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Prime geodesie theorem for the theta case 11

Roland Matthes

1 Introduction

Let r 0(2) denote the group of matrices in r = SL(2, Z) with an even left-Iower corner
entry. Then the classical theta series

19 2(z) = L e""i(n+~):lz
nEZ

:a ( ) _ '"'" .,..in:3 z
U3 Z - L..J e ,

nEZ

(0 1) -1 ( 0
are Illodular forms of weight ~ for ro(2), 1 ~ ro(2) 1

(~ ~1) -1 f o(2) (~ ~1 ) respeetively. Put

then V is the multiplier system determined by

1
E>(Tz) = V(T)(cz + d)1E>(Z)

-1 )1 and

for T = (: ~) E f. In [8] we have proven the prime geodesie theorem

with
7rr(x, V) = L TrW(Po).

{Po},
NPo S::Z:

where the surn is over all r-conjugacy classes of primitive hyperbolic elements Po with
TrPo > 4 and NPo = fb < x. Here D is the cliscriminant of the primitive binary
quadratic form, for which the automorphism group is generated by ±Po, fD = tQturlD
and (to, Uo) is the fundamental solution of Pell's equation

t2
- Du2 = 4.

In the present paper we want to prove a better result, namely
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Theorenl 1.1

( 3) ( sn )7rr (:r. ,V) = li X 1 + Oe ~9ß+e

We should remark that this result formally corresponds to Iwaniec's result (')(x35
/ 48 +e)

in the error term for the prime geodesic theorem in the weight 0 case under the Shimura
lift. In what follows we sh8J.l make improvements at three different places of [8l. Yet
only the one which will be made in the 'Kloosterman' term will be responsible for the
result stated in the theorem.

2 Rankin-Selberg Zeta function

We use the notation of [81. Pk,j are the Fourier coefficients of the normalized (with
respect to the U5Ual inner product) eigenfunction of the Laplace Beltrami operator for
the eigenvalue Ak = 1/4+t~, argtk E {O,-1r/2}

3

Uk(Z) = L uh,Az)f:,
j=1

where

(1)

n == Ctjmodl
n;to

+ 0"' {Pkll(O)y~-iti: + Pk,l(O)y~+iti: ,if tk =I- 0

3
1

Ph,1 (O)y~ + P~,l (O)y~ log Y ,if tle = °
with 0::1 = 0,0::2 = i, Q:3 = ~, then V(U) has eigenvalues e(ad, e(0::2) , e(0::3)' the corre­
sponding orthonormal set of eigenvectors i5 given by

v = 0,1,2, ... ,

As in [1} introduce w E COO(R) which has compact support in [N,2N] and 5atisfies

i) llw(~) Ilmp « N-~

ii) J2: w(x)dx = N .

Dur first result is an improvement of lemma 4.4 in (8]

Lemma 2.1 For T > 1, ; > -3/2 and j = 1,2,3

~" w(n + aj)lple,;(n)t2(n + Oj) _ N b+,1e (N)L- L- --'--;"--~-----'---'------'----.;;"';"- + r , t Je
;=1 n>O ch7rt le ch1Ttk

with
L tle'jr(N,h)1 = Oe (NjT3

/
2+'Y+e

).

O<tk$T
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Proot: This follows from our result in [9J

(2)

which is the analogue to a canjecture of Iwaniec, which in the weight zero case was
proven by Lua and Sarnak in [3]. Namely, put

whieh is «: (1 + ~(s)) -1994 lV:R(,,) (part ial integration 1994 times) t hen t he inversion
theorem for Mellin transforms gives

3 1
L.: L w(n + aj)lpk,j,(n)1 2(n + aj) = -.1 O(S)R+,k(S)ds.
j=1 n>O 21rt (2)

We shift the line of integration to 3?(s) = i. Then

where

and the statement of the lemma follows from (2).

3 Some Bessel transforms

We refer to section 4 of [8]. Recall we have chosen

(p,(w) = - exp (-~ + iwchb) ,

1 i n+a'
b = - log x + - aj = 41r J

2 2T C
with 1 :::; N :::; n :::; 2N as test function in the Kuznecov-Bruggeman surn formula.
want to show

Lellllna 3.1

D

We

(3)

Recall that

cf.[4], p.73. So we get
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I
{OO \; nW'1

= Ja cOS(WJq)jtW)W1 .

PrOIll tables [10] we find for the Fourier cosinus transform

{OO Z-3/2 exp (-OX _!!-) cos xydx = Ee-u cos v
Ja x " Vß

and the Fourier sine transform

100 (ß) ~-3 2 . -u •
o x / exp -ox -; SIn xydx = (je Sin v

with

and

and Q, ß > o.
Regarding this as a function in Q we see that by analytic continuation the above

formulas still hold for
. hb -E + iB

0= 1C = 2 .

We put y = 1 and observe that

Since
((li + 1)1/2 _ 0)1 /2«lal-1/2

we obtain (3). 0

The sameestimate then holds for Dj(x,T;C;n), cf [8] equation (29). We therefore
arrive at

Proposition 3.1 Let z > Zo tor a sujJiciently [arge xo, xt < T < vx and C, N > 1
with -j; < 471'"~ and ~ > x- ~. Then we have for small e > 0

~ x
itlc

_!.l. _ 0 "(Te (T (NTx)~ Nx~ (C)! (Vii 1)))
~ -e 'r - e -1 + +-- + - exp ---X 4

Je=l tJe N j C C N v2C

1 3 .

+- L Lw(n + Qj)SAx,T,C,n).
N j=l n>O

Compare this with proposition 5.1 in [8].
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4 Proof of theorem

Now COOles the crucial part of our paper. 'vVe put for c > U

p±(c,y) = L 1,
d±d::yrnodc

and as in [8] ~e define for any even integer c > 0 the surn

Pe(C, y) = L
dmodBc,

d +cI:: ymod8c

and for odd c > 0

Po(c,y) = L
dmod2c,

d +d:: ymod2c

It is understood, that in the above sums d is coprime with c resp.2c and J. denotes
the inverse of d(mod c), resp. d(rnod 2c or d(rnod 8c)).

Notice that p+ is Iwaniec's P in [1]. We start with the forrnula, cf. [8] equation (85),

3

L L Lw(n + aj)S;l)(x,T,C,n)
j;l n>O c>O

3 2

~ L 1~,j(C,N,B,E)1 + L 1~,Jc(C,N,B,E)1 + 0(1),
j;l k=l

where for arbitrary F, G > 0

~,j(C,N,F,G)

(4)

- L
n>O

L w(n: lYj) e-i ,L 10 e (8(n~ lYj) (y + F + iG») p,(c,y),
lo~fr ~ c ~ C 10g

2
:e', - ~<1I~ TC

C:: Omod2

. -
As distinguished from [8] we again split up the above expressions

11;')(C, N, F, G) = 11;,j,",(C, N, F, G) + v;,j; .. (C, N, F, G)

where the star shall indicate that in the surn over y we exclude those summands with
y ± 2 a square, these being just contained in the expression with the two stars.

Dur analysis in [8], section 6, shows that
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TJenllna 4.1 Let. C/, F, G > 0, IV > (8Flop;2 x )/G > 1 and F > 2010tl;~ x/N1 -a for
jome 3mall a > O. 'l'hen for any 0 < e ::; a and 1 ::; j :s; 3, 1 ::; k ::; 2

v:,j,",(C, N, F, G), k 3 JTY:e' ,"' (C, N, F;G) «:e (FCNy:Ci FIT.

The proof of the theorem now folIows from the folIowing

Proposition 4.1 ~Vith the notation~ and a~.s'Umption~ a~ above

~,j, .... (C, N, F, G),

Namely instead of propositon 6.2 in [8J we obtain from the above propositions to­
gether with lemma 4.1

e (T (NTx)~ Nx~ (C)~ (Vii 1)T -+ +--+ - exp ---x 4

N~ C C N V2C

Now choose N = X 15 , C = X16+37/96 to arrive at

By standard calculations as in [8] and together with propostion 3.3 in [8] the theorem
follows on choosing T = x*.

5 Proof of proposition

For the proof of the proposition we shall need the following two lemmas.

Lenlma 5.1 Let y ± 2 be a ~quare, y = z2 =f 2, ~ay. Then

Further for any ~quarefree odd number k

ProoE. First look at Pe' The condition d + J == ymod Bc is equivalent to d2 =f 2d + 1 ==
dz 2 mod 8c. From this follows that d Illust be a square mod Sc, hence (cl d) = 1 and

(2/d) = 1. The latter implies d == 1(mod8) giving e (l;d) = 1, hence the statement

for Pe' For po the proof is sirnilar. For proving p+(.,y) = p±(.,z) we use the product
representation
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~ (1+ CI";4)) = ~ (1 + (y; 2) (y; 2))
~(1+ (Y;2) (Y;2))
~ (1 + (Z2 ;4)) = p±(k,y).

The last equality follows from the observation that the congruence J2 -yd±1 =O(lllOd k)
is equivalent to (y2 =f 4) == x2 (mod k) in x(rnod k). 0

Put
F:(A,B,C)=L L ±,hcp+(c,y+hc),

c~C ly+BI~A

where the upper index at the surn means that the surn is over those y for which y±2+hc
is a square. We have the following

LelTIlna 5.2

ii) FOT 1 ~ h ~ 7 we obtain

PrüoE. If we proceed as in the proof of theorem 3 in [1] we obtain by means of lemma
5.1

LLL
Ir. ~ C,

I E .c,(.r,2l) = 1

(5)

where f. = {n E N :- n odd and pln => p2 1n for all primes p}. Splitting this surn up into
two sums Fto(A, B, G) + Ftoo(A, B, G) restricted by lr < Rand Ir > R respectively,
with same p~rameterR > O,'then the analysis- of Iwaniecin [1] leads to

'""" '""" + '" 2 (m±(r) ±L L P (l,a) L J.L (rs) 1 AhJr•

lE.c,I~C a(modl) Ir. ~ C,lr ~ R r
(r.,21)=1

+0 ((min{T(r) log(2r) r ~ ,A~~6}))

where A~r" denotes the nu~ber of y with Iy + BI .::; A for which y ± 2 + hlrs is a square.
We have for h =j:. 0
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independently of Rand in this case we choose R = C i.e. F:(A, B, C) = F~o(A, B, Cl.
t his proves (ii).

Ir h = 0 thcn thc analysis in loc.cit. gives

F:o(A,B,C) = AA~C + 0 (A~Ct + CR} + A~CR-~)

for same A > O. Now completely analogous calculations as in [lJ lead to

Fo~oo « A~Bft CR-& ~ (BOY.

Put R ::::: AtBft then we obtain

Fo± = AAtC + 0. ((A~B-J1C+ AB-~C})(BCY)

since At <f( AB"'"'"' L The praof af the lemma is thus complete.
Consider now ~,l,·.. (C, N, F, G). The surn over y equals

I> ('f~) L e (~(Z2 + F + iG») p+(8c, z2 'f 2)
± _ i<z2=f2S 1~<:

= Le('f~) L e(~(z2-h(c,z)c+F+iG»)P+(8c,z2'f2),
± _~<z2T2S1~<:

o

where h(c,z) E Z, 0 ~ h(c,z) ~ 7 is such that Z2 - h(c,z)c E (-c/2,c/2]. Next we
proceed as in [1] and replace the surn aver n by an integral via the Poisson summation
formula. Put Mc,z ~ Z2 _. h( c, z)c + F + iG, then

I: w(n)e ('!!..Mc,.) = L [00 w(x)e (':'Me.• - xn) dx
nEZ C nEZ -00 C

= i:oo
w(x)e (~Mc,z) dx +'!toi:oo

w(x)e (x (;,z - n)) dx

i:oo
w(x)e (~Mc,z) dx

+ '!to ((n - ;,Z )21ri) -I i:oo
w(f)(x)e (x (;.z - n)) dx

i:w(x)e (~Mc,z) dx + 0 , (N-/+I)

for any integer f 2:: 2, pravided there is apositive real canstarrt , such that IM;,! - nl 2::
1 > 0 for all n E Z. The latter is assured by our assumption

8F
N > Clog2x.

For then c ~ N G/log2x > 8F, therefore

I;'z ~n12 = ~:.~ (Z2_~(C'z)c +~ -nf ~ (n-D
2
~ :4
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far all n E Z. Further partial integration l-tirnes gives

J+CO (X) (c) I l+1w(x)e -lvlc ,% dx «l -I-I lV- ,
-co c IVlc,z

which is «I N-1e+l for IAIc,.!) > jV~~ c. Especially this is the case for aU z with
h(c,z)c+ PI> N~-c. Therefore for any C,N,F,G > 0 with C > N > log2 x

v:'1' .... (C,N,F,G) =

(6)

I 2 "
Z -

L
NG Cl '1

101l2;r SeS og x,
c:= Omod2

c
L p+(8c, Z2 =F 2)

Iz:l-h(c,::)c+FIS Nl-f

NG C 2-- < H < -log X
log2 x - - 2 '

1: w(x)e (~M,.%) dx + 0, (N~77)
The surn over c is split up into O(1og C) subsums, a typical surn of which is

'lN

L exp C~c) L . p+(8c, Z2 =F 2) jrlH w(cOe(~M,.%)d~
H ~ c ~ 2H Iz'l-h(c,z)c+FI~Nt-c m

c -= 0(2)

'lN }{

= [H L a±(c,~,z)f(c,~)d~+O«Nl777)'
!k H SeS 2H

c := 0(2)

with
a±(c,~,z) = L . .e(~A1c,z)p+(8c,Z2 =f 2),

1z;'l-h(c,z;)c+FIS2H/NI-c

(7)

f(c,O = exp (~c) w(cO.

The O-term in (7) arises, since we replaced Elz'l-h(c,z)c+FIS2c/NI-c by Elz'l-h(c,z)c+FIS2H/NI-f,
applying (6) with a sufficiently large 1. Consider for 0 ~ h < 7, C >"0 and B > A > 0
the sums

Flh(A, B, C) = L L e (~(Z2 + B)) p+(8c, Z2 =f 2).
cSC Iz'l-hc+BISA

We apply lemma ?? to (5) and obtain for h =I- 0

Flh(A, B, C) « (AC!)

while

, 1 jv'B+A
F[o(A,B,c) = ).,B-I e(e( a 2 +B))da.

.,fB-A

+0 ((1 + ~A)(A2 B-~C + +At B-!2C"+ AB-!Ct)(Bc)e) .

Again proceeding as in [1],p.157f gives

~,l, ...._(C, N, F, G) « (FC NY(NtC tF-!2 + C 2N- 1F-~ + C t ).
This proves the proposition for the 'even' case. In t.he 'odd' case the proof runs similar.
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