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Framed modules and their moduli

D. Huybrechts* NI. Lehnt

This paper is a continuation of our previous work [HL]. There we discussed

pairs consisting of a cüherent sheafand a homomorphism to a fixed reference sheaf.

This notion of a pair is wiele enough to comprise various other notions of pairs as

in [Se, Le, Th, Ga, Be~ BD\V, Lü~ BD]: these differ essentially in the choice of the

reference sheaf only. Despite, or rather, because of the abundance of existing names

for these ohjects (framed vector hundles, hundles with level structure, stahle Higgs

pairs, k-tuples), and in order to avoid the somewhat meaningless term 'pair', we

chose the name 'framed module' for the objects discussed in this paper. In [HL]

we gave astability condition for framed modules, which depends on a polynomial

valued parameter O. \Ve constructed I110duli spaces for framed modules that are

defined over curves or surfaces, but failed to do so for higher dimensional varieties,

mainly because of difficulties with proving boundedness properties of the involved

families of sheaves. In this paper we use techniques of C. Simpson to deal with the

problem in fuH generality. As a supplement to the construction we give a description

of the compactification of the moduli space of stable pairs and its tangent space and

prove a smoothness criterion.

Let (4X, Ox(1)) denote a smooth projecr.ive variety, D a coherent Ox-sheaf anel

J a rational polynümial with positive leading coefficient. A framed module is a

pair consisting of a coherent sheaf E and a nonzero homomorphism a : E -+ D.
A framed module of posi tive rank r is said to he stahle (with respect to 0), if for

all nontrivial proper submodules E' of rank r' the Hilbert polynomials of E and

E' satisfv the following conditions: PE' < CPE + r-:'o. anel PE' < CPE - Co if.. r rr r r

E' C ker( ü). A fiat family of framed lTIodules, parametrized by a scheme T of finite

type over the ground field k, is a T-ftat coherent OTxx-sheaf E together with a

homomorphism 0. : E -+ OT 0 D such that Qt "# 0 for all t E T. \Ve call PE - 0 the

~Hilbert polynol11ial' of the fraIl1ed Il10dule (E, a).

The main theorem then is this:

·The first author wishes lo thank the )'lax-Planck-Institut für ~Iathematik,Bonn.

t The second a11 tohor gratefu Ily acknowledges the support of the Graduierten kolleg "Geometrie

und Nichtlineare Analysis". Hum bold t-l"niversi tät. Berlin.



Theorenl0.1 - Let 0 E Q[m] be a polynomial wUh positive lcading coefficient,
and of degree < dim(X). The1'c is a projective scheme M;r(X; D, P) which is

a coarse 1noduli spacc for the funet01' which associates to a scheme T the set of
isomorphism classes oJ flat fanlilies of se'Tnistable Jramed modules defined over T with
Hilbert polynomial P. Aforeover, there is an open subscheme M;HX; D, P) which
represents the subfunetor ollamilies of stable franwd nlodules, i.e. M;5(X; D, P) is

a fine moduli space. A closed point in M S3(Xj D, P) represents an S-equivalence
class oJ semistable fra1ned modules.

For the notion of S-equivalence see 1.14.

Thc paper is organizcd as follows: Section 1 ·contains the basic definitions and

properties of framed nlodules. In scction 2 we prove the boundedness result which

is needed in the constrllction. Section 3 contains the construction of the moduli

scheInes by means of geolnetric invariant theory and the proof of the main theoreln.

Finally, section 4 discusses the infinitesilnal defornlation theory of fralued modules.

Throughout the paper we will use the following convention: If the word '(semi)­

stable' occurs in any statement in combination with the symbol '(::;)', then in fact

two variants of the statement are asserted at the same time: A 'semistable' one

involving the relation '::;', and a 'stahle' one involving the relation '<'. This allows
a luore concise presentation and will hopefully not lead to confusion.

I

1 Semistable framed modules

Let X be a nonsingular projective variety definecl over an algebraically closed fielel

k of characteristic zero endowed with a very ample line bundle Ox(I). We denote

by d thc dimension of X anel by 9 its degree with respect to the embeclding given by

Ox(l). Let D be a coherent Ox-module anel 0 a polynomial with rational coefficients

anel positive leading term. Then a framed module is a pair consisting of a coherent

OX-Inodule E and a. homomorphis1l1 a : E -t D, called thc framing of E. We
refer to ker(a) as the kernel of the rl'amed module. Let e(a) = 1, if a =I 0, anel
equal to 0 else. "Ve denote by PE(n) = x(E(n)) the Hilbert polynonlial of E and

by P(E,o) = PE - c:(a)o the Hilbe'rt polynomial of {he pai'r (E, 0'). Similarly, we put

hO
( ( E , 0: ) ( m )) = hO

( E (1TI)) - e(a) 0(nl ).

If E' is a coherent submodule of E with quotient E" = EIE', then a framing

0: : E -t D induces framings a' = a] E' on E' anel 0''' on E": 0'" is 0, if 0:' # 0,

and is the ineluced hOlnomorphism on E" , if cl vanishes. E' is saicl to be saturatecl

if (E",a") has torsion free kernel. \Vith this convention the Hilbert polynomial of

framed modules behaves additively
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Definition 1.1 - A fra1ned module (E, a) of rank l' is said to be (senü)stable with

respeet to 0 with reduced Hilbert polynomial p, if P(E,o) = rp and for all sub1nodules
E', 0 =f:. E' =f. E, of rank 1" with induced framing a' the inequality P(EI,al)(5.)r'p
holds.

The ring of polynomials with rational coefficients is given the lexicographic order.

Here are some imIuediate consequences of the definition:

Lemma 1.2 - If (E, a) is se1nistable, then its kerne! is torsion free, i. e. a embeds
the torsion T( E) of E as a sub'module of D.

Proof If T is the torsion part of the kernel of 0', then in thc inequality of the

definition r' = 0 anel a' = 0, so that P(T,ol) = PT anel the inequality reads: l' PT ::; 0,

which implies T = O. 0

Len1ma 1.3 - Suppose E is a torsion 1nodule. If (E, 0') is scmistable, then it is

already stable, which in hlT71 is equivalent to the asseTiion that °' is injeetive and

PE = O.

Proof Semistability for a nontrivial torsion ITIodule requires P(E,o) = PE - 0 = o.
o

Definition 1.4 - A ho'momor'phism'P : (E, a) -+ (E', 0") of framed rnodules is a
homomorphism of the underlying modules 'P : E ~ E' for which there is an element
A E k such that 0" 0'P = AO'.

Len1ma 1.5 - The set Hom( (E, 0'), (E', 0")) of hom01norphisms of framed n~odules

is a linear subspace 01 Hotn( E, E'). [J'P: (E, 0') ~ (E', cl) is an isomorphism, then

the factor A in the definition can be taken in k*. In paTiicular, the isomorphisln

'Po := A-1 'P satisfies 0" 0 'Po = o'. 0

Lemma 1.6 - 1/ (E, 0') and (E', 0') are stable with the salne reduced Hilbert poly­

nomial p, then any nontrivial hom01norphism 'P : (B,O') -+ (E',O") is an isomor­
phisTn. Moreover, in this case Hom{ (E, 0'), (E', 0")) ~ k. [f in addition 0' =f:. 0, 0'1'

equivalenlly, 0" =f:. 0) then thel'C is a unique isom,orphis'm 'Po with 0" 0 'Po = 0'.

Proof Supposc'P: (E,o) -+ (E',e/) is nontrivial. The ilnage F := im{'P)

inherits framings ß and ß' whcn considered as a quotient of E anel as a sublnodule

of E', respectively. If ß' =f. 0 then ß =f:. 0 anel ß' = Aß for some A =f:. O. In any case

one has:

rk( F)p ~ P(F,ß) ~ P(F,ßI) ::; rk{ F)p.
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Therefore equality holels at all places. This implies because of the stability asSUlllp­

tions: E ~ F ==- E', 0' = ß 0 <p, ß' = a', anel ß and ß' differ hy a nontrivial factor.
Hence c.p is an ismllorphislll of rramed lnodules. In order to prove thc l'cmaining

statenlents it is enough to show Aut(E, a) = k· iclE . Suppose c.p is an automorphism

of (E, 0:). Choose x E Supp(E) and let fl be an eigcnvaluc of c.p restricted to thc

fibre E(x). Then <p - fL . idE is not surjective at x and hence not an isomorphism,
which implies <p - Il . idE = O. 0

Lemnla 1.7 - Ij deg(0) ~ dJ then in any se1nistable jran/,ed module (E, 0:) the

framing 0: is injective or zero. COllverse/YJ if 0' is the inclusioll homomorphism of a

submodule E 0/ D of positive rank) then (E, 0') is stable.

Proof. Assume that 0: f:. O. If E' is any nontrivial suhlnoclule of the kernel of 0:,

then the seinistability of (E, 0') says:

The two polynomia.Is on thc left hand siele are of degree d anel have the san1e leaeling

coefficient. If deg(0) ~ d, this yields a contradiction. Similarly, if 0: is injective, the

inequality of the definition is strictly satisfied because of thc dmninancc of o. 0

The last lemma shows that the discussion of semistable framed modules reduces

to the study of SUblll0duies of D, which is covercd by Grothendieck's theory of the

Hilbert scheme, if deg(0) ;::: d. For that reason we assume hencefol'th that 0 has
clegree less than d and write:

the first nonzero coefficient being positive.

By the assumption on 0 the reduced Hilbert polynoll1ial P(E,a)/1' of any nontor­

sion framed 1110dule (E, a) has the same leading coefficient deg(X)/d!. Hence the
dominating terms in the stability inequality are the degrees of the modules. This

leads to a linearized stability definition which is related to the one given above in
the same way as the Mumford-Takemoto stability is related to that of Gieseker and

Maruyama. Let

Il(E, O') = (deg(E) - e(a)od/rk(E).

Definition 1.8 - A fra1ned rnodule (E, a) 01 positive 'rank l' is said to be Il­

(semi)stable with respeet to 01) if it has t01'sion free kenwl and ij 101' all s'llb­

modules E' wilh üuluced framing a' and rank r' sat.isfying 0 < 7" < 1') one has

Il (E' 1 0'1) (::; )J.l ( E, a) .
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Obviously one has the following implications between propertics of a framed

module of positive rank:

J-l-stable ::::} stahle::::} semistable ~ It-Senlistable.

Remark 1.9 - In fact, even stable framed 1110dulcs may contain torsion subtnod­

ules. The following simple trick allows to tnake use of results about torsion free

sheaves in the study of fraIned lllodules: Choose onee and for all a fixed locally free

eoherent module fJ and a surjcctive homomorphism <p : b --+ D, its kernel bcing

denoted by B. Then to each framed tnodule (E, 0') we can associate a COlllnlutative

diagraIn with exact rows allel columns:

0 0

t t
0 --+ ker(0') --+ E --+ D

11 t t
0 --+ ker(a) --+ E --+ iJ

t t
B = B

t t
0 0

The second row of the diagram shows that E is torsion free if thc kernel of 0' is

torsion free, henee in particular if (E, 0') is /-l-semistable. This construetion works

as weIl with a Hat family (EYl ay) of framed modules parametrized by a noetherian

k-schenle T if wc replace D by DT = D (90T. Then ET is again Bat, anel for every

point t E T the kernel of O't is torsion free if and only if Et is torsion [ree. By [MI,
Prop. 2.1] torsion freeness is an open property and we get as a corollary:

Corollary 1.10 - 1f (ET , O'T) is a flat fa'mily of framed n~od1l/es, parametrized by
a noetherian k-scheme T, thcn lhe subsct of points t ofT f01' which ker(at) is torsion
free is open in T. 0

Lemma 1.11 - If (E, a) is a f1'a1ned 1nodule that can be deJormed to fl fral1led
module with t01'sion free kernel, theu there is a morphism <p : (E, a) --+ (G, ß) of

fra1ned modules, such that (G,ß) has torsion free kernel, PE = PG, P(E,a) = p(G,ß)J

and fina//y ker(<p) = T(ker(a)).

This lemIna logically corresponds to LCIllma 4.2 in [Gi] anel Lemma 1.17 in [Si].

Indeed, if a = 0, the lemnla of Simpson provides us with the required hOInOIllor­

phism. We Inake use of the triek ahove anel follow Sinlpson 's proof closely:
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P1'oof The asslunption in the lenlma means that there is a Bat fa,lnily (Ey , Ciy)

of framed modules with the sanle Hilbert polynomial, paralnetrized by a smooth

curve T, such that (Eo,Cio) ~ (E, Ci) for sOlne dosed point 0 E T and sllch that

(Et , at} has torsion free kernel for all t =f:. O. vVe may assume that Ctt f:. 0 for all

t E T. Let O:T : ET -+ Dy = D <9 CJT be the ftat family associated to (ET , CiT)

by the process above. Then Et is torsion free for all t E T except 't = O. Let

U c T x X denote the complenlent of the support Y of T(ker(ao)) = T(Eo) and

j : U -+ T x X the indusion morphislll. LetEI := j*( Er!u). Then E' contains no

T -torsion and therefore is T -ftat. In particular, the fibre Eb has the same Hilbert

polynomial as Eo. The canonical hOlnomorphism ET -+ E' induces a h0I110I110rphism

ep : Eo -+ Eb, which is an iSOlnorphistn outside Y. Since DT is normal, OT defincs a

framing ci : E' -+ Dr which coincides with o:r on U. As in the proof of Sitnpson's

lemma, Eb is torsion free. Finally, B Inaps injectively to Eb, and setting G = Ebl B
with the induccd homolnorphisIllS 'P : Eo -+ G anel ß : G -+ D, we are done. 0

In analogy to the study of torsion ffee sell1istable coherent sheaves we will deRne

Jordan-Hölder filtrations and the nation of S-equivalence for ffanled 1110dules. We

begin with the following observation:

Lemn1a 1.12 - Lel F C G c E be coherent 'modules and Ci a fra'ming of E. Then
the framings induced on G/ F as a quotient of G and as a submodule of ElF agree.

Proof If alF = 0, then all fralnings of the modules in the COffilllutative diagram

G -+ E

+ +
GIF -+ ElF

are induced by a framing of ElF. If CtIF =f:. 0, then both the framings of GI F (as a

quotient' of G) and of ElF are zero, so that again there is no ambiguity. 0

This Ienuna allows to endow any subquotient of a framed module with a canOll­

ical frallling.

Proposition 1.13 - Let (E, a) be a semistable framed module with reduced Habert
polynomial p. Then there is a filtration

E. : 0 = Ea C E1 C ... c E~ = E

such that all the factors gri( E.) := Ed Ei- 1 logether with the induced frarnings Cii

are stable with 'respecf 10 J with reduced IJilberl polynO'1nial p. Any such filt1'ution is
called a Jordan-Hölder filtration of (E, Ci). The framed module

(gr(E), g1'(a)) := EB(gri( E.), Cii)
i

does not depend on the choice oJ the Jordan-IJölde1' filtration.
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Proof If (E, a) is not stahle, then there is a proper subnl0dule (E', a') with

reduced Hilbert polynomial p, i.e. P(EI,et /) = rk(E')p. Let (E', a') be maximal with

this property. Then (E', a') is semistable anel E / E' with the induced framing is
stahle. Inductively, we can construct a descending sequence of submodules such

that the factors are stahle with reduced Hilbert polynomial p. Note that at most

one of these factors carries a nonzero framing. In particular all hut possibly one

of the factors are torsion free. For rank reasons the descending sequence must be

finite. This gives the existence of a Jordan-Hölder filtration. Now suppose E. anel

E~ are two such filtrations. Let j be the snlallest index such that EI C Ej. Then

the canonieal hOInomorphisIll

. E -'>. E' -'>. E'/E'cp. -'I -r j -----, j i-I

is nontrivial anel is in fact a hOI110morphism of framed modules. Now (grI(E.), aI)
and (grj(E~),aj) are stable. Hence by lemlna 1.6 cp is an isonlorphism of frameel
Illodules. Moreover, there is a short exact sequence of franled ITIoelules

o-t (Ej -I ,a) -t (E / EI, 0') -t (E / Ej, a) -t 0,

abusing 0' as a generic notation for the ineluced framings. The filtrations of E / Ej
anel Ej_1 give rise to a filtration of E/ EI, whose graded objeet by induetion on the

rank of E is isomorphie to the graded objeet of the filtration E./ EI. 0

Definition 1.14 - Two semistable framed modules (E,O:') and (E', a') with re­

duced Hilbert polyn01nial p are called S-equivalentJ iJ thei, assoeiated g1'aded objects

(gr(E),gr(a)) and (gr(E'),gr(a')) are isomorphie.

Obviously, if an S-equivalence dass eontains astahle framed tl10dule then it

eontains no other modules.

2 Boundedness

The first step in the construetiotl of 1110cluli spaees of senlistable franleel modules 1S
to get a boundedness result for the family of semistable frained Il1oelules. In fact the

application of the Geometrie Invariant Theory machinery in the following seetion

requires a slightly different notion of stability. We shall prove bouneledness and

equivalenee of the various nations at the sanle time.

Throughout this seetion let P be a polynomial anel let r > 0 and f-lp be the rank
and the slope of any coherent OX-ITIodule with Hilbert polynoInial P.

Theoren1 2.1 - There is an integer 1'710 such that the Jollowing three properl.ies

0/ a /rarned module (E, a) with [lilbert polynomial P und t01'sion free kerne! are

equivalent /01' all m ~ rno:
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i) (E, a) is (semi)stable.

ii) P(m) :s; hO((E,a)(rn)) and hO((E',a')(m))(:S;)T'P(m)11' fOT all sub1nodules
(E',O") oJ rank T', 0 =f:. E' =f:. E.

iii) hO((E",a")(m))('2.)r"P(1n)lr for all quotient modules (E",O''') olrankr",
E =f:. E" =f:. O.

A10reover, for any Jranl,ed 1nod71le satisfying these conditionsJ E is rn-reg71lar.

The families of framed Inodules having torsion free kernel and satisfying the weak

version of one of the conditions i) - iii) are denoted by S3, S:n and S~, respectively.

We shall prove this theorem by reducing it to well-known results in the theory

of semistable torsion free coherent sheaves. In particular we will need the following

results due to MaruyaIna and Simpson:

Lemma 2.2 (Simpson) [Si, Lemma1.5] - Let r be a positive integer. Then there
is a positive constant c such that 101' every p,-se1nistable coheren/' Ox-module F of
positive rank< rund slope 11. one has

where [x]+ = max{x, O} fOT any real n71mbe1' x. o

See also [LeP, lemlne 2.4]. Please note the difference in thc notation: In Le

Potier's paper the slope 11. of a d-dinlensional coherent sheaf is defined as the quotient

bla where

P(n) = a(n + ~ - 1) +b(n: ~ ~ 2) + ...

is the Hilbert polynomial. Even though this n1akes computations more elegant, we

stick to the conventional definition that the slope is the quotient of degree by rank.

If F is BO longer f-l-semistable, let 0 C F I C ... C F~ = F be the Harder­

Narasimhan filtration of F with Il-semistable factors Gi = Fd Fi- I of rank Ti, Then

hO( F) :s; Li hO(Gi), anel if one applies Simpson 's farmula to each of the factors Gi
one gets:

Here f-lmax(F) and f-lmin( F) denote the maximum and minimUlTI value of p,( Gi).
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Theorenl 2.3 (Maruyanla) (1\13]- Let P be a polynomial and C a constant.

Then the fa1nily of t01'sion jree coherenl CJx -modules F with llilbert polyno'mial
PF = P and f--lmax( F) ::; C is bounded. 0

Lemma 2.4 - The1'e are integers C and ml such that fo l' all jramed 1nodules

(E, a) in the fa1nily S = S8 U Um2: ml S~ and for all saturaterl submodules (E', a/)
the Jollowing holds: deg(E' ) - r'f--lp ::; C, and eithe1' -C ::; deg(E' ) - r'pp 01'

hO ((E' ,a /) (nl )) < r ' P(111 ) Ir

r"Plr < P(E/I,a ll )

, if (E, a) is in S& and 1n 2:: ml; and

, if (E, a) is in S~ fOT same n1. 2:: 1nl'

1 1
IIp +C +(1 - - )01 - 2C +deg(T(D)) - L < O.

r r

C
1n Ig + Il P + C - - > 0

r

Here T' and 1'" denale the Tank of E' and E" = EIE', 1'espeetively, as usual.

Proo! Let c denote the sanle constant as in lenlma 2.2 anel L thc coefficient of

m d- 1 I(d - 1)1 in P(111)lr. Choose C sufficiently large so that C > 01 + deg(T(D))
and

UP to the factor (d - I)! this is just the leading coefficient of the polynoIllial

G + PT(D) - PIT, where

1 ( 1 d 1 1 d)G(1n)= d-l' (1--)(1ng+{lp+ol+ C) +-(1ng+pp--C+c) .
9 d. l' r r

Let ml be an integer large enough so as to satisfy the followillg cOllditiollS: T( D) is

mI-regular,

and for all m 2:: 1111 one has G(nl) + PT(D)(m) < P(rn)IT anel 0(171) 2:: O. Now let

(E, a) be a framed Il10dule in either of the fanlilies S& 01' S~, 111 2: ml, and assume

that (E', a') is a saturated SUblTIodulc of rank 1,1. Then any torsion of E' 01' E" is

embedded into T( D) by a' anel 0''', respectively. If T' = 0, then 0 ::; deg( E') ::;
deg(T( D)) ::; C; if r" = 0, then

r'flp - C < deg(E) - deg(T(D)) ::; deg(E' ) ::; deg(E) ::; r'f--lp + C.

Thus we can restriet ourse1ves to the case 0 < 1" < 1'.

a) Suppose (E, 0') is J-L-semistable. Then by definition deg( E') ::; T' pp + 01 ::;
r'pp +C and I-lmax(E'IT(E')) ::; pp +01. lf E' fails to satisfy -C::; deg(E') -r'pp,
then there is also abound for the Ininimal slope: f--lmin(E'IT(E')) ::; I-lp - CIr.
vVe have hO((E', 0:' ) (n~)) ::; hO(E'(111)) ::; hO(T( E')(m)) + hO(E' IT( E') (1n)). The
first tenn cau be roughly bounded by hO(T(D)(1n)) = PT(D)(nl), the second one by
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iterated application of lelnma 2.2 to the factors of a I-Iarder-Narasimhan filtration

of E'I(T(E')):

hO((E'jT(E'))(m)) 1 ( 1 d 1 d)
1" :0::; gd- 1d! (1- r,)((Jtmax +mg + c]+) + r,(Ulmin + mg + c]+)

1 ( 1 d 1 C d)
:0::; dld' (1- -)([,lp + o} +1ng + c]+) + -([jLP - - + m,g + c]+)

9 -. r r 7'

= G(m)

for a1l1n 2:: 1nl' Tt folIows: hO((E', 0')(1n)) Ir' :::; G(1n) +PT(D)( 11~) < P(m) Ir.
b) Suppose now that (E, a) belongs to S~. Let fLmax anel fLmin denote nlaxilnaJ

anel minimal slope of E"IT( E"). Then we have for all m 2:: 1'71.1

P(m)
G(1n) < -- - PT(D)(m)

r
< hO((E", Q''')(m)) _ hO(T(D)(m)) < hO((E"jT(E"))(m))
- r" r" - r"

1 ( 1 d 1 d)
:0::; gd-l d! (1 - r" )([,lmax + mg + c]+) + r" ([jlmin + rng + c]+) .

This mnst hold in particular, if E" is replaced by the last facto}' of the Hareler­

NarasiInhan filtration of EilIT( Eil), showing that fLmin 2:: pp + (1 - ~ )01 - ~. Fronl

this one infers:

deg(E') = deg( E) - deg(Eil)

< 1'f-lp +o} - r" (pp +(1 - ~ )01 _ C)
r TZ

, 01 C , C< r f-lp + - + - :::; r !1P + .
r r

Anel if E' fails to satisfy -C :::; deg( E') - 1" IIp, then

deg(E") 2:: deg( E) - deg( E') > r"pp + C 2:: i"IIp + 01,

o

Lemma 2.5 - Let SI": denote the Ja1nily oJ kerne/s 0/ framed 1nodules in S. The

/amilies Sand S Kare bounded.

Proof. Assnme that (E,o) belongs to S, anel let E bc the torsion free n10clnle

obtained as fibred SUfi of 0 and 'iJ : b -t D. Then PE = PE + PB eloes not depend
on (E, a). Moreover, if P is any nontrivial submodule of E, let F denote its in1age

in E and FB = Fn B. Then by lenlIna 2.4:

deg(F) deg(F) rk(FB )
-"""""':""A- :::; ,,+ A !1max(B):::; C +!1P + f-lmax( B).
rk(F) rk(F) rk(F)
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Therefore by rvla1'uyama's theorem 2.3 the falnily of modules E is bounded. Since

the modules E are quotients of the modules E with fixed Hilbert polynOInial P,

they form a bounded family, too. Hence there is a k-scheme T of finite type and a

framed module (ET1 aT : ET --+ OT 0 D), such that the restrictions to the fib1'es of

X x T --+ T contain the falnily S. Cutting T into smaHer pieces if necessary we may

assume that ET as weH as the cokernel of aT are ftat over T, so that the operation

of taking the kernel of a framed Illodule comn1utes with base change. This shows

that the falnily SK is also bounded. 0

The last ingredient for the proof of theorelll 2.1 is the following lemma:

Lemma 2.6 (Grothendieck) - I/D is a bounded farnily of modules F, then the

family of torsion f1'ee quotients F" of the rnodules F salis/ying a unifonn estimale

Ideg( F") I ~ C" is also bounded.

P1'oof [Gr, lelnIl1e 2.5] o

Len1ma 2.7 - The family So of salurated submodules (E', a') of any fl'amed rnod­

ule (E, a) in S with the pl'operty Ideg(E') - r"PPI ~ C is bounded. In particnlar,
the set 1i of Hilbert polynomials of any such sub'module is finite.

Proof Let (E, a) belong to Sand let (E',O") be a submodule satisfying the

properties of the lemma. If we associate to (E', cl) the module F = EIE', if ci =I 0,
and F = ker(a)1 E' otherwise, then these modules F are torsion ffee quotients of

modules of the bounded falnily S U SK and have degrees absolutely bounded by

Idcg(P)( ~ C +rippl + rnax {deg(E)}
EESUSK

According to Grothendieck's lemrna thcy form a boundecl farnily, anel aposteriori

the same is tn,le for the Illodules E' themselves. D

Lemma 2.8 - Ther'e is an integer' ffi2 such thaf. fo1' any m, 2::: m2 and for' any

module (E',a') in So one has: rP(EI,a/)(~)rJP if and only ifrP(EI,al)(m)(~)r'P(m).

Proof The set that consists of P, and of aH polynomials of thc form p or p - J
for p E H. is finite and contains all possible Hilbertpolynomials p(ßI,a/). 0

Pro%/ theorem 2.1. Let 1no be an integer greater than max{1nr, rn2} and such

that all modules in any of the familics 5, So 01' SJ( are mo-regular.

First assurne that (E,O') is a framed module bclonging to S:n for some r11. 2::: rno·
H (E", a") is a nontrivial quotient anel (E', a') the corresponding submoclule, then

11



Hence obviously ii) => iii).

ASSUnle now that (E, 0') belongs to S!J and that (E', cl) is a saturated subnl0dule.

If (E', a/) belongs to So then

hO((E',a')(m)) = P(EI,QI)(1n)(S:)r'P(1n)/r = r'hO((E,a)(m))/r.

If it does not belong to So, then the second alternative of leIlllna 2.4 applies and

gives the even stronger relation

hO( (E', a' )(7n)) < 1" P( n/, )11'.

The condition that (E',O") be saturated can obviously be dropped iIllmediatcly

without any harm. This proves i) => ii).

Finally, let (E,O') bc in S~, 1n 2:': rno, and let (Eil, o") be a quotient Illodule.

First assume that (Eil, o") has torsion free kernel. Then either r"Plr < P(EII,QII)
or the other alternative of lenllna 2.4 applies and, since E,E' and Eil then are 1y/'­

regular,

1'" P(n/,) /r(S:)hO( (Eil, 0'") (m)) = P(EfI ,a") (1n).

By lemma 2.8 this implies r"P/r(S:)P(EII,QII). Again the condition that ker(a") be

torsion free can be dropped. This proves iii) => i) and finishes the proof. 0

As a corollary to the proof wc note thc following lelnma, kceping thc notations

of the theorem:

Lemn1a 2.9 - // (E, a) is a sen!istable framed rnodule, m 2:': mo an integer and

(E',a/) a submodule ofrank 1" such that hO((E',a/)(m.)) = 1"P(m)/r, then (E',a/)
is semistable with reduced I/ilbe1't polynomial P/r. 0

Remark 2.10 - It might seem that the choice of mo depends in a controlled

nlanner on 8 in the sense that mo could be chosen to work simultaneously for framed

modules that are semistable wi th respect to any polynomial 8' with nlaxd 10i - oil}
sufficiently sinall. But in fact, the proof of lemma 2.8 shows that the nunlber of

polynolnials 0 that we can simultaneously deal with must be finite. For a finite set

of o's the proof does indced go through.

3 Constructions

]n this section we will give a construction for the moduli spaces of semistable framed

modules. If the framing is trivial, these are just thc ordinary Illoduli spaces of

semistable torsion free sheaves. Therefore in this chapter we will always assunle

that the fralnings are nontrivial unless the contrary is explicitely stated. Let Po

12



denote a nUlnerical polynomial of elegree d, P = Po - 0, anel let r > 0 anel J-lp denote

the rank anel slope of any coherent Ox-nlodule with Hilbert polynomial P. Choose

some integer m ~ mo (notations of theoreln 2.1) and let V be a vcctor space of

dimension Po(rn). For sufficiently large l the standard 1110rphisms

H := Hilb(V C9 Ox( -m), Po) -+ Grass(V 0 IfO(Ox(l - rn)), Po(l))
-+ IP (APo (l) (V C9 HO (0 x (e - nt))) )

are well-defined elosecl immersions. Let [, denote the corresponding vcry alnple line

bundle on H. Finally, let P := IP(Hom(V, HO(D(m))t) anel let Z' C H x P denote

the elosed subscheme of points

for which the homomorphisll1 Cl : V 0 Ox( -rn) -+ D factors through q and induces

a framing a : F -+ D. The group SL(V) acts diagonally on Z' anel the line bundles

carry natural SL(V)-linearizations. In the following discussion only the ratio n2/nl
ruatters, and we choose it to be

assuming, of course, that eis chosen large enough so as to make this tenn positive.

With these notations we have the following proposition:

Proposition 3.1 - FOT s'Ufficiently large l the point ((q], [a]) E Z' is (semi)stable
with respect to the linearization oJ Oz/(nI, n2) if and only if the Jollowing holds: 1/
V' is a nontrivial proper linear subspace of V and F' C F lhe sub'module generaled

by V' 0 Ox( -m), lhen

Proo/. AI-parameter subgroup ,.\ : Gm --+ SL(V) is deternlined by giving a

basis {v!, ... , vp } of V, a weight vector I, i.e. a nonzero elelnent (,1, ... , IP) E

ZP, that satisfies the conditions 11 ::; ... ::; IP' L: li = 0, and by setting "\(t) .
Vi = fYiVi for all i ::; p. Let q : 1/ 0 Ox( -rn) --+ F, a : V -+ ffO(D(rn)) be

homomorphislus representing the point ([q}, [al) E Z' anel let a : F --+ D denote

the corresponding franling. The appropriate value of ewill be detennined in the

course of the proof. For the moment let IV = HO(Ox(€ - 7n)) anel e = hO(F(l))
for convenience sake. q induces homornorphisrus q' : V 0 111 -r HO( P(l)) and
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q": AQ(V® Hl) -+ detIJO(F(n). If {Wll ... ,Wd is CL basis for IV, then a basis [ar

AQ( V ® Hl) is gi yen by the elenlents of the form

where land J are ITIultiindices satisfying i a :::; i a +1 and ja < ja+l if i a = i a +1 . Then

Gm acts via A on Al?(V (9 W) by

,/ := L: 1io '

a

Now let fL(q",A):= -min{"nl:JI,Jwith c('(u/J) #- O}. This nurnber can be conl­

puted as fo11ows. Let 'P denote the function t J--t dirn q'( (VI, ... ,Vt) (9 Hl). Then

p

J-l (q", A) = - L: l'i ( 'P (i) - 'P (i - 1)).
i=1

Similarly, if we put J-l(a,,,\) = -lnin{,ila(Vi) i- O}, then p(a,"\) = -'T where

r = min{ila((VI"" ,Vi)) #- O}. Now the Hilbert-Munlford criterion [MF, Thm. 2.1]
says:

([q], [aD is a (sc'rni)stable point if and on/y if fo1' a/l l-pm'U'rnetc1' subg'l'oupS A onc

has

OTJ equiva/entlYJ
p

nl . L ,i(ep(i) - rp(i - 1)) + n2 . fT(:::;)O.
i=1

The left hand side is a linear form on the set of weight vectors whose coefficients

are determined only by the choice of the basis. Keeping such a basis fixed for a

monlent, it is enough to check the inequality for the special weight vectors

(i) - (' . i ..... i), - !-P"~"1,-P)~,

p-i

i=l, .... ,p-l,

which span the cone of all weight vectors. For ,(i) the inequality above i"s equivalent

to

i . (nIe + n2) (::;) p. (nlep(i) + e(i)),

where e(i) := 1 if a( (VI,' .. , Vi)) #- 0 and Ootherwise. Having goL rid of the weights

we can now vary the bases, and since the inequality depends on the flag o[ subspaces

generated by any given basis rather than the basis itself, the criterion takes the

following form:

([q], [aD is a se1nistab/e point il and on/y ij for a/l nont1'ivia/ proper subspaces V'
01 V one has

14



, ( <5 (rn) ) ( , <5 (rn) )
dilll V 1 + P(1n) P (::;) PO(1n) p(p,a l

) +e(er) P(m) P .

......

wltere e(V') = 1 if a(V') =j:. 0 and 0 olherwise.

Now let F' denote the submodule q(V' Q9 Ox(-nl)) of F. The [amily of all

such submodules, including Fitself, for varying F anel \I', is boundcd. Hence for

sufficiently large e, all these F' will be i-regular, the eqllality q'(V'Q9 VV) = hO(F'(I!))
holds and this vector space has dimension Pp (e). In this case the framing a : F -t D
vanishes when restricted to F' if and only if a(V') = O. Hence e(V') = [(alp). This

finishes the proof. 0

By lenlIna 1.10 there is an opcn sllbscheme U C Z' consisting precisely of those

points that represent frarllcd nlodulcs with torsion free kernel. If there are any

seInistable fraIneel modules with the given Hilbert polynomial at all (and otherwise

tbe present discussion is voiel), then U is nonempty anel we denote by Z its closure

in Z'.

Proposition 3.2 - For s7.lffiGiently large e, a point ([q], [aD E Z is (serni)stable
with 1'espeet to the SL(V)-aetion on Z if und only if the con'esponding !1'arned module
(F, a) is (semi)stable und q ind7.lccs an isorHorphism V -t HO(F(m)).

Proo! We keep the notations of the proof of the previous proposition. First of all ,
observe that, if ([q], [aD is a semistable point, the homoillorphism V -+ HO(F(m))
must be inj~etive. For if \I' denotes its kerneI, then q'(V' Q9 H/) = 0 and e(\I') = 0,
so the previous proposition shows that dim(V') ::; O. Henee we ean think of V as a

subspace in HO(F(1n)). Sinee the family of modules F' generated by an arbitrary

subspaee V' of V is boundeel, the set of polynomials Pp is finite. Henee ehoosing

elarge enough anel thinking of the quotient n2/nl as a function of /!, the inequality

in the previous proposition will hold for some specific value of e if and only if it

holds as an inequality between polynomials in e. Substitute P . ~~:/) - S( rn) for ~ .

At this point we can drop thc rcstriction on the subtnoclules F' to be generated by

subspaces of V, and define V' = V n HO( F'(nl,)) for any Ilontrivial proper subtnoclule

F' C F instead. Now we can rewrite the stability criterioll as folIows:

([q], [al) is a semistable point ij and only ij fo1' all nontrivial proper sub1nodules
F' of F with ind7.lced framings er' = alp the Jollowing inequality 0/ ]1olyno"mials in i
holds:

Passing to the leading coefficients of the polynomials one can derive thc inequal­

ity:

dilll V' - e(a')<5(rn)) ::; rk( F') P(rn) /1'.
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Thus for any quotient module F" = FI F' with the induced fraIning we get

hO((F",0''')(1n)) > ditn(VIV') - e(a")0(1n)
= (dirn V - e(0)0(1n)) - (dirn V' - e(a')8(m))
> F(rn) - rk(F')P(1n)lr = rk(F")P(n~)lr.

By the definition of Z the fralned module (F, a) defonns into a framed module with
torsion free kernel, so that we can apply lenlma 1.11 to Fand conclude that there

is a morphism of fralneel ll10dules <p : (F, a) -t (G, ß) such that (G, ß) has torsion

ffee kerneI, ker(<p) is torsion alld such that PF = Pe, e(a) = e(ß). If (G", ß") is any

quotient of (G, ß), F" the ilnage of Funder <p and thc projection lllap, anel a/l the

framing of F II induced from 0', then one has

hO((Gf/l,ß/I)(n~)) 2:: hO((F/I,a")(n~)) 2:: rk(F/I)P(1n)/r = rk(G/I)P(n~)/rk(G).

According to theoreITI 2.1 (C, ß) is senlistable. Applying this argument to (G, ß)
itself, Olle sees that in fact equality must hold at all places of this chain of inequalities

so that the image of <p has as many sections as C, anel since the latter is globally

generated the iITIage is in fact equal to G. Since Fand G have the saIne Hilbert

polynomial, <p is an isomorphisITI. In particular, (F, a) is seITIistable anel V -t

HO( F(m)) is an isomorphisnl for dimension reasoilS.

Conversely, theorem 2.1 and lemma 2.9 state that if (F, a) is (senli)stable (anel

q given by SOllle isolll0rphislll V -t fIO(F(1n))), then for any nontrivial proper

submodule F' of rank r' one has hO( (F', a') (m)) < r.l P(m) Ir unless both (F, a) alld

(F', cl) are senlistable, in which case only equality holds. In the first case a strict

inequa.lity of the leading coefficients will also give a strict inequality of polynomials

0' ( o(rn) ) ( ( ') 0(171.) )h (F (rn)) 1 + P(n~) P < Po(m) P(P,QI) + € a P(m) P .

Hence iE (F, a) is stable, then ([q], [an is stable, too. If (F, a) is semistable but not

stahle, again strict inequality will hold except the case of a destabilizing senlistable

subITIodule (F',a'). In which case hO(F'(1n)) = Pp (1n) and

0' ( o(m) ) ( ) ( ( ') o(m) )h (F (n~)) 1 + P(1n) P = Po 1n P(F',Q/) + C a P(m.) P .

This proves the proposition. o

Let ZS C Z3S C Z denote the open subschenles of stable anel semistable points
oE Z, respectively. By the proposition above a point in Z(8)3 corresponds, roughly

speaking, to a (semi)stable franled ll10dule (F, a) together with the choice of a basis

in Ilo (F(m ) ).
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Proposition 3.3 - There exists a projective scherne M"s and a morphis'm 7f :

ZH -t M"" which is a good quotient Jor fhe action 0/ SL(V) on Z3". Mor'eouer there
is an open subscherne M" C j\!tss such that Z" = 1T- I (M") and 1T : zs -t M" is a

geometrie quotient. Two points ([q], [al) and ([q', 0"]) are rnapped to the same point

in M H ij and only i/ the e01'1'esponding !ranted modules are S-equivalent.

Proof The first two statenlents fo11ow from proposition 3.2 anel theoreIn 1.10 of

[MF]. As for the third it is easy to see that any senlistable fraIneei module (F, 0')
corresponding to a closed point ([q], [aD can be deformed into its graded object:

Suppose that (F' l 0") is a destabilizing sllbnlodule, (F", 0''') the quotient Inodule.

Consider the following pull-back diagram of extensions parametrized by the affine
line AI:

o -t F' (9 VAl -t

1I

o -t F' 0 VAI -+

-t F" (9 VAl -t 0

lt
-+ F" (9 0 AI -t 0

where t denotes the multiplication with the parameter of AI. :F inherits a framing

a : F -t D 0 V AI from F" (9 0 Al if cl' =1= 0 anel froln /? (9 0 Al otherwise. Then

(Fo,ao) f::' (F,a' ) ffi (F", 0:") and (Ft1at) ~ (F,a) for all t =1= O. Moreover, V :=

(prAl )*:F is locally free of rank P(m) anel we cau choose an isomorphism V 0 0 Al ~

V. These data proviele us with amorphisIll 'lj; : AI -+ Z"" such that 'lj;(A I
- {O}) lies

in the orbit of ([q], [aD anel 'lj;(O) correspouds to (F', G') ffi (F", 0'''). Proceeding this

way we see that the closure of the orbit determined by a semistable frameel Inodule

contains points that correspond to its graded object, To finish the proof it is enough

to show that the orbits eletennined by polystable fraIned modules, i.e. those which

are direct sums of stable framed l11odules, are closed in Z""; for closed orbits are

separated by good quotien~ maps. It suffices to show that if (FT, ßT) is a Rat family

of semistable framed modules parametrized by some smooth curve T such that 3011

fibres (Ft, ßt), t =1= 0, are isolnorphic to a given polystable framed module, then the

same holds for the special fibre (Fa, ßo). vVe will need the following result:

Len1ma 3.4 - Let (E, 0') and (F, ß) be flat Jarnilies 0/ semistable jl'anwd modules
mith the same red'llced I/ilbert polyno1nial p, par'arnetrized by a sche1ne T 0/ finite
type aue'r k. Then the junctian

is se1nicontinuous in t E T.

Before proving the leInma, we finish the proof of proposition 3.3: Suppose,

(Ft , ßt) ~ 63:=0 (Ei, adffil/i for t =1= O. Note that precisely one of the Gi is nonzero, say

for i = 0, anel that then Vo = 1. vVe have

dirn Horn( (Et , a:t} 1 (Fi, ßi)) = Vi
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for all t =f:. 0, henee the previous lelnllla implies

Choose Vi independent homomorphisms for each i and using these define a homo­

marphislD of ffamed modules

8

c.p : (Eo, 0'0) ffi EB( Ei, O)ffiVi --+ (Fo, ßo).
i=l

Using lemma 1.6 it is easy to verify that c.p is an isoillorphism. o

Proof 0/ the le1nma. This semicontinuity statement can be proved with thc usuaJ

techniques. The corresponding statement for Rat families of coherent sheaves can

be found in [BPS] for complex spaces and in [La] for projeL:tive varieties. vVe give

a selfeontained proof. Sinee the problem is loeal, we mayassurne that T = SpecA,

where A is a k-algebra of finite type.

1st Step. Let E be any ftat faInily aver T. Choose a loeally free resolution

L. --+ E of finite length. Let U = {Ui} be a finite affine open eover of X x T. For

any OXxT-Illadule G eonsider the double eornplex

cp,q=Cp,q(E,G)= TI Hom(LplunGlu])
III=q+l

for p, q 2: 0 (here I = {io, ... , iq } is an ordered multiindex, V1 = Uio n ... n Uiq ) with
the eanonieal differentials d' : cp,q --+ Cp+1,q, d" : cp,q --+ Cp,q+l indueed from the

resolution of E and thc eovering U. Let C· (C;) = C· (E, G) denote the eorresponding

total eornplcx. There is a speetral sequenec with Eiq = Extq
( Lp , G) eonverging to

hn ( C·). For any Gone has hn ( C·) = 0 for all n < 0 anel hO( C·) = HOIll( E, G). If Gis

also injective, then hn(C·) = 0 for all n > O. Henee G f---t hi(C·(E, G)) is a universal

o-functor. Therefore hi(C·(E,G)) = Extn(E,G). Assurne IlOW, that G is A-flat.

Then C·(G) is a eOlllplcx of finite length consisting of A-flat modules and with

eohornology grollps which are finitely generated as A-Illodllies. For any A-rnodule

M, one has C·(G QSl NT) = C·(G) QSl M. Henee hi(C·(G) QSl AI) = Ext~(E, G QSlA AI).
Note that if AI = B is an A-algebra, then Ext~(E QSl B, G QSl B) = Ext~(E, G QSl B).
By lemma [H2, III 12.3] there exist a eomplex A1;;,G of finite free A-modules bounded
from above alld a quasiisoInorphism 1\1;; G --+ C·(E, G). Following the arguments in,

[H2, III 12], one can see that

is a senlieontinuous function.

2nd Step. Sllppose ß : F --+ D is a hornomorphism of flat faInilies. Then there

is an induced homornorphisrn of eomplexes C·(E, F) --+ C·(E, D) which eOlllputes
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the induced hOITIOITIOrphisms of relative Ext groups. Let AID:= ME,D -t Ce(E, D)
be a quasiisomorphism as above, and let

be the fibrecl product. Then Ne -7 Ce(E, F) is a quasiisOITIOrphisnl and Are is a

complex satisfying the conditions of lemma [H2, In 12.3] as above, so that there is

an approximation /vIF -+ Ne by a complex of finite free A-modules which is bounded

from above. The composite hOIll0I110rphism MF -+ MD has the property that the

diagram
h1(Iv!;" ® lvI)

4-
Exti(E, F &JA A1)

-+ hi ( NID&J lvI)

4-
-+ Ext1(E, D 0A lvI)

COITInlutes for any A-ITIodule M.

3rd Step. Suppose (E, 0') anel (F, ß) are flat fanlilies of framed Illodules as in

the lemnla. Let a E Alg be a cycle that represents the framing er E HomA( E, D 0
Or) = hO(fl/fb). Then a gives a chain homomorphisITI a : Ae -7 Mb, where Ae

is the complex with AO = A anel Ai = 0 for i f:. O. Consider the homomorphism

7jJ := (ß, -a) : Al;' ffi Ae -t !lID and let C(7jJ) denote its mapping cone. From the

short exact sequence

one gets the exact sequence

In particular, for any t E SpecA anel NI = k(t) there is a puH-back diagram

h-t(CCljJt 0 k(t))

4­
Hom(Et , Ft )

--+ k(t)
4-0'

~ I-lom(Et , D 0 k(t)).

Hence diln Honl( (Etl erd, (Ft , ßt)) = dinl h-1(C(7jJ). 0 k(t)) - 1 + e(erd is a serni­

continuous function. By asslunption Qt is zero either [or all I E T 01' for none. This

finishes the proof. 0

Proof of the rnain theorem 0.1. Suppose T is a schenle parametrizing a flat

family (FT, erT) of semistable fratned modules. Let m 'be still the number chosen at

the beginning of this section. Then V := pr.(FT 0 pxOx(m)) is a locally [ree sheaf

of rank Po(n1.) on T, anel PTV -t FT is surjective. Moreover, the framing O'T induces

a horlloIllorphistn (lT : V -+ CJr @ HO(D(rn)). Covering T by sInall enough open
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subschemes Ti, we can find trivializations V 0 CJTi --+ VITi' 'fhe cornposition with

these trivializations gives hOInomorphisms qi : V ® OTiXX --+ FT• and ai : 1/0 CJTi --+
HO(D(rn))®OTi' which in turn lead to Inorphislns fi : Ti --+ Z' C H x P. Moreover,

by· proposition 3.2 fi(Ti) C ZH c Z'. The trivializations of V over the intel'section

Tij of two open sets Ti and Tj differ by a morphism 9 : Ti; --+ GL(V), in thc sense

that fdTiJ' = 9 . fjlTii" Therefore, if 7r elenotes the geometric quotient ZSS --+ MS",
the morphisms 7r 0 fi allel 7r 0 fj coincicle on Tij and thus glue to give a Inorphism

J : T --+ )\11"'"'. Ir the fanlily (FT, aT) consists of stable framed modules, then

obviously l(T) C M". This gives a natural transfornlation Mj"(X; D, P) --+ M"s.
lf N is any other scheIne with a natural transfornlation MjS(Xj D, P) --+ N, then

the tautologieal fatnily ovcr Z~S defines a SL(V)-invariant morphism ZS" --+ f\l,

which must factor through 7r anel a morphisln MH --+ N. This shows that MH
is a coarse moduli scheme. By taking etal slices to the SL( V) action on Z" we

can find an etal cover M' --+ )\11" over which a universal family (F', a') exists.

Let M" = M' XJ\lP )\..1'. Take an isonl0rphism CP : pi( F', a') --+ p;( F', a') whieh

is normalized by the requirement that pia' 0 CP = pza'. The uniqueness result of

lemma 1.6 implies that cp satisfies the cocycle condition of descend theory [M u, eh
VII].Therefore, (F', a') descends to a framed module on )\It s. Finally, the assertion

about the closed points of M"" is proved in proposition 3.3. 0

4 The deformation theory of framed modules

There are several ways to deseribe the tangent space of our Inoduli space MS( P, D)
at a point (E, a). One possible method is to identify the infinitesimal defornlations

with a certain cohomology group by using a cocycle calculation. In this case the

framed rnodule does not have to be stable. Regarding the notation this approach

tends to be rather Inessy and gives little insight. Therefore, we prefer to work with a

different teehnique. Starting out with the deseription of the Zariski tangent space of
tbe Hilbert scheIne Hilb(V 0 O( -m), P) due to Grothendieck and its modification

in our situation, we will describe the tangent space of MHP, D) regarding it as a ge­

ometrie quotient of a Sllbseheme of Hilb( V 0 O( -rn), P) x IP(Hom(V, HO (D(111.)))V).
In order to obtain a sInoothness criterion by using methods of Ran and Kawa­

mata ([Ka, R]) we explain the infinitesimal defornlations of franled modules over

X A := X x Spec(A) where A is an Artinian ring.

Theoren14.1 - Let [E,a] be a point in MHP, D). Consider E and E ~ D as
complexes which are concentrated in di7nensions zero, and (zero,one), 1'especlively.

i) The Zar-iski tangent space of M;HP, D) at a point (E, a) is natura/ly isomor-
er

phic to the hyper-Ext group TExtl- (E, E -+ D).
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ii) If the second hypel'~Ext group IExt;'«(E, E ~ D) vanishcsJ then MHP, D) lS

smooth at [E, a].

Proof i) The Zariski tangent space of the Hilbert scheme

In order to introduce some notations and to make the whole proof more accessible

we recall the description of the tangent space of Hilb(1-l, Po) at a point [q : tt --+
--+ E], where tt is an A-flat coherent sheaf on X A and E is an A-flat quotient

of 1{ with Hilbert polynomial Po. Let A[e] := A[x]/(x2
) and S := Spec(A[eD.

Then by definition the Zariski tangent space of Hilb(1-l, Po) at q is isomorphie to

Hornq(S, Hilb(1-l, Po)), the space of all A-morphisms S --+ Hilb(1-l, Po) such that

Spec(A[e]f(e)) is mapped to q. By the universal property of the Hilbert scheme it
can also be described as the set of a.ll S-ftat quotients ij : tts-+1i with ij :::: q rnod(e).
By H s and qs : Hs--++Es we denote the pull-back of 1-l and q : 1i---++E, respectively,
under the natural projection X s --+ X A . Grothendieck showed that there is a natural

isomorphism

where JC := kerq. The second isomorphism follows from the facts that c E Anns(JC)
and e . Es ~ E as Oxs-rTIodules. The first isomorphism is established as folIows:

If q : tts --++ E is a quotient over X s and K is its kernei, then the image of the
- qs

composition JC C tts ---+ Es is contained in ker(Es--+tE) ~ c· Es. Since e2 = 0, this

map factors through K---++K. Hence we obtain an OXA-holl10morphism / : K, --+ E.
The inverse of this map is given by

1 f-t K := p-t(JC) n ker(qs +1 0 p),

where p is the natural surjection tts--++1-l. First, one checks that this is in fact inverse
to the map defined above. Then one shows, that the induced quotient 1-ls--++1-lsfK
is Rat over Sand extends 1i---++E.

ii) The Zariski tangent space of Z'

'vVe recall that Z~ C Hilb(V ® OXA(-ln), Po) x IP(Hom(V ® OxA(-rn),DAt)
is the subscheme which represents the functor which associates to each A-scheme

T the set

q - - ä - .
{(V~OxT(-m) -t E,E -t DT)IE is T-ftat with Hilbert polynornial Po}

Write tt := V ~ OXA ( -ln) for short. Since any honlomorphism 1-ls --+ Ds which

extends a : tt --+ DA can be written in the form

h +h'e f-t a(h) +e(a(h') +S(h)),
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it nattlrally induces an element 0 E Hom(1i, DA), and vice versa. An element of

1P(Hom(1is, Dsr) defines a homomorphism 1is -+ Ds up to Iuultiplication with

units. These act by (,.\ +pe)(a + Oe) = ,.\a +e(pa + '\0). Thus the Zariski tangent

space of 1P(Hom(1i, DA)V) at a point [al can be described as Hom(1i, DA)/A . a.
Now we claim that the Zariski tangent space of ZA at a point (q, a = 0' 0 q) can be

naturally identified with the space

W := {(-y, <5) E Hom{K, E) EI1 Hom{1l, DA)/A . a la 0 'Y = <5k } .

This can be seen as follows: Since ak = 0, this subspace is weIl defined. A pair

(,,0) E I-Ion1(K, E) EB Hom(1i, DA) defines an extension

o ---+ f, ---+ 1-ls~ t ---+ 0

of

O---+K---+1i....!4E---+O

and a hOIuomorphism a : 1is -+ Ds extending a. It deRnes a point in the Zariski

tangent space of ZA if anel only if aLe = O. The elements h +h'e E 1is contained in

K. are elescribeel by the two conditions q(h) = 0 anel ,(h) + q(h') = 0 (cf. i)). The

hOIuOluorphislu a is given by

h + h'e f-t a(h) +e(a(h') +o(h)).

Since alK = 0, the condition aLe = 0 is satisfied if anel only if

a(h') = <5 (h) f01' aIl h, h' wi th ,(h) = q(h') .

Composing with 0', using 0' 0 q = a anel the surjectivity of q, we conclude that

aLl(; = 0 is equivalent to 0' 0 f = JiA:.
iii) The Zariski tangent space of the quotient

In order to describe the tangent space of the quotient we first have a look at the

orbits of the Aut(1i)-action. Again we use H. := V 0 (9X A (-rn). Let us start with

the Aut(1i)-action on Hilb(1i, Po). It is given by

Aut(1i) x Hilb(1i, Po)

(,\ q : 1i--+tE)

---+ I-lilb(1i, Po)
.>. q

f-t (1i -+ H -+ E).

Analogously, the Aut(1i)-action on Z~ is given by

.>. q .>. a
('\, q : H--+tE, a : 1i -+ DA) f-t (H -+ 11. -+ c,11. -+ 11. -+ DA)'

The tangent map of the orbit map fq : Aut(1i) ---+ Z~ at a point (q, a) cau be

describeel as the composition

T fq: End(H)
1j;

---+ Hom(H, E)
f-t qo7/J
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Thus the tangent space T(q,a) of ZA/ Aut(H) at a point (q, a) is naturally iSOITIOrphie

to the quotient Hf/im(T fq). If, as we assume, [q, a] is a sta,ble point in ZA, then
proposition 3.2 shows that HO(q(m)) : HO(H(rn)) -t HO(E(m)) is surjeetive, hence

the natural hOITIOrTIorphislTI End(H) -t Hom(1i, E) is surjective, tao. Therefore T(g,a)
Cl'

is naturally isomorphie to Horn/{ (Je -t 'H, E ----t DA), the set of homomorphisms of

complexes from I( --+ 1i to E -t DA up to homotopy. We know that Ext 1(1-l, E) ~
\IV 0 HI(XA,E(rn)) = 0 for a stable point (q,a) and, using this fact, want to show

that

HomK(1C --+ 1-l, E~ DA) ~ IExtl(E, E~ DA)'

The general reference for the hyper-Ext groups is [Hl]. Since E, considered as

a cOITIplex concentrated in zero, is quasi-isomorphie to (I( --+ 1i)[-1], the group
Cl' Cl'

IExtl(E,E ----t DA) is isomorphie to IHom(K -t H,E ----t DA), the group of homo..

morphisms in the derived category. Thus it is enough to show that the natural

hOInolnorphisIn

is bijeeti ve.
Cl'

"Ve begin with the surjectivity. An element <p E IHom(Je --+ 1-l, E ----t DA) is given
Cl'

by a quasi-isoIl10rphism lvIe --+ (Je --+ H) and a homomorphisln Al· --+ (E ----t DA)'
Obviously, we can assume that AtJ· is concentrated in zero and one. From the

diagram of short exact sequences

O-t Je --+ 11. ---+ E --+0

t t =t

0---+ !vlo --+ k[l ---+ E -+0

we deduce

HOIl1(Je, E) --++ Extl(E, E) -+ Ext l(1l, E) = 0

=t t
Hom(K, E) -t HOIn( 1\1° , E)

t
HOIl1( N!I, E)

so that I-Iom(Je, E) -+ Hom(A1°, E)/HOIn(ly!l, E) is surjective. Therefore the given
Cl'

homomorphism Air· --+ (E ----t DA) is hon10topic to another one with the property

that 1'1° -+ E is composed of A1° -+ Je and a homomorphism Je --+ E. Sin1ilarly, we

get the commutative diagram

-+ Ext1 (E, DA)
=t

-t ExtI(E, DA)

-+ Hom(K, DA)
t

-+ Hom(l\;[O, DA)

HOIll(1-l, DA)
t

---+ Hom(Atlt, DA)

Hom(E, DA) -+
=-!-

Hom(E, DA)
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and ean find a homomorphisl11 11. ----t DA whieh makes the diagram

MO ---+ K ---+ E
+ + 0+

MI ---+ H ---+ DA

comn1lltative and such that the composition A1 1 ----t H ----t DA is the given homoIllor­

phisITI. In other words, we have found a preiITIage of <.p under

o
Finally, we prove the injectivity. Let (f' 0) : (K ----t H) ---+ (E --+ DA) be

a hOm0l110rphism which vanishes in the derived eatcgory, i.c. there is a quasi­

isomorphislTI (1\10 ----t 1\1 1
) ---+ (Je ----t H) such t hat t hc COlnposi t ion wi th (f' 0) is

hOlllotopic to zero. Using the diagranl

----t Ext I ( E, E)
;;;;t

----t Exe (E, E)

----t HOIn( 1\10
, E)

t

----t Hom(Je, E)

----t Hom( MI, E)
t

Hom(H, E)

Honl(E, E)
=t

Hom(E, E) ----t

we ean lift the homotopy All ---+ E to a homomorphism H ---+ E which makes

Cr,o) homotopic to zero. Hence we have shown the injeetivity.

iv) The smoothness of the moduli space

Here we want to use recent results by Kawamata and Ran [Ka, R]. They proved

in a very general context that the Tl lifting propcrty inlplies the smoothness of the

deformation spacc. In our situation this means thc following: Let An := k[t]/ (tn+1
)

and let (En,an) be a framed 1110dllie over X An . Let TI((En,O'n)/An) be the set of

infinitesimal deformations of (En , O'n) and

be the natural map induced by

An ® k[e:] ---t An- 1 ® k[e:]
~ k[t, t:]/ (tn+1

) ~ k[t, e:] / (tn),

where (En- h O:n-d == (En, an) m,od(tn). The Tl lifting property is satisficd if a11

these maps T~ are surjectivc. Let (En,an) be astahle franlcd module, i.e. (En, an) E

;\lt5(P, D) (An), and (En,an) = (E, a) rnod( t). Then we have seen that

Therefore, in order to prove that MHP, D) is sll100th at (E, Ci) it is enough to show

the surjectivity of thc natural Inap
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As in [Ka] we apply the functor IExt~ (En ,.) to the exact sequcnce
An

--+0

On-1 On-I

and use IExt1- (En , En- 1 --+ DA -I) ~ IExt \' (En - 1 , En - 1 --+ DAn_I) to see
An n AAn_1

o
that the cokernel of T~ is contained in IExt 2(E, E ----t D). Hence T~ is surjective if

this Ext-group vanishes. 0

We cOlllplete this section by presenting a couple of exanlples anel cOlllparing our

result with thc known ones in these cases.

Exalnples:

. a .
Obviously, ifD = 0, then IExt~(E,E ----t D) ~ Exe(E, E). This is the infinites-

ilnal description of the moduli space due to Grothendieck and Mal'uyanla.

CI'

In the case D ~ 0 x anel E locally free the tangent space IExt I (E, E ----t D)
is iSOl110rphic to m1(End(E) --+ EV). Such a framed 11loclule corrcsponds

to a Higgs pair (E\ a V E HO(X, EV)). The dcscription of the infinitesimal

defonnations of such pairs was given by Thaddeus for rank two vcctor bundles

on curves [Th] and by vVelters for line bundles [We].

Let D be the trivial vector bundle on a hypersurface Y ,Ebe locally free and

0' : E ---+D be induced by an isomorphism Ely ~ D. The tangent space of
o

the tnoduli space in this case is naturally isomorphie to IExt1(E, E ----t D) ~
H 1(X, End( E)( - V)). This was computed in [Le].
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