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Prime geodesic theorem for the theta case I1

Roland Matthes

1 Introduction

Let T'o(2) denote the group of matrices in I' = SL(2,Z) with an even left-lower corner
entry. Then the classical theta series

9n(z) = T e s | gy(a) = T e 9y(2) = Pa(z + 1)

neZ neZ

-1
are modular forms of weight % for ['s(2), ( (1] _11 ) To(2) ( (1] —11 ) and

-1
0 -1 0 -1 .
( 1 0 ) I‘o(2)( 10 ) respectively. Put

0(z) = (92(2), Va(2), Fa(2))’
then V is the multiplier system determined by
O(Tz) = V(T)(cz + d)i0(2)

forT = ( i d ) € I'. In (8] we have proven the prime geodesic theorem
3 8
mr(z,V) =1 (:':4) + O, (38“)
' with
nr(z,V) = Z TeW(FR).
{Pﬂ}l
NPy <=

where the sum is over all I'-conjugacy classes of primitive hyperbolic elements P, with
TrP, > 4 and NP, = €}, < z. Here D is the discriminant of the primitive binary
quadratic form, for which the automorphism group is generated by £ F,, ep = 1“—'"—”3—@
and (%o ,ug) is the fundamental solution of Pell’s equation

t? — Dut=4.

In the present paper we want to prove a better result, namely
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Theorem 1.1

ar(e, V) =1 (.Lgl) + O, (1,913 )

We should remark that this result formally corresponds to Iwaniec’s result O(z3%/® 4-¢)
in the error term for the prime geodesic theorem in the weight 0 case under the Shimura
lift. In what follows we shall make improvements at three different places of [8]. Yet
only the one which will be made in the ’Kloosterman’ term will be responsible for the
result stated in the theorem.

2 Rankin—-Selberg Zeta function

We use the notation of [8]. pi; are the Fourier coefficients of the normalized (with

respect to the usual inner product) eigenfunction of the Laplace Beltrami operator for
the eigenvalue A\, = 1/4 + 2, argts € {0, ~7/2}

up(z) = Zuk.j(z)f; ’

where

uk.j(z) = Z Lk J(n)W1.gn(n),zt,,(47r|n|y)e(nz)

n = ajmodl
n#o

N 5-.1{ pra(OWyi™™ + a(O)yiti Lif 6 £ 0
) L

L . 1
pra(0)y + ﬁ;._|1(0)y5 logy ,ift. =0 (1)

with a; = 0,a, = -;-,as = %, then V(U) has eigenvalues e(a;),e(az),e(as), the corre-
sponding orthonormal set of eigenvectors is given by

o4 (0 B 0 ) 1
1= = ) 2= = 1 ) a=10].
f=zlt AN h=|o

As in {1] introduce w € C*®°(R) which has compact support in [N,2/N] and satisfies
i) ”w(y)“sup <N7v |, v=0,1,2,...,

i) f2 w(z)dz =N
Our first result is an improvement of lemma 4.4 in [8]
Lemma 2.1 For T > 1,y > -3/2and j =1,2,3
3

Z ¢ wn + aj)lpei(r)(n + @;) _ - bek + (N, ti)

sl chmi, chwi;

with |
Z tk"']'f‘(N, tk)| =0, (N7T3/2+'7+‘) .
0<t, <T



Proot. This follows from our result in [9]

R u(+1v o .
Z b4 ( 2 ) <<¢ (_vrix)o/2+c (2)
th<T ch'rrtk

which is the analogue to a conjecture of Iwaniec, which in the weight zero case was
proven by Luo and Sarnak in [3]. Namely, put

= /ww(t)t'_ld.t,
0

which is < (1 4+ $(s))~"***N®) (partial integration 1994 times) then the inversion
theorem for Mellin transforms gives

1
le S wlnt as)lprs(mFln +a5) = 5o [ 0()Rs(s)ds
We shift the line of integration to R(s) = 7. Then
L[ IR
Z > w(n+ ay)lpri(P)*(n + @) = Q1)byk + O (Nf f Li%i)'ds)
i=1n>0 (h sl

and the statement of the lemma follows from (2). O

3 Some Bessel transforms

We refer to section 4 of [8]. Recall we have chosen
$i(w) = —exp (—‘fi + iwchb) ,
w

where ) +

) n+ a;
5T a; =4m G J
with 1 < N < n < 2N as test function in the Kuznecov—-Bruggeman sum formula. We
want to show

b-—log:-:+

Lemma 3.1

5 (1) « Lexp (- ‘Wz%) . (3)

Recall that

cf.[4], p.73. So we get

6 (3] mrmm im ey [




| poo dw
= / cos{w) ¢p;(w)—
0 1u2

From tables [10] we find for the Fourier cosinus transform

o 3 /
j z 37 exp (—a:c — '—) cos zyde = Ie_“ cos v
0 IR 3

and the Fourier sine transform

/ =% exp ( ar — —B-) sin zydz = \/Ee_“ sin v
0 z Jé]

with 2
uz\/ﬁ((az-l—yz)l/z-{—a) /
and , 2
v = /28 (o +41)* — )"
and o, 8 > 0.

Regarding this as a function in a we see that by analytic continuation the above

formulas still hold for )
) —FE 4B
a =1chb = —

We put y = 1 and observe that
B= \/_+0(‘1{,:) , E:£+o(‘/—5) .
Since ' L2
((az + 1)1/2 _ a) & |a|‘1/2

we obtain (3). ‘ O
The same estimate then holds for D;(z,T;C;n), cf [8] equation (29). We therefore

arrive at

Proposition 3.1 Let z > z, for a sufficiently large o, 2i < T < Ve and C, N > 1
with 71; < 41r—‘g— and % > z=5. Then we have for smalle >0

o ite _, T (NT:::)’E Nzi C\: vN
Z T = = el _
= e =0 ( (N%+ ¢ T +(N) exP( ool )))

s .
3 wn + @;)S(=,T,C,n).

j=1n>0

FaEd

]
N

Compare this with proposition 5.1 in [8].



4 Proof of theorem

Now comes the crucial part of our paper. We put for ¢ > 0

f’:t(cay) = Z L,

d+d=ymodec
and as in [8] we define for any even integer ¢ > 0 the sum
' 1—4d
ez G5

d_modSc.
d + d = ymod8¢

and forodd ¢ > 0

d
o= ¥ (2).
dmod2e, ¢
d +d = ymod2e

It is understood, that in the above sums d is coprime with ¢ resp.2¢c and d denotes
the inverse of d(modc), resp. d(mod 2¢ or d(mod 8¢)).
Notice that p* is [waniec’s p in [1]. We start with the formula, cf. [8] equation (85),

Y Y T o(n+ )8z, T,C,n)

=1 n>0c>0
3 2
< Y |D¥(C,N,B,E)|+ Y. ID2*(C,N,B,E)| + O(1), (4)
i=1 k=1

where for arbitrary F, G > 0
D(C,N,F,G)
Y 3 win+a;) o . (M(y +F+ z‘G)) pe(c,y),

c 8¢
n>0 %%ScSCIogzz, -2
¢ = Omod2

[CTEY
©

1A
ofa

D2*¥(C,N,F,G)

< 2
> 2 et (_g) e( (n;ak—)(y+F+z‘G)) po{C,Y).
n>0 ﬁ}G—ISCSCloga;r, ¢ _'57(!153?: c
¢ = lmod2

As distinguished from [8] we aga.iﬂ split up the above expressions
D (C,N,F,G) = D% (C,N,F,G) + D>"*(C,N, F,Q)

where the star shall indicate that in the sum over y we exclude those summands with
y + 2 a square, these being just contained in the expression with the two stars.
Our analysis in (8], section 6, shows that
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Temma 4.1 Let ¢, F, G >0, N > (8F10g2z)/G > 1 and F > 2Clog* z/N'™° for
some small a > 0. Then forany0<e<aand1 <j<3,1<k<2

D*(C,N,F,G), D°*(C,N,F;G) <, (FCN)C3Fis.
The proof of the theorem now follows from the following

Proposition 4.1 With the notations and assumptions as above
DI (C, N, F,G), D2*(C,N,F,G) <. (FCN)((NiCiF % + C?N-'F~F 1 C%).

Namely instead of propositon 6.2 in [8] we obtain from the above propositions to-
gether with lemma 4.1

1ty

x .
Z e_% <,
tr

By standard calculations as in (8] and together with propostion 3.3 in 8] the theorem
follows on choosing T' = z%,

5 Proof of proposition
For the proof of the proposition we shall need the following two lemmas.

Lemma 5.1 Let y & 2 be a square, y = 2° ¥ 2, say. Then

pe(c,y) = p+(8c,y), po(c,y) = P+(2Cay)°

Further for any squarefree odd number k
pt(k,y) = p*(k,2).

Proof. First look at p,. The condition d + d = ymod 8c is equivalent to d2 F2d + 1 =
dz*mod 8c. From this follows that d must be a square mod 8¢, hence (¢/d) = 1 and
(2/d) = 1. The latter implies d = 1(mod8) giving e (l—gi) = 1, hence the statement
for p.. For p, the proof is similar. For proving p*(.,y) = p*(.,z) we use the product
representation



s = o (55) -0 (57) (57)
e () 9)
10+ (229) -

The last equality follows from the observation that the congruence d>—yd+1 = 0(mod k)

I
—

is equivalent to (y° F4) = z?(mod k) in z(mod k). m
Put
FHABO) =Y Y (e, + ho)
e<C |y+B(<A

where the upper index at the sum means that the sum is over those y for which y+2+hc
is a square. We have the following

Lemma 5.2 i) Ff = \A$C + O ((A'B~%C + AB~iC})(BCY') .
it) For 1 < h <7 we obtain
F(4,B,C) = 0 (AC%).

Proof. If we proceed as in the proof of theorem 3 in [1] we obtain by means of lemma
5.1 ‘

USNIEED ) 5 vEE S VA (27] C B C

Irs < C, lu+BI<A g2 +hirs=123 "
leL (or,2l)=1 .

where £ = {n € N i n odd and p|n => p?|n for all primes p}. Splitting this sum up into

two sums F,fo(A,B,C) + F,foo(A,B,C) restricted by {r < R and {r > R respectively,

with some parameter R > 0, then the analysis of Iwaniec in [1] leads to

FR(AB.0) = T T e Y e (™,

1eLI<C a(modl) Ire<Cir <R
' (rs,20)=1

+0 ((min{r(r)log(2r)r7, 4%, }))

where Af,_, denotes the number of y with |y+ B| < A for which y %2+ hirs is a square.
We have for h # 0

Af,, < A((lrs + B)73)
giving
F\(4,B,0) = 0 (ACT)



independently of R and in this case we choose R = Ci.e. FX(4,B,C) = F,fO(A, B,C).
this proves (ii).
If h = 0 then the analysis in loc.cit. gives

F¥,(A,B,C) = MZEC + O (45CH + CRY + ATCR7Y)
for some A > 0. Now completely analogous calculations as in [1} lead to
FE_ < A¥BSCR*1(BCY.
Put R = A} Bis then we obtain
Ff = MZC + O ((AFB~%C + AB™5CH)(BOY)

since A « AB*%. The proof of the lemma is thus complete. a
Consider now D='"*(C, N, F,G). The sum over y equals

Ze(i{iz) B > e(%(zz+F+iG)) pt(8¢c,22 F2)

= Y e (:Fg) D e (g(zz —h{c,z)ce+ F + iG)) pt(8c,z* F2),

Cc
* -feaF2giye

where h{c,z) € Z, 0 < h{e,z) < 7 is such that z? — h(c,z)c € (—¢/2,¢/2]. Next we
proceed as in {1] and replace the sum over n by an integral via the Poisson summation
formula. Put M, , = 22 —h{c,z)c + F + iG, then

> w(n)e (%Mc,,) = ,§z/‘:° w(z)e (%Mc,, - z:n) dz

neZ

+eo T too M.,
= /_m w(z)e (;Mc.z) dz + ,é:o-/-w' w(z)e (:c ( e n)) dz
= L:o w(z)e (%Mc,z) dz

+f§o ((n - AJ:’Z )Zm') - /_4:; wi(z)e (:r: (M;” - n)) dz

= /m w(z)e (%Mc,z) dz + Oy (N-Hl)

-0

for any integer f > 2, provided there is a positive real constant v such that |i;'i — n‘ >

7 > 0 for all n € Z. The latter is assured by our assumption
8F
N> —log’z.
o log"z

For then ¢ > NG/log’z > 8F, therefore

2 2 2 2 2
=G_+(M+E,n) z(n_g) >3
c




for all n € Z. Further partial integration [-times gives

!
toe T c
N ‘ V—l+1
/_m w(z)e (clfc'z) dzr < (|Mc,z|) I , (6)

which is <, N’I””1 for IM..| > si=. Especially this is the case for all z with |z% =
h(e,z)c 4+ F| > 5i=. Therefore for any C,N,F,G > 0 with C > N > log’ =

D2V (C, N, F,G) = A
se(=2) v = s ey

foets S e < Clogi =, |23 —h{e,2)e+FI< 7=

¢ = Omod2

% s - C
/_mw(a:)e (%Mrc.,) dz + O, (W) .

The sum over c is split up into O(log C) subsums, a typical sum of which is

> ew(F) X% 8cz¥2)/ o(c€)e(é Moe)dé

H<ce<2H |22 —h(e,2)e+FI<
c=0{2)
' N
" N H NG C
dé + O, ( ) <H<Z
j% Hsg IEACERNCUE: F) 0 oy SH S logs,
c=0(2) '
(7)
with . _
a:‘:(c'pgaz) = Z l _E(EJM-C',)p*_(SC,ZZ + 2)1

|23 —h(c,z)e+ F|<2H/N1-¢

£(e,8) = exp (=) wlet).

The O-termin (7) arises, since we replaced 3.2 _a(c z)c+ Fl<2e/N1—¢ DY 20|23 —he,2)et Fi<2H/N1 =
applying (6) with a sufficiently large {. Consider for 0 < h < 7,C >0and B> A >0
the sums

FE(A,B,C) = Y ¥ e(é(z*+ B)) p*(8c, 2 T 2).

¢<C |2 —het+B|<A
We apply lemma ?? to (5) and obtain for h # 0

F#H,(A,B,C) < (ACT)

while
N , pVBHA .
Fio(4,B,C) = MB™F [ e (¢( o® + B)) da-

+0 ((1 + EA)(A®B™3C + +A3B™5C+ AB™3C7)(BCY').
Again proceeding as in {1],p.157f gives
DEL(C,N,F,G) < (FCN)Y(N*CTF~% + C*N-'F~1 4 C1).

This proves the proposition for the ’even’ case. In the ’odd’ case the proof runs similar.
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