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INFINITE FAMILIES OF HYPERBOLIC 3-MANIFOLDS WITH
FINITE DIMENSIONAL SKEIN MODULES

RENAUD DETCHERRY

Abstract. The Kauffman bracket skein module K(M) of a 3-manifold M is the
quotient of the Q(A)-vector space spanned by isotopy classes of links in M by the
Kauffman relations. A conjecture of Witten states that if M is closed then K(M)
is finite dimensional. We introduce a version of this conjecture for manifolds with
boundary and prove a stability property for generic Dehn-filling of knots. As a result
we provide the first hyperbolic examples of the conjecture, proving that almost all
Dehn-fillings of any two-bridge knot satisfy the conjecture.

1. Introduction

The Kauffman bracket skein modules were introduced independent by Turaev [Tur88]
and Przytycki [Prz91] as a way of generalizing the Jones polynomial (in its Kauffman
bracket formulation [Kau87]) to links in an arbitrary 3-manifold. Although the concept
of skein modules can be generalized to other contexts than just the Kauffman bracket
skein module, in this paper, we will only consider Kauffman bracket skein modules
and refer to them as just skein modules. Let R be a ring containing Z[A,A−1]. For
M a compact oriented 3-manifold, with or without boundary, the skein module with
R-coefficients K(M,R) is the R-module defined by:

K(M,R) = SpanR( banded links in M )/isotopy, Kauffman relations

where the Kauffman relations K1 and K2 are given in Figure 1.

= A +A−1

L
⋃

= (−A2 − A−2)L

K1:

K2:

Figure 1. The Kauffman relations K1 and K2. K1 relates three links
that differ in a small ball as shown, K2 simplifies split union of a link
and a trivial knot in a small ball.
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Although the traditional definition simply uses R = Z[A,A−1], in this paper we will
mostly consider coefficients R = Q(A). This has the effect of killing all the torsion in
K(M,Z[A,A−1]) and moreover, K(M,Q(A)) is then a Q(A)-vector space.
The skein module K(M,Z[A,A−1]) is often not finitely generated; in fact, by results of
Bullock and Przytycki-Sikora [Bul97b][PS00], the evaluation A = −1 yields a surjective
map to the SL2(C)-character variety of M. Nonetheless, a surprising conjecture of
Witten states that the skein modules of closed 3-manifolds with Q(A)-coefficients are
finitely generated:

Conjecture 1.1. (Witten’s skein module finiteness conjecture) Let M be a closed
compact oriented 3-manifold. Then the Kauffman bracket skein module K(M,Q(A))
is a finite dimensional Q(A)-vector space.

The first written mention of this conjecture can be found in [Car17] and a detailed
exposition in [GM]. Many skein modules of closed 3-manifolds had already been com-
puted (often with Z[A,A−1] coefficients) and in all those cases, the module K(M,Q(A))
is indeed finite dimensional. We give a list of closed 3-manifolds that are known to
satisfy the conjecture: S3 (where K(S3,Q(A)) = Q(A); this is equivalent to the exis-
tence and unicity of the Kauffman bracket), S2×S1 and lens spaces by Hoste-Przytycki
[HP93][HP95], integer Dehn-filling on the trefoil knot by Bullock [Bul97a], the quater-
nionic manifold by Gilmer and Harris [GH07], some Dehn-fillings of (2, 2b)−torus links
by Harris [Har10], a family of prime prism manifolds by Mroczkowski [Mro11], the
3-torus by Carrega [Car17]. Moreover Przytycki showed that for a connected sum of 3-
manifolds, K(M1#M2,Q(A)) = K(M1,Q(A))⊗K(M2,Q(A)), hence Conjecture 1.1 is
stable under connected sums. We note however that to the author’s knowledge, there
was no hyperbolic 3-manifold M for which it was known that K(M,Q(A)) is finite
dimensional. One of the results of this article is to give examples of such 3-manifolds:

Theorem 1.2. Let K be a two-bridge knot or a torus knot, EK be the knot complement
and EK(r) be the surgery on K of slope r. Then for all r except at most finitely many,
K(EK(r),Q(A)) is finite dimensional, that is, EK(r) satisfies the finiteness conjecture.

As two-bridge knots, with the exception of (2, 2n + 1)-torus knots, are hyperbolic,
and for an hyperbolic knot, all Dehn-fillings but at most finitely many are hyperbolic
by Thurston’s hyperbolic Dehn surgery theorem [Thu77], Theorem 1.2 gives infinite
families of closed compact oriented 3-manifolds which satisfy Conjecture 1.1.

Theorem 1.2 relies on the work of Le [L0̂6] which computed the skein module of
two-bridge knots and Marché [Mar10] for the skein module of torus knots. To state
their results, first we note that if M is a manifold with boundary, K(M,Q(A)) has a
natural module structure over K(∂M×[0, 1],Q(A)). Then the skein module of the knot
complement EK where K is either a two-bridge knot or a torus knot is finitely generated
over Q(A)[m], where m is the meridian of K, viewed as an element of K(∂EK ,Q(A)).

With that in mind, Theorem 1.2 will be obtained as a direct corollary of our main
result:

Theorem 1.3. Let K ⊂ S3 be a knot, EK = S3rK, m ⊂ ∂EK be the meridian
of K and assume that K(EK ,Q(A)) is finitely generated over Q(A)[m]. Then for all
r ∈ Q ∪ {∞} except possibly finitely many r, K(EK(r),Q(A)) is finite dimensional.
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We will get the above theorem from the presentation of the skein algebraK(T 2,Q(A))
of the torus as the quantum torus T θ by Frohman-Gelca [FG00] and defining ”anni-
hilating polynomials” of skein elements in K(EK ,Q(A)) (see Lemma 4.1). The finite
set of slopes will appear as the set slopes of the Newton polygons of the annihilating
polynomials of the generators of K(EK ,Q(A)) over Q(A)[m].

The paper is organized as follows: in Section 2 we recall a few well-known facts
about skein modules (algebra structure for thickened surfaces, module structure for
manifolds with boundary, the quantum torus isomorphism of Frohman-Gelca) and
introduce some notations. In Section 3 we discuss how to generalize the finiteness
conjecture to manifolds with boundary, and provide a few examples. Section 4 is
where we prove Theorem 1.3. Finally, in Section 5 we give comments on the proof of
Theorem 1.3 and how it could generalize in other settings.

2. Preliminaries on skein modules

In this section, we recall some well-known properties of skein modules of 3-manifolds:
the module structure over the boundary skein module, and the connection between the
skein algebra of a 2-dimensional torus T 2 and the quantum torus. All results stated here
would be valid with Z[A,A−1] coefficients, but we will only care about skein modules
with Q(A) coefficients in the rest of the paper.

Let Σ be a compact oriented surface. We recall two basic facts about the skein
modules K(Σ× [0, 1],Q(A)) of thickened surfaces:

(1) The set of multicurves (disjoint union of simple closed curves) in Σ× {1/2} is
a basis of the skein module K(Σ× [0, 1],Q(A)).[HP92]

(2) The skein module K(Σ× [0, 1],Q(A)) has a natural algebra structure given by
the stacking product: Given two multicurves α and β in the surface Σ their
product is α×{2/3}∪β×{1/3} ∈ K(Σ× [0, 1],Q(A)), that is, α ·β is the link
obtained by stacking α on top of β. For a general element of K(Σ× [0, 1],Q(A))
the product is extended by bilinearity, and gives K(Σ× [0, 1],Q(A)) an algebra
structure. For Σ a compact oriented surface, we will usually abbreviate the
skein algebra K(Σ× [0, 1],Q(A)) as K(Σ,Q(A)).

Now consider M a compact oriented manifold with boundary surface ∂M. The
boundary ∂M has a neighborhood in M that is homeomorphic to ∂M×[0, 1]. Moreover,
there is an homeomorphism

M 'M
∐

∂M=∂M×{0}

∂M × [0, 1].

This induces a K(∂M,Q(A)) structure on K(M,Q(A)), given by stacking:
If L ⊂ M is a banded link in M and α is a multicurve on ∂M, then we define

α · L ∈ K(M,Q(A)) as the link obtained by pushing L inside M and stacking the
multicurve α on top of it in the ∂M × [0, 1] component. Again, for general skein
elements, the scalar product is extended by bilinearity, and it induces a K(∂M,Q(A))-
module structure on K(M,Q(A)).
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The case of skein algebra K(T 2,Q(A)) of the 2-dimensional torus T 2 has caught
special attention because of the connection with the quantum torus algebra found
independently by Sallenave [Sal99] and Frohman-Gelca [FG00].

Let T be the non-commutative Q(A)-algebra:

T = Q(A)〈u, v〉/uv=A2vu,

which is called the quantum torus algebra. We define a Q(A)-basis of T as vector space
by setting for any (α, β) ∈ Z2,

eα,β = A−αβuαvβ.

We note that the product of basis elements is given by

eα,β · eµ,ν = Aαν−βµeα+µ,β+ν . (1)

By the above formula, the Q(A)-linear map

θ : T −→ T
eα,β −→ e−α,−β

is an involution of the algebra T . A basis, indexed by (α, β) ∈ Z2/{±1} of the subalgebra
T θ of θ-invariant elements of T is given by:

ẽα,β = eα,β + e−α,β = A−αβ(uαvβ + u−αv−β).

Moreover, we have, for (α, β), (µ, ν) ∈ Z2/{±1} :

ẽα,β · ẽµ,ν = Aαν−βµẽα+µ,β+ν + Aβµ−αν ẽα−µ,β−ν . (2)

On the other hand, recall that K(T 2,Q(A)) has the set of multicurves on T 2 as basis.
Recall that any non trivial simple closed curve on T 2 is of the form γq/p = lpmq where
l,m are the meridian and longitude, and p, q are coprime integers.

For n > 0, let Tn(x) be the n-th Chebychev polynomial, defined by

T0(x) = 2, T1(x) = x and xTn(x) = Tn+1(x) + Tn−1(x).

For any pair (p, q) ∈ Z2/{±1}, Frohman-Gelca [FG00] defines an element

(p, q)T = Tgcd(p,q)(γq/p),

with the convention that (0, 0)T = T0(∅) = 2∅, where ∅ is the empty multicurve, which
is the unit of K(T 2,Q(A)). One then has that:

Theorem 2.1. [FG00] The map

ϕ : K(T 2,Q(A)) −→ T θ
(p, q)T −→ ẽp,q

is an isomorphism of algebras.

For M a manifold with toric boundary, the Frohman-Gelca isomorphism gives a nice
way to understand the action of K(T 2,Q(A)) on K(M,Q(A)). It can be used to relate
the skein module of a knot complement to the q-holonomicity of the colored Jones
polynomials [Gel02] and to the AJ conjecture (see [L0̂6] for example).

We will use this isomorphism to prove our Dehn-filling result in Section 4.
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3. Witten’s finiteness conjecture and generalizations

The module structure on K(M,Q(A)) described in Section 2 suggests the following
straightforward generalization of the finiteness conjecture:

Conjecture 3.1. (Finiteness conjecture for manifolds with boundary)
Let M be a compact oriented 3-manifold. Then K(M,Q(A)) is a finitely generated

K(∂M,Q(A))-module.

We note that Conjecture 1.1 can be thought as a special case of the above conjecture,
as the skein algebra of the empty surface is simply Q(A).

However, we argue that one ought to expect a stronger statement than this one.
To begin with, let us consider the case of skein modules of link complements. We
already mentioned the case of two-bridge knots [L0̂6] and torus knots [Mar10], where
in both case, the skein module is finitely generated not only over K(∂EK ,Q(A)) =
K(T 2,Q(A)) but over Q(A)[m] where m is the meridian. Moreover, the skein module
of EL a two-bridge link complement has been computed by Le and Tran [LT14], and in
that case K(EL,Q(A)) is finitely generated over Q(A)[m1,m2] where m1 and m2 are
the meridians of the two components. Those examples lead us to propose the following
conjecture in the case of link complements in S3 :

Conjecture 3.2. (Finiteness conjecture for links)

Let L =
n
∪
i=1
Li be a n-th component link with n > 1. Let m1, . . . ,mn be the meridians

of L1, . . . , Ln.
Then K(EL,Q(A)) is a finitely generated Q(A)[m1, . . . ,mn]-module.

We note that in the above listed examples, the module K(EL,Z[A,A−1]) is even a
free Z[A,A−1][m1, . . . ,mn]-module of finite rank. One should not expect this pattern
to be general; indeed, torus knots and two-bridge knots and links complements are
small, and it is thought that closed incompressible surfaces create torsion in the skein
modules (see [Oht02], chapter 4.1 for a discussion of this phenomenon).

The pattern we saw for links hints that the skein module K(M,Q(A)) of a 3-manifold
with boundary may be finitely generated over a smaller algebra than the whole skein
algebra K(∂M,Q(A)) of the boundary. We propose the following:

Conjecture 3.3. (Strong finiteness conjecture for manifolds with boundary)
Let M be a compact oriented 3-manifold. Then there exists a finite collection

Σ1, . . . ,Σk of essential subsurfaces Σi ⊂ ∂M such that:

- For each i, the dimension of H1(Σi,Q) is half that of H1(∂M,Q).
- The skein module K(M,Q(A)) is a sum of finitely many subspaces F1, . . . , Fk,

where Fi is a finitely generated K(Σi,Q(A))−module.

Note that we do not assume the sum of the subspaces Fi to be direct. It is clear
that this conjecture implies the weaker Conjecture 3.1.

Moreover if a link complement EL = S3rL satisfies Conjecture 3.2, then the relevant

collection of subsurfaces of ∂EL =
n∐
i=1

T 2 may be obtained by taking one surface Σ,

which is the disjoint union of one annulus neighborhood of each meridian mi in each
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component Li of the link. Moreover the collection of subspaces is reduced to F1 =
K(EL,Q(A)).

Compared with Conjecture 3.1, Conjecture 3.3 morally states that the module
K(M,Q(A)) has ”half the dimension” of K(∂M,Q(A)).

We motivate the above statement with the following examples:

Proposition 3.4. We have:

(1) For any g > 2, the handlebody Hg of genus g satisfies Conjecture 3.3.
(2) For any closed compact oriented surface Σ, the thickened surface Σ × [0, 1]

satisfies Conjecture 3.3.

Figure 2. A handlebody Hg of genus g = 2, in red a pair of pants
decomposition by curves that bound disks in Hg, in purple a dual graph
Γ. Notice that the pair (Hg,Γ) is homeomorphic to (Γ× [0, 1],Γ× {1}).

Proof. In both cases, the collection of subsurfaces will consist of one subsurface only,
and the collection of subspaces will just be F1 = K(M,Q(A)).

For the first claim, pick a pair of pants decomposition C of Σg = ∂Hg by simple
closed curves which bound disks in Hg, and let Γ be a dual trivalent banded graph to
the decomposition: Γ has one trivalent vertex in each pair of pants, each of its edges
intersect exactly one curve of the pair of pants decomposition in exactly one segment.
See Figure 2. Then the pair (Hg,Γ) is homeomorphic to (Γ× [0, 1],Γ× {1}, and thus
K(Hg,Q(A)) is generated over K(Γ,Q(A)) by the empty link.

For the second claim, we note that the boundary of Σ× [0, 1] is Σ× {0}
∐

Σ× {1}.
It is clear that K(Σ × [0, 1],Q(A)) is generated over K(Σ × {1},Q(A)) by the empty
link. �

Although, the above examples required the use of one subsurface only, in general
you need at least a collection of subsurfaces (Σi)16i6k and subspaces (Fi)16i6k.

Let us illustrate this using the computation by Dabkowski and Mroczkowski [MD09]
of K(Σ0,3 × S1,Z[A,A−1]) where Σ0,3 is the pair of pants. Let us recall their result:

Theorem 3.5. [MD09] Let Σ0,3 be the sphere with three holes. Then K(Σ0,3×S1,Z[A,A−1])
is free over the nine types of generators described in Figure 3

We verify the consistency of Conjecture 3.3 with the above theorem:

Proposition 3.6. Σ0,3 × S1 satisfies Conjecture 3.3.
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Figure 3. The nine types of generators of K(Σ0,3×S1,Z[A,A−1]). The
curves x, y and z are horizontal curves and circle around each hole in
Σ0,3, and xi denotes i parallel copies of x. The curves with arrows are
curves which travel up along the S1 factor near the arrow. The dots •
denote vertical curves of the form pt × S1 and •m means there are m
dots. The same generators may appear in different families; moreover,
to get a basis one needs to assume j = 0 in the last family.

Proof. Let F1 be the subspace of K(Σ0,3,Q(A)) generated by the generators of type I
and II, F2 the subspace generated by those of type III and IV, F3 the one generated by
type V and VI, and finally, F4 that obtained from type VII, VIII and IX generators.
Let T1, T2, T3 be the three torus boundary components, corresponding to the curves x, y
and z respectively. Then let Σ1 be the union of three horizontal annuli, one in each
Ti, and Σ2 (resp. Σ3,Σ4) be the subsurfaces that are union of one vertical annulus in
T1 (resp. T2,T3) and one horizontal annulus in each of the other two torus boundaries.
Then one can see that F1 (resp. F2, F3, and F4) is finitely generated over K(Σi,Q(A))
as multiplication by the middle curve in a horizontal annulus in T1 (resp. T2, T3) add
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one component of x (resp. y, z) and multiplication by the middle curve in a vertical
annulus adds one dot.

If x̂, ŷ and ẑ denote the curves x, y and z with an arrow, a set of generators for F1

(resp. F2, F3 and F4) is (∅, ẑ) (resp. (∅, ẑ), (∅, ẑ) and (∅, x̂, ŷ)). �

4. A stability theorem under generic Dehn-filling of knots

We now turn to the proof of Theorem 1.3. In this section K will be a knot in S3

with meridian m and EK = S3rK will be the knot complement.
We first start with a lemma explaining that under the hypothesis that K(EK ,Q(A))

is finitely generated over Q(A)[m], any element f ∈ K(EK ,Q(A)) has an ”annihi-
lating polynomial” P 6= 0 ∈ K(∂EK ,Q(A)) = K(T 2,Q(A)) such that P · f = 0 ∈
K(EK ,Q(A)).

We express this idea in the quantum torus formulation of K(T 2,Q(A)) :

Lemma 4.1. (Annihilating polynomials)
Let K be a knot with meridian m such that K(EK ,Q(A)) is finitely generated over

Q(A)[m]. Let f ∈ K(EK ,Q(A)). Then there is a polygon P ⊂ R2 with vertices in Z2

and coefficients cα,β(A) ∈ Q(A) for every (α, β) ∈ Z2 ∩ P , such that:

- (−P) = P and for every (α, β) ∈ Z2 ∩ P , we have cα,β(A) = c−α,−β(A).
- If (α, β) is a vertex of P then cα,β(A) 6= 0.
- We have the equality: ∑

(α,β)∈P∩Z2

cα,β(A)eα,β

 · f = 0 (3)

in K(EK ,Q(A)).

Proof. Let l be the longitude of K. The infinite family (li · f)i∈N is an infinite family
of element of K(EK ,Q(A)) which is a finitely generated Q(A)[m]-module. Thus there
exists a non trivial linear dependence relation:

ad(m)ld · f + . . .+ a0(m) · f = 0,

where d is an integer and the ai(m) ∈ Q(A)[m] do not all vanish.
One can restate this saying there is a non-zero element

Q =
d∑
i=0

ai(m)li ∈ K(∂EK ,Q(A))

such that Q · f = 0. Using the isomorphism 2.1, we get a relation: ∑
(α,β)∈Z2

cα,β(A)eα,β

 · f = 0

for some coefficients cα,β(A) ∈ Q(A), where the sum is a finite sum that is invariant
under θ. Let P be the convex hull of all (α, β) such that cα,β(A) 6= 0. Then, as the
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sum is invariant under θ, we have that (−P) = P and c−α,−β(A) = cα,β(A) for every
(α, β) ∈ Z2. Finally,  ∑

(α,β)∈P∩Z2

cα,β(A)eα,β

 · f = 0

is the required relation. �

Because of the module structure on K(EK ,Q(A)), for any f ∈ K(EK ,Q(A)) the set
of elements Q ∈ K(∂EK ,Q(A)) such that Q · f = 0 is a left ideal of K(EK ,Q(A)).
Hence, once has an annihilating polynomial for f as in Equation 3, one gets many
other relations:

Lemma 4.2. Let f ∈ K(EK ,Q(A)) that satisfies Equation 3.
Then, for any (µ, ν) ∈ Z2, we have: ∑

(α,β)∈P∩Z2

cα,β(A)Aβµ−αν ẽα+µ,β+ν

 · f = 0. (4)

Proof. We multiply the annihilating polynomial of f given in Equation 3 on the left
by ẽµ,ν = eµ,ν + e−µ,−ν ∈ T θ. We get:

(eµ,ν + e−µ,−ν) ·

 ∑
(α,β)∈P∩Z2

cα,β(A)eα,β


=

∑
(α,β)∈P∩Z2

cα,β(A)Aβµ−ανeα+µ,β+ν +
∑

(α,β)∈P∩Z2

cα,β(A)Aαν−βµeα−µ,β−ν

=
∑

(α,β)∈P∩Z2

cα,β(A)Aβµ−ανeα+µ,β+ν +
∑

(−α,−β)∈P∩Z2

cα,β(A)Aβµ−ανe−α−µ,−β−ν

=
∑

(α,β)∈P∩Z2

cα,β(A)Aβµ−αν ẽα+µ,β+ν

where the second equality uses the fact that (−P) = P and c−α,−β(A) = cα,β(A). The
lemma then follows from the left ideal structure of the set

{Q ∈ K(∂EK ,Q(A)) such that Q · f = 0}.
�

The relations given by Equation 4 allow us to say that the submodule K(∂EK ,Q(A))·
f is generated by the elements ẽ(α,β) where (α, β) belongs in a band of finite width in
R2 :

Lemma 4.3. Let f ∈ K(EK ,Q(A)) with annihilating polynomial as in Equation 3.
Let λ : Z2 → Z be a homomorphism such that the maximum M of λ on P is attained
in a unique point of P .

Then K(∂EK ,Q(A)) is spanned by the family

{ẽα,β · f for (α, β) ∈ Z2/{±1} such that |λ(α, β)| 6M}.
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Proof. We need to show that if |λ(α, β)| > M, then ẽα,β · f is a linear combination of
elements ẽα′,β′ · f, with |λ(α′, β′)| < |λ(α, β)|. As ẽ−α,−β = ẽα,β by definition, let us
assume that λ(α, β) > 0. Let (x, y) be the vertex of P such that λ(x, y) = M.

We can choose (µ, ν) in Equation 4 so that (x + µ, y + ν) = (α, β). As the vertex
coefficients are non-zero, and as P is symmetric, Equation 4 allows one to express
ẽα,β · f in terms elements ẽα′β′ · f with λ(α, β)− 2M 6 λ(α′, β′) < λ(α, β). �

Now having a good understanding of the skein module K(EK ,Q(A)), we turn to
the effect of the Dehn-filling. Let us list some of the new relations created by the
Dehn-filling of slope q/p :

Lemma 4.4. Let (p, q) be coprime integers, and EK(q/p) be the Dehn-filling of the
knot complement EK of slope q/p ∈ Q ∪ {∞}. Then the map

i∗ : K(EK ,Q(A)) −→ K(EK(q/p),Q(A))

induced by the inclusion i : EK → EK(q/p) is surjective, and moreover,
for any (α, β) ∈ Z2 and any f ∈ K(EK ,Q(A)), one has(

Apβ−qαẽα+p,β+q + Aqα−pβ ẽα−p,β−q + (A2 + A−2)ẽα,β
)
· f = 0

in K(EK(q/p),Q(A)).

Proof. First, we note that any link in EK(q/p) can be isotoped to be disjoint from the
solid torus of the Dehn-filling. Hence i∗ is surjective.

Then, notice that the peripheral curve γq/p of slope q/p bounds a disk in EK(q/p).
By the Kauffman relation K1, if f ∈ K(EK ,Q(A)) then

γq/p · f = (−A2 − A−2)f

in K(EK(q/p),Q(A)).
Using the isomorphism of Theorem 2.1, this is equivalent to

(ẽp,q + (A2 + A−2)e0,0) · f = 0 ∈ K(EK(q/p),Q(A)).

Notice that this relation is true for any f ∈ K(EK ,Q(A)). We apply it to ẽα,β · f
instead of f and get:

(ẽp,q + (A2 + A−2)e0,0) · (ẽα,β · f)

=
(
Apβ−qαẽα+p,β+q + Aqα−pβ ẽα−p,β−q + (A2 + A−2)ẽα,β

)
·f = 0 ∈ K(EK(q/p),Q(A)).

�

Note that the relations listed above do not necessarily generate the kernel of the map
K(EK ,Q(A)) → K(EK(q/p),Q(A)). Actually, whenever a 3-manifold M2 is obtained
by attaching a 2-handle to a 3-manifold M1, the work of Hoste and Przytycki [HP93]
describes a set of generators for the kernel of the inclusion map

i∗ : K(M1,Q(A))→ K(M2,Q(A)).

The set of generators are elements of the form L− L′ where L is a link in M1 and L′

is obtained from L by sliding one the components of L along the 2-handle.
In the above, we only used sliding of trivial components. However, this will turn out

to be sufficient to prove our main theorem:
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Proof of Theorem 1.3. Let f1, . . . , fd be a finite set of generators of K(EK ,Q(A)) over
Q(A)[m]. Let q/p ∈ Q ∪ {∞} be any slope. As K(EK(q/p),Q(A)) is spanned by
K(EK ,Q(A)), to show that K(EK(q/p),Q(A)) is finite dimensional, it is sufficient to
show that for each i, K(∂EK ,Q(A)) · fi ⊂ K(EK(q/p),Q(A)) is finite dimensional.

β

α

P

|λ(α, β)| 6M

0 6 ε(α, β) 6 1

Figure 4. The polygon P has slopes −1,−1/3 and ∞, and does not
have −1/2 as a slope. The figure shows in red the band of direction
(p, q) = (2,−1), slope −1/2 and equation |λ(α, β)| = |α + 2β| 6 3 and
in blue the band 0 6 ε(α, β) = α + β 6 1. In that case, the subspace
K(∂EK(−1/2),Q(A)) · f would be finitely dimensional, and, accounting
for the ±1 symmetry, have dimension at most 11.

Let P1, . . . ,Pd be the Newton polygons of annihilating polynomials of f1, . . . , fd in
K(EK ,Q(A)), as introduced in Lemma 4.1. Assume that q/p is not among the slopes
of sides of the polygons P1, . . . ,Pd.

(Note that some of those polygons might be degenerate; if P is a segment, we define
its set of slopes to be the slope of that segment, if P is a point, we define its set of
slopes to be empty.)

Fix 1 6 i 6 d and let us prove that K(∂EK ,Q(A)) · fi ⊂ K(EK(q/p),Q(A)) is finite
dimensional. Let λ : Z2 → Z be a non-zero homomorphism such that λ(p, q) = 0, and
let ε : Z2 → Z be a homomorphism such that ε(p, q) = 1. Such a homomorphism ε
exists as (p, q) are coprime.

As q/p is not a slope of Pi, the homomorphism λ has a unique maximum Mi on Pi.
By Lemma 4.3, the subspace K(∂EK ,Q(A)) · fi of K(EK(q/p),Q(A)) is spanned by
elements ẽα,β · fi such that |λ(α, β)| 6Mi.

But using Lemma 4.4 repeatedly, any element ẽα,β · fi may be expressed as a linear
combination of elements ẽα′,β′ · fi with λ(α′, β′) = λ(α, β) and 0 6 ε(α′, β′) 6 1.
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So K(∂EK ,Q(A)) · fi is spanned by elements of the form ẽα′,β′ · fi where (α′, β′) is
a lattice point in the intersection of two non-parallel bands inside R2. This is a finite
set, see Figure 4. �

5. Comments and possible extensions

We conclude this article with a few comments on the proof of Theorem 1.3 and its
possible extensions.

1) We note that the proof of Theorem 1.3 used in a fundamental way that the skein
module K(EK ,Q(A)) is not only finitely generated on K(∂EK ,Q(A)) but finitely gen-
erated on Q(A)[m]. This leads us to believe that the correct generalization of the
finiteness conjecture to manifolds with boundary is Conjecture 3.3 rather than Con-
jecture 3.1, if one wants to have nice stability properties under Dehn-filling.

2) One may straighten Theorem 1.3 by working with any manifold M with bound-
ary ∂M = T 2 instead of a knot complement in S3. One would get the following:

Corollary 5.1. Let M be a 3-manifold with boundary ∂M = T 2 that satisfies Con-
jecture 3.3. Then all Dehn-fillings of M except at most finitely many satisfies the
finiteness conjecture.

Proof. Each subsurface Σi ⊂ T 2 has to be an annulus neighborhood of some non-
trivial simple closed curve mi ⊂ T 2. Then to show that the image of each subspace
Fi ⊂ K(M,Q(A)) in K(M(r),Q(A)) is finite dimensional, the proof is essentially the
same as the proof of Theorem 1.3, with m playing the role of the meridian. �

Note however that all known (irreducible) examples of manifolds M with ∂M = T 2

that satisfy Conjecture 3.3 are knot complements in S3.

3) For link complements in S3 our argument would sadly fail to show that Conjec-
ture 3.3 is stable under generic Dehn-filling of one torus boundary component. Indeed,
assume for example that EL = S3rL where L = L1 ∪ L2 is a two-component link
with meridians m1,m2, and let EL(q/p) be the Dehn-filling of slope q/p along the
component L1. If γ ∈ K(EL,Q(A)), looking at linear dependence relations between
the infinite family (li1 · γ)i∈N, one would get an annihilating polynomial P (m1, l1) for γ
with coefficients not in Q(A) but in Q(A)[m2], which is no longer a field. One would
however be able to show that the localized skein module

K(EL(r),Q(A))m2 = K(EL(r),Q(A)) ⊗
Q(A)[m2]

Q(A)(m2)

is finitely generated:

Corollary 5.2. Let L be a two component link in S3 such that K(EL,Q(A)) is finitely
generated over Q(A)[m1,m2].

Let EL(r) be the Dehn-filling of EL of slope r along the component L1.
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Then for almost all r, the localized skein module K(EL(r),Q(A))m2 is finitely gen-
erated over Q(A)(m2).

Proof. Again, the proof is essentially the same as the proof of Theorem 1.3, except
that in Lemma 4.1, the coefficients cα,β are elements of Q(A)(m2) instead of Q(A). As
Q(A)(m2) is a field, the elimination arguments in the proof of Lemma 4.3 and Theorem
1.3 still apply. �

Localized skein modules of knots are relevant in the study of the AJ conjecture, see
[L0̂6], [LT15] and [LZ17]. We recall that the skein modules of two-bridge links are
known to be finitely generated over the two meridians [LT14].

4) One may wonder if Theorem 1.3 applies for Z[A,A−1]-coefficients. Under an ex-
tra hypothesis on the annihilating polynomials of the generators, we can extend the
theorem to Z[A,A−1] coefficients:

Corollary 5.3. Let K be a knot such that K(EK ,Z[A,A−1]) is finitely generated over
Z[A,A−1][m] with generators f1, . . . , fp.

Assume that f1, . . . , fp have annihilating polynomials as in Lemma 4.1 such that all
their vertex coefficients are monomials ±Ak.

Then for all slopes r ∈ Q ∪ {∞} except at most finitely many, K(EK(r),Z[A,A−1])
is finitely generated over Z[A,A−1].

Proof. We assume

( ∑
(α,β)∈Pi

ciα,β(A)eα,β

)
· fi = 0 in K(EK ,Z[A,A−1]) and let r = p/q

be any slope that is not a slope of some Pi.
Because the coefficients ciα,β(A) are invertible whenever (α, β) is a vertex of Pi, so

are the vertex coefficients of the translated annihilating polynomials by Equation 4.
Thus the proof of Lemma 4.3 works also in this setting and K(EK ,Z[A,A−1]) is

generated by the ẽα,β · fj where (α, β) belong in some band |λ(α, β)| 6 M where
λ : Z2 → Z is a non-zero homomorphism such that λ(p, q) = 0.

As the vertex coefficients in Lemma 4.4 are also invertible, the proof of Theorem 1.3
is also still applicable and shows that K(EK(r),Z[A,A−1]) is generated over Z[A,A−1]
by the ẽα,β · fj where (α, β) are lattice points in the intersection of two non-parallel
bands. �

If K is a knot, the minimal annihilating polynomial of the empty link ∅ is related
to the non-commutative -polynomial of the knot, which by the AJ conjecture should
be a quantization of its A-polynomial. The A-polynomial AK(L,M) ∈ Z[L±1,M±1]

is known to have ±1 as vertex coefficients[CL97]. Moreover, in all cases where the Â
polynomial has been computed, its vertex coefficients are monomials.

5) We note that the set of generators described in the proof of Theorem 1.3 has no
reason of being a basis, as we did not even use the complete set of slide relations to
prove finite dimensionality.

There are two ways of studying linear independence in K(M,Q(A)) where M is a
3-manifold. A first way is to keep track of all the slides relations (described in [HP93])
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coming from the decomposition of M into 0−, 1− and 2−handles. This is the method
used for all the early computations of skein modules listed in the introduction, but it
can get intractable very fast.

An alternative way is to use invariants. Firstly, the skein module K(M,Q(A)) carries
a natural H1(M,Z/2)-grading as the Kauffman relations are homogeneous. Secondly,
one can use the Gilmer-Masbaum map which sends an element in K(M,Q(A)) to the
sequence of Reshetikhin-Turaev invariants associated to it.

Those techniques have been carried out in [Gil18] for the 3-torus and partially in the
case of M = Σ× S1 where Σ is a closed surface of genus g > 2 in [GM].

Gilmer and Masbaum asked the question whether the H1(M,Z/2)-grading and the
Gilmer-Masbaum map distinguish all skeins in K(M,Q(A)).

6) In the case where K is a two-bridge or torus knot, all our computations can be
made more explicit. We have:

Corollary 5.4. Let K be a two-bridge or torus knot. Then one can algorithmically
compute the finite set of slopes in Theorem 1.3, and compute an explicit bound for the
dimension of K(EK(r),Q(A)) when r is not in this set.

One can also algorithmically check if the condition of Corollary 5.3 is satisfied.

Proof. Indeed, to do all this one only needs to compute the annihilating polynomials
of the generators f1, . . . fp of K(EK ,Z[A,A−1])). But both the work of Le [L0̂6] and
the work of Marché [Mar10] give a method to algorithmically reduce skein elements of
K(EK ,Z[A,A−1]) as a Z[A,A−1][m] linear combination of the generators. Then one
simply has to find a Z[A,A−1][m] linear dependence between the (lifj)i∈N for each fj
to get the annihilating polynomials of the generators f1, . . . , fp. The dimension bound
comes from a count of lattice points in the intersection of two non-parallel bands as in
Figure 4. �

7) Theorem 1.3 suggests a (naive) approach to proving Conjecture 1.1 for ”generic”
3-manifolds. One may start with a handlebody Hg, which, as stated in Proposition
3.4, satisfies Conjecture 3.3. Then, one would want to choose a ”generic” Heegaard
decomposition, attaching disks along some curves in ∂Hg = Σg, so that at each step,
the 3-manifold obtained satisfies Conjecture 3.3. To do this we would need to prove a
version of Theorem 1.3 for generic 2-handles instead of generic Dehn-filling of knots.

8) Finally, for manifolds with boundary, relative versions of skein modules have been
introduced, spanned not only by links but by arcs and links. If M is a 3-manifold
with a set S of disjoint closed intervals embedded in ∂M, the relative skein module of
(M,S) is

K(M,S) = SpanQ(A){banded tangle T in M with ∂T = S}/rel isotopy, K1,K2.

Relative skein modules are thought to be a more natural object with respects to cutting
along surfaces, or to triangulations. Those ideas proved particularly fruitful for the
study of skein algebras of surfaces [BW16][FKBL19][L1̂8].

One may want to formulate a finiteness conjecture also in that context.
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