Prime geodisic theorem for the theta case II

. -- .

Roland Matthes

Mathematisches Institut der Universität Göttingen . SFB 170 Bunsenstr. 3-5 37073 Göttingen

Germany

F ·

ł

)

ı

•

•

Ì

Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 53225 Bonn

Germany

Prime geodesic theorem for the theta case II

Roland Matthes

1 Introduction

Let $\Gamma_0(2)$ denote the group of matrices in $\Gamma = SL(2, \mathbb{Z})$ with an even left-lower corner entry. Then the classical theta series

$$\vartheta_2(z) = \sum_{n \in \mathbb{Z}} e^{\pi i \left(n + \frac{1}{2}\right)^2 z} \quad , \quad \vartheta_3(z) = \sum_{n \in \mathbb{Z}} e^{\pi i n^2 z}, \quad \vartheta_4(z) = \vartheta_3(z+1)$$

are modular forms of weight $\frac{1}{2}$ for $\Gamma_0(2)$, $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}^{-1} \Gamma_0(2) \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-1} \Gamma_0(2) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ respectively. Put $\Theta(z) = (\vartheta_2(z), \vartheta_3(z), \vartheta_4(z))^t$

then \mathcal{V} is the multiplier system determined by

$$\Theta(Tz) = \mathcal{V}(T)(cz+d)^{\frac{1}{2}}\Theta(z)$$

for $T = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. In [8] we have proven the prime geodesic theorem

$$\pi_{\Gamma}(x,\mathcal{V}) = \mathrm{li}\left(x^{rac{3}{4}}
ight) + \mathcal{O}_{e}\left(x^{rac{5}{8}+e}
ight)$$

with

$$\pi_{\Gamma}(x, \mathcal{V}) = \sum_{\substack{\{P_0\},\\NP_0 \leq x}} \operatorname{Tr} \mathcal{W}(P_0).$$

where the sum is over all Γ -conjugacy classes of primitive hyperbolic elements P_0 with $\operatorname{Tr} P_0 > 4$ and $\operatorname{N} P_0 = \epsilon_D^2 < x$. Here D is the discriminant of the primitive binary quadratic form, for which the automorphism group is generated by $\pm P_0$, $\epsilon_D = \frac{t_0 + u_0 \sqrt{D}}{2}$ and (t_0, u_0) is the fundamental solution of Pell's equation

$$t^2 - Du^2 = 4$$
 .

In the present paper we want to prove a better result, namely

Theorem 1.1

$$\pi_{\Gamma}(x,\mathcal{V}) = \mathrm{li}\left(x^{rac{3}{4}}
ight) + \mathcal{O}_{\epsilon}\left(x^{rac{59}{96}+\epsilon}
ight)$$

We should remark that this result formally corresponds to Iwaniec's result $\mathcal{O}(x^{35/48} + \varepsilon)$ in the error term for the prime geodesic theorem in the weight 0 case under the Shimura lift. In what follows we shall make improvements at three different places of [8]. Yet only the one which will be made in the 'Kloosterman' term will be responsible for the result stated in the theorem.

2 Rankin–Selberg Zeta function

We use the notation of [8]. $\rho_{k,j}$ are the Fourier coefficients of the normalized (with respect to the usual inner product) eigenfunction of the Laplace Beltrami operator for the eigenvalue $\lambda_k = 1/4 + t_k^2$, $\arg t_k \in \{0, -\pi/2\}$

$$\vec{u}_k(z) = \sum_{j=1}^3 u_{k,j}(z) \vec{f}_j ,$$

where

$$u_{k,j}(z) = \sum_{\substack{n \equiv \alpha_j \mod 1 \\ n \neq 0}} \rho_{k,j}(n) W_{\frac{1}{4} \circ gn(n), it_k}(4\pi |n|y) e(nx) \\ + \delta_{j1} \begin{cases} \rho_{k,1}(0) y^{\frac{1}{2} - it_k} + \tilde{\rho}_{k,1}(0) y^{\frac{1}{2} + it_k} & \text{, if } t_k \neq 0 \\ \rho_{k,1}(0) y^{\frac{1}{2}} & + \tilde{\rho}_{k,1}(0) y^{\frac{1}{2}} \log y & \text{, if } t_k = 0 \end{cases}$$
(1)

with $\alpha_1 = 0$, $\alpha_2 = \frac{1}{2}$, $\alpha_3 = \frac{1}{8}$, then $\mathcal{V}(U)$ has eigenvalues $e(\alpha_1)$, $e(\alpha_2)$, $e(\alpha_3)$, the corresponding orthonormal set of eigenvectors is given by

$$\vec{f_1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$
, $\vec{f_2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\-1 \end{pmatrix}$, $\vec{f_3} = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$.

As in [1] introduce $\omega \in C^{\infty}(\mathbf{R})$ which has compact support in [N, 2N] and satisfies i) $||\omega^{(\nu)}||_{\sup} \ll N^{-\nu}$, $\nu = 0, 1, 2, ...,$

ii) $\int_{N}^{2N} \omega(x) dx = N$.

Our first result is an improvement of lemma 4.4 in [8]

Lemma 2.1 For T > 1, $\gamma > -3/2$ and j = 1, 2, 3

$$\sum_{j=1}^{3}\sum_{n>0}\frac{\omega(n+\alpha_j)|\rho_{k,j}(n)|^2(n+\alpha_j)}{\mathrm{ch}\pi t_k}=N\frac{b_{+,k}}{\mathrm{ch}\pi t_k}+r(N,t_k)$$

with

$$\sum_{0 < t_k \leq T} t_k^{\gamma} |r(N, t_k)| = \mathcal{O}_{\varepsilon} \left(N^{\frac{1}{2}} T^{3/2 + \gamma + \varepsilon} \right).$$

Proof. This follows from our result in [9]

$$\sum_{t_k < T} \frac{R_{+,k}(\frac{1}{2} + iv)}{\operatorname{ch} \pi t_k} \ll_{\epsilon} (vT)^{3/2 + \epsilon}$$
(2)

which is the analogue to a conjecture of Iwaniec, which in the weight zero case was proven by Luo and Sarnak in [3]. Namely, put

$$\Omega(s) = \int_0^\infty \omega(t) t^{s-1} dt \,,$$

which is $\ll (1 + \Im(s))^{-1994} N^{\Re(s)}$ (partial integration 1994 times) then the inversion theorem for Mellin transforms gives

$$\sum_{j=1}^{3} \sum_{n>0} \omega(n+\alpha_j) |\rho_{k,j}(n)|^2 (n+\alpha_j) = \frac{1}{2\pi i} \int_{(2)} \Omega(s) R_{+,k}(s) ds \, .$$

We shift the line of integration to $\Re(s) = \frac{1}{2}$. Then

$$\sum_{j=1}^{3} \sum_{n>0} \omega(n+\alpha_j) |\rho_{k,j}(n)|^2 (n+\alpha_j) = \Omega(1) b_{+,k} + \mathcal{O}\left(N^{\frac{1}{2}} \int_{(\frac{1}{2})} \frac{|R_{+,k}(s)|}{|s|^{1994}} ds\right)$$

and the statement of the lemma follows from (2).

3 Some Bessel transforms

We refer to section 4 of [8]. Recall we have chosen

$$\phi_j(w) = -\exp\left(-rac{a_j}{w} + iw \mathrm{ch}b
ight) \,,$$

where

$$b = rac{1}{2}\log x + rac{i}{2T}$$
 , $a_j = 4\pi rac{n+lpha_j}{C}$

with $1 \le N \le n \le 2N$ as test function in the Kuznecov-Bruggeman sum formula. We want to show

Lemma 3.1

$$\hat{\phi}_j\left(\frac{i}{4}\right) \ll \frac{\sqrt{C}}{\sqrt{N}} \exp\left(-\frac{\sqrt{N}}{\sqrt{2C}}x^{\frac{1}{4}}\right). \tag{3}$$

Recall that

$$J_{-\frac{1}{2}}(w) = \sqrt{\frac{2}{\pi}} \frac{\cos w}{\sqrt{w}}$$

cf.[4], p.73. So we get

$$\left|\hat{\phi}_{j}\left(\frac{i}{4}\right)\right| = \frac{\pi^{2}}{\sin(\frac{\pi}{4})\Gamma(\frac{1}{2})} \cdot \lim_{r \to \frac{1}{4}} \frac{(\frac{1}{4} - r)}{\frac{\pi}{2}(1 - 4r)} \cdot \left|\int_{0}^{\infty} J_{-\frac{1}{2}}(w)\phi_{j}(w)\frac{dw}{w}\right|$$

$$=\left|\int_0^\infty\cos(w)\,\phi_j(w)\frac{dw}{w^{\frac{3}{2}}}\right|$$

From tables [10] we find for the Fourier cosinus transform

$$\int_0^\infty x^{-3/2} \exp\left(-\alpha x - \frac{\beta}{x}\right) \cos xy dx = \sqrt{\frac{\pi}{\beta}} e^{-u} \cos v$$

and the Fourier sine transform

$$\int_0^\infty x^{-3/2} \exp\left(-\alpha x - \frac{\beta}{x}\right) \sin xy dx = \sqrt{\frac{\pi}{\beta}} e^{-u} \sin v$$

with

$$u = \sqrt{2\beta} \left((\alpha^2 + y^2)^{1/2} + \alpha \right)^{1/2}$$

and

$$v = \sqrt{2\beta} \left((\alpha^2 + y^2)^{1/2} - \alpha \right)^{1/2}$$

and $\alpha, \beta > 0$.

Regarding this as a function in α we see that by analytic continuation the above formulas still hold for

$$lpha=i{
m ch}b=rac{-E+iB}{2}.$$

We put y = 1 and observe that

$$B = \sqrt{x} + \mathcal{O}\left(rac{\sqrt{x}}{T^2}
ight) \quad, \quad E = rac{\sqrt{x}}{2T} + \mathcal{O}\left(rac{\sqrt{x}}{T^3}
ight) \,.$$

Since

$$\left((\alpha^2+1)^{1/2}-\alpha\right)^{1/2}\ll |\alpha|^{-1/2}$$

we obtain (3).

The same estimate then holds for $D_j(x,T;C;n)$, cf [8] equation (29). We therefore arrive at

Proposition 3.1 Let $x > x_0$ for a sufficiently large x_0 , $x^{\frac{1}{4}} < T < \sqrt{x}$ and C, N > 1 with $\frac{1}{\sqrt{x}} < 4\pi \frac{N}{C}$ and $\frac{C}{N} > x^{-\frac{1}{3}}$. Then we have for small $\varepsilon > 0$

$$\sum_{k=1}^{\infty} \frac{x^{it_k}}{t_k} e^{-\frac{t_k}{T}} = \mathcal{O}_{\epsilon} \left(T^{\epsilon} \left(\frac{T}{N^{\frac{1}{2}}} + \frac{(NTx)^{\frac{1}{2}}}{C} + \frac{Nx^{\frac{1}{2}}}{C} + \left(\frac{C}{N} \right)^{\frac{1}{2}} \exp\left(-\frac{\sqrt{N}}{\sqrt{2C}} x^{\frac{1}{4}} \right) \right) \right) + \frac{1}{N} \sum_{j=1}^{3} \sum_{n>0} \omega(n+\alpha_j) S_j(x,T,C,n).$$

Compare this with proposition 5.1 in [8].

4 Proof of theorem

Now comes the crucial part of our paper. We put for c > 0

$$\rho^{\pm}(c,y) = \sum_{d \pm \bar{d} \equiv y \bmod c} 1,$$

and as in [8] we define for any even integer c > 0 the sum

$$\rho_e(c,y) = \sum_{\substack{d \text{ mod} \& c, \\ d+\bar{d} \equiv y \text{ mod} \& c}} \left(\frac{c}{d}\right) e\left(\frac{1-d}{8}\right).$$

and for odd c > 0

$$ho_o(c,y) = \sum_{\substack{d ext{ mod} 2c, \ d+\overline{d} \equiv y ext{ mod} 2c}} \left(rac{d}{c}
ight) \,.$$

It is understood, that in the above sums d is coprime with c resp.2c and \overline{d} denotes the inverse of $d(\mod c)$, resp. $d(\mod 2c \text{ or } d(\mod 8c))$.

Notice that ρ^+ is Iwaniec's ρ in [1]. We start with the formula, cf. [8] equation (85),

$$\sum_{j=1}^{3} \sum_{n>0} \sum_{c>0} \omega(n+\alpha_j) S_j^{(1)}(x,T,C,n) \\ \ll \sum_{j=1}^{3} |\mathcal{D}_x^{\epsilon,j}(C,N,B,E)| + \sum_{k=1}^{2} |\mathcal{D}_x^{o,k}(C,N,B,E)| + \mathcal{O}(1),$$
(4)

where for arbitrary F, G > 0

$$\mathcal{D}_{x}^{\epsilon,j}(C,N,F,G) = \sum_{\substack{n>0 \\ \log^{2}x \\ c \equiv 0 \mod 2}} \sum_{\substack{c \leq C \log^{2}x, \\ c \equiv 0 \mod 2}} \frac{\omega(n+\alpha_{j})}{c} e^{-\frac{c}{C}} \sum_{\substack{-\frac{c}{2} < y \leq \frac{15}{2}c}} e\left(\frac{8(n+\alpha_{j})}{8c}(y+F+iG)\right) \rho_{\epsilon}(c,y),$$

$$\mathcal{D}_{x}^{o,k}(C,N,F,G) = \sum_{\substack{n>0\\ \log^{2}x \leq c \leq C \log^{2}x,\\ c \equiv 1 \mod 2}} \sum_{\substack{\omega(n+\alpha_{k})\\ c \in 1 \mod 2}} \frac{\omega(n+\alpha_{k})}{c} e^{-\frac{c}{C}} e\left(-\frac{c}{8}\right) \sum_{\substack{-\frac{c}{2} < y \leq \frac{3c}{2}}} e\left(\frac{2(n+\alpha_{k})}{2c}(y+F+iG)\right) \rho_{o}(c,y)$$

As distinguished from [8] we again split up the above expressions

$$\mathcal{D}_{\boldsymbol{x}}^{\boldsymbol{\epsilon},j}(C,N,F,G) = \mathcal{D}_{\boldsymbol{x}}^{\boldsymbol{\epsilon},j,\star}(C,N,F,G) + \mathcal{D}_{\boldsymbol{x}}^{\boldsymbol{\epsilon},j;\star\star}(C,N,F,G)$$

where the star shall indicate that in the sum over y we exclude those summands with $y \pm 2$ a square, these being just contained in the expression with the two stars.

Our analysis in [8], section 6, shows that

Lemma 4.1 Let C, F, G > 0, $N > (8F \log^2 x)/G > 1$ and $F > 2C \log^2 x/N^{1-a}$ for some small a > 0. Then for any $0 < \varepsilon \leq a$ and $1 \leq j \leq 3$, $1 \leq k \leq 2$

$$\mathcal{D}_x^{\mathfrak{e},j,\star}(C,N,F,G), \quad \mathcal{D}_x^{\mathfrak{o},k,\star}(C,N,F,G) \ll_{\epsilon} (FCN)^{\epsilon} C^{\frac{3}{4}} F^{\frac{3}{16}}.$$

The proof of the theorem now follows from the following

Proposition 4.1 With the notations and assumptions as above

 $\mathcal{D}_{x}^{e,j,**}(C,N,F,G), \quad \mathcal{D}_{x}^{o,k,**}(C,N,F,G) \ll_{e} (FCN)^{e} ((N^{\frac{1}{2}}C^{\frac{1}{2}}F^{-\frac{5}{32}} + C^{2}N^{-1}F^{-\frac{3}{2}} + C^{\frac{1}{2}}).$

Namely instead of proposition 6.2 in [8] we obtain from the above propositions together with lemma 4.1

$$\begin{split} \sum_{k=1}^{\infty} \frac{x^{it_k}}{t_k} e^{-\frac{t_k}{T}} \ll_{\varepsilon} \\ & T^{\varepsilon} \left(\frac{T}{N^{\frac{1}{2}}} + \frac{(NTx)^{\frac{1}{2}}}{C} + \frac{Nx^{\frac{1}{2}}}{C} + \left(\frac{C}{N}\right)^{\frac{1}{2}} \exp\left(-\frac{\sqrt{N}}{\sqrt{2C}}x^{\frac{1}{4}}\right) \\ & + \frac{C^{\frac{1}{2}}}{N^{\frac{1}{2}}x^{\frac{5}{32}}} + \frac{C^2}{N^2x^{\frac{3}{4}}} + \frac{C^{\frac{19}{16}}x^{\frac{3}{32}}}{N^{\frac{39}{32}}} \right). \end{split}$$

Now choose $N = x^{15}$, $C = x^{15+37/96}$ to arrive at

$$-\sum_{k=1}^{\infty}rac{x^{it_k}}{t_k}e^{-rac{t_k}{T}}\ll x^{rac{11}{96}+\epsilon}.$$

By standard calculations as in [8] and together with propostion 3.3 in [8] the theorem follows on choosing $T = x^{\frac{37}{96}}$.

5 **Proof of proposition**

For the proof of the proposition we shall need the following two lemmas.

Lemma 5.1 Let $y \pm 2$ be a square, $y = z^2 \mp 2$, say. Then

$$\rho_{e}(c,y) = \rho^{+}(8c,y), \ \ \rho_{o}(c,y) = \rho^{+}(2c,y).$$

Further for any squarefree odd number k

$$\rho^+(k,y) = \rho^{\pm}(k,z).$$

Proof. First look at ρ_e . The condition $d + \bar{d} \equiv y \mod 8c$ is equivalent to $d^2 \mp 2d + 1 \equiv dz^2 \mod 8c$. From this follows that d must be a square $\mod 8c$, hence (c/d) = 1 and (2/d) = 1. The latter implies $d \equiv 1 \pmod{8}$ giving $e\left(\frac{1-d}{8}\right) = 1$, hence the statement for ρ_e . For ρ_o the proof is similar. For proving $\rho^+(., y) = \rho^{\pm}(., z)$ we use the product representation

$$\begin{split} \rho^+(k,y) &= \prod_{p|k} \left(1 + \left(\frac{y^2 - 4}{p}\right) \right) = \prod_{p|k} \left(1 + \left(\frac{y - 2}{p}\right) \left(\frac{y + 2}{p}\right) \right) \\ &= \prod_{p|k} \left(1 + \left(\frac{y - 2}{p}\right) \left(\frac{y + 2}{p}\right) \right) \\ &= \prod_{p|k} \left(1 + \left(\frac{z^2 \mp 4}{p}\right) \right) = \rho^{\pm}(k,y). \end{split}$$

The last equality follows from the observation that the congruence $d^2 - yd \pm 1 \equiv 0 \pmod{k}$ is equivalent to $(y^2 \mp 4) \equiv x^2 \pmod{k}$ in $x \pmod{k}$.

Put

$$F_h^{\pm}(A,B,C) = \sum_{c \leq C} \sum_{|y+B| \leq A} {}^{\pm,hc} \rho^+(c,y+hc),$$

where the upper index at the sum means that the sum is over those y for which $y \pm 2 + hc$ is a square. We have the following

Lemma 5.2 *i*) $F_0^{\pm} = \lambda A_0^{\pm} C + \mathcal{O}\left((A^{\frac{1}{2}} B^{-\frac{5}{32}} C + A B^{-\frac{1}{2}} C^{\frac{1}{2}}) (B C)^{\varepsilon} \right).$

ii) For $1 \le h \le 7$ we obtain

$$F_h^{\pm}(A, B, C) = \mathcal{O}\left(AC^{\frac{1}{2}}\right).$$

Proof. If we proceed as in the proof of theorem 3 in [1] we obtain by means of lemma 5.1

$$F_{h}^{\pm}(A,B,C) = \sum_{\substack{lrs \leq C, \\ l \in \mathcal{L}, (sr, 2l) = 1}} \sum_{\substack{\mu^{2}(sr) \\ |y+B| \leq A, y \pm 2 + hlrs = z^{2}}} \rho^{+}(l,y) \left(\frac{z^{2} \mp 4}{r}\right).$$
(5)

where $\mathcal{L} = \{n \in \mathbb{N} : n \text{ odd and } p | n => p^2 | n \text{ for all primes } p\}$. Splitting this sum up into two sums $F_{h,0}^{\pm}(A, B, C) + F_{h,\infty}^{\pm}(A, B, C)$ restricted by $lr \leq R$ and lr > R respectively, with some parameter R > 0, then the analysis of Iwaniec in [1] leads to

$$F_{h,0}^{\pm}(A,B,C) = \sum_{l \in \mathcal{L}, l \leq C} \sum_{\alpha \pmod{l}} \rho^{+}(l,\alpha) \sum_{\substack{lrs \leq C, lr \leq R \\ (rs, 2l) = 1}} \mu^{2}(rs) \left(\frac{m^{\pm}(r)}{rl} A_{hlrs}^{\pm} \right. \\ \left. + \mathcal{O}\left(\left(\min\{\tau(r)\log(2r)r^{\frac{1}{2}}, A_{hlrs}^{\pm}\} \right) \right) \right)$$

where A_{hlrs}^{\pm} denotes the number of y with $|y+B| \leq A$ for which $y \pm 2 + hlrs$ is a square. We have for $h \neq 0$

$$A_{hlrs}^{\pm} \ll A\left((lrs+B)^{-\frac{1}{2}}\right)$$

giving

$$F_{h,0}^{\pm}(A,B,C) = \mathcal{O}\left(AC^{\frac{1}{2}}\right)$$

independently of R and in this case we choose R = C i.e. $F_h^{\pm}(A, B, C) = F_{h,0}^{\pm}(A, B, C)$. this proves (ii).

If h = 0 then the analysis in loc.cit. gives

$$F_{h,0}^{\pm}(A,B,C) = \lambda A_0^{\pm}C + \mathcal{O}\left(A_0^{\pm}C^{\frac{1}{2}} + CR^{\frac{1}{2}} + A_0^{\pm}CR^{-\frac{1}{2}}\right)$$

for some $\lambda > 0$. Now completely analogous calculations as in [1] lead to

$$F_{0,\infty}^{\pm} \ll A_0^{\pm} B^{\frac{3}{16}} C R^{-\frac{1}{2}} (BC)^{\epsilon}.$$

Put $R = A_0^{\pm} B^{\frac{3}{16}}$ then we obtain

$$F_0^{\pm} = \lambda A_0^{\pm} C + \mathcal{O}\left(\left(A^{\frac{1}{2}} B^{-\frac{5}{32}} C + A B^{-\frac{1}{2}} C^{\frac{1}{2}} \right) (B C)^{\varepsilon} \right)$$

since $A_0^{\pm} \ll AB^{-\frac{1}{2}}$. The proof of the lemma is thus complete. Consider now $\mathcal{D}_x^{e,1,**}(C,N,F,G)$. The sum over y equals

$$\sum_{\pm} e\left(\mp\frac{2}{c}\right) \sum_{-\frac{c}{2} < z^2 \mp 2 \le \frac{15c}{2}} e\left(\frac{n}{c}(z^2 + F + iG)\right) \rho^+(8c, z^2 \mp 2)$$

=
$$\sum_{\pm} e\left(\mp\frac{2}{c}\right) \sum_{-\frac{c}{2} < z^2 \mp 2 \le \frac{15c}{2}} e\left(\frac{n}{c}(z^2 - h(c, z)c + F + iG)\right) \rho^+(8c, z^2 \mp 2),$$

where $h(c,z) \in \mathbb{Z}$, $0 \leq h(c,z) \leq 7$ is such that $z^2 - h(c,z)c \in (-c/2,c/2]$. Next we proceed as in [1] and replace the sum over n by an integral via the Poisson summation formula. Put $M_{c,z} = z^2 - h(c,z)c + F + iG$, then

$$\begin{split} \sum_{n \in \mathbf{Z}} \omega(n) e\left(\frac{n}{c} M_{c,z}\right) &= \sum_{n \in \mathbf{Z}} \int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c,z} - xn\right) dx \\ &= \int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c,z}\right) dx + \sum_{n \neq 0} \int_{-\infty}^{+\infty} \omega(x) e\left(x\left(\frac{M_{c,z}}{c} - n\right)\right) dx \\ &= \int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c,z}\right) dx \\ &+ \sum_{n \neq 0} \left((n - \frac{M_{c,z}}{c}) 2\pi i\right)^{-f} \int_{-\infty}^{+\infty} \omega^{(f)}(x) e\left(x\left(\frac{M_{c,z}}{c} - n\right)\right) dx \\ &= \int_{-\infty}^{\infty} \omega(x) e\left(\frac{x}{c} M_{c,z}\right) dx + \mathcal{O}_f\left(N^{-f+1}\right) \end{split}$$

for any integer $f \ge 2$, provided there is a positive real constant γ such that $\left|\frac{M_{c,t}}{c} - n\right| \ge 1$ $\gamma > 0$ for all $n \in \mathbf{Z}$. The latter is assured by our assumption

$$N > \frac{8F}{G} \log^2 x \,.$$

For then $c \ge NG/\log^2 x > 8F$, therefore

$$\left|\frac{M_{c,z}}{c} - n\right|^2 = \frac{G^2}{c^2} + \left(\frac{z^2 - h(c,z)c}{c} + \frac{F}{c} - n\right)^2 \ge \left(n - \frac{5}{8}\right)^2 \ge \frac{9}{64}$$

for all $n \in \mathbf{Z}$. Further partial integration *l*-times gives

$$\int_{-\infty}^{+\infty} \omega(x) e\left(\frac{x}{c} M_{c,z}\right) dx \ll_l \left(\frac{c}{|M_{c,z}|}\right)^l N^{-l+1}, \qquad (6)$$

which is $\ll_l N^{-l\varepsilon+1}$ for $|M_{c,z}| > \frac{c}{N^{1+\varepsilon}}$. Especially this is the case for all z with $|z^2 - h(c,z)c + F| > \frac{c}{N^{1-\varepsilon}}$. Therefore for any C, N, F, G > 0 with $C > N > \log^2 x$

$$\mathcal{D}_{x}^{e,1,**}(C,N,F,G) = \sum_{\pm} e\left(\mp \frac{2}{c}\right) \sum_{\substack{NG \\ \log^{2}x \leq c \leq C \log^{2}x, \\ c \equiv 0 \mod 2}} \frac{\exp\left(-\frac{c}{C}\right)}{c} \sum_{|z^{2}-h(c,z)c+F| \leq \frac{c}{N^{1-\epsilon}}} \rho^{+}(8c,z^{2}\mp 2)$$

$$\cdot \int_{-\infty}^{\infty} \omega(x)e\left(\frac{x}{c}M_{c,z}\right) dx + \mathcal{O}_{e}\left(\frac{C}{N^{1777}}\right).$$

The sum over c is split up into $\mathcal{O}(\log C)$ subsums, a typical sum of which is

$$\sum_{\substack{H \leq c \leq 2H \\ c \equiv 0(2)}} \exp\left(\frac{-c}{C}\right) \sum_{\substack{|z^2 - h(c,z)c + F| \leq \frac{c}{N^{1-\epsilon}}}} \rho^+(8c, z^2 \mp 2) \int_{\frac{N}{2H}}^{\frac{2N}{H}} \omega(c\xi)e(\xi M_{c,z})d\xi$$
$$= \int_{\frac{N}{2H}}^{\frac{2N}{H}} \sum_{\substack{H \leq c \leq 2H \\ c \equiv 0(2)}} a^{\pm}(c, \xi, z)f(c, \xi)d\xi + \mathcal{O}_{\epsilon}\left(\frac{H}{N^{1777}}\right), \quad \frac{NG}{\log^2 x} \leq H \leq \frac{C}{2}\log^2 x,$$
(7)

with

$$a^{\pm}(c,\xi,z) = \sum_{\substack{|z^2 - h(c,z)c + F| \le 2H/N^{1-\epsilon}}} e(\xi M_{c,z})\rho^+(8c,z^2 \mp 2),$$
$$f(c,\xi) = \exp\left(\frac{-c}{C}\right)\omega(c\xi).$$

The \mathcal{O} -term in (7) arises, since we replaced $\sum_{|z^2-h(c,z)c+F|\leq 2c/N^{1-\epsilon}} \text{ by } \sum_{|z^2-h(c,z)c+F|\leq 2H/N^{1-\epsilon}}$, applying (6) with a sufficiently large *l*. Consider for $0 \leq h < 7$, C > 0 and B > A > 0 the sums

$$F_{\xi,h}^{\pm}(A,B,C) = \sum_{c \leq C} \sum_{|z^2 - hc + B| \leq A} e\left(\xi(z^2 + B)\right) \rho^+(8c, z^2 \mp 2).$$

We apply lemma ?? to (5) and obtain for $h \neq 0$

$$F^{\pm}_{\xi,h}(A,B,C) \ll (AC^{\frac{1}{2}})$$

while

$$F_{\xi,0}^{\pm}(A,B,C) = \lambda B^{-\frac{1}{2}} \int_{\sqrt{B-A}}^{\sqrt{B+A}} e\left(\xi(\alpha^{2}+B)\right) d\alpha + \mathcal{O}\left((1+\xi A)(A^{2}B^{-\frac{3}{2}}C+A^{\frac{1}{2}}B^{-\frac{5}{32}}C+AB^{-\frac{1}{2}}C^{\frac{1}{2}})(BC)^{\epsilon}\right).$$

Again proceeding as in [1],p.157f gives

$$\mathcal{D}_{x}^{\epsilon,1,**}(C,N,F,G) \ll (FCN)^{\epsilon} (N^{\frac{1}{2}}C^{\frac{1}{2}}F^{-\frac{5}{32}} + C^{2}N^{-1}F^{-\frac{3}{2}} + C^{\frac{1}{2}}).$$

This proves the proposition for the 'even' case. In the 'odd' case the proof runs similar.

References

- H.Iwaniec: Prime geodesic theorem; J. Reine Angew. Math. 349 (1984), 136– 159
- [2] N.V.Kuznecov: Petersson hypothesis for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloosterman sums; Math. UdSSR Sbornik, 39, no.3 (1981), 299-342
- [3] W.Luo, P.Sarnak: Quantum ergodicity of eigenfunctions on $PSL(2, \mathbb{Z}) \setminus \mathbb{H}^2$; preprint
- [4] W.Magnus, F.Oberhettinger, R.P.Soni: Formulas and theorems for the special functions of mathematical physics; 3. ed., Springer 1966
- [5] R.Matthes: Rankin-Selberg method for real analytic cusp forms of arbitrary real weight; Math. Zeitschrift **211** (1992), 155-172
- [6] R.Matthes: Fourier coefficients of real analytic cusp forms of arbitrary real weight; Acta arith., 65.1 (1993), 1-15
- [7] R.Matthes: Über das quadratische Spektralmittel von Fourierkoeffizienten reell-analytischer automorpher Formen halbzahligen Gewichts; Math. Z., 214 (1993), 225-244
- [8] R.Matthes: Prime geodesic theorem for the theta case; J. Reine Angew. Math. 446 (1994), 165-217
- [9] R.Matthes: A mean value estimate for Rankin-Selberg zeta functions; preprint
- [10] F.Oberhettinger: Tables of Fourier transforms and Fourier transforms of Distributions; Springer 1990