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ABSTRACT. We prove the existence of good smooth integral models of Shimura varieties
of Hodge type in arbitrary unramified mixed characteristic (0,p). As a first application we
solve a conjecture of Langlands for Shimura varieties of Hodge type. As a second applica-
tion, for p>3 (resp. for p = 2) we prove the existence in unramified mixed characteristic
(0,p) of integral canonical models of Shimura varieties of Hodge type that have compact
factors (resp. that have compact factors and that pertain to abelian varieties in character-
istic p which have zero p-ranks). Though the second application is new only for p <3 and
for non-unitary Shimura varieties, its proof is new, more direct, and more of a principle.
The second application also represents progress toward the proof of a conjecture of Milne.
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1. Introduction

Let p € N be a prime. Let Z,) be the localization of Z at its prime ideal (p). Let
r € N. Let N >3 be a natural number relatively prime to p. Let A, 1 ny be the Mumford
moduli scheme over Z,) that parameterizes isomorphism classes of principally polarized
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abelian schemes over Z(p)—schemes that are of relative dimension r» and that are endowed
with a symplectic similitude level-N structure (cf. [MFK, Thms. 7.9 and 7.10] applied to
symplectic similitude level structures instead of only to level structures).

1.1. Basic properties. The Z,)-schemes A, 1 y have the following three properties:

(i) they are smooth and quasi-projective;

(ii) if N; € NN is relatively prime to p, then the natural level-reduction Z,-
morphism A, 1 n, — Ay 1 n is a pro-étale cover; thus the projective limit

MT‘ = pI‘OJllmN > 3,(N,p):1‘AT717N

exists and is a regular, formally smooth Z,)-scheme;

(iii) if Z is a regular, formally smooth scheme over Z,), then each morphism Zg —
M,q extends uniquely to a morphism Z — M, of Z,)-schemes.

Property (i) is checked in [MFK, Thms. 7.9 and 7.10], cf. also Serre Lemma of [Mu,
§21, Thm. 5]. Property (ii) is well known. Property (iii) is implied by the fact that each
abelian scheme over Zg that has level-N structure for each natural number N > 3 relative
prime to p, extends to an abelian scheme over Z (cf. the Néron—-Ogg—Shafarevich criterion
of good reduction and the purity result [Va2, Thm. 1.3]); such an extension is unique up to
a unique isomorphism (cf. [FC, Ch. I, Prop. 2.7]). From Yoneda Lemma we get that the
regular, formally smooth Z,)-scheme M,. is uniquely determined by its generic fibre M,q
and by the universal property expressed by the property (iii). Thus one can view A, 1 n
as the best smooth integral model of A, 1 ng over Z(,). The main goal of this paper is to
generalize properties (i) to (iii) to the context of Shimura varieties of Hodge type. Thus
in this paper we prove the existence of good smooth integral models of Shimura varieties
of Hodge type in unramified mixed characteristic and we list several main properties of
them. We will begin with a list of notations and with a review on Shimura varieties.

1.2. Notations. Let S := Resc/rGuc be the two dimensional torus over R such that
we have identifications S(R) = G,,,c(C) and S(C) = G,,,c(C) X G,,,c(C) with the property
that the monomorphism R «— C induces the map z — (z, 2); here z € G,,c(C).

Let O be a commutative Z-algebra. We recall that a group scheme F' over O is called
reductive if it is smooth and affine and its fibres are connected and have trivial unipotent
radicals. Let Lie(F') be the Lie algebra over O of F. The group schemes G,,0 and G,o are
over O. For a free module M of finite rank over O, let M* := Homo (M, O) and let GLj,
be the reductive group scheme over O of linear automorphisms of M. A bilinear form s
on M is called perfect if it defines naturally an isomorphism M = M*. If M has even
rank and if ¢, is a perfect, alternating form on M, then Sp(M,vy,) and GSp(M,1ar)
are viewed as reductive group schemes over O.

Let k be a perfect field of characteristic p. Let W (k) be the ring of Witt vectors
with coefficients in k. Always n € N. Let Ay := Z ®z Q be the ring of finite adeles

of Q. Let Agcp ) be the ring of finite adeles of Q with the p-component omitted; we have
A =Q, x Agcp). If O € {Ay, AE}’), Qp}, then the group F(O) is endowed with the coarsest
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topology that makes all maps O = G,0(0) — F(O) associated to morphisms G,o — F of
O-schemes to be continuous; thus F(O) is a totally discontinuous locally compact group.
Each continuous action of a totally discontinuous locally compact group on a scheme will
be in the sense of [De2, Subsubsection 2.7.1] and it will be a right action.

1.3. Shimura varieties. A Shimura pair (G,X) consists from a reductive group G
over Q and a G(R)-conjugacy class X of homomorphisms § — Gg that satisfy Deligne’s
axioms of [De2, Subsubsection 2.1.1]: the Hodge Q-structure on Lie(G) defined by any
h € X is of type {(—1,1),(0,0),(1,—1)}, no simple factor of the adjoint group G of G
becomes compact over R, and Ad(h(i)) is a Cartan involution of Lie(G3%). Here Ad :
Gr — GLLie(GEd) is the adjoint representation. These axioms imply that X has a natural
structure of a hermitian symmetric domain, cf. [De2, Cor. 1.1.17]. For h € X we consider
the Hodge cocharacter
pn 2 Gpe — Ge

defined on complex points by the rule: z € G,,c(C) is mapped to hc(z,1) € Ge(C).

The most studied Shimura pairs are constructed as follows. Let W be a vector space
over Q of even dimension 2r. Let ¢ be a non-degenerate alternative form on W. Let Y
be the set of all monomorphisms S — GSp(W ®q R, 1) that define Hodge Q-structures
on W of type {(—1,0), (0, —1)} and that have either 2miy) or —2miv) as polarizations. The
pair (GSp(W,1),Y) is a Shimura pair that defines a Siegel modular variety. Let L be a
Z-lattice of W such that ¢ induces a perfect form ¢ : L ®7 L — Z. Let

~

K(N) :={g € GSp(L,v¢)(Z)|g mod N is identity} and K, := GSp(L, )(Z,).

Let E(G,X) < C be the number subfield of C that is the field of definition of the
G(C)-conjugacy class of the cocharacters pp’s of Gg, cf. [Mi2, p. 163]. We recall that
E(G,X) is called the reflex field of (G, X). The Shimura variety Sh(G, X) is identified with
the canonical model over E(G,X) of the complex Shimura variety

Sh(G, X)c := proj.lim. esyc) GQ\(X x GAf)/K),

where 3(G) is the set of compact, open subgroups of G(A ) endowed with the inclusion re-
lation (see [Del], [De2], and [Mil] to [Mi4]). Thus Sh(G, X) is an E(G, X)-scheme together
with a continuous G(A¢)-action. For C' a compact subgroup of G(Ay) let

She (G, X) == Sh(G, X)/C.

Let K € X(G). A classical result of Baily and Borel allows us to view Shx(G,X)c =
G(Q)\(X x G(Af)/K) as a finite, disjoint union of normal, quasi-projective varieties over
C and not only of complex space (see [BB, Thm. 10.11]). Thus Shx(G,X) is a normal,
quasi-projective E(G, X)-scheme. If K is small enough, then Shg (G, X) is in fact a smooth,
quasi-projective £(G, X)-scheme. Let H be a compact, open subgroup of Gg,(Q)).

We recall that the group G, is called unramified if and only if it has a Borel subgroup
and splits over an unramified, finite field extension of Q,,. See [Ti] for hyperspecial subgroups
of Gg,(Qp). In what follows we will only need the following three things: (i) the group
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G, (Qp) has hyperspecial subgroups if and only if G, is unramified, (ii) the subgroup H
of G, (Qp) is hyperspecial if and only if it is the group of Z,-valued points of a reductive
group scheme over Z, whose generic fibre is Gg,, and (iii) each hyperspecial subgroup of
Go,(Qp) is a maximal compact, open subgroup of Gg, (Q,).

Let v be a prime of E(G,X) that divides p. Let k(v) be the residue field of v. Let
e(v) be the index of ramification of v. Let O(,) be the localization of the ring of integers
of E(G,X) with respect to v.

1.3.1. Definitions. (a) By an integral model of Shy (G, X) over O, we mean a faithfully
flat O(,)-scheme whose generic fibre is Sh (G, X).

(b) By an integral model of Shy(G,X) over O(,) we mean a faithfully flat O(,)-
scheme equipped with a continuous G(Agcp ))—action whose generic fibre is the E(G,X)-
scheme Shy (G, X) equipped with its natural continuous G(A;p ))—action.

In this paper we study integral models of Shg (G, X) and Shy (G, X) over O(,y. The
subject has a long history, the first main result being the existence of the moduli schemes
Ay 1~ and M,. This is so as we have natural identifications

Ar1,ng = Shg vy (GSp(W,4),Y) and M,q = Shg, (GSp(W, ), Y)

(see [Del], [Mi2], [Val], etc.). In particular, see [Val, Ex. 3.2.9 and Subsection 4.1] and

[Del, Thm. 4.21] for the natural continuous action of GSp(W, @ZJ)(ASCP)) on M,..

In 1976 Langlands conjectured the existence of a good integral model of Shy (G, X)
over O,), provided H is a hyperspecial subgroup of Gg,(Q,) (see [La, p. 411]); unfortu-
nately, Langlands did not explain what good is supposed to stand for. Only in 1992, an
idea of Milne made it significantly clearer how to characterize and identify the good inte-
gral models. Milne’s philosophy can be roughly summarized as follows (cf. [Mi2]): under
certain conditions, the good regular, formally smooth integral models should be uniquely
determined by (Néron type) universal properties that are similar to the property 1.1 (iii).

1.3.2. Definitions. (a) We say (G, X) has compact factors, if for each simple factor F' of
the adjoint group G2 of G there exists a simple factor of Fr which is compact.

(b) Suppose that e(v) = 1. An affine, flat group scheme G, over Z,) that extends
G (i.e., whose generic fibre is G) is called a quasi-reductive group scheme for (G,X,v), if
there exists a reductive, normal, closed subgroup scheme Ger of Gz, and a cocharacter
o+ Grw (kw)) — Gz, Xspec(z,) SPec(W (k(v))), such that the extension of y, to C via
an (any) O(,)-monomorphism W (k(v)) < C defines a cocharacter of G¢ that is G(C)-
conjugate to the cocharacters uy, of G¢ introduced above (h € X).

(c) Let Y be a smooth O,)-scheme of finite type. We say that Y is a Néron model
of its generic fibre Yg g x) over Oy, if for each smooth O(,)-scheme Z, every morphism
Zg@,x) — Ye(e,x) extends uniquely to a morphism Z — Y of O,)-schemes.

Definition (a) was introduced in [Va3, Def. 1.1]. Definition (b) is a variation of [Re2,
Def. 1.5]; more precisely, the group Gz, (Z,) is an h-hyperspecial subgroup of Gg,(Q,)
in the sense of loc. cit. Definition (c) is well known, cf. [BLR, Ch. 1, 1.2, Def. 1].
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1.4. Constructing integral models. Until the end we will assume that the Shimura
pair (G, X) is of Hodge type i.e., there exists an injective map

f (G, X) — (GSp(W,¢),Y)

for some symplectic space (W, ) over Q; thus f : G — GSp(W, ) is a monomorphism
such that we have fg o h € Y for all elements h € X.

We recall that we identity M,q = Shx,(GSp(W,¢),Y). Let L, := L ®z Z(,). Let
Gz(p) be the Zariski closure of G in GL Lp)- Until the end we will also assume that we
have an identity H = K, N Gg,(Qp); thus H = Gz, (Zy).

The functorial morphism fq : Sh(G, X) — Sh(GSp(W, v),Y) g(a,x) defined by f (see
[Del, Cor. 5.4]) is a closed embedding as it is so over C (cf. [Del, Prop. 1.15]). The
morphism fy gives birth naturally to a morphism of E(G, X)-schemes

fp : ShH(G7 x) - Sth (GSP(W7 w)v 1é)E(G,DC)

which is finite (cf. Proposition 2.2.1 (b)). Thus we can speak about the normalization
N

of M,0,,, in the ring of fractions of Shy(G,X). If Gz, is a reductive group scheme over
Zp), then f, is a closed embedding (for instance, see [Val, Rm. 3.2.14]) and thus N is in

fact the normalization of the Zariski closure of Shy (G, X) in M,o,, . As G(A;p )) acts on
Shy (G, X) and M,., we get a natural continuous action of G(Agcp)) on N. Let

NS

be the formally smooth locus of N over O(,); it is a G(Agcp ))—invariant, open subscheme
of N such that we have identities N% ; vy = Np(G,x) = Shu(G,X) (cf. Lemma 2.2.2).

E
Ifp>2let N :=N°. If p =2 let 7\$m be the open subscheme of N® that is defined in
Subsubsection 3.5.1. In this paper we study the following sequence

NP =N =N —= Mo,
of morphisms of O(,)-schemes in order to prove the following three basic results.

1.5. Basic Theorem. We assume that e(v) = 1 (i.e., v is unramified over p) and that
the k(v)-scheme Ni(v) @s non-empty. Then we have:

(a) The O(yy-scheme N°® is the unique regular, formally smooth integral model of
Shu (G, X) over O, that satisfies the following smooth extension property: if Z is a reg-
ular, formally smooth scheme over a discrete valuation ring O which is of index of rami-
fication 1 and is a faithfully flat O(,)-algebra, then each morphism Zgc x)y — Shu(G,X)
extends uniquely to a morphism Z — N* of O(,)-schemes.
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(b) For each algebraically closed field k of characteristic p, the natural morphism
N%V(k) — M,yw ) induces W (k)-epimorphisms at the level of complete, local rings of
residue field k (i.e., it is a formally closed embedding at all k-valued point of N?/V(k))'

(c) Suppose that (G, X) has compact factors. Let H®) be a compact, open subgroup

of G(Agcp)) such that N is a pro-étale cover of N/HP). Then N*/H®) is a Néron model of
its generic fibre Shy, o (G, X) over Oy,).

1.6. Main Theorem. Suppose that e(v) =1 and Gz(p) 18 a quasi-reductive group scheme
for (G, X,v). Let N}¥ \..q be the reduced scheme of Nkm(v). Let P™ be the normalization of
the Zariski closure 0} %fk(v)red in Niw)- If p= 2 we consider the following condition:

(*) each abelian variety that is the pull back of the universal abelian scheme over M,
via a geometric point of N}?(U), has p-rank 0.

(a) If p = 2 we assume that the condition (*) holds. Then Nkm(v) is a non-empty,
open closed subscheme of Ni(y)-

(b) Suppose that Ng(g,x)y = Shg (G, X) is a closed subscheme of M, g, x). Then the
k(v)-scheme P™ is reqular and formally smooth. Moreover, for each algebraically closed
field k of characteristic p, the natural morphism Py} — M, induces k-epimorphisms at

the level of complete, local rings of residue field k (i.e., it is a formally closed embedding
at all k-valued point of P}).

(c) Suppose that (G,X) has compact factors. If p = 2, we also assume that the
condition (*) holds. Then N™ is the disjoint union of an open closed subscheme NP of
N and of the E(G,X)-scheme Ng(q,x) \N%(G’x) which is an open closed subscheme of
NE(a,x)- Moreover NP is a pro-étale cover of a smooth, projective O(,)-scheme.

1.7. Main Corollary. We assume that e(v) = 1, that Gy, is a reductive group scheme

over Zyy, and that (G,X) has compact factors. If p = 2 we also assume that the condition
1.6 (*) holds.

(a) Then we have N™ = N° = N and moreover N is the integral canonical model of
Shu (G, X) over O,y as defined in [Val, Def. 3.2.3 6)].

(b) Let H®) be a compact, open subgroup of G(A;p)) such that K = H x H®) js
contained in K(N) for some natural number N that is at least 3 and that is relatively
prime to p; thus we have a natural finite morphism

J(N):Shg (G, X) — A1 NE@G,x) = Shr ) (GSp(W,¥),Y) g x)-

Then the normalization Q of A1, N0, in the ring of fractions of Shi (G, X) is a smooth,

projective O ,y-scheme that can be identified with N/H(p) and that is the Néron model of
Shi (G, X) over O,).

1.8. On contents. We detail on the contents of this Part I. In Section 2 we list conven-

tions, notations, and few basic properties that pertain to the injective map f : (G,X) —
(GSp(W,4),Y) and to Hodge cycles.



In Section 3 we include crystalline applications. In Subsections 3.1 to 3.3 we introduce
basic notations and review three recent results that pertain to p-divisible groups and that
play a central role in Sections 4 and 5. The results are: (i) de Jong extension theorem (see
[dJ2]), (ii) a motivic conjecture of Milne proved in [Va4, Thm. 1.2], and (iii) a variant of
Faltings deformation theory. In Subsection 3.4 we prove the Basic Theorem 1.5. Extra
crystalline properties needed in Sections 4 and 5 are gathered in Subsection 3.5.

See Lemma 4.1 for a simple criterion on when the k(v)-scheme Nj.(v) is non-empty.
In Subsection 4.2 we apply Theorem 1.5 (a) and Lemma 4.1 to prove the existence of
good regular, formally smooth integral models of Sh;(G,X) over O, for a large class
of maximal compact, open subgroups H of Go,(Qp) (the class includes all hyperspecial
subgroups of Gg,(Q,)). Corollary 4.2.3 can be viewed as a complete solution of Langlands’
conjecture (see paragraph before Definitions 1.3.2) for Shimura varieties of Hodge type.

In Section 5 we use Lemma 2.2.4 (i.e., [Va3, Cor. 4.3]), [Va5], Theorem 3.1, and
Subsection 3.4 to prove the Main Theorem 1.6 (see Subsections 5.1 to 5.7) and the Main
Corollary 1.7 (see Subsection 5.8).

Appendices A and B review basic properties of affine group schemes and of p-divisible
groups. Their Subsections are numbered as Al and A2 and as B1 to B9. The reader ought
to refer to these Subsections only when they are quoted in the main text. Modulo few
notations of Subsection 2.1, the two Appendices are independent of the main text.

1.9. On literature and Parts II to IV. Referring to Theorem 1.5 (a), all ordinary
points of Ny () belong to Ny, (cf. [No, Cor. 3.8]). If (G,X) has compact factors and
N® # N, then Theorem 1.5 (c) provides Néron models over O,y which are not projective
and thus which are not among the Néron models obtained in [Va3, Prop. 4.4.1]. For p > 5,
the Corollary 1.7 (a) was first obtained in [Val, Rm. 3.2.12, Thms. 5.1 and 6.4.1]. If p = 2,
one can use either [Va3, Section 3] or [Va6, Thm. 1.5] to provide plenty of situations in
which all hypotheses of Main Corollary 1.7 hold and in which the adjoint Shimura pair
(Gad, xad) of (G, X) is simple and of any one of the following Shimura types A,, B,, C,
D2 and DE defined in [De2]. The works [MFK], [Dr], [Mo], [Zi], [LR], [Ko], and [Val] to
[Va8] are the most relevant for the existence of good smooth integral models of Shimura
varieties of Hodge type. See also [HT, Section 5| for a translation of part of [Dr| in terms
of the existence of good smooth integral models in arbitrary ramified mixed characteristic
(0, p) of very simple unitary Shimura varieties. Theorems 1.5 and 1.6 are also key steps in
proving the deep conjectures [Rel, Conjs. B 3.7 and B 3.12] and [Re2, Conj. 1.6].

In the next two paragraphs we assume that the adjoint Shimura pair (G24,X2) is
simple and that Gz, is a reductive group scheme over Z,). The cases which are not
covered by the Main Corollary 1.7 are of three disjoint types:

(2COMP) p = 2, (G,X) has compact factors, and the condition 1.6 (*) does not
hold:

(PEL) all simple factors of G&1 are non-compact and (G, X34) is of either A,, (with
n>1) or C, (with n>1) or DY (with n >4) type;

(SPINNONCOMP) all simple factors of G4 are non-compact and (G4, X2) is
of either B, (with n >3) or DX (with n >4) type.
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The goal of the Part II of the paper is to show that the Main Corollary 1.7 continues
to hold in the (2COMP) case (i.e., for p = 2 one does not need to assume that the condition
1.6 (*) holds). Besides this Part I, in order to achieve the goals of Part II one is only left
to provide concrete examples for which the Milne conjecture mentioned in Subsection 1.8
holds for p = 2 (see Remark 5.6.1). In the (PEL) case, the Shimura pair (G24, X34) is the
adjoint of a Shimura pair of PEL type and thus in Part III of the paper we will show that
this case can be handled as in [Va7] and [Va8] (no new ideas are required). Part IV of the
paper will use [Val, Prop. 6.6.2] and the formalism of smooth toroidal compactifications
and elementary inductions, in order to handle the (SPINNONCOMP) case even for p < 3.
Thus Parts IT to IV will complete the proof of the existence of integral canonical models
defined in [Val] (i.e., the proof of Milne conjecture of [Mi2, Conj. 2.7] and [Val, Con].
3.2.5]) for all Shimura varieties of Hodge type.

Part I brings completely new ideas in order to: (i) shorten and simplify [Val], and
(ii) to extend many parts of [Val] that were worked out only for p>5 to the case of small
primes p € {2,3}. Corollary 1.7 (b) corrects for p>5 in most cases an error in the proof
of [Val, Prop. 3.2.3.2 ii)| that invalidated [Val, Rm. 6.4.1.1 2) and most of Subsubsection
6.4.11]. This correction was started in [Va3, Rm. 4.6 (b)] and [Va7, Thm. 5.1 (¢) and
App. E.8] and it is continued here; it will be completed in the Part IV of the paper.

2. Preliminaries

In Subsection 2.1 we include some conventions and notations to be used throughout
the paper. In Subsection 2.2 we study the injective map f : (G,X) — (GSp(W,v),Y). In
Subsection 2.3 we consider C-valued points of Sh(G,X) and different realizations of Hodge
cycles on abelian schemes over reduced Q-schemes.

2.1. Conventions and notations. We recall that p is a prime and that &k is a perfect
field of characteristic p. Let o := o} be the Frobenius automorphism of k£, W (k), and
B(k) = W(k)[%] Let O, M, and F be as in the beginning of Section 1. If % or *¢ is
either a morphism or an object of the category of O-schemes and if R is a commutative
O-algebra, let xp be the pull back of % or xo to the category of R-schemes. Let Z(F),
Fad and F9r denote the center, the adjoint group scheme, and the derived group scheme
(respectively) of F. We have F2d = F/Z(F). The group schemes SL,0, etc., are over
O. If F; — F is a closed embedding monomorphism of group schemes over O, then we
identify Fj with its image in F' and we consider intersections of subgroups of Fi(O) with
subgroups of F/(O). By the essential tensor algebra of M @ M™* we mean the O-module

T<M) = @s,teNu{o}]W®S ®o M*®t,

Let F1(M) be a direct summand of M. Let FO(M) := M and F?(M) := 0.
Let FY(M*) := 0, FO(M*) := {y € M*|ly(F*(M)) = 0}, and F~Y(M*) := M*. Let
(F{(T(M)));cz be the tensor product filtration of T(M) defined by the exhaustive, sepa-
rated filtrations (F*(M));eq0,1,2) and (F*(M*));eq—1,0,13 of M and M* (respectively). We
refer to (F*(T(M)));cz as the filtration of T(M) defined by F1(M).
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We identify naturally End(M) = M ®o M* and End(End(M)) = M®?% 9o M*®2,
Let 2 € O be a non-divisor of 0. A family of tensors of T(M[1]) = T(M)[1] is denoted
(Ua)aecg, with J as the set of indexes. Let M; be another free O-module of finite rank. Let
(U1a)acg be a family of tensors of T(M;[1]) indexed also by the set J. By an isomorphism
(M, (ua)acg) = (M1, (U10)acg) Wwe mean an O-linear isomorphism M = M; that extends
naturally to an O-linear isomorphism T(M[1]) = T(M;[1]) which takes u, to ui, for all
a € J. We emphasize that we denote two tensors or bilinear forms in the same way,
provided they are obtained one from another via either a reduction modulo some ideal or
a scalar extension.

The notations 7, N, A,1,n, My, pn : Gpe — Ge, (GSp(W,¢),Y), L, K(N), K,,
E(G,X) — C, Sh(G,X), She(G,X) = Sh(G,X)/C, v, k(v), e(v), Owy), f : (G,X) —
(GSp(I/V, d])v H)a L(p) = L®z Z(p)a GZ(p)7 H = KPHGQP (@p) = GZ(p) (ZP)7 Jo: Sh(Ga x) -
Sh(GSp(W,¥),¥) ec.x), fp : Shu(G,X) — Shg, (GSp(W,¢), ) pc,x), N, and N° will
be as in Subsections 1.1, 1.3, and 1.4. Let d := dim¢(X) and [ := dim(G); we have
d,l € NU{0}. Let (A, Aq) be the principally polarized abelian scheme over N which is the
natural pull back of the universal principally polarized abelian scheme over M,..

2.2. On the injective map f. Let H® be an arbitrary compact, open subgroup of
G(A') such that Hx H®) < K (N). As the morphism fy : Sh(G, X) — Sh(GSp(W, %), ¥) m(c.x)
is a closed embedding, the induced morphisms f, : Shy (G, X) — Shg, (GSp(W, %), Y) p(a,x)
and Shyy o) (G, X) — Shg () (GSp(W, ), Y) (c,x) are pro-finite and finite (respectively).
Thus we can speak about the normalization Q of A, ;, NO@, in the ring of fractions of
Shy g (G, X).  We recall that every O,)-scheme of finite type is excellent (for in-
stance, cf. [Ma, (34.A) and (34.B)]). The O(,)-scheme A, 1 no,,, is quasi-projective (cf.
property 1.1 (i)) and thus it is also excellent. Therefore the O(,)-scheme Q is normal,
quasi-projective, faithfully flat, finite over A, ; n, and has a relative dimension equal
to dim(Shyy yw) (G, X)) = dimc(X) = d. Let Q° be the smooth locus of Q over O(,);
it is an open subscheme of Q. As Sh(GSp(W.,v),Y) is a pro-étale cover of A, 1 ng =
Sh(GSp(W,v),Y)/K(N), the group K(N) acts freely on Sh(GSp(W, v),Y). Thus the sub-
group H x H®) of K(N) acts freely on Sh(GSp(W,1),Y) and therefore also on Sh(G, X).
Thus Qpg,x) = Shy e (G, X) is a smooth E(G, X)-scheme and therefore it is the open
subscheme QSE(G’X) of Q°.

2.2.1. Proposition. The following three properties hold:

(a) The Oy)-scheme N is a pro-étale cover of Q and Q is the quotient of N by H®),
(b) The morphism N — M,. is finite.

(d) If Z is a regular, formally smooth scheme over a discrete valuation ring O which
is of index of ramification 1 and s a faithfully flat O(,-algebra, then each morphism
Zr@,x) — Ne@,x) ertends uniquely to a morphism Z — N of O ,)-schemes.

Proof: Let Ny := N. Let N7 € NN be relatively prime to p. For i € {1,2} we write
K(N;) = K, x K(N;)®), where the group K(N;)) is a compact, open subgroup of
GSp (W, ¢)(A§cp)). The scheme M, is a pro-étale cover of MT/K(NZ-)(I’) = A, 1,n,. Let H;
be a compact, open subgroup of G(Agcp)) NK(N;)®) such that Sh(G, X) is a pro-étale cover
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of Shyry p, (G, X). The morphism Shy g, (G, X)c — Ay 1, n,c is of finite type and a formally
closed embedding at each C-valued point of Shyx g, (G, X)c. Let Q; be the normalization
of A;1,n,0,, in the ring of fractions of Shyx (G, X); it is a finite Ar.1,N,0(,,-scheme and
a normal, quasi-projective, faithfully flat O ,)-scheme of relative dimension d.

As N, divides Ny, we have K(N;)® < K(N5)®). We assume that H; is a normal

subgroup of Hy. The natural morphism g5 : Q1 — Qo X Ar1,N50,,, .AT717N10(U) of normal

schemes is finite. We check that gi2p (@, x) is an open closed embedding. As gi2r(q,x) 18
a finite, étale morphism between normal E(G, X)-schemes of finite type, it is enough to
check that the map ¢12(C) : Q1 (C) — Qy(C) X Ar1,¥30,4) (©) Ar1,8,0,,, (C) is injective. We

have

Shi, x 1, (GSP(W, ), Y)(C) = GSp(L, ) (Z))\(Y x GSp(W, v) (AP /H;)

(for instance, cf. [Mi3, Prop. 4.11]). Also we have a natural disjoint union decomposition

Shixm, (G, X)(C) = Ug1ec@)\a@,)/ a0\ (X X G(Aﬁfp))/Hi),

where g; € G(Q)) is a representative of the class [g;] € G(Q)\G(Q,)/H and where the
group C; = G(Q) N nggj_l does not depend on i € {1,2}. As we have an identity
GSp(W,¢)(Q,) = GSp(W, ¢)(Q)K,, (cf. [Mi3, Lem. 4.9]), we can write g; = a;h;, where
a; € GSp(W,4)(Q) and h; € K,,. Thus

C; < GSp(W, $)(@)Ng; Kpg; " = GSp(W, ¥)(Q)Na;Kya; ' = a;GSp(L,v)(Zy))a; ' =: 7.

We have C; = G(Q) N C’;’ig. This is so as nggj_l is the group of Z,-valued points of the
Zariski closure of G in a;GSp(L, w)z(p)aj_l.

To show that the map ¢12(C) is injective, it suffices to show that each one of the
following commutative diagrams indexed by j

CAX x GAY))/Hy) —— GSp(L,v)(Z»)\(Y x GSp(W,v)(AP)/Hy)

lel lﬂllnég

CNX x GAP) /Hy) —2— GSP(L, ) (Zy))\(Y x GSp(W, ) (A'Y))/Hy),

is such that the maps 72 and s; define an injective map of C;\(X x G(Agcp))/Hl) into

the fibre product of s, and 71i. Here the maps w12 and 7y.# are the natural projections.
The maps s; and sg are defined by the rule: the equivalence class [h, g], where h € X and

g€ G(Agcp )), is mapped to the equivalence class [aj_lh, aj_l g]. Thus the fact that w15 and
s1 define an injective map of C;\ (X x G(Agcp))/Hl) into the fibre product of sy and 7yif is

a direct consequence of the identity C; = G(Q) N C’;-)ig . Thus ¢12(C) is injective.
Therefore q12p(q,x) is an open closed embedding. As g2 is also a finite morphism
of normal, flat O,)-schemes of finite type, g12 itself is an open closed embedding. Thus

10



Q, is an étale cover of Qqy that in characteristic 0 is an étale cover which (as Hy < Hs)
induces Galois covers between connected components. Therefore Q; is an étale cover of
Q5 which induces Galois covers between connected components. By allowing H; to vary
among the normal, open subgroups of Hy and by a natural passage to limits, we get that
N is a pro-étale cover of Qo and that Qo = N/Hs. Thus by remarking that H = H, and
Q = Q,, we get that (a) holds.

As each morphism ¢12 : Q1 — Qo XAr,l,Ngo@) AT:LNIO('L}) is an open closed embedding,
by allowing H; to vary through all normal, open subgroups of Hy we get that N is an open
closed subscheme of Qy X A1, 8200, M,.. Thus N is a finite M,-scheme i.e., (b) also holds.

To prove (c), we recall that Z is a healthy regular scheme in the sense of either [Val,
Def. 3.2.1 2)] or [Va2] (cf. [Va2, Thm. 1.3]). Thus (c) is implied by [Val, Ex. 3.2.9 and
Prop. 3.4.1], cf. the definitions [Val, Def. 3.2.3 2), 3), and 6)]. O

2.2.2. Lemma. The scheme N° is an open subscheme of N and N%(G x) = NEe@,x)-
Moreover, if NZ(U) is a non-empty scheme, then N°® together with the resulting action of

G(AE}’)) on it is a reqular, formally smooth integral model of Shg (G, X) over O(y).

Proof: As N is a pro-étale cover of the excellent, quasi-projective O ,)-scheme Q (see Propo-
sition 2.2.1 (a)), N® is a pro-étale cover of Q°. Thus N*® is an open subscheme of N. As

Qp(a,x) = QSE(G’X), we have NSE(G’X) = Ng(a,x)- The open subscheme N® of N is G(Agcp))—

invariant. As G(A;p )) acts continuously on N, it also acts continuously on N®. Thus if
the scheme Ni(v) is non-empty, then N® together with the resulting continuous action of

G(A;p)) on it is a regular, formally smooth integral model of Shy (G, X) over O,). O

2.2.3. Fact. Suppose that there exists a simple factor G1 of G%d which is an 8Oazp41

group for somen € N. Let Gy be the semisimple, normal subgroup of G@ whose adjoint is
naturally identified with G1. Then Ga is a Sping,+1 group.

Proof: The representation of Lie(Gz) on W ®q Q is non-trivial and its irreducible subrep-
resentations are associated to the weight w,, of the B,, Lie type, cf. [Mi3, p. 456]. This
implies that G is a Spiny, 11 group. O

2.2.4. Lemma. Suppose that (G,X) has compact factors. Then Q is a projective O -
scheme.

Proof: Let G’ be the smallest subgroup of G such that every element h € X factors through
Gy. Tt is a normal, reductive subgroup of G' that contains G9°; thus we have G’ =
G*. Let h' € X be an element such that G’ is the smallest subgroup of GLy with the
property that h’ factors through Gi. We can assume that the C-valued point [h', 1] €
Sh(G,X)/H x H®) is definable over a number field (here 1y is the identity element of
G(Ay)/H (P)) and that v is a principal polarization of the Hodge Z-structure on L defined
by h’. Thus G’ is the Mumford—Tate group of the principally polarized Hodge Z—structure
on L defined by h' and ¢ and this principally polarized Hodge Z-structure is associated
naturally to a principally polarized abelian scheme over a number field.

Let X' be the G’'(R)-conjugacy class of h’. The pair (G, X’) is a Shimura pair whose
reflex field and dimension are also E(G,X) and d (respectively). Let H' := H N G'(Q,)
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and H'®P) .= HP) N G’(A;p)). As G'*d = G24, the Shimura pair (G, X’) also has compact
factors. Thus the normalization Q' of A;.1 no,,, in Shyy gre) (G', X) is a projective O,)-
scheme, cf. [Va3, Cor. 4.3].

The Shimura variety Sh(G’,X’) is a closed subscheme of Sh(G, X) of dimension d and
therefore it is an open closed subscheme of Sh(G,X). Thus each connected component of
the normalization of A, 1 no,, (equivalently of Q) in the ring of fractions of Sh(G,X) is
a G(Ay)-translation of a connected component of the normalization of A;.1 no,,, (equiva-
lently of Q) in the ring of fractions of Sh(G’,X').

As Q" of A, 1 N is a projective O(,)-scheme, from the last paragraph we get directly
that Q is a projective O(,)-scheme. O

2.3. Tensors. Let ¥ : End(WW) ®g End(WW) — Q be the trace form on End(W). If & is
a field of characteristic 0 and if { is a reductive subgroup of GLyy g, then the restriction
of ¥ to Lie(f) is non-degenerate (cf. A2 (b)). Let 74 be the projector of End(W ®q k) on
Lie(f) along the perpendicular on Lie(f) with respect to ¥. If G,; normalizes f, then G,
fixes .

The image of each h € X contains Z(GLwg,r). This implies that Z(GLw ) < G.
Thus each tensor of T(W*) fixed by G belongs to the direct summand &,enujor W*®" Qg
W& of T(W*). Let

(Va)aes

be a family of tensors in spaces of the form W*®* @y W®* C T(W*) with u € NU{0}, that
contains 7, and that has the property (cf. [De3, Prop. 3.1 ¢)]) that G is the subgroup of
GLy which fixes v, for all o € J.

2.3.1. Complex manifolds. For a smooth C-scheme Y, let Y*" be the complex manifold
associated naturally to Y. It is well known that for every u € N and for every abelian
scheme 7o : C — Y, we have a natural isomorphism

(1) Ruﬂ'can* ((C) = Ruﬂ'can* (ann/yan)vf"g‘

of complex sheaves on Y?". Here mgan, : C*" — Y?" is the morphism of complex manifolds
associated naturally to mc and V' is the connection on R"mgan, (0 an /Yan) induced by

the Gauss-Manin connection on R*mc (5 /y)-

2.3.2. Hodge cycles. We will use the terminology of [De3] on Hodge cycles on an abelian
scheme Bx over a reduced Q—scheme X. Thus we write each Hodge cycle v on Bx as a pair
(VdR, Vet ), where vqr and vg; are the de Rham and the étale component of v (respectively).
The étale component vg; as its turn has an I[-component Uét, for each rational prime [.

In what follows we will be interested only in Hodge cycles on Bx that involve no
Tate twists and that are tensors of different essential tensor algebras. Accordingly, if X is
the spectrum of a field E, then in applications v%, will be a suitable Gal(E/E)-invariant
tensor of T(H}, (B, Qp)), where X := Spec(E). If moreover E is a subfield of C, then we
will also use the Betti realization vg of v: it is a tensor of T(H!((Bx X x Spec(C))**, Q))
that corresponds to vgqr (resp. to v%,) via the canonical isomorphism that relates the Betti
cohomology of (Bx X x Spec(C))*" with Q—coefficients with the de Rham (resp. the Q
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étale) cohomology of By (see [De3, Section 2]). We recall that vp is also a tensor of the
FO-filtration of the Hodge filtration of T(H!((Bx x x Spec(C))®*, C)).

2.3.3. On Agg,x)- The choice of the Z-lattice L of W and of the family of tensors
(Vo) aeg allows a moduli interpretation of Sh(G,X) (see [Del], [De2], [Mi3], and [Val,
Subsection 4.1 and Lem. 4.1.3]). For instance, Sh(G, X)(C) = G(Q)\(X x G(Ay)) is the
set of isomorphism classes of principally polarized abelian varieties over C of dimension r,
that carry a family of Hodge cycles indexed by J, that have compatible level-N symplectic
similitude structures for every N € N, and that satisfy some additional axioms. This
interpretation endows the abelian scheme A (g x) over Ng (g, x) with a family (W) qeg of
Hodge cycles; all realizations of pulls back of w?! via C-valued points of NSE( G0 correspond
naturally to v,.

2.3.4. Lemma. Let w € Sh(G,X)(C). We denote also by w the C-valued point of N
defined by w; thus we can define (Ay,Aa,) = w*((A,A4)). Let u¥ (resp. t¥) be the
p-component of the étale component (resp. be the de Rham component) of the Hodge cycle

w*(wil) on Ay,. We have:

(a) There exist isomorphisms (H} (Aw, Zyp), (U2)aeg) = (L?p) ®2,, Lp, (Va)acg) that
take the perfect bilinear form on H},(Aw,Zy) defined by Aa, to a Gz, (Zy,)-multiple of
the perfect bilinear form ¢* on szp) @z, Lp defined by .

(b) There exists isomorphisms (Hig (Aw, C), t“)acg) = (W* ®g C, (Va)acy)-

Proof: We write w = [hy, guw] € Sh(G,X)(C) = G(Q)\(X x G(Ay)), where h,, € X and
gw € G(Ay). From the standard moduli interpretation of Sh(G, X)(C) applied to w €
Sh(G, X)(C) we get (see [Dil], [Mi2], [Mi3], and [Val, p. 454]) that the complex manifold
A1 associated to Ay, is L, \W ®@q C/F2% 1, where

(1) Ly is the Z-lattice of W defined uniquely by the identity L., ®z 7 = 9w (L ®7, Z),
(ii) W ®g C = Fo~ ' @ F; 10 is the usual Hodge decomposition of the Hodge Q-
structure on W defined by h,, € X;

(iii) the principal polarization A4, of A, is defined naturally by a uniquely deter-
mined (non-zero) rational multiple of v;

(iv) under the canonical identifications H}g (A, /C) = Hiz (A2"/C) = W* ®qC, the
tensor t¥ gets identified with v, for all a € g.

Thus (H} (Aw,Zyp), (u2)aeg) is identified naturally with (LY ®z Z,, (va)acg) and
therefore also with a Gg, (Q,)-conjugate of (L?p) ®2,, Lp, (Va)aeg)- Part (a) follows from
this and from the existence of the rational multiple of ¥ mentioned in the property (iii).

Part (b) is implied by the property (iv). O
2.3.5. Lemma. Let m € NU{0}. Let Ry := Cl[z1,...,zn]], where z1,... 2z, are
independent variables. Let J1 := (x1,...,xy) be the maximal ideal of Ry. Let s € N.

Let Ay s be an abelian scheme over Ry/J5 that is a deformation of A, (i.e., we have
Aw = Auw,s Xspec(Ry /79) Spec(R1/31)). Then there exists a unique isomorphism

Ly : H&R(Aw,S/Rl/ji) = Hip(Aw/C) @c R /75
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that has the following two properties:
(i) it lifts (i.e., modulo J1/35 is) the identity automorphism of Hjg(Aw/C);

(ii) under it, the Gauss—Manin connection on H}g (A s/R1/T3) becomes isomorphic
to the flat connection § on Hig(Ayw/C) @c R1/J5 that annihilates Hig (A,/C) @ 1.

Proof: The uniqueness of I, s is implied by the fact that Hlz(A,/C) ® 1 is the set of
elements of Hjg(A,/C) @c R1/J5 that are annihilated by §. We consider an abelian
scheme 74, : Ay — Y over a smooth C-scheme Y which is a global deformation of
Ayps — Spec(Rq1/37). Let Z** be a simply connected open submanifold of Y*" that
contains the C-valued point defined naturally by A,,. We identify naturally Spec(R;/J%)
with a complex subspace of Y2" and thus also of Z*". We apply formula (1) with v = 1
and C' = Ay. The pull back of R'7man,(C) to Z*" is a constant sheaf on Z*". Thus by
pulling back formula (1) to the complex subspace Spec(R1/J5) of Z2", we get directly the
existence of I, s. O

2.3.6. Corollary. Let m, Ry, and J; be as in Lemma 2.3.5 . Let A, ~ be an abelian
scheme over Ry that is a deformation of A,,. Then there exists a unique isomorphism

Lo oo : Hig(Aw.oo/R1) > Hig(Aw/C) ®@c Ry

that has the following two properties:
(i) it lifts (i.e., modulo Jy is) the identity automorphism of H}z(Aw/C);

(ii) under it, the Gauss—Manin connection on H}g(Aw oo/R1) becomes isomorphic
to the flat connection § on Hig(Ayw/C) @c Ry that annihilates Hig (A, /C) @ 1.

If wX (resp. A, .. ) is a Hodge cycle on (resp. a principal polarization of) Ay s
that lifts the Hodge cycle w* (w2) on Ay, (resp. lifts the principal polarization Aa, of Ay),
then the isomorphism L, o : T(H}g (Aw.0o/R1)) = T(Hlg (Aw/C)) @c Ry induced naturally
by Ly, takes the de Rham realization of wX* (resp. of Aa,, ) tot¥ (resp. to the de Rham

realization of Aa,, ).

Proof: The existence and the uniqueness of [, o follows from Lemma 2.3.5 by taking
s — 0o0. We denote also by § the flat connection on T(H jg (4, /C))@cR; induced by 4§ (i.e.,
which annihilates T(Hjg (A, /C))®1). It is well known that each de Rham component of a
Hodge cycle on A, ~ is annihilated by the Gauss-Manin connection on T(H jg (Aw 00 /R1)).
[Argument: this follows from [De3, Prop. 2.5] via a natural algebraization process]. Thus
Ly oo (wX1) and t¥ are tensors of T(Hig(A,/C)) ®c Ry which are annihilated by the flat
connection § on T(H}g (Aw/C))®c Ry and which modulo J; coincide. Thus the two tensors
coincide i.e., we have I, oo (wy') = t¥. A similar argument shows that I,, « takes Aa, _

to the de Rham realization of A4, . O
3. Crystalline applications

Theorem 3.1 recalls a variant of the main result of [dJ2]. In Subsection 3.2 we first
introduce several notations needed to prove Theorems 1.5 and 1.6 and then we apply the
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main result of [Va4] in the form recalled in B3. In Subsection 3.3 we apply the deformation
theory of [Fa2, Section 7]. In Subsection 3.4 we prove Basic Theorem 1.5. In Subsection
3.5 we list few simple crystalline properties that are needed in Sections 4 and 5.

For (crystalline or de Rham) Fontaine comparison theory we refer to [Fo|, [Fa2,
Section 5], and [Vad]; see also B2 and B9. Let the field & be as in Subsection 2.1. As
the Verschiebung maps of p-divisible groups will not be mentioned at all in what follows,
we will use the terminology F-crystals (resp. filtered F-crystals) associated to p-divisible
groups over k, k[[z]], or k((z)) (resp. over W (k) or W (k)[[x]]) instead of the terminology
Dieudonné F-crystals (resp. filtered Dieudonné F-crystals) used in [BBM, Ch. 3], [BM,
Chs. 2 and 3], or [dJ1].

Let = be an independent variable. The simplest form of [dJ2, Thm. 1.1] says:

3.1. Theorem (de Jong). The natural functor from the category of non-degenerate
F-crystals over Spec(k[[z]]) to the category of non-degenerate F-crystals over Spec(k((z)))
is fully faithful.

For the notion non-degenerate crystal, [dJ2] refers to [Sa, 3.1.1, p. 331]. In this
paper we only use the facts that F-crystals of abelian schemes over Spec(k[[z]]) are non-
degenerate and that non-degenerate F'-crystals are stable under tensor products and duals.

3.2. Basic setting. From now on until the end, the field k£ will be assumed to be
algebraically closed and we will use the notations of Subsection 2.1. Let z € N(W(k)). Let

(Av A4, (woé)a€3> = Z*(‘A7 AAs (wcfxl)OéGH)'

Let
<M7F17¢7 ¢M)

be the principally quasi-polarized filtered F-crystal over k of the principally quasi-polarized
p-divisible group (D, Ap) of (A, A4). Thus v, is a perfect alternating form on the free
W (k)-module M of rank 2r, F! is a maximal isotropic submodule of M with respect to
s, the pair (M, ¢) is a Dieudonné module, and for a,b € M we have ¥ (¢(a) ® ¢p(b)) =
po(¥ar(a®b)). The o-linear automorphism ¢ of M[%] acts on M* [%] by mapping e € M* [%]
toocoeogp™l € M*[%] and it acts on ‘J'(M)[%] in the natural tensor product way.

Let t, and u, be the de Rham component of w, and the p-component of the étale
component of w,, (respectively). If (F*(T(M)));ez is the filtration of T(M) defined by F1,
then we have t, € F° (‘J'(M))[I—lj] for all & € J. Let G be the Zariski closure in GLj; of the

subgroup of GL Mm(2) that fixes ¢, for all a € J.

It is known that w, is a de Rham cycle i.e., t, and u, correspond to each other via
de Rham and thus also the crystalline Fontaine comparison theory. If Ap) is definable
over a number field contained in B(k), then this was known since long time (for instance,
see [Bl, Thm. (0.3)]). The general case follows from loc. cit. and [Val, Principle B of
5.2.16] (in [Val, Subsection 5.2] an odd prime is used; however the proof of [Val, Principle
B of 5.2.16] applies to all primes). In particular, we have ¢(t,) = t,, for all a € J.

Let 1t : Gy (k) — GLas be the inverse of the canonical split cocharacter of (M, F L 9)
defined in [Wi, p. 512]. The cocharacter p acts on F'! via the inverse of the identical
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character of G,y () and it fixes a direct supplement F O of F' in M; therefore we have
M = F1@ F°. Moreover,  fixes each tensor t,, (cf. the functorial aspects of [Wi, p. 513]).
Thus p factors through G. Let

be the resulting factorization. We emphasize that in connection to different Kodaira—
Spencer maps, in what follows we will identity naturally Hom(F!, F°) with the direct
summand {e € End(M)|e(F°) = 0 and e(F') C F°} of End(M).

3.2.1. Lemma. The rank of the direct summand Lie(S px)) NHom(F*, F°) of Lie(Sp(x))N
End(M) is d.

Proof: To prove the Lemma we can assume that k£ has countable transcendental degree;
thus there exists an O(,)-monomorphism W (k) — C. Let Fpg() be the normalizer of
Fl[%] in Gp). The subgroup Fp;) of Gp() is parabolic and its Lie algebra is equal
to Lie(Gpm)) N {e € End(M)[%He(Fl[%]) C Fl[%]} As p factors through G, we have a
direct sum decomposition Lie(Gpk)) = Lie(Fpk)) © (Lie(Spk)) N Hom(Fl[%], FO[%])) of
B(k)-vector spaces. Thus the rank of Lie(Gpx)) N Hom(F*, F9) is dimp ) (Lie(Spx))) —
dimpx)(Lie(Fp(x))) and therefore it is also equal to dim(Gpk)/Fpw))-

We will use the notations of the proof of Lemma 2.3.4 for a point w € Sh(G, X)(C)
that lifts the C-valued point of Ngg x) defined naturally by zp@) and by the O,)-
monomorphism W (k) — C. Let W* @ C = FL%® FJ! be the Hodge decomposition de-
fined by h,, € X (it is the dual of the Hodge decomposition of the property (ii) of the proof of
Lemma 2.3.4). We have a natural isomorphism (M & (1) C, (ta)acg) = (W*®qC, (va)acy)
that takes F' @y () C to FL°, ¢f. B9 and Lemma 2.3.4 (b). Thus we have an identity
dim(Sp(k)/Fp(k)) = dim(Gc/Py), where P, is the parabolic subgroup of G¢ which is the
normalizer of F}0 (or of F;1'%) in G¢. But G¢ /P, is the compact dual of any connected
component of X and thus has dimension d.

We conclude that the rank of Lie(§p(x)) N Hom(F*!, F°) is d. O

3.2.2. Key Theorem. If p =2 we assume that Gz, is a torus. We have:

(a) There exist isomorphisms
(M, (ta)acs) = (Hz (A Zp) @z, W (K), (ta)acg) = (L{p) @z, W(k), (Va)acs)-
(b) The group scheme G is isomorphic to Gwu) = Gz, X Spec(Zy)) Spec(W (k)).

Proof: The existence of an isomorphism (M, (ta)acg) = (Hz,(Ap), Zp) @2, W (k), (Ua)acy)
follows from B3 applied to the pair (D, (t4)acg). Thus it suffices to prove the Theorem
under the extra assumption that k£ has a countable transcendental degree. This implies
that there exists an E(G, X)-monomorphism B(k) — C. Let w € N, 4 1) (C) be the com-
posite of the resulting morphism Spec(C) — Spec(B(k)) with the generic fibre of z. There
exist isomorphisms (H},(Ap k), Zp) ®z, W(k), (ua)acg) = (L{y) ®zy W(K), (Va)aeg) (cf.
Lemma 2.3.4 (a)) and thus (a) holds. Part (b) is implied by (a). O

3.3. Local deformation. Let §' be the universal smoothening of G, c¢f. Al. Fontaine
comparison theory implies that the group Gp(;) = S’B(k) is a form of G'p(1) (see end of B6)
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and thus it is a reductive group over B(k) of dimension {. Thus the relative dimension
of § over W (k) is also [. Let R be the completion of the local ring of G’ at the identity
element of §j.. We choose an identification R = W (k)[[z1, ... ,2;]] such that the identity
section of §’ is defined by the identities 1 = -+ - = z; = 0. Let guniv € §'(R) be the natural
(universal) element.

Let Mg := M Qwu) R and F := F' Qu ) R. Let ®p be the Frobenius lift of R
that is compatible with o and that takes x; to z¥ for all ¢ € {1,...,1}. Let

P = guniv(gZS X (I)R) . MR - MR’

it is a ®p-linear endomorphism of Mp. Let QQ/W(,C) be the p-adic completion of Qg /1 (r);
it is a free R-module that has {dz1, ..., dx;} as an R-basis. Let d®p : Q% 1) = Qpw )
be the differential map of ®r. Let V: Mp — Mgr Qg QQ/W(,{) be the unique connection
on Mp such that we have Vo ® = (& @ dPg) o V, cf. B7. The connection V is integrable
and nilpotent modulo p, cf. B7. See B7.3 (i) to (iii) for the three main properties of V.
The W (k)-algebra R is complete in the (x1, ... ,x;)-topology and moreover we have
Pr((71,...,21)) € (w1,...,21)P. This implies that each element of Ker(G,w ) (R) —
Grw (k) (R/(21, ... ;21))) is of the form fPr(57") for some element § € Ker(G,,w (1) (R) —

Grw (k) (R/(21,. .. ,21))). AS guniv takes s to a Ker(G,w 1) (R) — Grow ) (R/ (21, ..., 21)))-

multiple of 157, we get that there exists a Ker(G,w k) (R) — Gpwmw)(R/(z1,...,21)))-
multiple 1y, of the perfect alternating form v 5; on Mpg such that we have an identity

U (®(a) ® B(b)) = pPr(Yas(a @ D))

for all element a,b € Mp. As1is the only element of Ker(G,,w 1) (R) — G ) (R/ (21, . ..
fixed by ®g, this Ker(Gw k) (R) — Guww) (R/(z1,...,2)))-multiple ¢, of ¥y is
uniquely determined.

There exists a unique principally quasi-polarized p-divisible group (Dg, Ap,) over
R that lifts (D, Ap) and whose principally quasi-polarized filtered F-crystal over R/2R is
(Mg, F, ®,V,¥nry), cf. B7.1 and B7.2.

Let (Br, Ay ) be the principally polarized abelian scheme over R that lifts (A4, A4)
and whose principally quasi-polarized p-divisible group is (Dg, Ap,), cf. Serre-Tate de-
formation theory and Grothendieck algebraization theorem. Let

qr : Spec(R) — M,

be the natural morphism that corresponds to (Bg, Ap,) and its level-N symplectic simili-
tude structures which lift those of (A, A4) (here N >3 is relatively prime to p). We have a
canonical identification Hip (Br/R) = Mr = M ®w 1) R, cf. [Be, Ch. V, Subsection 2.3]
and [BBM, Prop. 2.5.8]. Under this identification, the following two properties hold:

(i) the perfect form on Mp defined by the principal polarization Ap, of Br gets
identified with ¥, ;

(ii) the p-adic completion of the Gauss-Manin connection on Hjg(Br/R) defined
by Br gets identified with V (cf. [Be, Ch. V, Prop. 3.6.4]).
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From the property (ii) we get that for all s € N we have::

(iii) the connection on Hlx (Br/R)/(z1,... ,21)*Hig(Br/R) = Mg/(z1,...,2)* Mg
induced by V is the Gauss-Manin connection of Br Xgpec(r) SPeC(R/(Z1,. .. ,1)°).

3.4. Proof of 1.5. In this Subsubsection we prove the Basic Theorem 1.5. Thus e(v) =1
i.e., the prime v of E(G,X) is unramified over p. Let O be a faithfully flat O,)-algebra
which is a discrete valuation ring of index of ramification 1. We will choose the field k such
that we have an O(,)-monomorphism O — W (k). Let Z be a regular, formally smooth
O-scheme such that there exists a morphism ¢z, », : Ze(c,x) — Shu(G,X) = N%(G’x).
Thus gz ,, extends uniquely to a morphism gz : Z — N, cf. Proposition 2.2.1 (c). To
prove Theorem 1.5 (a) we only need to show that gz factors through N®. It suffices to
check this under the extra assumptions that O = W (k) and that Z = Spec(R;), where
Ry = W(k)[[z1,...,zn]] for some m € NU{0}. Let zz € Z(W(k)) be the point defined
by the W(k)-epimorphism Ry — W(k) whose kernel is (z1,...,2,,). We will use the
notations of Subsection 3.2 for the point

z:=qgozz € NW(k)).

As N?® is an open subscheme of N (cf. Lemma 2.2.2), to show that gz factors through N®
it suffices to show that z factors through N®.

Let y : Spec(k) — Ny (x) be the closed embedding defined naturally by the special
fibre of z € N(W (k)). Let O}'® and O, be the completions of the local rings of y viewed as
a k-valued point of M,y (x) and Ny (i) (respectively). As Q is a normal, flat O(,)-scheme of
relative dimension d and as N is a pro-étale cover of Q (cf. Proposition 2.2.1 (a)), the local
ring O, is normal and has dimension 1 4 d. The natural homomorphism n,, : Ogig — Oy
is finite, cf. Proposition 2.2.1 (b). Let hy'® : OP® — R be the W (k)-epimorphism defined
naturally by qg.

Let S := W(k)[[z1,...,2z4)]. We consider a closed embedding cr : Spec(S) —
Spec(R) such that the following two properties hold (cf. B7.5 and Lemma 3.2.1):

(i) it is defined by a W(k)-epimorphism hr : R — S with the property that
hr((z1,...,21)) C (x1,...,2q) TS

(ii) the pull back of (Mg, Fg, ®,V, ) via the closed embedding Spec(S/pS) —
Spec(R/pR), is a principally quasi-polarized filtered F-crystal over S/pS whose Kodaira—
Spencer map is injective and has an image equal to the direct summand (Lie(Spx)) N
Hom(Fl, FO)) Ow (k) S of HOHl(Fl, FO) Qw (k) R= Hom(Fl, M/Fl) Ow (k) S.

From the property (ii) we get that the composite morphism ¢g := qrocg : Spec(S) —
M, is defined naturally by a W (k)-epimorphism spi& := hp o b8 : Op& — S.

In order to show that there exists a W (k)-homomorphism s, : O, — S that makes
the following diagram commutative

. n
Olyng —— 0O,

hzigl J{Sy

hr

R —— 5,
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we will need to first recall a result of Faltings.

3.4.1. Proposition. The tensor to € T(M) Qw (1) R[%] = ‘.T(MR)[%] is the de Rham
component of a Hodge cycle on BR[%].
Proof: We recall that Bp is a deformation of A over R. As t, € T(M )[1—1)] is the de Rham
component of the Hodge cycle w, on Ap) and due to B7.3 (ii), the Proposition is a
result of Faltings. As the essence of this result is only outlined in [Val, Rm. 4.1.5], we will
include a complete proof of Faltings’ result.

As A, 1N is a quasi-projective Z,)-scheme and as the set J is countable, it suf-
fices to prove the Proposition in the case when there exists a morphism ey : Spec(C) —
Spec(W(k)). We will view C as a W (k)-algebra via ey. Let R := Cl[z1,...,x]] and

8 :=Cl[z1,...,24]]. Let J:= (z1,...,x;) be the maximal ideal of R.
Let (Bx, AByg, (ta)acg) be the pull back of (Br, ABy, (ta)acg) via the natural W (k)-
monomorphism R = W(k)[[z1,...,z]] — C[[z1,...,x]] = R. To prove the Proposition,

it suffices to show that the tensor to € T(M) @w ) R = T(Mgr ®r R) = T(Hig(Bx/R))
is the de Rham component of a Hodge cycle on Bx.

Let (Cs, Acs, (wS)aeg) be the pull back of (A, Aa, (w2)aeg) via a formally étale
morphism Spec(8) — N® whose composite with the natural embedding Spec(C) — Spec(8)
is the point e, 0 z € N(C) = N5(C). Let W := HJlz(Cs/8). Let ¢w be the perfect
alternating form on W defined by A\¢,. Let t5 € T(W) be the de Rham component of
wS. Let A be the Gauss-Manin connection on W defined by Cs. We recall that 1)* the
alternating form on W* (or L) defined naturally by .

From Corollary 2.3.6 and (the proof of) Lemma 2.3.4 (b) we get that there exists
e € Q\ {0} for which there exist isomorphisms

I: (Wv ¢W7 (tcsx)aeg) = (W* ®Q S’ 6¢*7 <UO‘)O‘€3)

under which A becomes the flat connection on W* ®q & that annihilates W*®1. But there
exist isomorphisms of (IW* ®q C, (va)acg) that take 1* to eyp*. Thus we can assume that
e = 1. We will fix such an isomorphism I and we view it as an identification. For each
B € Gpc(8), there exist isomorphisms of (W* ®@q R, (va)aecg) that take ¢* to Sip*. Thus,
based on the construction of My and on either Lemma 2.3.4 (b) or the proof of Lemma
3.2.1, we also get that there exist isomorphisms

Ia: (MR ®r R, ¥rg, (ta)acs) = (W ®g R, ¥, (va)aes)-
By induction on s € N we show that there exists a unique morphism of C-schemes
Js : Spec(R/JI%) — Spec(8)

that has the following two properties:

(i) the kernel of the composite C-homomorphism § — R/I* — R/ = C is the ideal
(T1,...,2q) of S;

(ii) there exists an isomorphism Q¢ between the reduction of (Br, ABy, (ta)acg) mod-
ulo 3% and J*((Cs, Aoy, (t3)aeg)) which modulo 3/7° is 1a. = logxsC = 1ByxxC-
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As NSE(G,DC) is a finite, étale scheme over a closed subscheme of M, g(g,x), the defor-
mation (Cs, A¢g ) of the principally polarized abelian variety (A, A4)c is versal. Thus the
Kodaira—Spencer map of A is injective and its image is a free S-module of rank d. This
implies the uniqueness of J;. The existence of J; is obvious.

The passage from the existence of Js to the existence of Jsy1 goes as follows. Let
J! 1 Spec(R/I5H) — Spec(8) be an arbitrary morphism of C-schemes that lifts J,. Let
Ag41 be the connection on W ®g R/I5H = W* ®@g R/I5H! which is the extension of A via

11 (the last identification being defined by I). Let V41 be the Gauss-Manin connection
on H&R(BR/R) ®R:R/Js+1 = Mp ®R:R/Js+1 defined by Bgr X Spec(R) SpeC(fR/js—H); it is the
extension of the connection V on Mp (cf. property 3.3 (iii)) and therefore it annihilates
each tensor t,, € T(Mp) @r R/I5FL (cf. B7.3 (ii)). From Lemma 2.3.5 we get that:

(iii) there exists a unique isomorphism I'4 511 : MR@gR/I* Tt 5 W*@oR/I*F! which
lifts a fixed isomorphism between (MrRrR@%R/J, (ta)acs) = (Hig(Ac/C), (ta)acy) and
(W*®q C, (va)acg) obtained as in Lemma 2.3.4 (b) and such that under it V41 becomes
the flat connection d541 on W* ®¢ 32/1]3Jrl that annihilates W* ® 1.

We denote also by I4 541 the isomorphism T(Mr®gR/I5H) S T(W* ®q C) induced
by Ias+1. As Ias11(ta) and v, are two tensors of W* @¢ R/JI*F! that are annihilated by
ds+1 and that coincide modulo J/J*T1 we get that we have I4 ¢11(ta) = v, for all € J.
A similar argument shows that 14 541 takes ¢as, to ¢¥*. Thus we can choose I4 such that
it lifts T4 s4+1. We will view the reduction I4 41 of 14 modulo J5t1 as an identification.
Thus we will also identify V11 = ds41.

From the existence of I and the fact that 14 ¢4 is the reduction of 14 modulo Jstt,
we get that there exists an isomorphism

Dys1 : I (W, dw, (t8)aeg)) = (W* @ R/ 4%, (va)aes)

(MR @R RITTH Yaig, (ta)acg) = (W g R/THL 9", (va)aes)
with the properties that it lifts the identity automorphism of W* ®g C and that:
(iv) it respects the Gauss—Manin connections i.e., it takes Agi1 to Vy1 = 0s11-
From the uniqueness part of the property (iii) we also get that
(V) Dsy1 modulo 3% is the isomorphism defined by Qs;

Let F}Ls+1 and F(ljvsle be the Hodge filtrations of W* ®@g R/J*T! defined naturally
by B and J[%,(Cs) (respectively) via the above identifications. The direct summands
Flop1 and Dy1(Fh ) of W* ®g R/I*T! coincide modulo J°/J5F1, cf. property (v).
Moreover, there exist direct sum decompositions

W* ®@ R/js—i_l = F}Ls—l—l @ Fg,s—i—l = FCl’,s—l—l S FCO’,3+1
defined naturally by cocharacters pa 511 and pc s4+1 of the reductive subgroup scheme
Grygstr of GLyy«g r/gs+1. Argument: the existence of pa 511 is a direct consequence of

the existence of the cocharacter p : G, ) — G (see paragraph before Lemma 3.2.1) and
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of the definition of F} (see Subsection 3.3) while the existence of pc 511 is well known. As
F}Ls+1 and DS+1(F(1;78+1) coincide modulo J° /J**! we can choose 4 511 and pc s4+1 such
that DS__’}I/_LA7S+1DS+1 and ¢ 41 coincide modulo J¢ /1. Thus based on [DG, Vol. 11,
Exp. IX, Thm. 3.6], there exists gs41 € Ker(G(R/I*T1) — G(R/JI%)) such that we have
Dlpas41Dsy1 = gsapic,st195s1- Thus Doi1(gss1(FE 1)) = Fh oo

As the morphism Spec(8) — N°® is formally étale, the Kodaira—Spencer map K of
A is injective and its image is a free $-module that has rank d and that is equal to the
image of Lie(G's) into the codomain of & Thus we can replace J ; by another morphism
Js11 : Spec(R/I5H1) — Spec(8) lifting J; and such that under it and I the Hodge filtration
Fé’s 41 gets replaced by gs+1(Fé7S 4+1)- Thus Dsyy becomes the de Rham realization of an
isomorphism Q1 which is between the reduction of (Bx, Ay, (ta)acg) modulo J*T1 and
J51((Cs, Acy, (t8)aeg)) and which lifts @,. Thus the morphism J,4; has the desired

properties. This ends the induction.
Let Jo : Spec(R) — Spec(8) be the morphism defined by J,’s (s € N). The isomor-
phism @ is uniquely determined by properties (i) and (ii) and this implies that Q41 lifts

Q)s. Thus we get the existence of an isomorphism

Qo : (BfR7 )‘Bma (ta)aeﬂ) = J;O((Cg, )‘057 (t§z>a€3)>

which modulo J is defined by 14.. Thus for each a € g, the tensor t, € T(M) QxR is
the de Rham component of the Hodge cycle Q1 (J% (wS)) on Bx. O

«

3.4.2. End of the proof of 1.5. The existence of the isomorphism ()., implies that
the morphism qg : Spec(R) — M factors through N in such a way that modulo the ideal
(z1,...,x;) of R it defines the point z € N(W (k)). Therefore the W (k)-epimorphism s';ig :
O?E’ig — S (see paragraph before Proposition 3.4.1) factors through n,, : O;’ig — Oy. By
reasons of dimensions of local, normal rings, we get that the resulting W (k)-epimorphism
sy : Oy — S is an isomorphism. Thus Nyy (g is formally smooth at z and therefore z
factors through N®. Thus Theorem 1.5 (a) holds and y is a k-valued point of Ny ;).

As s, is an isomorphism, the W (k)-homomorphism n,, : Ogig — Oy is onto. This
implies that the natural W (k)-morphism N@V( K M, (k) is a formally closed embedding
at y € N%V(k)(k). As the morphism ¢z of the beginning of Subsection 3.4 was arbitrary,
the role of z € N(W(k)) is that of an arbitrary W (k)-valued of N (and thus cf. Theorem
1.5 (a)) of N*. Thus the W (k)-morphism Ny .y — Myw (k) is a formally closed embedding
at every k-valued point of Ny . Thus Theorem 1.5 (b) also holds.

We check that the statement 1.5 (c) holds. Let Z be a smooth O(,)-scheme such that
we have a morphism gz, .+, * ZrG,x) — Shyxpe) (G, X). From Proposition 2.2.1 (b)
and Lemma 2.2.4 we get that N/H (P) has an étale cover which is projective. This implies
that N/H () is a proper O(v)-scheme. From this and the valuative criterion of properness,
we get that there exists an open subscheme Uz of Z such that it contains Zg(q,x), the
complement of Uz in Z has codimension in Z at least 2, and the morphism ¢z, . ,, extends

1 The original approach of Faltings used the strictness of filtrations of morphisms
between Hodge R-structures in order to get the existence of the element gs41.
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uniquely to a morphism ¢, : Uz — N/H (P) | From the classical purity theorem of Nagata
and Zariski (see [Gr, Exp. X, Thm. 3.4 (i)]) we get that the étale cover Uz X gmN — Uz
extends uniquely to an étale cover Zo, — Z. From this and Theorem 1.5 (a) we get that
the natural morphism Uz Xy /g N — N extends uniquely to a morphism Zo, — N. This

implies that the morphism ¢z, . ,, extends uniquely to a morphism ¢z : Z — N/H (®),

Thus N/H®) is a Néron model of its generic fibre Shy;, zro) (G, X) over Oy, i.e., Theorem
1.5 (c) holds. This ends the proof of Basic Theorem 1.5. O

3.5. Simple properties. We denote also by gr the factorization of qr : Spec(R) — M,

through either N or (cf. Theorem 1.5 (a)) N® which modulo (z1, ... , ;) is the W (k)-valued

point z € N(W(k)) = N3(W(k)). As s, : Oy — S is a W(k)-isomorphism and as we have

a W (k)-epimorphism hgr : R — S, the morphism ¢g : Spec(R) — N?® is formally smooth.

Under the canonical identification Hiy (Br/R) = Mg = M Qw4 R, the pull back of w?
1

via the morphism Spec(R[E]) — Ng(a,x) = Shi (G, X) defined by g¢g, is a Hodge cycle on

Bpia) whose de Rham component is to € T(M) @ (x) R[%]. This follows either from the
existence of (), or (in Faltings’ approach) from the fact that there exists no non-trivial
tensor of T(M) ®@w ) (71, ... ,xl)[%] fixed by ®.

3.5.1. The open subscheme N™. For p > 2 let N™ := N°. If p = 2 let N™ be the
maximal open subscheme of N® with the property that for every algebraically closed field
k of characteristic p and for every z € N™(W (k)), the statement 3.2.2 (a) (and thus also
3.2.2 (b)) holds. Thus regardless of the parity of p, for every such field k£ and for every
z € N (W (k)), the statement 3.2.2 (a) holds. We now check the following two properties:

(1) Always N™ is a G(Agcp ))—invariant, open subscheme of N*.
(ii) If the statement 3.2.2 (a) holds for z € N3(W(k)), then z € N™ (W (k)).

To check (i) and (ii) we can assume that p = 2. The right translations of z by elements
of G(A?)) corresponds to passages to isogenies prime to 2 of the abelian scheme A. Thus

the triple (M, ¢, (to)aeg) depends only on the G(Agcz))—orbit of z. Thus if statement 3.2.2

(a) holds for z, then the statement 3.2.2 (a) also holds for every point in the G (Agcz))—orbit
of z. This implies (i).

Let Q and Q% be as in Subsection 2.2. By enlarging N we can assume that the triple
(A, A, (W) aeyg) is the pull back of an analogue triple T over Q. Let Spec(V) be an affine,
open subscheme of Q° such that z maps to Spec(V). Let (My, ¥, , (tY )acg) be the de
Rham realization of the pull back of T to Spec(V'). By shrinking Spec(V'), we can assume
that My is a free V-module of rank 2r. The existence of the formally smooth morphism
qr : Spec(R) — N?® implies that we have isomorphisms (cf. the beginning of Subsection
3.5 and the fact that the statement 3.2.2 (a) holds for z € N3(W (k)))

(My ®v R, (ta )acg) = (MR, (ta)aca) = (M @w) R, (ta)aca) = (L(,) @z, R, (Va)acs)-

From this and Artin approximation theorem (see [BLR, Ch. 3, 3.6, Thm. 16]) we get that
there exists a smooth, affine morphism Spec(V’) — Spec(V') through which z factors and
such that we have an isomorphism (My @y V', (t¥)aeg) = (L?p) ®z,, V', (Va)acg). Let V
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be the open subscheme of Spec(V') which is the image of Spec(V”) in Spec(V). The pull
back of Vg to N® is an open subscheme of N™ that contains the point z € N*(W (k)). Thus
(ii) also holds.

We end this Section with a Lemma which will be needed in Section 5.

3.5.2. Lemma. Let pi: Gy — G and M = F''® F° be as in Subsection 3.2. Let
y € N5 (W(k)) be defined by z € N*(W(k)) = N(W(k)). Let p1 : Gy — G be another
cocharacter such that we have a direct sum decomposition M = F} @ FY with the property
that for each i € {0,1}, u1 acts on F} via the —i-th power of the identity character of
Grw (k). If the triple (M, Fl, ¢) is a filtered F-crystal over k, then there exists a point
z1 € N5(W(k)) = N(W(k)) that liftsy € N°(k) and such that the principally quasi-polarized
filtered F-crystal over k of 2} (A, \a) is precisely (M, Fi, ¢,%nr).

Proof: Forn € Nlet W, (k) := W(k)/p"W (k). We have F'* /pF! = F} /pFl. By induction
on n € N we show that there exists a point z(n) € N5(W(k)) = N(W(k)) that has the
following three properties:

(1) it lifts y € N°(k);
(ii) for n > 2 the W, _;(k)-valued points of N® defined by z(n —1) and z(n) coincide;

(iii) the principally quasi-polarized filtered F-crystal over k of z(n)*(A, A4) is of the
form (M, F}(n), ¢, %), where F'(n) is congruent to Fi\ modulo p™.

Let z(1) := z; obviously the base of the induction for n = 1 holds. The passage from
n to n + 1 goes as follows. Not to introduce extra notations by replacing z with z(n), we
can assume that z(n) = z; thus we have F''/p"F' = F} /p"F}. Let Upig be the smooth,
unipotent, closed subgroup scheme of GLj; defined by the rule: if { is a commutative
W (k)-algebra, then Upig(1) := LM@w i + Hom(F!, F°) Qw (k) I-

As Fl/p"Fl = F} /p"F}, there exists a unique element u € Ker(Upig(W(k)) —
Upig(W,,(k))) such that we have an identity F}' = u(F'). We write u = 1j + v, where
v € p"Hom(F', F0) = p"Lie(Upig). Let T(M) = @iz F*(T(M)) be the direct sum de-
composition such that G, ) acts on Fi(T(M)) through g as the —i-th power of its
identity character. The filtration (F*(T(M)))iez of T(M) defined by F! satisfies for all
i € Z the following identity F*(T(M)) = @, :F7(T(M)). As p and p; are two cochar-
acters of G, they fix each ¢,. In particular, we have t, € FO(‘J'(M))[%] and the tensor
u(ts) = (1a — v)(ta) belongs to FO(T(M))[2]. As v € Hom(F', F°) C F~1(T(M)), the

1
i P
component of (17 —v)(ty) in F_l(‘T(M))[%] is —v(tq). As this component must be 0, we

get hat v annihilates t,, for all o € J. Thus v € Lie(Gp (1)) N End(M). We conclude that
(2) v € p"[Lie(Sp(x)) N Hom(F', F7)].

As the image of the Kodaira-Spencer map of V is Lie(§ g(x)) "Hom(F!, F?) @y () R
(cf. B7.3 (iii)) and as the morphism gg : Spec(R) — N? is formally smooth, from (2) we get
that there exists a lift z(n+1) of z(n) modulo p™ such that the principally quasi-polarized
filtered F-crystal over k of z(n + 1)*(A, a) is (M, Fl(n + 1), ¢,%ar), where Fii(n + 1) is
congruent to u(F1) = F! modulo p™*!. This ends the induction.
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From the property (ii) we get that there exists a point z; € N°(W (k)) that lifts
z(n) modulo p™ for all n € N. Thus z; also lifts y, cf. property (i). From the property
(iii) we get that the principally quasi-polarized filtered F-crystal over k of z7 (A, \4) is

(M7F117¢7¢M)' O
4. Applications to integral models

Lemma 4.1 presents a simple criterion on when the k(v)-scheme Nb,;(v) is non-empty.

In Subsection 4.2 we apply Theorem 1.5 (a) and Lemma 4.1 to prove the existence of good
integral models of Sh;(G,X) over O, for a large class of maximal compact subgroups

H of G, (Qp). Corollary 4.2.3 can be viewed as a complete solution to the conjecture of
Langlands of [La, p. 411] for Shimura varieties of Hodge type.

4.1. Lemma. We assume that one of the following two conditions holds:

(1) there exists a smooth, affine group scheme G%(p) over L) that estends G (i.e., it
has G as its generic fibre), that has a special fibre G%p of the same rank as G, and that has
the property that there exists a homomorphism G%(p) — Gy, which extends the identity
automorphism of G;

(ii) we have e(v) =1 and the group scheme Gz, is quasi-reductive for (G,X,v) in
the sense of Definition 1.5.2 (b).

Then e(v) =1 and the k(v)-scheme Nt (and thus also Nz(v)) is non-empty.

Proof: Suppose that (i) holds. Each torus of G%p lifts to a torus of G%p, cf. [DG, Vol. 11,
Exp. XII, Cor. 1.10]. Thus G%p has tori of rank equal to the rank of GG. Let Tf(p) be a torus
of G%(p) of the same rank as G and such that there exists h € X which factors through T5.
Its existence is implied by [Ha, Lem. 5.5.3]. The pair (T, {h}) is a Shimura pair. Each
prime of E(Tg, {h}) that divides v is unramified over p (cf. [Mi3, Prop. 4.6 and Cor. 4.7])
and thus we have e(v) = 1. The intersection H® := H ﬂTf(p) (Qp) is the unique hyperspecial
subgroup TZg(p) (Zy) of TZg(p) (Qp). Thus there exists an integral model 22 of Shy (7, {h})
over the normalization of O(,) which is a pro-étale cover of Oy,), cf. either [Mi2, Rm.
2.16] or [Val, Ex. 3.2.8]. In particular, Z#® is a regular, formally étale, faithfully flat
O(v)-scheme. The functorial morphism Shye (7§, {h}) — Shu (G, X) of E(G, X)-schemes
extends uniquely to a morphism Z& — N° of O,)-schemes, cf. Theorem 1.5 (a). There
exist points z € Z8(W(k)). Let (va)aege be a family of tensors of T(W*) such that T
is the subgroup of GLyy+ that fixes v, for all a € J%. We can assume that J C J¢ and
that for each o € J, the tensor v, is the tensor introduced in Subsection 2.3. We will use
the notations of Subsection 3.2 for z € Z8(W(k)). From Theorem 3.2.2 (a) applied to the
point z € Z8(W (k)) we get that there exists an isomorphism (M, (ta)aegs) = (L{,) @z,
W (k), (Va)acge) (each t, with a € g8, is the de Rham realization of the Hodge cycle on
Ap(ry that corresponds naturally to v, ). Thus as J C g8, the statement 3.2.2 (a) holds for
the W (k)-valued point of N® defined by z. From this and the property 3.5.1 (ii) we get
that this last point factors through N™. Thus the k(v)-scheme Ni(v) 1s non-empty.
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We now assume that (ii) holds; thus e(v) = 1. Let G7 and p, be as in Definition
1.3.2 (b). Let Ty be a maximal torus of Gy . Due to the existence of p,,, Ty ~has positive
rank. The torus Tr lifts to a torus 77 of GrZ , cf. [DG, Vol. II, Exp. XII, Cor. 1. 10]. Let
T3 o, bea maximal torus of Go, which has TQp as a subtorus. Let T'® be a maximal torus
of G such that there exists an element h € X which factors through 7} and moreover 7, (Sp
is Gz, (Zy)-conjugate to T(%Qp. Again, the existence of T is implied by [Ha, Lem. 5.5.3].
Thus (up to Gz, (Zy)-conjugation) we can assume that we have T¢; 00, = Tg

The intersection H® := H N T%(Q,) is not necessarily the maximal compact, open
subgroup of 7%(Q,) and the subgroup 7%(Q)H* of T%(Q,) is not necessarily 7%(Q,,) itself.
However, the intersection TZ?p(Qp) N H is the unique hyperspecial subgroup TZfP(Zp) of
17, (Qp). We fix an O(y)-monomorphism W(k(v)) < C as in Definition 1.3.2 (b). As py,
and ¢ are G(C)-conjugate and as G, is a normal subgroup of G, pj, factors through the
intersection T N GE and thus through T¢ = T. pr X spec(z,) SPec(C). Thus as T72p splits over
a finite, unramified extension of Z,, we get that the field of definition E(T(, {h}) of p, is
a number subfield of C that contains E(G,X) and that is unramified over v. From class
field theory (see [Lan, Th. 4 of p. 220]) and the reciprocity map of [Mi2, pp. 163-164] we
easily get that each connected component of Shge (T {h})c is the spectrum of an abelian
extension of E(T, {h}) unramified over all primes of E(Tg, {h}) that divide v. Thus there

exists an 1ntegral model 28 of Shye (T, {h}) over the normahzatlon of Oy in E(T§, {h})
which has the same properties as above Let z € Z8(W (k)).

Let (va)aegr be a family of tensors of T(W* ®q Q) such that Tg is the subgroup
of GLW*@,QQP that fixes v, for all @ € J*. We can assume that J C J* and that for each
« € J, the tensor v, is the tensor introduced in Subsection 2.3.

We will use the notations of Subsection 3.2 for z € Zg(W(k)) and for k of countable
transcendental degree. Let pp : Gal(B(k)) — GLH}t(AB(k):Qp) GLL* @2, Qp be the p-
adic Galois representation associated to the p-divisible group D of A Let DEt be the
Zariski closure of Im(pp) in GL L: @z, Qs it is & connected group (cf. B1) Wthh is

subgroup of Tép. As the groups T§ 5, and Tg are normalized by Detp, we can speak about
the subgroups ‘J%(k) and ‘J'%(k) of Gp() that correspond to Tép and Tép (respectively)

via Fontaine comparison theory for D (cf. B6). The generic fibre of p factors through
‘J'gB(k), cf. Subsection 3.2 applied in the context of z € Z8(W (k)). Under the canonical and
natural identifications M Q) C = Hig (A/W (k) @w ) C = H'(A¢,C) = W* g C (see
B9 and Lemma 2.3.4 (b)), the cocharacter pj gets identified with puc (cf. B9.1). As up
factors through T¢, we get that ppk) factors through T ;). From this and B6 (ii) we get
that Det is a subgroup of Ty, - This implies that each v, with a € J" defines naturally an
étale Tate cycle uq on Dpy.

As Ty is a torus, (even for p = 2) from B3 applied to the pair (D, (ua)acgr) we
get that there exist isomorphisms (M, (ta)acgr) = (Hz (A, Zp) @z, W(k), (Ua)acs)
= (L{,) ®z,y) W(K), (va)acgr) (each to € T(M[%]) with a € J", corresponds to u, via
Fontaine comparison theory for D). As J C J*, we get that the image of z € Z8(W (k)) in
N (W (k)) belongs to N (W (k)). Thus the k(v)-scheme Ni(v) is non-empty. O
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4.2. Integral models for maximal compact, open subgroups. Let H be a maximal
compact, open subgroup of Gg,(Q,). Let Gz, be a smooth, affine group scheme over Z,

that extends Gg, and such that H = GZP(ZP), cf. [Ti, p. 52]. Let éz(p) be the smooth,
affine group scheme over Z,) that extends G and whose extension to Z,, is ézp, cf. [Val,
Claim 3.1.3.1]. Let L) be a Z)-lattice of W such that the monomorphism G — GLy
extends to a homomorphism éz(p) — GLi(p), cf. [Ja, Part I, 10.9].

4.2.1. Lemma. We can modify the Z-lattice L of W and the injective map f : (G, X) —
(GSp(W,4), ), such that we have an identity H = H and L, is a Gz(p)—module.1

1
~ p ~
If 4 induces a perfect form on L, then by replacing L with L we get that H = H.
[Argument: as H is a maximal compact subgroup of Gg,(Q)), the monomorphism H —

Proof: Let L be the Z-lattice of W such that we have L[] = L[%] and L ®z Lipy = E(p).

Gq,(Qp) NGLzg, 5 (Zp) is an isomorphism.] If ¢ does not induces a perfect form on L,
then we will need to modify f as follows.

Let Ly := L ® L*. Let Wy := L} ®z Q and L}, = L} ®z Z). Let ¢ be a
perfect alternating form on L} such that the group scheme SL;, when viewed naturally
as a subgroup scheme of SLy/, is in fact a subgroup scheme of Sp(L3,v7). Thus L and

L* are both maximal isotropic Z-lattices of W, with respect to 7. Let G° be the identity
component of the intersection G' N Sp(W, 1) (one can easily check that in fact we have
G° = G N Sp(W,v)). Let G%(p) be the Zariski closure in Gz, of GO: it is a closed

subgroup scheme of SL L@uzy) and thus also of GSp(L’l(p), ¥}). The subgroup scheme of
GSp(L),), V1) generated by Z(GLy/ ( )) and @%(p) is a group scheme which is naturally

identified with Gz, itself.
Let h € X. Let 2 be the free Z,)-module of alternating forms on L} ®z Z,) that

are fixed by G%(p). There exist elements of % ®z, R that define polarizations of the

Hodge Q-structure on W defined by h, cf. [De2, Cor. 2.3.3]. Thus the real vector space
A®z,,, R has a non-empty, open subset of such polarizations, cf. [De2, Subsubsection 1.1.18
(a)]. A standard application to 2 of the approximation theory for independent valuations,
implies the existence of an alternating form 1 on L} ®z Z,) that is fixed by é%(p), that
is congruent to ¥} modulo p, and that defines a polarization of the Hodge Q-structure on

W1 defined by h. Thus there exists an injective map f1 : (G,X) — (GSp(W1,v1),Y1) of
Shimura pairs.

As 1 is congruent to ) modulo p, it is a perfect, alternating form on L} ®z Z).
Let Li be a Z-lattice of W7 such that 11 induces a perfect alternating form on L; and we
have Ly ®z Z,) = L} ®z Zp). As above we argue that H= Go,(Qp) NGLL, g,2,(Zy). O

4.2.2. Corollary. Let H be a mazimal compact, open subgroup of Go,(Qp). Let éz(p)
be a smooth, affine group scheme over Z,) that has G as its generic fibre and such that

1 We emphasize that the resulting homomorphism éz(p) — GL.,, of smooth group
schemes over Z,), is not necessarily a closed embedding.
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H= éz(p) (Zy) (see beginning of Subsection 4.2). We assume that one of the following two
conditions holds:

(1) the special fibre é]Fp of ézp has a torus of the same rank as G;

(ii) we have e(v) =1 and the group scheme éz(p) is quasi-reductive for (G,X,v).

Then there exists a unique regular, formally smooth integral model N® of Sh; (G, X)
over Oy that satisfies the following smooth extension property: if Z is a regular, formally
smooth scheme over a discrete valuation ring O which is of index of ramification 1 and is
a faithfully flat O,-algebra, then each morphism ZgG x) — NSE(G ) extends uniquely to
a morphism Z — N® between O(v)-schemes.

Proof: We can assume that the injective map f : (G,X) — (GSp(W,),Y) of Shimura
pairs is such that H = H and L is a GZ( )—module cf Lemma 4.2.1. If (i) holds, then

the condition 4.1 (i) holds. If (ii) holds, let Grp be a reductive, normal, closed subgroup

scheme of GZP such that there exists a cocharacter iy, : Gpw (r(v)) — (;’%,V(k(v)) with the
property that the extension of p, to C via an (any) O(,)-monomorphism W (k(v)) —
C defines a cocharacter of G¢ that is G(C)-conjugate to the cocharacters p, (h € X)
introduced in the beginning of Subsection 1.3. The group Gder has no simple factors that
are 8Os, 11 groups for some n € N, cf. Fact 2.2.3. Thus the natural homomorphism
Gzp — GLL(p)@,Z(p) , is a closed embedding, cf. [Va5, Prop. 2.5.2 (c)]. Thus Gr is
naturally a closed subgroup scheme of Gz,. This implies that the group scheme Gz, is
also quasi-reductive for (G, X,v). Thus if (ii) holds, then the condition 4.1 (ii) holds.

As one of the two conditions 4.1 (i) and (ii) holds, the k(v)-scheme N7, is non-

empty (cf. Lemma 4.1). Based on Theorem 1.5 (a) and the fact that H = H, we get that
as N° we can take N*® itself. O

4.2.3. Corollary. Let (G,X) be a Shimura pair of Hodge type. Let v a prime of the reflex
field E(G,X) that divides a prime p with the property that the group Ggq, is unramified.

Then for each hyperspecial subgroup H of Go,(Qy), there exists a unique regular, formally

smooth integral model NS of Shz(G,X) over O, that satisfies the following smooth exten-
sion property: if Z is a reqular, formally smooth scheme over a discrete valuation ring O
which is of index of ramification 1 and is a faithfully flat O(U) -algebra, then each morphism

Zp@,x) — NE(G ) extends uniquely to a morphism Z — N between O(v)-schemes.

Proof: As His a hyperspecial subgroup, we can assume that the group scheme GZP is

reductive. This implies that éz(p) is a reductive group scheme over Z,). Thus the condition
4.2.2 (i) holds. Thus the Corollary follows from Corollary 4.2.2. O

5. Proof of the Main Theorem

In this section we take k to be a field extension of k(v) that is algebraically closed

and has a countable transcendental degree. Let the notations (va)acg, (W2 )acg, and

be as in Subsection 2.3. For a point z € N*(W (k)) = N(W(k)), the following notations
(A7 )\A7 (wa)a€3>7 (M7 F17¢7¢M7 (toz)a€3>7 M = F! D F07 and Qe GmW(kz) — G are as in
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Subsection 3.2. In Subsections 5.1 to 5.7 we prove the Main Theorem 1.6. In Subsection
5.8 we prove the Main Corollary 1.7.

Let Ry := W (k)[[x]], where x is an independent variable. Let ® g, be the Frobenius
lift of Ry that is compatible with o and that takes x to xP. Let Zy := Spec(Ry).

5.1. Basic notations and facts. We begin the proof of the Main Theorem 1.6 by
introducing some basic notations and facts. We have e(v) = 1 and Gz, is a quasi-
reductive group scheme for (G, X, v). We recall that N™ is an open subscheme of N® (cf.
Subsubsection 3.5.1) and therefore also of N (cf. Lemma 2.2.2). Thus Ni(v) Is also an
open subscheme of Ny ,). Moreover, the open embedding N™ < N is a pro-étale cover of
an open embedding between quasi-projective O ,)-schemes (cf. Proposition 2.2.1 (a) and
the property 3.5.1 (i)) and the k(v)-scheme Ni{v) Is non-empty (cf. Lemma 4.1). Thus to
show that NE‘(U is a non-empty, open closed subscheme of Nj(,), we only need to show
that for each commutative diagram of the following type

Spec(k) ——— Spec(k[[z]]) ——— Spec(k((2)))

(3) ly lq lqk«z))

N — Ni(o) — Niw)»

the morphism y : Spec(k) — N factors through the open subscheme N™ of N. All the
horizontal arrows of the diagram (3) are natural embeddings. Until Subsection 5.5 we
study different properties of the diagram (3) that are needed to prove Theorems 1.6 (a) to
(c) in Subsections 5.5 to 5.7 (respectively).

We consider the principally quasi-polarized filtered F'-crystal

(Mo, ®o, Vo, ¥u,)

over k[[z]] of ¢*((A, Aa) Xn Ni(vy). Thus My is a free Ro-module of rank 2r, ®q is a ®g,-
linear endomorphism of My, and Vj is an integrable and nilpotent modulo p connection
on My such that we have Vo @y = (P9 ® dPg,) o Vo.

Let O be the unique local ring of Ry that is a discrete valuation ring of mixed
characteristic (0,p). Let O be the completion of O. Let ®¢ be the Frobenius lift of O

defined by ® g, via a natural localization and completion. Let ky := k((z)). Let
Spec(W (k1)) — Zy

be the Teichmiiller lift with respect to ® g, ; under it W (k;) gets naturally the structure of
a x-algebra, where x € {Rg, O, O}.

As the O,)-scheme N™ is formally smooth, there exists a lift Z; : Spec(OQ) — N™ of
the morphism gy (5 : Spec(k((x))) — N™ defined naturally by gj((,)) and denoted in the
same way. Let

(Ah AAN (wla)aea) = ’?1k (‘A7 >‘A7 (wa)a63)~

Let t1, be the de Rham realization of w,. We identify canonically My®pr, 0 = HéR(fll/O)
(cf. [Be, Ch. V, Subsection 2.3]) and thus we view each t1,, as a tensor of T(My ®pg, O)[%]
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For a« € §J let n(a) € NU {0} be the unique number such that we have v, €
WHeU@) @ WO C T(W*), cf. the definition of v, in Subsection 2.3. Let n, € NU{0}
be the smallest number such that

Protia € (ME™ @p, ME®") @, O C T(My ®g, O).

5.1.1. Proposition. For all o € § we have p™t;, € M(?n(a) @R, Mg“g’"(“) C T(My).

Proof: The tensor p™ty, is fixed by the natural oy,-linear automorphism of T(My ®g,
B(k1)) defined by @ (see Subsection 3.2). Thus (as Spec(W (k1)) — Zp is a Teichmiiller
lift) the tensor p"=ty, is also fixed by the natural ®o-linear endomorphism of T(My ®g,
O)[%] defined by .

The field k((z)) has {x} as a p-basis i.e., {1,z,...,2P~ '} is a basis of k((x)) over
k((x))? = k((2P)). Thus the p-adic completion of the O-module Qo y (x) of relative dif-
ferentials is naturally isomorphic to Odx, cf. [BM, Prop. 1.3.1]. Let V¢ : My ®gr, O —
My ®pr, Odz be the connection which is the natural extension of the connection V( on M.

The de Rham component of w?' is annihilated by the Gauss—Manin connection of A
(this is a property of Hodge cycles, for instance it follows from [De3, Prop. 2.5] applied
in the context of a quotient of Shy (G, X) by a small compact, open subgroup of G(Agcp )))

Thus the tensor p™et1,, is annihilated by the Gauss-Manin connection on T(H 1y (4,/0)) =
T(My®pg, ) of A, and thus also by the p-adic completion of this last connection. In other
words, p"eti, is annihilated by the connection Vo : My ®p, O — My ®p, Odz (cf. [Be,
Ch. V, Prop. 3.6.4]).

As the field k((x)) has a p-basis, each F-crystal over k((x)) is uniquely deter-
mined by its evaluation at the thickening naturally associated to the closed embedding
Spec(k((x))) < Spec(O) (cf. [BM, Prop. 1.3.3]). Thus the natural identification

(M5™ ™ @y My®") @p, O = End(Mg™ @5, 0)

allows us to view p"et;, as an endomorphism of the F-crystal over k((x)) defined by the
tensor product of n(«)-copies of (My ®g, O, Py ® o, Vo). From this and Theorem 3.1
we get that p"et;, is (the crystalline realization of) an endomorphism of the F-crystal
over k[[z]] defined by the tensor product of n(«a)-copies of (M, @y, V). This implies that

pretia € ME™® @, MIE™ C T(My). 0

5.1.2. Group schemes. Next we introduce several notations that pertain to group
schemes. Let Ger be a reductive, normal, closed subgroup scheme of Gz, as in Definition

1.3.2 (b); we emphasize that in general it is not the pull back to Spec(Z,) of a closed
subgroup scheme of Gz, . Let

6o =11 G,

ielr

be the product decomposition into QQ,-simple, adjoint groups. Let G%‘j be the normal,
semisimple subgroup of GfQier whose adjoint is G§Qp.
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Let 7 € End(My ®pg, B(k1)) (resp. m; € End(My ®g, B(k1))) be the tensor that
corresponds to the projector ure (resp. to WGyaer) of Subsection 2.3 via Fontaine com-

parison theory for (the p-divisible group of) fllw(kl), cf. B6. By enlarging the family
(Va)acg, We can assume that the projectors Tar  and TGrder with ¢ € I" are Q,-linear
P Wp

combinations of the v,’s (this is so as these projectors are fixed by Gg, ). Thus 7" and 7}’s
are linear combinations of t1,’s. From this and Proposition 5.1.1 we get that in fact we
have 7", 7} € End(MO[%]). Thus there exists n* € NU {0} such that both p™ 7% and p™ 7}
belong to End(My) and are Z,-linear combinations of the t1,’s with a € §.

By enlarging the family (v )acg, we can also assume that each element of End(Lz‘p)) =

L7, @ L) fixed by Gz, is va, for some ag € J. Let ZO(GIZP) be the maximal subtorus of
Z(Gy,). Let Z; be the center of the centralizer of ZO(GYZP) in GLL(p)®Z( 2,3 1t is a torus

over Zj, that contains Z O(Grzp). Let B' be the commutative, semisimple Z,-subalgebra of
End(LE“p ®z,,, Lp) whose elements are the elements of Lie(Z} ). Each element e € B
is a Zp—finear combination of endomorphisms of Lz‘p) fixed by Gz, and thus it defines
naturally a Z,-endomorphism e of A. For simplicity we denote also by e € End(M) the
crystalline realization of the Z,-endomorphism ¢*(e) of ¢* (A xn N(y))-

Let n be the field of fractions of Ry. Let Go, be the subgroup of GLjy, , that fixes
peti, for all a € J (this definition makes sense due to Proposition 5.1.1). The group
GoB(k,) corresponds to G, via Fontaine comparison theory for (the p-divisible group of)

A1B(k,)- This implies that Go,, is a reductive group.

5.1.3. Lemma. There exists (resp. for i € I" there exists) a unique reductive (resp.
semisimple) subgroup Gp,, (resp. 96‘37? of Son, whose Lie algebra is Im(w") (resp. is Im(w})).
der
i

The subgroup G, (resp. Gf p

96‘3]“ has no normal subgroup which is an 8O2,4+1 group for some n € N.

) of Son is normal. Moreover each geometric pull back of

rder

Proof: We will prove the Lemma only for G, , as the arguments for S are the same.

From Fontaine comparison theory for (the p-divisible group of) fllw(kl) we get that there
exists a unique reductive subgroup G, Blky) of GL . s £, B(ky) Whose Lie algebra is Im(7") ®,,
B(ky), cf. B6 (i). From A2 (a) applied with (W, L,n,n1) = (Mo ®g, 0, Im(x"),n, B(k1)),
we get that there exists a unique reductive subgroup Gj,, of GL )/, 0 r,n Whose Lie algebra
is Im(7*). The group G, is a subgroup of Go,, as this holds after extension to B(k1). Thus
the first part of the Lemma holds.

But 7" is fixed by Go, (as this holds after tensorization with B(k;), cf. B6) and thus
Im(7") is a Go,-submodule of Lie(Go,). From this and the uniqueness part of the Lemma,
we get that 96,7 is a subgroup of Gy,, normalized by G, () and thus also by Go,,. As SBB(kl)
corresponds to the normal subgroup G{@p of G, via Fontaine comparison theory for (the
p-divisible group of) fllw(kl), from Fact 2.2.3 we get that each geometric pull back of 96‘37“
has no normal subgroup which is an SOs,,+1 group for some n € N. O

5.2. Key Theorem. Let Gf be the Zariski closure of G, in GLyg,. Then the closed
subscheme G, of GLyy, is a reductive subgroup scheme.
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Proof: We check that this Theorem is only a particular case of [Vab, Thm. 6.3 (b)]. Let
€o be the F-crystal over k[[z]] defined by (Mo, ®o, Vo). Let i ((2)) be the F-crystal over
k((x)) which is the natural pull back of €. Let (fa)acg, be the family of tensors formed by
Zy-linear combinations of the tensors of the family (p™*t14)acg. We can assume that there
exists a natural number s >4 such that we have s >n,, for all « € J. From Proposition 5.1.1

we get that (fn)aeg, is a family of endomorphism of ©; := @f:1¢§}j(($))7 where Q(‘?Ij((x)) is
the tensor product of [ copies of €y ((,)). Let K := O[%]. We check that the six axioms of

[Vab, Subsection 6.2] hold in the context of (t)aeg, and of the subgroup G4 of Gox.

As z; € N™(0), there exists isomorphisms (Mo ®r, W (k1), (t1a)acg) = (L?p) ®z,,
W (k1), (va)aeg). This implies that the Zariski closure of Sgp ;) in GLge, wi(k) 1
isomorphic to G{/V(kl) and thus it is a reductive group scheme over W (k;). Therefore the
Zariski closure Gy of Gj4 in GLas, e o O is a reductive group scheme over O. Thus the
axiom [Vab, 6.2 (i)] holds. )

Let J. be the subset of g, such that {{s|a € J.} corresponds to Lie(Z ) via Fontaine

comparison theorem for (the p-divisible group of) fllw(kl). Thus we can identify naturally
B* with a Z,-subalgebra of End(My). The centralizer of B* @z, O in GLas,@y, 0 is a torus

over O which contains Z°(G},) (as one can easily check this over W (k;)). Thus the axiom

[Vab, 6.2 (ii)] holds.

If Jq == {a € Jylta € {p™nili € I"}}, then Lie(G{§) = p™ i (End(My ®p, X))
and therefore the axiom [Vab, 6.2 (iii)] holds. As for all i € I* the adjoint group GiQP
is simple, the Killing form on Lie(G%‘j) = Lie(Gjg,) is a non-zero rational multiple of
the restriction to Lie(Gi&f) = Lie(Gjg,) of the trace form T on End(W) ®@g Qp. This

implies that the Killing form on Lie(GLi<T) is a non-zero rational multiple of the restriction

to Lie(G5der) of the trace form on End(Mp) ®pg, K. Thus the axiom [Va5, 6.2 (iv)] holds.
As G{Q?pd =[Ler Gng, it is easy to see that we have a natural isogeny [, Grder _, grder,
Thus the axiom [Vab, 6.2 (v)] holds. The fact that the axiom [Va5, 6.2 (vi)] holds follows
from the last part of Lemma 5.1.3.

As axioms [Va5, 6.2 (i) to (vi)] hold, the Theorem follows from [Va5, Thm. 6.3 (b)].0]

5.3. Applying 5.2. Let (A1, A\4,) := 27 (A, Aa) = (A1, A 1 )w(ky)- Let (M, FL, ¢1,90,)
be the principally quasi-polarized filtered F-crystal over ki of (Aj1,A4,). Let §; and
p1 : Grw (k) — 91 be the analogues of § and p @ G,y — G but obtained working
with z; € N¥(W (k1)) instead of some z € N(W(k)). We can identify naturally M; =
My ®@p, W(k1). Thus we can view each tensor t1, as a tensor of ‘J'(Ml)[%] and we can
also view the reductive group scheme SBW( k) S @ normal, closed subgroup scheme of the
Zariski closure Gy of Gop(x,) in GLyy, .
We fix an O(,)-monomorphism W (k;) < C. We have canonical isomorphisms

pic : (Mo®@ry W (k1) ®w (5,)C, (t1a)acg) = (M1 @w (k1) C, (t1a)acg) = (W* @0 C, (Va)acy)

such that F11®W(k1)(C is mapped to the Hodge filtration of W*®qC defined by a cocharacter
pr : Gpe — G introduced in Subsection 1.1 (see B9 and Lemma 2.3.4 (b)). We know
that pic is G1(C)-conjugate to some (any) up, cf. B9.1. From this and the Definition 1.3.2
(b) we get that p; factors through Sow (k1)
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Let F be the kernel of ®; modulo p; it is a free module over k[[z]] = Ro/pRo of
rank r. As the cocharacter u; factors through SBW(kl), the normalizer of Fj Q)] k1 in
6%, is a parabolic subgroup of §f, and thus (as F{j ®gz) k1 is defined over k((x))) it is
also the natural pull back of a parabolic subgroup Fp, )y of Sgy (). The k[[z]]-scheme
of parabolic subgroup schemes of SBk[M] is projective, cf. [DG, Vol. III, Exp. XXVI,
Cor. 3.5]. Thus the Zariski closure ff{)k[[x” of fﬂr)k((x)) in SBk[M] is a parabolic subgroup
scheme of %k[[m}]' As Gj is a split reductive group scheme and as p1x, factors through
Sbk,» there exists a cocharacter pox(ie) @ Gk — ng[[mﬂ that factors through 9’6,6[[1,“

and that produces a direct sum decomposition My /pMy = F} @ FY with the property that
for each i € {0,1}, every element 8 € G,y (k[[2]]) acts through ok on Fj via the
multiplication with 7°.
We choose a cocharacter
to : Gmr, — G

that lifts pog(z)), cf. [DG, Vol. II, Exp. IX, Thms. 3.6 and 7.1]. Let My = Fl @ FY be
the direct sum decomposition with the property that for each i € {0,1}, every element
B € Gur,(Ro) acts through jig on F¢ via the multiplication with 3=%; the notations match
i.e., we have F¢/pF} = F{.

We consider the W (k)-epimorphism Ry — W (k) whose kernel is the ideal (z). Let

(Ma F17 ¢7 97 (tOé>Oé€37 'QZJM) = (M()? F017 (p07 907 (tla)a€37¢Mo) ®R0 W(k)

5.4. Extra crystalline applications. If p > 2 or if p = 2 and (M, ¢) has no integral
slopes, then there exists a unique p-divisible group D over W (k) whose filtered F-crystal
over k is (M, F*' ¢) (cf. [Vad, Prop. 2.2.4]); due to the uniqueness part, 1y is the
crystalline realization of a (unique) principal quasi-polarization Ap of D. If p = 2 and
(M, ¢) has integral slopes, we consider an arbitrary principally quasi-polarized p-divisible
group (D, Ap) over W (k) whose principally quasi-polarized filtered F-crystal over k is
(M, F',¢) (cf. B5.1).

Let (Dg,, AD RO) be the principally quasi-polarized p-divisible group over R that lifts
(D, A\p) and whose principally quasi-polarized F-crystal over Ro/pRy is (Mo, Fy, ®o, Vo, ¥, ),
cf. B7.1 and B7.2. Let

qR, : ZO - Mr

be the morphism that (i) lifts the composite of y with the morphism N®* — M,. and that
(ii) has the property that the principally quasi-polarized p-divisible group of the pull back
of the universal principally polarized abelian scheme over M,. via qg, is (Dr,, App, ). Let

z9 : Spec(W (k1)) — M,

be the composite of the Teichmiiller lift Spec(W (k1)) — Zy of Subsection 5.1 with gg, .
Let (Az2,A4,) be the principally polarized abelian scheme over W (k;) that is the
pull back through z, of the universal principally polarized abelian scheme over M,. The
principally quasi-polarized filtered F-crystal of (Ag, A4,) is canonically identified with
(M, F}, 1,0, ), where F} is a direct summand of M; of rank r. Let (F4(T(Mi))):ez be
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the filtration of T(M;) defined by F) and let (F}(T(My)))icz be the filtration of T(My)

defined by F_. For each o € §, the tensor ¢, € ‘T(MO)[%] is annihilated by Vy, is fixed by

®, and belongs to FY(T(My)) [%] This implies that we have t1, € FQ(T(My)) [%] forall a €
J. Thus as before Lemma 3.2.1 we argue that the canonical split cocharacter of (M7, F}}, ¢1)
defined in [Wi, p. 512] factors through the closed subgroup scheme G1 = Gy (1,) of GLyy,;
let p2 @ Gpwk,) — 91 be the resulting factorization. Due to Lemma 3.5.2 applied to
z1 € N¥(W (k1)) and to pa : Gk, — SG1, there exists a point z3 € N¥(W (k1)) that lifts
the k-valued point of N™ defined by either z; or zo and such that the filtered F-crystal
of (A3,Aa,) := 25(A, Aa) is precisely (M1, Fy, ¢1,%nr,). Let (D3, Ap,) be the principally
quasi-polarized p-divisible group of (As, Aa;)-

5.5. Proof of 1.6 (a). If p =2 and the condition 1.6 (*) holds, then the 2-rank of Ay,
is 0. Accordingly, in this Subsection we assume that either p > 2 or p = 2 and the 2-rank
of Ajk, is 0. Due to our assumptions on p and A;j, the p-divisible groups Dy and D3 are
the same lift of the p-divisible group of A, (cf. [Vad, Prop. 2.2.4]). This implies that
the W (ky)-valued points of M, defined by z5 and z3 coincide. From this and Theorem
1.5 (b) we get that zo is the W (ky)-valued point of M, defined by z3. Thus 2o factors
through N®. This implies that gg, factors through N. From this and Theorem 1.5 (a) we
get that gg, factors through N°. Let z € N3(W (k)) be the point that is the composite of
the factorization Spec(Ry) — N® of gr, with the Teichmiiller section Spec(W (k)) — Z,.
Our notations match with the ones of Subsection 3.2 i.e., (D, Ap) is the principally quasi-
polarized p-divisible group of (A, A4) := 2*(A, A4) and the principally quasi-polarized
filtered F-crystal of (D, \p) is (M, F*, ¢, ).

From the proof of the property 3.5.1 (ii) we get that there exists an isomorphism
(M @w @y W(ki), (ta)acg) = (M1, (tia)acg). Thus as the statement 3.2.2 (a) holds for
z1 € N (W (ky1)), we get that there exist isomorphisms (see Subsection 3.2 for u,’s)

(M@w W (k1), (ta)acs) = (Ha(Ap ), Zp)®z, W (k1), (ta)aes) = (Lip) @z, W (1), (Va)aes)-

From this and B4 we get that there exist isomorphisms (M, (ta)acg) = (L, ®z,, W (k) (va)aeg)-
From this and Lemma 2.3.4 (a) we get that the statement 3.2.2 (a) holds for z € N3(W (k)).
Thus we have z € N™(W (k)), cf. property 3.5.1 (ii). This implies that the morphism

y : Spec(k) — N factors through N™. This ends the proof of Theorem 1.6 (a).

5.6. Proof of 1.6 (b). If p > 2 or if p = 2 and the condition 1.6 (*) holds, then Theorem
1.6 (b) is implied by Theorems 1.6 (a) and 1.5 (b). Thus to prove Theorem 1.6 (b), we
can assume that p = 2 and that the condition 1.6 (*) does not hold. Not to introduce
extra notations, we can assume that the point y € N(k) of the diagram (3) is the image of
an arbitrary k-valued point y of P™. If 2-rank of Ay, is 0, then from Subsection 5.5 we
get that y € N™(k) C N®(k) € N(k). We easily get that the k-scheme P}* is regular at y
and that the natural morphism P} — M, is a formally closed embedding at y € P™ (k).
Thus to prove Theorem 1.6 (b) we can assume that p = 2 and that the 2-rank of Ay, is
positive. The 2-divisible groups Dy and D3 over W (k;) might not be the same lift of the
2-divisible group of A;x, and thus below we will have to use an approach different from
the one of Subsection 5.5.
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Let the quintuple (Mg, F&, ®, V, ¥, ) be as in Subsection 3.3. As in Subsections 3.3
and 3.4 we can speak about two morphisms ¢g : Spec(R) — M, and gs : Spec(S) — M,
and about a closed embedding cr : Spec(S) < Spec(R) such that the following three
properties hold:

(i) we have gs = qr o cg and the W (k)-homomorphism sgig : Ozig — S that defines
gs is onto (see Subsection 3.4 for O;’ig);

(ii) the morphism y : Spec(k) — M,. defined naturally by y, factors through g¢g;

(iii) the principally quasi-polarized F-crystal over R/pR of the pull back through ¢r
of the universal principally quasi-polarized abelian scheme over M., is (Mg, F, ®, V, ¢, ).

Let Ogl be the completion of the local ring of y in P}'. We consider a mor-
phism jz, : Zo — Spec(S) such that (Mo, Fy, ®o, Vo, ¥ns,, (t1a)acg) is the pull back
of (Mg, Fp, ®,V,¢¥rp, (ta)acg) Via cr o jz, : Zo — Spec(R), cf. B7.4 and B7.5. As
a principally quasi-polarized 2-divisible group over Ry/2R, is uniquely determined by
its principally quasi-polarized F-crystal over Rg/2Rgy (cf. [BM, Thm. 4.1.1]), the ex-
istence of jz, implies that the morphism gz : Spec(k[[z]]) — M, defined by ggr, :
Spec(Rg) — M, (equivalently by the morphism ¢ of diagram (3)) factors through the
morphism gg/25 : Spec(S/25) — M, defined by gs. As this property holds for every mor-
phism g1z : Spec(k[[z]]) — N that factors through P™ in such a way that its generic fibre
Gr((z)) : Spec(k((x))) — N factors through N™, the natural k-homomorphism O} — O
factors through the W (k)-epimorphism O;’ig —» §/28 defined by gg/25. Thus we have
natural k-homomorphisms O};ig / 20;3ig — S/28 — Ogl. As Ng(a,x) is a closed subscheme
of M, g(c,x) (cf. hypotheses), N is the normalization of a flat, closed subscheme of Mo,
that extends Ng(g x). Thus the ring Ogl is a local ring of the normalization of a reduced
quotient of Ogig / QOEig and therefore it is a local ring of the normalization of a reduced
quotient of S/25. As O} has dimension d (as Q of Subsection 2.2 has relative dimension
d), by reasons of dimensions we get that this reduced quotient of S/25 is S/2S itself. Thus
the k-homomorphism S/25 — OL“ is a k-isomorphism. Thus we have k-epimorphisms

(4) Oy'8/200% — 5/28 = O

As y was an arbitrary k-valued point of P™, from the k-isomorphism part of (4)
we get that the k(v)-scheme P™ is regular and formally smooth. Moreover, from the
k-epimorphism part of (4) we get that the morphism P}? — M, is a formally closed
embedding at all k-valued points of P}*. This ends the proof of Theorem 1.6 (b).

5.6.1. Remark. As (Mo, Fy, ®o, Vo, ¥y, (t1a)acg) is the pull back of (Mg, Fh, ®,V, ¥y,
(ta)aeg) Via cr o jz, : Zog — Spec(R) and as Mg = M Qi) R, there exists an iso-
morphism (M ®W(kz) W(]ﬁ), (ta)aGEJ) = (M() ®Ro W(kl), (tla)aeﬂ) = (Ml, (tla)aeﬂ)- As
z1 € N (W (ky)), there exists an isomorphism (M @y )y W(k1), (ta)acg) = (L?p) Rz,
W (k1), (ta)acg)- Thus there exist isomorphisms (M, (to)acg) — (L?p) @z, W(k), (ta)acs),
cf. proof of B4. It is easy to check that the point y € N(k) belongs to N™ (k) if and only if
in the first paragraph of Subsection 5.4 we can choose (D, Ap) such that for D there exists
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an isomorphism rp as in B3. Thus the very root of the Part II of the paper is to solve the
Problem of B5.

5.7. Proof of 1.6 (c). Let Q and Q° be as in Subsection 2.2. As (G, X) has compact
factors, Q is a projective O(,y-scheme (cf. Lemma 2.2.4). From the property 3.5.1 (i) we
get that N™ is the pull back of a smooth, open subscheme Q™ of Q. To prove Theorem 1.6
(c) it suffices to show that if € is a connected component of Qyy (), then either € C Q™ or
N Q%(k) = Cp(k)- It suffices to show that if Qrv?/(k) contains points of the special fibre of
€, then € C Q). The W(k)-scheme C is integral (being connected and normal). As the
k-scheme Q}* N € is non-empty and as Q™ is smooth, there exist W (k)-valued points of C.
Thus the ring of global functions of € is W (k). From [Har, Ch. III, Cor. 11.3] applied to
the projective W (k)-morphism € — Spec(W (k)) we get that the special fibre Cj of € is
connected. But Q}* NCy is an open closed subscheme of Cy, cf. Theorem 1.6 (a). From the
last two sentences we get that Q7' N Cy = €. Thus Q%(k) N € = €. This ends the proof of

Theorem 1.6 (c) and thus also of the Main Theorem 1.6.

5.8. The proof of 1.7. As Gz is a reductive group scheme, H is a hyperspecial
subgroup of Gg, (Qp). Thus the connected components of Shy (G, X)c are permuted tran-

sitively by G(Ascp)), cf. [Val, Lem. 3.3.2]. As the group G(Agcp)) acts on N™ (cf. property
3.5.1 (i)) and as N™ contains a non-empty open closed subscheme of N (cf. Theorem 1.6
(c)), we get N™ =N. As N™ C N* C N, we get N = N* = N. Thus Corollary 1.7 (a)
follows from [Val, Cor. 3.4.4].

We check the Corollary 1.7 (b). We know that Q is a normal, quasi-projective O ,)-
scheme which is the quotient of N = N® through H® and that the quotient morphism
N® — Q is a pro-étale cover, cf. the beginning of Subsection 2.2 and Proposition 2.2.1
(a). Thus Q = Q° is smooth over O(,). Moreover, Q is a Néron model of its generic
fibre Shy (G, X) over O(, (cf. Theorem 1.5 (c)). As Q is also a projective O(,)-scheme
(cf. Lemma 2.2.4), we get that Corollary 1.7 (b) holds. This ends the proof of the Main
Corollary 1.7.

Appendix A: On affine group schemes

Let p € N be a prime. Let k be an algebraically closed field of characteristic p. Let
W (k) be the ring of Witt vectors with coefficients in k. Let B(k) := W(k)[%]
A1l. Canonical dilatations. Let § be an affine, flat group scheme over W (k). Let
a € G(W(k)). The Néron measure of the defect of smoothness d(a) € NU {0} of G at a
is the length of the torsion part of a*(£2g/spec(w (k))). As G is a group scheme over W (k),
the value of §(a) does not depend on a € G(W (k)) and therefore we denote it by §(G). We
have 6(9) € N if and only if G is not smooth, cf. [BLR, Ch. 3, 3.3, Lem. 1]. Let JFj be
the Zariski closure in G of all special fibres of W (k)-valued points of G; it is a reduced
subgroup of Gx. We write ¥ = Spec(Rg/Jg), where § = Spec(Rg) and where Jg is the
ideal of Rg that defines F%. By the canonical dilatation of G we mean the affine G-scheme
G1 = Spec(Rg, ), where Rg, is the Rg-subalgebra of Rg[%] generated by £ with z € Jg.

35



The W (k)-scheme G; has a canonical group scheme structure and the morphism
G§1 — G is a homomorphism of group schemes over W(k), cf. [BLR, Ch. 3, 3.2, Prop.
2 (d)]. Moreover the W (k)-morphism G; — G has the following universal property: each
W (k)-morphism Z — § of flat W (k)-schemes whose special fibre factors through the closed
embedding F, — Gy, factors uniquely through §; — G (cf. [BLR, Ch. 3, 3.2, Prop. 1
(b)]). If G is smooth, then F, = G5 and therefore §; = G.

Either G; is smooth or we have 0 < 6(G1) < 0(9), cf. [BLR, Ch. 3, 3.3, Prop. 5.
Thus by using at most 6(G) canonical dilatations (the first one of G, the second one of Gy,
etc.), we get the existence of a unique smooth, affine group scheme G’ over W (k) endowed
with a homomorphism §’ — G whose fibre over B(k) is an isomorphism and which has the
following universal property: each W (k)-morphism Z — G, with Z a smooth W (k)-scheme,
factors uniquely through §’ — §G. One calls §’ the universal smoothening of G.

A2. Lemma. Letn be a field of characteristic 0. Let W be a finite dimensional vector
space over n. Let L be a Lie subalgebra of End(W). Suppose that there exists a field
extension n1 of n such that L ®, m is the Lie algebra of a connected (resp. reductive)
subgroup F,, of GLwg, ., . We have:

(a) there exists a unique connected (resp. reductive) subgroup F of GLyw whose Lie
algebra is L (the notations match i.e., its extension to ny is Fp, );

(b) if F is a reductive subgroup of GLyy, then the restriction of the trace form on
End(W) to L is non-degenerate.

Proof: We prove (a). The uniqueness part is implied by [Bo, Ch. I, 7.1]. Loc cit. also
implies that if F exists, then its extension to 7, is indeed F,), . It suffices to prove (a) for the
case when J is connected. We consider commutative n-algebras « such that there exists a
closed subgroup scheme F,; of GLy g, » whose Lie algebra is £ ®, . Our hypotheses imply
that as k we can take 77. Thus as k we can also take a finitely generated n-subalgebra
of 11. By considering the reduction modulo a maximal ideal of this last n-algebra, we
can assume that x is a finite field extension of 1. Even more, (as n has characteristic 0)
we can assume that x is a finite Galois extension of 7. By replacing &F,, with its identity
component, we can assume that F, is connected. Due to the mentioned uniqueness part,
the Galois group Gal(x/7) acts naturally on the connected subgroup F, of GLwg, .. As
F, is an affine scheme, the resulting Galois descent on F, with respect to Gal(k/n) is
effective (cf. [BLR, Ch. 6, 6.1, Thm. 5]). This implies the existence of a subgroup F of
GLy whose extension to & is F;. As Lie(F) ®, x = Lie(F,) = L ®, &, we have Lie(F) = L.
The group JF is connected as F,; is so. Therefore F exists. Thus (a) holds.

To check (b) we can assume that 7 is algebraically closed. Using isogenies, it suffices
to prove (b) in the case when JF is either G,,,, or a semisimple group whose adjoint is simple.
If 5 is Gy, then the F-module W is a direct sum of one dimensional F-modules. We easily
get that there exists an element z € L \ {0} which is a semisimple element of End(W)
whose eigenvalues are integers. The trace of 22 is a non-trivial sum of squares of natural
numbers and thus it is non-zero. Thus (b) holds if F is G,,,,. If F is a semisimple group
whose adjoint is simple, then L is a simple Lie algebra over 7. From Cartan solvability
criterion we get that the restriction of the trace form on End(W) to L is non-zero and
therefore (as L is a simple Lie algebra) it is non-degenerate. Thus (b) holds. O
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Appendix B: Complements on p-divisible groups

Let p, k, W(k), and B(k) be as in Appendix A. Let o := o be the Frobenius

automorphism of k, W(k), and B(k). We fix an algebraic closure B(k) of B(k). Let
Gal(B(k)) := Gal(B(k)/B(k)). Let D be a p-divisible group over W (k). Let (M, ¢) be the
contravariant Dieudonné module of Dy. Thus M is a free W (k)-module of rank equal to the
height of D and ¢ : M — M is a o-linear endomorphism such that we have pM C ¢(M).
Let F' be the direct summand of M that is the Hodge filtration defined by D. We have
o(M + %Fl) = M. The rank of F! is the dimension of Dy. Let M* := Hom(M, W (k)).
Let T(M) and its filtration (F*(T(M)));cz defined by F!, be as in Subsection 2.1. For
fe M*[%] let ¢(f):=cofogple M*[%] Thus ¢ acts in the usual tensor product way

on T(M[L]).

B1. Galois modules. Let D® be the Cartier dual of D. Let H!(D) := Tp(DtB(k))(—l) be
the dual of the Tate-module T,,(Dpgy)) of Dp). Thus H'(D) is a free Z,-module of the
same rank as M and Gal(B(k)) acts on it. Let FO(HY(D)) := H'(D) and FY(H (D)) := 0.
Let

o+ Gal(B(k)) — GLzs (o) (W (K))

be the natural Galois representation associated to Dp). Let DE be the Zariski closure
in GL1(py of Im(pp). From [Wi, Prop. 4.2.3] one gets that the generic fibre @8; is
connected. See Subsection 2.1 for T(H'(D)); it is naturally a Gal(B(k))-module. By
an étale Tate-cycle on Dp(;) we mean a tensor of ‘.T(HI(D[%])) = ‘.T(Hl(D))[I—lj] that is
fixed by Gal(B(k)) (equivalently by ﬂ)gp). In what follows we will fix a family (vq)acg of

étale Tate-cycles on Dp(y). Let G¢* be the Zariski closure in GL w1 (p) of the subgroup of
GL ;1 (py(1 that fixes v, for all @ € J. The group scheme D is a subgroup scheme of G

B2. Fontaine comparison theory. We refer to [Fo], [Fa2], and [Vad4] for the fol-
lowing review on Fontaine comparison theory. This theory provides us with three rings
Bl (W (k)), Berys(W(k)), and Bqr(W (k)) that have the following six properties:

crys

(i) the rings are integral W (k)-algebras that are equipped with exhaustive and de-
creasing filtrations and with a Galois action; moreover Bqag (W (k)) is a field;

(ii) we have W (k)-monomorphisms B (W (k)) < Berys(W (k)) < Bar(W (k));

crys
(iii) the ring B (W (k)) is faithfully flat over W (k) and has a natural Frobenius

lift that is compatible with ¢ and that also extends to an endomorphism of Be,ys(W (k));

(iv) there exists a B (W (k))-linear monomorphism

i M ®wr) Bays(W(k)) — H'(D) @z, By (W (k)

crys

that respects the tensor product filtrations, the Galois actions, and the Frobenius endo-
morphisms (the Frobenius endomorphism of H'(D) being 141 (p));

37



(v) the Bqr(W (k))-linear map ip = i}, ® 1Ban (W (k)) 18 a bijection that induces
naturally a Bggr (W (k))-linear isomorphism denoted in the same way

ip : T(M) @w ) Bar(W (k) = T(H' (D)) @z, Bar(W (k));

(vi) each étale Tate-cycle v, defines a tensor t,, 1= ip(v,) € FO(‘.T(M))[%] C ‘J’(M)[%]
that is fixed by ¢.

Let G be the Zariski closure in GL; of the subgroup of GL Mm(2) that fixes t, for all

a € J. It is a flat, closed subgroup scheme of GLjs such that we have ¢(Lie(Sp(x))) =
Lie(Sp(x))- Let p: G,y — G be a cocharacter that produces a direct sum decomposition
M = F' @ F° such that for each i € {0,1}, every element 8 € G,,(W (k)) acts through
on F as the multiplication with 3~%. For instance, we can take u to be the factorization
through G of the inverse of the canonical split cocharacter pican : G, — GLjy of (M, F1, ¢)
defined in [Wi, p. 512] (the cocharacter pic., fixes each tensor ¢, cf. the functorial aspects
of [Wi, p. 513]).

B3. Theorem (see [Vad4, Thm. 1.2]). If p = 2, we assume that G¢ is a torus. Then
there exists an isomorphism rp : (M, (ta)acg) = (H' (D) ®z, W (k), (va)acg) (in the sense
of Subsection 2.1).

B4. Lemma. Let k1 be an algebraically closed field that contains k. Suppose that there
exists an isomorphism (M ®w )y W(k1), (ta)acg) = (H' (D) ®z, W(k1), (va)acg). Then
there exists an isomorphism rp : (M, (ta)acg) = (H'(D) @z, W(k), (Va)acs)-

Proof: To check the existence of rp we can assume that we have t, € T(M) and v, €
HY(D) for all & € J. Thus we an speak about the affine W (k)-scheme of finite type B
that parameterizes isomorphisms between (M, (ta)acg) and (H'(D) ®z, W(k), (va)acg)-
We know that P has a W (ky)-valued point. As the monomorphism W (k) — W (k) is
of ramification index one, from [BLR, Ch. 3, 3.6, Prop. 4] we get that there exists a
morphism P’ — P of W (k)-schemes such that B’ is smooth over W (k) and has a W (kq)-
valued point. Thus the special fibre 3} is non-empty. As P’ is smooth over W (k) and
has a non-empty special fibre, it has W (k)-valued points. Thus B also has W (k)-valued
points and therefore the isomorphism rp exists. [l

B5. On p=2. The following problem will play a key role in the Part II of the paper.

Problem. Suppose that p = 2 and that G is a reductive group scheme over W (k).
Show that there exists a 2-divisible group D over W (k) which lifts Dy, whose filtered
F-crystal over k is as well the triple (M, F*, ¢), and for which there exists an isomorphism
rp (M, (ta)acg) = (H' (D) ®z, W(k), (va)aeg). Here va € T(H'(D))[;] = T(H'(D))[;]

is the tensor that corresponds to t, via Fontaine comparison theory for either D or D.

We have a natural principally quasi-polarized variant of the above Problem. Next
we will solve the most particular case of this variant.
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B5.1. Lifting polarizations in mixed characteristic (0,2). Suppose that p = 2 and
that Dy, has a principal quasi-polarization Ap,. Let r € N be such that the height of D is
2r. Let 1ps be the perfect, alternating form on M that is the crystalline realization of Ap, .
Let F! be a direct summand of M that lifts F 1/2F1 and that is isotropic with respect
to ¥ar (i.e., and such that ¢y (FY, F') = 0); the triple (M, F', ¢,1) is a principally
quasi-polarized F-crystal over k. We recall the essence of the argument that there exists a
principally quasi-polarized 2-divisible group (D, A p) over W (k) which lifts (D, Ap,) and
whose principally quasi-polarized F-crystal over k is (M, F1, b, ).

Let Wy(k) := W (k)/4W (k). Based on Grothendieck—-Messing deformation theory, it
suffices to show that there exists a lift (DWQ(k), >‘Dw2(k)) of (Dk, Ap, ) to Wa(k) such that

the Hodge filtration of M/4M defined by ﬁWQ(k) is F1/4F". Let (D?,VQ(,C),)\D%(M) be

an arbitrary principally quasi-polarized 2-divisible group over W (k) that lifts (Dy, Ap, ).
The lifts of (Dg, Ap,) to Wa(k) are parameterized by the k-valued points of an affine
r(rt1)
space A, , the origin corresponding to (D?,VQ(,C), AD%/ (k)). The lifts of F! /2F! to direct
2

summands of M/4M which are isotropic with respect to ¢y, are parameterized by the
r(r+4+1)
k-valued points of an affine space A2 , the origin corresponding to the Hodge filtration

of M/4M defined by D%,z(k).

r(r+1) r(r+1)
We have a natural morphism hg : A, — A,.  over k that at the level of

k-valued points takes a lift (D‘l%(k), Apt (k)) of (Dk, Ap, ) to Wa(k) to the Hodge filtration
2

of M/AM defined by D%,VQ( k- The morphism hg is finite and surjective on k-valued points,

cf. proof of [Va6, Prop. 6.4.5]. Thus there exists a principally quasi-polarized 2-divisible

group (Dw, s Ap,, (k)) over Wy (k) that lifts (Dg,Ap,) and whose Hodge filtration is
2

F'JAF'. This ends the argument for the existence (D, \p).

B6. Group correspondences. Let F& be a reductive, closed subgroup of Ggp. The
restriction to Lie(Féi) of the trace form on End(Hl(D)[%]) is non-degenerate, cf. A2
(b). Let Lie(F&)L be the perpendicular on Lie(Féi) with respect to the trace form on
End(H 1(D)[%]); we have a direct sum decomposition of Q,-vector spaces

End(Hl(D)[%]) = Lie(Fy' ) ® Lie(Fg' )™

Let 7¢ be the projector of End(Hl(D)[%]) on Lie(Féi) along Lie(Féi)L; it is an idempo-
tent of End(Hl(D)[%]) fixed by each subgroup of GLHl(D)[%] that normalizes F@Z

Suppose that Dgp normalizes F@’; (for instance, this holds if F@’; is a normal subgroup
of Ggp). Thus 7¢ is fixed by Dgp and therefore also by Im(pp).

Let 7¢¥® € End(M [%]) be the projector that corresponds to 7% via Fontaine com-
parison theory. We have the following two properties:

(i) There exists a unique reductive subgroup Fpi) of Gp) whose Lie algebra is
Im (7).
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(ii) If the generic fibre of pican factors through F (), then @8; is a subgroup of F&

We check (i). As ip' is a Bqr(W (k))-linear isomorphism that takes 7 to w¥s,
the group z’Bl(F& Xq, Bar(W(k)))ip is a subgroup of iBI(Ggp xq, Bar(W(k)))ip =
SB(k) X B(k) Bar (W (k)) whose Lie algebra is Im(7“V*)® gy Bar (W (k)). Thus as Bar (W (k))
is a field, from A2 (a) applied with (W, L, n,n1) = (M[%],Im(wcrys), B(k), Bar(W(k))), we
get that there exists a unique reductive subgroup Fp() of GL M) whose Lie algebra is
Im(7™®). As Fp(ry X k) Bar(W (k)) is a subgroup of (k) X k) Bar(W (k)), the group
F Bk is in fact a subgroup of Gp(). Thus (i) holds.

We check (ii). Let l.an be the Lie algebra of the image of the generic fibre of pican. As
TS is fixed by ¢, the Lie algebra Lie(Fp(x)) = Im(7¥®) is normalized by ¢. Let Dpy,
be the smallest connected subgroup of Fp(;) with the property that Lie(Dp)) contains
@ (lcan) for all m € Z. From [Bo, Ch. I, 7.1] we get that all conjugates of the generic fibre
of fican through integral powers of ¢ factor through D) (in fact, Dy is the smallest
subgroup of Fp(yy for which this property holds). This implies that D g(; corresponds to

Dgp via Fontaine comparison theory (cf. [Wi, Prop. 4.2.3]) i.e., we have an identity

DG, xa, Bar(W (k) = in(Dpw) X p(r) Ban(W (k)))ip'

of subgroups of GLHl(D)®ZdeR(W(k)). As Dpyy is a subgroup of Fp(;) and as F@Z XqQ,
Bar(W (k) = ip(Fpx) X5k Bar(W(k)))ip', we get that (ii) holds.

As we also have 98; x@, Bar(W(k)) = in(Spx) XBm) Bar(W(k)))ip', the groups
98; xq, B(k) and Gp(x) are forms of each other.

B7. Faltings deformation theory. Let [ € NU {0}. Let R = W (k)[[z1,...,zi]] be
a formal power series in [ variables with coefficients in W (k). Let ®x be the Frobenius
lift of R that is compatible with o and that takes x; to ¥ for all ¢ € {1,...,l}. Let
9 Wk = ®l_, Rdz; be the p-adic completion of the R-module of relative differentials

Qr/w (k). Let dPp : Q%/W(k) — QIA%/W(,C) be the differential map of ®p.
Let (Mg, F}, ®) be a triple such that the following four axioms hold:

(i) Mg is a free R-module of rank equal to the height of D;
(ii) F} is a direct summand of Mg of rank equal to the rank of F'!;

(iii) ® : Mr — Mp is a ®p-linear endomorphism that induces an R-linear isomor-
phism (Mg + %F}%) ®r o, R Mpg;

(iv) the reduction of (Mg, F, ®) modulo the ideal (z1,...,;) is canonically iden-
tified with (M, F1, ).

It is known that there exists a unique connection V : Mrp — Mpgr Qg QIA{ JW (k) such
that we have an identity Vo ® = (& ® dPr) o V, cf. [Fa2, Thm. 10]. Loc. cit. also
shows that V is integrable and nilpotent modulo p. Let ® act in the natural tensor way

on T(MR)[%]; thus if e € M}, := Hom(MEg, R), then ®(e) € ME[%] is the unique element

such that we have ®(e)(®(a)) = Pr(e(a)) € R for all a € Mg.
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B7.1. Lemma. There exists a unique p-divisible group Dgr over R that lifts D and such
that its filtered F-crystal over R/pR is (Mg, F}, ®, V).

Proof: Let J be an ideal of R such that R is complete in the J-adic topology (for instance,
J could be (p), (z1,...,x;),or p(x1,...,2;)). Let Spf(R) be the formal scheme which is the
formal completion of Spec(R) along Spec(R/J). The categories of p-divisible groups over
Spec(R) and respectively over Spf(R) are canonically isomorphic, cf. [dJ1, Lem. 2.4.4];
below we will use this fact without any extra comment. The existence of Dy is implied by
[Fa2, Thm. 10]. The uniqueness of the fibre Dg/,r of D over Spec(R/pR) is implied by
[BM, Thm. 4.1.1]. As the ideal p(z1,...,2;) of R/(z1,...,2;)"™ has a natural nilpotent
divided power structure for all m € N, from the Grothendieck—Messing deformation theory
we get that Dpg is the unique p-divisible group over R that lifts both D and Dg/,g and
whose filtered F-crystal is (Mg, Fj, ®,V). d

Until B8 we will assume that D has a principal quasi-polarization Ap. Let 1y, be
the perfect, alternating form on M that is the crystalline realization of Ap; for a,b € M
we have ¥y (p(a) @ ¢(b)) = po(vy(a @ b)). We also assume that there exists a perfect,
alternating form vy, on Mp that lifts ¢y (i.e., which modulo (x1,...,z;) is ¥) and
such that for a,b € Mg we have ¥y, (P(a) ® (b)) = pPr(Yar(a ®D)).

B7.2. Lemma. There exists a unique principal quasi-polarization Ap, of Dgr that lifts
Ap and whose crystalline realization s Yy, .

Proof: Let (Mg, Fit, @, V") be the filtered F-crystal over R/pR of the Cartier dual D
of Dr. The form 1wy, defines naturally an isomorphism (Mp, Fit, ®%) = (Mg, Fh, ®).
As the connections V and V' are uniquely determined by (Mg, Fi, ®) and (M}, Fi', @)
(respectively), the last isomorphism extends to an isomorphism

0: (Mb, F o VS (Mg, Fh®,V)

of filtered F-crystals over R/pR.

The ring R/pR has a finite p-basis {z1,...,x;} in the sense of [BM, Def. 1.1.1].
Thus from the fully faithfulness part of [BM, Thm. 4.1.1] we get that there exists a unique
principal quasi-polarization Ap, . of Dg/,r whose crystalline realization is ; it lifts the
special fibre of Ap. As the ideal p(zq,...,2;) of R/(x1,...,2;)™ has a natural nilpotent
divided power structure for all m € N, from the Grothendieck—Messing deformation theory
we get that there exists a unique principal quasi-polarization Ap, of Dg that lifts both
ADpy JoR and Ap and whose crystalline realization is ¥/, . O

B7.3. Construction. Let M = F'! @ F° be the direct sum decomposition such that the
cocharacter i : G, () — GLas acts trivially on F 0. We naturally identify Hom(F!, F)
with the direct summand {e € End(M)|e(F°?) = 0 and e(F*) C F°} of End(M). Let &’ be
the universal smoothening of G, cf. A2 (a). Suppose that G is a closed subgroup scheme
of GSp(M, ¥ys) and that R = W (k)[[z1, ... ,x]] is the local ring of the completion of G’
along the identity section. Thus the relative dimension of § over W (k) is [. We take

(MR7F]1%7¢MR> = (Ma F17¢M) ®W(kz) R and & := guniv(¢ ® qDR)a

41



where guniv € §'(R) is the universal element. Let
Q:univ = (MR, F}{, q), V, (ta)a€37 ¢M)

We have the following three properties (see [Va4, Subsection 3.3 1)] for (i) and (ii) and see
proof of [Va4, Thm. 5.2] for (iii)):

(i) the connection V is of the form § + v, where § is the flat connection on Mpr =
M Qw k) R that annihilates M ® 1 and where v € (Lie(Gpx)) N End(M)) @w 1) QQ/W(k);

(ii) the connection on T(Mp) = T(M) Qw ) R induced naturally by V annihilates
the tensor to, € T(M) @w 1) R[%] for all o € 3;

(iii) the connection V is versal and its Kodaira—Spencer map has an image which
is the direct summand (Lie(Spk)) N Hom(F', F°)) ®@w ) R of Hom(F', F°) Qwu) R~
Hom(Fl, M/Fl) Ow (k) R.

Let m € NU{0}, Ry := W(k)[[z1,...,2Zm]], and Z := Spec(R;1). Let ®r, be the
Frobenius lift of R; that is compatible with o and that takes x; to 2% for alli € {1,... ,m}.
Let €1 := (M1, F}, ®1,V1, (t1a)acg, ¥u, ) be a principally quasi-polarized filtered F-crystal
over Spec(R1/pR;) endowed with a family of tensors (t14)aeg of ‘J'(Ml)[%] such that the
following three axioms hold:

(iv) @1 induces an Ry-linear isomorphism (M + %Fll) @R, p, 1= Mi;

(V) each tensor t1q is fized by @1, is annihilated by V1, and belongs to FO(‘T(Ml))[%]
(here (FY(T(My)))iez is the filtration of T(My) defined by F}, cf. Subsection 2.1);
(vi) its reduction modulo the ideal I := (x1,... ,2m) is (M, F', ¢, (ta)acy, Vrr)-

The Ri-module M is free of rank equal to the rank of M, cf. property (vi). Let
T(Mj) be as in Subsection 2.1. Let zz : Spec(W (k)) < Z be the closed embedding defined
by the ideal I; of R;.

B7.4. Theorem. There exists a morphism iy : Z — Spec(R) of W(k)-schemes such
that guniv 0 iz 0 2z is the identity section of G’ and i} (Cyniv) is isomorphic to € under an
1somorphism which modulo the ideal I1 becomes the identity automorphism of 1.

Proof: If G is smooth, then the Theorem is a particular case of [Fa2, Thm. 10 and Rm.
iii) after it]. To prove the Theorem in the general case, we follow the proof of [Va4, Thm.
5.2]. Let (Dz,Ap,) be the unique principally quasi-polarized p-divisible group over Z
that lifts (D, Ap) and whose principally quasi-polarized filtered F-crystal over Rq/pR; is
(Ml, Fll, q)l, Vl, ¢M1)7 cf. B7.2.

By induction on s € N we show that there exists a morphism iz, : Spec(R1/I5) —
Spec(R) of W (k)-schemes which at the level of rings maps (x1...,2;) to I;/I{ and such
that i, ((Dr, Apy)) is isomorphic to (Dz, Ap,) modulo I} under a unique isomorphism
D, that has the following two properties:

(1) it lifts the identity automorphism of (D, Ap);

(ii) it defines an isomorphism €, between €4 modulo I and i*Z’S(QuniV) which modulo
I /15 is the identity automorphism of 1.
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As @, (I;) C I7 and Ry is I -adically complete, such an isomorphism € is unique. If
s = 1 we take iz s to be defined by the W (k)-epimorphism R — R/(x1,... ,x;) = W(k) =
R1/I; and we take D; and &; to be defined by the identity automorphism of (D, Ap) and
by 1as (respectively). Thus the existence and the uniqueness of iz ; and D; are obvious.

The passage from s to s 4+ 1 goes as follows. We endow the ideal Jg := I7/1 f“ of
Ry/I f“ with the trivial divided power structure; thus J. 5[2} = 0. The uniqueness of Dy
is implied by the uniqueness of Dy and of €441, c¢f. Grothendieck—-Messing deformation
theory. Thus to end the induction we are left to show that we can choose iz 41 such that
Dsir1 and €441 exist.

Let iz.411 : Spec(R1/I;T') — Spec(R) be an arbitrary morphism of W (k)-schemes
through which iz s factors naturally. We write

1% o1 (MR, Fr, ®,V,¥0r,) = (M ®wy R/ Fr @win R/ 1@, 511V, ¥0).

Due to the existence of Dy, there exists (cf. Grothendieck—-Messing deformation theory)
a direct summand .1 F' of M Qw (k) Ry /I that lifts F*! ®w (k) R1/17 and such that
the quintuple (M, Fy, ®1, V1,95, ) modulo If“ is isomorphic to the quintuple (M @y (x)
Rl/IfH, st1F, s41®, 41V, ar) under an isomorphism é5+1 that lifts the one defined by
Es. Let tia,s41 € T(M Qw (g R1/1f+1) be the image under és+1 of t14. As tq, is fixed by
®,, the tensor t14 541 is fixed by s41P. As és+1 lifts €4, the reductions modulo J, of t,
and t14,s41 coincide. As o1 ®(T(M) @y (r) Js) = 0, inside T(M) @y (1) R1/1f+1 we have

tloz,s—l—l —to = s+1(p(tloz,s—|—1 - toz) € s+1®(T(M) ®W(kz) JS) =0.

Thus we have t14,s41 = to € T(M) Qw ) R1/1f+1 for all o € J.

The remaining part of the inductive argument is as in the last four paragraphs of
the proof of [Va4, Thm. 5.2]. Briefly, let Uy and U be the smooth, unipotent, closed
subgroup schemes of GLj; and G (respectively) defined by the rule: if ¢ is a commutative
W (k)-algebra, then Upig(©) := 1@y o + Hom(F!, FO) @y k) © and

U(0) == 1Mo + Lie(Spw) N Hom(F*', F°)) @w(x) ©.

Let vs41 € Lie(Ubig) @w (k) Js be the unique element such that we have
(Lnt@yy oy a1+t + Vs 1) (F! @y Ra/ITTY) = o1 B

As in the proof of [Va4, Thm. 5.2] we argue that v,y € Lie(U) ®yw () Js. The image of the
Kodaira—Spencer map of V is the direct summand (Lie(Sp(x)) NHom(F*', F°)) @ ) R =
Lie(U) Qw (k) R of Hom(Fl, FO> Qw (k) R = Lie(Ubig) Qw (k) R, cf. B7.4 (vi). Thus as in
loc. cit. we can replace iz 441 by another morphism iz .1 : Spec(Ry/IiT) — Spec(R)
through which iy factors and for which 41 F'! gets replaced by (i.e., becomes) F'! Qw (k)
Ry/I; ™. From Grothendieck-Messing deformation theory we get that iy s11((DR, ADR))
is isomorphic to (Dz, Ap,) modulo I f+1 under an isomorphism D1 which lifts Dy and
which defines an isomorphism €,41 between €; modulo I7 1 and iy s +1(Cuniv). As Dopy
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lifts D, the uniqueness of &, implies that €414 lifts €, and thus also £;. This ends the
induction.

We take iz : Z — Spec(R) such that it lifts iz, for all s € N. From the very
definition of iz 1 we get that guniv0iz 02z is the identity section of §’. Moreover, i} (€ypiv)
is isomorphic to €; under an isomorphism that lifts £ ! for all s € N. O

B7.5. Variant. Let d € NU {0} be the rank of Lie(§px)) N Hom(F*!, FY) = Lie(U). Let
S = W(k)|[[x1,...,x4]]. We consider a closed embedding Spec(S) < Spec(R) such that
the following two properties hold:

(i) at the level of W(k)-algebras, the ideal (x1,...,x;) of R maps to the ideal
(x1,...,x4) of S;
(ii) the pull back D ypiv of Cypiy via the closed embedding Spec(S) — Spec(R), has

a Kodaira—Spencer map which is injective and whose image equals to the direct summand
(Lle(SB(k)) ﬂHom(Fl, F0)> ®W(k) S of HOHI(FI, FO> ®W(k) S = HOHI(FI, M/Fl) ®W(kz) S.

The proof of B7.4 applies to give us that there exists a morphism jz : Z — Spec(S) of
W (k)-schemes such that j7 (Dyniv) is isomorphic to €; under an isomorphism which modulo
I; becomes the identity automorphism of 1,;. As the Kodaira—Spencer map of D,y is
injective, the morphism j is unique. In simpler words, we can choose iy : Z — Spec(R) to
factor through the closed embedding Spec(S) < Spec(R) and the resulting factorization
is our morphism jz : Z — Spec(S).

B8. On abelian schemes. Suppose that D is the p-divisible group of an abelian scheme
A over W (k). It is well known that we have two canonical and functorial identifications:

(i) Hig(A/W (k)) = M of W (k)-modules (see [Be, Ch. V, Subsection 2.3] and [BBM,
Prop. 2.5.8]);

(ii) HY(D) = Hét(Am, Z,) of Gal(B(k))-modules.

The crystalline conjecture (see [Fal] and [Fo]) provides a Be,ys(W (k))-linear isomorphism
ia: Hag(A/W (k) @w () Berys(W (k) = Hiy(Aggy, Zp) @z, Berys(W (k)

that is compatible with the tensor product filtrations, with the Gal(B(k))-actions, and
with the Frobenius endomorphisms. See [Val, Subsubsection 5.2.15] for a proof of the
following property (strictly speaking, the paragraphs before loc. cit. work with a prime
p >3 but the arguments of loc. cit. work for all primes):

(iii) under the identifications of (i) and (ii), we have iy =i}, ® 1Beye (W (k))-
B9. On Hodge cocharacters. In this Subsection we assume that we have a monomor-

phism W (k) — C and that D is the p-divisible group of an abelian scheme A over W (k).
We recall that we have canonical identifications

(5) M @y C = Hig(A/W (k) ©w C = Hig(Ac/C) = F1° & FOL,
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where the last identity is the usual Hodge decomposition. Under (5) we can identify
F! OwW (k) C=F10,

Let A2 be the analytic space associated to Ac. Let W := H; (A", Q) be the first Betti
homology group of A" with rational coefficients. Let W* := Hom(W, Q). We identify
naturally W* @g C with the first Betti cohomology group H'(A#",C) and thus also with
Hlp(Ac/C) =M ®w (k) C. We consider also the Hodge decomposition

(6) W ®oC=H (A2, C)=F 'Y g %!

that is the dual of the Hodge decomposition W* @g C = Hig (Ac/C) = F1.0 @ FO1. Let
14 : Gme — GLyg,c be the Hodge cocharacter that fixes F%~! and that acts on F~1°
via the identity character of G,,c. We also view 4 as a cocharacter (denoted in the same
way) pra : Gme — GLw-goc = GLM®W(k)C = GLH;R(AC/(C) that fixes F%1 and that acts
on F'10 via the inverse of the identity character of G,,c.

B9.1. Lemma. Let the cocharacter i : G,, — G be as in B2. Suppose that for every o € J
the tensor t, € ‘.T(M)[%] = ‘.T(Hle(A/W(k)))[%] is the de Rham component of a Hodge
cycle on Apy. We also assume that Spy is a reductive group. Then the cocharacter
pa : Gue — GLygy, ¢ factors through Gc and is S(C)-conjugate with pc. Thus if Gpw)
s a torus, then pa = pc.

Proof: Let vB € T(W*) be the Betti realization of t,; it is fixed by p4. The identity
W*®qC = M @y 1) C gives birth to an identity T(W*®qC) = T(M @y (1) C) under which
the tensors t, and v2 are as well identified. Thus the cocharacter pa : G,,c — GLwg,c
fixes t,, for all @ € J and therefore it factors through G¢. Let P¢ be the parabolic subgroup
of G¢ that normalizes F! Qw k) C = F9_ Both the cocharacters p14 : G,c — GLM®W<k>C
and pc factor through Pc and thus a Pc(C)-conjugate pr of puc commutes with 4.
As the commuting cocharacters ug and pa of Pc act on F! Qwy C = F'9 and on
M @w k) C/(F*@w ) C) = Hig (Ac/C)/F'? in the same way, we have p¢ = pa. Thus the
cocharacters puc and py are Pe(C)-conjugate and therefore they are also §(C)-conjugate.l]
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