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ABSTRACT. We prove the existence of good smooth integral models of Shimura varieties
of Hodge type in arbitrary unramified mixed characteristic (0, p). As a first application we
solve a conjecture of Langlands for Shimura varieties of Hodge type. As a second applica-
tion, for p≥ 3 (resp. for p = 2) we prove the existence in unramified mixed characteristic
(0, p) of integral canonical models of Shimura varieties of Hodge type that have compact
factors (resp. that have compact factors and that pertain to abelian varieties in character-
istic p which have zero p-ranks). Though the second application is new only for p≤ 3 and
for non-unitary Shimura varieties, its proof is new, more direct, and more of a principle.
The second application also represents progress toward the proof of a conjecture of Milne.
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1. Introduction

Let p ∈ N be a prime. Let Z(p) be the localization of Z at its prime ideal (p). Let
r ∈ N. Let N ≥ 3 be a natural number relatively prime to p. Let Ar,1,N be the Mumford
moduli scheme over Z(p) that parameterizes isomorphism classes of principally polarized
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abelian schemes over Z(p)-schemes that are of relative dimension r and that are endowed
with a symplectic similitude level-N structure (cf. [MFK, Thms. 7.9 and 7.10] applied to
symplectic similitude level structures instead of only to level structures).

1.1. Basic properties. The Z(p)-schemes Ar,1,N have the following three properties:

(i) they are smooth and quasi-projective;

(ii) if N1 ∈ NN is relatively prime to p, then the natural level-reduction Z(p)-
morphism Ar,1,N1

→ Ar,1,N is a pro-étale cover; thus the projective limit

Mr := proj.lim.N ≥ 3,(N,p)=1Ar,1,N

exists and is a regular, formally smooth Z(p)-scheme;

(iii) if Z is a regular, formally smooth scheme over Z(p), then each morphism ZQ →
MrQ extends uniquely to a morphism Z →Mr of Z(p)-schemes.

Property (i) is checked in [MFK, Thms. 7.9 and 7.10], cf. also Serre Lemma of [Mu,
§21, Thm. 5]. Property (ii) is well known. Property (iii) is implied by the fact that each
abelian scheme over ZQ that has level-N structure for each natural number N ≥ 3 relative
prime to p, extends to an abelian scheme over Z (cf. the Néron–Ogg–Shafarevich criterion
of good reduction and the purity result [Va2, Thm. 1.3]); such an extension is unique up to
a unique isomorphism (cf. [FC, Ch. I, Prop. 2.7]). From Yoneda Lemma we get that the
regular, formally smooth Z(p)-scheme Mr is uniquely determined by its generic fibre MrQ

and by the universal property expressed by the property (iii). Thus one can view Ar,1,N

as the best smooth integral model of Ar,1,NQ over Z(p). The main goal of this paper is to
generalize properties (i) to (iii) to the context of Shimura varieties of Hodge type. Thus
in this paper we prove the existence of good smooth integral models of Shimura varieties
of Hodge type in unramified mixed characteristic and we list several main properties of
them. We will begin with a list of notations and with a review on Shimura varieties.

1.2. Notations. Let S := ResC/RGmC be the two dimensional torus over R such that
we have identifications S(R) = GmC(C) and S(C) = GmC(C)×GmC(C) with the property
that the monomorphism R ↪→ C induces the map z → (z, z̄); here z ∈ GmC(C).

Let O be a commutative Z-algebra. We recall that a group scheme F over O is called
reductive if it is smooth and affine and its fibres are connected and have trivial unipotent
radicals. Let Lie(F ) be the Lie algebra over O of F . The group schemes GmO and GaO are
over O. For a free module M of finite rank over O, let M ∗ := HomO(M,O) and let GLGLGLM

be the reductive group scheme over O of linear automorphisms of M . A bilinear form ψM

on M is called perfect if it defines naturally an isomorphism M ∼→M∗. If M has even
rank and if ψM is a perfect, alternating form on M , then SpSpSp(M,ψM) and GSpGSpGSp(M,ψM)
are viewed as reductive group schemes over O.

Let k be a perfect field of characteristic p. Let W (k) be the ring of Witt vectors

with coefficients in k. Always n ∈ N. Let Af := Ẑ ⊗Z Q be the ring of finite adèles

of Q. Let A
(p)
f be the ring of finite adèles of Q with the p-component omitted; we have

Af = Qp ×A
(p)
f . If O ∈ {Af ,A

(p)
f ,Qp}, then the group F (O) is endowed with the coarsest
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topology that makes all maps O = GaO(O)→ F (O) associated to morphisms GaO → F of
O-schemes to be continuous; thus F (O) is a totally discontinuous locally compact group.
Each continuous action of a totally discontinuous locally compact group on a scheme will
be in the sense of [De2, Subsubsection 2.7.1] and it will be a right action.

1.3. Shimura varieties. A Shimura pair (G,X) consists from a reductive group G
over Q and a G(R)-conjugacy class X of homomorphisms S → GR that satisfy Deligne’s
axioms of [De2, Subsubsection 2.1.1]: the Hodge Q–structure on Lie(G) defined by any
h ∈ X is of type {(−1, 1), (0, 0), (1,−1)}, no simple factor of the adjoint group Gad of G
becomes compact over R, and Ad(h(i)) is a Cartan involution of Lie(Gad

R ). Here Ad :
GR → GLGLGLLie(Gad

R
) is the adjoint representation. These axioms imply that X has a natural

structure of a hermitian symmetric domain, cf. [De2, Cor. 1.1.17]. For h ∈ X we consider
the Hodge cocharacter

µh : GmC → GC

defined on complex points by the rule: z ∈ GmC(C) is mapped to hC(z, 1) ∈ GC(C).
The most studied Shimura pairs are constructed as follows. Let W be a vector space

over Q of even dimension 2r. Let ψ be a non-degenerate alternative form on W . Let Y

be the set of all monomorphisms S ↪→ GSpGSpGSp(W ⊗Q R, ψ) that define Hodge Q–structures
on W of type {(−1, 0), (0,−1)} and that have either 2πiψ or −2πiψ as polarizations. The
pair (GSpGSpGSp(W,ψ),Y) is a Shimura pair that defines a Siegel modular variety. Let L be a
Z-lattice of W such that ψ induces a perfect form ψ : L⊗Z L→ Z. Let

K(N) := {g ∈ GSpGSpGSp(L, ψ)(Ẑ)|g mod N is identity} and Kp := GSpGSpGSp(L, ψ)(Zp).

Let E(G,X) ↪→ C be the number subfield of C that is the field of definition of the
G(C)-conjugacy class of the cocharacters µh’s of GC, cf. [Mi2, p. 163]. We recall that
E(G,X) is called the reflex field of (G,X). The Shimura variety Sh(G,X) is identified with
the canonical model over E(G,X) of the complex Shimura variety

Sh(G,X)C := proj.lim.K∈Σ(G)G(Q)\(X×G(Af )/K),

where Σ(G) is the set of compact, open subgroups of G(Af ) endowed with the inclusion re-
lation (see [De1], [De2], and [Mi1] to [Mi4]). Thus Sh(G,X) is an E(G,X)-scheme together
with a continuous G(Af )-action. For C a compact subgroup of G(Af ) let

ShC(G,X) := Sh(G,X)/C.

Let K ∈ Σ(G). A classical result of Baily and Borel allows us to view ShK(G,X)C =
G(Q)\(X×G(Af )/K) as a finite, disjoint union of normal, quasi-projective varieties over
C and not only of complex space (see [BB, Thm. 10.11]). Thus ShK(G,X) is a normal,
quasi-projective E(G,X)-scheme. If K is small enough, then ShK(G,X) is in fact a smooth,
quasi-projective E(G,X)-scheme. Let H be a compact, open subgroup of GQp

(Qp).
We recall that the group GQp

is called unramified if and only if it has a Borel subgroup
and splits over an unramified, finite field extension of Qp. See [Ti] for hyperspecial subgroups
of GQp

(Qp). In what follows we will only need the following three things: (i) the group
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GQp
(Qp) has hyperspecial subgroups if and only if GQp

is unramified, (ii) the subgroup H
of GQp

(Qp) is hyperspecial if and only if it is the group of Zp-valued points of a reductive
group scheme over Zp whose generic fibre is GQp

, and (iii) each hyperspecial subgroup of
GQp

(Qp) is a maximal compact, open subgroup of GQp
(Qp).

Let v be a prime of E(G,X) that divides p. Let k(v) be the residue field of v. Let
e(v) be the index of ramification of v. Let O(v) be the localization of the ring of integers
of E(G,X) with respect to v.

1.3.1. Definitions. (a) By an integral model of ShK(G,X) over O(v) we mean a faithfully
flat O(v)-scheme whose generic fibre is ShK(G,X).

(b) By an integral model of ShH(G,X) over O(v) we mean a faithfully flat O(v)-

scheme equipped with a continuous G(A
(p)
f )-action whose generic fibre is the E(G,X)-

scheme ShH(G,X) equipped with its natural continuous G(A
(p)
f )-action.

In this paper we study integral models of ShK(G,X) and ShH(G,X) over O(v). The
subject has a long history, the first main result being the existence of the moduli schemes
Ar,1,N and Mr. This is so as we have natural identifications

Ar,1,NQ = ShK(N)(GSpGSpGSp(W,ψ),Y) and MrQ = ShKp
(GSpGSpGSp(W,ψ),Y)

(see [De1], [Mi2], [Va1], etc.). In particular, see [Va1, Ex. 3.2.9 and Subsection 4.1] and

[De1, Thm. 4.21] for the natural continuous action of GSpGSpGSp(W,ψ)(A
(p)
f ) on Mr.

In 1976 Langlands conjectured the existence of a good integral model of ShH(G,X)
over O(v), provided H is a hyperspecial subgroup of GQp

(Qp) (see [La, p. 411]); unfortu-
nately, Langlands did not explain what good is supposed to stand for. Only in 1992, an
idea of Milne made it significantly clearer how to characterize and identify the good inte-
gral models. Milne’s philosophy can be roughly summarized as follows (cf. [Mi2]): under
certain conditions, the good regular, formally smooth integral models should be uniquely
determined by (Néron type) universal properties that are similar to the property 1.1 (iii).

1.3.2. Definitions. (a) We say (G,X) has compact factors, if for each simple factor F of
the adjoint group Gad of G there exists a simple factor of FR which is compact.

(b) Suppose that e(v) = 1. An affine, flat group scheme GZ(p)
over Z(p) that extends

G (i.e., whose generic fibre is G) is called a quasi-reductive group scheme for (G,X, v), if
there exists a reductive, normal, closed subgroup scheme Gr

Zp
of GZp

and a cocharacter

µv : GmW (k(v)) → Gr
Zp
×Spec(Zp) Spec(W (k(v))), such that the extension of µv to C via

an (any) O(v)-monomorphism W (k(v)) ↪→ C defines a cocharacter of GC that is G(C)-
conjugate to the cocharacters µh of GC introduced above (h ∈ X).

(c) Let Y be a smooth O(v)-scheme of finite type. We say that Y is a Néron model
of its generic fibre YE(G,X) over O(v), if for each smooth O(v)-scheme Z, every morphism
ZE(G,X) → YE(G,X) extends uniquely to a morphism Z → Y of O(v)-schemes.

Definition (a) was introduced in [Va3, Def. 1.1]. Definition (b) is a variation of [Re2,
Def. 1.5]; more precisely, the group GZ(p)

(Zp) is an h–hyperspecial subgroup of GQp
(Qp)

in the sense of loc. cit. Definition (c) is well known, cf. [BLR, Ch. 1, 1.2, Def. 1].
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1.4. Constructing integral models. Until the end we will assume that the Shimura
pair (G,X) is of Hodge type i.e., there exists an injective map

f : (G,X) ↪→ (GSpGSpGSp(W,ψ),Y)

for some symplectic space (W,ψ) over Q; thus f : G ↪→ GSpGSpGSp(W,ψ) is a monomorphism
such that we have fR ◦ h ∈ Y for all elements h ∈ X.

We recall that we identity MrQ = ShKp
(GSpGSpGSp(W,ψ),Y). Let L(p) := L ⊗Z Z(p). Let

GZ(p)
be the Zariski closure of G in GLGLGLL(p)

. Until the end we will also assume that we
have an identity H = Kp ∩GQp

(Qp); thus H = GZ(p)
(Zp).

The functorial morphism f0 : Sh(G,X)→ Sh(GSpGSpGSp(W,ψ),Y)E(G,X) defined by f (see
[De1, Cor. 5.4]) is a closed embedding as it is so over C (cf. [De1, Prop. 1.15]). The
morphism f0 gives birth naturally to a morphism of E(G,X)-schemes

fp : ShH(G,X)→ ShKp
(GSpGSpGSp(W,ψ),Y)E(G,X)

which is finite (cf. Proposition 2.2.1 (b)). Thus we can speak about the normalization

N

of MrO(v)
in the ring of fractions of ShH(G,X). If GZ(p)

is a reductive group scheme over
Z(p), then fp is a closed embedding (for instance, see [Va1, Rm. 3.2.14]) and thus N is in

fact the normalization of the Zariski closure of ShH(G,X) in MrO(v)
. As G(A

(p)
f ) acts on

ShH(G,X) and Mr, we get a natural continuous action of G(A
(p)
f ) on N. Let

Ns

be the formally smooth locus of N over O(v); it is a G(A
(p)
f )-invariant, open subscheme

of N such that we have identities Ns
E(G,X) = NE(G,X) = ShH(G,X) (cf. Lemma 2.2.2).

If p > 2 let Nm := Ns. If p = 2 let Nm be the open subscheme of Ns that is defined in
Subsubsection 3.5.1. In this paper we study the following sequence

Nm ↪→ Ns ↪→ N→MrO(v)

of morphisms of O(v)-schemes in order to prove the following three basic results.

1.5. Basic Theorem. We assume that e(v) = 1 (i.e., v is unramified over p) and that
the k(v)-scheme Ns

k(v) is non-empty. Then we have:

(a) The O(v)-scheme Ns is the unique regular, formally smooth integral model of
ShH(G,X) over O(v) that satisfies the following smooth extension property: if Z is a reg-
ular, formally smooth scheme over a discrete valuation ring O which is of index of rami-
fication 1 and is a faithfully flat O(v)-algebra, then each morphism ZE(G,X) → ShH(G,X)
extends uniquely to a morphism Z → Ns of O(v)-schemes.
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(b) For each algebraically closed field k of characteristic p, the natural morphism
Ns

W (k) → MrW (k) induces W (k)-epimorphisms at the level of complete, local rings of

residue field k (i.e., it is a formally closed embedding at all k-valued point of Ns
W (k)).

(c) Suppose that (G,X) has compact factors. Let H (p) be a compact, open subgroup

of G(A
(p)
f ) such that N is a pro-étale cover of N/H (p). Then Ns/H(p) is a Néron model of

its generic fibre ShH×H(p) (G,X) over O(v).

1.6. Main Theorem. Suppose that e(v) = 1 and GZ(p)
is a quasi-reductive group scheme

for (G,X, v). Let Nm
k(v)red be the reduced scheme of Nm

k(v). Let Pm be the normalization of
the Zariski closure of Nm

k(v)red in Nk(v). If p = 2 we consider the following condition:

(*) each abelian variety that is the pull back of the universal abelian scheme over Mr

via a geometric point of Nm
k(v), has p-rank 0.

(a) If p = 2 we assume that the condition (*) holds. Then Nm
k(v) is a non-empty,

open closed subscheme of Nk(v).

(b) Suppose that NE(G,X) = ShH(G,X) is a closed subscheme of MrE(G,X). Then the
k(v)-scheme Pm is regular and formally smooth. Moreover, for each algebraically closed
field k of characteristic p, the natural morphism Pm

k → Mrk induces k-epimorphisms at
the level of complete, local rings of residue field k (i.e., it is a formally closed embedding
at all k-valued point of Pm

k ).

(c) Suppose that (G,X) has compact factors. If p = 2, we also assume that the
condition (*) holds. Then Nm is the disjoint union of an open closed subscheme Np of
N and of the E(G,X)-scheme NE(G,X) \ N

p
E(G,X) which is an open closed subscheme of

NE(G,X). Moreover Np is a pro-étale cover of a smooth, projective O(v)-scheme.

1.7. Main Corollary. We assume that e(v) = 1, that GZ(p)
is a reductive group scheme

over Z(p), and that (G,X) has compact factors. If p = 2 we also assume that the condition
1.6 (*) holds.

(a) Then we have Nm = Ns = N and moreover N is the integral canonical model of
ShH(G,X) over O(v) as defined in [Va1, Def. 3.2.3 6)].

(b) Let H(p) be a compact, open subgroup of G(A
(p)
f ) such that K := H × H(p) is

contained in K(N) for some natural number N that is at least 3 and that is relatively
prime to p; thus we have a natural finite morphism

f(N) : ShK(G,X)→ Ar,1,NE(G,X) = ShK(N)(GSpGSpGSp(W,ψ),Y)E(G,X).

Then the normalization Q of Ar,1,NO(v)
in the ring of fractions of ShK(G,X) is a smooth,

projective O(v)-scheme that can be identified with N/H (p) and that is the Néron model of
ShK(G,X) over O(v).

1.8. On contents. We detail on the contents of this Part I. In Section 2 we list conven-
tions, notations, and few basic properties that pertain to the injective map f : (G,X) ↪→
(GSpGSpGSp(W,ψ),Y) and to Hodge cycles.
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In Section 3 we include crystalline applications. In Subsections 3.1 to 3.3 we introduce
basic notations and review three recent results that pertain to p-divisible groups and that
play a central role in Sections 4 and 5. The results are: (i) de Jong extension theorem (see
[dJ2]), (ii) a motivic conjecture of Milne proved in [Va4, Thm. 1.2], and (iii) a variant of
Faltings deformation theory. In Subsection 3.4 we prove the Basic Theorem 1.5. Extra
crystalline properties needed in Sections 4 and 5 are gathered in Subsection 3.5.

See Lemma 4.1 for a simple criterion on when the k(v)-scheme Ns
k(v) is non-empty.

In Subsection 4.2 we apply Theorem 1.5 (a) and Lemma 4.1 to prove the existence of
good regular, formally smooth integral models of ShH̃(G,X) over O(v) for a large class

of maximal compact, open subgroups H̃ of GQp
(Qp) (the class includes all hyperspecial

subgroups of GQp
(Qp)). Corollary 4.2.3 can be viewed as a complete solution of Langlands’

conjecture (see paragraph before Definitions 1.3.2) for Shimura varieties of Hodge type.

In Section 5 we use Lemma 2.2.4 (i.e., [Va3, Cor. 4.3]), [Va5], Theorem 3.1, and
Subsection 3.4 to prove the Main Theorem 1.6 (see Subsections 5.1 to 5.7) and the Main
Corollary 1.7 (see Subsection 5.8).

Appendices A and B review basic properties of affine group schemes and of p-divisible
groups. Their Subsections are numbered as A1 and A2 and as B1 to B9. The reader ought
to refer to these Subsections only when they are quoted in the main text. Modulo few
notations of Subsection 2.1, the two Appendices are independent of the main text.

1.9. On literature and Parts II to IV. Referring to Theorem 1.5 (a), all ordinary
points of Nk(v) belong to Ns

k(v) (cf. [No, Cor. 3.8]). If (G,X) has compact factors and

Ns 6= N, then Theorem 1.5 (c) provides Néron models over O(v) which are not projective
and thus which are not among the Néron models obtained in [Va3, Prop. 4.4.1]. For p≥ 5,
the Corollary 1.7 (a) was first obtained in [Va1, Rm. 3.2.12, Thms. 5.1 and 6.4.1]. If p = 2,
one can use either [Va3, Section 3] or [Va6, Thm. 1.5] to provide plenty of situations in
which all hypotheses of Main Corollary 1.7 hold and in which the adjoint Shimura pair
(Gad,Xad) of (G,X) is simple and of any one of the following Shimura types An, Bn, Cn,
DH

n , and DR
n defined in [De2]. The works [MFK], [Dr], [Mo], [Zi], [LR], [Ko], and [Va1] to

[Va8] are the most relevant for the existence of good smooth integral models of Shimura
varieties of Hodge type. See also [HT, Section 5] for a translation of part of [Dr] in terms
of the existence of good smooth integral models in arbitrary ramified mixed characteristic
(0, p) of very simple unitary Shimura varieties. Theorems 1.5 and 1.6 are also key steps in
proving the deep conjectures [Re1, Conjs. B 3.7 and B 3.12] and [Re2, Conj. 1.6].

In the next two paragraphs we assume that the adjoint Shimura pair (Gad,Xad) is
simple and that GZ(p)

is a reductive group scheme over Z(p). The cases which are not
covered by the Main Corollary 1.7 are of three disjoint types:

(2COMP) p = 2, (G,X) has compact factors, and the condition 1.6 (*) does not
hold;

(PEL) all simple factors of Gad
R are non-compact and (Gad,Xad) is of either An (with

n≥ 1) or Cn (with n≥ 1) or DH
n (with n≥ 4) type;

(SPINNONCOMP) all simple factors of Gad
R are non-compact and (Gad,Xad) is

of either Bn (with n≥ 3) or DR
n (with n≥ 4) type.
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The goal of the Part II of the paper is to show that the Main Corollary 1.7 continues
to hold in the (2COMP) case (i.e., for p = 2 one does not need to assume that the condition
1.6 (*) holds). Besides this Part I, in order to achieve the goals of Part II one is only left
to provide concrete examples for which the Milne conjecture mentioned in Subsection 1.8
holds for p = 2 (see Remark 5.6.1). In the (PEL) case, the Shimura pair (Gad,Xad) is the
adjoint of a Shimura pair of PEL type and thus in Part III of the paper we will show that
this case can be handled as in [Va7] and [Va8] (no new ideas are required). Part IV of the
paper will use [Va1, Prop. 6.6.2] and the formalism of smooth toroidal compactifications
and elementary inductions, in order to handle the (SPINNONCOMP) case even for p≤ 3.
Thus Parts II to IV will complete the proof of the existence of integral canonical models
defined in [Va1] (i.e., the proof of Milne conjecture of [Mi2, Conj. 2.7] and [Va1, Conj.
3.2.5]) for all Shimura varieties of Hodge type.

Part I brings completely new ideas in order to: (i) shorten and simplify [Va1], and
(ii) to extend many parts of [Va1] that were worked out only for p≥ 5 to the case of small
primes p ∈ {2, 3}. Corollary 1.7 (b) corrects for p≥ 5 in most cases an error in the proof
of [Va1, Prop. 3.2.3.2 ii)] that invalidated [Va1, Rm. 6.4.1.1 2) and most of Subsubsection
6.4.11]. This correction was started in [Va3, Rm. 4.6 (b)] and [Va7, Thm. 5.1 (c) and
App. E.8] and it is continued here; it will be completed in the Part IV of the paper.

2. Preliminaries

In Subsection 2.1 we include some conventions and notations to be used throughout
the paper. In Subsection 2.2 we study the injective map f : (G,X) ↪→ (GSpGSpGSp(W,ψ),Y). In
Subsection 2.3 we consider C-valued points of Sh(G,X) and different realizations of Hodge
cycles on abelian schemes over reduced Q–schemes.

2.1. Conventions and notations. We recall that p is a prime and that k is a perfect
field of characteristic p. Let σ := σk be the Frobenius automorphism of k, W (k), and
B(k) := W (k)[ 1p ]. Let O, M , and F be as in the beginning of Section 1. If ∗ or ∗O is
either a morphism or an object of the category of O-schemes and if R is a commutative
O-algebra, let ∗R be the pull back of ∗ or ∗O to the category of R-schemes. Let Z(F ),
F ad, and F der denote the center, the adjoint group scheme, and the derived group scheme
(respectively) of F . We have F ad = F/Z(F ). The group schemes SLSLSLnO, etc., are over
O. If F1 ↪→ F is a closed embedding monomorphism of group schemes over O, then we
identify F1 with its image in F and we consider intersections of subgroups of F1(O) with
subgroups of F (O). By the essential tensor algebra of M ⊕M ∗ we mean the O-module

T(M) := ⊕s,t∈N∪{0}M
⊗s ⊗O M∗⊗t.

Let F 1(M) be a direct summand of M . Let F 0(M) := M and F 2(M) := 0.
Let F 1(M∗) := 0, F 0(M∗) := {y ∈ M∗|y(F 1(M)) = 0}, and F−1(M∗) := M∗. Let
(F i(T(M)))i∈Z be the tensor product filtration of T(M) defined by the exhaustive, sepa-
rated filtrations (F i(M))i∈{0,1,2} and (F i(M∗))i∈{−1,0,1} of M and M∗ (respectively). We
refer to (F i(T(M)))i∈Z as the filtration of T(M) defined by F 1(M).
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We identify naturally End(M) = M ⊗O M∗ and End(End(M)) = M⊗2 ⊗O M∗⊗2.
Let x ∈ O be a non-divisor of 0. A family of tensors of T(M [ 1

x
]) = T(M)[ 1

x
] is denoted

(uα)α∈J, with J as the set of indexes. Let M1 be another free O-module of finite rank. Let
(u1α)α∈J be a family of tensors of T(M1[

1
x
]) indexed also by the set J. By an isomorphism

(M, (uα)α∈J) ∼→ (M1, (u1α)α∈J) we mean an O-linear isomorphism M ∼→M1 that extends
naturally to an O-linear isomorphism T(M [ 1

x
]) ∼→T(M1[

1
x
]) which takes uα to u1α for all

α ∈ J. We emphasize that we denote two tensors or bilinear forms in the same way,
provided they are obtained one from another via either a reduction modulo some ideal or
a scalar extension.

The notations r, N , Ar,1,N , Mr, µh : GmC → GC, (GSpGSpGSp(W,ψ),Y), L, K(N), Kp,
E(G,X) ↪→ C, Sh(G,X), ShC(G,X) = Sh(G,X)/C, v, k(v), e(v), O(v), f : (G,X) ↪→
(GSpGSpGSp(W,ψ),Y), L(p) := L⊗Z Z(p), GZ(p)

, H = Kp∩GQp
(Qp) = GZ(p)

(Zp), f0 : Sh(G,X)→
Sh(GSpGSpGSp(W,ψ),Y)E(G,X), fp : ShH(G,X) → ShKp

(GSpGSpGSp(W,ψ),Y)E(G,X), N, and Ns will
be as in Subsections 1.1, 1.3, and 1.4. Let d := dimC(X) and l := dim(G); we have
d, l ∈ N∪{0}. Let (A, λA) be the principally polarized abelian scheme over N which is the
natural pull back of the universal principally polarized abelian scheme over Mr.

2.2. On the injective map f . Let H(p) be an arbitrary compact, open subgroup of

G(A
(p)
f ) such thatH×H(p) 6 K(N). As the morphism f0 : Sh(G,X)→ Sh(GSpGSpGSp(W,ψ),Y)E(G,X)

is a closed embedding, the induced morphisms fp : ShH(G,X)→ ShKp
(GSpGSpGSp(W,ψ),Y)E(G,X)

and ShH×H(p) (G,X)→ ShK(N)(GSpGSpGSp(W,ψ),Y)E(G,X) are pro-finite and finite (respectively).
Thus we can speak about the normalization Q of Ar,1,NO(v)

in the ring of fractions of
ShH×H(p)(G,X). We recall that every O(v)-scheme of finite type is excellent (for in-
stance, cf. [Ma, (34.A) and (34.B)]). The O(v)-scheme Ar,1,NO(v)

is quasi-projective (cf.
property 1.1 (i)) and thus it is also excellent. Therefore the O(v)-scheme Q is normal,
quasi-projective, faithfully flat, finite over Ar,1,N , and has a relative dimension equal
to dim(ShH×H(p)(G,X)) = dimC(X) = d. Let Qs be the smooth locus of Q over O(v);
it is an open subscheme of Q. As Sh(GSpGSpGSp(W,ψ),Y) is a pro-étale cover of Ar,1,NQ =
Sh(GSpGSpGSp(W,ψ),Y)/K(N), the group K(N) acts freely on Sh(GSpGSpGSp(W,ψ),Y). Thus the sub-
group H ×H(p) of K(N) acts freely on Sh(GSpGSpGSp(W,ψ),Y) and therefore also on Sh(G,X).
Thus QE(G,X) = ShH×H(p) (G,X) is a smooth E(G,X)-scheme and therefore it is the open
subscheme Qs

E(G,X) of Qs.

2.2.1. Proposition. The following three properties hold:

(a) The O(v)-scheme N is a pro-étale cover of Q and Q is the quotient of N by H (p).

(b) The morphism N→Mr is finite.

(d) If Z is a regular, formally smooth scheme over a discrete valuation ring O which
is of index of ramification 1 and is a faithfully flat O(v)-algebra, then each morphism
ZE(G,X) → NE(G,X) extends uniquely to a morphism Z → N of O(v)-schemes.

Proof: Let N2 := N . Let N1 ∈ NN be relatively prime to p. For i ∈ {1, 2} we write
K(Ni) = Kp × K(Ni)

(p), where the group K(Ni)
(p) is a compact, open subgroup of

GSpGSpGSp(W,ψ)(A
(p)
f ). The scheme Mr is a pro-étale cover of Mr/K(Ni)

(p) = Ar,1,Ni
. Let Hi

be a compact, open subgroup of G(A
(p)
f )∩K(Ni)

(p) such that Sh(G,X) is a pro-étale cover
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of ShH×Hi
(G,X). The morphism ShH×Hi

(G,X)C → Ar,1,NiC is of finite type and a formally
closed embedding at each C-valued point of ShH×Hi

(G,X)C. Let Qi be the normalization
of Ar,1,NiO(v)

in the ring of fractions of ShH×Hi
(G,X); it is a finite Ar,1,NiO(v)

-scheme and
a normal, quasi-projective, faithfully flat O(v)-scheme of relative dimension d.

As N2 divides N1, we have K(N1)
(p) 6 K(N2)

(p). We assume that H1 is a normal
subgroup of H2. The natural morphism q12 : Q1 → Q2 ×Ar,1,N2O(v)

Ar,1,N1O(v)
of normal

schemes is finite. We check that q12E(G,X) is an open closed embedding. As q12E(G,X) is
a finite, étale morphism between normal E(G,X)-schemes of finite type, it is enough to
check that the map q12(C) : Q1(C)→ Q2(C)×Ar,1,N2O(v)

(C) Ar,1,N1O(v)
(C) is injective. We

have

ShKp×Hi
(GSpGSpGSp(W,ψ),Y)(C) = GSpGSpGSp(L, ψ)(Z(p))\(Y×GSpGSpGSp(W,ψ)(A

(p)
f )/Hi)

(for instance, cf. [Mi3, Prop. 4.11]). Also we have a natural disjoint union decomposition

ShH×Hi
(G,X)(C) = ∪[gj ]∈G(Q)\G(Qp)/HCj\(X×G(A

(p)
f )/Hi),

where gj ∈ G(Qp) is a representative of the class [gj] ∈ G(Q)\G(Qp)/H and where the
group Cj := G(Q) ∩ gjHg

−1
j does not depend on i ∈ {1, 2}. As we have an identity

GSpGSpGSp(W,ψ)(Qp) = GSpGSpGSp(W,ψ)(Q)Kp (cf. [Mi3, Lem. 4.9]), we can write gj = ajhj , where
aj ∈ GSpGSpGSp(W,ψ)(Q) and hj ∈ Kp. Thus

Cj 6 GSpGSpGSp(W,ψ)(Q)∩gjKpg
−1
j = GSpGSpGSp(W,ψ)(Q)∩ajKpa

−1
j = ajGSpGSpGSp(L, ψ)(Z(p))a

−1
j =: Cbig

j .

We have Cj = G(Q) ∩ Cbig
j . This is so as gjHg

−1
j is the group of Zp-valued points of the

Zariski closure of G in ajGSpGSpGSp(L, ψ)Z(p)
a−1

j .
To show that the map q12(C) is injective, it suffices to show that each one of the

following commutative diagrams indexed by j

Cj\(X×G(A
(p)
f )/H1)

s1−−−−→ GSpGSpGSp(L, ψ)(Z(p))\(Y×GSpGSpGSp(W,ψ)(A
(p)
f )/H1)

π12

y
yπbig

12

Cj\(X×G(A
(p)
f )/H2)

s2−−−−→ GSpGSpGSp(L, ψ)(Z(p))\(Y×GSpGSpGSp(W,ψ)(A
(p)
f )/H2),

is such that the maps π12 and s1 define an injective map of Cj\(X × G(A
(p)
f )/H1) into

the fibre product of s2 and πbig
12 . Here the maps π12 and πbig

12 are the natural projections.
The maps s1 and s2 are defined by the rule: the equivalence class [h, g], where h ∈ X and

g ∈ G(A
(p)
f ), is mapped to the equivalence class [a−1

j h, a−1
j g]. Thus the fact that π12 and

s1 define an injective map of Cj\(X×G(A
(p)
f )/H1) into the fibre product of s2 and πbig

12 is

a direct consequence of the identity Cj = G(Q) ∩ Cbig
j . Thus q12(C) is injective.

Therefore q12E(G,X) is an open closed embedding. As q12 is also a finite morphism
of normal, flat O(v)-schemes of finite type, q12 itself is an open closed embedding. Thus
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Q1 is an étale cover of Q2 that in characteristic 0 is an étale cover which (as H1 C H2)
induces Galois covers between connected components. Therefore Q1 is an étale cover of
Q2 which induces Galois covers between connected components. By allowing H1 to vary
among the normal, open subgroups of H2 and by a natural passage to limits, we get that
N is a pro-étale cover of Q2 and that Q2 = N/H2. Thus by remarking that H = H2 and
Q = Q2, we get that (a) holds.

As each morphism q12 : Q1 → Q2×Ar,1,N2O(v)
Ar,1,N1O(v)

is an open closed embedding,

by allowing H1 to vary through all normal, open subgroups of H2 we get that N is an open
closed subscheme of Q2 ×Ar,1,N2O(v)

Mr. Thus N is a finite Mr-scheme i.e., (b) also holds.

To prove (c), we recall that Z is a healthy regular scheme in the sense of either [Va1,
Def. 3.2.1 2)] or [Va2] (cf. [Va2, Thm. 1.3]). Thus (c) is implied by [Va1, Ex. 3.2.9 and
Prop. 3.4.1], cf. the definitions [Va1, Def. 3.2.3 2), 3), and 6)]. �

2.2.2. Lemma. The scheme Ns is an open subscheme of N and Ns
E(G,X) = NE(G,X).

Moreover, if Ns
k(v) is a non-empty scheme, then Ns together with the resulting action of

G(A
(p)
f ) on it is a regular, formally smooth integral model of ShH(G,X) over O(v).

Proof: As N is a pro-étale cover of the excellent, quasi-projective O(v)-scheme Q (see Propo-
sition 2.2.1 (a)), Ns is a pro-étale cover of Qs. Thus Ns is an open subscheme of N. As

QE(G,X) = Qs
E(G,X), we have Ns

E(G,X) = NE(G,X). The open subscheme Ns of N is G(A
(p)
f )-

invariant. As G(A
(p)
f ) acts continuously on N, it also acts continuously on Ns. Thus if

the scheme Ns
k(v) is non-empty, then Ns together with the resulting continuous action of

G(A
(p)
f ) on it is a regular, formally smooth integral model of ShH(G,X) over O(v). �

2.2.3. Fact. Suppose that there exists a simple factor G1 of Gad
Q

which is an SOSOSO2n+1

group for some n ∈ N. Let G2 be the semisimple, normal subgroup of G
Q

whose adjoint is
naturally identified with G1. Then G2 is a SpinSpinSpin2n+1 group.

Proof: The representation of Lie(G2) on W ⊗Q Q is non-trivial and its irreducible subrep-
resentations are associated to the weight $n of the Bn Lie type, cf. [Mi3, p. 456]. This
implies that G2 is a SpinSpinSpin2n+1 group. �

2.2.4. Lemma. Suppose that (G,X) has compact factors. Then Q is a projective O(v)-
scheme.

Proof: Let G′ be the smallest subgroup of G such that every element h ∈ X factors through
G′

R. It is a normal, reductive subgroup of G that contains Gder; thus we have G′ad =
Gad. Let h′ ∈ X be an element such that G′ is the smallest subgroup of GLGLGLW with the
property that h′ factors through G′

R. We can assume that the C-valued point [h′, 1W ] ∈
Sh(G,X)/H × H(p) is definable over a number field (here 1W is the identity element of
G(Af )/H(p)) and that ψ is a principal polarization of the Hodge Z-structure on L defined
by h′. Thus G′ is the Mumford–Tate group of the principally polarized Hodge Z–structure
on L defined by h′ and ψ and this principally polarized Hodge Z–structure is associated
naturally to a principally polarized abelian scheme over a number field.

Let X′ be the G′(R)-conjugacy class of h′. The pair (G′,X′) is a Shimura pair whose
reflex field and dimension are also E(G,X) and d (respectively). Let H ′ := H ∩ G′(Qp)
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and H ′(p) := H(p) ∩G′(A
(p)
f ). As G′ad = Gad, the Shimura pair (G′,X′) also has compact

factors. Thus the normalization Q′ of Ar,1,NO(v)
in ShH′×H′(p)(G′,X′) is a projective O(v)-

scheme, cf. [Va3, Cor. 4.3].
The Shimura variety Sh(G′,X′) is a closed subscheme of Sh(G,X) of dimension d and

therefore it is an open closed subscheme of Sh(G,X). Thus each connected component of
the normalization of Ar,1,NO(v)

(equivalently of Q) in the ring of fractions of Sh(G,X) is
a G(Af )-translation of a connected component of the normalization of Ar,1,NO(v)

(equiva-
lently of Q′) in the ring of fractions of Sh(G′,X′).

As Q′ of Ar,1,N is a projective O(v)-scheme, from the last paragraph we get directly
that Q is a projective O(v)-scheme. �

2.3. Tensors. Let T : End(W )⊗Q End(W ) → Q be the trace form on End(W ). If κ is
a field of characteristic 0 and if † is a reductive subgroup of GLGLGLW⊗Qκ, then the restriction
of T to Lie(†) is non-degenerate (cf. A2 (b)). Let π† be the projector of End(W ⊗Q κ) on
Lie(†) along the perpendicular on Lie(†) with respect to T. If Gκ normalizes †, then Gκ

fixes π†.
The image of each h ∈ X contains Z(GLGLGLW⊗QR). This implies that Z(GLGLGLW ) 6 G.

Thus each tensor of T(W ∗) fixed by G belongs to the direct summand ⊕u∈N∪{0}W
∗⊗u ⊗Q

W⊗u of T(W ∗). Let
(vα)α∈J

be a family of tensors in spaces of the form W ∗⊗u⊗QW
⊗u ⊆ T(W ∗) with u ∈ N∪{0}, that

contains πG, and that has the property (cf. [De3, Prop. 3.1 c)]) that G is the subgroup of
GLGLGLW which fixes vα for all α ∈ J.

2.3.1. Complex manifolds. For a smooth C-scheme Y , let Y an be the complex manifold
associated naturally to Y . It is well known that for every u ∈ N and for every abelian
scheme πC : C → Y , we have a natural isomorphism

(1) RuπCan∗(C) ∼→RuπCan∗(Ω
∗
Can/Y an)∇

an
C

of complex sheaves on Y an. Here πCan∗ : Can → Y an is the morphism of complex manifolds
associated naturally to πC and ∇an

C is the connection on RuπCan∗(Ω
∗
Can/Y an) induced by

the Gauss–Manin connection on RuπC∗(Ω
∗
C/Y ).

2.3.2. Hodge cycles. We will use the terminology of [De3] on Hodge cycles on an abelian
scheme BX over a reduced Q–scheme X. Thus we write each Hodge cycle v on BX as a pair
(vdR, vét), where vdR and vét are the de Rham and the étale component of v (respectively).
The étale component vét as its turn has an l-component vl

ét, for each rational prime l.
In what follows we will be interested only in Hodge cycles on BX that involve no

Tate twists and that are tensors of different essential tensor algebras. Accordingly, if X is
the spectrum of a field E, then in applications vp

ét will be a suitable Gal(E/E)-invariant
tensor of T(H1

ét(BX ,Qp)), where X := Spec(E). If moreover E is a subfield of C, then we
will also use the Betti realization vB of v: it is a tensor of T(H1((BX ×X Spec(C))an,Q))
that corresponds to vdR (resp. to vl

ét) via the canonical isomorphism that relates the Betti
cohomology of (BX ×X Spec(C))an with Q–coefficients with the de Rham (resp. the Ql
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étale) cohomology of BX (see [De3, Section 2]). We recall that vB is also a tensor of the
F 0-filtration of the Hodge filtration of T(H1((BX ×X Spec(C))an,C)).

2.3.3. On AE(G,X). The choice of the Z-lattice L of W and of the family of tensors
(vα)α∈J allows a moduli interpretation of Sh(G,X) (see [De1], [De2], [Mi3], and [Va1,
Subsection 4.1 and Lem. 4.1.3]). For instance, Sh(G,X)(C) = G(Q)\(X × G(Af )) is the
set of isomorphism classes of principally polarized abelian varieties over C of dimension r,
that carry a family of Hodge cycles indexed by J, that have compatible level-N symplectic
similitude structures for every N ∈ N, and that satisfy some additional axioms. This
interpretation endows the abelian scheme AE(G,X) over NE(G,X) with a family (wA

α )α∈J of

Hodge cycles; all realizations of pulls back of wA
α via C-valued points of Ns

E(G,X) correspond
naturally to vα.

2.3.4. Lemma. Let w ∈ Sh(G,X)(C). We denote also by w the C-valued point of N

defined by w; thus we can define (Aw, λAw
) := w∗((A, λA)). Let uw

α (resp. twα ) be the
p-component of the étale component (resp. be the de Rham component) of the Hodge cycle
w∗(wA

α ) on Aw. We have:

(a) There exist isomorphisms (H1
ét(Aw,Zp), (u

w
α)α∈J) ∼→ (L∗

(p)⊗Z(p)
Zp, (vα)α∈J) that

take the perfect bilinear form on H1
ét(Aw,Zp) defined by λAw

to a GmZp
(Zp)-multiple of

the perfect bilinear form ψ∗ on L∗
(p) ⊗Z(p)

Zp defined by ψ.

(b) There exists isomorphisms (H1
dR(Aw,C), (twα)α∈J) ∼→ (W ∗ ⊗Q C, (vα)α∈J).

Proof: We write w = [hw, gw] ∈ Sh(G,X)(C) = G(Q)\(X × G(Af )), where hw ∈ X and
gw ∈ G(Af ). From the standard moduli interpretation of Sh(G,X)(C) applied to w ∈
Sh(G,X)(C) we get (see [Di1], [Mi2], [Mi3], and [Va1, p. 454]) that the complex manifold
Aan

w associated to Aw is Lw\W ⊗Q C/F 0,−1
w , where

(i) Lw is the Z-lattice of W defined uniquely by the identity Lw⊗Z Ẑ = gw(L⊗Z Ẑ);

(ii) W ⊗Q C = F 0,−1
w ⊕ F−1,0

w is the usual Hodge decomposition of the Hodge Q–
structure on W defined by hw ∈ X;

(iii) the principal polarization λAw
of Aw is defined naturally by a uniquely deter-

mined (non-zero) rational multiple of ψ;

(iv) under the canonical identifications H1
dR(Aw/C) = H1

dR(Aan
w /C) = W ∗⊗Q C, the

tensor twα gets identified with vα for all α ∈ J.

Thus (H1
ét(Aw,Zp), (u

w
α)α∈J) is identified naturally with (L∗

w ⊗Z Zp, (vα)α∈J) and
therefore also with a GQp

(Qp)-conjugate of (L∗
(p) ⊗Z(p)

Zp, (vα)α∈J). Part (a) follows from

this and from the existence of the rational multiple of ψ mentioned in the property (iii).
Part (b) is implied by the property (iv). �

2.3.5. Lemma. Let m ∈ N ∪ {0}. Let R1 := C[[x1, . . . , xm]], where x1, . . . , xm are
independent variables. Let I1 := (x1, . . . , xm) be the maximal ideal of R1. Let s ∈ N.
Let Aw,s be an abelian scheme over R1/I

s
1 that is a deformation of Aw (i.e., we have

Aw = Aw,s ×Spec(R1/Is
1)

Spec(R1/I1)). Then there exists a unique isomorphism

Iw,s : H1
dR(Aw,s/R1/I

s
1)

∼→H1
dR(Aw/C)⊗C R1/I

s
1
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that has the following two properties:

(i) it lifts (i.e., modulo I1/I
s
1 is) the identity automorphism of H1

dR(Aw/C);

(ii) under it, the Gauss–Manin connection on H1
dR(Aw,s/R1/I

s
1) becomes isomorphic

to the flat connection δ on H1
dR(Aw/C)⊗C R1/I

s
1 that annihilates H1

dR(Aw/C)⊗ 1.

Proof: The uniqueness of Iw,s is implied by the fact that H1
dR(Aw/C) ⊗ 1 is the set of

elements of H1
dR(Aw/C) ⊗C R1/I

s
1 that are annihilated by δ. We consider an abelian

scheme πAY
: AY → Y over a smooth C-scheme Y which is a global deformation of

Aw,s → Spec(R1/I
s
1). Let Zan be a simply connected open submanifold of Y an that

contains the C-valued point defined naturally by Aw. We identify naturally Spec(R1/I
s
1)

with a complex subspace of Y an and thus also of Zan. We apply formula (1) with u = 1
and C = AY . The pull back of R1πAan

Y
∗(C) to Zan is a constant sheaf on Zan. Thus by

pulling back formula (1) to the complex subspace Spec(R1/I
s
1) of Zan, we get directly the

existence of Iw,s. �

2.3.6. Corollary. Let m, R1, and I1 be as in Lemma 2.3.5 . Let Aw,∞ be an abelian
scheme over R1 that is a deformation of Aw. Then there exists a unique isomorphism

Iw,∞ : H1
dR(Aw,∞/R1)

∼→H1
dR(Aw/C)⊗C R1

that has the following two properties:

(i) it lifts (i.e., modulo I1 is) the identity automorphism of H1
dR(Aw/C);

(ii) under it, the Gauss–Manin connection on H1
dR(Aw,∞/R1) becomes isomorphic

to the flat connection δ on H1
dR(Aw/C)⊗C R1 that annihilates H1

dR(Aw/C)⊗ 1.

If wR1
α (resp. λAw,∞

) is a Hodge cycle on (resp. a principal polarization of) Aw,∞

that lifts the Hodge cycle w∗(wA
α ) on Aw (resp. lifts the principal polarization λAw

of Aw),
then the isomorphism Iw,∞ : T(H1

dR(Aw,∞/R1))
∼→T(H1

dR(Aw/C))⊗C R1 induced naturally
by Iw,∞ takes the de Rham realization of wR1

α (resp. of λAw,∞
) to twα (resp. to the de Rham

realization of λAw
).

Proof: The existence and the uniqueness of Iw,∞ follows from Lemma 2.3.5 by taking
s→∞. We denote also by δ the flat connection on T(H1

dR(Aw/C))⊗CR1 induced by δ (i.e.,
which annihilates T(H1

dR(Aw/C))⊗1). It is well known that each de Rham component of a
Hodge cycle on Aw,∞ is annihilated by the Gauss–Manin connection on T(H1

dR(Aw,∞/R1)).
[Argument: this follows from [De3, Prop. 2.5] via a natural algebraization process]. Thus
Iw,∞(wR1

α ) and twα are tensors of T(H1
dR(Aw/C))⊗C R1 which are annihilated by the flat

connection δ on T(H1
dR(Aw/C))⊗C R1 and which modulo I1 coincide. Thus the two tensors

coincide i.e., we have Iw,∞(wR1
α ) = twα . A similar argument shows that Iw,∞ takes λAw,∞

to the de Rham realization of λAw
. �

3. Crystalline applications

Theorem 3.1 recalls a variant of the main result of [dJ2]. In Subsection 3.2 we first
introduce several notations needed to prove Theorems 1.5 and 1.6 and then we apply the
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main result of [Va4] in the form recalled in B3. In Subsection 3.3 we apply the deformation
theory of [Fa2, Section 7]. In Subsection 3.4 we prove Basic Theorem 1.5. In Subsection
3.5 we list few simple crystalline properties that are needed in Sections 4 and 5.

For (crystalline or de Rham) Fontaine comparison theory we refer to [Fo], [Fa2,
Section 5], and [Va4]; see also B2 and B9. Let the field k be as in Subsection 2.1. As
the Verschiebung maps of p-divisible groups will not be mentioned at all in what follows,
we will use the terminology F -crystals (resp. filtered F -crystals) associated to p-divisible
groups over k, k[[x]], or k((x)) (resp. over W (k) or W (k)[[x]]) instead of the terminology
Dieudonné F -crystals (resp. filtered Dieudonné F -crystals) used in [BBM, Ch. 3], [BM,
Chs. 2 and 3], or [dJ1].

Let x be an independent variable. The simplest form of [dJ2, Thm. 1.1] says:

3.1. Theorem (de Jong). The natural functor from the category of non-degenerate
F -crystals over Spec(k[[x]]) to the category of non-degenerate F -crystals over Spec(k((x)))
is fully faithful.

For the notion non-degenerate crystal, [dJ2] refers to [Sa, 3.1.1, p. 331]. In this
paper we only use the facts that F -crystals of abelian schemes over Spec(k[[x]]) are non-
degenerate and that non-degenerate F -crystals are stable under tensor products and duals.

3.2. Basic setting. From now on until the end, the field k will be assumed to be
algebraically closed and we will use the notations of Subsection 2.1. Let z ∈ N(W (k)). Let

(A, λA, (wα)α∈J) := z∗(A, λA, (w
A
α )α∈J).

Let
(M,F 1, φ, ψM)

be the principally quasi-polarized filtered F -crystal over k of the principally quasi-polarized
p-divisible group (D, λD) of (A, λA). Thus ψM is a perfect alternating form on the free
W (k)-module M of rank 2r, F 1 is a maximal isotropic submodule of M with respect to
ψM , the pair (M,φ) is a Dieudonné module, and for a, b ∈M we have ψM (φ(a)⊗ φ(b)) =
pσ(ψM (a⊗b)). The σ-linear automorphism φ ofM [ 1

p
] acts onM∗[ 1

p
] by mapping e ∈M∗[ 1

p
]

to σ ◦ e ◦ φ−1 ∈M∗[ 1p ] and it acts on T(M)[ 1p ] in the natural tensor product way.
Let tα and uα be the de Rham component of wα and the p-component of the étale

component of wα (respectively). If (F i(T(M)))i∈Z is the filtration of T(M) defined by F 1,
then we have tα ∈ F

0(T(M))[ 1
p
] for all α ∈ J. Let G be the Zariski closure in GLGLGLM of the

subgroup of GLGLGLM [ 1
p ] that fixes tα for all α ∈ J.

It is known that wα is a de Rham cycle i.e., tα and uα correspond to each other via
de Rham and thus also the crystalline Fontaine comparison theory. If AB(k) is definable
over a number field contained in B(k), then this was known since long time (for instance,
see [Bl, Thm. (0.3)]). The general case follows from loc. cit. and [Va1, Principle B of
5.2.16] (in [Va1, Subsection 5.2] an odd prime is used; however the proof of [Va1, Principle
B of 5.2.16] applies to all primes). In particular, we have φ(tα) = tα for all α ∈ J.

Let µ : GmW (k) →GLGLGLM be the inverse of the canonical split cocharacter of (M,F 1, φ)
defined in [Wi, p. 512]. The cocharacter µ acts on F 1 via the inverse of the identical
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character of GmW (k) and it fixes a direct supplement F 0 of F 1 in M ; therefore we have
M = F 1⊕F 0. Moreover, µ fixes each tensor tα (cf. the functorial aspects of [Wi, p. 513]).
Thus µ factors through G. Let

µ : GmW (k) → G

be the resulting factorization. We emphasize that in connection to different Kodaira–
Spencer maps, in what follows we will identity naturally Hom(F 1, F 0) with the direct
summand {e ∈ End(M)|e(F 0) = 0 and e(F 1) ⊆ F 0} of End(M).

3.2.1. Lemma. The rank of the direct summand Lie(GB(k))∩Hom(F 1, F 0) of Lie(GB(k))∩
End(M) is d.

Proof: To prove the Lemma we can assume that k has countable transcendental degree;
thus there exists an O(v)-monomorphism W (k) ↪→ C. Let FB(k) be the normalizer of

F 1[ 1p ] in GB(k). The subgroup FB(k) of GB(k) is parabolic and its Lie algebra is equal

to Lie(GB(k)) ∩ {e ∈ End(M)[ 1p ]|e(F 1[ 1p ]) ⊆ F 1[ 1p ]}. As µ factors through G, we have a

direct sum decomposition Lie(GB(k)) = Lie(FB(k)) ⊕ (Lie(GB(k)) ∩ Hom(F 1[ 1p ], F 0[ 1p ])) of

B(k)-vector spaces. Thus the rank of Lie(GB(k)) ∩ Hom(F 1, F 0) is dimB(k)(Lie(GB(k)))−
dimB(k)(Lie(FB(k))) and therefore it is also equal to dim(GB(k)/FB(k)).

We will use the notations of the proof of Lemma 2.3.4 for a point w ∈ Sh(G,X)(C)
that lifts the C-valued point of NE(G,X) defined naturally by zB(k) and by the O(v)-
monomorphism W (k) ↪→ C. Let W ∗ ⊗Q C = F 1,0

w ⊕ F 0,1
w be the Hodge decomposition de-

fined by hw ∈ X (it is the dual of the Hodge decomposition of the property (ii) of the proof of
Lemma 2.3.4). We have a natural isomorphism (M⊗W (k)C, (tα)α∈J) ∼→ (W ∗⊗QC, (vα)α∈J)
that takes F 1 ⊗W (k) C to F 1,0

w , cf. B9 and Lemma 2.3.4 (b). Thus we have an identity
dim(GB(k)/FB(k)) = dim(GC/Pw), where Pw is the parabolic subgroup of GC which is the
normalizer of F 1,0

w (or of F−1,0
w ) in GC. But GC/Pw is the compact dual of any connected

component of X and thus has dimension d.
We conclude that the rank of Lie(GB(k)) ∩ Hom(F 1, F 0) is d. �

3.2.2. Key Theorem. If p = 2 we assume that GZ(p)
is a torus. We have:

(a) There exist isomorphisms

(M, (tα)α∈J) ∼→ (H1
ét(AB(k),Zp)⊗Zp

W (k), (uα)α∈J) ∼→ (L∗
(p) ⊗Z(p)

W (k), (vα)α∈J).

(b) The group scheme G is isomorphic to GW (k) = GZ(p)
×Spec(Z(p)) Spec(W (k)).

Proof: The existence of an isomorphism (M, (tα)α∈J) ∼→ (H1
ét(AB(k),Zp)⊗Zp

W (k), (uα)α∈J)
follows from B3 applied to the pair (D, (tα)α∈J). Thus it suffices to prove the Theorem
under the extra assumption that k has a countable transcendental degree. This implies
that there exists an E(G,X)-monomorphism B(k) ↪→ C. Let w ∈ Ns

E(G,X)(C) be the com-

posite of the resulting morphism Spec(C)→ Spec(B(k)) with the generic fibre of z. There
exist isomorphisms (H1

ét(AB(k),Zp) ⊗Zp
W (k), (uα)α∈J) ∼→ (L∗

(p) ⊗Z(p)
W (k), (vα)α∈J) (cf.

Lemma 2.3.4 (a)) and thus (a) holds. Part (b) is implied by (a). �

3.3. Local deformation. Let G′ be the universal smoothening of G, cf. A1. Fontaine
comparison theory implies that the group GB(k) = G′

B(k) is a form of GB(k) (see end of B6)
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and thus it is a reductive group over B(k) of dimension l. Thus the relative dimension
of G′ over W (k) is also l. Let R be the completion of the local ring of G′ at the identity
element of G′

k. We choose an identification R = W (k)[[x1, . . . , xl]] such that the identity
section of G′ is defined by the identities x1 = · · · = xl = 0. Let guniv ∈ G′(R) be the natural
(universal) element.

Let MR := M ⊗W (k) R and F 1
R := F 1 ⊗W (k) R. Let ΦR be the Frobenius lift of R

that is compatible with σ and that takes xi to xp
i for all i ∈ {1, . . . , l}. Let

Φ := guniv(φ⊗ ΦR) : MR →MR;

it is a ΦR-linear endomorphism of MR. Let Ω∧
R/W (k) be the p-adic completion of ΩR/W (k);

it is a free R-module that has {dx1, . . . , dxl} as an R-basis. Let dΦR : Ω∧
R/W (k) → Ω∧

R/W (k)

be the differential map of ΦR. Let ∇ : MR → MR ⊗R Ω∧
R/W (k) be the unique connection

on MR such that we have ∇ ◦Φ = (Φ⊗ dΦR) ◦ ∇, cf. B7. The connection ∇ is integrable
and nilpotent modulo p, cf. B7. See B7.3 (i) to (iii) for the three main properties of ∇.

The W (k)-algebra R is complete in the (x1, . . . , xl)-topology and moreover we have
ΦR((x1, . . . , xl)) ⊆ (x1, . . . , xl)

p. This implies that each element of Ker(GmW (k)(R) →
GmW (k)(R/(x1, . . . , xl))) is of the form βΦR(β−1) for some element β ∈ Ker(GmW (k)(R)→
GmW (k)(R/(x1, . . . , xl))). As guniv takes ψM to a Ker(GmW (k)(R)→ GmW (k)(R/(x1, . . . , xl)))-
multiple of ψM , we get that there exists a Ker(GmW (k)(R) → GmW (k)(R/(x1, . . . , xl)))-
multiple ψMR

of the perfect alternating form ψM on MR such that we have an identity

ψMR
(Φ(a)⊗ Φ(b)) = pΦR(ψMR

(a⊗ b))

for all element a, b ∈MR. As 1 is the only element of Ker(GmW (k)(R)→ GmW (k)(R/(x1, . . . , xl)))
fixed by ΦR, this Ker(GmW (k)(R) → GmW (k)(R/(x1, . . . , xl)))-multiple ψMR

of ψM is
uniquely determined.

There exists a unique principally quasi-polarized p-divisible group (DR, λDR
) over

R that lifts (D, λD) and whose principally quasi-polarized filtered F -crystal over R/2R is
(MR, F

1
R,Φ,∇, ψMR

), cf. B7.1 and B7.2.
Let (BR, λBR

) be the principally polarized abelian scheme over R that lifts (A, λA)
and whose principally quasi-polarized p-divisible group is (DR, λDR

), cf. Serre–Tate de-
formation theory and Grothendieck algebraization theorem. Let

qR : Spec(R)→Mr

be the natural morphism that corresponds to (BR, λBR
) and its level-N symplectic simili-

tude structures which lift those of (A, λA) (here N ≥ 3 is relatively prime to p). We have a
canonical identification H1

dR(BR/R) = MR = M ⊗W (k) R, cf. [Be, Ch. V, Subsection 2.3]
and [BBM, Prop. 2.5.8]. Under this identification, the following two properties hold:

(i) the perfect form on MR defined by the principal polarization λBR
of BR gets

identified with ψMR
;

(ii) the p-adic completion of the Gauss–Manin connection on H1
dR(BR/R) defined

by BR gets identified with ∇ (cf. [Be, Ch. V, Prop. 3.6.4]).
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From the property (ii) we get that for all s ∈ N we have::

(iii) the connection onH1
dR(BR/R)/(x1, . . . , xl)

sH1
dR(BR/R) = MR/(x1, . . . , xl)

sMR

induced by ∇ is the Gauss–Manin connection of BR ×Spec(R) Spec(R/(x1, . . . , xl)
s).

3.4. Proof of 1.5. In this Subsubsection we prove the Basic Theorem 1.5. Thus e(v) = 1
i.e., the prime v of E(G,X) is unramified over p. Let O be a faithfully flat O(v)-algebra
which is a discrete valuation ring of index of ramification 1. We will choose the field k such
that we have an O(v)-monomorphism O ↪→ W (k). Let Z be a regular, formally smooth
O-scheme such that there exists a morphism qZE(G,X)

: ZE(G,X) → ShH(G,X) = Ns
E(G,X).

Thus qZE(G,X)
extends uniquely to a morphism qZ : Z → N, cf. Proposition 2.2.1 (c). To

prove Theorem 1.5 (a) we only need to show that qZ factors through Ns. It suffices to
check this under the extra assumptions that O = W (k) and that Z = Spec(R1), where
R1 = W (k)[[x1, . . . , xm]] for some m ∈ N ∪ {0}. Let zZ ∈ Z(W (k)) be the point defined
by the W (k)-epimorphism R1 � W (k) whose kernel is (x1, . . . , xm). We will use the
notations of Subsection 3.2 for the point

z := qZ ◦ zZ ∈ N(W (k)).

As Ns is an open subscheme of N (cf. Lemma 2.2.2), to show that qZ factors through Ns

it suffices to show that z factors through Ns.
Let y : Spec(k) ↪→ NW (k) be the closed embedding defined naturally by the special

fibre of z ∈ N(W (k)). Let Obig
y and Oy be the completions of the local rings of y viewed as

a k-valued point of MrW (k) and NW (k) (respectively). As Q is a normal, flat O(v)-scheme of
relative dimension d and as N is a pro-étale cover of Q (cf. Proposition 2.2.1 (a)), the local
ring Oy is normal and has dimension 1 + d. The natural homomorphism ny : Obig

y → Oy

is finite, cf. Proposition 2.2.1 (b). Let hbig
y : Obig

y → R be the W (k)-epimorphism defined
naturally by qR.

Let S := W (k)[[x1, . . . , xd]]. We consider a closed embedding cR : Spec(S) ↪→
Spec(R) such that the following two properties hold (cf. B7.5 and Lemma 3.2.1):

(i) it is defined by a W (k)-epimorphism hR : R � S with the property that
hR((x1, . . . , xl)) ⊆ (x1, . . . , xd) ⊆ S;

(ii) the pull back of (MR, F
1
R,Φ,∇, ψMR

) via the closed embedding Spec(S/pS) ↪→
Spec(R/pR), is a principally quasi-polarized filtered F -crystal over S/pS whose Kodaira–
Spencer map is injective and has an image equal to the direct summand (Lie(GB(k)) ∩
Hom(F 1, F 0))⊗W (k) S of Hom(F 1, F 0)⊗W (k) R

∼→ Hom(F 1,M/F 1)⊗W (k) S.

From the property (ii) we get that the composite morphism qS := qR◦cR : Spec(S)→
Mr is defined naturally by a W (k)-epimorphism sbig

y := hR ◦ h
big
y : Obig

y � S.
In order to show that there exists a W (k)-homomorphism sy : Oy → S that makes

the following diagram commutative

Obig
y

ny
−−−−→ Oy

hbig
y

y
ysy

R
hR−−−−→ S,
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we will need to first recall a result of Faltings.

3.4.1. Proposition. The tensor tα ∈ T(M) ⊗W (k) R[ 1p ] = T(MR)[ 1p ] is the de Rham
component of a Hodge cycle on BR[ 1p ].

Proof: We recall that BR is a deformation of A over R. As tα ∈ T(M)[ 1
p
] is the de Rham

component of the Hodge cycle wα on AB(k) and due to B7.3 (ii), the Proposition is a
result of Faltings. As the essence of this result is only outlined in [Va1, Rm. 4.1.5], we will
include a complete proof of Faltings’ result.

As Ar,1,N is a quasi-projective Z(p)-scheme and as the set J is countable, it suf-
fices to prove the Proposition in the case when there exists a morphism ek : Spec(C) →
Spec(W (k)). We will view C as a W (k)-algebra via ek. Let R := C[[x1, . . . , xl]] and
S := C[[x1, . . . , xd]]. Let I := (x1, . . . , xl) be the maximal ideal of R.

Let (BR, λBR
, (tα)α∈J) be the pull back of (BR, λBR

, (tα)α∈J) via the natural W (k)-
monomorphism R = W (k)[[x1, . . . , xl]] ↪→ C[[x1, . . . , xl]] = R. To prove the Proposition,
it suffices to show that the tensor tα ∈ T(M)⊗W (k) R = T(MR ⊗R R) = T(H1

dR(BR/R))
is the de Rham component of a Hodge cycle on BR.

Let (CS, λCS
, (wS

α)α∈J) be the pull back of (A, λA, (w
A
α )α∈J) via a formally étale

morphism Spec(S)→ Ns whose composite with the natural embedding Spec(C) ↪→ Spec(S)
is the point ek ◦ z ∈ N(C) = Ns(C). Let W := H1

dR(CS/S). Let ψW be the perfect
alternating form on W defined by λCS

. Let tSα ∈ T(W) be the de Rham component of
wS

α. Let ∆ be the Gauss–Manin connection on W defined by CS. We recall that ψ∗ the
alternating form on W ∗ (or L(p)) defined naturally by ψ.

From Corollary 2.3.6 and (the proof of) Lemma 2.3.4 (b) we get that there exists
ε ∈ Q \ {0} for which there exist isomorphisms

I : (W, ψW, (t
S
α)α∈J) ∼→ (W ∗ ⊗Q S, εψ∗, (vα)α∈J)

under which ∆ becomes the flat connection on W ∗⊗Q S that annihilates W ∗⊗1. But there
exist isomorphisms of (W ∗ ⊗Q C, (vα)α∈J) that take ψ∗ to εψ∗. Thus we can assume that
ε = 1. We will fix such an isomorphism I and we view it as an identification. For each
β ∈ GmC(S), there exist isomorphisms of (W ∗ ⊗Q R, (vα)α∈J) that take ψ∗ to βψ∗. Thus,
based on the construction of MR and on either Lemma 2.3.4 (b) or the proof of Lemma
3.2.1, we also get that there exist isomorphisms

IA : (MR ⊗R R, ψMR
, (tα)α∈J) ∼→ (W ∗ ⊗Q R, ψ∗, (vα)α∈J).

By induction on s ∈ N we show that there exists a unique morphism of C-schemes

Js : Spec(R/Is)→ Spec(S)

that has the following two properties:

(i) the kernel of the composite C-homomorphism S → R/Is � R/I = C is the ideal
(x1, . . . , xd) of S;

(ii) there exists an isomorphism Qs between the reduction of (BR, λBR
, (tα)α∈J) mod-

ulo Is and J∗
s ((CS, λCS

, (tSα)α∈J)) which modulo I/Is is 1AC
= 1CS×SC = 1BR×RC.
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As Ns
E(G,X) is a finite, étale scheme over a closed subscheme of MrE(G,X), the defor-

mation (CS, λCS
) of the principally polarized abelian variety (A, λA)C is versal. Thus the

Kodaira–Spencer map of ∆ is injective and its image is a free S-module of rank d. This
implies the uniqueness of Js. The existence of J1 is obvious.

The passage from the existence of Js to the existence of Js+1 goes as follows. Let
J ′

s+1 : Spec(R/Is+1)→ Spec(S) be an arbitrary morphism of C-schemes that lifts Js. Let
∆s+1 be the connection on W⊗S R/Is+1 = W ∗⊗Q R/Is+1 which is the extension of ∆ via
J ′

s+1 (the last identification being defined by I). Let ∇s+1 be the Gauss–Manin connection
on H1

dR(BR/R)⊗R R/Is+1 = MR⊗R R/Is+1 defined by BR×Spec(R) Spec(R/Is+1); it is the
extension of the connection ∇ on MR (cf. property 3.3 (iii)) and therefore it annihilates
each tensor tα ∈ T(MR)⊗R R/Is+1 (cf. B7.3 (ii)). From Lemma 2.3.5 we get that:

(iii) there exists a unique isomorphism IA,s+1 : MR⊗RR/Is+1 ∼→W ∗⊗QR/Is+1 which
lifts a fixed isomorphism between (MR⊗RR⊗RR/I, (tα)α∈J) = (H1

dR(AC/C), (tα)α∈J) and
(W ∗⊗Q C, (vα)α∈J) obtained as in Lemma 2.3.4 (b) and such that under it ∇s+1 becomes
the flat connection δs+1 on W ∗ ⊗C R/Is+1 that annihilates W ∗ ⊗ 1.

We denote also by IA,s+1 the isomorphism T(MR⊗R R/Is+1) ∼→T(W ∗⊗Q C) induced
by IA,s+1. As IA,s+1(tα) and vα are two tensors of W ∗ ⊗C R/Is+1 that are annihilated by
δs+1 and that coincide modulo I/Is+1, we get that we have IA,s+1(tα) = vα for all α ∈ J.
A similar argument shows that IA,s+1 takes ψMR

to ψ∗. Thus we can choose IA such that
it lifts IA,s+1. We will view the reduction IA,s+1 of IA modulo Is+1 as an identification.
Thus we will also identify ∇s+1 = δs+1.

From the existence of I and the fact that IA,s+1 is the reduction of IA modulo Is+1,
we get that there exists an isomorphism

Ds+1 : J ′∗
s+1((W, ψW, (t

S
α)α∈J)) = (W ∗ ⊗Q R/Is+1, ψ∗, (vα)α∈J) ∼→

∼→ (MR ⊗R R/Is+1, ψMR
, (tα)α∈J) = (W ∗ ⊗Q R/Is+1, ψ∗, (vα)α∈J)

with the properties that it lifts the identity automorphism of W ∗ ⊗Q C and that:

(iv) it respects the Gauss–Manin connections i.e., it takes ∆s+1 to ∇s+1 = δs+1.

From the uniqueness part of the property (iii) we also get that

(v) Ds+1 modulo Is is the isomorphism defined by Qs;

Let F 1
A,s+1 and F 1

C,s+1 be the Hodge filtrations of W ∗ ⊗Q R/Is+1 defined naturally
by BR and J ′∗

s+1(CS) (respectively) via the above identifications. The direct summands
F 1

A,s+1 and Ds+1(F
1
C,s+1) of W ∗ ⊗Q R/Is+1 coincide modulo Is/Is+1, cf. property (v).

Moreover, there exist direct sum decompositions

W ∗ ⊗Q R/Is+1 = F 1
A,s+1 ⊕ F

0
A,s+1 = F 1

C,s+1 ⊕ F
0
C,s+1

defined naturally by cocharacters µA,s+1 and µC,s+1 of the reductive subgroup scheme
GR/Is+1 of GLGLGLW∗⊗QR/Is+1 . Argument: the existence of µA,s+1 is a direct consequence of
the existence of the cocharacter µ : GmW (k) → G (see paragraph before Lemma 3.2.1) and
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of the definition of F 1
R (see Subsection 3.3) while the existence of µC,s+1 is well known. As

F 1
A,s+1 and Ds+1(F

1
C,s+1) coincide modulo Is/Is+1, we can choose µA,s+1 and µC,s+1 such

that D−1
s+1µA,s+1Ds+1 and µC,s+1 coincide modulo Is/Is+1. Thus based on [DG, Vol. II,

Exp. IX, Thm. 3.6], there exists gs+1 ∈ Ker(G(R/Is+1) → G(R/Is)) such that we have
D−1

s+1µA,s+1Ds+1 = gs+1µC,s+1g
−1
s+1. Thus Ds+1(gs+1(F

1
C,s+1)) = F 1

A,s+1.
1

As the morphism Spec(S) → Ns is formally étale, the Kodaira–Spencer map K of
∆ is injective and its image is a free S-module that has rank d and that is equal to the
image of Lie(GS) into the codomain of K. Thus we can replace J ′

s+1 by another morphism
Js+1 : Spec(R/Is+1)→ Spec(S) lifting Js and such that under it and I the Hodge filtration
F 1

C,s+1 gets replaced by gs+1(F
1
C,s+1). Thus Ds+1 becomes the de Rham realization of an

isomorphism Qs+1 which is between the reduction of (BR, λBR
, (tα)α∈J) modulo Is+1 and

J∗
s+1((CS, λCS

, (tSα)α∈J)) and which lifts Qs. Thus the morphism Js+1 has the desired
properties. This ends the induction.

Let J∞ : Spec(R)→ Spec(S) be the morphism defined by Js’s (s ∈ N). The isomor-
phism Qs is uniquely determined by properties (i) and (ii) and this implies that Qs+1 lifts
Qs. Thus we get the existence of an isomorphism

Q∞ : (BR, λBR
, (tα)α∈J) ∼→J∗

∞((CS, λCS
, (tSα)α∈J))

which modulo I is defined by 1AC
. Thus for each α ∈ J, the tensor tα ∈ T(M)⊗W (k) R is

the de Rham component of the Hodge cycle Q−1
∞ (J∗

∞(wS
α)) on BR. �

3.4.2. End of the proof of 1.5. The existence of the isomorphism Q∞ implies that
the morphism qR : Spec(R) → M factors through N in such a way that modulo the ideal
(x1, . . . , xl) of R it defines the point z ∈ N(W (k)). Therefore the W (k)-epimorphism sbig

y :

Obig
y � S (see paragraph before Proposition 3.4.1) factors through ny : Obig

y → Oy. By
reasons of dimensions of local, normal rings, we get that the resulting W (k)-epimorphism
sy : Oy � S is an isomorphism. Thus NW (k) is formally smooth at z and therefore z
factors through Ns. Thus Theorem 1.5 (a) holds and y is a k-valued point of Ns

W (k).

As sy is an isomorphism, the W (k)-homomorphism ny : Obig
y → Oy is onto. This

implies that the natural W (k)-morphism Ns
W (k) →MrW (k) is a formally closed embedding

at y ∈ Ns
W (k)(k). As the morphism qZ of the beginning of Subsection 3.4 was arbitrary,

the role of z ∈ N(W (k)) is that of an arbitrary W (k)-valued of N (and thus cf. Theorem
1.5 (a)) of Ns. Thus the W (k)-morphism Ns

W (k) →MrW (k) is a formally closed embedding

at every k-valued point of Ns
W (k). Thus Theorem 1.5 (b) also holds.

We check that the statement 1.5 (c) holds. Let Z be a smooth O(v)-scheme such that
we have a morphism qZE(G,X)

: ZE(G,X) → ShH×H(P )(G,X). From Proposition 2.2.1 (b)

and Lemma 2.2.4 we get that N/H(p) has an étale cover which is projective. This implies
that N/H(p) is a proper O(v)-scheme. From this and the valuative criterion of properness,
we get that there exists an open subscheme UZ of Z such that it contains ZE(G,X), the
complement of UZ in Z has codimension in Z at least 2, and the morphism qZE(G,X)

extends

1 The original approach of Faltings used the strictness of filtrations of morphisms
between Hodge R-structures in order to get the existence of the element gs+1.
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uniquely to a morphism qUZ
: UZ → N/H(p). From the classical purity theorem of Nagata

and Zariski (see [Gr, Exp. X, Thm. 3.4 (i)]) we get that the étale cover UZ×N/H(p) N → UZ

extends uniquely to an étale cover Z∞ → Z. From this and Theorem 1.5 (a) we get that
the natural morphism UZ ×N/H(p) N→ N extends uniquely to a morphism Z∞ → N. This

implies that the morphism qZE(G,X)
extends uniquely to a morphism qZ : Z → N/H(p).

Thus N/H(p) is a Néron model of its generic fibre ShH×H(p) (G,X) over O(v) i.e., Theorem
1.5 (c) holds. This ends the proof of Basic Theorem 1.5. �

3.5. Simple properties. We denote also by qR the factorization of qR : Spec(R)→Mr

through either N or (cf. Theorem 1.5 (a)) Ns which modulo (x1, . . . , xl) is the W (k)-valued
point z ∈ N(W (k)) = Ns(W (k)). As sy : Oy → S is a W (k)-isomorphism and as we have
a W (k)-epimorphism hR : R � S, the morphism qR : Spec(R) → Ns is formally smooth.
Under the canonical identification H1

dR(BR/R) = MR = M ⊗W (k) R, the pull back of wA
α

via the morphism Spec(R[ 1
p ])→ NE(G,X) = ShH(G,X) defined by qR, is a Hodge cycle on

BR[ 1p ] whose de Rham component is tα ∈ T(M)⊗W (k) R[ 1p ]. This follows either from the

existence of Q∞ or (in Faltings’ approach) from the fact that there exists no non-trivial
tensor of T(M)⊗W (k) (x1, . . . , xl)[

1
p
] fixed by Φ.

3.5.1. The open subscheme Nm. For p > 2 let Nm := Ns. If p = 2 let Nm be the
maximal open subscheme of Ns with the property that for every algebraically closed field
k of characteristic p and for every z ∈ Nm(W (k)), the statement 3.2.2 (a) (and thus also
3.2.2 (b)) holds. Thus regardless of the parity of p, for every such field k and for every
z ∈ Nm(W (k)), the statement 3.2.2 (a) holds. We now check the following two properties:

(i) Always Nm is a G(A
(p)
f )-invariant, open subscheme of Ns.

(ii) If the statement 3.2.2 (a) holds for z ∈ Ns(W (k)), then z ∈ Nm(W (k)).

To check (i) and (ii) we can assume that p = 2. The right translations of z by elements

of G(A
(2)
f ) corresponds to passages to isogenies prime to 2 of the abelian scheme A. Thus

the triple (M,φ, (tα)α∈J) depends only on the G(A
(2)
f )-orbit of z. Thus if statement 3.2.2

(a) holds for z, then the statement 3.2.2 (a) also holds for every point in the G(A
(2)
f )-orbit

of z. This implies (i).
Let Q and Qs be as in Subsection 2.2. By enlarging N we can assume that the triple

(A, λA, (w
A
α )α∈J) is the pull back of an analogue triple T over Q. Let Spec(V ) be an affine,

open subscheme of Qs such that z maps to Spec(V ). Let (MV , ψMV
, (tVα )α∈J) be the de

Rham realization of the pull back of T to Spec(V ). By shrinking Spec(V ), we can assume
that MV is a free V -module of rank 2r. The existence of the formally smooth morphism
qR : Spec(R) → Ns implies that we have isomorphisms (cf. the beginning of Subsection
3.5 and the fact that the statement 3.2.2 (a) holds for z ∈ Ns(W (k)))

(MV ⊗V R, (tVα )α∈J) ∼→ (MR, (tα)α∈J) = (M ⊗W (k) R, (tα)α∈J) ∼→ (L∗
(p) ⊗Z(p)

R, (vα)α∈J).

From this and Artin approximation theorem (see [BLR, Ch. 3, 3.6, Thm. 16]) we get that
there exists a smooth, affine morphism Spec(V ′)→ Spec(V ) through which z factors and
such that we have an isomorphism (MV ⊗V V ′, (tVα )α∈J) ∼→ (L∗

(p) ⊗Z(p)
V ′, (vα)α∈J). Let V
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be the open subscheme of Spec(V ) which is the image of Spec(V ′) in Spec(V ). The pull
back of V0 to Ns is an open subscheme of Nm that contains the point z ∈ Ns(W (k)). Thus
(ii) also holds.

We end this Section with a Lemma which will be needed in Section 5.

3.5.2. Lemma. Let µ : GmW (k) → G and M = F 1 ⊕ F 0 be as in Subsection 3.2. Let
y ∈ Ns(W (k)) be defined by z ∈ Ns(W (k)) = N(W (k)). Let µ1 : GmW (k) → G be another
cocharacter such that we have a direct sum decomposition M = F 1

1 ⊕ F
0
1 with the property

that for each i ∈ {0, 1}, µ1 acts on F i
1 via the −i-th power of the identity character of

GmW (k). If the triple (M,F 1
1 , φ) is a filtered F -crystal over k, then there exists a point

z1 ∈ Ns(W (k)) = N(W (k)) that lifts y ∈ Ns(k) and such that the principally quasi-polarized
filtered F -crystal over k of z∗1(A, λA) is precisely (M,F 1

1 , φ, ψM ).

Proof: For n ∈ N let Wn(k) := W (k)/pnW (k). We have F 1/pF 1 = F 1
1 /pF

1
1 . By induction

on n ∈ N we show that there exists a point z(n) ∈ Ns(W (k)) = N(W (k)) that has the
following three properties:

(i) it lifts y ∈ Ns(k);

(ii) for n≥ 2 the Wn−1(k)-valued points of Ns defined by z(n− 1) and z(n) coincide;

(iii) the principally quasi-polarized filtered F -crystal over k of z(n)∗(A, λA) is of the
form (M,F 1

1 (n), φ, ψM), where F 1
1 (n) is congruent to F 1

1 modulo pn.

Let z(1) := z; obviously the base of the induction for n = 1 holds. The passage from
n to n+ 1 goes as follows. Not to introduce extra notations by replacing z with z(n), we
can assume that z(n) = z; thus we have F 1/pnF 1 = F 1

1 /p
nF 1

1 . Let Ubig be the smooth,
unipotent, closed subgroup scheme of GLGLGLM defined by the rule: if ‡ is a commutative
W (k)-algebra, then Ubig(‡) := 1M⊗W (k)‡ + Hom(F 1, F 0)⊗W (k) ‡.

As F 1/pnF 1 = F 1
1 /p

nF 1
1 , there exists a unique element u ∈ Ker(Ubig(W (k)) →

Ubig(Wn(k))) such that we have an identity F 1
1 = u(F 1). We write u = 1M + v, where

v ∈ pn Hom(F 1, F 0) = pnLie(Ubig). Let T(M) = ⊕i∈ZF̃
i(T(M)) be the direct sum de-

composition such that GmW (k) acts on F̃ i(T(M)) through µ as the −i-th power of its
identity character. The filtration (F i(T(M)))i∈Z of T(M) defined by F 1 satisfies for all
i ∈ Z the following identity F i(T(M)) = ⊕j ≥ iF̃

j(T(M)). As µ and µ1 are two cochar-

acters of G, they fix each tα. In particular, we have tα ∈ F̃ 0(T(M))[ 1p ] and the tensor

u−1(tα) = (1M − v)(tα) belongs to F 0(T(M))[ 1
p
]. As v ∈ Hom(F 1, F 0) ⊆ F̃−1(T(M)), the

component of (1M − v)(tα) in F̃−1(T(M))[ 1p ] is −v(tα). As this component must be 0, we

get hat v annihilates tα for all α ∈ J. Thus v ∈ Lie(GB(k)) ∩ End(M). We conclude that

(2) v ∈ pn[Lie(GB(k)) ∩ Hom(F 1, F 0)].

As the image of the Kodaira–Spencer map of ∇ is Lie(GB(k))∩Hom(F 1, F 0)⊗W (k)R
(cf. B7.3 (iii)) and as the morphism qR : Spec(R)→ Ns is formally smooth, from (2) we get
that there exists a lift z(n+1) of z(n) modulo pn such that the principally quasi-polarized
filtered F -crystal over k of z(n+ 1)∗(A, λA) is (M,F 1

1 (n+ 1), φ, ψM), where F 1
1 (n+ 1) is

congruent to u(F 1) = F 1
1 modulo pn+1. This ends the induction.
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From the property (ii) we get that there exists a point z1 ∈ Ns(W (k)) that lifts
z(n) modulo pn for all n ∈ N. Thus z1 also lifts y, cf. property (i). From the property
(iii) we get that the principally quasi-polarized filtered F -crystal over k of z∗1(A, λA) is
(M,F 1

1 , φ, ψM). �

4. Applications to integral models

Lemma 4.1 presents a simple criterion on when the k(v)-scheme Ns
k(v) is non-empty.

In Subsection 4.2 we apply Theorem 1.5 (a) and Lemma 4.1 to prove the existence of good
integral models of ShH̃(G,X) over O(v) for a large class of maximal compact subgroups

H̃ of GQp
(Qp). Corollary 4.2.3 can be viewed as a complete solution to the conjecture of

Langlands of [La, p. 411] for Shimura varieties of Hodge type.

4.1. Lemma. We assume that one of the following two conditions holds:

(i) there exists a smooth, affine group scheme Gg
Z(p)

over Z(p) that extends G (i.e., it

has G as its generic fibre), that has a special fibre Gg
Fp

of the same rank as G, and that has

the property that there exists a homomorphism Gg
Z(p)
→ GZ(p)

which extends the identity

automorphism of G;

(ii) we have e(v) = 1 and the group scheme GZ(p)
is quasi-reductive for (G,X, v) in

the sense of Definition 1.3.2 (b).

Then e(v) = 1 and the k(v)-scheme Nm
k(v) (and thus also Ns

k(v)) is non-empty.

Proof: Suppose that (i) holds. Each torus of Gg
Fp

lifts to a torus of Gg
Zp

, cf. [DG, Vol. II,

Exp. XII, Cor. 1.10]. Thus Gg
Zp

has tori of rank equal to the rank of G. Let T g
Z(p)

be a torus

of Gg
Z(p)

of the same rank as G and such that there exists h ∈ X which factors through T g
R.

Its existence is implied by [Ha, Lem. 5.5.3]. The pair (T g
Q, {h}) is a Shimura pair. Each

prime of E(T g
Q, {h}) that divides v is unramified over p (cf. [Mi3, Prop. 4.6 and Cor. 4.7])

and thus we have e(v) = 1. The intersection Hg := H∩T g
Z(p)

(Qp) is the unique hyperspecial

subgroup T g
Z(p)

(Zp) of T g
Z(p)

(Qp). Thus there exists an integral model Zg of ShHg(T g
Q, {h})

over the normalization of O(v) which is a pro-étale cover of O(v), cf. either [Mi2, Rm.
2.16] or [Va1, Ex. 3.2.8]. In particular, Zg is a regular, formally étale, faithfully flat
O(v)-scheme. The functorial morphism ShHg(T g

Q, {h}) → ShH(G,X) of E(G,X)-schemes
extends uniquely to a morphism Zg → Ns of O(v)-schemes, cf. Theorem 1.5 (a). There
exist points z ∈ Zg(W (k)). Let (vα)α∈Jg be a family of tensors of T(W ∗) such that T g

Q

is the subgroup of GLGLGLW∗ that fixes vα for all α ∈ Jg. We can assume that J ⊆ Jg and
that for each α ∈ J, the tensor vα is the tensor introduced in Subsection 2.3. We will use
the notations of Subsection 3.2 for z ∈ Zg(W (k)). From Theorem 3.2.2 (a) applied to the
point z ∈ Zg(W (k)) we get that there exists an isomorphism (M, (tα)α∈Jg) ∼→ (L∗

(p) ⊗Z(p)

W (k), (vα)α∈Jg) (each tα with α ∈ Jg, is the de Rham realization of the Hodge cycle on
AB(k) that corresponds naturally to vα). Thus as J ⊆ Jg, the statement 3.2.2 (a) holds for
the W (k)-valued point of Ns defined by z. From this and the property 3.5.1 (ii) we get
that this last point factors through Nm. Thus the k(v)-scheme Nm

k(v) is non-empty.
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We now assume that (ii) holds; thus e(v) = 1. Let Gr
Zp

and µv be as in Definition

1.3.2 (b). Let T r
Fp

be a maximal torus of Gr
Fp

. Due to the existence of µv, T r
Fp

has positive

rank. The torus T r
Fp

lifts to a torus T r
Zp

of Gr
Zp

, cf. [DG, Vol. II, Exp. XII, Cor. 1.10]. Let

T g
0Qp

be a maximal torus of GQp
which has T r

Qp
as a subtorus. Let T g be a maximal torus

of G such that there exists an element h ∈ X which factors through T g
R and moreover T g

Qp

is GZp
(Zp)-conjugate to T g

0Qp
. Again, the existence of T g is implied by [Ha, Lem. 5.5.3].

Thus (up to GZp
(Zp)-conjugation) we can assume that we have T g

0Qp
= T g

Qp
.

The intersection Hg := H ∩ T g(Qp) is not necessarily the maximal compact, open
subgroup of T g(Qp) and the subgroup T g(Q)Hg of T g(Qp) is not necessarily T g(Qp) itself.
However, the intersection T r

Zp
(Qp) ∩ H is the unique hyperspecial subgroup T r

Zp
(Zp) of

T r
Zp

(Qp). We fix an O(v)-monomorphism W (k(v)) ↪→ C as in Definition 1.3.2 (b). As µh

and µvC are G(C)-conjugate and as Gr
C is a normal subgroup of GC, µh factors through the

intersection T g
C ∩G

r
C and thus through T r

C = T r
Zp
×Spec(Zp) Spec(C). Thus as T r

Zp
splits over

a finite, unramified extension of Zp, we get that the field of definition E(T g
Q, {h}) of µh is

a number subfield of C that contains E(G,X) and that is unramified over v. From class
field theory (see [Lan, Th. 4 of p. 220]) and the reciprocity map of [Mi2, pp. 163–164] we
easily get that each connected component of ShHg(T g

Q, {h})C is the spectrum of an abelian
extension of E(T g

Q, {h}) unramified over all primes of E(T g
Q, {h}) that divide v. Thus there

exists an integral model Zg of ShHg(T g
Q, {h}) over the normalization of O(v) in E(T g

Q, {h})
which has the same properties as above. Let z ∈ Zg(W (k)).

Let (vα)α∈Jr be a family of tensors of T(W ∗ ⊗Q Qp) such that T r
Q is the subgroup

of GLGLGLW∗⊗QQp
that fixes vα for all α ∈ Jr. We can assume that J ⊆ Jr and that for each

α ∈ J, the tensor vα is the tensor introduced in Subsection 2.3.

We will use the notations of Subsection 3.2 for z ∈ Zg(W (k)) and for k of countable
transcendental degree. Let ρD : Gal(B(k)) → GLGLGLH1

ét
(AB(k),Qp)

∼→GLGLGLL∗
(p)

⊗Z(p)
Qp

be the p-

adic Galois representation associated to the p-divisible group D of A. Let Dét
Qp

be the

Zariski closure of Im(ρD) in GLGLGLL∗
(p)

⊗Z(p)
Qp

; it is a connected group (cf. B1) which is a

subgroup of T g
Qp

. As the groups T g
Qp

and T r
Qp

are normalized by Dét
Qp

, we can speak about

the subgroups Tr
B(k) and T

g
B(k) of GB(k) that correspond to T r

Qp
and T g

Qp
(respectively)

via Fontaine comparison theory for D (cf. B6). The generic fibre of µ factors through
T

g
B(k), cf. Subsection 3.2 applied in the context of z ∈ Zg(W (k)). Under the canonical and

natural identifications M⊗W (k) C = H1
dR(A/W (k))⊗W (k) C = H1(AC,C) ∼→W ∗⊗Q C (see

B9 and Lemma 2.3.4 (b)), the cocharacter µh gets identified with µC (cf. B9.1). As µh

factors through T r
C, we get that µB(k) factors through Tr

B(k). From this and B6 (ii) we get

that Dét
Qp

is a subgroup of T r
Qp

. This implies that each vα with α ∈ Jr defines naturally an
étale Tate-cycle uα on DB(k).

As T r
Zp

is a torus, (even for p = 2) from B3 applied to the pair (D, (uα)α∈Jr) we

get that there exist isomorphisms (M, (tα)α∈Jr) ∼→ (H1
ét(AB(k),Zp) ⊗Zp

W (k), (uα)α∈Jr)
∼→ (L∗

(p) ⊗Z(p)
W (k), (vα)α∈Jr) (each tα ∈ T(M [ 1p ]) with α ∈ Jr, corresponds to uα via

Fontaine comparison theory for D). As J ⊆ Jr, we get that the image of z ∈ Zg(W (k)) in
Ns(W (k)) belongs to Nm(W (k)). Thus the k(v)-scheme Nm

k(v) is non-empty. �
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4.2. Integral models for maximal compact, open subgroups. Let H̃ be a maximal
compact, open subgroup of GQp

(Qp). Let G̃Zp
be a smooth, affine group scheme over Zp

that extends GQp
and such that H̃ = G̃Zp

(Zp), cf. [Ti, p. 52]. Let G̃Z(p)
be the smooth,

affine group scheme over Z(p) that extends G and whose extension to Zp is G̃Zp
, cf. [Va1,

Claim 3.1.3.1]. Let L̃(p) be a Z(p)-lattice of W such that the monomorphism G ↪→ GLGLGLW

extends to a homomorphism G̃Z(p)
→GLGLGLL̃(p)

, cf. [Ja, Part I, 10.9].

4.2.1. Lemma. We can modify the Z-lattice L of W and the injective map f : (G,X) ↪→
(GSpGSpGSp(W,ψ),Y), such that we have an identity H = H̃ and L(p) is a G̃Z(p)

-module.1

Proof: Let L̃ be the Z-lattice of W such that we have L̃[ 1p ] = L[ 1p ] and L̃⊗Z Z(p) = L̃(p).

If ψ induces a perfect form on L̃, then by replacing L with L̃ we get that H = H̃.
[Argument: as H̃ is a maximal compact subgroup of GQp

(Qp), the monomorphism H̃ ↪→

GQp
(Qp) ∩GLGLGLL̃⊗ZZp

(Zp) is an isomorphism.] If ψ does not induces a perfect form on L̃,
then we will need to modify f as follows.

Let L′
1 := L̃ ⊕ L̃∗. Let W1 := L′

1 ⊗Z Q and L′
1(p) := L′

1 ⊗Z Z(p). Let ψ′
1 be a

perfect alternating form on L′
1 such that the group scheme SLSLSLL̃, when viewed naturally

as a subgroup scheme of SLSLSLL′
1
, is in fact a subgroup scheme of SpSpSp(L′

1, ψ
′
1). Thus L̃ and

L̃∗ are both maximal isotropic Z-lattices of W1 with respect to ψ′
1. Let G0 be the identity

component of the intersection G ∩ SpSpSp(W,ψ) (one can easily check that in fact we have
G0 = G ∩ SpSpSp(W,ψ)). Let G̃0

Z(p)
be the Zariski closure in G̃Z(p)

of G0; it is a closed

subgroup scheme of SLSLSLL̃⊗ZZ(p)
and thus also of GSpGSpGSp(L′

1(p), ψ
′
1). The subgroup scheme of

GSpGSpGSp(L′
1(p), ψ

′
1) generated by Z(GLGLGLL′

1(p)
) and G̃0

Z(p)
is a group scheme which is naturally

identified with G̃Z(p)
itself.

Let h ∈ X. Let A be the free Z(p)-module of alternating forms on L′
1 ⊗Z Z(p) that

are fixed by G̃0
Z(p)

. There exist elements of A ⊗Z(p)
R that define polarizations of the

Hodge Q–structure on W1 defined by h, cf. [De2, Cor. 2.3.3]. Thus the real vector space
A⊗Z(2)

R has a non-empty, open subset of such polarizations, cf. [De2, Subsubsection 1.1.18
(a)]. A standard application to A of the approximation theory for independent valuations,
implies the existence of an alternating form ψ1 on L′

1 ⊗Z Z(p) that is fixed by G̃0
Z(p)

, that

is congruent to ψ′
1 modulo p, and that defines a polarization of the Hodge Q–structure on

W1 defined by h. Thus there exists an injective map f1 : (G,X) ↪→ (GSpGSpGSp(W1, ψ1),Y1) of
Shimura pairs.

As ψ1 is congruent to ψ′
1 modulo p, it is a perfect, alternating form on L′

1 ⊗Z Z(p).
Let L1 be a Z-lattice of W1 such that ψ1 induces a perfect alternating form on L1 and we
have L1 ⊗Z Z(p) = L′

1 ⊗Z Z(p). As above we argue that H̃ = GQp
(Qp) ∩GLGLGLL1⊗ZZp

(Zp). �

4.2.2. Corollary. Let H̃ be a maximal compact, open subgroup of GQp
(Qp). Let G̃Z(p)

be a smooth, affine group scheme over Z(p) that has G as its generic fibre and such that

1 We emphasize that the resulting homomorphism G̃Z(p)
→ GLGLGLL(p)

of smooth group

schemes over Z(p), is not necessarily a closed embedding.
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H̃ = G̃Z(p)
(Zp) (see beginning of Subsection 4.2). We assume that one of the following two

conditions holds:

(i) the special fibre G̃Fp
of G̃Zp

has a torus of the same rank as G;

(ii) we have e(v) = 1 and the group scheme G̃Z(p)
is quasi-reductive for (G,X, v).

Then there exists a unique regular, formally smooth integral model Ñs of ShH̃(G,X)
over O(v) that satisfies the following smooth extension property: if Z is a regular, formally
smooth scheme over a discrete valuation ring O which is of index of ramification 1 and is
a faithfully flat O(v)-algebra, then each morphism ZE(G,X) → Ñs

E(G,X) extends uniquely to

a morphism Z → Ñs between O(v)-schemes.

Proof: We can assume that the injective map f : (G,X) → (GSpGSpGSp(W,ψ),Y) of Shimura
pairs is such that H̃ = H and L(p) is a G̃Z(p)

-module, cf. Lemma 4.2.1. If (i) holds, then

the condition 4.1 (i) holds. If (ii) holds, let G̃r
Zp

be a reductive, normal, closed subgroup

scheme of G̃Zp
such that there exists a cocharacter µv : GmW (k(v)) → G̃r

W (k(v)) with the

property that the extension of µv to C via an (any) O(v)-monomorphism W (k(v)) ↪→
C defines a cocharacter of GC that is G(C)-conjugate to the cocharacters µh (h ∈ X)
introduced in the beginning of Subsection 1.3. The group Gder

C has no simple factors that
are SOSOSO2n+1 groups for some n ∈ N, cf. Fact 2.2.3. Thus the natural homomorphism
G̃r

Zp
→ GLGLGLL(p)⊗Z(p)

Zp
is a closed embedding, cf. [Va5, Prop. 2.5.2 (c)]. Thus G̃r

Zp
is

naturally a closed subgroup scheme of GZp
. This implies that the group scheme GZ(p)

is
also quasi-reductive for (G,X, v). Thus if (ii) holds, then the condition 4.1 (ii) holds.

As one of the two conditions 4.1 (i) and (ii) holds, the k(v)-scheme Ns
k(v) is non-

empty (cf. Lemma 4.1). Based on Theorem 1.5 (a) and the fact that H̃ = H, we get that
as Ñs we can take Ns itself. �

4.2.3. Corollary. Let (G,X) be a Shimura pair of Hodge type. Let v a prime of the reflex
field E(G,X) that divides a prime p with the property that the group GQp

is unramified.

Then for each hyperspecial subgroup H̃ of GQp
(Qp), there exists a unique regular, formally

smooth integral model Ñs of ShH̃(G,X) over O(v) that satisfies the following smooth exten-
sion property: if Z is a regular, formally smooth scheme over a discrete valuation ring O
which is of index of ramification 1 and is a faithfully flat O(v)-algebra, then each morphism

ZE(G,X) → Ñs
E(G,X) extends uniquely to a morphism Z → Ñs between O(v)-schemes.

Proof: As H̃ is a hyperspecial subgroup, we can assume that the group scheme G̃Zp
is

reductive. This implies that G̃Z(p)
is a reductive group scheme over Z(p). Thus the condition

4.2.2 (i) holds. Thus the Corollary follows from Corollary 4.2.2. �

5. Proof of the Main Theorem

In this section we take k to be a field extension of k(v) that is algebraically closed
and has a countable transcendental degree. Let the notations (vα)α∈J, (wA

α )α∈J, and π†
be as in Subsection 2.3. For a point z ∈ Ns(W (k)) = N(W (k)), the following notations
(A, λA, (wα)α∈J), (M,F 1, φ, ψM , (tα)α∈J), M = F 1 ⊕ F 0, and µ : GmW (k) → G are as in
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Subsection 3.2. In Subsections 5.1 to 5.7 we prove the Main Theorem 1.6. In Subsection
5.8 we prove the Main Corollary 1.7.

Let R0 := W (k)[[x]], where x is an independent variable. Let ΦR0
be the Frobenius

lift of R0 that is compatible with σ and that takes x to xp. Let Z0 := Spec(R0).

5.1. Basic notations and facts. We begin the proof of the Main Theorem 1.6 by
introducing some basic notations and facts. We have e(v) = 1 and GZ(p)

is a quasi-
reductive group scheme for (G,X, v). We recall that Nm is an open subscheme of Ns (cf.
Subsubsection 3.5.1) and therefore also of N (cf. Lemma 2.2.2). Thus Nm

k(v) is also an
open subscheme of Nk(v). Moreover, the open embedding Nm ↪→ N is a pro-étale cover of
an open embedding between quasi-projective O(v)-schemes (cf. Proposition 2.2.1 (a) and
the property 3.5.1 (i)) and the k(v)-scheme Nm

k(v) is non-empty (cf. Lemma 4.1). Thus to
show that Nm

k(v) is a non-empty, open closed subscheme of Nk(v), we only need to show
that for each commutative diagram of the following type

(3)

Spec(k) −−−−→ Spec(k[[x]]) ←−−−− Spec(k((x)))
yy

yq

yqk((x))

N ←−−−− Nk(v) ←−−−− Nm
k(v),

the morphism y : Spec(k) → N factors through the open subscheme Nm of N. All the
horizontal arrows of the diagram (3) are natural embeddings. Until Subsection 5.5 we
study different properties of the diagram (3) that are needed to prove Theorems 1.6 (a) to
(c) in Subsections 5.5 to 5.7 (respectively).

We consider the principally quasi-polarized filtered F -crystal

(M0,Φ0,∇0, ψM0
)

over k[[x]] of q∗((A, λA)×N Nk(v)). Thus M0 is a free R0-module of rank 2r, Φ0 is a ΦR0
-

linear endomorphism of M0, and ∇0 is an integrable and nilpotent modulo p connection
on M0 such that we have ∇0 ◦ Φ0 = (Φ0 ⊗ dΦR0

) ◦ ∇0.
Let O be the unique local ring of R0 that is a discrete valuation ring of mixed

characteristic (0, p). Let O be the completion of O. Let ΦO be the Frobenius lift of O

defined by ΦR0
via a natural localization and completion. Let k1 := k((x)). Let

Spec(W (k1))→ Z0

be the Teichmüller lift with respect to ΦR0
; under it W (k1) gets naturally the structure of

a ∗-algebra, where ∗ ∈ {R0, O,O}.
As the O(v)-scheme Nm is formally smooth, there exists a lift z̃1 : Spec(O)→ Nm of

the morphism qk((x)) : Spec(k((x)))→ Nm defined naturally by qk((x)) and denoted in the
same way. Let

(Ã1, λÃ1
, (w1α)α∈J) := z̃∗1(A, λA, (wα)α∈J).

Let t1α be the de Rham realization of w1α. We identify canonicallyM0⊗R0
O = H1

dR(Ã1/O)
(cf. [Be, Ch. V, Subsection 2.3]) and thus we view each t1α as a tensor of T(M0⊗R0

O)[ 1p ].
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For α ∈ J let n(α) ∈ N ∪ {0} be the unique number such that we have vα ∈
W ∗⊗n(α)⊗QW

⊗n(α) ⊆ T(W ∗), cf. the definition of vα in Subsection 2.3. Let nα ∈ N∪{0}
be the smallest number such that

pnα t1α ∈ (M
⊗n(α)
0 ⊗R0

M∗⊗nα
0 )⊗R0

O ⊆ T(M0 ⊗R0
O).

5.1.1. Proposition. For all α ∈ J we have pnα t1α ∈M
⊗n(α)
0 ⊗R0

M
∗⊗n(α)
0 ⊆ T(M0).

Proof: The tensor pnα t1α is fixed by the natural σk1
-linear automorphism of T(M0 ⊗R0

B(k1)) defined by Φ0 (see Subsection 3.2). Thus (as Spec(W (k1)) → Z0 is a Teichmüller
lift) the tensor pnα t1α is also fixed by the natural ΦO-linear endomorphism of T(M0 ⊗R0

O)[ 1p ] defined by Φ0.

The field k((x)) has {x} as a p-basis i.e., {1, x, . . . , xp−1} is a basis of k((x)) over
k((x))p = k((xp)). Thus the p-adic completion of the O-module ΩO/W (k) of relative dif-
ferentials is naturally isomorphic to Odx, cf. [BM, Prop. 1.3.1]. Let ∇0 : M0 ⊗R0

O →
M0⊗R0

Odx be the connection which is the natural extension of the connection ∇0 on M0.
The de Rham component of wA

α is annihilated by the Gauss–Manin connection of A

(this is a property of Hodge cycles, for instance it follows from [De3, Prop. 2.5] applied

in the context of a quotient of ShH(G,X) by a small compact, open subgroup of G(A
(p)
f )).

Thus the tensor pnα t1α is annihilated by the Gauss–Manin connection on T(H1
dR(Ã1/O)) =

T(M0⊗R0
O) of Ã1 and thus also by the p-adic completion of this last connection. In other

words, pnαt1α is annihilated by the connection ∇0 : M0 ⊗R0
O → M0 ⊗R0

Odx (cf. [Be,
Ch. V, Prop. 3.6.4]).

As the field k((x)) has a p-basis, each F -crystal over k((x)) is uniquely deter-
mined by its evaluation at the thickening naturally associated to the closed embedding
Spec(k((x))) ↪→ Spec(O) (cf. [BM, Prop. 1.3.3]). Thus the natural identification

(M
⊗n(α)
0 ⊗R0

M∗⊗nα
0 )⊗R0

O = End(M
⊗n(α)
0 ⊗R0

O)

allows us to view pnα t1α as an endomorphism of the F -crystal over k((x)) defined by the
tensor product of n(α)-copies of (M0 ⊗R0

O,Φ0 ⊗ ΦO,∇0). From this and Theorem 3.1
we get that pnαt1α is (the crystalline realization of) an endomorphism of the F -crystal
over k[[x]] defined by the tensor product of n(α)-copies of (M0,Φ0,∇0). This implies that

pnα t1α ∈M
⊗n(α)
0 ⊗R0

M
∗⊗n(α)
0 ⊆ T(M0). �

5.1.2. Group schemes. Next we introduce several notations that pertain to group
schemes. Let Gr

Zp
be a reductive, normal, closed subgroup scheme of GZp

as in Definition

1.3.2 (b); we emphasize that in general it is not the pull back to Spec(Zp) of a closed
subgroup scheme of GZ(p)

. Let

Grad
Qp

=
∏

i∈Ir

Gr
iQp

be the product decomposition into Qp-simple, adjoint groups. Let Grder
iQp

be the normal,

semisimple subgroup of Grder
Qp

whose adjoint is Gr
iQp

.
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Let πr ∈ End(M0 ⊗R0
B(k1)) (resp. πr

i ∈ End(M0 ⊗R0
B(k1))) be the tensor that

corresponds to the projector πGr
Qp

(resp. to πGrder
iQp

) of Subsection 2.3 via Fontaine com-

parison theory for (the p-divisible group of) Ã1W (k1), cf. B6. By enlarging the family
(vα)α∈J, we can assume that the projectors πGr

Qp
and πGrder

iQp
with i ∈ Ir are Qp-linear

combinations of the vα’s (this is so as these projectors are fixed by GQp
). Thus πr and πr

i ’s
are linear combinations of t1α’s. From this and Proposition 5.1.1 we get that in fact we
have πr, πr

i ∈ End(M0[
1
p ]). Thus there exists nr ∈ N ∪ {0} such that both pnr

πr and pnr

πr
i

belong to End(M0) and are Zp-linear combinations of the t1α’s with α ∈ J.

By enlarging the family (vα)α∈J, we can also assume that each element of End(L∗
(p)) =

L∗
(p)⊗L(p) fixed by GZ(p)

is vα0
for some α0 ∈ J. Let Z0(Gr

Zp
) be the maximal subtorus of

Z(Gr
Zp

). Let Zr
Zp

be the center of the centralizer of Z0(Gr
Zp

) in GLGLGLL(p)⊗Z(p)
Zp

; it is a torus

over Zp that contains Z0(Gr
Zp

). Let Br be the commutative, semisimple Zp-subalgebra of

End(L∗
(p) ⊗Z(p)

Zp) whose elements are the elements of Lie(Zr
Zp

). Each element e ∈ Br

is a Zp-linear combination of endomorphisms of L∗
(p) fixed by GZ(p)

and thus it defines

naturally a Zp-endomorphism e of A. For simplicity we denote also by e ∈ End(M0) the
crystalline realization of the Zp-endomorphism q∗(e) of q∗(A×N Nk(v)).

Let η be the field of fractions of R0. Let G0η be the subgroup of GLGLGLM0η that fixes
pnα t1α for all α ∈ J (this definition makes sense due to Proposition 5.1.1). The group
G0B(k1) corresponds to GQp

via Fontaine comparison theory for (the p-divisible group of)

Ã1B(k1). This implies that G0η is a reductive group.

5.1.3. Lemma. There exists (resp. for i ∈ I r there exists) a unique reductive (resp.
semisimple) subgroup Gr

0η (resp. Grder
0iη ) of G0η whose Lie algebra is Im(πr) (resp. is Im(πr

i)).

The subgroup Gr
0η (resp. Grder

0iη ) of G0η is normal. Moreover each geometric pull back of

Grder
0η has no normal subgroup which is an SOSOSO2n+1 group for some n ∈ N.

Proof: We will prove the Lemma only for Gr
0η, as the arguments for Grder

0iη are the same.

From Fontaine comparison theory for (the p-divisible group of) Ã1W (k1) we get that there
exists a unique reductive subgroup Gr

0B(k1) of GLGLGLM0⊗R0
B(k1) whose Lie algebra is Im(πr)⊗η

B(k1), cf. B6 (i). From A2 (a) applied with (W,L, η, η1) = (M0 ⊗R0
η, Im(πr), η, B(k1)),

we get that there exists a unique reductive subgroup Gr
0η of GLGLGLM0⊗R0

η whose Lie algebra
is Im(πr). The group Gr

0η is a subgroup of G0η, as this holds after extension to B(k1). Thus
the first part of the Lemma holds.

But πr is fixed by G0η (as this holds after tensorization with B(k1), cf. B6) and thus
Im(πr) is a G0η-submodule of Lie(G0η). From this and the uniqueness part of the Lemma,
we get that Gr

0η is a subgroup of G0η normalized by G0η(η) and thus also by G0η. As Gr
0B(k1)

corresponds to the normal subgroup Gr
Qp

of GQp
via Fontaine comparison theory for (the

p-divisible group of) Ã1W (k1), from Fact 2.2.3 we get that each geometric pull back of Grder
0η

has no normal subgroup which is an SOSOSO2n+1 group for some n ∈ N. �

5.2. Key Theorem. Let Gr
0 be the Zariski closure of Gr

0η in GLGLGLM0
. Then the closed

subscheme Gr
0 of GLGLGLM0

is a reductive subgroup scheme.
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Proof: We check that this Theorem is only a particular case of [Va5, Thm. 6.3 (b)]. Let
C0 be the F -crystal over k[[x]] defined by (M0,Φ0,∇0). Let C0k((x)) be the F -crystal over

k((x)) which is the natural pull back of C0. Let (t̃α)α∈Jp
be the family of tensors formed by

Zp-linear combinations of the tensors of the family (pnα t1α)α∈J. We can assume that there
exists a natural number s≥ 4 such that we have s≥nα for all α ∈ J. From Proposition 5.1.1
we get that (t̃α)α∈Jp

is a family of endomorphism of D1 := ⊕s
l=1C

⊗l
0k((x)), where C⊗l

0k((x)) is

the tensor product of l copies of C0k((x)). Let K := O[ 1p ]. We check that the six axioms of

[Va5, Subsection 6.2] hold in the context of (t̃α)α∈Jp
and of the subgroup Gr

0K of G0K.
As z̃1 ∈ Nm(O), there exists isomorphisms (M0 ⊗R0

W (k1), (t1α)α∈J) ∼→ (L∗
(p) ⊗Z(p)

W (k1), (vα)α∈J). This implies that the Zariski closure of Gr
0B(k1) in GLGLGLM0⊗R0

W (k1) is

isomorphic to Gr
W (k1)

and thus it is a reductive group scheme over W (k1). Therefore the

Zariski closure Gr
0O of Gr

0K in GLGLGLM0⊗R0
O is a reductive group scheme over O. Thus the

axiom [Va5, 6.2 (i)] holds.
Let Jc be the subset of Jp such that {t̃α|α ∈ Jc} corresponds to Lie(Zr

Zp
) via Fontaine

comparison theorem for (the p-divisible group of) Ã1W (k1). Thus we can identify naturally
Br with a Zp-subalgebra of End(M0). The centralizer of Br⊗Zp

O in GLGLGLM0⊗R0
O is a torus

over O which contains Z0(Gr
0O) (as one can easily check this over W (k1)). Thus the axiom

[Va5, 6.2 (ii)] holds.
If Jd := {α ∈ Jp|t̃α ∈ {p

nrπr
i |i ∈ Ir}}, then Lie(Grder

0iK) = pnrπr
i(End(M0 ⊗R0

K))
and therefore the axiom [Va5, 6.2 (iii)] holds. As for all i ∈ I r the adjoint group Gr

iQp

is simple, the Killing form on Lie(Grder
iQp

) = Lie(Gr
iQp

) is a non-zero rational multiple of

the restriction to Lie(Grder
iQp

) = Lie(Gr
iQp

) of the trace form T on End(W ) ⊗Q Qp. This

implies that the Killing form on Lie(Grder
0iK) is a non-zero rational multiple of the restriction

to Lie(Grder
0iK) of the trace form on End(M0)⊗R0

K. Thus the axiom [Va5, 6.2 (iv)] holds.
As Grad

Qp
=

∏
i∈Ir Gr

iQp
, it is easy to see that we have a natural isogeny

∏
i∈Ir Grder

0iK → Grder
0K .

Thus the axiom [Va5, 6.2 (v)] holds. The fact that the axiom [Va5, 6.2 (vi)] holds follows
from the last part of Lemma 5.1.3.

As axioms [Va5, 6.2 (i) to (vi)] hold, the Theorem follows from [Va5, Thm. 6.3 (b)].�

5.3. Applying 5.2. Let (A1, λA1
) := z∗1(A, λA) = (Ã1, λÃ1

)W (k1). Let (M1, F
1
1 , φ1, ψM1

)
be the principally quasi-polarized filtered F -crystal over k1 of (A1, λA1

). Let G1 and
µ1 : GmW (k1) → G1 be the analogues of G and µ : GmW (k) → G but obtained working
with z1 ∈ Ns(W (k1)) instead of some z ∈ N(W (k)). We can identify naturally M1 =
M0 ⊗R0

W (k1). Thus we can view each tensor t1α as a tensor of T(M1)[
1
p ] and we can

also view the reductive group scheme Gr
0W (k1)

as a normal, closed subgroup scheme of the

Zariski closure G1 of G0B(k1) in GLGLGLM1
.

We fix an O(v)-monomorphism W (k1) ↪→ C. We have canonical isomorphisms

ρ1C : (M0⊗R0
W (k1)⊗W (k1) C, (t1α)α∈J) = (M1⊗W (k1) C, (t1α)α∈J) ∼→ (W ∗⊗Q C, (vα)α∈J)

such that F 1
1⊗W (k1)C is mapped to the Hodge filtration ofW ∗⊗QC defined by a cocharacter

µh : GmC → GC introduced in Subsection 1.1 (see B9 and Lemma 2.3.4 (b)). We know
that µ1C is G1(C)-conjugate to some (any) µh, cf. B9.1. From this and the Definition 1.3.2
(b) we get that µ1 factors through Gr

0W (k1)
.
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Let F̄ 1
0 be the kernel of Φ0 modulo p; it is a free module over k[[x]] = R0/pR0 of

rank r. As the cocharacter µ1 factors through Gr
0W (k1)

, the normalizer of F̄ 1
0 ⊗k[[x]] k1 in

Gr
0k1

is a parabolic subgroup of Gr
0k1

and thus (as F̄ 1
0 ⊗k[[x]] k1 is defined over k((x))) it is

also the natural pull back of a parabolic subgroup Fr
0k((x)) of Gr

0k((x)). The k[[x]]-scheme

of parabolic subgroup schemes of Gr
0k[[x]] is projective, cf. [DG, Vol. III, Exp. XXVI,

Cor. 3.5]. Thus the Zariski closure Fr
0k[[x]] of Fr

0k((x)) in Gr
0k[[x]] is a parabolic subgroup

scheme of Gr
0k[[x]]. As Gr

0 is a split reductive group scheme and as µ1k1
factors through

Gr
0k1

, there exists a cocharacter µ0k[[x]] : Gmk[[x]] → Gr
0k[[x]] that factors through Fr

0k[[x]]

and that produces a direct sum decomposition M0/pM0 = F̄ 1
0 ⊕ F̄

0
0 with the property that

for each i ∈ {0, 1}, every element β ∈ Gmk[[x]](k[[x]]) acts through µ0k[[x]] on F̄ i
0 via the

multiplication with β−i.
We choose a cocharacter

µ0 : GmR0
→ Gr

0

that lifts µ0k[[x]], cf. [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1]. Let M0 = F 1
0 ⊕ F

0
0 be

the direct sum decomposition with the property that for each i ∈ {0, 1}, every element
β ∈ GmR0

(R0) acts through µ0 on F i
0 via the multiplication with β−i; the notations match

i.e., we have F i
0/pF

i
0 = F̄ i

0.
We consider the W (k)-epimorphism R0 � W (k) whose kernel is the ideal (x). Let

(M,F 1, φ,G, (tα)α∈J, ψM ) := (M0, F
1
0 ,Φ0,G0, (t1α)α∈J, ψM0

)⊗R0
W (k).

5.4. Extra crystalline applications. If p > 2 or if p = 2 and (M,φ) has no integral
slopes, then there exists a unique p-divisible group D over W (k) whose filtered F -crystal
over k is (M,F 1, φ) (cf. [Va4, Prop. 2.2.4]); due to the uniqueness part, ψM is the
crystalline realization of a (unique) principal quasi-polarization λD of D. If p = 2 and
(M,φ) has integral slopes, we consider an arbitrary principally quasi-polarized p-divisible
group (D, λD) over W (k) whose principally quasi-polarized filtered F -crystal over k is
(M,F 1, φ) (cf. B5.1).

Let (DR0
, λDR0

) be the principally quasi-polarized p-divisible group over R0 that lifts

(D, λD) and whose principally quasi-polarized F -crystal over R0/pR0 is (M0, F
1
0 ,Φ0,∇0, ψM0

),
cf. B7.1 and B7.2. Let

qR0
: Z0 →Mr

be the morphism that (i) lifts the composite of y with the morphism Ns → Mr and that
(ii) has the property that the principally quasi-polarized p-divisible group of the pull back
of the universal principally polarized abelian scheme over Mr via qR0

is (DR0
, λDR0

). Let

z2 : Spec(W (k1))→Mr

be the composite of the Teichmüller lift Spec(W (k1))→ Z0 of Subsection 5.1 with qR0
.

Let (A2, λA2
) be the principally polarized abelian scheme over W (k1) that is the

pull back through z2 of the universal principally polarized abelian scheme over Mr. The
principally quasi-polarized filtered F -crystal of (A2, λA2

) is canonically identified with
(M1, F

1
2 , φ1, ψM1

), where F 1
2 is a direct summand of M1 of rank r. Let (F i

2(T(M1)))i∈Z be
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the filtration of T(M1) defined by F 1
2 and let (F i

0(T(M0)))i∈Z be the filtration of T(M0)
defined by F 1

0 . For each α ∈ J, the tensor t1α ∈ T(M0)[
1
p
] is annihilated by ∇0, is fixed by

Φ0, and belongs to F 0
0 (T(M0))[

1
p
]. This implies that we have t1α ∈ F

0
2 (T(M1))[

1
p
] for all α ∈

J. Thus as before Lemma 3.2.1 we argue that the canonical split cocharacter of (M1, F
1
2 , φ1)

defined in [Wi, p. 512] factors through the closed subgroup scheme G1 = G0W (k1) of GLGLGLM1
;

let µ2 : GmW (k1) → G1 be the resulting factorization. Due to Lemma 3.5.2 applied to
z1 ∈ Ns(W (k1)) and to µ2 : GmW (k1) → G1, there exists a point z3 ∈ Ns(W (k1)) that lifts
the k-valued point of Nm defined by either z1 or z2 and such that the filtered F -crystal
of (A3, λA3

) := z∗3(A, λA) is precisely (M1, F
1
2 , φ1, ψM1

). Let (D3, λD3
) be the principally

quasi-polarized p-divisible group of (A3, λA3
).

5.5. Proof of 1.6 (a). If p = 2 and the condition 1.6 (*) holds, then the 2-rank of A1k1

is 0. Accordingly, in this Subsection we assume that either p > 2 or p = 2 and the 2-rank
of A1k1

is 0. Due to our assumptions on p and A1k, the p-divisible groups D2 and D3 are
the same lift of the p-divisible group of A1k1

(cf. [Va4, Prop. 2.2.4]). This implies that
the W (k1)-valued points of Mr defined by z2 and z3 coincide. From this and Theorem
1.5 (b) we get that z2 is the W (k1)-valued point of Mr defined by z3. Thus z2 factors
through Ns. This implies that qR0

factors through N. From this and Theorem 1.5 (a) we
get that qR0

factors through Ns. Let z ∈ Ns(W (k)) be the point that is the composite of
the factorization Spec(R0) → Ns of qR0

with the Teichmüller section Spec(W (k)) ↪→ Z0.
Our notations match with the ones of Subsection 3.2 i.e., (D, λD) is the principally quasi-
polarized p-divisible group of (A, λA) := z∗(A, λA) and the principally quasi-polarized
filtered F -crystal of (D, λD) is (M,F 1, φ, ψM ).

From the proof of the property 3.5.1 (ii) we get that there exists an isomorphism
(M ⊗W (k) W (k1), (tα)α∈J) ∼→ (M1, (t1α)α∈J). Thus as the statement 3.2.2 (a) holds for
z1 ∈ Nm(W (k1)), we get that there exist isomorphisms (see Subsection 3.2 for uα’s)

(M⊗W (k)W (k1), (tα)α∈J) ∼→ (H1
ét(AB(k),Zp)⊗Zp

W (k1), (uα)α∈J) ∼→ (L∗
(p)⊗Z(p)

W (k1), (vα)α∈J).

From this and B4 we get that there exist isomorphisms (M, (tα)α∈J) ∼→ (L∗
(p)⊗Z(p)

W (k), (vα)α∈J).

From this and Lemma 2.3.4 (a) we get that the statement 3.2.2 (a) holds for z ∈ Ns(W (k)).
Thus we have z ∈ Nm(W (k)), cf. property 3.5.1 (ii). This implies that the morphism
y : Spec(k)→ N factors through Nm. This ends the proof of Theorem 1.6 (a).

5.6. Proof of 1.6 (b). If p > 2 or if p = 2 and the condition 1.6 (*) holds, then Theorem
1.6 (b) is implied by Theorems 1.6 (a) and 1.5 (b). Thus to prove Theorem 1.6 (b), we
can assume that p = 2 and that the condition 1.6 (*) does not hold. Not to introduce
extra notations, we can assume that the point y ∈ N(k) of the diagram (3) is the image of
an arbitrary k-valued point y of Pm. If 2-rank of A1k1

is 0, then from Subsection 5.5 we
get that y ∈ Nm(k) ⊆ Ns(k) ⊆ N(k). We easily get that the k-scheme Pm

k is regular at y
and that the natural morphism Pm

k →Mrk is a formally closed embedding at y ∈ Pm(k).
Thus to prove Theorem 1.6 (b) we can assume that p = 2 and that the 2-rank of A1k1

is
positive. The 2-divisible groups D2 and D3 over W (k1) might not be the same lift of the
2-divisible group of A1k1

and thus below we will have to use an approach different from
the one of Subsection 5.5.
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Let the quintuple (MR, F
1
R,Φ,∇, ψMR

) be as in Subsection 3.3. As in Subsections 3.3
and 3.4 we can speak about two morphisms qR : Spec(R) → Mr and qS : Spec(S) → Mr

and about a closed embedding cR : Spec(S) ↪→ Spec(R) such that the following three
properties hold:

(i) we have qS = qR ◦ cR and the W (k)-homomorphism sbig
y : Obig

y → S that defines

qS is onto (see Subsection 3.4 for Obig
y );

(ii) the morphism y : Spec(k)→Mr defined naturally by y, factors through qS ;

(iii) the principally quasi-polarized F -crystal over R/pR of the pull back through qR

of the universal principally quasi-polarized abelian scheme over Mr, is (MR, F
1
R,Φ,∇, ψMR

).

Let Ōm
y be the completion of the local ring of y in Pm

k . We consider a mor-
phism jZ0

: Z0 → Spec(S) such that (M0, F
1
0 ,Φ0,∇0, ψM0

, (t1α)α∈J) is the pull back
of (MR, F

1
R,Φ,∇, ψMR

, (tα)α∈J) via cR ◦ jZ0
: Z0 → Spec(R), cf. B7.4 and B7.5. As

a principally quasi-polarized 2-divisible group over R0/2R0 is uniquely determined by
its principally quasi-polarized F -crystal over R0/2R0 (cf. [BM, Thm. 4.1.1]), the ex-
istence of jZ0

implies that the morphism qk[[x]] : Spec(k[[x]]) → Mr defined by qR0
:

Spec(R0) → Mr (equivalently by the morphism q of diagram (3)) factors through the
morphism qS/2S : Spec(S/2S)→Mr defined by qS . As this property holds for every mor-
phism qk[[x]] : Spec(k[[x]])→ N that factors through Pm in such a way that its generic fibre

qk((x)) : Spec(k((x)))→ N factors through Nm, the natural k-homomorphism Obig
y → Ōm

y

factors through the W (k)-epimorphism Obig
y � S/2S defined by qS/2S . Thus we have

natural k-homomorphisms Obig
y /2Obig

y � S/2S → Ōm
y . As NE(G,X) is a closed subscheme

of MrE(G,X) (cf. hypotheses), N is the normalization of a flat, closed subscheme of MrO(v)

that extends NE(G,X). Thus the ring Ōm
y is a local ring of the normalization of a reduced

quotient of Obig
y /2Obig

y and therefore it is a local ring of the normalization of a reduced

quotient of S/2S. As Ōm
y has dimension d (as Q of Subsection 2.2 has relative dimension

d), by reasons of dimensions we get that this reduced quotient of S/2S is S/2S itself. Thus
the k-homomorphism S/2S → Ōm

y is a k-isomorphism. Thus we have k-epimorphisms

(4) Obig
y /2Obig

y � S/2S ∼→ Ōm
y .

As y was an arbitrary k-valued point of Pm, from the k-isomorphism part of (4)
we get that the k(v)-scheme Pm is regular and formally smooth. Moreover, from the
k-epimorphism part of (4) we get that the morphism Pm

k → Mrk is a formally closed
embedding at all k-valued points of Pm

k . This ends the proof of Theorem 1.6 (b).

5.6.1. Remark. As (M0, F
1
0 ,Φ0,∇0, ψM0

, (t1α)α∈J) is the pull back of (MR, F
1
R,Φ,∇, ψMR

,
(tα)α∈J) via cR ◦ jZ0

: Z0 → Spec(R) and as MR = M ⊗W (k) R, there exists an iso-
morphism (M ⊗W (k) W (k1), (tα)α∈J) ∼→ (M0 ⊗R0

W (k1), (t1α)α∈J) = (M1, (t1α)α∈J). As
z1 ∈ Nm(W (k1)), there exists an isomorphism (M ⊗W (k) W (k1), (tα)α∈J) ∼→ (L∗

(p) ⊗Z(p)

W (k1), (tα)α∈J). Thus there exist isomorphisms (M, (tα)α∈J) ∼→ (L∗
(p)⊗Z(p)

W (k), (tα)α∈J),

cf. proof of B4. It is easy to check that the point y ∈ N(k) belongs to Nm(k) if and only if
in the first paragraph of Subsection 5.4 we can choose (D, λD) such that for D there exists
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an isomorphism rD as in B3. Thus the very root of the Part II of the paper is to solve the
Problem of B5.

5.7. Proof of 1.6 (c). Let Q and Qs be as in Subsection 2.2. As (G,X) has compact
factors, Q is a projective O(v)-scheme (cf. Lemma 2.2.4). From the property 3.5.1 (i) we
get that Nm is the pull back of a smooth, open subscheme Qm of Q. To prove Theorem 1.6
(c) it suffices to show that if C is a connected component of QW (k), then either C ⊆ Qm or
C ∩ Qm

W (k) = CB(k). It suffices to show that if Qm
W (k) contains points of the special fibre of

C, then C ⊆ Qm
W (k). The W (k)-scheme C is integral (being connected and normal). As the

k-scheme Qm
k ∩ C is non-empty and as Qm is smooth, there exist W (k)-valued points of C.

Thus the ring of global functions of C is W (k). From [Har, Ch. III, Cor. 11.3] applied to
the projective W (k)-morphism C → Spec(W (k)) we get that the special fibre Ck of C is
connected. But Qm

k ∩Ck is an open closed subscheme of Ck, cf. Theorem 1.6 (a). From the
last two sentences we get that Qm

k ∩ Ck = Ck. Thus Qm
W (k) ∩ C = C. This ends the proof of

Theorem 1.6 (c) and thus also of the Main Theorem 1.6.

5.8. The proof of 1.7. As GZ(p)
is a reductive group scheme, H is a hyperspecial

subgroup of GQp
(Qp). Thus the connected components of ShH(G,X)C are permuted tran-

sitively by G(A
(p)
f ), cf. [Va1, Lem. 3.3.2]. As the group G(A

(p)
f ) acts on Nm (cf. property

3.5.1 (i)) and as Nm contains a non-empty open closed subscheme of N (cf. Theorem 1.6
(c)), we get Nm = N. As Nm ⊆ Ns ⊆ N, we get Nm = Ns = N. Thus Corollary 1.7 (a)
follows from [Va1, Cor. 3.4.4].

We check the Corollary 1.7 (b). We know that Q is a normal, quasi-projective O(v)-

scheme which is the quotient of N = Ns through H(p) and that the quotient morphism
Ns → Q is a pro-étale cover, cf. the beginning of Subsection 2.2 and Proposition 2.2.1
(a). Thus Q = Qs is smooth over O(v). Moreover, Q is a Néron model of its generic
fibre ShK(G,X) over O(v) (cf. Theorem 1.5 (c)). As Q is also a projective O(v)-scheme
(cf. Lemma 2.2.4), we get that Corollary 1.7 (b) holds. This ends the proof of the Main
Corollary 1.7.

Appendix A: On affine group schemes

Let p ∈ N be a prime. Let k be an algebraically closed field of characteristic p. Let
W (k) be the ring of Witt vectors with coefficients in k. Let B(k) := W (k)[ 1

p ].

A1. Canonical dilatations. Let G be an affine, flat group scheme over W (k). Let
a ∈ G(W (k)). The Néron measure of the defect of smoothness δ(a) ∈ N ∪ {0} of G at a
is the length of the torsion part of a∗(ΩG/Spec(W (k))). As G is a group scheme over W (k),
the value of δ(a) does not depend on a ∈ G(W (k)) and therefore we denote it by δ(G). We
have δ(G) ∈ N if and only if G is not smooth, cf. [BLR, Ch. 3, 3.3, Lem. 1]. Let Fk be
the Zariski closure in Gk of all special fibres of W (k)-valued points of G; it is a reduced
subgroup of Gk. We write Fk = Spec(RG/JG), where G = Spec(RG) and where JG is the
ideal of RG that defines Fk. By the canonical dilatation of G we mean the affine G-scheme
G1 = Spec(RG1

), where RG1
is the RG-subalgebra of RG[ 1p ] generated by x

p with x ∈ JG.
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The W (k)-scheme G1 has a canonical group scheme structure and the morphism
G1 → G is a homomorphism of group schemes over W (k), cf. [BLR, Ch. 3, 3.2, Prop.
2 (d)]. Moreover the W (k)-morphism G1 → G has the following universal property: each
W (k)-morphism Z → G of flat W (k)-schemes whose special fibre factors through the closed
embedding Fk ↪→ Gk, factors uniquely through G1 → G (cf. [BLR, Ch. 3, 3.2, Prop. 1
(b)]). If G is smooth, then Fk = Gk and therefore G1 = G.

Either G1 is smooth or we have 0 < δ(G1) < δ(G), cf. [BLR, Ch. 3, 3.3, Prop. 5].
Thus by using at most δ(G) canonical dilatations (the first one of G, the second one of G1,
etc.), we get the existence of a unique smooth, affine group scheme G′ over W (k) endowed
with a homomorphism G′ → G whose fibre over B(k) is an isomorphism and which has the
following universal property: each W (k)-morphism Z → G, with Z a smoothW (k)-scheme,
factors uniquely through G′ → G. One calls G′ the universal smoothening of G.

A2. Lemma. Let η be a field of characteristic 0. Let W be a finite dimensional vector
space over η. Let L be a Lie subalgebra of End(W ). Suppose that there exists a field
extension η1 of η such that L ⊗η η1 is the Lie algebra of a connected (resp. reductive)
subgroup Fη1

of GLGLGLW⊗ηη1
. We have:

(a) there exists a unique connected (resp. reductive) subgroup F of GLGLGLW whose Lie
algebra is L (the notations match i.e., its extension to η1 is Fη1

);

(b) if F is a reductive subgroup of GLGLGLW , then the restriction of the trace form on
End(W ) to L is non-degenerate.

Proof: We prove (a). The uniqueness part is implied by [Bo, Ch. I, 7.1]. Loc cit. also
implies that if F exists, then its extension to η1 is indeed Fη1

. It suffices to prove (a) for the
case when F is connected. We consider commutative η-algebras κ such that there exists a
closed subgroup scheme Fκ of GLGLGLW⊗ηκ whose Lie algebra is L⊗η κ. Our hypotheses imply
that as κ we can take η1. Thus as κ we can also take a finitely generated η-subalgebra
of η1. By considering the reduction modulo a maximal ideal of this last η-algebra, we
can assume that κ is a finite field extension of η. Even more, (as η has characteristic 0)
we can assume that κ is a finite Galois extension of η. By replacing Fκ with its identity
component, we can assume that Fκ is connected. Due to the mentioned uniqueness part,
the Galois group Gal(κ/η) acts naturally on the connected subgroup Fκ of GLGLGLW⊗ηκ. As
Fκ is an affine scheme, the resulting Galois descent on Fκ with respect to Gal(κ/η) is
effective (cf. [BLR, Ch. 6, 6.1, Thm. 5]). This implies the existence of a subgroup F of
GLGLGLW whose extension to κ is Fκ. As Lie(F)⊗η κ = Lie(Fκ) = L⊗η κ, we have Lie(F) = L.
The group F is connected as Fκ is so. Therefore F exists. Thus (a) holds.

To check (b) we can assume that η is algebraically closed. Using isogenies, it suffices
to prove (b) in the case when F is either Gmη or a semisimple group whose adjoint is simple.
If F is Gmη, then the F-module W is a direct sum of one dimensional F-modules. We easily
get that there exists an element x ∈ L \ {0} which is a semisimple element of End(W )
whose eigenvalues are integers. The trace of x2 is a non-trivial sum of squares of natural
numbers and thus it is non-zero. Thus (b) holds if F is Gmη. If F is a semisimple group
whose adjoint is simple, then L is a simple Lie algebra over η. From Cartan solvability
criterion we get that the restriction of the trace form on End(W ) to L is non-zero and
therefore (as L is a simple Lie algebra) it is non-degenerate. Thus (b) holds. �
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Appendix B: Complements on p-divisible groups

Let p, k, W (k), and B(k) be as in Appendix A. Let σ := σk be the Frobenius
automorphism of k, W (k), and B(k). We fix an algebraic closure B(k) of B(k). Let
Gal(B(k)) := Gal(B(k)/B(k)). Let D be a p-divisible group over W (k). Let (M,φ) be the
contravariant Dieudonné module ofDk. Thus M is a free W (k)-module of rank equal to the
height of D and φ : M →M is a σ-linear endomorphism such that we have pM ⊆ φ(M).
Let F 1 be the direct summand of M that is the Hodge filtration defined by D. We have
φ(M + 1

pF
1) = M . The rank of F 1 is the dimension of Dk. Let M∗ := Hom(M,W (k)).

Let T(M) and its filtration (F i(T(M)))i∈Z defined by F 1, be as in Subsection 2.1. For
f ∈ M∗[ 1

p
] let φ(f) := σ ◦ f ◦ φ−1 ∈ M∗[ 1

p
]. Thus φ acts in the usual tensor product way

on T(M [ 1
p
]).

B1. Galois modules. Let Dt be the Cartier dual of D. Let H1(D) := Tp(D
t
B(k))(−1) be

the dual of the Tate-module Tp(DB(k)) of DB(k). Thus H1(D) is a free Zp-module of the
same rank as M and Gal(B(k)) acts on it. Let F 0(H1(D)) := H1(D) and F 1(H1(D)) := 0.
Let

ρD : Gal(B(k))→GLGLGLH1(D)(W (k))

be the natural Galois representation associated to DB(k). Let Dét be the Zariski closure

in GLGLGLH1(D) of Im(ρD). From [Wi, Prop. 4.2.3] one gets that the generic fibre Dét
Qp

is

connected. See Subsection 2.1 for T(H1(D)); it is naturally a Gal(B(k))-module. By
an étale Tate-cycle on DB(k) we mean a tensor of T(H1(D[ 1

p
])) = T(H1(D))[ 1

p
] that is

fixed by Gal(B(k)) (equivalently by Dét
Qp

). In what follows we will fix a family (vα)α∈J of

étale Tate-cycles on DB(k). Let Gét be the Zariski closure in GLGLGLH1(D) of the subgroup of

GLGLGLH1(D)[ 1p ] that fixes vα for all α ∈ J. The group scheme Dét is a subgroup scheme of Gét.

B2. Fontaine comparison theory. We refer to [Fo], [Fa2], and [Va4] for the fol-
lowing review on Fontaine comparison theory. This theory provides us with three rings
B+

crys(W (k)), Bcrys(W (k)), and BdR(W (k)) that have the following six properties:

(i) the rings are integral W (k)-algebras that are equipped with exhaustive and de-
creasing filtrations and with a Galois action; moreover BdR(W (k)) is a field;

(ii) we have W (k)-monomorphisms B+
crys(W (k)) ↪→ Bcrys(W (k)) ↪→ BdR(W (k));

(iii) the ring B+
crys(W (k)) is faithfully flat over W (k) and has a natural Frobenius

lift that is compatible with σ and that also extends to an endomorphism of Bcrys(W (k));

(iv) there exists a B+
crys(W (k))-linear monomorphism

i+D : M ⊗W (k) B
+
crys(W (k)) ↪→ H1(D)⊗Zp

B+
crys(W (k))

that respects the tensor product filtrations, the Galois actions, and the Frobenius endo-
morphisms (the Frobenius endomorphism of H1(D) being 1H1(D));
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(v) the BdR(W (k))-linear map iD := i+D ⊗ 1BdR(W (k)) is a bijection that induces
naturally a BdR(W (k))-linear isomorphism denoted in the same way

iD : T(M)⊗W (k) BdR(W (k)) ∼→T(H1(D))⊗Zp
BdR(W (k));

(vi) each étale Tate-cycle vα defines a tensor tα := iD(vα) ∈ F 0(T(M))[ 1p ] ⊆ T(M)[ 1p ]
that is fixed by φ.

Let G be the Zariski closure in GLGLGLM of the subgroup of GLGLGLM [ 1
p ] that fixes tα for all

α ∈ J. It is a flat, closed subgroup scheme of GLGLGLM such that we have φ(Lie(GB(k))) =
Lie(GB(k)). Let µ : Gm → G be a cocharacter that produces a direct sum decomposition
M = F 1 ⊕ F 0 such that for each i ∈ {0, 1}, every element β ∈ Gm(W (k)) acts through µ
on F i as the multiplication with β−i. For instance, we can take µ to be the factorization
through G of the inverse of the canonical split cocharacter µcan : Gm →GLGLGLM of (M,F 1, φ)
defined in [Wi, p. 512] (the cocharacter µcan fixes each tensor tα, cf. the functorial aspects
of [Wi, p. 513]).

B3. Theorem (see [Va4, Thm. 1.2]). If p = 2, we assume that Gét is a torus. Then
there exists an isomorphism rD : (M, (tα)α∈J) ∼→ (H1(D)⊗Zp

W (k), (vα)α∈J) (in the sense
of Subsection 2.1).

B4. Lemma. Let k1 be an algebraically closed field that contains k. Suppose that there
exists an isomorphism (M ⊗W (k) W (k1), (tα)α∈J) ∼→ (H1(D) ⊗Zp

W (k1), (vα)α∈J). Then
there exists an isomorphism rD : (M, (tα)α∈J) ∼→ (H1(D)⊗Zp

W (k), (vα)α∈J).

Proof: To check the existence of rD we can assume that we have tα ∈ T(M) and vα ∈
H1(D) for all α ∈ J. Thus we an speak about the affine W (k)-scheme of finite type P

that parameterizes isomorphisms between (M, (tα)α∈J) and (H1(D) ⊗Zp
W (k), (vα)α∈J).

We know that P has a W (k1)-valued point. As the monomorphism W (k) ↪→ W (k1) is
of ramification index one, from [BLR, Ch. 3, 3.6, Prop. 4] we get that there exists a
morphism P′ → P of W (k)-schemes such that P′ is smooth over W (k) and has a W (k1)-
valued point. Thus the special fibre P′

k is non-empty. As P′ is smooth over W (k) and
has a non-empty special fibre, it has W (k)-valued points. Thus P also has W (k)-valued
points and therefore the isomorphism rD exists. �

B5. On p=2. The following problem will play a key role in the Part II of the paper.

Problem. Suppose that p = 2 and that G is a reductive group scheme over W (k).
Show that there exists a 2-divisible group D̃ over W (k) which lifts Dk, whose filtered
F -crystal over k is as well the triple (M,F 1, φ), and for which there exists an isomorphism
rD̃ : (M, (tα)α∈J) ∼→ (H1(D̃)⊗Zp

W (k), (vα)α∈J). Here vα ∈ T(H1(D̃))[ 1p ] = T(H1(D))[ 1p ]

is the tensor that corresponds to tα via Fontaine comparison theory for either D̃ or D.

We have a natural principally quasi-polarized variant of the above Problem. Next
we will solve the most particular case of this variant.
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B5.1. Lifting polarizations in mixed characteristic (0, 2). Suppose that p = 2 and
that Dk has a principal quasi-polarization λDk

. Let r ∈ N be such that the height of D is
2r. Let ψM be the perfect, alternating form on M that is the crystalline realization of λDk

.
Let F̃ 1 be a direct summand of M that lifts F 1/2F 1 and that is isotropic with respect
to ψM (i.e., and such that ψM (F̃ 1, F̃ 1) = 0); the triple (M, F̃ 1, φ, ψM) is a principally
quasi-polarized F -crystal over k. We recall the essence of the argument that there exists a
principally quasi-polarized 2-divisible group (D̃, λD̃) over W (k) which lifts (Dk, λDk

) and

whose principally quasi-polarized F -crystal over k is (M, F̃ 1, φ, ψM).
Let W2(k) := W (k)/4W (k). Based on Grothendieck–Messing deformation theory, it

suffices to show that there exists a lift (D̃W2(k), λD̃W2(k)
) of (Dk, λDk

) to W2(k) such that

the Hodge filtration of M/4M defined by D̃W2(k) is F̃ 1/4F̃ 1. Let (D0
W2(k), λD0

W2(k)
) be

an arbitrary principally quasi-polarized 2-divisible group over W2(k) that lifts (Dk, λDk
).

The lifts of (Dk, λDk
) to W2(k) are parameterized by the k-valued points of an affine

space A
r(r+1)

2

def , the origin corresponding to (D0
W2(k), λD0

W2(k)
). The lifts of F 1/2F 1 to direct

summands of M/4M which are isotropic with respect to ψM , are parameterized by the

k-valued points of an affine space A
r(r+1)

2

lifts , the origin corresponding to the Hodge filtration
of M/4M defined by D0

W2(k).

We have a natural morphism hfil : A
r(r+1)

2

def → A
r(r+1)

2

lifts over k that at the level of
k-valued points takes a lift (D1

W2(k), λD1
W2(k)

) of (Dk, λDk
) to W2(k) to the Hodge filtration

of M/4M defined by D1
W2(k). The morphism hfil is finite and surjective on k-valued points,

cf. proof of [Va6, Prop. 6.4.5]. Thus there exists a principally quasi-polarized 2-divisible
group (D̃W2(k), λD̃W2(k)

) over W2(k) that lifts (Dk, λDk
) and whose Hodge filtration is

F̃ 1/4F̃ 1. This ends the argument for the existence (D̃, λD̃).

B6. Group correspondences. Let F ét
Qp

be a reductive, closed subgroup of Gét
Qp

. The

restriction to Lie(F ét
Qp

) of the trace form on End(H1(D)[ 1p ]) is non-degenerate, cf. A2

(b). Let Lie(F ét
Qp

)⊥ be the perpendicular on Lie(F ét
Qp

) with respect to the trace form on

End(H1(D)[ 1p ]); we have a direct sum decomposition of Qp-vector spaces

End(H1(D)[
1

p
]) = Lie(F ét

Qp
)⊕ Lie(F ét

Qp
)⊥.

Let πét be the projector of End(H1(D)[ 1
p
]) on Lie(F ét

Qp
) along Lie(F ét

Qp
)⊥; it is an idempo-

tent of End(H1(D)[ 1p ]) fixed by each subgroup of GLGLGLH1(D)[ 1
p ] that normalizes F ét

Qp
.

Suppose that Dét
Qp

normalizes F ét
Qp

(for instance, this holds if F ét
Qp

is a normal subgroup

of Gét
Qp

). Thus πét is fixed by Dét
Qp

and therefore also by Im(ρD).

Let πcrys ∈ End(M [ 1p ]) be the projector that corresponds to πét via Fontaine com-
parison theory. We have the following two properties:

(i) There exists a unique reductive subgroup FB(k) of GB(k) whose Lie algebra is
Im(πcrys).
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(ii) If the generic fibre of µcan factors through FB(k), then Dét
Qp

is a subgroup of F ét
Qp

.

We check (i). As i−1
D is a BdR(W (k))-linear isomorphism that takes πét to πcrys,

the group i−1
D (F ét

Qp
×Qp

BdR(W (k)))iD is a subgroup of i−1
D (Gét

Qp
×Qp

BdR(W (k)))iD =

GB(k)×B(k)BdR(W (k)) whose Lie algebra is Im(πcrys)⊗B(k)BdR(W (k)). Thus asBdR(W (k))

is a field, from A2 (a) applied with (W,L, η, η1) = (M [ 1p ], Im(πcrys), B(k), BdR(W (k))), we
get that there exists a unique reductive subgroup FB(k) of GLGLGLM [ 1p ] whose Lie algebra is

Im(πcrys). As FB(k) ×B(k) BdR(W (k)) is a subgroup of GB(k) ×B(k) BdR(W (k)), the group
FB(k) is in fact a subgroup of GB(k). Thus (i) holds.

We check (ii). Let lcan be the Lie algebra of the image of the generic fibre of µcan. As
πcrys is fixed by φ, the Lie algebra Lie(FB(k)) = Im(πcrys) is normalized by φ. Let DB(k)

be the smallest connected subgroup of FB(k) with the property that Lie(DB(k)) contains
φm(lcan) for all m ∈ Z. From [Bo, Ch. I, 7.1] we get that all conjugates of the generic fibre
of µcan through integral powers of φ factor through DB(k) (in fact, DB(k) is the smallest
subgroup of FB(k) for which this property holds). This implies that DB(k) corresponds to

Dét
Qp

via Fontaine comparison theory (cf. [Wi, Prop. 4.2.3]) i.e., we have an identity

Dét
Qp
×Qp

BdR(W (k)) = iD(DB(k) ×B(k) BdR(W (k)))i−1
D

of subgroups of GLGLGLH1(D)⊗Zp BdR(W (k)). As DB(k) is a subgroup of FB(k) and as F ét
Qp
×Qp

BdR(W (k)) = iD(FB(k) ×B(k) BdR(W (k)))i−1
D , we get that (ii) holds.

As we also have Gét
Qp
×Qp

BdR(W (k)) = iD(GB(k) ×B(k) BdR(W (k)))i−1
D , the groups

Gét
Qp
×Qp

B(k) and GB(k) are forms of each other.

B7. Faltings deformation theory. Let l ∈ N ∪ {0}. Let R = W (k)[[x1, . . . , xl]] be
a formal power series in l variables with coefficients in W (k). Let ΦR be the Frobenius
lift of R that is compatible with σ and that takes xi to xp

i for all i ∈ {1, . . . , l}. Let
Ω∧

R/W (k) = ⊕l
i=1Rdxi be the p-adic completion of the R-module of relative differentials

ΩR/W (k). Let dΦR : Ω∧
R/W (k) → Ω∧

R/W (k) be the differential map of ΦR.

Let (MR, F
1
R,Φ) be a triple such that the following four axioms hold:

(i) MR is a free R-module of rank equal to the height of D;

(ii) F 1
R is a direct summand of MR of rank equal to the rank of F 1;

(iii) Φ : MR → MR is a ΦR-linear endomorphism that induces an R-linear isomor-
phism (MR + 1

p
F 1

R)⊗R ΦR
R ∼→MR;

(iv) the reduction of (MR, F
1
R,Φ) modulo the ideal (x1, . . . , xl) is canonically iden-

tified with (M,F 1, φ).

It is known that there exists a unique connection ∇ : MR → MR ⊗R Ω∧
R/W (k) such

that we have an identity ∇ ◦ Φ = (Φ ⊗ dΦR) ◦ ∇, cf. [Fa2, Thm. 10]. Loc. cit. also
shows that ∇ is integrable and nilpotent modulo p. Let Φ act in the natural tensor way
on T(MR)[ 1

p
]; thus if e ∈ M∗

R := Hom(MR, R), then Φ(e) ∈ M∗
R[ 1

p
] is the unique element

such that we have Φ(e)(Φ(a)) = ΦR(e(a)) ∈ R for all a ∈MR.
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B7.1. Lemma. There exists a unique p-divisible group DR over R that lifts D and such
that its filtered F -crystal over R/pR is (MR, F

1
R,Φ,∇).

Proof: Let J be an ideal of R such that R is complete in the J -adic topology (for instance,
J could be (p), (x1, . . . , xl), or p(x1, . . . , xl)). Let Spf(R) be the formal scheme which is the
formal completion of Spec(R) along Spec(R/J). The categories of p-divisible groups over
Spec(R) and respectively over Spf(R) are canonically isomorphic, cf. [dJ1, Lem. 2.4.4];
below we will use this fact without any extra comment. The existence of DR is implied by
[Fa2, Thm. 10]. The uniqueness of the fibre DR/pR of DR over Spec(R/pR) is implied by
[BM, Thm. 4.1.1]. As the ideal p(x1, . . . , xl) of R/(x1, . . . , xl)

m has a natural nilpotent
divided power structure for all m ∈ N, from the Grothendieck–Messing deformation theory
we get that DR is the unique p-divisible group over R that lifts both D and DR/pR and
whose filtered F -crystal is (MR, F

1
R,Φ,∇). �

Until B8 we will assume that D has a principal quasi-polarization λD. Let ψM be
the perfect, alternating form on M that is the crystalline realization of λD; for a, b ∈ M
we have ψM (φ(a) ⊗ φ(b)) = pσ(ψM (a ⊗ b)). We also assume that there exists a perfect,
alternating form ψMR

on MR that lifts ψM (i.e., which modulo (x1, . . . , xl) is ψM ) and
such that for a, b ∈MR we have ψMR

(Φ(a)⊗ Φ(b)) = pΦR(ψM (a⊗ b)).

B7.2. Lemma. There exists a unique principal quasi-polarization λDR
of DR that lifts

λD and whose crystalline realization is ψMR
.

Proof: Let (M t
R, F

1t
R ,Φt,∇t) be the filtered F -crystal over R/pR of the Cartier dual Dt

R

of DR. The form ψMR
defines naturally an isomorphism (M t

R, F
1t
R ,Φt) ∼→ (MR, F

1
R,Φ).

As the connections ∇ and ∇t are uniquely determined by (MR, F
1
R,Φ) and (M t

R, F
1t
R ,Φt)

(respectively), the last isomorphism extends to an isomorphism

θ : (M t
R, F

1t
R ,Φt,∇t) ∼→ (MR, F

1
R,Φ,∇)

of filtered F -crystals over R/pR.
The ring R/pR has a finite p-basis {x1, . . . , xl} in the sense of [BM, Def. 1.1.1].

Thus from the fully faithfulness part of [BM, Thm. 4.1.1] we get that there exists a unique
principal quasi-polarization λDR/pR

of DR/pR whose crystalline realization is θ; it lifts the
special fibre of λD. As the ideal p(x1, . . . , xl) of R/(x1, . . . , xl)

m has a natural nilpotent
divided power structure for all m ∈ N, from the Grothendieck–Messing deformation theory
we get that there exists a unique principal quasi-polarization λDR

of DR that lifts both
λDR/pR

and λD and whose crystalline realization is ψMR
. �

B7.3. Construction. Let M = F 1 ⊕ F 0 be the direct sum decomposition such that the
cocharacter µ : GmW (k) → GLGLGLM acts trivially on F 0. We naturally identify Hom(F 1, F 0)
with the direct summand {e ∈ End(M)|e(F 0) = 0 and e(F 1) ⊆ F 0} of End(M). Let G′ be
the universal smoothening of G, cf. A2 (a). Suppose that G is a closed subgroup scheme
of GSpGSpGSp(M,ψM ) and that R = W (k)[[x1, . . . , xl]] is the local ring of the completion of G′

along the identity section. Thus the relative dimension of G over W (k) is l. We take

(MR, F
1
R, ψMR

) := (M,F 1, ψM )⊗W (k) R and Φ := guniv(φ⊗ ΦR),
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where guniv ∈ G′(R) is the universal element. Let

Cuniv := (MR, F
1
R,Φ,∇, (tα)α∈J, ψM ).

We have the following three properties (see [Va4, Subsection 3.3 1)] for (i) and (ii) and see
proof of [Va4, Thm. 5.2] for (iii)):

(i) the connection ∇ is of the form δ + γ, where δ is the flat connection on MR =
M ⊗W (k) R that annihilates M ⊗ 1 and where γ ∈ (Lie(GB(k))∩End(M))⊗W (k) Ω∧

R/W (k);

(ii) the connection on T(MR) = T(M) ⊗W (k) R induced naturally by ∇ annihilates

the tensor tα ∈ T(M)⊗W (k) R[ 1p ] for all α ∈ J;

(iii) the connection ∇ is versal and its Kodaira–Spencer map has an image which
is the direct summand (Lie(GB(k)) ∩ Hom(F 1, F 0)) ⊗W (k) R of Hom(F 1, F 0) ⊗W (k) R

∼→
Hom(F 1,M/F 1)⊗W (k) R.

Let m ∈ N ∪ {0}, R1 := W (k)[[x1, . . . , xm]], and Z := Spec(R1). Let ΦR1
be the

Frobenius lift of R1 that is compatible with σ and that takes xi to xp
i for all i ∈ {1, . . . ,m}.

Let C1 := (M1, F
1
1 ,Φ1,∇1, (t1α)α∈J, ψM1

) be a principally quasi-polarized filtered F -crystal
over Spec(R1/pR1) endowed with a family of tensors (t1α)α∈J of T(M1)[

1
p ] such that the

following three axioms hold:

(iv) Φ1 induces an R1-linear isomorphism (M1 + 1
pF

1
1 )⊗R1 ΦR1

R1
∼→M1;

(v) each tensor t1α is fixed by Φ1, is annihilated by ∇1, and belongs to F 0(T(M1))[
1
p ]

(here (F i(T(M1)))i∈Z is the filtration of T(M1) defined by F 1
1 , cf. Subsection 2.1);

(vi) its reduction modulo the ideal I1 := (x1, . . . , xm) is (M,F 1, φ, (tα)α∈J, ψM).

The R1-module M1 is free of rank equal to the rank of M , cf. property (vi). Let
T(M1) be as in Subsection 2.1. Let zZ : Spec(W (k)) ↪→ Z be the closed embedding defined
by the ideal I1 of R1.

B7.4. Theorem. There exists a morphism iZ : Z → Spec(R) of W (k)-schemes such
that guniv ◦ iZ ◦ zZ is the identity section of G′ and i∗Z(Cuniv) is isomorphic to C1 under an
isomorphism which modulo the ideal I1 becomes the identity automorphism of 1M .

Proof: If G is smooth, then the Theorem is a particular case of [Fa2, Thm. 10 and Rm.
iii) after it]. To prove the Theorem in the general case, we follow the proof of [Va4, Thm.
5.2]. Let (DZ , λDZ

) be the unique principally quasi-polarized p-divisible group over Z
that lifts (D, λD) and whose principally quasi-polarized filtered F -crystal over R1/pR1 is
(M1, F

1
1 ,Φ1,∇1, ψM1

), cf. B7.2.
By induction on s ∈ N we show that there exists a morphism iZ,s : Spec(R1/I

s
1) →

Spec(R) of W (k)-schemes which at the level of rings maps (x1 . . . , xl) to I1/I
s
1 and such

that i∗Z,s((DR, λDR
)) is isomorphic to (DZ , λDZ

) modulo Is
1 under a unique isomorphism

Ds that has the following two properties:

(i) it lifts the identity automorphism of (D, λD);

(ii) it defines an isomorphism Es between C1 modulo Is
1 and i∗Z,s(Cuniv) which modulo

I1/I
s
1 is the identity automorphism of 1M .
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As ΦR1
(I1) ⊆ I

p
1 and R1 is I1-adically complete, such an isomorphism Es is unique. If

s = 1 we take iZ,s to be defined by the W (k)-epimorphism R � R/(x1, . . . , xl) = W (k) =
R1/I1 and we take D1 and E1 to be defined by the identity automorphism of (D, λD) and
by 1M (respectively). Thus the existence and the uniqueness of iZ,1 and D1 are obvious.

The passage from s to s + 1 goes as follows. We endow the ideal Js := Is
1/I

s+1
1 of

R1/I
s+1
1 with the trivial divided power structure; thus J

[2]
s = 0. The uniqueness of Ds+1

is implied by the uniqueness of Ds and of Es+1, cf. Grothendieck–Messing deformation
theory. Thus to end the induction we are left to show that we can choose iZ,s+1 such that
Ds+1 and Es+1 exist.

Let ĩZ,s+1 : Spec(R1/I
s+1
1 ) → Spec(R) be an arbitrary morphism of W (k)-schemes

through which iZ,s factors naturally. We write

ĩ∗Z,s+1(MR, FR,Φ,∇, ψMR
) = (M ⊗W (k) R1/I

s+1
1 , F 1 ⊗W (k) R1/I

s+1
1 , s+1Φ, s+1∇, ψM).

Due to the existence of Ds, there exists (cf. Grothendieck–Messing deformation theory)
a direct summand s+1F

1 of M ⊗W (k) R1/I
s+1
1 that lifts F 1 ⊗W (k) R1/I

s
1 and such that

the quintuple (M1, F1,Φ1,∇1, ψM1
) modulo Is+1

1 is isomorphic to the quintuple (M ⊗W (k)

R1/I
s+1
1 , s+1F

1, s+1Φ, s+1∇, ψM ) under an isomorphism Ẽs+1 that lifts the one defined by

Es. Let t1α,s+1 ∈ T(M ⊗W (k) R1/I
s+1
1 ) be the image under Ẽs+1 of t1α. As t1α is fixed by

Φ1, the tensor t1α,s+1 is fixed by s+1Φ. As Ẽs+1 lifts Es, the reductions modulo Js of tα
and t1α,s+1 coincide. As s+1Φ(T(M)⊗W (k) Js) = 0, inside T(M)⊗W (k) R1/I

s+1
1 we have

t1α,s+1 − tα = s+1Φ(t1α,s+1 − tα) ∈ s+1Φ(T(M)⊗W (k) Js) = 0.

Thus we have t1α,s+1 = tα ∈ T(M)⊗W (k) R1/I
s+1
1 for all α ∈ J.

The remaining part of the inductive argument is as in the last four paragraphs of
the proof of [Va4, Thm. 5.2]. Briefly, let Ubig and U be the smooth, unipotent, closed
subgroup schemes of GLGLGLM and G (respectively) defined by the rule: if � is a commutative
W (k)-algebra, then Ubig(�) := 1M⊗W (k)� + Hom(F 1, F 0)⊗W (k) � and

U(�) := 1M⊗W (k)� + (Lie(GB(k)) ∩Hom(F 1, F 0))⊗W (k) �.

Let vs+1 ∈ Lie(Ubig)⊗W (k) Js be the unique element such that we have

(1M⊗W (k)R1/Is+1
1

+ vs+1)(F
1 ⊗W (k) R1/I

s+1
1 ) = s+1F

1.

As in the proof of [Va4, Thm. 5.2] we argue that vs+1 ∈ Lie(U)⊗W (k)Js. The image of the
Kodaira–Spencer map of ∇ is the direct summand (Lie(GB(k))∩Hom(F 1, F 0))⊗W (k)R =
Lie(U) ⊗W (k) R of Hom(F 1, F 0) ⊗W (k) R = Lie(Ubig)⊗W (k) R, cf. B7.4 (vi). Thus as in

loc. cit. we can replace ĩZ,s+1 by another morphism iZ,s+1 : Spec(R1/I
s+1
1 ) → Spec(R)

through which iZ,s factors and for which s+1F
1 gets replaced by (i.e., becomes) F 1 ⊗W (k)

R1/I
s+1
1 . From Grothendieck–Messing deformation theory we get that i∗Z,s+1((DR, λDR

))

is isomorphic to (DZ , λDZ
) modulo Is+1

1 under an isomorphism Ds+1 which lifts Ds and
which defines an isomorphism Es+1 between C1 modulo Is+1

1 and i∗Z,s+1(Cuniv). As Ds+1
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lifts Ds, the uniqueness of Es implies that Es+1 lifts Es and thus also E1. This ends the
induction.

We take iZ : Z → Spec(R) such that it lifts iZ,s for all s ∈ N. From the very
definition of iZ,1 we get that guniv ◦ iZ ◦zZ is the identity section of G′. Moreover, i∗Z(Cuniv)
is isomorphic to C1 under an isomorphism that lifts E−1

s for all s ∈ N. �

B7.5. Variant. Let d ∈ N ∪ {0} be the rank of Lie(GB(k)) ∩ Hom(F 1, F 0) = Lie(U). Let
S := W (k)[[x1, . . . , xd]]. We consider a closed embedding Spec(S) ↪→ Spec(R) such that
the following two properties hold:

(i) at the level of W (k)-algebras, the ideal (x1, . . . , xl) of R maps to the ideal
(x1, . . . , xd) of S;

(ii) the pull back Duniv of Cuniv via the closed embedding Spec(S) ↪→ Spec(R), has
a Kodaira–Spencer map which is injective and whose image equals to the direct summand
(Lie(GB(k))∩Hom(F 1, F 0))⊗W (k)S of Hom(F 1, F 0)⊗W (k)S

∼→ Hom(F 1,M/F 1)⊗W (k)S.

The proof of B7.4 applies to give us that there exists a morphism jZ : Z → Spec(S) of
W (k)-schemes such that j∗Z(Duniv) is isomorphic to C1 under an isomorphism which modulo
I1 becomes the identity automorphism of 1M . As the Kodaira–Spencer map of Duniv is
injective, the morphism jZ is unique. In simpler words, we can choose iZ : Z → Spec(R) to
factor through the closed embedding Spec(S) ↪→ Spec(R) and the resulting factorization
is our morphism jZ : Z → Spec(S).

B8. On abelian schemes. Suppose that D is the p-divisible group of an abelian scheme
A over W (k). It is well known that we have two canonical and functorial identifications:

(i)H1
dR(A/W (k)) = M of W (k)-modules (see [Be, Ch. V, Subsection 2.3] and [BBM,

Prop. 2.5.8]);

(ii) H1(D) = H1
ét(AB(k)

,Zp) of Gal(B(k))-modules.

The crystalline conjecture (see [Fa1] and [Fo]) provides a Bcrys(W (k))-linear isomorphism

iA : H1
dR(A/W (k))⊗W (k) Bcrys(W (k)) ∼→H1

ét(AB(k)
,Zp)⊗Zp

Bcrys(W (k))

that is compatible with the tensor product filtrations, with the Gal(B(k))-actions, and
with the Frobenius endomorphisms. See [Va1, Subsubsection 5.2.15] for a proof of the
following property (strictly speaking, the paragraphs before loc. cit. work with a prime
p≥ 3 but the arguments of loc. cit. work for all primes):

(iii) under the identifications of (i) and (ii), we have iA = i+D ⊗ 1Bcrys(W (k)).

B9. On Hodge cocharacters. In this Subsection we assume that we have a monomor-
phism W (k) ↪→ C and that D is the p-divisible group of an abelian scheme A over W (k).

We recall that we have canonical identifications

(5) M ⊗W (k) C = H1
dR(A/W (k))⊗W (k) C = H1

dR(AC/C) = F 1,0 ⊕ F 0,1,
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where the last identity is the usual Hodge decomposition. Under (5) we can identify

F 1 ⊗W (k) C = F 1,0.

Let Aan
C be the analytic space associated to AC. Let W := H1(A

an
C ,Q) be the first Betti

homology group of Aan
C with rational coefficients. Let W ∗ := Hom(W,Q). We identify

naturally W ∗ ⊗Q C with the first Betti cohomology group H1(Aan
C ,C) and thus also with

H1
dR(AC/C) = M ⊗W (k) C. We consider also the Hodge decomposition

(6) W ⊗Q C = H1(A
an
C ,C) = F−1,0 ⊕ F 0,−1

that is the dual of the Hodge decomposition W ∗ ⊗Q C = H1
dR(AC/C) = F 1,0 ⊕ F 0,1. Let

µA : GmC → GLGLGLW⊗QC be the Hodge cocharacter that fixes F 0,−1 and that acts on F−1,0

via the identity character of GmC. We also view µA as a cocharacter (denoted in the same
way) µA : GmC → GLGLGLW∗⊗QC = GLGLGLM⊗W (k)C = GLGLGLH1

dR
(AC/C) that fixes F 0,1 and that acts

on F 1,0 via the inverse of the identity character of GmC.

B9.1. Lemma. Let the cocharacter µ : Gm → G be as in B2. Suppose that for every α ∈ J

the tensor tα ∈ T(M)[ 1p ] = T(H1
dR(A/W (k)))[ 1p ] is the de Rham component of a Hodge

cycle on AB(k). We also assume that GB(k) is a reductive group. Then the cocharacter
µA : GmC →GLGLGLM⊗W (k)C factors through GC and is G(C)-conjugate with µC. Thus if GB(k)

is a torus, then µA = µC.

Proof: Let vB
α ∈ T(W ∗) be the Betti realization of tα; it is fixed by µA. The identity

W ∗⊗Q C = M⊗W (k)C gives birth to an identity T(W ∗⊗Q C) = T(M⊗W (k)C) under which
the tensors tα and vB

α are as well identified. Thus the cocharacter µA : GmC → GLGLGLW⊗QC

fixes tα for all α ∈ J and therefore it factors through GC. Let PC be the parabolic subgroup
of GC that normalizes F 1⊗W (k) C = F 1,0. Both the cocharacters µA : GmC →GLGLGLM⊗W (k)C

and µC factor through PC and thus a PC(C)-conjugate µ′
C of µC commutes with µA.

As the commuting cocharacters µ′
C and µA of PC act on F 1 ⊗W (k) C = F 1,0 and on

M⊗W (k)C/(F
1⊗W (k)C) = H1

dR(AC/C)/F 1,0 in the same way, we have µ′
C = µA. Thus the

cocharacters µC and µA are PC(C)-conjugate and therefore they are also G(C)-conjugate.�
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[Ha] G. Harder, Über die Galoiskohomologie halbeinfacher Matrizengruppen II, Math.
Z. 92 (1966), pp. 396–415.

46



[Har] R. Hartshorne, Algebraic geometry, Grad. Texts in Math., Vol. 52, Springer–
Verlag, New York-Heidelberg, 1977.

[HT] M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura
varieties, Annals of Mathematics Studies, Vol. 151, Princeton University Press,
Princeton, NJ, 2001.

[Ja] J. C. Jantzen, Representations of algebraic groups, Pure and Applied Mathemat-
ics, Vol. 131, Academic Press, Inc., Boston, MA, 1987.

[Ko] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. of Am.
Math. Soc. 5 (1992), no. 2, pp. 373–444.

[La] R. Langlands, Some contemporary problems with origin in the Jugendtraum,
Mathematical developments arising from Hilbert problems (Northern Illinois Univ.,
De Kalb, IL, 1974), pp. 401–418, Proc. Sympos. Pure Math., Vol. 28, Amer.
Math. Soc., Providence, RI, 1976.

[Lan] S. Lang, Algebraic Number Theory, Grad. Texts in Math., Vol. 110, Springer-
Verlag, New York, 1994.

[LR] R. Langlands and M. Rapoport, Shimuravarietäten und Gerben, J. reine angew.
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