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Infinite-dimensional p-adic groups, semigroups

of double cosets, and inner functions on

Bruhat–Tits buildings

Yury A. Neretin1

We construct p-adic analogs of operator colligations and their characteristic func-

tions. Consider a p-adic group G = GL(α + k∞,Qp), its subgroup L = O(k∞,Op),

and the subgroup K = O(∞,Op) embedded to L diagonally. We show that double

cosets Γ = K\G/K admit a structure of a semigroup, Γ acts naturally in K-fixed vec-

tors of unitary representations of G. For any double coset we assign a ’characteristic

function’, which sends a certain Bruhat–Tits building to another building (buildings

are finite-dimensional); image of the distinguished boundary is contained in the dis-

tinguished boundary. The latter building admits a structure of (Nazarov) semigroup,

the product in Γ corresponds to a point-wise product of characteristic functions.

1 Introduction

1.1. Olshanski’s theory. In [25], [26], [27] Olshanski proposed a formalism
for representation theory of infinite-dimensional classical groups and infinite
symmetric groups. This formalism incorporates earlier works of Berezin, Shale,
Stinespring, Thoma, Vershik, Kerov, works of Olshanski himself and is a base
for later works on infinite-dimensional harmonic analysis [29], [1], [9]. Also it is
a base for some works on representation theory of the group of diffeomorphisms
of the circle and its p-adic analog ([15], [14], [16], Chapter VII and Sections
IX.5–IX.6).

An important element of Olshanski’s technology is semigroups of double
cosets. Let G be an infinite-dimensional group and K ⊂ G be a subgroup.
Quite often double cosets K \G/K admit a natural structure of a semigroup2,
these semigroups act in spaces of K-fixed vectors in unitary representations.

1.2. p-adic groups. As far as I know, a representation theory of infinite-
dimensional classical p-adic groups in this moment does not exist, however there
is one serious work of Nazarov [12] (also [13]) on this topic.

Recently it was shown that Olshanski’s formalism admits an essential exten-
sion, see [18]–[21], this allows to return to the question about representations
of infinite-dimensional p-adic groups. Our topic is semigroups of double cosets,
we get an analog of construction of [19].

Note that in this case the analogy between Bruhat–Tits buildings and Rie-
mannian noncompact symmetric spaces remains to be as mysterious as usual
(see, e.g., [11], [23], [12], [4], [17], [8], [22]).

1Supported by the grant FWF, Project 22122, and by RosAtom, contract
H.4e.45.90.11.1059.

2This phenomenon was firstly observed by Ismagilov [6], [7] for groups SLn over non-local

non-archimedian fields, in this case Hecke algebras degenerate to semigroups.
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1.3. Inner functions. A holomorphic function f(z) in a unit disk z < 1 is
called inner, if |f(z)| < 1 for |z| < 1 and

lim
r→1−

|f(reiθ)| = 1 a.s. θ ∈ [0, 2π], (1.1)

where z = reiθ and r, θ are real3. Inner functions is a classical topic of function
theory, see, e.g., [2]. There are several extensions of this notion.

1) A holomorphic matrix-valued (operator-valued) function f(z) in the unit
disk is called inner if ‖f(z)‖ 6 1 for |z| < 1 and boundary values of f on the
circle are unitary.

2) More generally consider a pseudo-Euclidean space with inner product
〈·, ·〉. We say that an operator g is an indefinite contraction, if 〈gv, gv〉 6 〈v, v〉
for all v (see, e.g., [22], Section 2.7). We say that a meromorphic matrix-valued
function f is inner if it is indefinite contractive in the disk and pseudo-unitary on
the unit circle. Such functions is a classical topic of spectral theory of non-self-
adjoint operators (starting works of Livshits and Potapov, end 40s–beginning
of 50s, see [10], [30]).

3) Some semigroups of double cosets (as O(∞) \GL(∞+α,R)/O(∞), etc.)
can be realized as semigroups of inner functions in the sense 2), see [26], [16],
Section IX.4.

4) In the recent work [19], [20] it was shown that quite general semigroups of
double cosets can be realized as semigroups of multivariate inner functions. In
fact we get holomorphic maps sending Hermitian symmetric spaces to Hermitian
symmetric spaces such that Shilov boundaries fall to Shilov boundaries.

In the present paper we extend the last construction to p-adic case. For a
double coset we assign a map from a Bruhat–Tits building Ω to a Bruhat–Tits
building Ξ such that image of the distiguished boundary is contained in the
distinguished boundary. We also have a structure of a semigroup on the set of
vertices of building Ξ (the Nazarov semigroup) and the product of double cosets
corresponds to pointwise product of maps Ω → Ξ.

1.4. Notation. Let
— At be the transposed matrix;
— 1α, 1V be the unit matrix of order α, the unit operator in a space V ;
— Qp be the p-adic field;
— Op be the ring of p-adic integers;
— Q×

p , C
× be multiplicative groups of Qp, C.

We denote the standard character Qp → C× by exp{2πia},

exp{2πia} = exp
{
2πi

∑

j>−N

ajp
j
}
:= exp

{
2πi

∑

j:−1>j>−N

ajp
j
}

Below we define:

3We can not write z → eiθ, an inner function can be discontinuous in all points of the
circle.
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— GL(n,Qp), Sp(2n,Qp), Sp(2n,Qp), O(n,Op), GL(∞,Op), Sp(2∞,Qp),
etc., Subsection 2.1;

— G, K, Subsection 2.2;
— g ⋆ h, Subsection 2.2;
— g∗, Subsection 2.5;
— R↓, R

↑, , Subsection 3.1;
— Rj ր R, 3.2;
— LMod(V ), LLat(V ), LGr(V ), Subsection 3.3;
— ∆(V ), Bd(V ), Subsections 3.4, 3.5;
— P : V ⇉W , kerP , indef P , domP , imP , P�, Subsection 3.6;
— Naz, Naz, Naz, Subsections 3.9; 3.10;
— We, Subsection 3.12;
— χg(Q,T ), Subsection 4.1.

Acknowledgements. This work was done during my visits to White Sea
Biological station of Moscow University and Max Planck Institute for Mathe-
matics (Summer, 2011). I am grateful administrations for their hospitality.

2 Multiplication of double cosets

2.1. Groups. By V = Qn
p we denote linear spaces over Qp. Denote by

GL(n,Qp) = GL(V ) the group of invertible linear operators in Qn
p ; by GL(n,Op)

the group of all matrices g with integer elements, such that g−1 have integer
elements.

Consider a space V = Q2n
p equipped with a non-degenerate skew-symmetric

bilinear form BV , say

(
0 1
−1 0

)
. The symplectic group Sp(2n,Qp) is the group

of matrices preserving this form, Sp(2n,Op) is the group of symplectic matrices
with integer elements.

Also, consider a space Qn
p equipped with the standard symmetric bilinear

form (v, w) =
∑
vjwj . We denote by O(n,Qp) the group of all matrices pre-

serving this form4.
By GL(∞,Qp) we denote the group of all infinite invertible matrices over

Qp such that g − 1 has only finite number of non-zero elements. We call such
matrices finite. We define GL(∞,Op), Sp(2∞,Qp), Sp(2∞,Op), O(∞,Op) in
the same way.

2.2. Multiplication of double cosets. Let

G := GL(∞,Qp) := GL(α+ k∞,Qp)

be the group of finite block (α +∞+ · · ·+∞)× (α +∞+ · · ·+∞)- matrices
(there are k copies of ∞). By K we denote the group

K = O(∞,Op)

4There are several non-equivalent non-degenerate quadratic forms and several different
orthogonal groups over Qp, however we consider only this group.
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embedded to G by the rule

I : u 7→




1α 0 . . . o
0 u . . . 0
...

...
. . .

...
0 0 . . . u


 , (2.1)

where 1α denotes the unit matrix of order α.
We wish to define a structure of a semigroup on double cosets K \G/K.
Set

ΘN :=




0 1N 0
1N 0 0
0 0 1∞


 (2.2)

Let g, h ∈ K \ G/K. Choose their representatives g, h ∈ G. Consider the
sequence

fN := gI(ΘN )h

and double coset fN containing fN .

Theorem 2.1 a) The sequence fN is eventually constant.

b The limit f := limN→∞ fN does not depend on a choice of representatives

g, h.

c) The product g ⋆ h in K \G/K obtained in this way is associative.

These statements are simple, see proofs of parallel real statements in [20].
Also, it is easy to write an explicit formula for the product. For definiteness,
set k = 2. Then



a b1 b2
c1 d11 d12
c2 d21 d22


 ⋆



a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22


 =

=




a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1







1α 0 0 0 0
0 0 1∞ 0 0
0 1∞ 0 0 0
0 0 0 0 1∞
0 0 0 1∞ 0







a′ b′1 0 b′2 0
c′1 d′11 0 d′12 0
0 0 1 0 0
c′2 d′21 0 d′22 0
0 0 0 0 1




Since a result is double coset, we can write the final matrix in different forms,
say

f =




aa′ | b1 ab′1 b1 ab′1
− + − − − − −
c1a

′ | d11 c1b
′
1 d12 c1b

′
2

c′1 | 0 d′11 0 d′12
|

c2a
′ | d21 c2b

′
1 d22 c2b

′
2

c′2 | 0 d′21 0 d′22




(2.3)
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or

f =




aa′ | ab′1 b1 ab′2 b2
− + − − − −
c1a

′ | c1b
′
1 d11 c1b

′
2 d12

c′1 | d′11 0 d′12 0
|

c2a
′ | c2b

′
1 d21 c2b

′
2 d22

c′2 | d′21 0 d′22 0




.

2.3. Multiplicativity theorem. Let ρ be a unitary representation of G,
denote by HK the subspace of all K-fixed vectors. Denote by PK the operator
of projection to HK. For g ∈ G consider the operator ρ(g) : HK → HK given
by

ρ(g) := PKρ(g)

Obviously, ρ(g) is a function on double cosets K \G/K, therefore we can write
ρ(g).

Theorem 2.2 For any unitary representation ρ, for all g, h ∈ K \ G/K the

following equality (the “multiplicativity theorem”) holds,

ρ(g)ρ(h) = ρ(g ⋆ h).

We give a proof in Section 6.

2.4. Sphericity. Set α = 0.

Proposition 2.3 The pair (G,K) is spherical, i.e., for any irreducible unitary

representation of G the dimension of the space of K-fixed vectors is 6 1.

We omit a proof, it is the same as for infinite-dimensional real classical
groups, see [20].

2.5. Involution. The map g 7→ g−1 induces an involution g 7→ g∗ on
K \G/K. Evidently,

(g ⋆ h)∗ = h∗ ⋆ g∗.

Also, for any unitary representation ρ of G we have

ρ(g∗) = ρ(g)∗.

2.6. Purpose of the work. Our aim is to describe this multiplication in
more usual terms. More precisely, we wish to get p-adic analogs of multivariate
characteristic functions constructed in [20], [19].

2.7. Structure of the paper. In Section 2 we define multiplication of
double cosets. Section 3 contains preliminaries (lattices, Bruhat–Tits buildings,
relations, Weil representation of Nazarov category). A main construction (char-
acteristic functions of double cosets and their properties) is contained in Section
4. Proofs are given in Section 5. In Section 6 we prove the multiplicativity the-
orem, Section 7 contains some simple results on representations.
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3 Preliminaries. Modules, relations, buildings,

Nazarov category, and Weil representation

3.1. Modules. Below the term submodule means an Op-submodule in a linear
space V = Qn

p . For each submodule R ⊂ Qn
p there is a (non-canonical) basis

ei ∈ Qn
p such that

R = Qpe1 ⊕ · · · ⊕Qpej ⊕Opej+1 ⊕ · · · ⊕Opel.

If j = n we have a linear subspace. If j = 0, l = n, then we get a lattice. A formal
definition is: a lattice R is a compact Op-submodule such that QpR = Qn

p . For
details, see, e.g., [32].

Denote by Mod(V ) the set of all submodules in V , by Lat(V ) the space of
all lattices. It is easy to see that

Lat(V ) ≃ GL(V,Qp)/GL(V,Op).

For any submodule R denote by R↓ the maximal linear subspace in R. By
R↑ we denote the minimal linear subspace containing R. The image of R in
R↑/R↓ is a lattice.

Conversely, let L ⊂ M be a pair of subspaces and P ⊂ M/L be a lattice.
Then P + L is a submodule and all submodules have such form.

3.2. Convergence on Mod. Let V = Qn
p . We define a norm on V as

‖x‖ = max
j

|xj |.

Denote by B(pl) the ball with center at 0 of radius pl.
The space Mod(V ) admits a natural topology of a compact space, we say that

Rj converges to R if for each m we have a convergence B(pl)∩Rj → B(pl)∩R
in the sense of Hausdorff metric. In this topology the space Lat(V ) is a discrete
dense subset in Mod(V ).

We need an analog of the radial limit (1.1) and prefer another convergence.
We say that a sequence Rj converges to R (notation Rj ր R) if

— for any compact subset S ⊂ R we have S ⊂ Rj starting some place.

— for each ε > 0, for sufficiently large j the set Rj is contained in the
ε-neighborhood of R.

Lemma 3.1 If Rj ր R, then (Rj)↓ ⊂ R↓ and (Rj)
↑ ⊃ R↑ starting some j.

In particular, a ր-convergent sequence of linear subspaces is eventually con-
stant.

Lemma 3.2 a) Let L ⊂ V be a linear subspace. If Rj ր R, then (L ∩ Rj) ր
(L ∩R).

b) Let M ⊂ V be a linear subspace, denote by π the natural map V → V/M .

If Rj ր R then π(Rj) ր π(R).
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This is obvious.

3.3. Self-dual modules. For details, see [22], Sections 10.6–10.7. Consider
a p-adic linear space V ≃ Q2n

p equipped with a nondegenerate skew-symmetric
bilinear form BV (·, ·) (as above). We say that a subspace L is isotropic if
BV (v, w) = 0 for all v, w ∈ V . By LGr(V ) we denote the set of all maximal
isotropic (Lagrangian) subspaces in V (their dimensions = n). By L⊥ we denote
the orthocomplement of a subspace L.

If P is a submodule, denote by P⊥⊥ the dual submodule, i.e., the set of vectors
w such that B(v, w) ∈ Op for all v ∈ P . If P is a subspace, then P⊥⊥ = P⊥.

We say that a submodule R ⊂ V is isotropic if BV (v, w) ∈ Op for all v,
w ∈ R.

Example. If R is a linear subspace, then R is isotropic in the usual sense.
On the other hand the lattice O2n is isotropic (and self-dual, see below). �

We say that a submodule R is self-dual if it is a maximal isotropic submod-
ule in V . Equivalently, P⊥⊥ = P . Denote by LMod(V ) the set of self-dual
submodules, by LLat(V ) the set of all self-dual lattices. It is easy to show that

LLat(V ) = Sp(2n,Qp)/Sp(2n,Op).

For any self-dual submodule R the subspace R↓ is isotropic, and R↑ is or-
thocomplement of R↓ with respect to the bilinear form. The submodule R has
the form R↓ + S, where S is a self-dual lattice in R↑/R↓.

It is convenient to reformulate a definition. Define a bicharacter β on V ×V
by

β(x, y) = exp{2πiB(x, y)}

We say that a module P is isotropic if β(x, y) = 1 on P × P . A module is
self-dual if it is a maximal isotropic module.

3.4. Almost self-dual modules. Let V and B be same as above. A
submodule L in V is almost self-dual if it contains a self-dual module M and
B(v, w) ∈ p−1Op for all v, w ∈ L (see, e.g., [16], Section 10.6). Notice that
L/M ≃ Zk

p with k = 0, 1, . . . , n. Any almost self-dual module can be reduced
by a symplectic transformation to the form

(Ope1 ⊕Open+1)⊕ · · · ⊕ (Opek ⊕Open+k)⊕

⊕ (p−1Opek+1 ⊕Open+k+1)⊕ · · · ⊕ (p−1Opem ⊕Open+m)⊕

⊕Qpem+1 ⊕ · · · ⊕Qpen (3.1)

We draw an oriented graph ∆(V ). Vertices are almost self-dual modules. If
R ⊃ R′ then we draw an arrow from L to L′.

Note that If R, R′ are connected by an arrow, then R↓ = (R′)↓ and R↑ =
(R′)↑.

Any pair of lattices can be connected by an (non-oriented) way. Denote the
subgraph whose vertices are lattices by ∆0(V ).
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More generally, fix an isotropic subspace L and consider the subgraph ∆L(V )
whose vertices are almost self-dual lattices R such that R↓ = L, R↑ = L⊥. We
get a connected subgraph, moreover

∆L(V ) ≃ ∆0(L
⊥/L).

We get

∆(V ) =
⋃

L is isotropic subspace

∆L(V ).

If L ⊂ M , then ∆M is contained in the closure of ∆L in the sense of ր-
convergence.

3.5. Buildings, for details, see [3], [16]. Now we consider all k-plets of
vertices of ∆(V ) that are pairwise connected by edges.

First, consider the subgraph ∆0. It can be shown that k 6 n + 1 and each
k-plet is contained in a (non-unique) (n+1)-plet. In this way we get a structure
of an n-dimensional simplicial complex, it is called a Bruhat–Tits building. We
denote it by Bd(V ).

For a subgraph ∆L we get a simplicial complex isomorphic Bd(L⊥/L).

3.6. Relations. Let V , W be linear spaces. We say that a relation P :
V ⇉W is a submodule in V ⊕W .

Example. Let A : V →W be a linear operator. Then its graph is a relation.
�

Let P : V ⇉ W , Q : W ⇉ Y be relations. We define their product
S = QP : V ⇉ Y as the set of all v ⊕ y ∈ V ⊕ Y for which there exists w ∈ W
such that v ⊕ w ∈ P , w ⊕ y ∈ Q.

For a relation P : V →W we define its kernel as

kerP = P ∩ (V ⊕ 0),

the indefiniteness

indef P = P ∩ (0⊕ V ),

the domain of definiteness

domP = projection of P to V ,

and the image

imP = projection of P to W.

We define the pseudo-inverse relation P� : W ⇉ V being the same submodule
in W ⊕ V . Evidentely,

(PQ)� = Q�P�.

3.7. The reformulation of the definition of product. We keep the
same notation. Consider the space Z := V ⊕W ⊕W ⊕Y and submodules of Z:

— the subspace H consisting of vectors v ⊕ w ⊕ w ⊕ y;

8



Vertices of the central piece of the subcomplex are almost self-dual lattices of
the form L = pk1Ope1⊕p

k2Ope2⊕p
l1Ope3⊕p

l2Ope4. They are almost self-dual
iff k1 + l1, k2 + l2 are 0 or −1. We also present limit points of this subcomplex.
1) Four boundary pieces correspond to almost self-dual submodules containing
a line Qpej , e.g., M = Qpe1 ⊕ pm2Ope2 ⊕ pm2Ope4. A sequence of lattices
converges to M only if k1 → −∞ and k2 = m2 starting some place.
2) Four extreme points correspond to Lagrangian planes, e.g., N = Qpe1⊕Qpe4.
A sequence of lattices converges to N if k1 → +∞, k2 → −∞.

Figure 1: A reference to Subsections 3.2, 3.4. A subcomplex (’appartaments’)
of the building Bd(Q4

p).
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— the subspace A consisting of vectors 0⊕ w ⊕ w ⊕ 0;

— the submodule P ⊕Q ⊂ (V ⊕W )⊕ (W ⊕ Y ).

Then we do the following operations:

— consider the intersection R = H ∩ (P ⊕Q)

— consider the map θ : H → H/A ≃ V ⊕ Y

Then QP = θ(R).

3.8. Action on submodules. Let P : V ⇉ W be a relation, T ⊂ V . We
define the submodule PT ⊂ W as the set of w ∈ W such that there is v ∈ T
satisfying v ⊕ w ∈ P .

Remark. We can consider a submodule T ⊂ V as a relation 0 ⇉ V .
Therefore we can regard PT : 0 ⇉ W as the product of relations T : 0 ⇉ V
and Q : V ⇉W . �

3.9. The Nazarov category. For a pair V , W of symplectic linear spaces
we define a skew-symmetric bilinear form B⊖ on V ⊕W by

B⊖(v ⊕ w, v′ ⊕ w′) = BV (v, v
′)−BW (w,w′).

Denote by

— Naz(V,W ) the set of all self-dual submodules of V ⊕W ;

— Naz(V,W ) the set of P ∈ Naz(V,W ) such that kerP and indef P are
compact.

Theorem 3.3 a) If P ∈ Naz(V,W ), Q ∈ Naz(W,Y ), then QP ∈ Naz(V, Y ).

b) If P ∈ Naz(V,W ), Q ∈ Naz(W,Y ), then QP ∈ Naz(V, Y ).

c) If P ∈ Naz(V,W ), Q ∈ Naz(W,Y ) are lattices, then QP is a lattice.

The statement a) was proved in Nazarov [12] (see also [22], Section 10.7), c)
is obvious. Proof of b) is identical to proof of a).

Thus we get two similar categories5, Naz and Naz. The group of automor-

pisms of an object V is the symplectic group Sp(V,Qp) (for both categories), an
operator V → V is symplectic iff its graph is isotropic with respect to the form
B⊖.

For P ∈ Naz(V,W ), we have

(kerP )⊥⊥ = domP, (indef P )⊥⊥ = imP
(
(kerP )↓

)⊥
= (domP )↑,

(
(indef P )↓

)⊥
= (imP )↑,

3.10. Extended Nazarov category. Now we add to the Nazarov category
an infinite-dimensional object V2∞. This is the space of vectors

(x+1 , x
+
2 , . . . , x

−
1 , x

−
2 , . . . ), where x±j ∈ Qp and x±j ∈ Op for almost all j.

5The Nazarov category is an analog of Krein–Shmulian type categories, see [16], [22]
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Notice that V2∞ is not a linear space.
We introduce a bicharacter β(·, ·) on V2∞ ⊕ V2∞ by

β(x, y) = exp
[
2πi

∞∑

j=1

(x+j y
−
j − x−j y

+
j )

]
:=

∞∏

j=1

exp
{
2πi(x+j y

−
j − x−j y

+
j )

}
.

Notice that almost all factors of the product equal to 1. The sum in square
brackets defining a symplectic form is not well defined, more precisely it is well
defined modulo Op.

Objects of the extended Nazarov category Naz are finite-dimensional spaces
V equipped with skew-symmetric non-degenerate bilinear forms BV and with
the corresponding bicharacters βV and also the space V2∞.

Let V , W be two objects. We equip their direct sum with a bicharacter

βV⊕W (v ⊕ w, v′ ⊕ w′) =
βV (v, v

′)

βW (w,w′)
.

A morphism of the category Naz is a self-dual submodule P ⊂ V ⊕W such that
kerP and indef P are compact.

Group Sp(2∞,Qp) of automorphisms of V2∞ consists of 2∞× 2∞ matrices

r =

(
a b
c d

)
such that

— all but a finite number of matrix elements are integer;

— matrix elements aij , bij , cij , dij tend to 0 as i→ ∞ for fixed j; also they
tend to 0 as j → ∞ for fixed i;

— matrices are symplectic in the usual sense,

rt
(

0 1
−1 0

)
r =

(
0 1
−1 0

)
= r

(
0 1
−1 0

)
rt.

3.11. Heisenberg groups. For the sake of simplicity, set p > 2. Denote
by Tp ⊂ C× the group of roots of unity of degrees p, p2, p3,. . . . Let V be an
object of the Nazarov category. We define the Heisenberg group Heis(V ) as a
central extension of the Abelian group V by Tp in the following way. As a set,
Heis(V ) ≃ V × Tp. The multiplication is given by

(v, λ) · (w, µ) =
(
v + w, λµ · βV (v, w)

)
.

For a finite dimensional V we define a unitary representation Ψ of Heis(V )
in L2(Qn

p ) by the formula

Ψ(v+ ⊕ v−, λ)f(x) = λf(x+ v+) exp
{
2πi

(∑
v+j xj +

1

2

∑
v+j v

−
j

)}
. (3.2)

Next, consider the space E∞ consisting of sequences z = (z1, z2, . . . ) such
that |zj | 6 1 for all but a finite number of j. This space is an Abelian locally
compact group, it admits a Haar measure. On the open subgroup O∞

p ⊂ E∞,
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the Haar measure is a product of probability Haar measures on Op. The whole
space E∞ is a countable disjoint union of sets u+O∞

p .
We define the representation of the group Heis(V2∞) in L2(E∞) by the same

formula (3.2).

3.12. The Weil representation of the Nazarov category. See [12],
[13], for finite-dimensional case, see [22], Chapter 11.

Theorem 3.4 For a 2n-dimensional object of the category Naz we assign the

Hilbert space H(V ) := L2(Qn
p ). For the object V2∞, we assign the Hilbert space

H(V2∞) := L2(E∞).

a) Let V , W be objects of Naz. Let P be a a morphism of category Naz.
Then there is a unique up to a scalar factor bounded operator

We(P ) : H(V ) → H(W )

such that

Ψ(w, 1)We(P ) = We(P )Ψ(v, 1) for all v ⊕ w ∈ P .

b) Let V , W , Y be objects of Naz. Let P : V ⇉ W , Q : W ⇉ Y be

morphisms of Naz. Then

We(Q)We(P ) = s ·We(QP ),

where s ∈ C× is a nonzero scalar. In other words, we get a projective represen-
tation of the category Naz. Also,

We(P�) = t ·We(P )∗, t ∈ C×.

For symplectic groups Sp(2n,Qp) = Aut(Q2n
p ) the representation We(g) co-

incides with the Weil representation.
We present explicit formulas for some morphisms. First, let V = W and

P be a graph of a symplectic operator. There are simple formulas for special
symplectic matrices:

We

(
A 0
0 At−1

)
f(z) = | detA|1/2f(zA); (3.3)

We

(
1 B
0 1

)
f(z) = exp{πizBzt};

We

(
0 1
−1 0

)
f(z) =

∫

Qn

p

f(x) exp{2πixzt} dx.

Any element of Sp(2n,Qp) can be represented as a product of matrices of such
forms, this allows to write an explicit formula for any element of Sp(2n,Qp).

Denote by I(x) the function on Qp defined by

I(x) =

{
1, |x| 6 1;

0, otherwise.

12



Let V = Q2n
p , W = V ⊕ Y , where Y = Q2n

p or V2∞. Denote by Y (Op) the
lattice O2n

p or O2∞
p respectively. Denote by

λVW : V ⇉W

the direct sum of the graph of the unit operator 1V : V → V and the lattice
Y (Op) ⊂ Y . Then

We(λVW ) f(x1, . . . , xn, y1, y2, . . . ) = f(x1, . . . , xn) I(y1)I(y2) . . .

Next, denote by
θVW :W ⇉W

the direct sum

1V ⊕ (Y (Op)⊕ Y (Op)) ⊂ (V ⊕ V )⊕ (Y ⊕ Y ).

Then
θVW = λVW

(
λVW

)∗
,

(
θVW

)2
= θVW ,

(
λVW

)∗
λVW = 1V . (3.4)

The operator We(θVW ) is the orthogonal projection to the space of functions of
the form

f(x1, . . . , xn) I(y1)I(y2) . . .

4 Characteristic function

Here we define characteristic functions of double cosets K\G/K and formulate
some theorems. Proofs are in the next section.

4.1. Construction. Consider the group

GL(α+ k∞,Qp) := lim
j→∞

GL(α+ kj,Qp).

Let g ∈ GL(α+ k∞,Qp) actually be contained in GL(α+ km,Qp),

g =




a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk


 ∈ GL(α+ km,Qp). (4.1)

We write the following equation



v+

y+1
...
y+k
v−

y−1
...
y−k




=




a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk




t−1







u+

x+1
...
x+k
u−

x−1
...
x−k




. (4.2)
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Here u±, v± ∈ Qα
p and x±j , y

±
j ∈ Qm

p .
Next, we define 3 spaces, V , H, ℓm:
1) Denote V := Qα

p ⊕Qα
p . We regard u = u+ ⊕u−, v = v+ ⊕ v− as elements

of V . Equip V with the standard skew-symmetric bilinear form

(
0 1
−1 0

)
.

2) Denote
H := H+ ⊕H− = Qk

p ⊕Qk
p (4.3)

and equip this space with the standard skew-symmetric bilinear form.

3) Denote by ℓm the space Qm
p equipped with the standard symmetric bilin-

ear form (z, w) =
∑
zjwj . We regard x±j , y

±
j as elements of this space.

Consider the tensor product H ⊗Qp
ℓm, vectors

(
x+1 . . . x+k x−1 . . . x−k

)
,

(
y+1 . . . y+k y−1 . . . y−k

)

are regarded as elements of H ⊗ ℓm. We equip H ⊗ ℓm with the tensor product
of bilinear forms, this form is a skew-symmetric with matrix





















0 . . . 0 1m . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1m

−1m . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . −1m 0 . . . 0





















.

Thus the operator in (4.2) is an operator

V ⊕ (H ⊗ ℓm) → V ⊕ (H ⊗ ℓm)

preserving the skew-symmetric bilinear form.
For any self-dual module Q ⊂ H we consider the self-dual module

Q⊗Op
Om

p ⊂ H ⊗ ℓm.

Notice, that Q⊗Om
p is a direct sum of m copies of Q.

Definition 4.1 Fix self-dual submodules Q, T ⊂ H. We define a relation

χg(Q,T ) : V ⇉ V

as the set of all u⊕ v ∈ V ⊕ V for which there exist x ∈ Q⊗Om
p , y ∈ T ⊗Om

p

such that (4.2) holds.

Definition 4.2 We say that some property of a double coset holds in a general
position if for every sufficiently large m the set of points g ∈ GL(α + km,Qp),
where the property does not hold, is a proper algebraic submanifold in GL(α +
km,Qp).
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4.2. Basic properties of characteristic functions.

Lemma 4.3 χg(Q,T ) does not depend on a choice of m.

Theorem 4.4 If g1, g2 are contained in the same double coset K \G/K, then

χg1(Q,T ) = χg2(Q,T ).

Thus, for any double coset g ∈ K \G/K we get a well-defined map

χg : LMod(H)× LMod(H) →
{
space of relations V ⇉ V

}
.

Therefore, we can write

χg(Q,T ), where g ∈ K \G/K.

We say that χg(·, ·) is the characteristic function of the double coset g.

Theorem 4.5 χg(Q,T ) ∈ Naz(V, V ).

Theorem 4.6 The following identity holds

χg⋆h(Q,T ) = χg(Q,T )χh(Q,T ),

in the right-hand side we have a product of relations

4.3. Refinement of Theorem 4.5. Fix a double coset g. Substituting
x± = 0, y± = 0 to the equation (4.2), we get an equation for u ⊕ v ∈ V ⊕ V .
The explicit form (see equation (5.3)) is





v+ = au+

0 = cju
+, for all j

u− = atv−

0 = btjv
−, for all j

Denote by Λ(g) ⊂ V ⊕ V the linear subspace of solutions of this system.
Notice that

kerΛ(g) = 0, indef Λ(g) = 0

(since g is an invertible matrix).
For g being in a general position Λ(g) = 0.

Proposition 4.7 a) For any self-dual Q, T ∈ LMod(H),

χg(Q,T )↓ ⊃ Λ(g), χg(Q,T )
↑ ⊂ Λ(g)⊥.

b) If Q, T are self-dual lattices, then

χg(Q,T )↓ = Λ(g), χg(Q,T )
↑ = Λ(g)⊥.
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Figure 2: A reference to Subsection 4.5. A product of two simplices and addi-
tional arrows.

Corollary 4.8 For g being in a general position, we get a map

LLat(H)× LLat(H) → LLat(V ⊕ V ).

4.4. Values of characteristic functions on the distinguished bound-
ary.

Theorem 4.9 Let Q, T range in the Lagrangian Grassmannian LGr(H). Then

a) χg(Q,T ) is a Lagrangian subspace in V ⊕ V .

b) The map

χg : LGr(H)× LGr(H) → LGr(V ⊕ V )

is rational.

c) For g being in a general position, χg(Q,T ) ∈ Sp(V,Qp) a.s. on LGr(H)×
LGr(H).

A precise description of the subset of K \ G/K, where the last property
holds, is given below in Subsection 5.8.

There is a more exotic statement in the same spirit.

Proposition 4.10 For all g for almost all (Q,T ) ∈ LGr(H) × LGr(H), the

condition (u+ ⊕ u−)⊕ (v+ ⊕ v−) ∈ χg(Q,T ) can be written as an equation

(
v+

u−

)
= Z(Q,T )

(
v−

u+

)

there Z(Q,T ) is a symmetric matrix.

4.5. Extension of characteristic function to buildings. Next, we can
apply the definition of characteristic function to almost self-dual lattices Q, T .
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Figure 3: A reference to Subsection 4.5. A morphism of oriented graphs

Proposition 4.11 If Q, T are self-dual modules, then χg(Q,T ) is almost self-

dual.

Now we construct an oriented graph ∆(H ⋊⋉ H). Vertices are ordered pairs
(Q,T ) of almost self-dual lattices in H. We draw an arrow from (Q,T ) to
(Q′, T ′) if Q ⊃ Q′, T ⊃ T ′.

Consider the product of simplicial complexes Bd(H)×Bd(H). It is polyhe-
dral complex, whose strata are products of simplices. Two vertices (Q,T ) and
(Q′, T ′) are connected by an arrow if Q ⊃ Q′ and T = T ′ or Q = Q′ and T ⊃ T ′.
However, we have draw more arrows, this provides a simplicial partition of each
product of simplices (see, e.g., [5]). Finally, we get a 2k-dimensional simplicial
complex Bd(H ⋊⋉ H) (it also is a subcomplex of the complex Bd(H ⊕H)).

Let Φ, Ψ be two oriented graphs, assume that number of edges connecting
any pair of vertices is 6 1. We say that a map σ : Vert(Φ) → Vert(Ψ) is a
morphism of graphs if for any arrow a→ b in Φ we have σ(a) = σ(b) or there is
an arrow σ(a) → σ(b).

Theorem 4.12 A characteristic function χg is a morphism of oriented graphs

∆(H ⋊⋉ H) → ∆(V ⊕ V ). (4.4)

Remark. Let a1, . . . al be vertices of a simplex of the complex Bd(H ⋊⋉ H).
Therefore their images c1, . . . cl are contained in one simplex of the complex
Bd(V ⊕ V ) (some vertices can coincide). Therefore we can extend our map to
affine map of simplices. In this way we get a piece-wise affine map of simplicial
complexes

Bd(H ⋊⋉ H) → Bd(V ⊕ V ).

4.6. Continuity.

Theorem 4.13 Let Qj, Q, Tj, T be almost self-dual modules. If Qj ր Q,

Tj ր T , then
χg(Qj , Tj) ր χg(Q,T ).

Notice that characteristic function can be discontinuous with respect to the
Hausdorff convergence. Moreover, the restriction of χg to LGr(H) × LGr(H)
can be discontinuous in the topology of Grassmannian.
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4.7. Involution.

Proposition 4.14 If u⊕ v ∈ χg(Q,T ), then v ⊕ u ∈ χg∗(T,Q).

4.8. Additional symmetry. For a nonzero λ ∈ Q×
p = Qp \ 0, we define an

operator M(λ) in H given by

(
λ 0
0 λ−1

)
, by the same symbol we denote the

operator

(
λ 0
0 λ−1

)
in the space V .

Theorem 4.15

χg

(
M(λ)Q,M(λ)T

)
=M(λ−1)χg(Q,T )M(λ).

4.9. Another semigroup of double cosets. Now consider the group

G̃ = Sp(2α + 2k∞,Qp) of symplectic matrices

(
a b
c d

)
, consider its subgroup

GL(α + k∞,Qp) consisting of matrices

(
g 0
0 gt−1

)
, consider the same K =

O(∞,Op) ⊂ GL(α+k∞,Qp). Consider the semigroup of double cosetsK\G̃/K.
We define characteristic function χg̃(Q,T ) in the same way, in formula (4.2)

instead the matrix

(
g 0
0 gt−1

)
we write a symplectic matrix

(
a b
c d

)
∈ Sp(2α+

2k∞,Qp).

Theorem 4.16 All the statements of this section hold for χg̃(Q,T ) except The-
orem 4.15.

5 Proofs

5.1. Independence of representatives. To shorten expressions, set k = 2.
Let h ∈ O(m,Op), let I(h) be given by (2.1). Then characteristic function of
gI(h) is determined by




v+

y+1
y+2
v−

y−1
y−2




=




a b1h b2h
c1 d11h d12h
c2 d21h d22h

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0



a b1h b2h
c1 d11h d12h
c2 d21h d22h




t−1







u+

x+1
x+2
u−

x−1
x−2



.

or 


v+

y+1
y+2
v−

y−1
y−2




=




a b1 b2
c1 d11 d12
c2 d21 d22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0



a b1 b2
c1 d11 d12
c2 d21 d22




t−1







u+

hx+1
hx+2
u−

hx−1
hx−2



.
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We introduce new variables x̃±1 = hx±1 , x̃
±
2 = hx±2 and come to the equation for

χg. Notice that modules Q⊗Op
Om

p are invariant with respect to O(m,Op).

5.2. Reformulation of definition. The equation (4.2) determines a linear
subspace in (

V ⊕ (H ⊗ ℓm)
)
⊕
(
V ⊕ (H ⊗ ℓm)

)
.

We regard it as a linear relation

ξ :
(
(H ⊗ ℓm)⊕ (H ⊗ ℓm)

)
⇉

(
V ⊕ V

)
.

Then χg is the image of the submodule

ηQ,T = (Q⊗Op
Om

p )⊕ (T ⊗Op
Om

p )

under ξ.

5.3. Immediate corollaries. The relation ξ is a morphism of the category
Naz. A module ηQ,T is self-dual. Therefore ξ ηQ,T is almost self-dual Theorem
4.5 is proved.

The same argument implies Theorem 4.9.a and Proposition 4.11.

Also Lemma 4.3 became obvious.

5.4. Continuity (Theorem 4.13). We calculate the product ξ ηQ,T ac-
cording Subsection 3.7. By Lemma 3.2 both steps of calculation are continuous.

5.5. Products. Proof of Theorem 4.6. To shorten notation, set k = 2.
Let

g =





a b1 b2
c1 d11 d12
c2 d21 d22



 ∈ GL(α+2l,Qp), h =





a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22



 ∈ GL(α+2m,Qp).

Let v ⊕ w ∈ χg(Q,T ), u ⊕ v ∈ χh(Q,T ). Then there are x ∈ Q ⊗Op
Om

p ,
y ∈ T ⊗Op

Om
p such that

















v+

y+

1

y+

2

v−

y−

1

y−

2

















=

















a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0





a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22





t−1

































u+

x+

1

x+

2

u−

x−

1

x−

2

















. (5.1)

Also there are X ∈ Q⊗Op
Ol

p, Y ∈ T ⊗Op
Ol

p such that

















w+

Y +

1

Y +

2

w−

Y −

1

Y −

2

















=

















a b1 b2
c1 d11 d12
c2 d21 d22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0





a b1 b2
c1 d11 d12
c2 d21 d22





t−1

































v+

X+

1

X+

2

v−

X−

1

X−

2

















. (5.2)
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We write (5.2) as


































w+

Y
+

1

y
+

1

Y +

2

y+
2

w−

Y −

1

y−
1

Y
−

2

y
−

2



































=

































a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1











t−1



































































v+

X
+

1

y
+

1

X+

2

y+
2

v−

X−

1

y+
1

X
−

2

y
−

2



































.

Applying (5.1) we come to



































w+

Y +

1

y+
1

Y
+

2

y
+

2

w−

Y −

1

y−
1

Y −

2

y−
2



































=

































a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1











t−1

































×

×

































a′ 0 b′
1

0 b′
2

0 1 0 0 0
c′
1

0 d′
11

0 d′
12

0 0 0 1 0
c′
2

0 d′
21

0 d′
22

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











a′ 0 b′
1

0 b′
2

0 1 0 0 0
c′
1

0 d′
11

0 d′
12

0 0 0 1 0
c′
2

0 d′
21

0 d′
22











t−1



































































u+

X
+

1

x
+

1

X+

2

x+

2

u−

X−

1

x+

1

X
−

2

x
−

2



































Now
X ⊕ x ∈ Q ⊗ (Ol

p ⊕Om
p ), Y ⊕ y ∈ T ⊗ (Ol

p ⊕Om
p ),

and we get u⊕ w ∈ χg⋆h(Q,T ). Thus,

χg⋆h(Q,T ) ⊃ χg(Q,T )χh(Q,T ).

But both sides are self-dual, therefore they coincide.

5.6. Morphism of graphs (Theorem 4.12). Consider the map

LMod(H)× LMod(H) → LMod(H ⊗ ℓm)× LMod(H ⊗ ℓm)

given by (Q,T ) 7→ (Q⊗Op
Om

p , P ⊗Op
Om

p ).

Lemma 5.1 This map is a morphism of graphs

∆(H ⋊⋉ H) → ∆
(
(H ⊗ ℓm) ⋊⋉ (H ⊗ ℓm)

)
.
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This statement is obvious.

Next, we have an embedding of complexes

Bd
(
(H ⊗ ℓm) ⋊⋉ (H ⊗ ℓm)

)
→ Bd

(
(H ⊗ ℓm)⊕ (H ⊗ ℓm)

)
.

On the other hand, the linear relation ξ is a morphism of the category Naz.
Therefore it induces a morphism of graphs ∆

(
(H⊗ℓm)⊕(H⊗ℓm)

)
→ ∆(V ⊕V ),

see [22], Proposition 10.7.6.

5.7. Proof of Proposition 4.7. We have

indef ξ = Λ(g).

Therefore Λ(g) ⊂ ξ ηQ,T ⊂ Λ(g)⊥. This is the statement a) of Proposition 4.7.
Also, if R is a relation V ⇉W , Y ⊂ V is a lattice, then (RY )↓ = (indef R)↓.

This implies b).

5.8. Values on the distinguished boundary. Now let Q, T be La-
grangian subspaces in H.

First, we prove Proposition 4.10. A Lagrangian subspace Q ⊂ H of general
position is a graph of an operator H+ → H−, and matrix of this operator is
symmetric (see, e.g., [22], Theorem 3.1.4). To shorten notation, set k = 2. The
equation (4.2) can be written in the form



v+

y+1
y+2
u−

t11x
+
1 + t12x

+
2

t12x
+
1 + t22x

+
2







a b1 b2 0 0 0
c1 d11 d12 0 0 0
c2 d21 d22 0 0 0
0 0 0 at ct1 ct2
0 0 0 bt1 dt11 dt21
0 0 0 bt2 dt12 dt22







u+

x+1
x+2
v−

q11y
+
1 + q12y

+
2

q12y
+
1 + q22y

+
2



, (5.3)

We denote

κ :=

(
q11 q12
q12 q22

)
, τ :=

(
t11 t12
t12 t22

)

and write (5.3) as

v+ = au+ + bx+ (5.4)

y+ = cu+ + dx+ (5.5)

u− = atv− + ctκy+ (5.6)

τx+ = btv− + dtκy+. (5.7)

We regard lines (5.5),(5.7) as a system of equations for x+, y+. The matrix of
the system is

Ω(κ, τ) =

(
−d 1
τ −dtκ

)
.

Evidently, the polynomial detΩ(κ, τ) is not zero. Indeed, fix κ and take
τ = p−N · 1. If N is sufficiently large, then the determinant is 6= 0. Thus,
outside the hypersurface

detΩ(κ, τ) = 0
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we can express x+ and y+ as functions of u+, v−. After substitution of x+, y+

to (5.4),(5.6), we get a dependence of u−, v+ in u+, v−.

This also proves Theorem 4.9.b (rationality of characteristic function).

Next, we prove Theorem 4.9.c. Denote

(
a b
c d

)−1

=

(
A B
C D

)

and write the equation (4.2) in the form




v+

y+1
y+2
v−

q11y
+
1 + q12y

+
2

q12y
+
1 + q22y

+
2







a b1 b2 0 0 0
c1 d11 d12 0 0 0
c2 d21 d22 0 0 0
0 0 0 At Ct

1 Ct
2

0 0 0 Bt
1 Dt

11 Dt
21

0 0 0 Bt
2 Dt

12 Dt
22







u+

x+1
x+2
u−

t11x
+
1 + t12x

+
2

t12x
+
1 + t22x

+
2



,

or

v+ = au+ + bx+ (5.8)

y+ = cu+ + dx+ (5.9)

v− = Atu− + Ctτx+ (5.10)

y+ = Btu− +Dtτx+. (5.11)

We consider lines (5.9), (5.11) as equations for y+, x+. The matrix of the
system is

Ξ(κ, τ) =

(
1 −d
κ −Dtτ

)
.

Its determinant equals

det Ξ(κ, τ) = det(−Dtτ + κd)

If it is nonzero, we get a linear operator u 7→ v. We come to the following
statement

Proposition 5.2 If there exists a pair of symmetric matrices κ, τ such that

det(−Dtτ + κd) 6= 0, then χg(Q,T ) ∈ Sp(V,Qp) a.s. on LGr(H)× LGr(H).

5.9. Involution. Proof of Proposition 4.14. We write the defining
relation for χg−1 ,




v+

y+

v−

y−


 =




(
a b
c d

)−1
0 0
0 0

0 0
0 0

(
a b
c d

)t







u+

x+

u−

x−


 ,
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represent this in the form




u+

x+

u−

x−


 =




a b
c d

0 0
0 0

0 0
0 0

(
a b
c d

)t−1







v+

y+

v−

y−




and come to desired statement.
5.10. Proof of Theorem 4.15. We write (4.2) as









u+

x+

u−

x−









=









λ−1

λ−1

λ

λ

















a b

c d

0 0
0 0

0 0
0 0

(

a b

c d

)t−1

















λ

λ

λ−1

λ−1

















v+

y+

v−

y−









or 


λu+

λx+

λ−1u−

λ−1x−


 =




a b
c d

0 0
0 0

0 0
0 0

(
a b
c d

)t−1







λv+

λy+

λ−1v−

λ−1y−




5.11. Another reformulation of the definition. Consider the space
W = V ⊕ (H ⊗ ℓm). For any self-dual submodule Q ⊂ H, consider the linear
relation Λ : V ⇉W defined by

ΛQ = 1V ⊕ (Q⊗Om) ⊂ (V ⊕ V )⊕ (Q⊗ ℓm).

Then χg is a product of linear relations

χg(Q,T ) = (ΛT )
�

(
g 0
0 gt−1

)
ΛQ.

6 Multiplicativity theorem

Theorem 2.2 (multiplicativity theorem) formulated above is a representative of
wide class of theorems, their proofs are standard, below we refer to proofs [16],
Chapter VIII.

6.1. Corners of orthogonal matrices.

Lemma 6.1 Let A be a m ×m matrix with elements ∈ Op. Then there exists

N and a matrix

(
A B
C D

)
∈ O(m+N,Op).

Proof. Denote by Bm the set of all possible m ×m left upper corners of
matrices g ∈ O(∞,Op).

1) The set Bm is closed with respect to matrix products. Indeed, let

(
A B
C D

)
∈ O(m+N,Op),

(
A′ B′

C ′ D′

)
∈ O(m+N ′,Op).
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Then


A B 0
C D 0
0 0 1






A′ 0 B′

0 1 0
C ′ 0 D′


 =



AA′ . . . . . .
. . . . . . . . .
. . . . . . . . .


 ∈ O(m+N +N ′,Op).

2) If A ∈ Bm, A′ ∈ Bn, then

(
A 0
0 A′

)
∈ Bm+n.

3) It is more-or-less clear that for any z ∈ Op we have

(
z
)
∈ B1,

(
1 z
0 1

)
,

(
1 0
z 1

)
∈ B2.

4) Bm contains matrices of permutations.

Now we can produce any matrix with integer elements. �

6.2. Admissible representations. Denote by Km the subgroup in K

consisting of matrices of the form

(
1m 0
0 ∗

)
.

Let τ be a unitary representation ofK in a Hilbert spaceH. Denote byH(m)
the subspace of Km-fixed vectors. Denote by P (m) the operator of orthogonal
projection to H(m). We say, that τ is admissible if ∪mH(m) is dense in H.

We say, that a representation of G is K-admissible if its restriction to K is
admissible.

6.3. Continuation of representations. Denote by B∞ the semigroup of
all infinite matrices A such that:

a) aij ∈ Op;

b) for each i the sequence aij tends to 0 as j → ∞; for each j the sequence
aij tends to 0 as i→ ∞.

We say that a sequence of matrices A(j) ∈ B∞ weakly converges to A if we

have convergence of each matrix element, a
(j)
kl → akl.

Denote by O(∞,Op) the group of all orthogonal matrices ∈ B∞.

Lemma 6.2 The group O(∞,Op) is dense in O(∞,Op) and in B∞.

Proof. Let S ∈ B∞. Consider its left upper corner of size m×m. Consider
gm ∈ O(∞,Op) having the same left upper corner. Then gm weakly converges
to S, �

Theorem 6.3 a) Let τ be a unitary representation of K = O(∞,Op). The

following conditions are equivalent:

— τ is admissible;

— τ admits a weakly continuous extension to the group O(∞,Op);

— τ admits a weakly continuous extension to a representation τ̃ of the semi-

group B∞ such that τ̃(At) = τ̃(A)∗, ‖τ̃(A)‖ 6 1 for all A.
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b) For an admissible representation τ ,

P (m) = τ̃

(
1m 0
0 0

)
.

This is a statement in the spirit of [24]. We omit a proof, since it is a one-
to-one repetition of proof of [16], Theorem VIII.1.4 about symmetric groups
(admissibility implies semigroup continuation), the only new detail is Lemma
6.1). Admissibility follows from continuity by [16], Proposition VIII.1.3.

Corollary 6.4 Denote

Θ
(m)
N =




1m 0 0 0
0 0 1N 0
0 1N 0 0
0 0 0 1∞


 .

The projector P (m) is a weak limit of the sequence

P (m) = lim
N→∞

τ(Θ
(m)
N ). (6.1)

Proof. The sequence Θ
(m)
N ∈ O(∞,Op) weakly converges to the matrix(

1m 0
0 0

)
∈ B∞. We refer to the statement b) of the theorem. �

6.4. Proof of Theorem 2.2. We keep the notation of Subsection 2.3. Let
v ∈ HK, g ∈ Gj = GL(α+ km,Qp), let q ∈ Kj . Then

ρ(q)ρ(g)v = ρ(g)ρ(q)h = ρ(g)h,

i.e., v ∈ H(j). Thus the subspace ∪jH(j) is G-invariant. Its closure is an

admissible representation of G. In
(
∪jH(j)

)⊥
Theorem 2.2 holds by a trivial

reason (the space of fixed vectors K is zero).
Thus, without loss of generality we can assume that ρ is admissible.
Now let g, h ∈ G, let g, h ∈ K \G/K be the corresponding double cosets.

Let P = P (0) be the projector to K-fixed vectors. Applying Corollary 6.4, we
obtain

ρ(g)ρ(h) = Pρ(g)Pρ(h) = lim
N→∞

Pρ(g)ρ(I(Θ
(0)
N ))ρ(h) = lim

N→∞
Pρ(gI(ΘN )h),

here J : K → G is the embedding (2.1). By the definition (Θ
(0)
N is ΘN from

Subsection 2.3), we get ρ(g ⋆ h).

6.5. Variation of construction. Train. We can define multiplication of
double cosets

Kp \G/Kq × Kq \G/Kr → Kp \G/Kr,

in definition of product of double cosets (Subsection 2.2), we simply change ΘN

by Θ
(q)
N . An explicit formula of the product is the same (2.3). Thus we get a

category (train T (G,K) of the pair (G,K)).
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Next, for any unitary representation ρ of the group G, a double coset g ∈
Kp \G/Kq determines an operator ρ(g) : H(r) → H(q) by the formula

ρ(g) := P (q)ρ(g), g ∈ g.

For any
g ∈ Kp \G/Kq h ∈ Kq \G/Kr,

the following identity holds

ρ(g)ρ(h) = ρ(g ⋆ h),

i.e., we get a representation of the category T (G,K).
Also it can be shown that this construction is a bijection between the set of

K-admissible ∗-representations of G, the proof is the same as in [20].
Also a construction of characteristic functions and their properties survive

for double cosets Kp \G/Kq.

7 Representations of G

7.1. Existence of representations. Let



a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk


 ∈ GL(α+ k∞,Qp).

Consider embedding GL(α+ k∞,Qp) → Sp(2(α+ k∞),Qp) given by

ι : g 7→

(
g 0
0 gt−1

)
.

For any

r =



r11 . . . r1 2n

...
. . .

...
r2n 1 . . . r2n 2n


 ∈ Sp(2k,Qp)

consider the matrix σ(r) = 12α ⊕ (r ⊗ 1∞),

σ(r) :=




1α 0 . . . 0 0
0 r11 · 1∞ . . . 0 r1k · 1∞
...

...
. . .

...
...

0 0 . . . 1α 0
0 r11 · 1∞ . . . 0 r1k · 1∞




This matrix is not contained in Sp(2(α + k∞),Qp), because it is not finite.
However, the map

q 7→ σ(r−1) q σ(r) (7.1)
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is an automorphism of Sp(2(α+ k∞),Qp). Emphasize that this automorphism
fixes the subgroup K = O(∞,Op).

We consider the representation ρ(r) of GL(α+k∞,Qp) given by the formula

ρr(g) = We
(
σ(r−1)ι(g)σ(r)

)
,

where We(·) is the Weil representation, see Subsection 3.12.
Recall that the Weil representation is projective.

Lemma 7.1 The representation ρr is equivalent to a linear representation, i.e.,

there is a function (a trivializer) γ : G → C× such that γ(g)ρr(g) is a linear

representation. Moreover, we can choose γ(g) = 1 on O(∞,Op).

Proof. First, the restriction of the Weil representation of Sp(2n,Qp) to
GL(n,Qp) is linear, see (3.3). Therefore, restricting the Weil representation
to each finite-dimensional group Gj = GL(α + kj,Qp) we get a representa-
tion equivalent to a linear representation (for finite-dimensional groups the
automorphism (7.1) is inner). Denote by γj(g) the trivializer for Gj . Ratio
γ(g)j/γ(g)j+1 of two trivializers is a character Gj → C×. All characters of
Gj → C× has the form ϕ(deth), where ϕ is a character Q× → C×. Correcting
γj+1(g) 7→ γj+1(g)ψ(det g), we can assume that γj+1(g) = γj(g) on Gj .

In this way we choose a trivializer γ on the whole group G. Restriction of
γ to O(∞,Op) must be a character on O(∞,Op) → C×. The only non-trivial
character is det(u). We change the trivializer γ(g) to det(g)γ(g). �

Lemma 7.2 In the model of Subsection 3.12, the subspace L2(Eα+k∞)K of K-

fixed vectors of ρr coincides with the space of functions of the form

f(z1, . . . , zα)I(zα+1)I(zα+2) . . .

Proof. Without loss of generality, we can set α = 0. We regard Ek∞ as
the space of ∞ × k matrices Z = {zij} with elements in Qp (all but a finite
number of matrix elements are in Op). The group K = O(∞,Op) acts by left
multiplications

We(u)f(Z) = f(Zu).

We must show that
∏

ij I(zij) is a unique O(∞,Op)-invariant function in

L2(Ek∞).
The group O(∞,Op) contains the group S(∞) of finite permutations of the

set N. According zero-one law (see, e.g., [31], §4.1), the action of S(∞) on the
set Ok∞

p ⊂ Ek∞ is ergodic. Let Ω ⊂ Ek∞ be an invariant set. Let ξ ∈ Ek∞\Ok∞
p .

Assume that the measure of the set Ω ∩ Ok∞
p is non-zero, say ν0. Since Ω is

S(∞)-invariant, for any s ∈ S(∞), the set Ω∩ (ξs+Ok∞
p ) has the same measure

ν0. However there is a countable number of disjoint sets of the form ξs+Ok∞
p ,

therefore the measure of Ω is infinite. �

Corollary 7.3 Let α = 0. Then the representation ρr contains a unique irre-

ducible K-spherical representation of G.

27



Proof. We take the G-cyclic span of the unique K-fixed vector. �

Next, consider the subgroup GL(1,Qp) ⊂ Sp(2k,Qp) consisting of matrices(
λ · 1k 0
0 λ−1 · 1k

)
, where λ ∈ Q×

p .

Lemma 7.4 If r, r′ are contained in the same double coset

GL(1,Qp) \ Sp(2k,Qp)/Sp(2k,Op),

then ρr ≃ ρr′ .

Proof. First, if q ∈ GL(1,Qp), then the automorphism (7.1) fixes the
subgroup GL(α+ k∞,Qp).

Second, if t ∈ Sp(2k,Op), then σ(t) is contained in the group Sp of automor-
phisms of the infinite object of the Nazarov category. Therefore the operator
We(σ(t)) is well-defined, it intertwines ρr and ρrt. �

7.2. Characteristic functions and representations. By Lemma 7.2,
we can identify the space of K-fixed vectors of ρr and the space of the Weil
representation of Sp(2α,Qp).

Theorem 7.5 The representation of the semigroup K \ G/K in the space of

K-fixed vectors of ρr is given by the formula

ρr(g) = s ·We
(
χg(rO

2k
p , rO

2k
p )

)
, s ∈ C×.

Proof. We use the notation and statements of Subsection 3.12. Let V and
H be the same as in Section 4. Let Y = V2k∞, W = V ⊕ Y The operator of
projection H(V ⊕ Y ) to H(V ⊕ Y )K ≃ H(V ) is We(θVW ). Therefore

ρ(g) = s′ ·We(θVW )We(σ(r−1)ι(g)σ(r))We(θVW )

as an operator L2(Eα+k∞)K → L2(Eα+k∞)K. The operator

We(λVW ) : L2(Qα
p ) → L2(Eα+k∞)

is an operator of isometric embedding, the image is H(V ⊕ V2k∞)K. Therefore
we can write ρ(g) as

ρ(g) = s
′′

·We(λVW )∗We(θVW )We(σ(r−1)ι(g)σ(r))We(θVW )We(λVW ) =

= s
′′′

·We(λVW )∗We(σ(r−1)ι(g)σ(r))We(λVW ) =

= s
′′′′

·We
[
(λVW )∗σ(r−1)ι(g)σ(r)λVW

]
. (7.2)

Next, σ(r)λVW : V ⇉ V ⊕ Y is a direct sum of 1V ⊂ V ⊕ V and the lattice in Y
given by

σ(r)Y (O) = σ(r)(H(O)⊗O∞) = (rH(O))⊗O∞).

We apply Subsection 5.11 for the expression in square brackets in (7.2).
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7.3. Constructions of representations. Now we extend the previous
construction. Consider the embedding

ιl : GL(α+ k∞,Qp) → Sp(2lα+ 2lk∞,Qp)

given by

g 7→




g . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . g 0 . . . 0
0 . . . 0 gt−1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . gt−1




.

This is a 2l × 2l block matrix, each block of this matrix has size (α + k∞) ×
(α+ k∞).

Next, for a matrix r ∈ Sp(2kl,Qp) we take

σ(r) := 12αl ⊕ (r ⊗ 1∞)

and consider the representation of GL(α+ k∞,Qp) given by

ρr(g) = We(σ(r)−1ιl(g)σ(r)).

Set α = 0. As above, each representation ρr of G = GL(k∞,Qp) contains a
unique K-spherical subrepresentation.

Conjecture 7.6 Any K-spherical representation of GL(k∞,Qp) is a subrepre-

sentation in ϕ(det(g)) ρr(g), where ϕ : Q×
p → C× is a character. Representa-

tions ρr are parametrized by the set

⋃

l

GL(l,Qp) \ Sp(2kl,Qp)/Sp(2kl,Op).
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