

Choose some motivic measure v, attaching to every nonsingular alge-
braic variety X an element v(X) of a certain commutative Q-algebra,
satisfying the following conditions:

(a) v(X \ Y ) + v(Y ) = v(X) for any closed nonsingular subvariety
Y ⊂ X ;

(m) v(X × Z) = v(X)v(Z).

The corresponding virtual motivic measure ṽ of an orbifold X is de-
fined by ṽ(X) = v(X̃)/N , where X̃ → X is an unramified covering of
orbifolds and X is nonsingular. (It is sufficient to have such a covering
for each strata of some stratification of X). Denote µg,n = ṽ(Mg,n).
Then it is not hard to deduce that

µ(Γ) = ṽ(MΓ) (1.18)

and
µk

g,n = ṽ(Mk
g,n), (1.19)
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where Mk
g,n is the moduli space of Deligne-Mumford stable n-pointed

curves, having exactly k nodal points. Note that for fixed g and n the
spaces Mk

g,n form a stratification of M g,n and codimMg,n
Mk

g,n = k. So
the generating functions (1.4) for this case is

Ψ(s, t, ~) =
∞
∑

g=0

∞
∑

n=0

3g−3+n
∑

k=0

ṽ(Mk
g,n)

tn

n!
sk~g−1. (1.20)

Thus the partition function (1.6) for this case is the generating function
for the values of the virtual motivic measure ṽ(M g,n) of the compacti-
fied moduli space M g,n:

Ψ(1, t, ~) =

∞
∑

g=0

∞
∑

n=0

ṽ(M g,n)
tn

n!
~g−1, (1.21)

and the initial condition (1.9) is the generating function for the values of
the virtual motivic measure ṽ(Mg,n) of the moduli space of nonsingular
curves Mg,n:

Ψ(0, t, ~) =
∞
∑

g=0

∞
∑

n=0

ṽ(Mg,n)
tn

n!
~g−1. (1.22)

For such virtual motivic measure ṽ we may take the virtual Poincare
polynomial of X (see [8] or [7]), or the virtual Euler characteristic of
X, or the number of points of X(Fq) over a finite field Fq. But an
explicit formula for the initial condition is known only for the case of
virtual Euler characteristic. It is given by the well-known result by
Harer-Zagier [9]: for g > 0

χ̃(Mg,n) = (−1)n (2g − 3 + n)!(2g − 1)

(2g)!
B2g (1.23)

for g ≥ 2, n ≥ 0 or g = 1, n ≥ 1. Adding the g = 0 case (see [7] or
section 6), we obtain the generating functions

Ψ(0, t, ~) =
2(1 + t)2 ln(1 + t) − 2t − 3t2

4~
− B2

2
ln(1 + t)+

+

∞
∑

g=2

B2g

2g(2g − 2)

~g−1

(1 + t)2g−2
(1.24)
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and

Φ(0, t, ~) =
(1 + t) ln(1 + t) − t

~
−

∞
∑

g=1

B2g

2g

~g−1

(1 + t)2g−1
. (1.25)

In all the described cases we need to solve the Cauchy problem for the
Burgers equation with the initial condition given by one of the formulas
(1.12), (1.15), (1.17) or (1.25).

The equation (1.7) may be linearized by the Cole-Hopf transform (see [5],
[6]):

Ψ = ln F. (1.26)

Substituting in (1.7) we obtain the heat equation

∂F

∂s
=

~

2

∂2F

∂t2
(1.27)

with the initial condition

F (0, t, ~) = eΨ(0,t,~) = e

∑∞
g=0

∑∞
n=0 µg,n

tn

n!
~g−1

. (1.28)

The solution of the Cauchy problem for (1.27) with the initial condition
(1.28), formally expressed by the Poisson integral is known for s = 1 as
Wick’s theorem (see [1]):

Ψ(s, t, ~) = ln





1√
2π~s

∞
∫

−∞

eΨ(0,ξ,~)− (t−ξ)2

2s~ dξ



 . (1.29)

Of course (1.29) should be considered as an equality of formal Laurent series
in ~, but unfortunately the usage of the Poisson integral can not be justified
because the initial conditions (1.12), (1.15), (1.17) and (1.25) are unbounded,
so that (1.29) diverges. Moreover, A.N.Tykhonov in 1935 (see [11]) has
proved that the solution of the Cauchy problem for the heath equation with
the initial condition growing faster than et2 is no longer unique. That is just
the case for all our examples. For instance for the virtual number of trivalent
graphs we have the following integral:

Ψ(s, t, ~) = ln





1√
2π~s

∞
∫

−∞

e
1
~
[ ξ3

6
− (t−ξ)2

2s
]dξ



 . (1.30)
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In (1.57) we present an explicit formula for a one-parametric family of solu-
tions of (1.27) with the initial condition t3

6~
.

Of course (1.29) may be considered as a distribution but this can hardly
help us to get the coefficients of the generating function. Instead of that we
may try to expand the solution by the powers of ~:

Φ(s, t, ~) =

∞
∑

g=0

Φg(s, t)~
g−1, (1.31)

and

Ψ(s, t, ~) =

∞
∑

g=0

Ψg(s, t)~
g−1, (1.32)

where Φg = ∂Ψg

∂t
, and then try to find a recursive formula for the functions

Φg or Ψg.
In this way we get quasi-linear equation for Φ0:

∂Φ0

∂s
= Φ0

∂Φ0

∂t
. (1.33)

and recursive quasi-linear equation for Φg and Ψg for g > 0:

∂Φg

∂s
=

1

2

∂2Φg−1

∂t2
+ Φ0

∂Φg

∂t
+ Φg

∂Φ0

∂t
+

g−1
∑

i=1

Φi
∂Φg−i

∂t
. (1.34)

∂Ψg

∂s
=

1

2

∂2Ψg−1

∂t2
+ Φ0

∂Ψg

∂t
+

1

2

g−1
∑

i=1

∂Ψi

∂t

∂Ψg−i

∂t
. (1.35)

Solving (1.33) with the initial condition Φ0(0, t) = Φ(0, t, 0) we obtain
the following description of generating functions for modular trees (g = 0).
Note that the moduli space M 0,n is smooth and modular trees have no auto-
morphisms, so for g = 0 we obtain the decent Poincare polynomials or Euler
characteristics or the number of trees.

Theorem 1.2 The formal series

αs(t) = t − sΦ0(0, t) = t − s

∞
∑

n=3

v(M0,n)
tn−1

(n − 1)!
(1.36)
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and

βs(t) = t + sΦ0(s, t) = t + s
∞
∑

n=3

(

n−3
∑

k=0

v(Mk
0,n)sk

)

tn−1

(n − 1)!
(1.37)

are inverse to each other with respect to the composition of functions; the
function Φ0(s, t) satisfies the functional equations

Φ0(s, t) = Φ0(0, t + sΦ0(s, t)) (1.38)

and
Φ0(0, t) = Φ0(s, t − sΦ0(0, t)). (1.39)

Corollary 1.1 (1) The counting function for the number of trivalent trees
is

Φ0(s, t) =
1 − st −

√
1 − 2st

s2
and Φ0(1, t) = 1− t−

√
1 − 2t (1.40)

(2) The counting function for the number of stable trees Φ0(s, t) satisfies
the functional equation

et+sΦ0(s,t) = 1 + t + (1 + s)Φ0(s, t) (1.41)

and the differential equation

(Φ0(s, t))
′
t =

t + (s + 1)Φ0(s, t)

1 − s[t + (s + 1)Φ0(s, t)]
. (1.42)

(3) The generating function Φ0(s, t) for the Poincare polynomial of M 0,n

satisfies the functional equation

(1 + t + sΦ0(s, t))
q = q(q + s − 1)Φ0(s, t) + qt + 1, (1.43)

and the differential equation

(Φ0(s, t))
′ =

t + (q + s)Φ0(s, t)

1 + t − st − s(q + s − 1)Φ0(s, t)
. (1.44)
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(4) The generating function Φ0(s, t) for the Euler characteristic of M 0,n

satisfies the functional equation

ln(1 + t + sΦ0(s, t)) =
t + (s + 1)Φ0(s, t)

1 + t + sΦ0(s, t)
(1.45)

and the differential equation

(Φ0(s, t))
′
t =

t + (s + 1)Φ0(s, t)

1 + t − st − s2Φ0(s, t)
. (1.46)

The equations for Poincare polynomial and Euler characteristic are well-
known for s = 1 (see [7] or [2].

The function Φ0(s, t) is essentially used in the recursive formulas for the
solutions of the equations (1.35) for g > 0 based on the following integral
representation.

Theorem 1.3 The solution

Ψ(s, t, ~) =

∞
∑

g=0

Ψg(s, t)~
g−1. (1.47)

of the potential Burgers equation (1.7) with the initial condition Ψ(0, t, ~) is
given by

Ψ(s, t, ~) = Ψ(0, t + sΦ0(s, t)), ~)+

+
~

2

∫ s

0

[

∂2Ψ

∂t2
+

(

∂(Ψ − Ψ0)

∂t

)2
]

(σ, t + (s − σ)Φ0(s, t), ~) dσ (1.48)

As the result we obtain explicit recursive formulas.

Corollary 1.2 For g > 0

Ψg(s, t) = Ψg(0, t + sΦ0(s, t)))+

+
1

2

∫ s

0

[

∂2Ψg−1

∂t2
+

g−1
∑

i=1

∂Ψi

∂t

∂Ψg−i

∂t

]

(σ, t + (s − σ)Φ0(s, t)) dσ (1.49)

Now we are in position to apply (1.49) to any case, for which we are able
to find Φ0(s, t) and the initial condition Ψ(0, t, ~).
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1.1 Trivalent graphs.

We have seen that for stable trivalent graphs Φ0(s, t) = 1−st−
√

1−2st
s2 and

Ψ(0, t, ~) = t3/6~.
In this case we present a one-parametric family of explicit solutions of the

equations (1.34) in terms of modified Bessel functions Iν(z) or Airy functions
Ai(z) and Bi(z) (see the definitions in [4]). All these solutions are analytic
outside the line s = 0, and have infinitely many derivatives on this line, and
each solution provides the same (divergent) expansion in s and t.

Theorem 1.4 The counting function Φ for trivalent graphs

Φ(s, t, ~) =

∞
∑

g=0

∞
∑

n=1

3g−3+n
∑

k=0























∑

genus g trivalent

graphs Γ with k edges

and n labelled half-edges

1

|Aut Γ|























tn−1

(n − 1)!
sk~g−1

is the asymptotic expansion of

1 − st

s2~
−

√
1 − 2st

s2~

[

C1I−2/3(
(
√

1−2st)3

3s3~
) + C2I2/3(

(
√

1−2st)3

3s3~
)

C1I1/3(
(
√

1−2st)3

3s3~
) + C2I−1/3(

(
√

1−2st)3

3s3~
)

]

=

=
1 − st

s2~
− 21/3

s~2/3

[

C ′
1Ai′

(

1−2st
22/3s2~2/3

)

+ C ′
2Bi′

(

1−2st
22/3s2~2/3

)

C ′
1Ai

(

1−2st
22/3s2~2/3

)

+ C ′
2Bi

(

1−2st
22/3s2~2/3

)

]

=

=
1 − st −

√
1 − 2st

s2~
+

s

1 − 2st
W

(

s3~

(
√

1 − 2st)3

)

, (1.50)

where C1, C2, C
′
1, C

′
2 are arbitrary constants (C ′

1 =
√

3(C2 − C1) and C ′
2 =

C2 + C1), and

W (u) =
1

u

[

1 − C1I−2/3

(

1
3u

)

+ C2I2/3

(

1
3u

)

C1I1/3

(

1
3u

)

+ C2I−1/3

(

1
3u

)

]

.

The counting function for trivalent graphs with one half-edge (see also table 1)
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is the asymptotic expansion of W (u):

W (u) ∼
∞
∑

g=1























∑

genus g trivalent

graphs Γ with

one half-edge

1

|AutΓ|























ug−1 =

=
1

u

[

1 − 1 − (16/9−1)
1!

3
8
u + (16/9−1)(16/9−9)

2!
(3

8
u)2 − (16/9−1)(16/9−9)(16/9−25)

3!
(3

8
u)3 + . . .

1 − (4/9−1)
1!

3
8
u + (4/9−1)(4/9−9)

2!
(3

8
u)2 − (4/9−1)(4/9−9)(4/9−25)

3!
(3

8
u)3 + . . .

]

=

=

∑∞
0

(6n+1)!
2(2n)!(3n)!

un

288n

∑∞
0

(6n)!
(2n)!(3n)!

un

288n

=
1

2
+

5

8
u+

15

8
u2+

1105

128
u3+

1695

32
u4+

414125

1024
u5+. . . .

(1.51)

Denote

W (u) =
∞
∑

g=1

τgu
g−1, (1.52)

then1

∑

genus g trivalent

graphs Γ with k edges

and n labelled half-edges

1

|AutΓ| =







(2n − 5)!! for g = 0, n ≥ 3
1
2
(2n − 2)!! for g = 1, n ≥ 1

τg
(3g+2n−5)!!

(3g−3)!!
for g ≥ 2,

(1.53)
For g > 1 the numbers τg g > 1 satisfy the following recurrence:

τg =
1

2

(

(3g − 4)τg−1 +

g−1
∑

i=1

τiτg−i

)

. (1.54)

1Don Zagier has noticed that the right side of (1.53) may be uniformly written in the

form τg

(3g+2n−5)!!
(3g−3)!! for all such g and n such that n + 2g > 2, putting τ1 = 1

2 τ0 = −1,

since it is natural to extend 0!! = 1 and (−3)!! = −1.
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Corollary 1.3 The counting function Ψ for trivalent graphs

Ψ(s, t, ~) =
∞
∑

g=0

∞
∑

n=0

3g−3+n
∑

k=0























∑

genus g trivalent

graphs Γ with k edges

and n labelled half-edges

1

|AutΓ|























tn

n!
sk~g−1

is the asymptotic expansion of

1

6s3~

[

−2 + 6st − 3s2t2
]

−1

6
ln(s3~)+ln

[

C ′
1Ai

(

1 − 2st

22/3s2~2/3

)

+ C ′
2Bi

(

1 − 2st

22/3s2~2/3

)]

=

=
1

6s3~

[

−2 + 6st − 3s2t2
]

− 1

2
ln(s3~) +

1

2
ln(1 − 2st) − ln 3 − 1

3
ln 2+

+ ln

[

C1I1/3

(

(
√

1 − 2st)3

3s3~

)

+ C2I−1/3

(

(
√

1 − 2st)3

3s3~

)]

=

=
1

6s3~

[

2
(√

1 − 2st
)3 − 2 + 6st − 3s2t2

]

−1

4
ln(1−2st)+V

(

s3~

(
√

1 − 2st)3

)

,

(1.55)

where

V (u) = ln

[

C1I1/3

(

1
3u

)

+ C2I−1/3

(

1
3u

)

3 3
√

2
√

u
e−

1
3u

]

.

The counting function for trivalent graphs without half-edges (see also table 2)
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g = 1 g = 2

Graph Γ

t
&%
'$ t

tt









J
J

JJ tt
t

&%
'$
&%
'$

tt
t

&%
'$&%
'$

|AutΓ| 2 4 8 4
τg

1
2

1
4

+ 1
8

+ 1
4

= 5
8

Table 1: First two terms of the expansion W (u) = 1
2

+ 5
8
u + · · ·

is the asymptotic expansion of V (u):

V (u) ∼
∞
∑

g=2















∑

genus g trivalent

graphs Γ

1

|AutΓ|















ug−1 =

= ln

[

1 − (4
9
− 1)

1!

3

8
u +

(4
9
− 1)(4

9
− 9)

2!

(

3

8
u

)2

− (4
9
− 1)(4

9
− 9)(4

9
− 25)

3!

(

3

8
u

)3

+ . . .

]

=

= ln

[ ∞
∑

0

(6n)!

(2n)!(3n)!

un

288n

]

=
∞
∑

g=2

τg

3g − 3
ug−1 =

5

24
u+

5

16
u2+

1105

1152
u3+

565

128
u4+

82825

3072
u5+. . . ,

(1.56)

where τg, Ci and C ′
i are the same as in the theorem 1.4.2

Causally we have constructed a one-parametric family of solutions of
the Cauchy problem for the heath equation (1.27) with the initial condi-
tion F (0, t) = et3/6~. Non-uniqueness of the solutions of the Cauchy problem

2Don Zagier communicated to me a nice direct combinatorial proof of the formula

V (u) = ln
[

∑

∞

0
(6n)!

(2n)!(3n)!
u

n

288n

]
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g = 2 g = 3

Graph Γ
t t��
��tt

��
����
��

t
t t t
��
SS��

��
tt
tt

tt
tt

��
���

�
�

A
A

A

tt
tt

��
����
����
��

t tt t
��
��

��
����

��

�� ZZ

|AutΓ| 12 8 24 16 8 16 48
τg/(3g − 3) 1

12
+ 1

8
= 5

24
1
24

+ 1
16

+ 1
8

+ 1
16

+ 1
48

= 5
16

Table 2: First two terms of the expansion V (u) = 5
24

u + 5
16

u2 + · · ·

for the heath equation with rapidly increasing initial conditions (greater than
et2) was observed by A.N.Tikhonov in 1935 [11].

F (s, t) =

√

1 − 2st

s3~
e

−2+6st−3s2t2

6s3~

[

C1I1/3

(

(
√

1 − 2st)3

3s3~

)

+ C2I−1/3

(

(
√

1 − 2st)3

3s3~

)]

=

=
e

1
6s3~

h

2(
√

1−2st)
3−2+6st−3s2t2

i

4
√

1 − 2st
×

C1I1/3

(

(
√

1−2st)3

3s3~

)

+ C2I−1/3

(

(
√

1−2st)3

3s3~

)

√

s3~

(
√

1−2st)3

e−
(
√

1−2st)3

3s3~ .

(1.57)

The second representation in (1.57) is given to show that F is defined and
infinitely differentiable on the real axe s = 0: this is evident about the first
product, and the second is V ( s3

~

(
√

1−2st)3
) (see (1.56)).

1.2 Counting series for all combinatorial graphs.

In this case the function Φ0 satisfies the functional equation (1.41) and the
differential equation (1.42) The initial condition for the Burgers equation
(1.7) is given by (1.15).
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Theorem 1.5 Terms Ψg of the expansion of the counting function

Ψ(s, t, ~) =

∞
∑

g=0

Ψg(s, t)~
g−1. (1.58)

for all (combinatorial) graphs are expressed as follows:

• for g = 1

Ψ1(s, t) = −1

2
ln(1 − s(t + (s + 1)Φ0(s, t))); (1.59)

• for g > 1

Ψg(s, t) =
sg(1 + t + (s + 1)Φ0(s, t))

(1 − s(t + (s + 1)Φ0(s, t)))g

× Pg

(

s(1 + t + (s + 1)Φ0(s, t))

(1 − s(t + (s + 1)Φ0(s, t)))

)

, (1.60)

where Pg is a polynomial of degree 2g − 2, satisfying the following re-
currence3:

gPg(u) + uP ′
g(u) =

=
1

2

[

u2(u + 1)2P ′′
g−1(u) + u(u + 1) [(2g + 1)u + 3]P ′

g−1(u)+

+
[

(g2 − 1)u2 − (3g − 2)u + 1
]

Pg−1(u)+

+u

g−1
∑

i=1

[u(u + 1)P ′
i (u) + (iu + 1)Pi(u)]

[

u(u + 1)P ′
g−i(u) + ((g − i)u + 1)Pg−i(u)

]

]

(1.61)

Here we present first three functions Ψg, calculated using the package
MAPLE.

Ψ1(s, t) =
1

2
st +

(

1

4
s +

1

2
s2

)

t2+

+

(

7

12
s2 +

2

3
s3 +

1

12
s

)

t3 +

(

59

48
s3 +

3

8
s2 + s4 +

1

48
s

)

t4+

+

(

8

5
s5 +

121

48
s4 +

19

16
s3 +

41

240
s2 +

1

240
s

)

t5 + O
(

t6
)

) (1.62)

3Here we formally put P1(u) = ln(u+1)
2u

.
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Ψ2(s, t) =

(

1

8
s2 +

5

24
s3

)

+

(

5

8
s4 +

2

3
s3 +

1

8
s2

)

t+

+

(

41

48
s3 +

1

16
s2 +

25

16
s5 +

109

48
s4

)

t2+

(

175

48
s6 +

53

8
s5 +

133

36
s4 +

47

72
s3 +

1

48
s2

)

t3+

+

(

3419

192
s6 +

1885

144
s5 +

15

4
s4 +

525

64
s7 +

203

576
s3 +

1

192
s2

)

t4+

+

(

7943

192
s6 +

1

960
s2 +

53

360
s3 +

7901

2880
s4 +

593

36
s5 +

1091

24
s7 +

1155

64
s8

)

t5+O
(

t6
)

(1.63)

Ψ3(s, t) =

(

11

48
s4 +

1

48
s3 +

25

48
s5 +

5

16
s6

)

+

(

25

48
s4 +

1

48
s3 +

15

8
s7 +

185

48
s6 +

119

48
s5

)

t+

+

(

241

48
s5 +

9

16
s4 +

1

96
s3 +

15

2
s8 +

1745

96
s7 +

727

48
s6

)

t2+

+

(

4595

144
s6 +

295

48
s5 +

113

288
s4 +

1

288
s3 +

20357

288
s7 + 25 s9 +

2225

32
s8

)

t3+

+

(

40465

144
s8 + 75 s10 +

30075

128
s9 +

6365

144
s6 +

184495

1152
s7 +

1

1152
s3 +

29

144
s4 +

6101

1152
s5

)

t4+

+

(

794353

1152
s8 +

93555

128
s10 + 210 s11 +

385291

384
s9 +

258589

5760
s6 +

31815

128
s7 +

+
1

5760
s3 +

157

1920
s4 +

20159

5760
s5

)

t5 + O
(

t6
)

(1.64)

1.3 Virtual Euler characteristic M g,n.

In this case the function Φ0 satisfies the functional equation (1.45) and the
differential equation (1.46) The initial conditions for the Burgers equation
(1.7) or (1.8) are given by (1.24) (1.25).

Theorem 1.6 The terms Ψg of the expansion of the generating function

Ψ(s, t, ~) =

∞
∑

g=0

Ψg(s, t)~
g−1. (1.65)

for the virtual euler characteristic of may be expressed as follows:
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• for g = 1

Ψ1(s, t) = −1

2
ln(1+t−s(t+sΦ0(s, t)))+

5

12
ln(1+t+sΦ0(s, t)); (1.66)

• for g > 1

Ψg(s, t) =
1

(1 + t + sΦ0(s, t))2g−2
Ψg

(

s(1 + t + sΦ0(s, t))

1 + t − s(t + sΦ0(s, t))
, 0

)

,

(1.67)
and Ψg(s, 0) are polynomials in s of degree 3g − 3, satisfying the fol-
lowing recurrence:

Ψg+1(s, 0) =

=
B2g

2g(2g + 2)
+

1

2

∫ s

0

[

σ4 ∂2Ψg

∂s2
(σ, 0) + σ2(3σ + 3 − 4g)

∂Ψg

∂s
(σ, 0)−

−2(g−1)(σ−2g+1)Ψg(σ, 0)+

g
∑

i=1

(

σ2∂Ψi

∂s
(σ, 0) − 2(i − 1)Ψi(σ, 0)

)

×

×
(

σ2∂Ψg−i+1

∂s
(σ, 0) − 2(g − i)Ψg−i+1(σ, 0)

)]

dσ (1.68)

The coefficient of the leading term of Ψg(s, 0) equals τg

3g−3
(see the def-

inition of τg in the theorem 1.4).

In section 6 we present the results of calculations based on these formulas,
performed with the package MAPLE.

2 Cutting and clutching modular graphs.

Consider the set Gk
g,n of genus g stable modular graphs with k edges and n

half-edges. For k > 0, n > 0 and g ≥ 0 there is the uniquely defined clutching
map

& : Gk−1
g−1,n+2 → Gk

g,n, (2.1)

gluing together the first and the last half-edges of the modular graph Γ ∈
Gk−1

g−1,n+2 into one edge e& of a new modular graph &(Γ) ∈ Gk−1
g−1,n+2 (the

ordering of the remaining n − 2 half-edges is inherited from Γ). Note that
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the edge e& possess a uniquely defined orientation (directed from the first
half-edge to the last one ), so we have defined the clutching map

&̃ : Gk−1
g−1,n+2 → G̃k

g,n, (2.2)

where G̃k
g,n is the set of genus g stable modular graphs having k edges, n

half-edges and one marked oriented edge. The mapping &̃ is injective: we
may reconstruct Γ by cutting the marked edge of &̃(Γ).

Now for k > 0, n ≥ 0, g ≥ 0 fix some nonnegative integers n1, n2, k1, k2, g1, g2,
such that n1 + n2 = n, k1 + k2 = k − 1, g1 + g2 = g and some partition
(I1, I2) of the set {1, 2, . . . , n} = I1 t I2 such that |I1| = n1, |I2| = n2. Put
I1 = {i1, i2, . . . , in1} and I2 = {j1, j2, . . . , jn2}, where i1 < i2 < . . . < in1

j1 < j2 < . . . < jn2. Choose two modular graphs Γ1 ∈ Gk1
g1,n1+1 and

Γ2 ∈ Gk2
g2,n2+1 and glue together the first half-edge of the modular graph

Γ1 and the last half-edge of the modular graph Γ2. Define the labelling of
the half-edges of the joint graph Γ1&Γ2 as follows: m-th half-edge of the
modular graph Γ1 becomes im−1-th half-edge of the modular graph Γ1&Γ2

for 2 ≤ m ≤ n1 + 1 and m-th half-edge of the modular graph Γ2 becomes
jm-th half-edge of the modular graph Γ1&Γ2 for 1 ≤ m ≤ n2. Thus we have
defined the clutching maps:

& : Gk1
g1,n1+1 × Gk2

g2,n2+1 × Pn1,n2 → Gk
g,n, (2.3)

and
&̃ : Gk1

g1,n1+1 × Gk2
g2,n2+1 × Pn1,n2 → G̃k

g,n, (2.4)

where Pn1,n2 is the set of all partitions. Repeating the above arguments it is
easy to see that the map (2.4) is injective. For fixed n and g we may arrange
all the clutching maps (2.1), (2.3) (and, respectively (2.2), (2.4) ) into one
map

&g,n : Gk−1
g−1,n+2 ∪

⋃

k1+k2=k−1

g1+g2=g

n1+n2=n

(

Gk1
g1,n1+1 × Gk2

g2,n2+1 × Pn1,n2

)

→ Gk
g,n, (2.5)

and, respectively

&̃g,n : Gk−1
g−1,n+2 ∪

⋃

k1+k2=k−1

g1+g2=g

n1+n2=n

(

Gk1
g1,n1+1 × Gk2

g2,n2+1 × Pn1,n2

)

→ G̃k
g,n. (2.6)
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The last mapping &̃g,n, is obviously bijective: for (~e, Γ̃) ∈ G̃k
g,n the inverse

mapping is &̃−1
g,n given by cutting the marked oriented edge ~e of the graph

Γ̃ ∈ Gk
g,n into two half-edges. The ordering of the half-edges is inherited from

the graph Γ̃, and the two new half-edges get the first and the last number
according to the orientation of the marked edge.

Consider the projection

πg,n : G̃k
g,n → Gk

g,n. (2.7)

Choose a modular graph Γ̃ ∈ Gk
g,n; the group Aut(Γ̃) acts on the set of its

oriented edges ~E(Γ̃). There is one to one correspondence between the set of
orbits of this action and the set of the pairs (~e, Γ̃) ∈ π−1

g,n(Γ̃). Choose one
representative {~eα} from each orbit, then

2k = | ~E(Γ̃)| =
∑

~eα

|Aut(Γ̃) · ~eα| =
∑

~eα

(

Aut(Γ̃) : Aut(Γ̃)~eα

)

=
∑

~eα

Aut(Γ̃)

Aut(Γ̃)~eα

,

(2.8)
where Aut(Γ̃)~eα is the stabilizer of the oriented edge ~eα. Each pair (eα, Γ̃)
belongs to a uniquely defined image of one of the mappings &̃: (2.4) if the
edge eα disconnects the modular graph Γ̃, or (2.2) if it does not. In the first
case

Aut(Γ̃)~eα
∼= Aut(Γ1) × Aut(Γ2), (2.9)

and in the second
Aut(Γ̃)~eα

∼= Aut(Γ). (2.10)

(Γ̃ = Γ1&Γ2 for (2.9) and Γ̃ = &(Γ) for (2.10).) Combining (2.10), (2.9) and
(2.8) we obtain

2k

|Aut(Γ̃)|
=

∑

Γ∈&−1
g,n(Γ̃)

1

|Aut(Γ)| +
∑

(Γ1,Γ2,(I1,I2))∈&−1
g,n(Γ̃)

1

|Aut(Γ1)|
1

|Aut(Γ2)|
(2.11)

Let {µg,n , 2(g−1)+n > 0} be a set of (commutative) variables. In (1.2)
and (1.3) we have defined the monomials

µ(Γ) =
1

|Aut Γ|
∏

v∈V (Γ)

µg(v),ν(v). (2.12)
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and the polynomials

µk
g,n =

∑

Γ∈Gk
g,n

µ(Γ). (2.13)

Each of the modular graphs (or each of the pairs of the modular graphs) in
&̃−1

g,n(Γ̃) has the same collection of vertices with the same valences, therefore
multiplying (2.11) by

∏

v∈V (Γ̃) µg(v),ν(v)we obtain:

2kµ(Γ̃) =
∑

Γ∈&̃−1
g,n(Γ̃)

µ(Γ) +
∑

(Γ1,Γ2,(I1,I2))∈&̃−1
g,n(Γ̃)

µ(Γ1)µ(Γ2). (2.14)

Taking the sum (2.14) over all Γ̃ ∈ Gk
g,nwe obtain:

2kµk
g,n = µk−1

g−1,n+2 +
∑

k1+k2=k−1

g1+g2=g

n1+n2=n

(

n

n1

)

µk1
g1,n1

µk2
g2,n2

. (2.15)

Using the definition of the generating function (1.4)

Ψ(s, t, ~) =
∞
∑

g=0

∞
∑

n=0

3g−3+n
∑

k=0

µk
g,n

tn

n!
sk~g−1, (2.16)

and multiplying( 2.15) by 1
2

tn

n!
sk−1~g−1, we obtain the potential Burgers equa-

tion:
∂Ψ

∂s
=

~

2

[

∂2Ψ

∂t2
+

(

∂Ψ

∂t

)2
]

. (2.17)

Theorem 1.1 is proved.
Similar arguments may be used to prove the formula (1.18): for any

virtual motivic measure ṽ

ṽ(MΓ) =
1

|AutΓ|
∏

v∈V (Γ)

ṽ(Mg(v),ν(v)). (2.18)

This is evident for the case when Γ is a tree; any modular graph may be
constructed from a tree by a sequence of clutching maps (2.1). So to com-
plete the proof it is sufficient to compare ṽ(MΓ) and ṽ(M&(Γ)) in (2.1). Put
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(~e, Γ̃) = &̃(Γ) (this simply means that Γ̃ = &(Γ) and ~e is the marked ori-
ented edge, obtained by gluing two half-edges together). Consider the moduli
space M̃Γ̃ parameterizing Deligne-Mumford stable nodal pointed curves with
one marked branch of one of its nodal points, whose dual graph is Γ̃. The
projection π : M̃Γ̃ → MΓ̃ is a 2k-fold unramified covering of orbifolds. The
space M̃Γ̃ splits into disjoint union of components, corresponding to the or-

bits of the action of the group Aut(Γ̃) on the set of oriented edges ~E(Γ̃) of
the modular graph Γ̃. The component corresponding to the orbit of ~e will be
denoted by M̃Γ̃,~e, then π : M̃Γ̃,~e → MΓ̃ is an unramified covering of orbifolds

of degree (Aut(Γ̃) : Aut(Γ̃)~e) = |Aut(Γ̃)|
|Aut(Γ̃)~e|

. Therefore

ṽ(M̃Γ̃,~e) =
|Aut(Γ̃)|
|Aut(Γ̃)~e|

ṽ(M̃Γ̃). (2.19)

The clutching maps (2.1) and (2.2) define the clutching maps

&Γ : MΓ → MΓ̃ (2.20)

and
&̃Γ : MΓ → M̃Γ̃, (2.21)

M̃Γ̃,~e is the image of &̃Γ, and

&̃Γ : MΓ
∼= M̃Γ̃,~e, (2.22)

is an isomorphism, hence ṽ(MΓ) = ṽ(M̃Γ̃,~e). This completes the proof of
(1.18).

3 Solving the Burgers equation.

In this section we solve the Burgers equations (1.7) or (1.8) using the expan-
sions (1.32) and (1.31):

Ψ(s, t, ~) =
∞
∑

g=0

Ψg(s, t)~
g−1, (3.1)

Φ(s, t, ~) =
∞
∑

g=0

Φg(s, t)~
g−1. (3.2)
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Substituting (1.7) into (1.8), we get a quasi-linear equation for Φ0:

∂Φ0

∂s
= Φ0

∂Φ0

∂t
. (3.3)

and recursive quasi-linear equation for Φg and Ψg for g > 0:

∂Φg

∂s
=

1

2

∂2Φg−1

∂t2
+ Φ0

∂Φg

∂t
+ Φg

∂Φ0

∂t
+

g−1
∑

i=1

Φi
∂Φg−i

∂t
. (3.4)

∂Ψg

∂s
=

1

2

∂2Ψg−1

∂t2
+ Φ0

∂Ψg

∂t
+

1

2

g−1
∑

i=1

∂Ψi

∂t

∂Ψg−i

∂t
. (3.5)

For g = 0 we have only the quasi-linear equation (3.3). The equations for
the characteristics are

ds

1
= − dt

Φ0
=

dΦ0

0
. (3.6)

The two first integrals for (3.6) are

Φ0 = C1 t + sΦ0 = C2. (3.7)

Then the general solution of (3.3) is

f0(Φ0, t + sΦ0) = 0, (3.8)

for some function f0. Using the initial conditions Φ0(0, t), we see that for
s = 0 f0(Φ0(0, t), t) = 0; this means that f0(a, b) = 0 is equivalent to
a = Φ0(0, b). Thus the equation (3.8) provides the functional equation for
Φ0(s, t):

Φ0(s, t) = Φ0(0, t + sΦ0(s, t)). (3.9)

Put
αs(t) = t − sΦ0(0, t) and βs(t) = t + sΦ0(s, t). (3.10)

From (3.9) we obtain t + sΦ0(s, t)− sΦ0(0, t + sΦ0(s, t)) = t, so the function
αs is inverse to the βs with respect to the composition of functions:

αs(βs(t)) = t and βs(αs(t)) = t. (3.11)

Thus the theorem 1.2 is proved.
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Now let us study the quasi-linear equation (3.5). The equations for the
characteristics for (3.5) are

ds

1
= − dt

Φ0
=

dΨg

1
2

∂2Ψg−1

∂t2
+ 1

2

∑g−1
i=1

∂Ψi

∂t

∂Ψg−i

∂t

. (3.12)

The equations for the characteristics for (3.4) are

ds

1
= − dt

Φ0
=

dΦg

Φg
∂Φ0

∂t
+ 1

2

∂2Φg−1

∂t2
+
∑g−1

i=1 Φi
∂Φg−i

∂t

. (3.13)

Let us denote the denominator in (3.12) by

Hg(s, t) =
1

2

∂2Ψg−1

∂t2
+

1

2

g−1
∑

i=1

∂Ψi

∂t

∂Ψg−i

∂t
, (3.14)

note that Hg depends only on Ψi for i < g. We have already found one first
integral for (3.13) and (3.12) for all g:

Φ0(s, t) = C1. (3.15)

Substituting into (3.9) we see that

Φ0(0, t + sC1) = C1. (3.16)

Let us denote one of the branches of the function inverse to Φ0(0, t) by ϕ, then
t = ϕ(C1)− sC1. Now the second first integral for (3.5) may be (recursively)
found by simple integration:

Ψg −
∫

Hg(s, ϕ(C1) − sC1)ds = C2. (3.17)

Eliminating C1 we obtain:

Ψg − Ξg(s, t) = C2 (3.18)

where

Ξg(s, t) =

∫ s

0

Hg(σ, t + (s − σ)Φ0(s, t))dσ. (3.19)

Note that we choose the integration constant so that Ξg(0, t) = 0. Thus the
general solution of (3.5) may be written as:

Ψg(s, t) = Ξg(s, t) + Ug(Φ0(s, t)) (3.20)
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for an arbitrary function Ug. The function Ug then may be determined from
the initial condition:

Ug(Φ0(0, t)) = Ψg(0, t). (3.21)

Substituting t + sΦ0(s, t) instead of t in Φ0(0, t) and using (3.9) we obtain
the following recurrence formula for the solution of the Burgers equation.

Ψg(s, t) = Ψg(0, t + sΦ0(s, t)))+

+
1

2

∫ s

0

[

∂2Ψg−1

∂t2
+

g−1
∑

i=1

∂Ψi

∂t

∂Ψg−i

∂t

]

(σ, t + (s − σ)Φ0(s, t)) dσ (3.22)

The theorem 1.3 is proved.

4 g = 0.

In this section we use Theorem 1.2 to obtain in a uniform way functional
equations for Φ0(s, t) for all the cases we have discussed.

1) Counting functions for trivalent trees.
In this case Φ0(0, t) = t2

2
(see (1.12) for d = 3). The inverse function for

αs(t) = t − s t2

2
is the solution of the quadratic equation βs(t) − sβs(t)2

2
= t.

The solution is βs(t) = α−1
1 (t) = 1−

√
1−2st
s

and therefore

Φ0(s, t) =
1 − st −

√
1 − 2st

s2
and Φ0(1, t) = 1 − t −

√
1 − 2t. (4.1)

This is a well-known generating function for the number of trivalent trees
with labelled half-edges.

2) Counting functions for all stable trees.
In this case (see (1.15))

Φ0(0, t) = et − t − 1. (4.2)

Substituting into (1.38), we obtain the functional equation (1.41). The dif-
ferential equation (1.42) is deduced from it in a standard way.

3) The Poincare polynomial and the Euler characteristic for M 0,n.
The Poincare polynomial for M0,n in variable y coincides with the number

of points in M0,n(Fq) for a finite field Fq (after the substitution q = y2). There
are q + 1 point on the projective line; the first three of them we may send
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to 0, 1 and ∞ by some projective automorphism; the remaining q − 3 points
may be chosen in

(q − 2)(q − 3) . . . (q − n + 2) (4.3)

ways. Hence the generating function is

Φ0(0, t) =
∞
∑

n=3

(q − 2)!

(n − 1)!(q − n + 1)!
tn−1 =

(1 + t)q − qt − 1

q(q − 1)
. (4.4)

Substituting into (1.38) we obtain the functional equation (1.43). The dif-
ferential equation (1.44) is deduced from it in a standard way.

For the Euler characteristic we may simply put q = 1 in (4.4).

5 Counting function for trivalent graphs.

In this case it is better to begin with the equation (1.8) on the function
Φ(s, t, ~). For any genus g trivalent graph with k edges and n half-edges
k = 3g − 3 + n, therefore Φ contains only monomials

s3g−3+ntn−1~g−1 = s(s3~)g(st)n−1 (5.1)

and hence
Φ(s, t, ~) = sZ(s3~, st) (5.2)

for some function Z(x, y). Substituting (5.2) into (1.8) we obtain the equation

Z + 3x
∂Z

∂x
+ y

∂Z

∂y
=

x

2

∂2Z

∂y2
+ xZ

∂Z

∂y
. (5.3)

Similarly to (1.31) consider the expansion

Z(x, y) =
∞
∑

g=0

Zg(y)xg−1. (5.4)

Then for Z0(y) we have the homogeneous equation

−2Z0 + yZ ′
0 = Z0Z

′
0. (5.5)

The solution we need (with the initial condition Z0(0) = 0) is

Z0(y) = 1 − y −
√

1 − 2y, (5.6)
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which of course coincides with (1.40). For g > 0 (5.3) provides the following
recursive linear equation for Zg(y), which is equivalent to (1.34):

−2Zg + 3gZg + yZ ′
g =

1

2
Z ′′

g−1 + Z0Z
′
g + ZgZ

′
0 +

g−1
∑

i=1

Z ′
iZg−i. (5.7)

It is not hard to find Z1 and the general form of Zg (as well we could use
(1.49), which would lead to a bit cumbersome transformations):

Z1 =
1

2(1 − 2y)
and Zg =

τg

(
√

1 − 2y)3g−1
(5.8)

for some constants τg, where τ1 = 1
2
. The equation (5.7) provides the recursive

formula for τg, g > 1:

τg =
1

3g − 2

(

1

2
(3g − 2)(3g − 4)τg−1 +

g−1
∑

i=1

(3i − 1)τiτg−i

)

, (5.9)

It is not hard to transform (5.9) to a better form:

τg =
1

2

(

(3g − 4)τg−1 +

g−1
∑

i=1

τiτg−i

)

. (5.10)

Here are the four first values of τg:

τ1 =
1

2
; τ2 =

5

8
; τ3 =

15

8
; τ4 =

1105

128
. (5.11)

Substituting (5.8) into (5.4) we express of the solution Z in the following
form :

Z = Z0 +

∞
∑

g=1

τg
xg

(
√

1 − 2y)3g−1
= Z0 +

x

1 − 2y

∞
∑

g=1

τg

(

x

(
√

1 − 2y)3

)3g−1

=

= Z0 +
x

1 − 2y
W (

(

x

(
√

1 − 2y)3

)

, (5.12)

where W is some function in one variable. Substituting into (5.3), we get an
ordinary differential the equation for W (u):

1 + (8u − 2)W + (27u2 − 6x)W ′ + 9u3W ′′ + 4uW 2 + 6u2W ′W = 0. (5.13)
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Multiplying by u−2/3 and integrating we get:

−2u1/3W (u) + 2u4/3W (u) + u4/3W (u)2 + 3u7/3W ′(u) + u1/3 + C = 0 (5.14)

Since W is regular at u = 0 then C = 0. Dividing by u1/3 we get the Riccati
equation

2(u − 1)W (u) + uW (u)2 + 1 + 3u2W ′(u) = 0. (5.15)

For the equation (5.15) u = 0 is a singular point and it has the unique formal
series solution

W (u) =
1

2
+

5

8
u +

15

8
u2 +

1105

128
u3 +

1695

32
u4 +

414125

1024
u5 + O

(

u6
)

. (5.16)

The general solution of (5.15) may be expressed analytically via modified
Bessel functions:

W (u) =
1

u

(

1 − C1I−2/3(
1
3u

) + C2I2/3(
1
3u

)

C1I1/3(
1
3u

) + C2I−1/3(
1
3u

)

)

(5.17)

for any C1, C2. Using asymptotic expansion of Bessel functions (see [4]) the
solution (for any C1 and C2) may be represented as a quotient of two power
series:

W (u) =

=
1

u

(

1 − 1 − (16/9−1)
1!

3
8
u + (16/9−1)(16/9−4)

2!
(3

8
u)2 − (16/9−1)(16/9−4)(16/9−25)

3!
(3

8
u)3 + . . .

1 − (4/9−1)
1!

3
8
u + (4/9−1)(4/9−4)

2!
(3

8
u)2 − (4/9−1)(4/9−4)(4/9−25)

3!
(3

8
u)3 + . . .

)

.

(5.18)

Now we can present the answer:

Φ(s, t, ~) =
1

s2~

[

1 − st −
√

1 − 2st
]

+
1

s2

∞
∑

g=1

τg
s3g~g−1

(
√

1 − 2st)3g−1
=

=
1 − st −

√
1 − 2st

s2~
+

s

1 − 2st

∞
∑

g=1

τg

(

s3~

(
√

1 − 2st)3

)g−1

=

=
1 − st −

√
1 − 2st

s2~
+

s

1 − 2st
W

(

s3~

(
√

1 − 2st)3

)

. (5.19)
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It is also useful to express the solution Φ(s, t, ~) by the Airy functions
(see [4]):

Φ(s, t, ~) =
1 − st

s2~
− 21/3

s~2/3

[

C ′
1Ai′

(

1−2st
22/3s2~2/3

)

+ C ′
2Bi′

(

1−2st
22/3s2~2/3

)

C ′
1Ai

(

1−2st
22/3s2~2/3

)

+ C ′
2Bi

(

1−2st
22/3s2~2/3

)

]

, (5.20)

where C ′
1 =

√
3(C2 − C1) and C ′

2 = C2 + C1. Now it is easy to find the ana-
lytical expression (1.55) for Ψ(s, t, ~) by integration; the integration constant
(depending on s and ~) can be found from the Burgers equation (1.7).

The proof of Theorem 1.4 and Corollary 1.3 is completed.

6 Virtual Euler characteristic of M g,n.

The main step in the proof of theorem 1.6 is to notice that the solutions
Ψg(s, t) may be represented in the following form:

Ψg(s, t) =
1

(1 + t + sΦ0(s, t))2g−2
Pg

(

s(1 + t + sΦ0(s, t))

1 + t − s(t + sΦ0(s, t))

)

, (6.1)

where Pg is some polynomial. It is sufficient for that to find Ψg(s, t) using
formulas (1.49) for several first values of g, and then prove the statement by
induction, using (1.33). (Use (1.46) to find the derivatives of Φ0.) After that
we only need to notice that for t = 0 the equation (6.1) provides Ψg(s, 0) =
Pg(s).

Note that for the leading coefficients of Pg(s) the recurrence (1.68) gives
exactly the recurrence (1.54), defining the numbers τg. This has a clear
geometric explanation: the leading coefficients of Pg(s) are exactly the co-
efficients of s3g−3~g−1 in the expansion of Ψg(s, t). But these coefficients
represent the contribution to the Euler characteristic of the 0-dimensional
strata M3g−3

g,n corresponding to the discrete set of maximally degenerated
curves. These are exactly the curves, whose dual graph is trivalent and all
the irreducible components are rational ( ll-curves in terms of A.N.Tyurin’s
book [3]).

Here we present the results of calculations based on formulas (1.68), per-
formed with the package MAPLE.

Polynomials Ψg(s, 0) g = 2, 3, 4, 5, 6.

Ψ2(s, 0) =
5

24
s3 − 1

6
s2 +

13

288
s − 1

240
(6.2)
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Ψ3(s, 0) =
5

16
s6− 55

96
s5 +

35

72
s4− 2539

10368
s3 +

1307

17280
s2− 19

1440
s+

1

1008
(6.3)

Ψ4(s, 0) =
1105

1152
s9−1045

384
s8+

8549

2304
s7−66773

20736
s6+

182341

92160
s5−2235257

2488320
s4+

+
187051

622080
s3 − 17063

241920
s2 +

6221

604800
s − 1

1440
(6.4)

Ψ5(s, 0) =
565

128
s12 − 26015

1536
s11 +

145883

4608
s10 − 3182161

82944
s9+

+
2805265

82944
s8 − 229328099

9953280
s7 +

374564131

29859840
s6 − 578872613

104509440
s5+

+
114641981

58060800
s4 − 667199

1209600
s3 +

32821

290304
s2 − 181

12096
s +

1

1056
(6.5)

Ψ6(s, 0) =
82825

3072
s15 − 400565

3072
s14 +

1266935

4096
s13−

− 159107029

331776
s12 +

241682111

442368
s11 − 9702562787

19906560
s10 +

253843871663

716636160
s9−

− 1079372228279

5016453120
s8 +

835339878797

7524679680
s7− 614429790997

12541132800
s6+

6419764103

348364800
s5−

− 3031168109

522547200
s4 +

106613887

72576000
s3 − 24719227

88704000
s2 +

441541

12700800
s − 691

327600
(6.6)

First terms of expansion of the functions Ψg(s, t) for g = 1, 2, 3.

Ψ1(s, t) =

(

1/2 s − 1

12

)

t +

(

1/2 s2 − 7

24
s +

1

24

)

t2+

+

(

2/3 s3 − 5/8 s2 + 2/9 s − 1

36

)

t3+

(

s4 − 41

32
s3 +

199

288
s2 − 3/16 s +

1

48

)

t4+

+

(

8/5 s5 − 83

32
s4 +

89

48
s3 − 533

720
s2 + 1/6 s − 1

60

)

t5 + O
(

t6
)

(6.7)
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Ψ2(s, t) =

(

5

24
s3 − 1/6 s2 +

13

288
s − 1

240

)

+

+

(

5/8 s4 − 3/4 s3 +
109

288
s2 − 13

144
s +

1

120

)

t+

+

(

25

16
s5 − 39

16
s4 +

325

192
s3 − 379

576
s2 +

67

480
s − 1

80

)

t2+

+

(

175

48
s6 − 167

24
s5 +

3497

576
s4 − 677

216
s3 +

4393

4320
s2 − 7

36
s +

1

60

)

t3+

+

(

525

64
s7 − 3547

192
s6 +

44519

2304
s5 − 9439

768
s4 +

17933

3456
s3 − 5065

3456
s2 +

23

90
s − 1

48

)

t4+

+

(

1155

64
s8 − 1123

24
s7 +

14579

256
s6 − 5485

128
s5 +

+
11887

540
s4 − 3833

480
s3 +

5801

2880
s2 − 97

300
s +

1

40

)

t5 + O
(

t6
)

(6.8)
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Ψ3(s, t) =

(

5

16
s6 − 55

96
s5 +

35

72
s4 − 2539

10368
s3 +

1307

17280
s2 − 19

1440
s +

1

1008

)

+

+

(

15

8
s7 − 395

96
s6 +

305

72
s5 − 9259

3456
s4 +

29311

25920
s3 − 341

1080
s2 +

19

360
s − 1

252

)

t+

+

(

15/2 s8 − 3665

192
s7 +

4415

192
s6 − 119495

6912
s5 +

+
928913

103680
s4 − 171107

51840
s3 +

1819

2160
s2 − 15

112
s +

5

504

)

t2+

+

(

25 s9 − 4625

64
s8 +

28655

288
s7 − 1790105

20736
s6 +

1360669

25920
s5 − 1821137

77760
s4 +

+
66737

8640
s3 − 27491

15120
s2 +

415

1512
s − 5

252

)

t3+

+

(

75 s10 − 62075

256
s9 +

864475

2304
s8 − 1131595

3072
s7 +

35398361

138240
s6 − 5165251

38880
s5 +

+
16351757

311040
s4 − 141479

8960
s3 +

69679

20160
s2 − 2995

6048
s +

5

144

)

t4+

+

(

210 s11 − 192115

256
s10 +

247385

192
s9 − 13001167

9216
s8 +

76135781

69120
s7 − 3737291

5760
s6 +

+
11534753

38880
s5 − 165193453

1555200
s4 +

17647

600
s3 − 911023

151200
s2 +

155

189
s − 1

18

)

t5+O
(

t6
)

)

(6.9)

Values χ̃(M g,0) and χ̃(M g,1), g ≤ 20. Note that for g ≤ 20 the Euler

characteristic grows approximately as C (g−1)!
2g−1 , and the quotient

χ̃(M g,1)

χ̃(M g,0)(2g − 2)

grows from 1.025 for g = 3 to 1.038 for g = 20.
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g χ̃(M g,0)

2 119
1440

≈ 0.0826

3 8027
181440

≈ 0.0442

4 2097827
43545600

≈ 0.0482

5 150427667
1916006400

≈ 0.0785

6 31966432414753
188305108992000

≈ 0.170

7 21067150021261
46115536896000

≈ 0.457

8 27108194937436478387
18438836272496640000

≈ 1.470168428

9 12253091020103495716943
2225676001833123840000

≈ 5.505334564

10 41107639746528672580958364833
1748045931839735463936000000

≈ 23.51633844

11 18149470500315527186930400759373
160820225729255662682112000000

≈ 112.8556462

12 19004221040884074685037446900552041691
31610823569342493056795934720000000

≈ 601.1934804

13 1335395944593790109991624206528868880873
379329882832109916681551216640000000

≈ 3520.407975

14 2697359250099761465877837488047416054790459
120006181114158410004708930355200000000

≈ 22476.83599

15 17628737527982037548325073368636345668379043678957
113436082710520465373771125836113510400000000

≈ 155406.7904

16 61187507009333322043736181893289455692441208195878609
52893624852448399854284136389867785420800000000

≈ 1156803.059

17 71372306743070002809491037076029984614872395664643491
7737834356680016697596425386187554816000000000

≈ 9223809.073

18 17198235432952170987858390769814893434655150721674671445771265141
219267898302032160155302114911031967019769528320000000000

≈ 78434807.68

19 13050435425469643163551878925079739017685769865160451968198706727723
18418503457370701453045377652526685229660640378880000000000

≈ 708550260.6

20 137014760506364785741048203429669320537974177259444567259217133497233731
20219257750768810601193019037621586300795818606592000000000000

≈ 6776448582.0
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g χ̃(M g,1)

1 5
12

≈ 0.4166666667

2 247
1440

≈ 0.1715277778

3 13159
72576

≈ 0.1813133818

4 5160601
17418240

≈ 0.2962756857

5 1060344499
1642291200

≈ 0.6456495042

6 43927799939987
25107347865600

≈ 1.749599367

7 25578458051299001
4519322615808000

≈ 5.659799095

8 71323310082487963309
3352515685908480000

≈ 21.27456417

9 48270890814008387585027269
529710888436283473920000

≈ 91.12686159

10 1532013946846243955713315776917
3496091863679470927872000000

≈ 438.2075777

11 2255889841768911901484548469527387
964921354375533976092672000000

≈ 2337.900215

12 288832892614815185388417599064551131741
21073882379561662037863956480000000

≈ 13705.72766

13 66447212654413192038655941663348291926069
758659765664219833363102433280000000

≈ 87584.99615

14 123070096996308531323829981549308669630859857
203087383423960386161815112908800000000

≈ 605995.7784

15 146281181967774383738497529449993443280442541690511
32410309345862990106791750238889574400000000

≈ 4513415.173

16 133309147159236466453784033068792506720345957334028501807
3702553739671387989799889547290744979456000000000

≈ 36004648.83

17 2721690926359201802650400830738540838572166621421649160557
8886128975211331175519734913497787950694400000000

≈ 306285327.8

18 123136066030368677688394485156439501180080883329398977909415435779
44489138785919568727162747952963007801112657920000000000

≈ 2767778145.0

19 975371306046856089312443646349848042163131041618448148820157981265999
36837006914741402906090755305053370459321280757760000000000

≈ 26478028150.0

20 183782438297282310449428294736692535953487484512586556016473804299555114127
687454763526139560440562647279133934227057832624128000000000000

≈ 267337500700.0
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Values χ̃(Mg,n), 2 ≤ g ≤ 7, 2 ≤ n ≤ 6.
g n = 2 n = 3 n = 4 n = 5 n = 6

2 413

720

89

32

12431

720

189443

1440

853541

720

≈ 0.5736111111 ≈ 2.781250000 ≈ 17.26527778 ≈ 131.5576389 ≈ 1185.473611

3 179651

181440

495611

72576

684641

12096

199014019

362880

1103123803

181440

≈ 0.9901399912 ≈ 6.828855269 ≈ 56.60061177 ≈ 548.4292852 ≈ 6079.826957

4 97471547

43545600

1747463783

87091200

9056350741

43545600

71024755987

29030400

1402182822991

43545600

≈ 2.238378780 ≈ 20.06475721 ≈ 207.9739570 ≈ 2446.564842 ≈ 32200.33305

5 35763130021

5748019200

157928041517

2299207680

701735503159

821145600

135972856739213

11496038400

115110462356893

638668800

≈ 6.221818121 ≈ 68.68802801 ≈ 854.5810915 ≈ 11827.80120 ≈ 180234.9862

6 350875518979697

17118646272000

14466239894532961

53801459712000

105018494553645499

26900729856000

4680800827073885069

75322043596800

15587244161672916947

14485008384000

≈ 20.49668609 ≈ 268.8819220 ≈ 3903.927333 ≈ 62143.83736 ≈ 1076094.935

7 5346168720992921

68474585088000

766050649843508339

645617516544000

44501877704266668461

2259661307904000

1601797289485334976137

4519322615808000

3106681102072897118941

451932261580800

≈ 78.07522622 ≈ 1186.539445 ≈ 19694.04775 ≈ 354433.0480 ≈ 6874218.475

In conclusion I wish to thank G.B.Shabat for drawing my attention to
the generating functions for modular trees and Yu.I.Manin for useful dis-
cussions. Especially I am grateful to Don Zagier for many corrections and
simplifications. I also wish to thank the Max Plank Institute in Bonn, whose
hospitality I enjoyed while I was completing this work.
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