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Framed modules and their moduli

D. Huybrechts* M. Lehnf

This paper is a continuation of our previous work [HL]. There we discussed
pairs consisting of a coherent sheaf and a homomorphism to a fixed reference shealf.
This notion of a pair 1s wide enough to comprise various other notions of pairs as
in [Se, Le, Th, Ga, Be, BDW, Li. BD]: these differ essentially in the choice of the
reference sheaf only. Despite, or rather, because of the abundance of existing names
for these objects (framed vector bundles, bundles with level structure, stable Higgs
pairs, k-tuples), and in order to avoid the somewhat meaningless term ’pair’, we
chose the name ‘framed module’ for the objects discussed in this paper. In [HL]
we gave a stability condition for framed modules, which depends on a polynomial
valued parameter §. We constructed moduli spaces for framed modules that are
defined over curves or surfaces, but failed to do so for higher dimensional varieties,
mainly because of difficulties with proving boundedness properties of the involved
families of sheaves. In this paper we use techniques of C. Simpson to deal with the
problem in full generality. As a supplement to the construction we give a description
of the compactification of the moduli space of stable pairs and its tangent space and
prove a smoothness criterion.

Let (X, Ox(1)) denote a smooth projective variety, D a coherent Ox-sheaf and
§ a rational polvnomial with positive leading coefficient. A framed module is a
pair consisting of a coherent sheaf £ and a nonzero homomorphism o : £ — D.
A framed module of positive rank r is said to be stable (with respect to 4), if for
all nontrivial proper submodules £’ of rank ' the Hilbert polynomials of £ and
E’ satisfy the following conditions: Pgr < ’:_—'PE + =25, and Pgr < ';—’PE - :—‘6 if

re!

E’ C ker(a). A flat family of framed modules, parametrized by a scheme T of finite
type over the ground field &, is a T-flat coherent Oryx-sheaf £ together with a
homomorphism a : £ = Or @ D such that a, # 0 for all t € T. We call Pg — ¢ the
‘Hilbert polynomial’ of the framed module (£, a).

The main theorem then is this:

“The first author wishes to thank the Max-Planck-Institut fiir Mathematik,Bonn.
"The second author gratefully acknowledges the support of the Graduiertenkolleg " Geometrie

und Nichtlineare Analysis™. Humboldt-Universitat Berlin.



Theorem 0.1 — Let § € Q[m] be a polynomial with positive leading coefficient
and of degree < dim(X). There is a projective scheme M (X; D, P) which is
a coarse moduli space for the functor which associates to a scheme T the set of
tsomorphism classes of flat families of semistable framed modules defined over T with
Hilbert polynomial P. Moreover, there is an open subscheme M3(X; D, P) which
represents the subfunctor of families of stable framed modules, i.e. M3(X; D, P) is
a fine modult space. A closed point in M3P(X; D, P) represents an S-equivalence
class of semistable framed modules.

For the notion of S-equivalence see 1.14.

The paper is organized as follows: Section 1 contains the basic definitions and
properties of framed modules. In section 2 we prove the boundedness result which
is needed in the construction. Section 3 contains the construction of the moduli
schemes by means of geometric invariant theory and the proof of the main theorem.
Finally, section 4 discusses the infinitesimal deformation theory of framed modules.

Throughout the paper we will use the following convention: If the word ’(semi)-
stable’ occurs in any statement in combination with the symbol ’(<)’, then in fact
two variants of the statement are asserted at the same time: A ’semistable’ one
involving the relation '<’, and a ’stable’ one involving the relation ’<’. This allows
a more concise presentation and will hopefully not lead to confusion.

1 Semistai:)le framed modules

Let X be a nonsingular projective variety defined over an algebraically closed field
k of characteristic zero endowed with a very ample line bundle Ox(1). We denote
by d the dimension of X and by g its degree with respect to the embedding given by
Ox(1). Let D be a coherent O y-module and ¢ a polynomial with rational coefficients
and positive leading term. Then a framed module is a pair consisting of a coherent
Ox-module £ and a homomorphism o« : £ — D, called the framing of £, We
refer to ker(a) as the kernel of the framed module. Let e(a) = 1, if a # 0, and
equal to 0 else. We denote by Pg(n) = x(E(n)) the Hilbert polynomial of £ and
by P(g..) = Pe — ()6 the Hilbert polynomial of the pair (E,«). Similarly, we put
hO((£, a)(m)) = h°(E(m)) — e(a)é(m).

If £ is a coherent submodule of E with quotient £” = E/E’, then a framing
a : E — D induces framings @ = «|E' on £’ and ¢” on E": o” is 0, if o' # 0,
and is the induced homomorphism on E”, if o vanishes. E’ is said to be saturated
if (E",a") has torsion free kernel. With this convention the Hilbert polynomial of
framed modules behaves additively

P(E,a) = P(E:'ﬂr) + P(E“,a”)-



Definition 1.1 — A framed module (E, &) of rank r is said to be (semi)stable with
respect to & with reduced Hilbert polynomial p, if Pig o) = rp and for all submodules
E', 0 # E' # E, of rank ' with induced framing o the inequality Pigi ) (<)r'p
holds.

The ring of polynomials with rational coefficients is given the lexicographic order.
Here are some immediate consequences of the definition:

Lemma 1.2 — [f(F,a) is semistable, then its kernel is torsion free, i.e. @ embeds
the torsion T(E) of E as a submodule of D.

Proof. 1f T is the torsion part of the kernel of ¢, then in the inequality of the
definition r’ = 0 and o/ = 0, so that P11 = Pr and the inequality reads: »Pr <0,
which implies T' = 0. 0

Lemma 1.3 — Suppose E is a torsion module. If (£, a) is semistable, then it is
already stable, which in turn is equivalent to the assertion that « is injective and

Pg=4.

Proof. Semistability for a nontrivial torsion module requires Pgo) = PE—6 = 0.
O

Definition 1.4 — A homomorphism ¢ : (E,¢) — .(E’, a') of framed modules is a
homomorphism of the underlying modules ¢ : E — E’ for which there is an element
A € k such that o' o p = Aav.

Lemma 1.5 — The set Hom(( £, a), (E', ') of homomorphisms of framed modules
is a linear subspace of Hom(E, E'). If ¢ : (E,a) = (E', &) is an isomorphism, then
the factor A in the definition can be taken in k™. In particular, the isomorphism
o := A"l satisfies o' 0 pg = a. O

Lemma 1.6 — If (E,«a) and (E', ') are stable with the same reduced Hilbert poly-
nomial p, then any nontrivial homomorphism ¢ : (E, o) = (E',¢&') is an isomor-
phism. Moreover, in this case Hom((E, ), (£, ') = k. If in addition o # 0, or
equivalently, o # 0, then there is a unique isomorphism o with o o @y = a.

Proof. Suppose ¢ : (E,a) = (E',0') is nontrivial. The image ' := im{yp)
inherits framings 8 and 3’ when considered as a quotient of £ and as a submodule
of E', respectively. If 3’ # 0 then 3 # 0 and §' = A8 for some A # 0. In any case
one has:

rk(F)p £ Prgy < Prpny < tk(F)p.
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Therefore equality holds at all places. This implies because of the stability assump-
tions: E= F = E a=0oyp, ' =a', and § and ' differ by a nontrivial factor.
Hence ¢ is an isomorphism of [ramed modules. In order to prove the remaining
statements it is enough to show Aut(E,a) = k-idg. Suppose ¢ is an automorphism
of (E,a). Choose z € Supp(E) and let 4 be an eigenvalue of ¢ restricted to the
fibre £(z). Then ¢ — i - idg is not surjective at z and hence not an isomorphism,
which implies ¢ — - idg = 0. i

Lemma 1.7 — If deg(d) > d, then in any semistable framed module (E, ) the
framing a is injective or zero. Conversely, if « is the inclusion homomorphism of a
submodule E of D of positive rank, then (E, ) is stable.

Proof. Assume that o # 0. If £’ is any nontrivial submodule of the kernel of ¢,
then the semistability of (£, ) says:

rPg — ' Pg < —1'é.

The two polynomials on the left hand side are of degree d and have the same leading
coefficient. 1f deg(é) > d, this yields a contradiction. Similarly, if « is injective, the
inequality of the definition is strictly satisfied because of the dominance of 4. i

The last lemma shows that the discussion of semistable framed modules reduces
to the study of submodules of D, which is covered by Grothendieck’s theory of the
Hilbert scheme, if deg(§) > d. For that reason we assume henceforth that ¢ has
degree less than d and write:

§(m) = &, +6

(d—]_)' .+...+6da

the first nonzero coefficient being positive.

By the assumption on § the reduced Hilbert polynomial Pg /7 of any nontor-
sion framed module (F, «) has the same leading coefficient deg(X')/d!. Hence the
dominating terms in the stability inequality are the degrees of the modules. This
leads to a linearized stability definition which is related to the one given above in
the same way as the Mumford-Takemoto stability is related to that of Giescker and
Maruyama. Let

#(E, @) = (deg(E) — e(a)é1)/rk(E).

Definition 1.8 — A framed module (E,a) of positive rank v is said to be p-
(semi)stable with respect to &, if it has torsion free kernel and if for all sub-
modules E' with induced framing o and rank v’ satisfying 0 < »' < r, one has
W(E o) (Sl B, ).



Obviously one has the following implications between properties of a framed
module of positive rank:

p-stable = stable = semistable = u-semistable.

Remark 1.9 — In fact, even stable [ramed modules may contain torsion submod-
ules. The following simple trick allows to make use of results about torsion free
sheaves in the study of framed modules: Choose once and for all a fixed locally free
coherent module D and a surjective homomorphism ¢ : D - D, its kernel being
denoted by B. Then to each framed module (E, @) we can associate a commutative
diagram with exact rows and columns:

0 - ker(a) —

0 — ker(a) —

o= Dol o
4
" e S e A B =)

The second row of the diagram shows that £ is torsion free if the kernel of « is
torsion free, hence in particular if (F, ) is p-semistable. This construction works
as well with a flat family (£7, ar) of framed modules parametrized by a noetherian
k-scheme T if we replace D by Dy = D ® Op. Then [:TT is again flat, and for every
point t € T the kernel of «; is torsion free if and only if E, is torsion free. By (M1,
Prop. 2.1] torsion freeness is an open property and we get as a corollary:

Corollary 1.10 — [f(E7,ar) is a flat family of framed modules, parametrized by
a noetherian k-scheme T, then the subset of pointst of T for which ker(ey) is torsion
free is open in T'. m]

Lemma 1.11 — If (E,«) is a framed module that can be deformed to a framed
module with torsion free kernel, then there is a morphism ¢ : (E,a) = (G, ) of
framed modules, such that (G, ) has torsion free kernel, Pg = P, Pip.o) = Pa.p),
and finally ker(p) = T'(ker(«)).

This lemma logically corresponds to Lemma 4.2 in [Gi] and Lemma 1.17 in [Si].
Indeed, if @ = 0, the lemma of Simpson provides us with the required homomor-
phism. We make use of the trick above and follow Simpson’s proof closely:
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Proof. The assumption in the lemma means that there is a flat family (E7, ar)
of framed modules with the same Hilbert polynomial, parametrized by a smooth
curve T’ such that (Eg, ap) = (E, ) for some closed point 0 € T' and such that
(B4, o) has torsion free kernel for all ¢ # 0. We may assume that o, # 0 for all
t € T. Let &r : Fir = Dy = D ® Op be the flat family associated to (Er, ar)
by the process above. Then E, is torsion free for all t € T except £ = 0. Let
U C T x X denote the complement of the support Y of T'(ker(ap)) = T(o) and
7:U = T x X the inclusion morphism. Let E’ := 5.(E7ly). Then E’ contains no
T-torsion and therefore is T-flat. In particular, the fibre £ has the same Hilbert
polynorma.l as Fly. The canonical homomorphism Er — E' induces a homomorphism
¢ : By — E}, which is an isomorphism outside ¥. Since Dr is normal, &7 defines a
framing o' : B/ — D which coincides with &7 on U. As in the proof of Simpson’s
lemma, Ej is torsion free. Finally, B maps injectively to Ef, and setting G = E}/B
with the induced homomorphisms ¢ : Fg — G and §: G — D, we are done. 0

In analogy to the study of torsion free semistable coherent sheaves we will define
Jordan-Holder filtrations and the notion of S-equivalence for framed modules. We
begin with the following observation:

Lemma 1.12 — Let F C G C E be coherent modules and a a framing of /. Then
the framings induced on G/ F as a quotient of G and as a submodule of E/F agree.

Proof. If a|r = 0, then all framings of the modules in the commutative diagram

G -— E
4 3
G/F — EJF
are induced by a framing of E/F. If a|r # 0, then both the framings of G/F (as a
quotient of G) and of E/F are zero, so that again there is no ambiguity. !

This lemma allows to endow any subquotient of a framed module with a canon-
ical framing.

Proposition 1.13 — Let (£, ) be a semistable framed module with reduced Hilbert
polynomial p. Then there is a filtration

L, : 0=FE,CE,C..CE,=F

such that all the factors gri(E,) := ;[ Ei_y logether with the induced framings o;
are stable with respect to § with reduced Hilbert polynomial p. Any such filtration is
called a Jordan-Holder filtration of (E, ). The framed module

(gr(E), gr(e)) := Plgri(Es), o)

i

does not depend on the choice of the Jordan-Holder filtration.

6



Proof. If (E,«) is not stable, then there is a proper submodule (£, ') with
reduced Hilbert polynomial p, i.e. Pg/ o = rk(E£')p. Let (E’, ') be maximal with
this property. Then (£',¢’) is semistable and E/E’ with the induced framing is
stable. Inductively, we can construct a descending sequence of submodules such
that the factors are stable with reduced Hilbert polynomial p. Note that at most
one of these factors carries a nonzero framing. In particular all but possibly one
of the factors are torsion free. For rank reasons the descending sequence must be
finite. This gives the existence of a Jordan-Hélder filtration. Now suppose E, and
E, are two such filtrations. Let j be the smallest index such that £, C £}. Then
the canonical homomorphism

o: B — £ — E[E;_,

is nontrivial and is in fact a homomorphism of framed modules. Now (gri(£,), a1)
and (gr;(E,),a;) are stable. Hence by lemma 1.6 ¢ is an isomorphism of framed
modules. Moreover, there is a short exact sequence of framed modules

0— (E;_,a) & (E/Ey,0) = (E/E}, a) = 0,

abusing « as a generic notation for the induced framings. The filtrations of E/E}
and E}_, give rise to a filtration of I/ E,, whose graded object by induction on the
rank of F is isomorphic to the graded object of the filtration E,/F;. O

Definition 1.14 — Two semistable framed modules (E, ) and (E',') with re-
duced Hilbert polynomial p are called S-equivalent, if their associated graded objects
(gr(E), gr(e)) and (gr(E£'),gr(c’)) are isomorphic.

Obviously, if an S-equivalence class contains a stable framed module then it
contains no other modules.

2 Boundedness

The first step in the construction of moduli spaces of semistable framed modules is
to get a boundedness result for the family of semistable framed modules. In fact the
application of the Geometric Invariant Theory machinery in the following section
requires a slightly different notion of stability. We shall prove boundedness and
equivalence of the various notions at the same time.

Throughout this section let P be a polynomial and let r > 0 and pp be the rank
and the slope of any coherent Ox-module with Hilbert polynomial P.

Theorem 2.1 — There is an integer mq such that the following three properties
of a framed module (E,«) with Hilbert polynomial P and torsion free kernel are
equivalent for all m 2> my:



i) (E,«a) ts (semi)stable.

ii) P(m) < h°((E,a)(m)) and R*((E', ) (m)) (L)' P(m)/r for all submodules
(E',a") of rank v', 0 # E' # E.

iii) A°((E",a")(m))(2)r"P(m)/r for all quotient modules (E", ") of rank ",
E#E"#0.

Moveover, for any framed module satisfying these conditions, E is m-regular.

The families of framed modules having torsion free kernel and satisfying the weak
version of one of the conditions i) - iii) are denoted by §°, S} and S/, respectively.

We shall prove this theorem by reducing it to well-known results in the theory
of semistable torsion free coherent sheaves. In particular we will need the following
results due to Maruyama and Simpson:

Lemma 2.2 (Simpson) [Si, Lemmal.5|— Let r be a positive integer. Then there
is a positive constant ¢ such that for every u-semistable coherent Oyx-module F of
positive rank < r and slope i one has

iifg = gd-lld!([" ),

where [z]+ = max{z,0} for any real number . m]

See also [LeP, lemme 2.4]). Please note the difference in the notation: In Le
Potier’s paper the slope p of a d-dimensional coherent sheaf is defined as the quotient

b/a where
n+d—1 n+d-—2
P(n)—a( J )+b( d-1 )-I-

is the Hilbert polynomial. Even though this makes computations more elegant, we
stick to the conventional definition that the slope is the quotient of degree by rank.

If F is no longer u-semistable, let 0 C F, C ... C Fy = F be the Harder-
Narasimhan filtration of F' with u-semistable factors G; = F;/ F;_ of rank r;. Then
hO(F) < 3, h°(G;), and if one applies Simpson’s formula to each of the factors G;

one gets:
R(F) 1 | o
k(F) < gé-1d! ((1 - m)([ltmax(F) +cl4)" + r—k—(-ﬁ—)([pmin(}?‘) + C]+)d) .

Here fimax(F) and gmin( F) denote the maximum and minimum value of u(G;).



Theorem 2.3 (Maruyama) [M3]— Let P be a polynomial and C a constant.
Then the family of torsion free coherent Ox-modules F with Hilbert polynomial
Pr = P and pmax(F) < C s bounded. O

Lemma 2.4 — There are integers C and my such thal for all framed modules
(E,a) in the family S = §° U Upsm, Sy, and for all saturated submodules (E', o)
the following holds: deg(E') — r'up < C, and either —C < deg(E') — r'pip or

RO((E', & )(m)) < r'P(m)/r , if (E,a) is in 8* and m > my; and
' Plr < Pgnam , if (E ) is in 8] for some m > m;.

Here v’ and r" denote the rank of E' and E" = E[E’, respectively, as usual.

Proof. Let ¢ denote the same constant as in lemma 2.2 and L the coefficient of
m?~1/(d — 1)l in P(m)/r. Choose C sufficiently large so that C > &, + deg(T'(D))
and . .

ip+c+ (1 - ;)(51 - ;EC + deg(T(D)) - L <.

Up to the factor (d — 1)! this is just the leading coefficient of the polynomial
G + Pr(p) — P/r, where

1 1 1
G(m) ! ((1 - ;)(mg +pp + 8 + )+ =(mg + pup — ;C + c)d) .

- gi-ld! T
Let m, be an integer large enough so as to satisfy the following conditions: T(D) is
my-regular,

C
1711g+;tp+c—;->0

and for all m > m, one has G(m) + Pr(py(m) < P(m)/r and §(m) > 0. Now let
(E, «) be a framed module in either of the families S* or §,,, m > m,, and assume
that (E’, ¢’} is a saturated submodule of rank . Then any torsion of I’ or E” is
embedded into 7'(D) by o' and «”, respectively. If ' = 0, then 0 < deg(E’) <
deg(T(D)) < C;if r" =0, then

r'up — C < deg(E) — deg(T(D)) < deg(E') < deg(E) <r'up + C.

Thus we can restrict ourselves to the case 0 < r’ < r.

a) Suppose (E, ) is p-semistable. Then by definition deg(£’) < r'up + 6 <
' up +C and pmax(E'/T(E")) < up -+ 8;. If E' fails to satisly —~C < deg(£') —r'pep,
then there is also a bound for the minimal slope: pmin(E'/T(E")) < pp — C/r.
We have h°((E’,a')(m)) < R°(E'(m)) < RY(T(E')(m)) + h°(E'/T(E")(m)). The
first term can be roughly bounded by h%(T(D)(m)) = Pr(p)(m), the second one by



iterated application of lemma 2.2 to the factors of a Harder-Narasimhan filtration

of E'/(T(E")):

h ((E /I:(',E ))(m)) < gd—lld! ((1 - %;)([ﬂ'max 4+ mg + c]+)d + %(D‘min + myg + C}+)d)
< gd—_llm ((1 - %)([up + 6 +mg + )’ + %([#P - %Jr myg + C]+)d)

= G(m)

for all m > my. Tt follows: h°((E’, o')(m))/r" < G(m) + Prpy(m) < P(m)/r.

b) Suppose now that (E, ) belongs to SZ. Let pnax and g, denote maximal
and minimal slope of E”/T(E"). Then we have for all m > m,;

G(?H) < P(:TL) - PT(D)(m)
RO(E", ") (m)) _ RAT(D)(m))  RO((E"/T(E"))(m))

S " - "
r r
1

1 1
< g_d——T(ﬁ ((1 - ;ﬁ)([i‘mux +mg + C]+)d + F([ﬂ‘min +mg+ c]+)d> .

r”

This must hold in particular, if £” is replaced by the last factor of the Harder-
Narasimhan filtration of E"/T(E"), showing that pmin = pp + (1 — %)(51 — % From

this one infers:

deg(E') = deg(F) - deg(E")

1. C
< rpup b =1 (#p + (1= 2~ —)

r?

IN

& C
r'up+—+ = <r'up+C.
roor
And if F’ fails to satisfy —C < deg(E’) — r'up, then
deg(E") > deg(E) — deg(E') > r"'up + C > r"up + &4,
which implies Pgu o /r" > P/r. O

Lemma 2.5 — Let Si denote the family of kernels of framed modules in S. The
families S and Sk are bounded.

Proof. Assume that (E, «) belongs to S, and let E be the torsion free module
obtained as fibred sum of « and ¢ : D — D. Then Pg = Pg + Pp does not depend
on (£, ). Moreover, if [ is any nontrivial submodule of £, let F' denote its image
in £ and Fg = F'n B. Then by lemma 2.4:

deg(F) _ deg(F) _ rk(F)

KB ok(F) ()"

max(B) < C +pup + Hmax(B)-
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Therefore by Maruyama’s theorem 2.3 the family of modules E is bounded. Since
the modules £ are quotients of the modules E with fixed Hilbert polynomial P,
they form a bounded family, too. Hence there is a k-scheme T' of finite type and a
framed module (E7, ar : Er — Or @ D), such that the restrictions to the fibres of
X xT — T contain the family §. Cutting T into smaller pieces if necessary we may
assume that Fr as well as the cokernel of ar are flat over T', so that the operation
of taking the kernel of a framed module commutes with base change. This shows
that the family Sk is also bounded. O

The last ingredient for the proof of theorem 2.1 is the following lemma:

Lemma 2.6 (Grothendieck) — If D is a bounded family of modules F, then the
family of torsion free quotients F" of the modules F salisfying a uniform estimale
| deg(F")| < C” is also bounded.

Proof. [Gr, lemme 2.5] O

Lemma 2.7 — The family So of saturated submodules (E', ') of any framed mod-
ule (F,a) in § with the property |deg(E") — r'up| < C is bounded. In particular,
the set H of Hilbert polynomials of any such submodule is finile.

Proof. Let (E,a) belong to S and let (£',a) be a submodule satisfying the
properties of the lemma. If we associate to (£, a') the module ' = E/E’, if o’ # 0,
and F' = ker(a)/E' otherwise, then these modules F' are torsion free quotients of
modules of the bounded family & U Sk and have degrees absolutely bounded by

|deg(F)| < C + rlpp| + Egég)ék{deg(l?)}

According to Grothendieck’s lemma they form a bounded family, and a posteriori
the same is true for the modules £’ themselves. O

Lemma 2.8 — There is an integer mq such that for any m > mq and for any
module (E',c') in Sg one has: r P oy ()P if and only if v Pgr on(m)(<)r' P(m).

Proof. The set that consists of P, and of all polynomials of the form p or p— ¢
for p € H is finite and contains all possible Hilbertpolynomials Pz o). a

Proof of theorem 2.1. Let mq be an integer greater than max{m;, m,} and such
that all modules in any of the families §, S or Si are mg-regular.

First assume that ([, ) is a framed module belonging to &;, for some m > mg.
If (E”, ") is a nontrivial quotient and (£, o) the corresponding submodule, then

hO((E", ") (m)) 2 RO((E, a)(m)) = h°((E', &) (m))(2) P(m) ~ r'P(m)/r = r" P{m)/r.
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Hence obviously ii) = iii).

Assume now that (E, «) belongs to §* and that (£, @) is a saturated submodule.
If (F', ') belongs to Sp then

RO((E', o )(m)) = Pipr.an(m)(S)r' P(m)[r = r'h°((E, a)(m))/r.

If it does not belong to Sy, then the second alternative of lemma 2.4 applies and
gives the even stronger relation

RU((E', ') (m)) < 7' P(m)/r.

The condition that (E’,o’) be saturated can obviously be dropped immediately
without any harm. This proves i} = ii).

Finally, let (E, ) be in 87, m > myq, and let (E”, ") be a quotient module.
First assume that (£”, ") has torsion free kernel. Then either 7" P/r < Pgn qn)
or the other alternative of lemma 2.4 applies and, since F,E’ and E” then are m-
regular,

' P(m)[r(S)R((E",a")(m)) = Pin am(m).

By lemma 2.8 this implies 7" P/r(<)Pgn o). Again the condition that ker{a”) be
torsion free can be dropped. This proves iii) = i) and finishes the proof. a

As a corollary to the proof we note the following lemma, keeping the notations
of the theorem:

Lemma 2.9 — [f (E,«a) is a semistable framed module, m > mg an integer and
(E',0') a submodule of rank r' such that h°((E',&)(m)) = r'P(m)/r, then (E', ')
is semistable with reduced Hilbert polynomial P/r. O

Remark 2.10 — It might seem that the choice of my depends in a controlled
manner on ¢ in the sense that mg could be chosen to work simultaneously for framed
modules that are semistable with respect to any polynomial &' with max;{|é; — 6|}
sufficiently small. But in fact, the proof of lemma 2.8 shows that the number of
polynomials & that we can simultaneously deal with must be finite. For a finite set
of &’s the proof does indeed go through.

3 Constructions

In this section we will give a construction for the moduli spaces of semistable framed
modules. If the framing is trivial, these are just the ordinary moduli spaces of
semistable torsion free sheaves. Therefore in this chapter we will always assume
that the framings are nontrivial unless the contrary is explicitely stated. Let %
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denote a numerical polynomial of degree d, P = Py, — 4§, and let » > 0 and up denote
the rank and slope of any coherent Oy-module with Hilbert polynomial P. Choose
some integer m > mgy (notations of theorem 2.1) and let V be a vector space of
dimension Py(m). For sufficiently large £ the standard morphisms

H:= Hib(V ® Ox(—m), R) — Grass(V @ H°(Ox(£ —m)), Po(€))
- IP(APO(V @ H(Ox(£ —m))))

are well-defined closed immersions. Let £ denote the corresponding very ample line
bundle on H. Finally, let P := IP(Hom(V, H*(D(m)))*) and let Z’' C H x P denote
the closed subscherne of points

([¢: V@ Ox(=m) = F,[a: V = H°(D(m)))])

for which the homomorphism a : V & Ox(—m) — D factors through ¢ and induces
a framing a : FF — D. The group SL(V} acts diagonally on Z’ and the line bundles

Oz (ny,ns) = pg L™ @ ppOp(n2)

carry natural SL(V')-linearizations. In the following discussion only the ratio n;/n,
matters, and we choose it to be

= PO

—4(0),

assuming, of course, that ¢ is chosen large enough so as to make this term positive.
With these notations we have the following proposition:

Proposition 3.1 — For sufficiently large £ the point ([q],[c]) € Z' is (semi)stable
with respect to the linearization of Oz/(ny,ng) if and only if the following holds: If
V' is a nontrivial proper linear subspace of V and F' C F the submodule generated
by V' ® Ox(—m), then

dim V' - (ny Po(€) 4+ n2)(L)dim V - (ny P (€) + nae(alr)).

Proof. A l-parameter subgroup A : G,, — SL(V) is determined by giving a
basis {v1,...,v,} of V, a weight vector v, i.e. a nonzero element (v,...,7) €
Z?, that satisfies the conditions v, € ... € 7, &7 = 0, and by setting A(%) -
v; = tYy; forall i < p. Let q: V@ Ox(—m) = F, a:V = H°(D(m)) be
homomorphisms representing the point ([¢],[a]) € Z’ and let o : F' — D denote
the corresponding framing. The appropriate value of ¢ will be determined in the
course of the proof. For the moment let W = H%(Ox(¢ — m)) and o = h°(F(¢))
for convenience sake. ¢ induces homomorphisms ¢ : V @ W — H°(F(£)) and

13



q" : AV @ W) = det HO(F(£)). If {wy,...,w} is a basis for W, then a basis for
A°(V @ W) is given by the elements of the form

ury = (vi, @w;, ) A ... A (v, @ wy, ),

where [ and J are multiindices satisfying iy <1441 and jo < jo41 if iq = 2441. Then
G, acts via A on A%V @ W) by

A(t) - upy = t"uyy, ¥ = Z’)’.’a.
(4

Now let pu(q”,A) := —min{v;|31,J with ¢"(u;s) # 0}. This number can be com-
puted as follows. Let ¢ denote the function ¢t — dim¢'({vy,...,v) ® W). Then

") = = 3 lli) = oli = 1)

Similarly, if we put p(a,A) = —min{yi|a(v;) # 0}, then p(a,A) = —~, where
r = min{t}a({vy,...,v:)) # 0}. Now the Hilbert-Mumford criterion [MF, Thm. 2.1]
says:

([q], [@]) is a (semi)stable point if and only if for all 1-parameter subgroups X one
has

n: P’(q"’ ’\) + g /t(aa ’\‘) (2) 0,

or, equivalently,

e ) — ol = 1) 4 30

The left hand side is a linear form on the set of weight vectors whose coefficients
are determined only by the choice of the basis. Keeping such a basis fixed for a
moment, it is enough to check the inequality for the special weight vectors

7(i)=(?_Pr"’i—Pai:"'?i)’ i:l,...,P—L

1 p—1

which span the cone of all weight vectors. For v{) the inequality above is equivalent
to

i+ (me+n2) () pr(me()+e(z)),
where €(2) := 1 if a({v1,...,v)) # 0 and 0 otherwise. Having got rid of the weights
we can now vary the bases, and since the inequality depends on the (lag ol subspaces
generated by any given basis rather than the basis itself, the criterion takes the
following form:

([q], [a]) is a semistable point if and only if for all nontrivial proper subspaces V'
of V one has

dim V' - (nyo + n2) (L) dim V - (n, dim{¢'(V' @ W)) + nae(V")),

14



where e(V') =1 if (V') # 0 and 0 otherwise.

Now let F' denote the submodule ¢(V' @ Ox(—m)) of F. The family of all
such submodules, including F' itself, for varying F and V', is bounded. Hence for
sufficiently large ¢, all these F’ will be l-regular, the equality ¢'(V'@ W) = A°(F'(¢))
holds and this vector space has dimension Pg/(£). In this case the framing o« : F' — D
vanishes when restricted to /" if and only if (V') = 0. Hence (V') = ¢(«|p). This
finishes the proof. 0

By lemma 1.10 there is an open subscheme U C Z’ consisting precisely of those
points that represent framed modules with torsion free kernel. If there are any
semistable framed modules with the given Hilbert polynomial at all (and otherwise

the present discussion is void), then U is nonempty and we denote by Z its closure
in Z'.

Proposition 3.2 — For sufficiently large £, a point ([¢],[a]) € Z is (semi)stable
with respect to the SL(V)-action on Z if and only if the corresponding framed module
(F,a) is (semi)stable and q induces an isomorphism V — H°(F(m)).

Proof. We keep the notations of the proof of the previous proposition. First of all,
observe that, if ([q], [e]) is a semistable point, the homomorphism V — HO(F(m))
must be injective. For if V' denotes its kernel, then ¢'(V' @ W) = 0 and (V') = 0,
so the previous proposition shows that dim(V’) < 0. Hence we can think of V as a
subspace in H%(F(m)). Since the family of modules F’ generated by an arbitrary
subspace V' of V is bounded, the set of polynomials Pgr is finite. Hence choosing
¢ large enough and thinking of the quotient ny/n; as a function of £, the inequality
in the previous proposition will hold for some specific value of £ if and only if it
holds as an inequality between polynomials in £. Substitute P - % — 8(m) for 2.
At this point we can drop the restriction on the submodules F' to be generated by
subspaces of V, and define V' = VN H?(F'(m)) for any nontrivial proper submodule
F’ ¢ F instead. Now we can rewrite the stability criterion as follows:

([q],[a]) is a semistable point if and only if for all nontrivial proper submodules
F' of F with induced framings o' = a|p the following inequality of polynomials in €

holds:
é(m)

P(m)

P(m)
Passing to the leading coeflicients of the polynomials one can derive the inequal-
ty:

dim V' (1 + ) r (S) Pg(m) (P(Ff,ar) + 6(0") 6(m’) P) .

dim V' — e(a')é(m)) < tk(F')P(m)/r.
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Thus for any quotient module F”’ = F/F' with the induced framing we get

RO((F”, o) (m)) > dim(V/V') = e(a”)6(m)
(dim V — e(a)8(m)) — (dim V' — e(e)8(mm))

P(m) — tk(FYP(m)/r = tk(F")P(m)/r.

v v

By the definition of Z the framed module (F, o) deforms into a framed module with
torsion free kernel, so that we can apply lemma 1.11 to F' and conclude that there
is a morphism of framed modules ¢ : (F,a) = (G, B) such that (G, 3) has torsion
free kernel, ker(¢) is torsion and such that Pr = Pg, e(a) = ¢(8). If (G”, ") is any
quotient of (G, 8), F” the image of F' under ¢ and the projection map, and o” the
framing of F'” induced from ¢, then one has

RO((G”, B"Y(m)) = RO((F", ") (m)) = tk(F")P(m)/r = tk(G")P(m)/rk(G).

According to theorem 2.1 (G, 3) is semistable. Applying this argument to (&, 8)
itself, one sees that in fact equality must hold at all places of this chain of inequalities
so that the image of ¢ has as many sections as (4, and since the latter is globally
generated the image is in fact equal to G. Since F' and G have the same Hilbert
polynomial, ¢ is an isomorphism. In particular, (F,«) is semistable and V —
H®(F(m)) is an isomorphism for dimension reasons.

Conversely, theorem 2.1 and lemma 2.9 state that if (F, ) is (semi)stable (and
q given by some isomorphism V — H°(F(m))), then for any nontrivial proper
submodule F’ of rank r’ one has h°((F”,a’)(m)) < r'P(m)/r unless both (F, &) and
(F',o') are semistable, in which case only equality holds. In the first case a strict
inequality of the leading coefficients will also give a strict inequality of polynomials

&(m) &(m)
O¢ !
h°(F'(m)) (1 + P(m)) P < Fy(m) (P(p o) T ela )P(m)P :
Hence if (F, ) is stable, then ([g}, [a]) is stable, too. If (F, «) is semistable but not
stable, again strict inequality will hold except the case of a destabilizing semistable
submodule (F/,a'). In which case h®(F’(m)) = Pp(m) and

§(m)
P(m)

This proves the proposition. O

() (1 + KDY P = Fom) Py + e s P )

Let Z* C Z** C Z denote the open subschemes of stable and semistable points
of Z, respectively. By the proposition above a point in Z(}* corresponds, roughly

speaking, to a (semi)stable framed module (F, ) together with the choice of a basis
in F°(F(m)).
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Proposition 3.3 — There ezists a projective scheme M*® and a morphism © -
2% = M?** which is a good quotient for the action of SL(V) on Z**. Moreover there
is an open subscheme M® C M® such that Z° = m='(M*) and 7 : Z° = M?* is a
geometric quotient. Two points ([q], [a]) and ([¢', @’]) are mapped to the same point
in M?*? if and only if the corresponding framed modules are S-equivalent.

Proof. The first two statements follow from proposition 3.2 and theorem 1.10 of
[MF]. As for the third it is easy to see that any semistable framed module (F, @)
corresponding to a closed point ([q],[a]) can be deformed into its graded object:
Suppose that (F’,¢’) is a destabilizing submodule, (£, a”) the quotient module.

Consider the following pull-back diagram of extensions parametrized by the affine
line Al

0 - FFeOs — F - F'®@0sm — 0

I 1 1 :
0 - F'Q@0pa = FRO0sa = F'@0Oa — 0

where ¢ denotes the multiplication with the parameter of A'. F inherits a framing
a:F — D®Oa from F" @ Opr if @ # 0 and from F @ Qa1 otherwise. Then
(Fo,a0) = (F,a) ® (F", &) and (Fy,a;) = (F, ) for all t # 0. Moreover, V :
(prai)«F is locally free of rank P(m) and we can choose an isomorphism V@ O
V. These data provide us with a morphism ¢ : A' = Z** such that (A' - {0}) lies
in the orbit of ([¢], [a]) and ¥(0) corresponds to (F’,a’) & (F", «"). Proceeding this
way we see that the closure of the orbit determined by a semistable framed module
contains points that correspond to its graded object. To finish the proof it is enough
to show that the orbits determined by polystable framed modules, i.e. those which
are direct sums of stable framed modules, are closed in Z°*; for closed orbits are
separated by good quotient maps. It suffices to show that if (Fr, fr) is a flat family

R 1

of semistable framed modules parametrized by some smooth curve T such that all
fibres (F}, B:), t # 0, are isomorphic to a given polystable framed module, then the
same holds for the special fibre (I, £p). We will need the following result:

Lemma 3.4 — Let (E, ) and (F,() be flat families of semistable framed modules
with the same reduced Hilbert polynomial p, parametrized by a scheme T of finite
type over k. Then the function

t = dimygy Hom((Ey, o), (Fy, Br))
is semicontinuous int € T.
Before proving the lemma, we finish the proof of proposition 3.3: Suppose,

(Fy, Bi) = By (i, :)® for t # 0. Note that precisely one of the ¢ is nonzero, say
for 7 = 0, and that then vy = 1. We have

dim Hom((Ey, e), (Fi, B:)) = v
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for all £ £ 0, hence the previous lemma implies
dim Hom(( £y, o), (I}, B:)) 2 vi.

Choose v; independent homomorphisms for each ¢ and using these define a homo-
morphism of framed modules

w: (Eo,00) ® é(Eé,O)EBW — (Fo, Bo).

i=1
Using lemma 1.6 it is easy to verify that ¢ is an isomorphism. a

Proof of the lemma. This semicontinuity statement can be proved with the usual
techniques. The corresponding statement for flat families of coherent sheaves can
be found in [BPS] for complex spaces and in [La for projective varieties. We give
a selfcontained proof. Since the problem is local, we may assume that 7" = SpecA,
where A is a k-algebra of finite type.

15t Step. Let E be any flat family over T. Choose a locally free resolution
L, — E of finite length. Let ¢ = {U;} be a finite affine open cover of X x T'. For
any Oxxr-module G consider the double complex

P9 = CP»‘I(E’ G) = H HOHI(Lp'U”GlU])

Hl=g+1

for p,q > 0 (here I = {iq,...,%,} is an ordered multiindex, U; = U, N...NU;, ) with
the canonical differentials d' : CP? — C?P+19 d” . CP7 — CP7H! induced from the
resolution of F and the covering 4. Let C*(G) = C*(E, G) denote the corresponding
total complex. There is a spectral sequence with £} = Ezt?(L,, G) converging to
h™(C*). Tor any G one has h*(C'*) = 0 foralln < 0and A°(C*) = Hom(E, G). I G is
also injective, then A*(C*) = 0 for all n > 0. Hence G +— h*(C*(E,)) is a universal
S-functor. Therefore h*(C*(E,G)) = Ext™(E,G). Assume now, that G is A-flat.
Then C*(G) is a complex of finite length consisting of A-flat modules and with
cohomology groups which are finitely generated as A-modules. For any A-module
M, one has C*(G ® M) = C*(G)® M. Hence h(C*(G) ® M) = Ext'y(E,G®4 M).
Note that if M = B is an A-algebra, then Exth(E ® B,G ® B) = Ext',(E,G @ B).
By lemma [H2, 111 12.3] there exist a complex M, ; of finite free A-modules bounded
from above and a quasiisomorphism Mg — C*(E, ). Following the arguments in
[H2, III 12], one can see that

t — dim(Ext?(Ey, Gy))

is a semicontinuous function.

gnd Step. Suppose B3 : F' — D is a homomorphism of flat families. Then there
is an induced homomorphism of complexes C*(E, F) — C*(E, D) which computes
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the induced homomorphisms of relative Ext groups. Let Mp := My, , — C*(E, D)
be a quasiisomorphism as above, and let

N* — My,
) 4
C'(E,F)y —» C*'(E,D)

be the fibred product. Then N* — C*(E, F) is a quasiisomorphism and N*® is a
complex satisfying the conditions of lemma [H2, ITI 12.3] as above, so that there is
an approximation Mp — N* by a complex of finite free A-modules which is bounded
from above. The composite homomorphism M}y — M}, has the property that the
diagram
K(Mp@M) —  hi(Mp® M)
o ol
EXt‘(E, F®a 11’[) — EXt'(E,D ®a A/f)

commutes for any A-module M.

grd Step. Suppose (£, «) and (F,3) are flat families of framed modules as in
the lemma. Let a € M) be a cycle that represents the framing o € Homa (£, D ®
Or) = h°(M}p). Then a gives a chain homomorphism a : A* — M}, where A*
is the complex with A° = A and A' = 0 for ¢ # 0. Consider the homomorphism
Y= (f,—a): Mg ® A* = M} and let C(¢) denote its mapping cone. From the

short exact sequence
0> Mp—=C) = (Mp@ A%)[1] =0
one gets the exact sequence
0=FEzt™(E,D® M) = h ' (C(¥)*® M) - Hom(E, F® M) ® M — Hom(E,D @ M).
In particular, for any ¢ € SpecA and M = k(2) there is a pull-back diagram

= (C(¥) @ k(1)) — k(1)
+ La
Hom( £y, F}) N Hom(£;, D @ k(t)).

Hence dim Hom({ E;, o), (F, 8¢)) = dim A~ {C(¥)* ® k(2)) — 1 + () is a semi-
continuous function. By assumption «; is zero either for all £ € T' or for none. This
finishes the proof. 0

Proof of the main theorem 0.1. Suppose T is a scheme parametrizing a flat
family (Fr, ar) of semistable framed modules. Let m'be still the number chosen at
the beginning of this section. Then V := pr.(Fr @ px Ox(m)) is a locally [ree sheafl
of rank Po(m) on T, and p3V — Fr is surjective. Moreover, the framing o7 induces
a homomorphism ar : V — Or ® H°(D(m)). Covering T by small enough open
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subschemes T;, we can find trivializations V @ Or, = V|r1.. The composition with
these trivializations gives homomorphisms ¢; : V@ Or;xx = Fr, and a; : VQOr, —
H°(D(m))® Or,, which in turn lead to morphisms f; : T; = Z' C H x P. Moreover,
by proposition 3.2 fi(T;) C Z** C Z'. The trivializations of V over the intersection
Ti; of two open sets T; and T} differ by a morphism ¢ : T;; = GL(V), in the sense
that filr,, = g- fi|r;. Therefore, if = denotes the geometric quotient Z°° — M?**,
the morphisms 7 o f; and 7 o f; coincide on T;; and thus glue to give a morphism
f: T = M* [If the family (Fr,ar) consists of stable framed modules, then
obviously f(T) C M?*. This gives a natural transformation M$*(X; D, P) - M*.
If N is any other scheme with a natural transformation M5°(X; D, P) = N, then
the tautological family over Z** defines a SL(V)-invariant morphism Z** — N,
which must factor through = and a morphism M** — N. This shows that AM**
is a coarse moduli scheme. By taking etal slices to the SL(V') action on Z* we
can find an etal cover M’ — M? over which a universal family (F’, o) exists.
Let M" = M’ x ps M’. Take an isomorphism @ : pi(F,a') = p3(F', o) which
is normalized by the requirement that pje’ o ® = pja’. The uniqueness result of
lemma 1.6 implies that ® satisfies the cocycle condition of descend theory [Mu, Ch
VII]. Therefore, (F”,a') descends to a framed module on M?. Finally, the assertion
about the closed points of M?*? is proved in proposition 3.3. ]

4 The deformation theory of framed modules

There are several ways to describe the tangent space of our moduli space Mj(P, D)
at a point (£, a). One possible method is to identify the infinitesimal deformations
with a certain cohomology group by using a cocycle calculation. In this case the
framed module does not have to be stable. Regarding the notation this approach
tends to be rather messy and gives little insight. Therefore, we prefer to work with a
different technique. Starting out with the description of the Zariski tangent space of
the Hilbert scheme Hilb(V @ O(—m}, P) due to Grothendieck and its modification
in our situation, we will describe the tangent space of M}(P, D) regarding it as a ge-
ometric quotient of a subscheme of Hilb(V ® O(—m), P) x P(Hom(V, H°(D(m)))").
In order to obtain a smoothness criterion by using methods of Ran and IKawa-
mata ([Ka, R]) we explain the infinitesimal deformations of framed modules over
X4 = X X Spec(A) where A is an Artinian ring.

Theorem 4.1 — Let [E,a] be a point in Mi(P, D). Consider E and E 5 D as
complezes which are concentrated in dimensions zero, and (zero,one), respectively.

i) The Zariski tangent space of M}(P, D) at a point (E,«) is naturally isomor-
=4
phic to the hyper-Ext group IExt\ (E, E — D).
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i1) If the second hyper-Ext group [Ext%(E, E 5 D) vanishes, then M}(P, D) is
smooth at [E,al.

Proof. 1) The Zariski tangent space of the Hilbert scheme

In order to introduce some notations and to make the whole proof more accessible
we recall the description of the tangent space of Hilb(H, Fy) at a point [q : H —
— £], where H is an A—flat coherent sheaf on X4 and £ is an A—flat quotient
of # with Hilbert polynomial Py. Let Ale] := Alz]/(z?%) and S := Spec(Ale]).
Then by definition the Zariski tangent space of Hilb(H, %) at ¢ is isomorphic to
Hom, (S, Hilb(H, Fo)), the space of all A—morphisms § — Hilb(#, Py) such that
Spec(A[e]/(e)) is mapped to g. By the universal property of the Hilbert scheme it
can also be described as the set of all S—flat quotients ¢ : Hs—& with § = ¢ mod(e).
By Hs and gs : Hs—»Es we denote the pull-back of H and g : H—E, respectively,
under the natural projection X5 — X 4. Grothendieck showed that there is a natural
isomorphism

T,Hilb(H, Fo) = Homy (K, e Es) = Homy , (K, ),

where K := kerq. The second isomorphism follows from the facts that ¢ € Anng(K)
and € - £ = £ as Ox —modules. The first isomorphism is established as follows:
If g : Hs—E is a quotient over Xg and K is its kernel, then the image of the
composition K C Hg =, Es is contained in ker(Es—»E) Z - Es. Since €? = 0, this
map factors through K—K. Hence we obtain an Oy ,-homomorphism v : K — £.
The inverse of this map is given by

v +— K := p~'(K) Nker(gs + 70 p),

where p is the natural surjection Hs—»H. First, one checks that this is in fact inverse
to the map defined above. Then one shows, that the induced quotient Hs—nHg/K
is flat over .S and extends H—+E.

ii) The Zariski tangent space of Z’

We recall that Z/, C Hilb(V @ Ox,(-m), o) X P(Hom(V & Ox,(—m), D))
is the subscheme which represents the functor which associates to each A—scheme
T the set

{(V&Ox,(—m) 4 £,& = Dr)|€ is T — flat with Hilbert polynomial Pp}

Write H := V @ Ox,(—m) for short. Since any homomorphism Hg — Ds which
extends a : H — D4 can be written in the form

h + kh'e = a(h) + e(a(h") + §(h)),
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it naturally induces an element § € Hom(H, D,), and vice versa. An element of
IP(Hom(Hs, Ds)¥) defines a homomorphism Hs — Dg up to multiplication with
units. These act by (A 4 pe)(a + d¢) = Aa + e(pa + AS). Thus the Zariski tangent
space of IP(Hom(H, D4)¥) at a point [a] can be described as Hom(H, D4)/A - a.
Now we claim that the Zariski tangent space of Z/; at a point (¢,¢ = @ 0 g) can be
naturally identified with the space

W= {(7,5) € Hom(K, £) @ Hom(H, D4)/A - a

aoy= 5|)c} .
This can be seen as follows: Since a|x = 0, this subspace is well defined. A pair
(7,6) € Hom(K, &) @ Hom(#H, D4) defines an extension
0Kk —Hs DHE—0
of
0—K—H-DE—D

and a homomorphism & : Hs — Dg extending a. It defines a point in the Zariski
tangent space of Z4 if and only if |z = 0. The elements & + h'e € Hg contained in
K are described by the two conditions g(h) = 0 and (h) + q(h’') = 0 (cf. i)). The
homomorphism @ is given by

h+ ke a(h) + e(a(h’) + 8(h)).
Since a|x = 0, the condition a|g = 0 is satisfied if and only if
a(h’) = &(h) for all h, A" with y(h) = q(h).
Composing with «, using a0 ¢ = a and the surjectivity of ¢, we conclude that
|z =0 is equivalent to oy = §|x.
iii) The Zariski tangent space of the quotient

In order to describe the tangent space of the quotient we first have a look at the
orbits of the Aut(H)-action. Again we use H := V @ Ox,(—m). Let us start with
the Aut(H)-action on Hilb(H, Fp). It is given by

Aut(H) x Hilb(H, P) — = Hilb(H, R)
(A, q:H»E) = HIHIDE.
Analogously, the Aut(H)-action on Z), is given by
A a
(Aq:HE a:H— D) (HoH - EHSHS D).

The tangent map of the orbit map f, : Aut(H) — Z} at a point (g,a) can be
described as the composition

Tf,: End(H) — Hom(H,&) — 4%
¥ - qoy = (qotlg,a0t).
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Thus the tangent space T{,q) of Z5/Aut(H) at a point (g, a) is naturally isomorphic
to the quotient W/im(T f,). If, as we assume, [q,a] is a stable point in Z4, then
proposition 3.2 shows that H°(q(m)) : H°(H(m)) = H®(E(m)) is surjective, hence
the natural homomorphism End(#) — Hom(%H, £) is surjective, too. Therefore Ty, .
is naturally isomorphic to Homg (K — H, € 5 D,), the set of homomorphisms of
complexes from K — H to € = D4 up to homotopy. We know that Ext'(H, &) =
VY@ H'Y(X4,E(m)) = 0 for a stable point (¢,a) and, using this fact, want to show
that
Homy (K — H,€ — D) = Ext!(£,€ = Dy).

The general reference for the hyper-Ext groups is [H1]. Since £, considered as
a complex concentrated in zero, is quasi-isomorphic to (K — H)[—1], the group
[Ext!(&, € 5 D,) is isomorphic to Hom(K — H, €& 5 Dy), the group of homo-
morphisms in the derived category. Thus it is enough to show that the natural
homomorphism

Homy (K = H,€ = D) — Hom(K — H,€ 3 D,)

is bijective.

We begin with the surjectivity. An elementy € Hom(K — H, & 5 D4) is given
by a quasi-isomorphism AM* — (K — H) and a homomorphism M* — (£ R Dy).
Obviously, we can assume that AM* is concentrated in zero and one. From the
diagram of short exact sequences

0 K = H —» & =50
1 T =t

0> M° -5 M' 5 £ =90
we deduce

Hom(K,&) —» ExtY(£,6) — Ext'(H,£) =0

=t T
Hom(K,£) — Hom(M?,E) ,
T

Hom(M?*, &)

so that Hom(K, &) — Hom(M?, £)/Hom(M*, £) is surjective. Therefore the given
homomorphism M* — (& N D,) is homotopic to another one with the property
that M°% — £ is composed of M® — K and a homomorphism K — £. Similarly, we
get the commutative diagram

Hom(€,D4) — Hom(H,Ds) — Hom(K,Di) — Ext'(€,Da)
=l 1 { =l
Hom(E, D4) — Hom(M',Ds) — Hom(M° D,) — Ext'(E,Da)
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and can find a homomorphism H — D, which makes the diagram

MY — K — £
1 4 al
MY — H — Dy

commutative and such that the composition M' = H — D, is the given homomonr-
phism. In other words, we have found a preimage of ¢ under

Hom (K — H,& = D4) — Hom(K — H, £ — Da).

Finally, we prove the injectivity. Let (v,4) : (K — H) — (€ N Da) be
a homomorphism which vanishes in the derived category, i.c. there is a quasi-
isomorphism (M° - M') — (K — H) such that the composition with (v,4d) is
homotopic to zero. Using the diagram

=t 1 1 =t

Hom(&,E) — Hom(M',&) — Hom(M°E) — Ext'(€,€)
Hom(£,E) — Hom(H,E) — Hom(K,&) — Ext'(&,€)

we can lift the homotopy M! — £ to a homomorphism H — £ which makes
(v,6) homotopic to zero. Hence we have shown the injectivity.

iv) The smoothness of the moduli space

Here we want to use recent results by Kawamata and Ran [[Ka, R]. They proved
in a very general context that the 7! lifting property implies the smoothness of the
deformation space. In our situation this means the following: Let A, := k[t]/(t**)
and let (&,,a,) be a framed module over Xy4,. Let T((&,, @n)/As) be the set of
infinitesimal deformations of (&, a,,) and

Tn : TH((Eny o)/ An) = TH((Enr, n1) [ Anci)
be the natural map induced by

A ®@kle] —  Ani @Kle]
> k[t,e]/(t*) = k[t e]/ (1),

where (E,_1,0n_1) = (En,n) mod(t"). The T! lifting property is satisfied if all
these maps T'! are surjective. Let (£,, @,) be a stable framed module, i.e. (&, an) €
M3(P, DY(A,), and (En, ) = (E,a) mod(t). Then we have seen that

TY((Eny 0m)/An) & Ext}(Eq, En — Da,)-

Therefore, in order to prove that M$(P, D) is smooth at (E, «) it is enough to show
the surjectivity of the natural map

[Extl, (€a,En — Da,) — Extl, (Eact, & 2 Da )
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As in [Ka] we apply the functor [Exty (&, . ) to the exact sequence

0—» FEF = & = Eni -0
al anl ap-14
0= D = Ds — Ds,, —0

Op—1

and use Exty, (&n, &t =5 Dy,_,) & IExty, (G, Eact = Da, ) to see

that the cokernel of T} is contained in IExt*(E, E 5 D). Hence T, is surjective if
this Ext-group vanishes. o

We complete this section by presenting a couple of examples and comparing our
result with the known ones in these cases.

Examples:

- Obviously, if D = 0, then Ext*(E, E R D) = Ext*(E, E). This is the infinites-

imal description of the moduli space due to Grothendieck and Maruyama.

- In the case D = Ox and E locally free the tangent space IExt'(E, E 5 D)
is isomorphic to H'(End(E) — EY). Such a framed module corresponds
to a Higgs pair (E¥,a" € H%X,E")). The description of the infinitesimal
deformations of such pairs was given by Thaddeus for rank two vector bundles
on curves [Th] and by Welters for line bundles [We].

- Let D be the trivial vector bundle on a hypersurface Y, £ he locally free and
o« : E — D be induced by an isomorphism F

y = D. The tangent space of

the moduli space in this case is naturally isomorphic to [Ext!'(F, E 5 D) =
HY(X,End(E)(—Y)). This was computed in [Le}.
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