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HYPERBOLIC SURFACES IN P?*C)

Ha Huy IKnoal

ABSTRACT. We show a class of pertubation X of the Fermat hypersurface such that
any holomorphic curve from C into X is degenerate. Applying this result, we give
explicit examples of hyperbolic surfaces in PHC) of arbitrary degree d > 22, and of
curves of arbitrary degree d > 19 in P#(C) with hyperbolic complements.

1. INTRODUCTION

A holomorphic curve in a projective variety X is said to be degenerate if it is
contained in a proper algebraic subset of X. In 1979 ([GG]) M. Green and Ph.
Griffiths conjectured that every holomorphic curve in a complex projective variety
of general type is degenerate. Up to now this conjecture seems still far completly
proved, but there has been some progress. M. Green ([G]) proved the degeneracy
of holomorphic curves in the Fermat variety of large degree. In [N] A. M. Nadel
gives a class of projective hypersuifaces for which the conjecture is valid. Using
the results on degeneracy of holomorphic curves Nadel constructed some explicit
examples of hyperbolic hypersurfaces in P?.

In this note, we first consider pertubations X of the Fermat hypersurface of
degree d 1 P*(C) such that for some fixed k& > 0 each monomial in the defining

polynomial of X countains every homogeneous coordinate of power either 0, or at
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least d — k. We show that if d large enough with respect to n and to the number
of non-zero monomials in the defining polynomial, then for such a hypersurface,
any holomorphic map C — X is degenerate.

Second, we apply the above result to give explicit examples of hyperbolic sur-
faces in P*(C) of arbitrary degree d > 22, and curves in P?(C) with hyperbolic
complements of arbitrary degree d > 19. Notice that up to now all known explicit
examples of hyperbolic surfaces in P*(C) are of degree d divided by some integer
> 1 (2 in Brody-Green's example, 3 in Nadel’s example, 3 or 4 in Masuda-Noguchi’s
examples). Indeed, in [MN] it is given an algorithm to construct hyperbolic sur-
faces of degree d > 54.

Acknowledgement. Some techniques of this note are inspired from recent
work [MN], and the author is grateful to Professors I{. Masuda and J. Noguchi for
sending him the preprint [MN]. The author would like to thank the Max-Planck-

Institut fiir Mathematik Bonn for hospitality and financial support.

§2.DEGENERACY OF HOLOMORPHIC CURVES

Let
Mj =z i, 1< <5,

be distinct monomials of degree d with non-negative exponents. Let X be a

hypersurface of degree d of P"(C,) defined hy
X (J]I\’I]‘{-...C‘.,ﬂ’.’[s:o

where ¢; € C} are non-zero constants. We call X a pertubation of the Fermat

hypersurface of degree dif s > n+ 1 and



Theorem 2.1. Suppose that there is an mmteger k > 0 such that X satisfies the
following conditions:
1) Forj > n+2, m=1,...,n+1, the ezsponent «; ,, s esther 0, or o, > d—k.
1) d>k+ s(s—2).

Then every holomorphic curve in X 18 degenerate.

To prove Theorem 1 let us recall Cartan’s defect relation for holomorphic curves
({C], see also [MN]).

Let f be a holomorphic curve and H be a hyperplane of P*(C) which does
not contain the image of f. We denote by deg, f*H the degree of the pull-
backed divisor f*H at z € C. We say that f ramifies at least d (> 0) over H if

deg, f*H > dforall z € f7'H. In case f~'H =0, we set d = oco.

Lemma 2.2. (H. Cartan [C]). Assume that f is inearly non-degenerate and ram-
tfies at least d over H;, 1 < 3 < g, where the hyperplanes H; are in general position.

Then

q
n
Z(l - —}<n+1.
, d;
1=1
Now let X be a hypersurface satisfying the hypothesis of Theorem 2.1, and let
f=0f,-., faus1) : € — X be a holomorphic curve. We are going to show that

{j’,’l e ,‘f w1 Mugzof, ... Mo f} are linearly dependent. Suppose that it is not

the case. Consider a holomorphic curve ¢ in P*~2(C) defined by
g: 2€Cw (fil2),. ., flp1(2), My o f(2),..., M, 0 f(2)) € PT7H(C).

Take the following hyperplanes in general potion:

Hy={z1=0},...,Hioy ={2s-1 =0}, H, = {121 + -+ + cem12,—1 = 0}.



By the hypothesis of Theorem 2.1 we see that g ramifies at least d — k over H;

for all 1 < 5 < 5. It follows from Lemma 2.2 that

5

s—2
(1) D (l-=—7)<s-1.

i=1
Hence d < k + s(s — 2), a contradiction. Then the limage of f is contained in the

proper a.lgebmic subset of X defined by the following equation
! !
(I]Z; + -+ “-n+l~’5:|+1 + (L,,+2.ﬂ{[,,+-2 +-- 4 (Ls..l.n’.[s_l =0.

where not all a; are zeros. Theorem 1 is proved.

Corollary 2.3. (M. Green [G]) Let X be the Fermat hypersurface
X z'li—l—----l-z:f_H = (),

and let f = (f1,..., fag1) be a holomorphic curve in X. If d > n? — 1, there is a
decomposition of indices {1,...,n+ 1} = Ul¢ such that:

i) Ifi,5 € I, fi/ f; = const.

1) Z fE =0 for any €.

i€l
Proof. Tt suffices to take k = 0, ¢ = n+ 1 in Theorem 2.1, and apply Theorem 2.1
repeatedly. Corollary then is proved by induction. Notice that the hypothesis of

Theorem 2.1 is fulfielled after every step of induction.

The following more precise form of Theorem 2.1 is very useful in applications

to surfaces in P*(C).

Theorem 2.4. Let X be a hypersurface satisfinng the hypothesis of Theorem 2.1,

where the inequality 1) 1s replaced by an weaker one:

(n+1)(s —2) L (s=2)(s—n-—1)

d Ik <l




Then any holomorphic curve i X 1s degenerate. F

Proof. We can repeat the proof of Theorem 2.1, hut instead of (1) we use the
following mequality

n+1

(2) > -

i=1 j=n+2

——)<q_1

§3. HYPERBOLIC SURFACES

In this section we use Theorems 2.1 and 2.4to give explicit examples of hyper-

bolic surfaces in P*(C) and of curves in P?(C) with hyperbolic comnplements.

Theorem 3.1. Let X be a surface in PYC) of degree d defined by the equation
(3) X ool 2 42 28 fealzr =0,

where ¢ # 0, Za; =d,o; > 7. Then X is hyperbolic if d > 22,

i=1

Proof. Take k = d—7. Then X satisfies the hypothesis of Theorem 2.4, and every
holomorphic curve in X 1s degenerate.

Now let f=(fi,fs, fs,fa): Co — X be a holomorplﬁc curve in X. Consider
the following possible cases:

1) For some 7 = 1,23, f; = 0. then f is a constant mnap by Corollary 2.3.

2) fs = 0. Then the image of (fi, f2, f3) is contained in the curve defined by

the following equation
Yoo2f 4 2f + 2 el 2720 = 0.

From the proof of Theorem 2.1 it follows that {f¢, ¥, f&} are linearly dependent.

Then at least two of {f1, fu, fa}, say, fi and f3, have a constant ratio. Substitute

zn



this relation into (3) we can show that f is a constant map (note that «; # 0 for
all . = 1,2,3).
3) Assume that any f; # 0. From the proof of Theorem 2.1 it follows that

{ft,..., f&} are linearly dependent:

(I,lf{! + .- + (l4f‘;l =U,

where not all a; are zeros. Cousider the following possible cases:

1)a;#0,:=1,...,4. By Corollary 2.3, f is a constant map, or we can assume
that f1 = c1f2, fs = c2fs. Then we can substitute this relation to (3) and show
that f is a constant map.

i) Only one of a; = 0, say @y = 0. Then (f1, f2, f3) is a constant map by
Corollary 2.3, and it 1s easy to show that f is a constant map.

i) If ag # 0, and two coefficients, say, @y = a3 = 0. Then we have f; = c3f4.

Substitute this relation into (3) we obtain

0,

(4) L fl e f e R F

where g5 # 0. We return to the case 2).
v) ag = 0, and one of a1, ay, a3, say, @y = 0. Then f,/f; is a constant, and we
obtain:

AR+ BAN RO =0,

where B # 0. It A # 0, then {f{, f{, f{} are linearly dependent, again by the
proof of Theorem 2.1 and we return to the case similar to 2).
Now suppose that A = 0. Then the inage of the map (f1, f3, fa) is contained

in the following curve in P#(C) (with homogeneous coordinates (21, z3, 24):

- ) d 4
Y oz{ +z{ + B2 2yt = 0.
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We are going to show that under the hypothesis of Theorem 3.1, the genus of ¥
is at least 2.

The genus of Y is equal to the number of integer points in the triangle with the
vertices (d,0), (0, d) and (ay,0) (see, for example, [Ho|). It is easy to see that this
triangle contains at least two integer points, if a; < d—2. Here, by the hypothesis

we have o = d — (ag + a3) < d — 14. The proof is completed.

Remark 1. In [MN] K. Masuda and .J. Noguchi proved that for every n there is a
number d(n) such that for every d > d(n) there are hyperbolic hypersurfaces of
degree d in P*(C). They pointed that d(3) < 54. In [N] M. Nadel gives explicit
examnples of hyperbolic surfaces in P*(C) of degree d = 3e,¢ > 7. From Theorem
3.1 it follows that d(3) < 22. Combining Theorem 3.1 with Nadel’s results ([N])

we have d(3) < 21.

g O

Remark 2. 1t is clear that we can take in the equation (3) cz{"z;

2" instead of

cz{'t 29 25, for any triple (2, zj, z;) from (21, 22, 23, 24).

Remark §. From the proof of Theorem 3.1 it follows that the following swrfaces

are hyperbolic:

(5) Xooo2{ 4z 4z 2] 420000 = 0,
4
where ¢ # 0, Z a; = dya; 2 6,d > 24. In fact, it suffices to take k = d — 6 and

=1
repeat the proof of Theoremn 3.1

Theorem 3.2. Let X be a curve in P2(C) defined by the following equation

X zf +z§[ +sz + ez 25?2 =0,



where ¢ # 0, a; > 6. If d > 19, then P4C) \ X is complete hyperbolic and
hyperbolically tmbedded into P*(C).

Proof. Due to R. Brody and M. Green ([BG]), X is hyperbolic and the complement
P%(C) \ X is complete hyperbolic and hyperbolically unbedded into P%(C) if and
only if neither X' nor P?(C) does not admit a non-constant holomorphic curve
from C. By the proof of Theoremn 3.1 it suffices to prove that any holomorphic
curve f: C~— P?\ X is constant.

Let f = (f1, f2, fs) be such a curve. Consider the swiface Y defined by the

following equation:

! { ! 1 a1 _a P
Yoo z) +25 + 25 + 25 + etz 2y =0,

¢ Y\ {z4 =0} 2 P2(O)\ X

be the projection of the first three homogeneous coordinates. Then ¢ is an un-
ramified covering, and f may be lifted to f = (f1, f2, f, f1) : C = Y \ {z4 = 0}.

Now we will show that under the hypothesis of Theorem 3.2, f is degenerate in
Y. In fact, if it is not the case, then we take k = d — G and repeat the proof of
Theorem 2.4. Note that fy # 0, and making use of Lemma 2.2, we take dy = co.
Therefore, instead of the inequality (2) we obtain

5—2

52
31— ) +1+(1-

) <5-1.

It is impossible when d > 19.
Hence, by the proof of Theorem 3.1 Y is hyperbolic, then f is constant, so is

f. Theorem is proved.

Remark 4. M. G. Zaidenberg proved that for d > 5 there are hyperbolic curves of

degree d such that their complements are complete hyperbolic and hyperbolically
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imbedded into P*(C). In [MN] K. Masuda and J. Noguchi give the construction

of such curves with d > 48. Here we have examples with d > 19.
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