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Summary.

A theorem of P.Gauduchon states that an arbitrary hermitian
metric on complex surface has a conformal rescéling such that
the associated Kihler form is then 33-closed. Given such a

form, the degree of a holomorphic line bundle can be defined

in the usual way and with that, the notion of stability in the
sense of Mumford and Takemoto for torsion-free sheaves. It is
proved here that an indecomposable holomorphic vector bundle

on the surface is stable iff it admits an irreducible Hermitian-
Einstein connection, where "stable" and "Hermitian-Einstein" are
both with respect tova given positive 33-closed (1,1)-form. This
generalizes a result of Donaldson, who proved this theorem in
the case of algebraic surfaces in IPN equipped with a Kihler
metric whose Kihler form is cohomologous to that of the Fubini-

Study metric.



1. Introduction

Let X be a compact complex manifold of dimension n and
E be a holomorphic vector bundle on X . It is well-known ([21)
that to each hermitian metric on E there is a unique hermitian
connection inducing the j-operator on E ; the curvature F of

this connection is an anti-self-adjoint section of A1’1

® EndE .
If ho,h1 are metrics on E , then the resulting curvatures are
related by F, = F0+§o(u-1aou) , where u is the positive self-
adjoint endomorphism u = ha1h1 . Conversely, a unitary bundle
with smooth unitary connection having curvature of type (1,1)
inherits a unique holomorphic structure by the Newlander-Nirenberg
theorem.

If X has a Kidhler metric and « 1is the Kdhler form, then
the Yang-Mills equations for connections of this type reduce to
dF = 0 , where E‘::*-(n—lT)-!

and connection split up into the eigenspaces of the endomorphism

n-1

(Faw ) . In this case, the bundle

F , so if the connection is irreducible or if E is simple, then
F

= iA1 for some A €IR . Such a connection, introduced by

Kobayashi and by Hitchin, is called Hermitian-Einstein (H-E) .

_ 2w .
g = " Tacv ~ ME

where V =Vol(X) and u(E) := (c1(ElMP_1)[X]/rank(E) .

The constant X 1is determined by .c1(E): A= A

The quantity u(E) also features in the algebra-geometric

notion of stability: E is (semi-)stable in the sense of Mumford

and Takemoto if every coherent subsheaf S < 0(E) with
0 < rank S < rank E satisfies u(S) < p(E) (u(s) s u(E)) . (The
definition of yu for sheaves is given in section 3 below).

In [16], Narasimhan and Seshadri proved that an indecomposable
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holomorphic bundle on a Riemann surface is stable iff it admits
an irreducible H-E connection. This result was later reproved
by Donaldson [4] by a different method. About the same time,
Kobayashi [13] and Liibke [15] showed that if a bundle on an
arbitrary compact Kihler manifold admits an irreducible H-E
connection, then it is stable. In [5], Donaldson showed in the
case when X is an algebraic surface X c;_>IPN and ® is
cohomologous to the restriction of the Fubini-Study form, the
converse is also true. Recently, Uhlenbeck and Yau [22] have
proved the general n-dimensional K&hler version of this theorem.
The case when X 1is a compact complex surface is perhaps
the most interesting, for it is in this case that the differential
topology of the underlying 4-manifold is intricately connected
with this problem. For example, using a deep application of his
results in [5], Donaldson has given a counterexample to the
5-dimensional h-cobordism conjecture [6]. The interaction between

the complex and real analysis stems from the fact that H-E

connections on bundles with u 0 are precisely the anti-self-
dual Yang-Mills connections.

In the case of complex surfaces, the notion of stability
can be extended somewhat: given an arbitrary hermitian metric on
X , a theorem of Gauduchon [7]vstates that there is a conformal
rescaling of the metric, (unique up to a positive constant), such
that the associated Kihler form o satisfies 30w = 0 . If L
is a holomorphic line bundle on X , the dégree of L (with respect
to w® ) can then be defined by deg(L) = deg(L,Q) 1= i% IX £fAw,
where f is the curvature form of any hermitian connection on

L. compatible with SL . Since any two such curvature forms differ



by a 33-exact term, deg(L) is independent of the choice of
connection. If dw = 0 , then deg(L) = (c1(L)Um)[X] as usual,
but in general, deg(L) depends only on the image of c1(L) in
HZ(XJR) iff b1(X) is even; (see Proposition 2 below).

Having defined the degree of holomorphic line bundles, the
definition of stability can be repeated verbatim, and the
definition of H-E connections also remains unaltered, although
it should be noted that when dw # 0 , an H-E connection on E
is a Yang-Mills connection compatible with 3 iff u(E) = 0 .

E
The main result to be proved here is (cf. [5]):

Theorem 1. Let X be a compact complex surface with a hermitian
metric whose Kihler form is 33-closed. Then an indecomposable
holomorphic bundle on X is stable iff it admits an irreducible

Hermitian-Einstein connection. This connection is unique.

("Stability" and "Hermitian-Einstein" are, of course, with respect
to the given 33-closed Kihler-form.)

The proof of Theorem 1 is by induction on the rank of the
bundle, and is based on Donaldson's proof [4] of the theorem of
Narasimhan and Seshadri. In brief outline this runs as follows:
given the stable bundle E , a functional J(A) 1is constructed
on the space of hermitian connections A on E compatible with
SE , essentially equivalent to the L? norm of E(A)-ixE1 .
Choosing a minimizing sequence Ai for J and employing Uhlen-
beck's weak compactness theorem [21] for connections on bundles,
a limit connection A' is obtained with J(A')<s<inf J(Ai) . Now

A' might define a different holomorphic structure E' on the



smooth underlying bundle, but in any case, by a semi-continuity
of cohomology argument, Donaldson shows that there is a non-zero
holomorphic map ¢ : E —> E' . If ¢ 1is not an isomorphism,

he shows that J(A')z41rV'—1/2

vE(ker¢) , where

vE(S) := (rankS) (p(E) - u(S)) for S <cE and V =Vol(X) . On
the other hand, using the canonical filtrations of Harder and
Narasimhan [11] and the inductive hypothesis, he can construct
a connection A on E (compatible with SE ) with

J{a) < 41rV_1/2vE(ker¢) . This contradiction means that A' is
compatible with SE and minimizes J . A simple argument then

shows that for A' to minimize J , necessarily J(A') =0 ,

giving ;(A') = iAE1 . The "only if" part of the argument is more
straight-forward.

The main features of Donaldson's proof also appear here, the
biggest strategic difference being that the Harder~Narasimhan
filtrations are avoided by reversing the order of his arguments.
However, the technical differences are somewhat more significant,
owing to the appearance of singularities of one sort or another:
torsion-free sheaves are no longer locally free, and sequences of
connections only converge off finite sets of points. These diffi-
culties are resolved generally by blowing-up and by appealing to
the appropriate removability of singularities theorem of Hartogs,
Serre or Uhlenbeck. Moreover, some of the techniques used by
Donaldson in [5] can still be employed and indeed, these too play
an essential r8le in the proof to be given here. The introduction
and first section of [5] also contains more background material,

and in particular, a clear description of the two equivalent

formulations of the problem; namely, finding a certain connection



on a fixed U(r)-bundle, or finding a certain hermitian metric

on a fixed holomorphic bundle.
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2. Hermitian Geometry

Let X be a compact complex surface and h be an hermitian

metric on X . In local holomorphic coordinates z3 , the asso-
ciated Kihler form is o := % haEdZaAdzb ; (all conventions here

follow those in [10]). The volume form is dV = 1 wAw , and if

2
* . p\Pr9d__ A2—q,2-p is the Hodge *-operator, then with respect

to the inner product (£,9) l—>*(fa*g) , the adjoint of

APr9 5 gr—>g A w € Ap+1,q+1 is denoted by £ +——> Af . On
(1,1)-forms £ = £ dz® A dz° , Af = -2ih® £ o, frequently

denoted by f . Note that Aw = 2 .

The *-operator on 2-forms satisfies *2 - 1 , and the decom-
position into *+ eigenspaces is Ai = A2'0 ® AO’2 ® span(w) ,
AE = kerA:A1’1 _ Ao .

With respect to the inner product (f,g) —> fxfa*g , a
straightforward calculation gives
1,0

? iA3g + i*(3uwag) , g € A

[To]
1]
)
*»
al
*
[Te]
[}

(@) (2.1)

* - - - -
2¥F = —*3%f = 1i(A3-3A)E + (*3w)AE , £ € A7 . (b)

Let P be the second-order real elliptic operator on

functions P := iA3d , (so if h 1is flat, P = %A where A

is the usual Laplacian having negative symbol). Then
P*f = *i33 (uf) = iA39f + i*(3wadf) - i* (3wadf) + L(*33w)f .
That is,

P* = P + i*3wad — i*3wad + i*3d3w . (2.2)



From (2.1) (a) and its complex conjugate, one easily obtains

A' = 3%) = P + i*3wad (a) (2.3)
A" = 3%3 = P - iA(393+4930)-i*3wAd (b)
A = A'+A™ = 2A"™ + iA(33+33)+i*dwad (c)

(Of course, 33433 = 0 on functions, but (2.3) is valid for an
arbitrary hermitian connection on a bundle, in which case
33+33 is the (1,1) component of the curvature.) Adding (2.3)

(a) and (b) and using (2.2) also gives
A =P + P*~iA(33+33)=-1i*33w . (2.4)

Now suppose that the metric h has been conformally scaled
according to the theorem of Gauduchon [7] so that 33w = 0 . Then
a number of easy but important consequences follow from these
equations. The first of these is the existence of H-E connectic
on holomorphic line bundles. For if L 1is a line bundle with
hermitian connection compatible with EL and curvature f € A1'1
any other such curvature form has curvature f+3slogu for some
positive function u . Thus the equation to be solved is
P logu = -if-1 where fx(i£+x)dv = 0 . From (2.4), A = P+P* on
functions, so ker P = ker P* =1R . By standard linear elliptic
theory on compact manifolds, there exists a smooth solution u
to P logu = —iE—A , unique up to multiplication by a positive

constant.

Next suppose that E 1is a holomorphic bundle with H-E
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connection: F = AF = ix1 for 1 = -Zwv-1u(E,w) .If s is a
global holomorphic section then from (2.3) (c),

I| as]| 2 - <s,A8> = =xll sl 2 , <s,*idw~ds> , ( ds denoting the
covariant derivature of s.). But <s,*dwads> = <S,*3wAds>

= <s,*[-3(3ws) +33w3]> = -<*s,3(3us)> = -<d"xs, 3us> =

<*3s, 3ws> = 0 , so lldst = —xllslﬁ . Thus, just as in the
Kihler case, one has the result of Kobayashi [12]:

L whase
Proposition 1. Let X be a compact surface with a metricAKéhler

form is 39%-closed. If E is a holomorphic bundle on X which
admits an H-E connection, then if u(E)<0 it follows that
HO(X,O(E))=0 , and if u(E)=0 , every holomorphic section is

covariantly constant.

Cofollary 1. If 1L is a holomorphic line bundle on the compact

surface X such that HO(X,L) # 0 , then deg(L,w) 2 0 for any
positive 33-closed (1,1)-form w , with equality iff L is

trivial.

Corollary 2. Let « be a positive 33-closed (1,1)-form on the

compact surface X , and let {e1,...,em} be an integral basis
for HZ(X,Z)/torsion. Then there exists e=e(w)>0 such that any
hoiomorphic line bundle L on X with c1(L)aEnaea mod torsion

and HO(X,L)*O satisfies deg(L,w)zeZInal .



Proof. Let ea°eB = an be the intersection matrix on
afl

HZ(X,Z)/torsion, q the inverse. If fa is a closed 2-form

representing e, the (1,1)-component Ea of fa is ?33-closed.

If e>0 is sufficiently small, mtemiqasg is positive for any

B8
«=1,...,m . By Corollary 1, Osdeg(L,mtemzanfB)=deg(L,m)temncl ’

(for if feal’!

represents ¢, (L) , ffAfB = ijgs) . Thus
deg (L,») 2 emlnal for all o« , and summing over a gives the

desired conclusion.

Corollary 3. An H-E connection on an indecomposable bundle is

unique if one exists.

Proof. (cf.[4]). If E is a smooth unitary bundle with two
integrable unitary connections AO,A1 inducing isomorphic holo-
morphic structures EO,E1 then, by definition, there is a comple:
automorphism g of E such that 51=g°§0°g‘1 and 31;g*-10300g’
After a unitary change of gauge of one of them [g’(g*g)-'”2 l, g
can be assumed positive self-adjoint. If AO,A1 are H-E connec:
tions, then the (holomorphic) isomorphism g : E0 _— E1 is
covariantly constant by Proposition 1, implying 0=ao(g*g)=ao(gz)
and 50(g2)=0 . Since E0 is indecomposable , g2=const.1 and

since g 1is positive self-adjoint, g=const.1 .

The next corollary is taken verbatim from [5]. For the proof
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(which is short), see that reference.

Corollary 4. Suppose that the main theorem has been proved for

bundles of rank less than r | Then any r-bundle which admits
an Hermitian-Einstein connection is a direct sum EEi of stable
bundle Ei with u(Ei)=u(E) . In particular, it is semi-stable.

If E admits an irreducible such connection, it is stable.

A slightly different version of (2.3)(c) will be of use
subsequently. Suppose that E is a bundle with integrable hermitian
connection having curvature F . Then (2.3) (c) gives
A = 2A" + i§ + i*dwad for the full covariant Laplacian on
sections. So if s is a local holomorphic section,
Alsl2=A§s,s>=2<s,As>-2|ds|2=2<s,i§s>+21<s,*dwnds>-2lds|2 . Using
the same manipulations as before together with 3s=0=33w , one
computes <s,*duwads> = -*a(|s|25m) . Thus A|s|2+2i*a(|s|25w) =
st,i§s>-2|ds|2 . Since i; is a real operator, taking the complex

conjugate of this last equation and adding gives

A|s|2+i*a(lsl2§m)-i*5(|s|23w)=2<s,iFs>-2|ds|2 ’ (2.5)

(s holomorphic) ,

which is the unintegrated version of the equation used for Propo-
sition 1. Note that since 33w= 0 , the operator on the left of
(2.5) satisfies the maximum principle, by theorem 3.1 of [8].

The last application of the equations (2.1)-(2.4) is the result
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promised in the introduction on the topological invariance of

deg (-, .

Proposition 2. If  is a positive 33-closed (1,1)-form on

the compact surface X , then deg(L,w) = 5%] fLAm depends
X
only on the image of c1(L) in HZ(XJR) iff b1(X) is even.

Remark. b1(X) even is equivalent to the existence of a Kdhler

metric on X by results of Kodaira, Siu.

Proof of proposition. Suppose b1(X) is even. Under the map

H1(X,0) —_— H1(x,0*) induced by 0 » Z 2Tri> 0 EXP, o*

> 0 ,

a representative 3-closed (0,1)-form g is mapped to

5%[ (3g-3g) aw by deg(-,w) , and of course, this map annihilate
theximage of H1(X,Z) in H1(X,0) . Since b1 is even, H1(X,0)
has real dimension b1 ({3]), and since H1(X,Z) _ H1(x,0) is
always injective, deg:H1(x,0) ——> R must be zero, otherwise the
kernel would contain a lattice of rank greater than its dimensio:
Thus deg(L,w) depends only on c1(L)€H2(X,2) in this case.
since [(3g-33)aw = 0 for all 3-closed (0,1)-forms g , replaci

g by ig shows that [dgaw = 0 for all such g , and similarl:

[3haw = 0 for all a-closed (1,0)-forms h . Thus if £,,f, are
1

(1,1)-forms such that fo—f1=dh for some h € ;, , then

ah0'1 =0 = ah1’0 giving f(fo-f1)Aw = j(aho’1+ah1'0)Aw =0 .

Thus deg(L,w) depends only on the image of c1(L) in H2(XJR)
Now suppose that f(ag-ga)Am = 0 for all 3-closed (0,1)-

forms g . Then as above, [3gaw = 0 = {3haw for all 3-closed

0,1 1,0

g € A and 3-closed h € A . Given such g , the equation



-12-

Pu = iA3g has a solution u since [AdgdV = fagaw = 0 , and
moreover u is unique up to the addition of a constant. But

this is just Adg = 0 , where g := g+3u . From (3.1) (b) it now
follows that <a§,a§> = k;,a*a;> = ka,[i(AS-EA)+*5wA]a;> =0,

so g gives the unique 3-closed (1,0)-form g' := § . Conversely,
every holomorphic 1-form on a compact surface is closed ([3]), so
that the map H1(X,0) —_— Ho(x,91) defined this way is invertible.

Thus h1’0(X) = h°'1(x) and h1(X) = h1'o(X)+h0'1(X) is even.

Remark. An easy continuation of this argument shows that when
b1(x) is even, any real 33-closed (1,1)-form «w is cohomologous
mod im 3+3 to a d-closed real (1,1)-form, and any two such
(cohomologous) d-closed (1,1)-forms differ by a d-exact term, so

w defines a unique element of HZ(XJR) . |

In order to use the inductive hypothesis to prove Theorem 1,
it is necessary to find sub-bundles of a given bundle. However, in
general one can expect to find at most subsheaves which are sub-
bundles off a finite set of points. To get sub-bundles therefore,
these singular points have to be blown-up, and then appropriate
metrics must be constructed on the blown-up space. For details of
what follows, see [10], pp.182-187.

Let x be a point on the surface X and let i L > X be
the blow-up of X -at X . Given the positive (1,1)-form w on
X , v*w is degenerate on the exceptional divisor L = T (X) ,
but it can be modified as follows. If U is a sufficiently small

neighbourhood of x and 6 := w—1(U) , then there is a holomorphic
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projection w1, : U —> P Now I 1is the zero set of a section

2 1 °
s € P(i,O(—1)) , so let h0 be the metric on 0(-1) (:= 0(L))

over X~L such that |s|=1 , and let h be the standard metric

1
on 0(-1) over :P1 . Let p be any cut-off function with suppor

in U such that p=1 on a neighbourhood of x . Then

h (1—p)h0+p1r"2‘h1 is a metric on 0(-1) and the resulting Cher

form is o := é% 33logh € A1’1(§) . o 1is identically zeroc out-

side of U and is negative definite in directions tangent to L
in a neighbourhood of L . Thus, for sufficiently small ¢ ,

~
w, i T*w~c0 1is positive.

If o is 3d-closed, resp. d-closed then so too is w_ ., and

-~

if « is rational (dw=0 and [w] € Hz(x,m)) , so too is w if
¢ 1is rational. These are the metrics used for the Kodaira em-
‘"beddina theorem.

If o is 33-closed, then in a neighbourhood W of x,

0’1, v € A1'° . Since [ wm*wac does

~

X
not depend on the choice of ¢ , it can be supposed that

w = su+dv for some u € A

"o
suppoccW , from which it follows that [ 7*wac = 0 . Similarly,
~ X
deg(-;me) does not depend on the choice of ¢ , only on ¢ . Not

also that since 1L has self-intersection -1 , [ gac = -1 and

Vol(X, ) = +f @® = Vol(X) - 12 X
r g 2 i € 2 *
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3. Desingularization of sheaves

It is well-known that singularities on surfaces can be
resolved by blowing-up [3], and the same is true for coherent
analytic sheaves. This will be indicated shortly, but first a
number of basic facts about sheaves will be recalled, taken
directly from [17] pp.139-160. See also fol.

Let E be a coherent analytic sheaf on a complex manifold
X . The singularity set of B is S(B) = {x€X : B, is not a
free Ox—module} and is an analytic set in X of codimension
> 1 . Thus B has a well-defined rank, b say. The torsion
subsheaf t(B) is defined @y -r(B)x = torsion submodule of B, v

and t(B) is coherent. If +1(B)=0 , then B |is torsion-free and

codim S(B)z2 . Thus if X is compact and B is torsion-free, B
has a well-defined first Chern class. An equivalent definition of
torsion-free is that the canonical homomorphism B —> B** is
injective, where B* := Hom(B,0) . If. B = B** , then B is
fefiexive and codim S(B) 2 3 . In general, B is/reflexive iff
it is torsion-free and normal, where normal means that

r(u,B) —> r(UNA,B) is injective for any analytic set A of
codim =z 2 in an open set U < X . Thus for arbitrary B , it
follows B* is reflexive. In general, a reflexive sheaf of rank 1
is a line bundle, so the determinant of a coherent analytic sheaf
B of rank b is detB := (A B)** , If B —> C 1is a mono-
morphism of torsion-free sheaves of ranks b s c , then

AbB —_— AbC is also a monomorphism since the kernel is a torsion

subsheaf; thus if b = c , detB —> detC is also a monomorphism.

If 0 »A->B->C >0 is an exact sequence of sheaves with
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B reflexive, then lemma 1.1.16 of [17] states that A is normal

if C is torsion-free. If C 1is not torsion-free, then the

maximal normal extension gB of A in B is given by

gB := ker[B »> C/1(C)] ; thus there is a monomorphism A - gB
and in this way it generally suffices to deal with reflexive
subsheaves of bundles in questions related to stability.

In the case when X is a compact surface, torsion-free
sheaves are singular only at finitely many points and reflexive
sheaves are locally free. If « 1is a positive 33-closed (1,1)-fo1
on X , the degree of a coherent analytic sheaf B of rank b o
X is deg(B) = deg(B,w) := deg(detB,w) , and u(B) = u(B,w) :=
deg(B,y) /b . It follows from Corollary 1 that if B > C is a.
monomorphism of torsion-free sheaves of the same rank, then
u(B) = u(C) . Also, despite its possibly non-topological nature,
deg(-,w) behaves well with respect to exact sequences
0 A ->B-C~>0 of torsion-free sheaves, for since
detB ~ (detA)®(detC) off a finite set of points, this iso-
morphism extends by Hartogs' theorem to all of X , giving
deg(B) = deg(A) + deg(C) .

With these preliminaries out of the way, the desingularizati
of torsion-free sheaves on surfaces can now be described.

Let B be a torsion-free sheaf in a neighbourhood of 0€¢2
singular only at 0. Then in a neighbourhood of 0, B 1is given by
an exact sequence 0 - OIn—£—> 0" - B >0 , where f(x) is an
nxm matrix of holomorphic functions which has rank m for

x+ 0 . A measure of the degree of the singularity at 0 is

given by rank £(0) . If this is zero, a second measure is given

by the smallest integer p such that 1ng is contained in the
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ideal I(f)0 generated by the germs of the mxm subdeterminants
of f , where m is the maximal ideal of 0 .
0 mz 0
14

By elementary row and column operations, £ is equivalent
to a matrix of the form (g g) where 1 is the unit kxk
matrix (k=rank £(0)) and g(0)=0 . Blowing-up the origin gives

- a a
r*g=gs where s = diag(t 1,Q..t m k), a; > 0 , ter(0(-1))
defining the exceptional divisor L , with é non-singular and

having a non-zero entry in each column. In terms of diagrams,

this is
ok ok
0 —> o ;%§> ® > 7*¥B —> 0
om-k - on-k
®
v S . v
ok X
0O —> @ —l—> ® > B —> 0 .

Here g is defined by the lower row.

Now let é := é/r(é) R A := ker B?"——o §11, SO i is

1

locally free and the map £ : A —> 0" is of rank 2 k + rank é
at each point. In particular, E has rank m off L and rank

> k at generic points of L . If k = 0 , then at every point

x € L , the smallest p such that 1n§ c I(E)x is clearly less
than that for I(f)o . In this case, the procedure can be repeated
at each of the singular points of é until eventually the rank of
the derived map E is positive at every point. Thus in either

case, the rank of E can be increased by blowing-up, and after

finitely many such blow-ups a diagram of the form
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Q0 —> on I f> O —> x*B ——> 0
$
L |
0 — A —> o —s B —> 0

ig arrived at, where the lower row is an exact sequence of

bundles.
It follows from the above that if 0 >A-»E->B->0 is an

exact sequence of sheaves on a compact surface X with E loca

o]

free and B torsion-free, then there is a modification

consisting of finitely many blow-ups and vector bundles A,é on

X such that

0 —> w*A —> 7*E > 1*B > 0
A d | (3.1)
v
0 —> A —> q*E —> B —> 0

has exact rows, commutes, and has the lower row an exact sequenc

of bundles. Moreover, off the exceptional divisor, the vertical

arrows are isomorphisms. This will referred to as a desingulari-

zation of B .

Remarks. (a) Since A is locally free, éo too is ®*A , so
1*A —> t*E is a monomorphism of sheaves even though is
not flat. Moreover, since "*Q§ = 0X and nloi =0 (Thm.I.9.1
[(3]) it follows m,r*A = A and ﬂlﬂ*A =0 . Applying r, to

the top row of (3.1) then gives m,m*B = B and since

ker (r, m*B > 7,B) 1is a torsion sheaf and B is torsion-free
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~

7,B is injective; this imp;ies TyA = A

it follows B >
(b) In general, if 0 - A' - 7*E » B' - 0 is exact with
B' torsion-free, then =, B' 1is torsion-free so

K := ker‘}*B' > wlA'] is also; this implies n,A' 1is

locally-free. If L is any component of the exception divisor
and A'IL =¥ O(ai) , then necessarily a, s 0 for all i
because A'IL —_— n*EIL is injective off a finite set and
1r*E|L is trivial. (If all a; vanish it is easy to show
A' = 7*% A' , where % is the blowing-down map for L .)

(c) If X is compact with positive 33-closed (1,1)-form
w and i - > X is the blow-up of X at x € X , let
;E = t*w-coc be one of the forms constructed in Section 2. If
E is a line bundle on i , then by Theorem I.9.1 [3],

-~

C

n*CQ0(k) for some C € Pic(X) . Since n,0(k) =0 if

k

ks0 and 7,0(k) =m° for k>0 , n,C=C or Cem, . In
X

) =

€

e

el

either case, det(w*E) = C , so it follows that deg(a,
deg(Cpﬁ-so~C1(E) = deg(n*e,w)-eo-c1(é) . If now ¢ is an

arbitrary torsion-free sheaf on X , then n*E is a torsion-free
sheaf on X and-the isomorphism detv*a = r.det C off a finite

subset extends to an isomorphism detr,C det[#r*detE] over X

by Hartogs' theorem. Thus deg(é,&e) = deg(det E,BE) =
deg(r, det a,w) - eg-c,(det Q) = deg(detn*a,w) - sc°c1(det c) =
deg(w*é,m) - sc°c1(a) .

(d) wWith X,i as in (c), suppose that L = w-1(x) is the
exceptional line and C on i is locally free of rank n .
Suppose moreover that EIL = 20(-ai) for some a; 2 0 and that
C := W*E is locally free.

By the Riemann-Roch theorem, the holomorphic Euler charac-
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teristic for C is given by X(E) = %p1(E)+%c1(X)-c1(C)+nx(0§) ’

where Py = c2-2c

1 2 and X(OQ) is the birational invariant
1

1

3y 2 z _ 2 Sy L
) (c, (X) e, (X)) = 35 (c1(x) +c, (X)) . Moreover, c1(X) = c1(X)+t
where t = <4 (0(1)) . On the other hand, using the Leray spectral
sequence, x(a) = x(C)-x(le) . Now, "1& is supported at x and

thus is annihilated by mn§+1 for sufficiently large p (by the

Riickert Nullstellensatz [9]), and it follows that w,C = m,C| (

pP)
. L
1, (P)

where is the p-th formal neighbourhood of L in X .

From the exact sequence 0 - OL(q) -» 0 ( - 0

(@ (a1
follows that if a, . say, is the largest a; s then C(a1)lL ha

-0, it

a non-vanishing section extending to all orders. By induction,

c|
L(q)

O(-ai) , so for purposes of computing X(“la) it can be supposed

can be expressed in terms of extensions by line bundles

that C = ZO(—ai) . Since w,0(-a;) = Ok , the Riemann-Roch fo;mu
gives x(1i0) = x(mal0(-a,)) = x(10)-x(J0(-a;)) = nx(0) -
Tx(0(-a;)) = nx(0)-[]3a, (1-a;)+x (0] = 1ja (a;-1) . substitutin
this into x(&) = x(C) - X(ﬂl&) and using c1(é) = c1(C) - at
for a = Zai gives p1(C) = p1(E) + Xai . In pérticular,

p,(Q = p1(&) .

(e) If E is a holomorphic bundle on the compact surface X
then the Chern classes of holomorphic subbundles E' <« E must
satisfy certain restrictions. To see this, fix an hermitian metri
on E, so E' and the quotient E" have induced hermitian me"~

In a unitary frame, the induced connection A on E has the £--

A’ 3]
A =
_B* A"
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where A',A" are the induced connections on E',E" and

0,1

B € A (Hom(E" ,E')) 1is a 3-closed form representing the exten-

sion 0 - E' - E->E" >0, (cf.e.g.[4]). (Conversely, A',A",8
gives E as smooth bundle a holomorphic structure, and any

8 of the form tB+3y for t € T~N0 gives an isomorphic

structure.) The curvature of this connection is

F'-8aB* VB
F(A) . (3.2)
-78*  F"-8*aB

o
]

The characteristic class p1(E) = (c?—Zcz)(E) is given by

p1(E) = Zli IX trFaF , so if ® is a positive (1,1)-form on X ,
T
2 ~
py(8) = gl w1 eI - LGUER-1eIP) . 3.3)
™ 47

The first and second Chern forms are c¢, = L tr F and

1 2T
_ 1 2 2 2 .
c, = 2[tr F°~(tr F)°] , (where F" := FAF) . With
8t .
G := F'-BaB8* and B := 8aB* , one- calculates (cz-cf)(F') =

—li[tr G2+(tr G)2+2tr(GaB)+2ﬂrGAtrB)] - QWTszYAY* , where ¥

8n 0,202 10,2
is the component of B8 ® 8 in A '"@STE'@ATE"* ; (cf.[10]

pp.416-418 for similar calculations). It follows that there are
constants C1,C2 > 0 depending only on the sup norm of F(A) ,
and thus only on E and « , such that *(cz-cf)(F')$C1+CZIB|2 .
|2

Furthermore, since g is a (0,1)-form, |B8|" = -i trABas* =

itrG - WtrF' , so if o is 33-closed, it follows that
IIBIde < -27 deg(E',w) + const. Thus there are constants
C4,C5 > 0 depending only on E and such that

(cz-cf)(E') S CymCy deg(E',u) .
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Now suppose that A < E only has torsion-free quotient. Let

X ™

> X be a desingularizating space for E/A and A be the
"desingularization” of A . For the metrics ;s on i constructec
as in Section 2, |v*f| compares uniformly with |£| for a two-
form £ on X by choosing the scaling factors e appropriately.
By remarks (b),(c) above, (c,-3¢2) (A) s (c,-3¢?) (A) s '
C4—C5 deg(i,;,) + %c1(11)2 4 C4--C5 deg(A,w) + 1§c1(A)2 , so the

inequality
2
(cz—c1)(A) $ Cy=Cg deg (A, w) (3.4)

is valid for any A < E with torsion-free quotient, with C,,C>!
constants depending only on E, w.

(f) The last observation is the following: by definition,
deg(-,w) ignores the singularities of torsion-free sheaves. Howe
this is also true on the level of forms in the following sense:
if Q is a torsion-free quotient of a bundle E and the latter
is given an hermitian connection as above, then off S(Q) the
bundle Q inherits an hermitian connection and thus gives a
curvature form FQ on X~S(Q) . The claim is that tr ?Q is
integrable and indeed ;# g(tr ;Q dv = deg(Q,u) , where the right
hand side is defined in the usual way. To see this, it suffices
to assume that rankQ = 1 (otherwise replace E,Q by AqE,AqQ ),
and then Q is the image in detQ of a holomorphic map E - det
which is surjective outside S(Q) . Locally, the singular part
of F, is then Salog|f|2 , where f 1is a rankE-tuple of holo-
morphic functions whose only common zero is the singular point.

Pulling back to the desingularization space i <5 X ’
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" .2 P 2 PN s
r*log|£|€ = log|E|” + Zajloglsjl where f is non-vanishing,
sj is the holomorphic function defining the exceptional line

Lj , and aj € £ . By the Poincaré-Lelong lemma ([10] p.388),

loglsjl2 is integrable and n*FQ = F5 + 2wi2ajTL. in the sense
of currents. Since IL.“*w = 0 , this gives | Foru, = j~w*(FQ~a)
qué““*“’-' and since Q - (r*detQ)®K for soﬁzzline bundle K
wiéh curvature ijcj , it follows that g? f FQAN = deg(Q,Q) ,

X
as claimed.
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4. Construction of subsheaves

Let X be a compact surface and .- be a fixed positive
33-closed (1,1)-formon X . If B 1is a torsion-free sheaf on
X , a subsheaf A <« B will be called admissable if A is
coherent and 0 < rank A < rank B . Then B can be one of two
types; namely, B has an admissable subsheaf (type I) or, B has
no admissable subsheaves (type II). All of the analysis in this
section will deal excusively with a bundle E of type I.

The following fact will be used frequently (cf.[5] p.3): if
E is a bundle which is not stable, then there exists a stable

admissable A < E with E/A torsion-free and u(A) 2 u(E) .

Lemma 1. If E is a bundle on X , then {deg(A) : A c E is

admissable} is bounded above.

Proof. If not, there exists a sequence Ai c E with u(Ai)T°° .
Without loss of generality, E/Ai is torsion-free, and passing tc
a subsequence, rank A.l = a 1is constant. Then det Ai -+ A%E is
injective, and deg(det Ai)Tw . Fix a connection on 72E , and or
(det Ai)* put the H-E connection. Then (2.5) applied to the
non-zero section of (det Ai)*eAaEi yields a contradiction for

i large enough.

If A cE is admissable of rank a , let

vE(A) := a(u(E) - u(pA)) . By Lemma 1, the possible values of Vg
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are bounded below, and indeed, if E 1is stable, then vE(A)>0

for all admissable A .

Lemma 2. If E is a stable bundle on X and if there exists an
admissable A < E of rank a such that vE(A) = inf{vE(A'):A'cE
is admissable} , then

(a) A is stable; and

(b) B := E/A is torsion-free and stable.

Proof. (a) If Cc A is admissable of rank c¢ ,
a(u(E)-u(ap)) = c(u(E)-u(C)) < a(u(E)-u(C)) since c < a and
w(E) > u(C) .

(b) If ; is the maximal normal extension of A in E ,
then a(u(E)-u(A)) s a(u(E)-u(A)) , so u(A) = u(A) . On the
other hand, A ~» ; is a monomorphism so u(A) = u(i) . Thus -
u(pa) = p(g) , giving vE(g) = vE(A) . By (a), g is stable, so
A - R must be an isomorphism. Thus B = E/A is torsion-free.

If Cc B is admissable with torsion-free quoéient, let
K := ker(E - B/C) . A quick calculation gives

u(C) = u(E) - g(vE(K)-vE(A)) s u(B) < u(B) , ¢ = rank C .

The strategy of this section is to produce subsheaves A < E
with this infimum property, to desingulafize these, and show that

(eventually) such’ A can be assumed to be subbundles; this

process commences with the next lemma.



-25=~

Lemma 3. Let S be a torsion-free sheaf on X and let
{L_}z_1 be a sequence of line bundles such that
i7i=
*
|u(L,)| s Const. and T (X,L;®S) # 0 . Then there is a sub-
i

sequence with c1(Li) constant.

Proof. By replacing S with S** if necessary, it can be
assumed that S is locally free. If rankS=1 , the result
follows from Corollary 2. If rankS > 1 , pick a non-zero

homomorphism L1 - S and let S1
L1 := ker § - S{ . From the exact sequence

0 ~» L; e L1 - LI ® S -» L; (] S{ -+ 0 it follows that the

sequences F(X,Li ® L1) and P(X,L; ] S;) cannot both be

almost always zero, so the result follows by induction on

s = S/L1 ’ S1' := S1/T(S1) ’

ranksS .

even +hough

The next lemma is the key lemma of this section ) its proof
is trivial when (X,w) is algebraic and straightforward when

X 1is Xdhler.

Lemma 4. Let E be a bundle of rank r on X and suppose
that the main theorem has been proved for bundles of rank less
than r . Then

(a) If E 1is of type I, then there exists a stable
admissable A < E with torsion-free quotient such that
u(A) = sup{u(A') : A' < E is admissable} .

(b) If, moreover, E 1is semi-stable, then there exists an

admissable B <« E such that vE(B) = inf{vE(B') : B' «cE is
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admissablel} .

Proof. (a) Choose a sequence of admissable A; < E with
u(Ai)111:= sup{u(A') : A' < E} , and without loss of generality,
each Ai is stable and has torsion-free quotient. If u(Ai) is
eventually constant, then Ai satisfies the requirements of the
lemma for large enough i , so suppose that this is not the case.
By passing to a subsequence it can be supposed that rank A, = a
is constant and u(Ai) is strictly increasing.

Since ul(det Ai) = au(Ai) and det Ai - A2E is non-zero,
Lemma 3 implies that there is a subsequence with c1(Ai) con-
stant. By Proposition 2 therefore, it must be the case that
b1(x) is odd. Since each Ai is stable, it admits an H-E
connection by the inductive hypothesis, so by (3.3) ,
{(C$-202)(Ai)} is bounded above. On the other hand, by (3.4),
{(cf—cz)(Ai)} is bounded below, so it follows that a
subsequence has °2(Ai) constant. By passing to yet another
subsequence, it can be assumed that {Ai} is topologically

constant.,

Mow.recall that deg : Pic(X) »R induces ' deg : B (X,0) »R

and this annihilates the rank b, (X) lattice H' (X,8) <> H’(X,0) .
Since b1(x) is odd by assumption, Proposition 2 implies that

deg : HO(X,O) -+ IR is not identically zero, so ker(deg)/H1(X,Z)=T ’
a torus, and Pic,(X) = H1(X,0)[HWX,Z) = T x IR . After picking a
basis for H1(x,0) as RR-vector space’;the component of L?QLi

in T can be assumed to converge to some element of T , and on

the other hand, the component in IR also converges since it is
measured by deg and deg(Li)TaM . Thus (a subsequence of the)

L; converges to some L, € Pic(X) with u(L}) = aM

Now let L € Pico(x) be a line bundle with u(L) =1 , and

* and seling L; := det A;
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-u(Ai)

set Ri 2= Ay @ L , SO u(Ai) =0, {Ai} is topologically

constant, and of course, Ai is stable. By the inductive hypothesi
Ai admits a (unique) H-E connection, and this is moreover an
anti-self-dual Yang-Mills connection. The curvatures Fi of these
connections satisfy IlFiHi2 = 4v2p1(ii) = constant, so by Uhlen-
beck's weak compactness theorem [21], ([18 ,51), there is a finite
set S = {xﬁ"‘°fo} c X such that a subsequence of these connec-
tions (on the same underlying smooth bundle) convergesweakly in
L?,loc(x\s) for any p to an anti-self-dual connection over

XNS . By the removable singularities theorem [20], this connectior
extends across S to a smooth ASD connection on a (possibly
topologically different) bundle Aé,. This ASD connection gives

-~

A_ a unique holomorphic structure.

-au(A,)

i aM

Since det Ai = Li@L and this converges to L‘QL_

M ana u(a_) = 0 . setting

it follows that det Aw = Lm@L-
A_ := Am@LM , it follows that u(A)) = M and Ai - A weakly in
L?’loc(X\S)' for any p (in the sense of connections).

It suffices now to produce a non-zero holomorphic map
A - E, for if A} is one of the stable components of A
whose existence is asserted by Corollary 4, and if A; - E is
non-zero, then A; - E must be a sheaf inclusion else the image
I satisfies M = u(A!) < u(I) . Moreover, A; must be equal to
its maximal normal extension g; in E (since the latter must
have u =M and is therefore semi-stable), so A; has torsion-
free quotient.

The existence of a non-zero holomorphic map A_ -+ E 1is

proved by repitition of Donaldson's argument [5] pp.22-23, and

will be an argument appearing here subsequently also.
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For each j , there is a non-zero holomorphic map sj:Aj»E .

Fix an hermitian connection on E compatible with SE and, as

before, Aj is equipped with its H-E connection. From (2.5),

2

slsyl2+i%a (15,1 25w =123 (1551 %o s (|Fl+IF51)[s4]% s const. |12

S, ’
J
so by Theorem 9.20 [8] it follows that supls.l2 s C|l s.H2 .

x J 3158 (x)
Choose balls Ba about the points Xy € S such that A_,E are

holomorphically trivial on them and such that C42V01(Ba) = % '

and normalize sy so that || st 8 = 1 . Since the connections
L (X)

converge weakly in P (XN\S) for any p and 3

1,1oc =0, 1t

.S,
]3]

follows that || st 3 < Const. (|| st +1) s Const. for
'Lz(

8
0 L (K)
K := X\UBa , (using also the C bound on sj) . Thus {sj} has
a subsequence converging weakly in Lg(K) and strongly in CO(K)

to a limit s_ which satisfies 3_s_ = 0 . Since || st88 > 1
L

2
for all 3j , the limit is non-zero, and by Hartog's theoreéé)it
extends to X to give a non-zero holomorphic map A_ - E . This
completes the proof of (a).

The proof of (b) is essentially identical. If B < E is not
stable, then there exists stable B' < B which has E/B' torsion-
free and vE(B') < vE(B) . The proof of (a) can then be repeated
by choosing a minimizing sequence for Vg and passing to a
subsequence of constant rank.

Let X > X be a modification of X consisting of N
blow-ups, and let « be a positive 33-closed (1,1)-form on X .
Let TqreserOyg be forms constructed as in Section 2, one for each

-~

component of the exceptional divisor and all pulled-back to X .
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Suppose that a1”"’aN > 0 are such that, if p := 'aici ’

~

then 7*w - o is positive. Then w o= T™w - gp 1is positive
for any ¢ € (0,1] since r*, is positive semi-definite. If
E is an r-bundle on X , then by Lemma 4 (a), there is for
each ¢ subsheaf A(e) < 7*E maximizing u(A,;E) over all

admissable A < 7*E . This can be strengthened as follows:

Lemma 5. There exists €9 > 0 and a stable admissable

A0 c 7*E such that u(AO'ZE) = sup{u(A,ZE) : Ac n*E is

admissablel for all ¢ € (O,eol .

Proof. Take €4 = 1 and choose A1 c m*E according to Lemma 4(

€, 1 and A2 c 7w*E with

) . Without loss of generality, A, has

Suppose that there exists < €
u(Azl (1.\62) > U(A1’m52
torsion-free quotient so by remark (b) of Section 3, p-c1(A2) s 0

Moreover, using remark (c); u(A1,; ) = u(r,A)=e p°c,(A))/a, 2
] €4 1 1 11 1
U(W*Az)-€1p'c1 (Az) /az = u(Azl u)e ) and H(A.‘rms ) = U(W*A)-
1 ~ 2,
ezp-c1(A1)/a1 < u(n*Az)-ezp-c1(A2)/a2 = u(AZ'“%z) . These imply

(51-62)[p-c1(A1)/a1-p-c1(Az)/aZ] <0, so p-c,(a,)/ay <
p-c1(A2)/a2 . Here a; = rank Ai .

Now replace (81,A1) by (ez,Az) . This process must
terminate after finitely many steps because p-c1(Aj) is bounded
above by zero, all the ai's are positive, and the coefficients"

of the ci's in c1(Aj) are all non-negative integers.

Corollary 5. If E is w-stable, then
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(a) =*E is ;E-stable for all ¢ sufficiently small, and

(b) there exists €9 > 0 and admissable B0 < 7*E such

;. = 3 Z) * i
that vw*E(BO’ e) 1nf{vn*E(B, 8) B < n*E 1is

admissable} for all ¢ € (O,EO] .

Proof. (a) Let M := sup{u(A,») : A c E 1is admissable} . Since
M is realized by some A < E by lemma 4(a) and E is stable, it
follows M < u(E) . Let Aj < 7*E be the A, given by Lemma 5.

Then p(Ao,we) = u(w*AO,w)-sp-c1(A0)/a0 < M-ep~c|(Ab/a0 <

[

p(E,m) = p{n*E,» ) if € 1is small enough.

[ .

€, small enough so that r*E is $E -stable for
1

€ S €4 . Choose B1 c 7*E according to Lemma 4(b) and repeat the

(b) Take

argument of Lemma 5.

Thus stability is preserved under pull-backs to blow-ups
(in the above sense). [Semi-stability is not preserved!]. The
followihg lemma shows that this is also true of the desingulari-

zation process:

Lemma 6. With X,i,m,p as in Lemma 5, let B be a torsion-free
sheaf of rank < r on X and suppose that B on X is a
desingularization of B according to Section 3. Then

(a) If B is w-stable, it follows that é is ;e—stable

for e > 0 sufficiently small;

(b) If B is given by an exact sequence 0 - A - E - B - 0
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with rank A s r and 0 - A - 7*E - é - 0 is the
desingularized sequence, it follows that A is
;e—stable for sufficiently small e > 0 if A |is

w-stable.

Proof. (a) There is nothing to prove if B has no admissable
subsheaves, so suppose that it has such subsheaves. By the remark
(a) of Section 3, there is an exact sequence 0 -» B - w*é - Q-0
where Q := quotient is supported on S(B) . It follows that

det B = det(n*é) , so u(B) = u(w*é) . Now, n*é is also stable:
if A c n*é is admissable, let I be the image of A in Q
under the composition A &—— n*é —>> Q . Then A' := ker(A - I
is an admissable subsheaf of B , and since B is stable it

follows u(A') < u(B) . But as above, A' = A off a finite subset

so u(A) = u(a') < u(B) = u(r,B) .
By Lemma 5, there exists AO < é such that
u(AO,;e) = sup{u(A,me) : Ac é} for all ¢ small enough. So if

a = rank Ay b = rank B and § := u(v*é) - u(n*Ao) , then
§ > 0 and ”(Ao’“e) = u(w*Ao,m)-ep-c1(A0)/a = p(n,B,w)-
ep-cy (Ag)/a = u(B,u )=8+e(p-c,(B) /b=p-c,(Aj)/a) < u(B,u) 1if e
is small enough.
(b) The same proof as (a) works (and is simpler since

n*i = A 1is stable by hypothesis).

The next lemma is somewhat technical and is required for

the proof of the main result of this section which follows it.
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Lemma 6. Let o = (a1,a2,...) be an element of £2 all of

whose entries a, are positive, and let {aj};=1 be a sequence

in 22. such that all entries ag

in aJ = (a?,a%,...) are

non-negative integers (so almost all ag are zero for fixed
j .) Suppose that Aj := <a,a3> = aiai is strictly in-
i=1

creasing. Then {Ilajl&,} is unbounded.
' 2

Proof. Suppose on the contrary that || alll s B for all j .

If, for each 1i , {ag};=1 is almost always zero, choose 'ko

< (AZ/B)2 , and choose N so large that al =0

such that § «a i

izk

e N

for all isk,’ if 32N . Then for 32N ,
) _ ¥ i ; 2.1/2 j,2,1/2 _
A. < A, = a.as S ( a’l) () (a7) ") < (A /B)*B = A a
2 j igk il igko i ) i 2 2’
contradiction.

So there exists k such that {ai};=1 is not almost zero,

and let k, be the first such k . Since | ad|l s B, {ai } is
so . 0
bounded, \there is a subsequence which has ai =a, + 0 con-

stant, with aJ,...,aJ =0 for all 3 . 0
1 k0-1

Since {Aj} is strictly increasing, there exists M such

that AM > ap A . If every entry after the k,-th in the

0
070
subsequence is almost always zero, choose k1 so that
P - 25-2 I
igk al < (A akoako) B and N > M so large that aj = 0 for
all’ i with kj <i <k, if J z N . Then for j z N, the

1
same contradiction as above ensues, giving another entry which

is not almost always zero. Repeating this argument Bz+1 times

gives the desired conclusion.
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Proposition 3. Let X be a compact surface with positive

33-closed (1,1)-form « , and suppose that the main theorem has
been proved for bundles of rank less that r . If E is an
w-stable r-bundle on X which has an admissable subsheaf,

then there exist

(i) a modification X L5 x consisting of N blow-ups;

(ii) Gqreeerly > 0 such that, if OqreeerOy are forms
constructed as in Section 2 and o := Zaioi , the form

T*w-p is positive;

(iii) €9 > 0 and a subbundle A < w*E such that

~ = . ' ~ . ' * . .
Vn*E(A'we) 1nf{v“*E(A ,me) : A' ¢ 7*E is admissable}

for all ¢ € (O,eol , where woz= T*¥W-cp .

Proof. By Lemma 4(b) there exists A; c E satisfying

vE(AO) = inf{vE(A') : A' « E is admissable} , and the quotient

B, := E/A0 is automatically torsion-free and stable by Lemma 2.

/

0

If B0 is locally free, then there is nothing more to do,

so suppose this is not the case. Desingularize BO to get

X, -~ 5> X together with T*By ——>> ﬁo , TEA, —> AO . Let

{ci} by any of the forms of Section 2 (one for each exceptional
line), and choose a; > 0 so that Pg 3= La;04 has w*@-po
positive.

By Corollary 5(b), there exists A1 c 7*E satisfying (iii),
except that it may not be a sub-bundle. If not, for any positive ¢
sufficiently small one has
vp(meBi) teogec i (Ag) = v ,p (A1,w)5vv*E(Ao,w€) = vp(m,Ay) +epq-c (2

Since w*A0=1X0. letting ¢ -» 0 gives vE(w*A1) S vE(AO) , and
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by definition of Ay v the reverse inequality holds also. So
vE(ﬂ*A1) = vE(AO) , giving p0°c1(A1) < po‘c1(A0) . If equality
holds here, then A0 satisfies the requirements of the proposi-
tion.

Suppose then that po-c1(A1) < p0°c1(£0) . Desingularize

T

1 ~
1 >X0 14

the torsion-free sheaf B1 = w*E/A1 to get i

~

W#B1 —_—> é1 ,-n?A1 s A1 . Choose more o¢'s and a's so
- = %* : * - . .
that p, := 7%0, + 2“1“1 has r*uw-p, Ppositive, where = denotes
X1 —> X . Now choose A2 according to Corollary 5(b) so that
P = i "G : A' * @ = Ry
Vosep (Byr-®) inf{v_,g(a P®) 2 At oo E} , where © T*y-ep, .

[It is important to use =« : i1 -+ X rather than T, o X 0
at this point.] Again one obtains vp(m,A,)) = vE(w*i1) , and

since n*i1 = “0*"1*A1 = “0*A1 , it follows as before that

vE(w*Az) = vE(Ao) and p1'C1(A2) ES p1'C1(A1) . If equality holds

here then A1 satisfies the requirements of the proposition;
otherwise, repeat the process again.

If this procedure fails to terminate, then there is an in-

~ . ~

finite sequence of modifications ... = xj+1 - Xj -

cee » X

J j+

vE(w*Aj) = vp(ag) and pj+1-c1(Aj+1) < p

with Aj+1' A. cr*E on X satisfying_‘vExt*Aj+1)

j+1'c1(Aj)' where T

denotes X -+ X . Here

. + .0, r some o, > 0
j+1 Zalol for s i

= *
P3¢t T T3e1P

and o5 belonging to the modification ij+1 - Xj‘

Since Aj results from the desingularization of the torsion-

free sheaf B. = n*E/A. on X, .
j = TE/Ry j P+

(indeed, this is strict). Thus {p

-C A. < p.*c,(A)) ;
1( J) oj 1 J)

j+1-c1(Aj)} is a strictly
decreasing sequence. By passing to a subsequence, it can be

assumed that rank(Aj) = a is constant, and then the equation

vE(w*Aj) = vE(Ao) implies u(n*Aj) is constant. Since “*Aj



~35-

is contained in E and has torsion-free quotient, it follows

from . Lemma 3 that there is a

1(w*Aj) constant. Since

e - "*Aj - E - “*Bj -+ 0 is exact off a finite subset,

subsequence with c¢

c1(w*é. ) 1is also constant. Thus‘if c1(n*ij) =R € Hz(x,Z)

J
and o, (1,B;) = v € 8% (X,2) , then it follows that
-~ _ . j ~ _ _ j _ .
c1(Aj) = B8 + Zaioi and c1(Bj) =y Zaioi for some non-negative
. j _ , ~ _oovud .
integers aj . If °5e1 = Lajo; , then Pje1°Cq(Ay) = -laje,  is
_strictly decreasing with j , and since ,Vol(Xj+1, wﬂu-pj+1) =
Vol (X) - %Zai ’ the'infinite‘éequenqérsf a's is in 22 . By

Lemma 7, llajll2 1= Z(a:i])2 is an unbounded sequence.

‘ Now, by Lemma 5, Aj and Bj on ij are stable with respect
to n*w-epj for ¢ sufficiently small. So by Lemma 6, ij and
are stable with respect to some positive 33-closed

~ ~

Bj on Xj+1
(1,1)=-form on X.

5+1 . By the in-

(not necessarily n*w—epj+1)

ductive hypothesis, they admit H-E connections and therefore

g+ B=By.

- cz)(A) < 0 and

satisfy Liibke's inequality ([14]): with A = A
rank A = a , rank B = b , this states (éi% cf
0 . Adding these together and substituting

b-1
(55 €7 — ¢,) (B)

WA

= J = voVald = .
c,(p) =8 + Zaici r ¢4(B) =y Zaici » €5(E) = c,(A) +c, (B) +c, (A) -c
. a-1 b-1 r j 2
gives 0 2 a3 BB + =5 Y°Y + B-Y-cz(E) + Jab i aJH after a
short calculation with some fortuitous cancellations; (r = a+b
of course). Since all terms except the last on the right are

independent of Jj in this inequality, the desired contradiction

has been achieved because || al|| is unbounded.
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5. Proof of Theorem 1

In order to prove the main theorem, a certain functional,
to be given shortly, must be minimized. The set over which this
minimization is performed is the set of all integrable Lg
connections on a fixed U(r)-bundle, each connection inducing
the same holomorphic structure. By the Newlander-Nirenberg
theorem, a smooth integrable connection induces a holomorphic
structure, but it is not immediately clear that the same is true
of general L? connections. However, the following result shows
that if p is large enough, this is indeed the case. The proof
was suggested by the proof for the case n =1 in [1].

Lemma 8. Let B denote the open unit polydisc in t? centred

1
at the origin. Let A be an r x r matrix of (0,1)-forms with
coefficients in Lg'loc(B1)"'satisfying §AfAAA = 0 , where

p 22n . Then A = uw'3u for some u € Lg,loc(B1) .

Proof. Consider first the following: Let U denote the Banach

. manifold of invertible r x r matrices on P with coefficients
in Lg , M denote the Banach space of r x r matrices on :mn
with coefficients in LP , and A denote the Banach space of

r x r matrices of (0,1)-forms on IPn with coefficients in

Lg . Let M'L be the subspace of M perpendicular in L2 to

the constant matrices.

Since p > n , the Sobolev embedding theorem shows that the

map ¢ given by
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1 1

UxA 3 (u,A) + 3*(u” ' 3u+u” Au) = —ir3 (u” V3u+ru T au)

is a smooth map of Banach manifolds UxA - M‘L , where the adjoint
is with respect to the Fubini-Study metric on IPn . The partial
derivative of ¢ in the U-direction at (1,0) is

TU 2 v A"V € M'L , which is surjective with kernel the con-
stants. By the implicit function theorem, the equation

T5u+u”'Au) = 0 has a solution -u € U for all A € A

3% (0
sufficiently small.

Now suppose that A 1is simply a matrix of (0,1)-forms
with coefficients in L?,loc(B1) satisfying JA+AAsA = 0 .
Pull-back A|B to B, by the holomorphic map
B1 3z rz € gr to give Ar € L?(B1) . Then
I Ar” L?(B1) < Const. r1'2n/pH A'E?(Br) . Let n be a cutoff
function with support in B1 and with n =1 on B1/2 . Then
if A := nAr vl Ar|Ep < Const. || Ar” L?(B1) s
L?(B y and the last term on the right can
be made arbitrarily small by shrinking r since p 2 2n and
aebm ) .

The matrices Ar can now be regarded as defined on IPn ’
so if r is small enough, there exists u such that

1Aru) =0 . If A' := u-1§u+u-1Aru , then

5*(u—13u+u_
- -1 - -1 =, = ~ ~

[ ' S =
aAr + Ar'\Ar u (BAr + ArAAr)u u [a(nAr)+(nAr)A(nAr)]u . Thu

near 90 , Aé satisfies the (overdetermined in general) elliptic

system 3*Aé = 0, gAé = —AéAK} and is therefore smooth there.
By the usual Mewlander-Nirenberg theorem A = v 13v for
some smooth v defined near 0 , and if w := vu—1 €ng‘

~

then w 3w = A_ near © . Reverting to the original coordinat-
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gives A = w ow for some w €,L§ defined near € , and the
conclusion of the lemma follows by applying this result at
each point of B1 and using the triviality of all holomorphic

vector bundles on B1 .

Remark. With simpte aiterations the above proof can be sharpened
to p>n .

_The functional to be minimized can now be given - it is
almost identical to Donaldson's [4], so the same notation will
be used.

For hermitian r x r matrices M , the trace norm is

r

v(M) := tr(M*M)”2 = ) |ki| where (x;} are the eigenvalues
i=1

of M repeated according to multiplicity. As explained in [4],

it defines a norm, and if M = (g* g) then

v(M) 2 |trA| + |trD| . If s is a section of the endomorphisms
of a U(r)-bundle E on the compact surface X , set
N(s) := || v(s) || tP(x) * and for a connection A on E with
curvature F in A1’1(EndE) , the functional is

= N(iF + X = =
J(A) := N(iF + Xx1) , where A\ = AE v

will be some fixed number greater than 4.

fxtrF dv . Here p

The following lemma corresponds to Lemma 3 of [4].

Lemma 9. Suppose that Theorem 1 has been proved for bundles
of rank less than r . If E is a stable holomorphic r-bundle
on X which can be expressed as an extension

0 »B-E-»>C->0 with B,C stable, then there is a smooth
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hermitian connection A on E compatible with EE such that

7(a) < 4axv'/P7,_(B) .

E

Proof. On B,C , fix the H-E connections which exist by the

inductive hypothesis, and let B8 € AO’1

(Hom(C,B)) be a
3-closed (0,1)-form representing the extension
0 >B~->E->C=->20.

If Q is the operator Q := -iAd33 , then Q = iAda -
iA(33+30) = P-iF (cf.(2.2), (2.3)), so from (2.4) it follows
that Q+Q* = P+P*-2i§ = A—iﬁ . For the induced H-E connection

on Hom(C,B), F = i(x )1 , and since E 1is stable,

B~ c
AB > AC . Thus Q* has no kernel and Q is surjective; in
particular, there exists vy € Hom(C,B) such that
A3 (B+3y) = O .

If B8 is thus modified so that A38 = 0 , now rescale
it so that sgplel =1 ; (B+*+ 0 since E is stable). Using
t8 in place ;f B for t =t + 0 , (3.2) shows that the

curvature of the induced connection on E has

. (Ag=Ag) 1=it°ABAB* 0
iFE(t)+AE1 = 5
- - *
0 (AE XC)1 1tTAB*AB .
Since A, > A, > A, , when t is small enough all of the

B E Cc
eigenvalues of the top term are negative and all those of the

bottom are positive. For such such t , it follows that

2 2

v(iFE(t)+kE1) = ‘tr[(AE—AB)1—it ABAB*]+tr[ (A -AC)1-it AB*AB] =

E
4nv v (B)-2¢%[8]% . since |8|% s 1, taking t sufficiently

small gives N(iFg(t)+r 1) < 4xv'/P71, () .

E
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The next step is the equivalent of Lemma 1 of [{4], but
in the current setting, it is made considerably more compli-
cated by the presence of singularities of one sort or another.

Suppose, as usual, that E 1is a stable r-bundle on the
compact surface X , where stability is with respect to a
fixed positive 33-closed (1,1)-form o . If E has an
admissable subsheaf, pull-back E to the modification
i > X given by Proposition 3 and fix one of the forms
Ge described there. By Proposition 3 and Lemma 9 , n*E admits
a smooth connection A with J(a) < 4xvV/P 1, where
V = vol(X,%,) and m := inflv . (5,3,) : S < r*E is admissable} .
If E has no admissable subsheaves, no blowing-up is required
for what follows. To simplify notation, (%,w*E,Be) will
temporarily be denoted by (X,E,w) when E is of type I.

Now choose a segquence Ai of smooth connections on E
which minimize the functional J . Since line bundles admit
H-E connections, it can be assumed that the induced connections
on detE are all the same; namely, the H-E connection.

Since J(Ai) is comparable with the usual LP norm of
the self-dual component of the curvature F(A;), H F(Ai)H L2
is bounded. By the weak compactness theorem of Uhlenbeck [21],
({18,81) , there is a finite subset S = {x1,;..!xN} < X and
local gauge transformations such that the gauge-transformed
connections converge weakly in Lf’loc(x\S) . In fact, an
inspection of the proof of Corollary 23 [5] shows that the
sequence can be assumed to converge weakly in L?lloc(X\S) ’

for all that is required in the proof of that corollary is a

uniform bound on the LP norm of the self-dual component of
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the curvatures. The transition functions of the resulting
"bundle" on X~S are then continuous, and (as in ([5]),
Section 3 of [21] applies to construct global gauge trans-
formations from the local ones. Thus, after suitable bundle
automorphisms of the underlying U(r)-bundle, (a subsequence
of) the gauge-transformed sequence, also denoted by Ai ’
converges weakly in L?,loc(x\s) to a connection A' with
F(A') € LZ(X) and g(A') e tPx) . By semi-continuity,
J(A') = inf J(Ai) .

The connection A' has curvature of type (1,1) , so
by Lemma 8 it induces a holomorphic structure; denote this
holomorphic bundle on X~S by E' . Since the connections
on detE do not change in the sequence, detE' = detE and
trF(A') = trF(A,) .

Following Donaldson [5] again, a non-zero holomorphic
map E - E' will now be constructed, as in the proof of
Lemma 4. Let gj be the complex automorphism intertwining
Ao and Aj , with detgj =1 for all j ; (that is, gj is
the map which gives the isomorphism between the holomorphic
structure E0 defined by AO and that which is defined by
12

A. . » B 2.5 Alg.
. ) y (2.9), Igj

2(\F|+|Fj|)lgjlz‘, so by Theorem 9.20 [8] there is a constant

+i*a(Igjlziw)-i*ﬁ(lgjlzam) 5

C , independent of 3j , such that suplg.lzéc[H g.sz +
x 3 I L% x)

H(lF0{+|Fj|)lngZH 4 )] . By Hdlder's inequality, it follows
L (X

that sup!g.l2 s clt g, for q = p-4 and some new
_ x J £ %x)

constant C , using the uniform bound on || F

-~

. . Since

Jlkp

; p '
{Aj} converges weakly in L1’10c(x\S) and p > 4 , the Aj s
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are bounded in CO(K) for any compact K < XN\S . Repeating

~

the argument of Lemma 4, after rescaling gj to g. satis-

fying || éj”Lq( )= 1 and choosing small balls B about
X
the points x € S , a subsequence of the gj's can be found

~

which converges weakly in Lg(KO) and strongly in Lq(KO) to
a non-zero limit & representing a holomorphic map E0 - B' ,
where KO = XN\UB, . Since aKo is pseudo-concave, & extends
to X~S , and by diagonalization ([18]) it can be assumed
that éj is converging weakly to & in LB (X~S)

2,1oc
Since the connections on detE, detE' are the same, detg

is a holomorphic function on X~\§ , and therefpre constant by
Hartog's theorem. Suppose that detg = 0 . Then é has non-zero

kernel at every point, giving a diagram on X\S

0 — K— E > Q > 0 (5.1)
gl . |
g
0 ¢&— C «— E'"¢e— Q <« o,

where K = kernel, Q = quotient, C = cokernel. If O(E)x is
generated by sections €47 € F(Ba,O(E)) as Ox-module for
each X ¢ Ba , then the images of e1,...,er in

F(Ba\{xa},Q) generate Q as Oy-module for each

b4
y € Ba\{xa} . By a theorem of Serre [19], i,Q is a coherent
analytic sheaf on X , where i : XNS - X 1is inclusion. [Indeed
i,Q is locally free in a neighbourhood of X, € S , being
torsion-free and normal there; E » i,Q need not be surjective

at X, though.] It follows that i,K is coherent, so in

particular, E has an admissable subsheaf.
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Now, off a codimension =z 1 analytic éubset of X8 ,
(5.1) is a diagram of bundles. By definition, the 3-operator
induced on Q as a quotient of E and the 3-operator induced
on Q as a sub-bundle of E' via é : Q - E' are the same
on this complement. Since E and E' have the same unitary
structures (where the latter is defined), the induced
connections on Q are the same; in particular, they have the
same curvatures F,. , so by the remark (e) at the end of

Q

section 3, tr F is integrable and '3% [ tr F.AdV = deg(Q,w) &
X

Q Q
[1f Q := E/i K , then Q = i,Q off S , so detQ = det(i,Q) .
For . simpiicityy the symbol ' Q 1is being used in place of

0 here. ]

Off the codim 2 1 subset of X~\S , (3.2) gives

FQ-BAB* v
F(A') =
~VB* FC-B*AB ’

and moreover, tr F(A') = tr FQ+tr Fc = tr E(AO) = ira

the property of v stated earlier in this section ,

E'.Umng

v(i F(A')+Ag1) 2 ltr(i F. = iABAB*+AE1)| + |tr(i Fc-iAB*AB+AE1)|

Q

2ltr i FQ+|BI2+AEqI , where g = rankQ and IBI2 = -itrABAB* .
Thus J(A') = N(i F(A'")+x.1) = || v(i F(A')+a_1) ]| z

E B LP(x)
VT v Fan gl oz v P er 1 pelal? .

Q
L' (X)
1/p-1 - 2
Anq || z 2V | f(tr 1 F +|8]| “+r_g)av| =
BT (x) X Q E
w'/P=1 | |8l%av + (A_-2.)qV| . Since i = -2rV 'y (E) and
X E Q E

E 1is stable, pu(E) < p(Q) and xr_ > i. ;: thus

E ~ g
J(A') z 2V1/pq(AE-AQ) - 4nV1/p-1vE(i*K) , with equality only
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if B8 = 0 . This, however contradicts J(A')sinf J(Ai) <
4n1/p-1vE(i*K) ; (recall that since E has admissable
subsheaves, we are actually working here on the modification

given by Proposition 3).

Thus when E 1is of either type, g : E - E' is an iso-
morphism. Unfortunately, a priori this is only an isomorphism
outside S , so it must be shown that g € Lg(X) .

Recall that the unscaled gj's had detgj = 1 . Since

L]
~

the unscaled endomorphisms gj converge in C0 off a neigh-
bourhood of S to é with det& # 0 , the scaling factors

must be bounded above and below, and since {&j} is bounded

-1 ~

. 0 . - ~-1 p @
in C (X) , so too is {gj } . Thus g,g € L2,loc(x\8)nL (x) .

Now, there is no loss of generality in assuming that §j and
5 are positive and self-adjoint, for the replacement of g,

J
1/2 amounts to a unitary gauge transformation. If

2

b *q.
)4 (q] gj)

uj is the positive self-adjoint endomorphism u.=§f

] 73 73

. . . P
then {uj} is converging weakly in L2,loc(x\s) to u

~

14

?

2

J
*_gg .

O Q1

In a fixed holomorphic frame defined by Ao , the curvature

forms are then F(Aj) = F(AO) + 3(uj_1aouj) . Since

{F(Aj)} is converging weakly in LZ(X) and uj.180uj is a

sequence of (1,0)-forms, it follows that uj—1aouj converges

weakly in Lf(x) and (without loss of generality),

u-130u € Lf(X) . Since u,u-1

€ L (X) , it follows easily

that u € Lg(x) . Since §,§-1 are positive, self-adjoint and

bounded, it follows easily that if A 1is a matrix such that

A+9§ ajer?, then Ae1? . For A= g 'pg , om has A+TAG
4 4

= v-'Du - ) € L? cL° ,so A€E€L . Then DA + §_1DA g =
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D{u"'Du) + AgAg - gT'AQA e 1%, implying DA € L2,

and A € Lf . Thus in a unitary frame, the connection forms

for the limit connection A' 1lie in Lf(x) . But now Theorem
1.3 of [21] can be applied. Since IBH FszV is invariant unde:
dilations of the ball B (using a flat metric, but in the
non-flat case the difference can be neglected), by choosing a
sufficiently small neighbourhood B of a bad point X €S,
the connection can be gauge-transformed as in Proposition 22

of [5]. Arguing then as in Corollary 23 of [5] using the fact
that E(A') € Lp(x) , it follows that the gauge-transformed
connection form actually lies in L?(%B) (provided B is

sufficiently small). It follows that F(A') € Lp(x) , and by

repeating the earlier argument, u and then 3 are in Lg(x) .

The connection A' € L? now minimizes the functional J ,

and it must be shown that this minimum is 0.

Recall the operators P = iA33 and Q = -iA33 . Since

P+ P* = A+ iF and Q + Q* A - iF, R := P + Q satisfies

R + R* 2A . Any solution s € Lg(EndE) of Rs =0 |is
necessary of the form s = const.1 ; this is true even though
R may not have smooth coefficients, because a sequence of
smooth connections A3 can be chosen converging strongly in
Lg to A' and the corresponding operators Rj have the same
second order term, first order terms converging in L? and
zeroth order terms converging in P . Thus

0 = <s,Rs> = lim<s,st> = 1im<dAﬂs ,da > = <dAs,dAs> ’
b}

a's
3
implying s = const.1 .
The same type of elementary approximation argument shows

that there is a unique solution s € Lg(EndE) n (kerR)l to
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Rs = iﬁ(A') + AE1 (since iﬁ(A') + AE1 lies in (kerR*)l) .
Exactly the same argument as in [4] now shows that in order
for A' to minimize J , it must be the case that J(A') = 0 ,
otherwise gy = 1+ts gives a connection At with

J(At) < J(A') for small enough ¢t .

In the case when E has no admissable subsheaves, it has
now been shown that E admits an H-E connection. In the case
that E does have admissable subsheaves, it has been shown
that =*E admits an H-E connection for each of the forms
;E of Proposition 3, where i -I_> X is the modification
described in that proposition. The final task is to push these
down to X .

Recall that the forms o5 of Proposition 3 could have
support in arbitrarily smalllneighbourhoods of the exceptional
lines they represent, so ;E—w*w can have support in an
arbitrarily small neighbourhood of the exceptional divisor
D . Shrinking these supports (and necessarily, the coefficients
@y at the same time) gives a sequence of forms {;j} , say,
and corresponding connections Aj on w*E such that Aj is
an H-E connection for ;j . Thus if {x1,...,xM} = n(D) , then
off each fixed (but arbitrarily small neighbourhood) of = (D)
the sequencé Aj can be viewed as a sequence of connections
A. on E , which for j large enough, are all H-E connections
for » . The constants A in this sequence are of course

E
changing: (Ap)y = =2ru(E) /Vol(i,;j) , with Vol(i,;j) - Vol(X) .
Applying the argument of Uhlenbeck-Sedlacek-Donaldson once
again, there exist xM+1,...,xN € X such that, if

S := {X1,...,xN} , then after suitable gauge transformations



~47~

the Aj converge weakly in L?,loc(x\S) to an H-E conection
A with finite Yang-Mills action over X~S . (The U-S-D argu-
ment is still applicable even though it is being applied over
XNy BZ with Bz - {xa} , as an inspection of [18] quickly
shows.) By ellipticity, A is smooth, and since, in a neigh-
bourhood of any point of X the connection A can be twisted
by an H-E connection on a trivial line bundle so that the
resulting connection has A = 0 , it follows from the removable
singularities theorem [20] that A extends across S to an
H-E connection on a (possibly topologically différent)'bundle
E' . The new holomorphic bundle E' is automatically semi-
stable by Corollary 4. If U is any neighbourhood of S , then
for sufficiently large j .,
jx\UtrE(Aj)dV = ir(xE)jVol(X\U) , so u(E') = u(E) .

It remains therefore to construct a non-zero holomorphic
map E - E' or E' - E . Choose a small ball B, about X,

n—1(U) . The balls B_ are chosen

and set U :=UB , 6 :
o a

small enough that E has a connection A0 (compatible with

SE ) which is smooth and moreover is flat in all Ba . Pull

A back to i and let gj be the endomorphism intertwining

0

w*AO with Aj . Using the Laplacian Aj on X determined

~ ~

by wj , as well as the * and A operators for wj , (2.3)

gives
(5.2)
b lg.l2+i*s (g, |25 0.)-1%3 (g |2a,) s2<g. ,iF (A,)g,-g.iE>,
J 73 J J J J J 3°°3 "3 °
where iF(Aj) = Znu(E)/Vol(i,aj) . If u(E) > 0 , replace gj

by gj-1; otherwise leave gj as it is. Then in U » Fg = 0
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and the right-side of (5.2) is s 0 . Since 58;j = 0 , Theorem

3.1 of [8] (the maximum principle) gives sup|gjl2 < suplgj|2

~ 8] 30
On the other hand, outside U the forms Gj all agree for

-~ -~

large enough j , and in X\U one has the usual bound

Algjl2 < Const.lgjl2 , where A is simply determined by w .

By Theorem 9.20 of [8] it now follows that
P g - - , where U' o= U is slightly

2
sup|g,|” = cl| g,
-] 37 L% (x\U', 1*0)

X
smaller.

Now choose U" < U' such that C4Vol(U") = % and fix a
non-singular metric ; on i such that supp(;-w*w) c 6" .

Normalize g5 SO that || ng g - ~ =1 (here it is assumed
. L (X,w)

u(E) £ 0 , otherwise use gj.1 as above). Then since

Vol(a",;) < Vol(U",w) , the usual calculation gives
8 1
layl® g o= 25 -
L (XNU",1%*0)
Now regard gj as defined on X~S . Then

I ngSLs(X\U") 2 % , and exactiy the same argument as in the
proof of Lemma 4 (i.e.[5] p.23) shows that the gj‘s have a
subsequence weakly convergent in Lg(X\U") and strongly con-
vergent in CO(X\U") to a limit g representing a non-zero
holomorphic map E = E' (or E' - E ) over X~U" , and by
Hartogs' theorem, this extends to X . Since u(E) = u(E') , E

is stable and E' is semi-stable, this map must be an iso-

morphism. This completes the proof of the theorem.
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