Prime geodisic theorem for the theta case II

Roland Matthes

Mathematisches Institut der	Max-Planck-Institut für Mathematik
Universität Göttingen	Gottfried-Claren-Straße 26
SFB 170	53225 Bonn
Bunsenstr. 3-5	
37073 Göttingen	Germany

Germany

Prime geodesic theorem for the theta case II

Roland Matthes

1 Introduction

Let $\Gamma_{0}(2)$ denote the group of matrices in $\Gamma=\mathrm{SL}(2, \mathbf{Z})$ with an even left-lower corner entry. Then the classical theta series

$$
\vartheta_{2}(z)=\sum_{n \in \mathbf{Z}} e^{\pi i\left(n+\frac{1}{2}\right)^{2} z} \quad, \quad \vartheta_{3}(z)=\sum_{n \in \mathbf{Z}} e^{\pi i n^{2} z}, \quad \vartheta_{4}(z)=\dot{\vartheta_{3}}(z+1)
$$

are modular forms of weight $\frac{1}{2}$ for $\Gamma_{0}(2),\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)^{-1} \Gamma_{0}(2)\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ and

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)^{-1} \Gamma_{0}(2)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) & \text { respectively. Put } \\
& \Theta(z)=\left(\vartheta_{2}(z), \vartheta_{3}(z), \vartheta_{4}(z)\right)^{t}
\end{aligned}
$$

then \mathcal{V} is the multiplier system determined by

$$
\Theta(T z)=\mathcal{V}(T)(c z+d)^{\frac{1}{2}} \Theta(z)
$$

for $T=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$. In [8] we have proven the prime geodesic theorem

$$
\pi_{\Gamma}(x, \mathcal{V})=\operatorname{li}\left(x^{\frac{3}{4}}\right)+\mathcal{O}_{e}\left(x^{\frac{5}{8}+c}\right)
$$

with

$$
\pi_{\Gamma}(x, \mathcal{V})=\sum_{\substack{\left\{P_{0}\right\}, N P_{0} \leq x}} \operatorname{Tr} \mathcal{W}\left(P_{0}\right)
$$

where the sum is over all Γ-conjugacy classes of primitive hyperbolic elements P_{0} with $\operatorname{Tr} P_{0}>4$ and $\mathrm{N} P_{0}=\epsilon_{D}^{2}<x$. Here D is the discriminant of the primitive binary quadratic form, for which the automorphism group is generated by $\pm P_{0}, \epsilon_{D}=\frac{t_{0}+u_{0} \sqrt{D}}{2}$ and (t_{0}, u_{0}) is the fundamental solution of Pell's equation

$$
t^{2}-D u^{2}=4
$$

In the present paper we want to prove a better result, namely

Theorem 1.1

$$
\pi_{\Gamma}(x, \mathcal{V})=\operatorname{li}\left(x^{\frac{3}{4}}\right)+\mathcal{O}_{\varepsilon}\left(x^{\frac{50}{90}+\varepsilon}\right)
$$

We should remark that this result formally corresponds to Iwaniec's result $\mathcal{O}\left(x^{35 / 48}+\varepsilon\right)$ in the error term for the prime geodesic theorem in the weight 0 case under the Shimura lift. In what follows we shall make improvements at three different places of [8]. Yet only the one which will be made in the 'Kloosterman' term will be responsible for the result stated in the theorem.

2 Rankin-Selberg Zeta function

We use the notation of [8]. $\rho_{k, j}$ are the Fourier coefficients of the normalized (with respect to the usual inner product) eigenfunction of the Laplace Beltrami operator for the eigenvalue $\lambda_{k}=1 / 4+t_{k}^{2}$, $\arg t_{k} \in\{0,-\pi / 2\}$

$$
\vec{u}_{k}(z)=\sum_{j=1}^{3} u_{k, j}(z) \vec{f}_{j}
$$

where

$$
\begin{align*}
u_{k, j}(z) & =\sum_{\substack{n \equiv \alpha_{j} \text { mod } 1 \\
n \neq 0}} \rho_{k, j}(n) W_{\frac{1}{4} \notin g n(n), i t_{k}}(4 \pi|n| y) e(n x) \\
& +\delta_{j 1}\left\{\begin{array}{lll}
\rho_{k, 1}(0) y^{\frac{1}{2}-i t_{k}} & +\bar{\rho}_{k, 1}(0) y^{\frac{1}{2}+i t_{k}} & \text {, if } t_{k} \neq 0 \\
\rho_{k, 1}(0) y^{\frac{1}{2}} & +\tilde{\rho}_{k, 1}(0) y^{\frac{1}{2}} \log y & , \text { if } t_{k}=0
\end{array}\right. \tag{1}
\end{align*} .
$$

with $\alpha_{1}=0, \alpha_{2}=\frac{1}{2}, \alpha_{3}=\frac{1}{8}$, then $\mathcal{V}(U)$ has eigenvalues $e\left(\alpha_{1}\right), e\left(\alpha_{2}\right), e\left(\alpha_{3}\right)$, the corresponding orthonormal set of eigenvectors is given by

$$
\vec{f}_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \quad, \quad \vec{f}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right) \quad, \quad \vec{f}_{3}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

As in [1] introduce $\omega \in C^{\infty}(\mathbf{R})$ which has compact support in [$N, 2 N$] and satisfies
i) $\left\|\omega^{(\nu)}\right\|_{\text {sup }} \ll \mathrm{N}^{-\nu} \quad, \quad \nu=0,1,2, \ldots$,
ii) $\int_{N}^{2 N} \omega(x) d x=\mathrm{N}$.

Our first result is an improvement of lemma 4.4 in [8]
Lemma 2.1 For $T>1, \gamma>-3 / 2$ and $j=1,2,3$

$$
\sum_{j=1}^{3} \sum_{n>0} \frac{\omega\left(n+\alpha_{j}\right)\left|\rho_{k, j}(n)\right|^{2}\left(n+\alpha_{j}\right)}{\operatorname{ch} \pi t_{k}}=N \frac{b_{+, k}}{\operatorname{ch} \pi t_{k}}+r\left(N, t_{k}\right)
$$

with

$$
\sum_{0<t_{k} \leq T} t_{k}^{\gamma}\left|r\left(N, t_{k}\right)\right|=\mathcal{O}_{\varepsilon}\left(N^{\frac{1}{2}} T^{3 / 2+\gamma+\varepsilon}\right)
$$

Proof. This follows from our result in [9]

$$
\begin{equation*}
\sum_{t_{k}<T} \frac{R_{1, k}\left(\frac{1}{2}+i v\right)}{\operatorname{ch} \pi t_{k}}<_{c}(v T)^{3 / 2+c} \tag{2}
\end{equation*}
$$

which is the analogue to a conjecture of Iwaniec, which in the weight zero case was proven by Luo and Sarnak in [3]. Namely, put

$$
\Omega(s)=\int_{0}^{\infty} \omega(t) t^{s-1} d t
$$

which is $\ll(1+\Im(s))^{-1994} N^{\Re(s)}$ (partial integration 1994 times) then the inversion theorem for Mellin transforms gives

$$
\sum_{j=1}^{3} \sum_{n>0} \omega\left(n+\alpha_{j}\right)\left|\rho_{k_{i}, j}(n)\right|^{2}\left(n+\alpha_{j}\right)=\frac{1}{2 \pi i} \int_{(2)} \Omega(s) R_{+, k}(s) d s
$$

We shift the line of integration to $\Re(s)=\frac{1}{2}$. Then

$$
\sum_{j=1}^{3} \sum_{n>0} \omega\left(n+\alpha_{j}\right)\left|\rho_{k, j}(n)\right|^{2}\left(n+\alpha_{j}\right)=\Omega(1) b_{+, k}+\mathcal{O}\left(N^{\frac{1}{2}} \int_{\left(\frac{1}{2}\right)} \frac{\left|R_{+, k}(s)\right|}{|s|^{1994}} d s\right)
$$

and the statement of the lemma follows from (2).

3 Some Bessel transforms

We refer to section 4 of [8]. Recall we have chosen

$$
\phi_{j}(w)=-\exp \left(-\frac{a_{j}}{w}+i w \operatorname{ch} b\right)
$$

where

$$
b=\frac{1}{2} \log x+\frac{i}{2 T} \quad, \quad a_{j}=4 \pi \frac{n+\alpha_{j}}{C}
$$

with $1 \leq \mathrm{N} \leq n \leq 2 \mathrm{~N}$ as test function in the Kuznecov-Bruggeman sum formula. We want to show

Lemma 3.1

$$
\begin{equation*}
\hat{\phi}_{j}\left(\frac{i}{4}\right) \ll \frac{\sqrt{C}}{\sqrt{N}} \exp \left(-\frac{\sqrt{N}}{\sqrt{2 C}} x^{\frac{1}{4}}\right) . \tag{3}
\end{equation*}
$$

Recall that

$$
J_{-\frac{1}{2}}(w)=\sqrt{\frac{2}{\pi}} \frac{\cos w}{\sqrt{w}}
$$

cf.[4], p.73. So we get

$$
\left|\hat{\phi}_{j}\left(\frac{i}{4}\right)\right|=\frac{\pi^{2}}{\sin \left(\frac{\pi}{4}\right) \Gamma\left(\frac{1}{2}\right)} \cdot \lim _{r \rightarrow \frac{1}{4}} \frac{\left(\frac{1}{4}-r\right)}{\frac{\pi}{2}(1-4 r)} \cdot\left|\int_{0}^{\infty} J_{-\frac{1}{2}}(w) \phi_{j}(w) \frac{d w}{w}\right|
$$

$$
=\left|\int_{0}^{\infty} \cos (w) \phi_{j}(w) \frac{d w}{w^{\frac{3}{2}}}\right| .
$$

From tables [10] we find for the Fourier cosinus transform

$$
\int_{0}^{\infty} x^{-3 / 2} \exp \left(-\alpha x-\frac{\beta}{x}\right) \cos x y d x=\sqrt{\frac{\pi}{\beta}} e^{-u} \cos v
$$

and the Fourier sine transform

$$
\int_{0}^{\infty} x^{-3 / 2} \exp \left(-\alpha x-\frac{\beta}{x}\right) \sin x y d x=\sqrt{\frac{\pi}{\beta}} e^{-u} \sin v
$$

with

$$
u=\sqrt{2 \beta}\left(\left(\alpha^{2}+y^{2}\right)^{1 / 2}+\alpha\right)^{1 / 2}
$$

and

$$
v=\sqrt{2 \beta}\left(\left(\alpha^{2}+y^{2}\right)^{1 / 2}-\alpha\right)^{1 / 2}
$$

and $\alpha, \beta>0$.
Regarding this as a function in α we see that by analytic continuation the above formulas still hold for

$$
\alpha=i \operatorname{ch} b=\frac{-E+i B}{2} .
$$

We put $y=1$ and observe that

$$
B=\sqrt{x}+\mathcal{O}\left(\frac{\sqrt{x}}{T^{2}}\right) \quad, \quad E=\frac{\sqrt{x}}{2 T}+\mathcal{O}\left(\frac{\sqrt{x}}{T^{3}}\right)
$$

Since

$$
\left(\left(\alpha^{2}+1\right)^{1 / 2}-\alpha\right)^{1 / 2} \ll|\alpha|^{-1 / 2}
$$

we obtain (3).
The same estimate then holds for $D_{j}(x, T ; C ; n)$, cf [8] equation (29). We therefore arrive at

Proposition 3.1 Let $x>x_{0}$ for a sufficiently large $x_{0}, x^{\frac{1}{4}}<T<\sqrt{x}$ and $C, N>1$ with $\frac{1}{\sqrt{x}}<4 \pi \frac{N}{C}$ and $\frac{C}{N}>x^{-\frac{1}{3}}$. Then we have for small $\varepsilon>0$

$$
\begin{aligned}
\sum_{k=1}^{\infty} \frac{x^{i t_{k}}}{t_{k}} e^{-\frac{i_{k}}{T}}=\mathcal{O}_{e}\left(T^{e}\right. & \left.\left(\frac{T}{N^{\frac{1}{2}}}+\frac{(N T x)^{\frac{1}{2}}}{C}+\frac{N x^{\frac{1}{2}}}{C}+\left(\frac{C}{N}\right)^{\frac{1}{2}} \exp \left(-\frac{\sqrt{N}}{\sqrt{2 C}} x^{\frac{1}{4}}\right)\right)\right) \\
& +\frac{1}{N} \sum_{j=1}^{3} \sum_{n>0} \omega\left(n+\alpha_{j}\right) S_{j}(x, T, C, n) .
\end{aligned}
$$

Compare this with proposition 5.1 in [8].

4 Proof of theorem

Now comes the crucial part of our paper. We put for $c>0$

$$
\rho^{ \pm}(c, y)=\sum_{d \pm d \equiv y m o d c} 1,
$$

and as in [8] we define for any even integer $c>0$ the sum

$$
\rho_{e}(c, y)=\sum_{\substack{d \text { mod } 8 c, d+\bar{d} \equiv y \text { mod } 8 c}}\left(\frac{c}{d}\right) e\left(\frac{1-d}{8}\right)
$$

and for odd $c>0$

$$
\rho_{o}(c, y)=\sum_{\substack{d \bmod 2 c, d+\bar{d} \equiv y \bmod 2 c}}\left(\frac{d}{c}\right) .
$$

It is understood, that in the above sums d is coprime with c resp. $2 c$ and \bar{d} denotes the inverse of $d(\bmod c)$, resp. $d(\bmod 2 c$ or $d(\bmod 8 c))$.

Notice that ρ^{+}is Iwaniec's ρ in [1]. We start with the formula, cf. [8] equation (85),

$$
\begin{align*}
& \sum_{j=1}^{3} \sum_{n>0} \sum_{c>0} \omega\left(n+\alpha_{j}\right) S_{j}^{(1)}(x, T, C, n) \\
& \quad \ll \sum_{j=1}^{3}\left|\mathcal{D}_{x}^{e, j}(C, N, B, E)\right|+\sum_{k=1}^{2}\left|\mathcal{D}_{x}^{\infty, k}(C, N, B, E)\right|+\mathcal{O}(1), \tag{4}
\end{align*}
$$

where for arbitrary $F, G>0$

$$
\begin{aligned}
& \mathcal{D}_{x}^{e, j}(C, N, F, G) \\
& \quad=\sum_{n>0} \sum_{\substack{\frac{N G}{\log ^{\frac{2}{2} x} \leq c \leq C \log ^{2} x} \\
c \equiv 0 \bmod 2}} \frac{\omega\left(n+\alpha_{j}\right)}{c} e^{-\frac{c}{\varepsilon}} \sum_{-\frac{c}{2}<\nu \leq \frac{18}{2} c} e\left(\frac{8\left(n+\alpha_{j}\right)}{8 c}(y+F+i G)\right) \rho_{e}(c, y), \\
& \mathcal{D}_{x}^{0, k}(C, N, F, G) \\
& =\sum_{n>0} \sum_{\substack{N G \\
\log ^{2} x \leq c \leq C \log ^{2} x \\
c \equiv 1 \bmod 2}} \frac{\omega\left(n+\alpha_{k}\right)}{c} e^{-\frac{c}{c}} e\left(-\frac{c}{8}\right) \sum_{-\frac{c}{2}<y \leq \frac{J c}{2}} e\left(\frac{2\left(n+\alpha_{k}\right)}{2 c}(y+F+i G)\right) \rho_{o}(c, y) .
\end{aligned}
$$

As distinguished from [8] we again split up the above expressions

$$
\mathcal{D}_{x}^{e, j}(C, N, F, G)=\mathcal{D}_{x}^{e, j, *}(C, N, F, G)+\mathcal{D}_{x}^{e, j ; \cdots}(C, N, F, G)
$$

where the star shall indicate that in the sum over y we exclude those summands with $y \pm 2$ a square, these being just contained in the expression with the two stars.

Our analysis in $[8]$, section 6 , shows that

Lemma 4.1 Let $C, F, G>0, N>\left(8 F \log ^{2} x\right) / G>1$ and $F>2 C \log ^{2} x / N^{1-a}$ for some small $a>0$. Then for any $0<\varepsilon \leq a$ and $1 \leq j \leq 3,1 \leq k \leq 2$

$$
\mathcal{D}_{x}^{e, j, *}(C, N, F, G), \quad \mathcal{D}_{x}^{o, k, *}(C, N, F ; G) \lll e(F C N)^{e} C^{\frac{3}{4}} F^{\frac{3}{18}} .
$$

The proof of the theorem now follows from the following
Proposition 4.1 With the notations and assumptions as above $\mathcal{D}_{x}^{e, j, j_{r}}(C, N, F, G), \quad \mathcal{D}_{x}^{\infty, k_{1}, \cdots}(C, N, F, G) \lll e(F C N)^{e}\left(\left(N^{\frac{1}{2}} C^{\frac{1}{2}} F^{-\frac{b}{32}}+C^{2} N^{-1} F^{-\frac{3}{2}}+C^{\frac{1}{2}}\right)\right.$.

Namely instead of propositon 6.2 in [8] we obtain from the above propositions together with lemma 4.1

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{x^{i t_{k}}}{t_{k}} e^{-\frac{t_{k}}{T}}<_{\varepsilon} \\
& \quad T^{e}\left(\frac{T}{N^{\frac{1}{2}}}+\frac{(N T x)^{\frac{1}{2}}}{C}+\frac{N x^{\frac{1}{2}}}{C}+\left(\frac{C}{N}\right)^{\frac{1}{2}} \exp \left(-\frac{\sqrt{N}}{\sqrt{2 C}} x^{\frac{1}{4}}\right)\right. \\
& \left.+\frac{C^{\frac{1}{2}}}{N^{\frac{1}{2}} x^{\frac{5}{22}}}+\frac{C^{2}}{N^{2} x^{\frac{3}{4}}}+\frac{C^{\frac{19}{16}} x^{\frac{3}{32}}}{N^{\frac{30}{32}}}\right)
\end{aligned}
$$

Now choose $N=x^{15}, C=x^{15+37 / 96}$ to arrive at

$$
\sum_{k=1}^{\infty} \frac{x^{i t_{k}}}{t_{k}} e^{-\frac{i_{k}}{T}} \ll x^{\frac{11}{\partial 6}+e}
$$

By standard calculations as in [8] and together with propostion 3.3 in [8] the theorem follows on choosing $T=x^{\frac{37}{96}}$.

5 Proof of proposition

For the proof of the proposition we shall need the following two lemmas.
Lemma 5.1 Let $y \pm 2$ be a square, $y=z^{2} \mp 2$, say. Then

$$
\rho_{e}(c, y)=\rho^{+}(8 c, y), \quad \rho_{o}(c, y)=\rho^{+}(2 c, y)
$$

Further for any squarefree odd number k

$$
\rho^{+}(k, y)=\rho^{ \pm}(k, z) .
$$

Proof. First look at ρ_{e}. The condition $d+\bar{d} \equiv y \bmod 8 c$ is equivalent to $d^{2} \mp 2 d+1 \equiv$ $d z^{2} \bmod 8 c$. From this follows that d must be a square $\bmod 8 c$, hence $(c / d)=1$ and $(2 / d)=1$. The latter implies $d \equiv 1(\bmod 8)$ giving $e\left(\frac{1-d}{8}\right)=1$, hence the statement for ρ_{e}. For ρ_{o} the proof is similar. For proving $\rho^{+}(., y)=\rho^{ \pm}(., z)$ we use the product representation

$$
\begin{aligned}
\rho^{+}(k, y) & =\prod_{p \mid k}\left(1+\left(\frac{y^{2}-4}{p}\right)\right)=\prod_{p \mid k}\left(1+\left(\frac{y-2}{p}\right)\left(\frac{y+2}{p}\right)\right) \\
& =\prod_{p \mid k}\left(1+\left(\frac{y-2}{p}\right)\left(\frac{y+2}{p}\right)\right) \\
& =\prod_{p \mid k}\left(1+\left(\frac{z^{2} \mp 4}{p}\right)\right)=\rho^{ \pm}(k, y) .
\end{aligned}
$$

The last equality follows from the observation that the congruence $d^{2}-y d \pm 1 \equiv 0(\bmod k)$ is equivalent to $\left(y^{2} \mp 4\right) \equiv x^{2}(\bmod k)$ in $x(\bmod k)$.

Put

$$
F_{h}^{ \pm}(A, B, C)=\sum_{c \leq C} \sum_{|y+B| \leq A}^{ \pm, h c} \rho^{+}(c, y+h c)
$$

where the upper index at the sum means that the sum is over those y for which $y \pm 2+h c$ is a square. We have the following

Lemma $5.2 \quad$ i) $F_{0}^{ \pm}=\lambda A_{0}^{ \pm} C+\mathcal{O}\left(\left(A^{\frac{1}{2}} B^{-\frac{6}{32}} C+A B^{-\frac{1}{2}} C^{\frac{1}{2}}\right)(B C)^{c}\right)$.
ii) For $1 \leq h \leq 7$ we obtain

$$
F_{h}^{ \pm}(A, B, C)=\mathcal{O}\left(A C^{\frac{1}{2}}\right)
$$

Proof. If we proceed as in the proof of theorem 3 in [1] we obtain by means of lemma 5.1

$$
\begin{equation*}
F_{h}^{ \pm}(A, B, C)=\sum_{\substack{l r s \leq C \\ l \in \mathcal{L}_{,}(\operatorname{sr}, 2 l)=1}} \sum^{2}(s r) \sum_{|\nu+B| \leq A, y \pm 2+h l r s=z^{2}} \rho^{+}(l, y)\left(\frac{z^{2} \mp 4}{r}\right) \tag{5}
\end{equation*}
$$

where $\mathcal{L}=\left\{n \in \mathbf{N}: n\right.$ odd and $p\left|n=>p^{2}\right| n$ for all primes $\left.p\right\}$. Splitting this sum up into two sums $F_{h, 0}^{ \pm}(A, B, C)+F_{h, \infty}^{ \pm}(A, B, C)$ restricted by $l r \leq R$ and $l r>R$ respectively, with some parameter $R>0$, then the analysis of Iwaniec in [1] leads to

$$
\begin{aligned}
F_{h, 0}^{ \pm}(A, B, C)= & \sum_{l \in \mathcal{C}, l \leq C} \sum_{\alpha(\bmod l)} \rho^{+}(l, \alpha) \sum_{\substack{l r s \leq C, l r \leq R \\
(r s, 2 l)=1}} \mu^{2}(r s)\left(\frac{m^{ \pm}(r)}{r l} A_{h l r s}^{ \pm}\right. \\
& +\mathcal{O}\left(\left(\min \left\{\tau(r) \log (2 r) r^{\frac{1}{2}}, A_{h i r s}^{ \pm}\right\}\right)\right)
\end{aligned}
$$

where $A_{\text {hlr }}^{ \pm}$denotes the number of y with $|y+B| \leq A$ for which $y \pm 2+h l r s$ is a square. We have for $h \neq 0$

$$
A_{h l r s}^{ \pm} \ll A\left((l r s+B)^{-\frac{1}{2}}\right)
$$

giving

$$
F_{h, 0}^{ \pm}(A, B, C)=\mathcal{O}\left(A C^{\frac{1}{2}}\right)
$$

independently of R and in this case we choose $R=C$ i.e. $F_{h}^{ \pm}(A, B, C)=F_{h, 0}^{ \pm}(A, B, C)$. this proves (ii).

If $h=0$ then the analysis in loc.cit. gives

$$
F_{h, 0}^{ \pm}(A, B, C)=\lambda A_{0}^{ \pm} C+\mathcal{O}\left(A_{0}^{ \pm} C^{\frac{1}{2}}+C R^{\frac{1}{2}}+A_{0}^{ \pm} C R^{-\frac{1}{2}}\right)
$$

for some $\lambda>0$. Now completely analogous calculations as in [1] lead to

$$
F_{0, \infty}^{ \pm} \ll A_{0}^{ \pm} B^{\frac{3}{16}} C R^{-\frac{1}{2}}(B C)^{e}
$$

Put $R=A_{0}^{ \pm} B^{\frac{3}{16}}$ then we obtain

$$
F_{0}^{ \pm}=\lambda A_{0}^{ \pm} C+\mathcal{O}\left(\left(A^{\frac{1}{2}} B^{-\frac{5}{32}} C+A B^{-\frac{1}{2}} C^{\frac{1}{2}}\right)(B C)^{e}\right)
$$

since $A_{0}^{ \pm} \ll A B^{-\frac{1}{2}}$. The proof of the lemma is thus complete.
Consider now $\mathcal{D}_{x}^{e, 1, \cdots}(C, N, F, G)$. The sum over y equals

$$
\begin{aligned}
& \sum_{ \pm} e\left(\mp \frac{2}{c}\right) \sum_{-\frac{c}{2}<z^{2} \mp 2 \leq \frac{1 B c}{2}} e\left(\frac{n}{c}\left(z^{2}+F+i G\right)\right) \rho^{+}\left(8 c, z^{2} \mp 2\right) \\
& \quad=\sum_{ \pm} e\left(\mp \frac{2}{c}\right) \sum_{-\frac{c}{2}<z^{2} \mp 2 \leq \frac{15 c}{2}} e\left(\frac{n}{c}\left(z^{2}-h(c, z) c+F+i G\right)\right) \rho^{+}\left(8 c, z^{2} \mp 2\right)
\end{aligned}
$$

where $h(c, z) \in \mathbf{Z}, 0 \leq h(c, z) \leq 7$ is such that $z^{2}-h(c, z) c \in(-c / 2, c / 2]$. Next we proceed as in [1] and replace the sum over n by an integral via the Poisson summation formula. Put $M_{c, z}=z^{2}-h(c, z) c+F+i G$, then

$$
\begin{aligned}
& \sum_{n \in \mathrm{Z}} \omega(n) e\left(\frac{n}{c} M_{c, z}\right)=\sum_{n \in \mathrm{Z}} \int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c, z}-x n\right) d x \\
&= \int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c, z}\right) d x+\sum_{n \neq 0} \int_{-\infty}^{+\infty} \omega(x) e\left(x\left(\frac{M_{c, z}}{c}-n\right)\right) d x \\
&= \int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c, z}\right) d x \\
& \quad+\sum_{n \neq 0}\left(\left(n-\frac{M_{c, z}}{c}\right) 2 \pi i\right)^{-f} \int_{-\infty}^{+\infty} \omega^{(f)}(x) e\left(x\left(\frac{M_{c, z}}{c}-n\right)\right) d x \\
&= \int_{-\infty}^{\infty} \omega(x) e\left(\frac{x}{c} M_{c, z}\right) d x+\mathcal{O}_{f}\left(N^{-f+1}\right)
\end{aligned}
$$

for any integer $f \geq 2$, provided there is a positive real constant γ such that $\left|\frac{M_{c, s}}{c}-n\right| \geq$ $\gamma>0$ for all $n \in \mathbf{Z}$. The latter is assured by our assumption

$$
N>\frac{8 F}{G} \log ^{2} x
$$

For then $c \geq N G / \log ^{2} x>8 F$, therefore

$$
\left|\frac{M_{c, z}}{c}-n\right|^{2}=\frac{G^{2}}{c^{2}}+\left(\frac{z^{2}-h(c, z) c}{c}+\frac{F}{c}-n\right)^{2} \geq\left(n-\frac{5}{8}\right)^{2} \geq \frac{9}{64}
$$

for all $n \in \mathbf{Z}$. Further partial integration l-times gives

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c_{1} z}\right) d x<_{i}\left(\frac{c}{\left|M_{c, z}\right|}\right)^{l} N^{-l+1} \tag{6}
\end{equation*}
$$

which is $<_{1} N^{-l e+1}$ for $\left|M_{c, z}\right|>\frac{c}{N^{1-c}}$. Especially this is the case for all z with $\mid z^{2}-$ $h(c, z) c+F \left\lvert\,>\frac{c}{N^{i-\varepsilon}}\right.$. Therefore for any $C, N, F, G>0$ with $C>N>\log ^{2} x$

$$
\begin{aligned}
& \mathcal{D}_{x}^{e, 1, \cdots}(C, N, F, G)= \\
& \quad \sum_{ \pm} e\left(\mp \frac{2}{c}\right) \sum_{\substack{N \sigma \\
10 \varepsilon^{2} x \\
c \equiv 0 \leq \operatorname{cod} 2}} \frac{\exp \left(-\frac{c}{C}\right)}{c} \sum_{\left|z^{2}-h(c, z) c+F\right| \leq \frac{1}{N^{2}-\epsilon}} \rho^{+}\left(8 c, z^{2} \mp 2\right) \\
& \cdot \int_{-\infty}^{\infty} \omega(x) e\left(\frac{x}{c} M_{c, z}\right) d x+\mathcal{O}_{z}\left(\frac{C}{N^{1777}}\right) .
\end{aligned}
$$

The sum over c is split up into $\mathcal{O}(\log C)$ subsums, a typical sum of which is

$$
\begin{align*}
& \sum_{\substack{H \leq c \leq 2 H \\
c=0(2)}} \exp \left(\frac{-c}{C}\right) \sum_{\left|z^{2}-h(c, z) c+F\right| \leq \frac{c}{N^{1-c}}} \rho^{+}\left(8 c, z^{2} \mp 2\right) \int_{\frac{N}{2 H}}^{\frac{2 N}{H}} \omega(c \xi) e\left(\xi M_{c, z}\right) d \xi \\
&=\int_{\frac{N}{2 H}}^{\frac{2 N}{H}} \sum_{\substack{H \leq c \leq 2 H \\
c \equiv 0(2)}} a^{ \pm}(c, \xi, z) f(c, \xi) d \xi+\mathcal{O}_{c}\left(\frac{H}{N^{1777}}\right), \quad \frac{N G}{\log ^{2} x} \leq H \leq \frac{C}{2} \log ^{2} x, \tag{7}
\end{align*}
$$

with

$$
\begin{gathered}
a^{ \pm}(c, \xi, z)=\sum_{\left|z^{2}-h(c, z) c+F\right| \leq 2 H / N^{1-\varepsilon}} e\left(\xi M_{c, z}\right) \rho^{+}\left(8 c, z^{2} \mp 2\right) \\
f(c, \xi)=\exp \left(\frac{-c}{C}\right) \omega(c \xi)
\end{gathered}
$$

The \mathcal{O}-term in (7) arises, since we replaced $\sum_{\left|z^{2}-h(c, z) c+F\right| \leq 2 c / N^{1-c}}$ by $\sum_{\left|z^{2}-h(c, z) c+F\right| \leq 2 H / N^{1-\ell}}$, applying (6) with a sufficiently large l. Consider for $0 \leq h<7, C>0$ and $B>A>0$ the sums

$$
F_{\xi, h}^{ \pm}(A, B, C)=\sum_{c \leq C\left|z^{2}-h c+B\right| \leq A} \sum e\left(\xi\left(z^{2}+B\right)\right) \rho^{+}\left(8 c, z^{2} \mp 2\right)
$$

We apply lemma ?? to (5) and obtain for $h \neq 0$

$$
F_{\xi, h}^{ \pm}(A, B, C) \ll\left(A C^{\frac{1}{2}}\right)
$$

while

$$
\begin{aligned}
F_{\xi, 0}^{ \pm}(A, B, C)= & \lambda B^{-\frac{1}{2}} \int_{\sqrt{B-A}}^{\sqrt{B+A}} e\left(\xi\left(\alpha^{2}+B\right)\right) d \alpha \\
& +\mathcal{O}\left((1+\xi A)\left(A^{2} B^{-\frac{3}{2}} C++A^{\frac{1}{2}} B^{-\frac{5}{32}} C+A B^{-\frac{1}{2}} C^{\frac{1}{2}}\right)(B C)^{\varepsilon}\right)
\end{aligned}
$$

Again proceeding as in $[1], \mathrm{p} .157 \mathrm{f}$ gives

$$
\mathcal{D}_{x}^{e, 1, \cdots *}(C, N, F, G) \ll(F C N)^{e}\left(N^{\frac{1}{2}} C^{\frac{1}{2}} F^{-\frac{6}{32}}+C^{2} N^{-1} F^{-\frac{3}{2}}+C^{\frac{1}{2}}\right)
$$

This proves the proposition for the 'even' case. In the 'odd' case the proof runs similar.

References

[1] H.Iwaniec: Prime geodesic theorem; J. Reine Angew. Math. 349 (1984), 1361.59
[2] N.V.Kuznecov: Petersson hypothesis for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloosterman sums; Math. UdSSR Sbornik, 39, no. 3 (1981), 299-342
[3] W.Luo, P.Sarnak: Quantum ergodicity of eigenfunctions on $\operatorname{PSL}(2, \mathbf{Z}) \backslash \mathbf{H}^{2}$; preprint
[4] W.Magnus, F.Oberhettinger, R.P.Soni: Formulas and theorems for the special functions of mathematical physics; 3. ed., Springer 1966
[5] R.Matthes: Rankin-Selberg method for real analytic cusp forms of arbitrary real weight; Math. Zeitschrift 211 (1992), 155-172
[6] R.Matthes: Fourier coefficients of real analytic cusp forms of arbitrary real weight; Acta arith., 65.1 (1993), 1-15
[7] R.Matthes: Über das quadratische Spektralmittel von Fourierkoeffizienten reell-analytischer automorpher Formen halbzahligen Gewichts; Math. Z., 214 (1993), 225-244
[8] R.Matthes: Prime geodesic theorem for the theta case; J. Reine Angew. Math. 446 (1994), 165-217
[9] R.Matthes: A mean value estimate for Rankin-Selberg zeta functions; preprint
[10] F.Oberhettinger: Tables of Fourier transforms and Fourier transforms of Distributions; Springer 1990

