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CYCLIC POLYGONS AS CRITICAL POINTS

G.KHIMSHIASHVILI

Abstract. We describe a nonconventional setting for studying cyclic poly-
gons which provides a new point of view at the conjectures formulated
in 90-s by D.Robbins and studied by R.Connelly, I.Pak, I.Sabitov and
V.Varfolomeev. The exposition is centered around our interpretation of
cyclic polygons as the critical points of oriented area considered as a func-
tion on the planar configuration space of the corresponding polygonal link-
age. We present four general conjectures about critical points of area on
configuration space and describe the state-of-the-art of the topic. In partic-
ular, we explain how one can count cyclic polygons with the fixed lengths
of the sides using the so-called signature formulae for the mapping degree
and Euler characteristic developed in our earlier papers. Connections of
our results with formulae of Brahmagupta-Robbins type for areas of cyclic
polygons are clarified and placed in a more general algebraic context. We
also describe a general paradigm enabling one to prove nondegeneracy of
critical points of area and briefly discuss the problem of calculating the
Morse index of area at a cyclic configuration. In conclusion we mention
a few extensions and generalizations for which our conjectures serve as a
paradigm.

Key words: cyclic polygon, polygonal linkage, configuration space, ori-
ented area, critical point, Euler characteristic, mapping degree, Brahmagupta
formula, generalized Heron polynomial, Coulomb potential, tensegrity

Introduction

Cyclic polygons (i.e., polygons which can be inscribed in a circle) gained
considerable attention in the last decade, partially due to the results and con-
jectures of D.Robbins [43] (see, e.g., [10], [19], [44], [51]). Recently, a number
of new results on the geometry of cyclic polygons have been obtained in the
framework of an approach suggested by the present author in [33], [34] which
was based on the concept of configuration space of polygonal linkage (see, e.g.,
[11], [29]). In particular, it was shown that cyclic polygons can be interpreted
as critical points of the oriented area considered as a function on the planar
configuration space of the corresponding polygonal linkage [33], [35] and can
be effectively counted or estimated using the so-called signature formulae for
topological invariants [30], [17], [31]. Further results along these lines can be
found in [18], [36], [22], [5], [41].
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2 G.KHIMSHIASHVILI

The aim of the present paper is to describe the state-of-the-art of these topics
and present a few (apparently) new observations and results. We begin by de-
scribing the setting and recalling necessary results from [34], [35]. Throughout
the paper we freely use basic results about configuration spaces of polygonal
linkages, which can be found in [11], [29], and a few standard paradigms of
differential topology and singularity theory for which we refer to [26], [2]. We
also need several results from [31] which are reproduced below for the sake of
reader’s convenience.

An important ingredient of our approach is the representation of configu-
ration spaces considered as the fibres of proper quadratic mappings, which
enables one to calculate their topological invariants and count critical points
of regular functions using signature formulae from [17], [30], [31]. Specifically,
we consider the oriented area as a function A on the planar configuration space
C2(L) of a polygonal linkage L and embark on studying the critical points of A.
One of the main outputs of our study is a general method of counting critical
points of A which we describe in some detail with a view toward studying crit-
ical points of other natural functions on configuration spaces. For this reason
we begin with recalling the aforementioned signature formulae and some of
their applications in the context of configuration spaces of polygonal linkages.
We also explain how these formulae can be applied to the study of so-called
cabled linkages [37] and tensegrity frameworks [42] which do not seem to have
been discussed in the literature from this point of view.

As was revealed in [33] and proven in full generality in [35], for a generic
polygonal linkage L with non-singular configuration space C2(L), the critical
points of A on C2(L) are given by the cyclic configurations of linkage L. This
fact is central for our exposition so we present its generalization applicable to
arbitrary polygonal linkages (Theorem 2.3) and a version for open polygonal
chains (or planar multiple penduli) (Theorem 2.2) obtained in [36].

Motivated by these results and conjectures of D.Robbins, in Section 3 we
present a few remarks on the geometry of cyclic configurations. Specifically,
we show that coefficients of the generalized Heron polynomial introduced by
D.Robbins can be algorithmically computed using the multidimensional log-
arithmic residue [50] (a version of the so-called Grothendieck residue symbol
[31]). This enables us to formulate a general paradigm (Paradigm 1) which, to
our mind, clarifies a number of results of I.Sabitov, I.Pak and V.Varfolomeev
concerned with conjectures of D.Robbins on computation of areas of cyclic
polygons [43].

In [33], [34] some examples and evidence were presented which encouraged us
to conjecture that generically A is a Morse function on C2(L). This conjecture
was further discussed in [36], where the parametric transversality theorem (see,
e.g., [2]) was used to prove it for certain open polygonal chains (robot arms). In
Section 4 we briefly describe the approach used in [36] and formulate another
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general paradigm (Paradigm 2) which, in particular, can be applied to a bunch
of natural functions (of Coulomb electrostatic energy type) on configuration
spaces of generic polygonal linkages. In the same section we present brief
comments on the problem of calculating the Morse indices of A. In the last
section we outline some of the possible generalizations and extensions of our
results.

Most of the new results presented in these paper have been obtained dur-
ing the author’s visit to Max-Planck-Institut für Mathematik in Bonn in
September-October of 2010. It’s my pleasure to acknowledge the excellent
working conditions and warm hospitality of the whole staff of MPIM.

1. Signature formulae and configuration spaces

The algebraic formulae for the mapping degree [17], [30] and Euler charac-
teristic [30], [8] were developed in late 70-s and have found many applications
to concrete problems of geometry, topology, singularity theory and nonlinear
analysis (cf. [33]). We call them signature formulae [33] because they ex-
press the topological invariants in question in terms of signatures of effectively
constructible quadratic forms. As was outlined in [30] and further developed
in [8], [32], those formulae, in particular, provided an effective method for
calculating the Euler characteristic of an explicitly given compact algebraic or
semi-algebraic subset. It should be added that thanks to the existing computer
programs for calculating the mapping degree (see, e.g., [38]) such calculations
can nowadays be done quite effectively. We use these formulae to obtain infor-
mation on the topological structure of configuration spaces of planar polygonal
linkages (or planar polygonal chains) and count critical points of various differ-
entiable functions on such spaces. To make exposition self-contained, at least
formally, we recall now the main concepts and results related to signature
formulae for the mapping degree [17], [30] and Euler characteristic.

It is convenient to begin with considering a real polynomial mapping

F : Rs → Rt

defined by collection of t polynomials F1, . . . , Ft in s variables with real coeffi-
cients. We will only deal with the cases when s ≥ t. If s = t, then F is called
a polynomial endomorphism (or a polynomial vector field as in [2]). Let us for
completeness fix some notation and conventions.

For any y ∈ Rt, the set F−1(y) is called a fiber of F over the point y.
A point x ∈ Rs is called a regular point of F if the rank of Jacobi matrix
J(F )(x) is maximal, i.e., equal to t (for s = t this is obviously equivalent to
det JF (x) 6= 0). In the opposite case (i.e., if this rank is less than t) point x is
called a singular point of F . A fiber F−1(y) is called regular (or smooth) if it
does not contain singular points of F . In this case the point y is called regular
value of F . The set of regular values of F is denoted Reg F .
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As is well known, each regular fiber is a smooth manifold of dimension s− t
[6]. A mapping F is called proper if preimage F−1(X) of any compact set
X ⊂ Rt is a compact set in Rs (here and below we only consider the topologies
induced by Euclidean metric). For convenience and brevity, a (real) proper
polynomial mapping F as above will be referred to as a propomap. If s = t
then we’ll speak of a propofield.

Thus the fibers of a propomap are compact algebraic varieties. Correspond-
ingly, regular fibers of a propomap F are compact smooth manifolds. By Sard’s
lemma [2], the set of singular values of F has measure zero so a ”generic” fiber
of F is a smooth compact manifold of dimension s− t.

In particular, if s = t then each fiber F−1(y) consists of a finite amount of
points and it appears reasonable to consider the algebraic number of preimages
of y, which leads to the concept of the mapping degree. More precisely, one
can define the mapping degree deg F by the well-known formula

deg F =
∑

x∈F−1(y)

sign det JF (x), (1.1)

where sign denotes the sign of a real number, and y ∈ Reg F is an arbitrary
regular value of F .

An important role is also played by a local version of this notion, the local
(mapping) degree of an endomorphism which is often called the index of an
isolated zero of a vector field [2]. The local degree degpF of a given polynomial
endomorphism F is defined at any point p which is isolated in F−1(F (p)).
What is especially important, from the results of [17] and [31] it follows that
degp F can be computed in a purely algebraic way as the signature of a cer-
tain non-degenerate quadratic form which is explicitly constructible using the
coefficients of components Fi of F . The same refers to the (global) topo-
logical degree deg F . This method of computing topological degree can be
implemented as a computer algorithm based on the computation of a Gröbner
basis of the ideal (F ) generated by the components of F in the algebra of real
polynomials in s indeterminates (see, e.g., [38]).

In the sequel we need to refer to a general result stating that the Euler
characteristic of any fiber of a given propomap can be expressed through the
local degree as follows. For our purposes it is sufficient to deal only with the
case when all components of the map are polynomials of the same (algebraic)
degree.

Let F : Rs → Rt be a propomap with the components Fi of degree d. Let
y ∈ Rt, Xy = F−1(y), and fi = Fi − yi, i = 1, . . . , t. Notice that Xy is a
compact real algebraic variety so its Euler characteristic is well-defined [6].
Set

hi(x0, . . . , xs) = xd+1
0 fi(

x1

x0

, . . . ,
xs

x0

), Hy =
t∑

j=1

h2
i −

s∑

k=0

x2d+4
k .
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Denote by grad Hy the gradient of Hy considered as a polynomial endomor-
phism of Rs+1.

Theorem 1.1. ([30], [8]) With assumptions and notation as above, polynomial
Hy has an isolated critical point at the origin and the Euler characteristic of
Xy is given by the formula

2χ(Xy) = (−1)s − degO gradHy, (1.2)

where degO gradHy denotes the local degree of gradHy at the origin of Rs+1.

Since the local degree is equal to the signature of the so-called Gorenstein
quadratic form on the local algebra of mapping [17], [31], this theorem shows
that the Euler characteristic is expressible through the signature of an explic-
itly constructible quadratic form. For this reason, we refer to formula (1.1) as
the signature formula for the Euler characteristic. We will also need a similar
result for a compact semi-algebraic subset which can be proven using formula
(1.1) and a standard process of eliminating inequalities by considering two-fold
coverings branched along a subvariety [6], [31].

Theorem 1.2. ([31], [16]) The Euler characteristic of an explicitly given com-
pact semi-algebraic subset can be calculated in algorithmic way in terms of
signatures of explicitly constructible quadratic forms.

We now introduce the setting of configuration spaces of planar polygonal
linkages which we are going to deal with. Mechanical linkages, in particu-
lar planar mechanical linkages, and their configuration (moduli) spaces were
studied in many papers. Linkages may be thought of as mechanisms build up
from rigid bars (sticks) joined at flexible links (pin-joints). Some links may
be fixed in the ambient space and the rest are supposed to be movable. In
many problems it is important to know the totality of possible positions of the
links in the ambient space which led to a (nowadays classical) mathematical
definition of configuration space of a mechanical linkage discussed in big detail
in [11], [28]. In some problems related to modelling conformations of molecules
it appears natural to use a slightly more general concept defined in terms of
weighted graphs. As will be mentioned in the sequel, some of our constructions
and results make sense in this general setting so we recall the corresponding
concept for reader’s convenience.

Recall that a weighted graph is defined as a triple Γ = (V, E, d) consisting
of a set of vertices V , a set of edges E = {(Vik , Vjk

)}, and a weight function
d : E → R+ which assigns to every edge (Vik , Vjk

) certain non-negative number
(length) d(Vik , Vjk

) ∈ R+. We always assume that Γ is connected, i.e., each
pair of its vertices can be connected by a sequence of elements of E.

A connected weighted graph is called N-realizable (or realizable in RN)
if there exists a mapping f : V → RN such that the Euclidean distance
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|f(Vi) − f(Vj)| is equal to d(Vi, Vj) for all (Vi, Vj) ∈ E and each such map-
ping f is called N -realization of Γ. Often by N -realization is simply un-
derstood the corresponding collection (f(V1), . . . , f(Vn)) ∈ RnN such that
|pi − pj| = d(Vi, Vj) if (Vi, Vj) ∈ E but we prefer to use the term configu-
ration of Γ.

A connected weighted graph Γ is called a planar mechanical linkage if it
is realizable in R2. For example, a regular tetrahedron is (by definition) 3-
realizable but not 2-realizable.

The N -th configuration space of Γ can be defined as

CN(Γ) = {N-realizations of Γ}/Iso+(RN),

where Iso+(RN) denotes the group of all orientation preserving isometries of
RN and the factor is taken with respect to its obvious diagonal action on N -
realizations. For N = 2 and N = 3 we speak of planar and spatial configuration
space, respectively.

In other words, we factor out the motions of a realization as a rigid whole.
There are versions of this definition where factoring is over the group of all
(not necessarily orientation preserving) isometries or over the extension of
Iso+(RN) by homotheties. These differences are inessential for our tasks so
we use the simplest definition presented above. Notice that, using the second
interpretation of N -realizations, the same space can be defined as

CN(Γ) = {x ∈ RnN : |xi − xj| = d(Vi, Vj) if (Vi, Vj) ∈ E}/Iso+(RN),

where Iso+(RN) is the group of orientation preserving isometries of RN acting
diagonally on RnN .

Configuration spaces are sometimes called the moduli spaces of mechanical
linkage [29] but we do not use this term in order to avoid misunderstanding be-
cause it has quite a number of different meanings. All configuration spaces are
considered with a natural topology induced by the Euclidean distance. If the
linkage is just a polygon with the fixed sidelengths one obtains configuration
spaces of polygon studied in [49], [29].

From a topological point of view, planar configuration spaces are especially
interesting because it turned out that for any smooth closed (i.e., compact
and without boundary) manifold M there exists a planar mechanical linkage Γ
such that one of the components of configuration space C2(Γ) is diffeomorphic
to M [49], [29]. In many cases Γ can be chosen so that C2(Γ) is connected and
itself diffeomorphic to M .

Given a graph with a fixed combinatorial structure, one obtains a mechanical
linkage by choosing a N -realizable weight function d as above. We say that
some property of a mechanical linkage is generic if it holds for almost all
choices of the weight function. Using Sard’s lemma it is easy to see that, for a
generic mechanical linkage Γ, the N -th configuration space CN(Γ) is a compact
smooth manifold of the dimension Nn− card E − 1

2
N(N + 1), where n is the
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number of vertices of Γ and card E is the total number of edges. Configuration
spaces of planar polygons, which gained a lot of attention in last two decades
[49], [29], appear as particular case of this general definition. Recall that Euler
characteristics of configuration spaces of polygons were calculated in many
cases (see, e.g., [27]). Our first observation is that, in principle, all such results
could be obtained using Theorem 1.1.

Corollary 1.1. The Euler characteristic of N-th configuration space of any
mechanical linkage Γ = (V, E, d) as above can be calculated in an algorithmic
way from its combinatorial data (V,E) and weight function d.

This easily follows from the fact that configuration space is naturally rep-
resented as the fiber of a certain explicitly given quadratic mapping QΓ com-
bined with Theorem 1.1. The components of the mapping QΓ are obtained
by writing down (in canonical coordinates on RnN) the conditions that the
squared distance from f(Vi) to f(Vj) should be equal to [d(Vi, Vj)]

2 for each
edge (Vi, Vj) ∈ E. Obviously one has exactly t(Γ) = card E such conditions.
The action of Iso+(RN) can be used to place one of the vertices at the origin
of RN and direct one of the edges starting from this vertex along the first
coordinate axis. Then it is obvious that CN(Γ) can be identified with the set
of all N -realizations of Γ satisfying the above normalization. Thus QΓ nat-
urally emerges as a quadratic mapping from RN(n−2) to Rt(Γ)−1. For evident
geometric reasons, QΓ is proper and so one can directly apply formula 1.2 by
taking F = QΓ. The result follows by noticing that in virtue of [17], [31] the
local topological degree in the formula (1.2) can be calculated in algorithmic
way. It may be added that the Euler characteristic of any fiber of QΓ can also
be calculated using results of [1].

This result has several concrete applications. As was shown in [34], it en-
ables one to list all possible topological types of configuration spaces of planar
pentagons. Using the scheme of [34] one can also describe all possible topo-
logical types of configuration spaces for planar and spatial quadrilaterals and
for mechanical linkages with two-dimensional configuration spaces [33], [21].

Remark 1.1. Since configuration spaces of linkages can be represented as the
fibres of quadratic mappings it is worthy of mentioning that, for quadratic
mappings, another way of calculating the Euler characteristics of fibers was
proposed in [1]. However we are not aware of computer implementations of
this method so in concrete situations one has to use Theorems 1.1 and 1.2.

Recently, we realized that similar results can be obtained for the so-called
cabled linkages [37] and tensegrity linkages [42], which give a natural mathe-
matical framework for investigating certain mechanical constructions. Infor-
mally, tensegrity linkages are rigid (non-deformable) spatial (3d) constructions
consisting of pin-jointed bars, struts and cables (see, e.g., [42]). Real life pro-
totypes of this concept are often called truss structures [42]. A rigorous general
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definition of tensegrity linkage is somewhat involved and not quite relevant to
our main topics so we’ll stick to the framework of cabled linkages.

It is possible to say that cabled linkages are obtained from spatial linkages
by substituting some of the edges by cables instead of rigid bars where it is
assumed that cables are flexible but nonexpandable. Realizations of a cabled
linkage are defined using an obvious modification of the above definition, the
only difference being that, for each cable element, one imposes the condition
that the distance between corresponding vertices does not exceed the length
of this cable. Subclass of tensegrity linkages can be (informally) characterized
by existence of rigid configurations. Instead of explicating the sense in which
rigidity should be understood we adopt a convention that a cabled linkage will
be called a tensegrity linkage if it has a non-empty finite set of 3-realizations
(cf. [42]).

Examples of real life prototypes of tensegrity linkages were constructed
by Kenneth Snelson in 1948, which has eventually led to appearance of the
above general concept, particularly due to the activity of Buckminster Fuller
(who also stimulated investigation of molecular conformations nowadays called
fullerenes). Main applications of tensegrity linkages are in architecture, engi-
neering and chemistry while the mathematical aspects of the topic seem to
be less developed [42]. As is easy to understand, our approach enables one
to find the number of 3-realizations of a tensegrity linkage with prescribed
combinatorial structure and fixed lengths of bars and cables.

To this end, notice first that the combinatorial structure of a cabled linkage
T can be described by a weighted graph as above. Next, the fact that cabled
linkages are spatial structures corresponds to considering the 3-realizations of
a given graph in R3. Thus it is appropriate to deal with the 3-rd configuration
space, i.e., take N = 3. Finally, we can also formalize the fact that there
are edges of two kinds. Namely, divide E in two subsets Eb (bars) and Ec

(cables) and modify the above definition of configuration space as follows. The
conditions corresponding to edges from Eb remain unchanged, while for each
pair (Vi, Vj) ∈ Ec one imposes a quadratic inequality |xi − xj|2 ≤ [d(Vi, Vj)]

2

instead of the corresponding equality. In this way we obtain a semi-algebraic
set called the configuration space C(T ) = C3(T ) of a cabled linkage T . The
above definition just means that, for a tensegrity linkage, C(T ) is a finite semi-
algebraic set. Hence the number of 3-realizations (or stable configurations)
of T is equal to the Euler characteristic of C(T ). These remarks combined
with Theorem 1.2 immediately yield an analog of Corollary 1.1 for tensegrity
linkages.

Corollary 1.2. The number of distinct 3-realizations of a tensegrity linkage
with given combinatorial type and lengths of elements, can be algorithmically
computed in terms of signatures of explicitly constructible quadratic forms.
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Since it is recognized that the problem of counting all possible configurations
of tensegrity linkage is far from trivial [42], this result may appear useful for
investigating concrete tensegrity linkages. In fact, one may speak of a certain
analogy between 3-realizations of a tensegrity linkage and cyclic configurations
of polygonal linkages because all of them can be interpreted as critical points
of certain functions on the corresponding configuration space. However we will
not develop this analogy here.

Concluding this section we wish to add that similar results can be obtained
for configuration spaces of various other types. For instance, one may consider
flexible polyhedra or spatial polygonal chains where each two adjacent faces
can be rotated around their common side. One can also consider linkages such
that certain vertices can slide along prescribed subspaces or submanifolds of
the ambient space (in other words, possible positions of those vertices should
belong to prescribed submanifolds). Such situations arise in circle packing
problems [46] (the author owes this indication to E.Wegert) and in a well-
known topic of numerical integration concerned with the concept of n-design
[14]. In all those cases one can find the Euler characteristic of configuration
space using the formulae presented above but discussion of these extensions is
irrelevant to our aims.

2. Oriented area as a function on configuration space

We proceed by investigating the oriented area of planar polygon (see, e.g.,
[15]) as a function on configuration space of a planar linkage. Recall that
given an ordered set of n points p1 = (x1, y1), . . . , pn = (xn, yn) in the plane,
the oriented area A of corresponding n-gon is defined by the formula

2A = (x1y2 − y1x2) + . . . + (xny1 − ynx1). (2.1)

In this section we use symbol C2(n) to denote the configuration space of
planar n-gon with unspecified but fixed sidelength vector l. In other words,
C2(n) is the collection of all possible planar configurations of n-gon linkage. In
this context ”n-gon linkage” means essentially the same as ”n-gon with fixed
(prescribed) sidelengths”.

We wish to deal first with generic sidelengths, which as usual means that
vector of sidelengths l is taken from an (unspecified) open dense subset Un of
the parameter space of planar n-gons. In the case of planar polygonal linkages
as above, the parameter space is an open subset Pn of the positive n-orthant
Rn

+ and one can explicitly indicate a collection of hyperplanes Bn, called the
bifurcation diagram of configuration space C2(n), such that the aforementioned
open subset Un of generic sidelengths is equal to the complement of Bn in
Pn. Thus most of our considerations make sense for planar polygons with the
sidelength vector belonging to Un. The connected components of Un, called
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chambers, play an essential role in the topological study of configuration spaces
[29].

By what was said above, for generic sidelengths (in the above sense), the
configuration space C2(n) is a compact orientable smooth manifold of dimen-
sion n–3. Moreover, it is known that the topological type (homeomorphism
class) of C2(n) is the same for all sidelengths belonging to the same chamber
[29]. As was explained, C2(n) can be defined as a fibre of a proper quadratic
mapping Ql : R2n−4 → Rn−1 and the bifurcation diagram Bn can be identified
with the set of singular values of Ql [29].

To make this quite precise, notice that the action of Iso+(R2) obviously
does not change the totality of configurations of a planar linkage. Thus we
can change its position in the plane using the action of this group. In this
way, we obviously can place the first vertice at the origin and the first side
along the Ox-axis. It is also easy to realize that a homothety transformation
of polygon does not change the topological type of its configuration space.
Thus we may assume that the first side is of length 1, i.e. l1 = 1, without
loss of generality. It follows that we may assume that the first two vertices are
v1 = (0, 0), v2 = (1, 0) and we keep this assumption from now on. This done,
it becomes obvious that the configuration space can be defined as a fibre of a
quadratic mapping as above.

In order to complete the description of our setting, notice that the ori-
ented area of polygon naturally defines a (infinitely) differentiable function
A : C2(n) → R on each configuration space. Our aim is to study the critical
points of A for a generic sidelength vector belonging to Un. For n = 4 (planar
quadrilaterals) and n = 5 (planar pentagons), it is easy to obtain consider-
able information about singularities of A using the signature formulae. To
describe our approach in a consistent way, let us present relevant results about
the topological structure of configuration spaces C2(4). In doing so we freely
use standard topological concepts and methods of singularity theory [2]. The
topological structure of configuration spaces of generic quadrilaterals can be
described as follows.

Proposition 2.1. The bifurcation diagram B4 consists of eight hyperplanes
{c1a1 + c2a2 + c3a3 = 1, ci = ±1} and its complement in P4 has eight connected
components.

Proposition 2.2. Each generic configuration space C2(4) is homeomorphic
either to circle S1 or to the disjoint union of two circles.

Actually, one can also describe all possible topological types of C2(4) for
non-generic sidelengths as well and the signature formulae appear helpful to
this end. For example, using the method of Section 2 one easily finds that
the Euler characteristic of the planar configuration space of square is equal
to −3. With some additional work it can be shown that this space is homeo-
morphic to the union of three circles each pair of which has a common point,
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which of course gives the same value of the Euler characteristic. In fact, per-
forming similar calculations for each component of U4 one can show that the
Euler characteristic of moduli spaces of non-degenerate planar quadrilaterals
can only take four values: 0,−1,−2,−3 (formally, one could also consider de-
generate quadrilaterals where the length of the longest side is equal to the
sum of the other three sidelengths in which case the configuration space is
obviously one point). Moreover, one can describe the local geometric struc-
ture of possible singularities of C2(4) so that the topology of C2(4) is known
in great detail, which gives a sufficient background for determining the global
behaviour of area function on such configuration spaces.

Let us now count the critical points of A. Assume as above that l1 = 1, v1 =
(0, 0), v2 = (1, 0). Then C2(4) is defined by three obvious quadratic equations
with four unknown coordinates of movable vertices v3, v4. The area function
in this case is given by 2A = x3y4–x4y3 + y3. One can now introduce Lagrange
multipliers c1, c2, c3 and obtain a (7× 7)-system of quadratic equations, (first
four coordinates of) solutions to which give the critical points of A. It is quite
easy to compute the jacobian of these equations and show that the equations
are algebraically independent and the set of solutions is finite. Hence the
number of critical points of A is also finite and equal to the number of real
solutions to this system. Since the Euler characteristic of solution set can
be effectively computed using the signature formulae, we conclude that the
number of critical points of A can be found for each concrete sidelength vector
l ∈ U4. Using standard topological arguments it is easy to show that the
qualitative behaviour of A remains the same for each component of U4. Thus
to achieve a complete investigation of area function it is sufficient to choose a
vector of sidelengths in each component of Un and find the number of critical
points for those concrete sidelengths using Theorem 1.1.

Realization of this program yields the following results. If a generic configu-
ration space has one component (homeomorphic to circle), then the number of
critical points is equal to two (one maximum and one minimum). If a generic
configuration space has two components, then the number of critical points is
equal to four (one maximum and one minimum on each component). It can be
verified that all these critical points are non-degenerate and so A is a Morse
function on C2(4).

One can further explicate this conclusion as follows. According to a classical
result of J.Steiner, each polygonal linkage L has a convex cyclic configuration
and A attains its maximum, say M , precisely at this configuration (see, e.g.,
[19]). Due to the skew-symmetry of oriented area, the minimum value of A
on C2(L) is −M and it is attained at the configuration obtained from the
preceding one by reflection in the first side of linkage L, which in our setting
obviously reduces to changing the signs of ordinates of all vertices (since the
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first side is placed on the Ox-axis). Moreover, one can express M in terms of
sidelengths by Brahmagupta formula and get:

M2 =
1

16
(2a2b2 + . . . + 2c2d2 − a4 − b4 − c4 − d4 + 8abcd), (2.2)

where a, b, c, d are the sidelengths and p is the half-perimeter of L [43].
Next, using Lagrange multipliers it is fairly easy to show that each critical

point is given by a cyclic configuration (cf. [34] for details). If the configuration
space has two components, then A is positive on one of them and negative on
another one. In this case there also exists a self-intersecting cyclic configuration
of L which corresponds to the minimum of A on the positive component. It
is known (see, e.g., D.Robbins [43]), that the area of a self-intersecting cyclic
configuration is given by the following analog of Brahmagupta formula:

m2 =
1

16
(2a2b2 + . . . + 2c2d2 − a4 − b4 − c4 − d4 − 8abcd). (2.3)

Thus the minimum of A on the positive component can also be computed
in terms of sidelengths. Taking into account that m should be real, the latter
formula can only be applied when the right hand side is positive. It’s easy to
verify that the r.h.s. is positive if and only if the configuration space has two
components. Elementary as it is, this observation seems remarkable since it
establishes a precise relation between the topology of configuration space and
cyclic configurations.

Next, with a little more work one can verify that, for generic sidelengths,
the critical points of A are non-degenerate, i.e., A is a Morse function on
C2(4), and their indices (in the sense of Morse theory) can be read off their
geometry (shape). These observations were in fact quite instructive because
their formulations were independent of the number of sides of linkage and
they fitted nicely to some results and conjectures of D.Robbins. So it became
tempting to conjecture that similar statements remain true for linkages with
arbitrary number of sides [33]. Namely, the following four conjectures have
been formulated in [33].

Conjectures CA. For a generic n-gon linkage L with smooth planar con-
figuration space C2(L), the following four statements hold true:

(CA1) the critical points of area on C2(L) are given by cyclic configurations
of L;

(CA2) the critical values of area can be calculated as the roots of a certain
explicitly constructible polynomial;

(CA3) the critical points are non-degenerate;
(CA4) the Morse indices of cyclic configurations can be read off their shape.
Let us at once add that these conjectures obviously make sense for a planar

open polygonal chain (or planar multiple pendulum), in which setting they can
be (conveniently) denoted as (CA1*, ... , CA4*). Notice that in the case of
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an open n-gonal chain the configuration space is (obviously) diffeomorphic to
(n − 1)-torus T n−1. It should also be noted that there is no direct reduction
of one setting to another and in fact there are essential differences between
these two settings. In this paper we basically confine ourselves to the case of
polygonal linkage and often speak of a closed polygonal chain in order to make
more visual the parallels and differences between two settings. The results on
open chains will be mentioned only occasionally.

All these conjectures appeared to be true (some under additional assump-
tions) in considerable generality and our main aim here is to describe these
results and present a number of new ones related to conjectures (CA1-CA4).
In fact, we believe that they may serve as a (sort of) paradigm for studying
the critical points of other geometrically or physically meaningful functions
on configuration spaces, like oriented volume, Coulomb energy of unit charges
placed at vertices, sum of (or sum of pairwise products of) diagonals or nor-
malized determinant considered by M.Atiyah [3] (more detailed comments on
such perspectives are given in the last section). Having in mind these and
some other generalizations, in this paper we avoid going into details specific
for polygonal linkages and concentrate on more general aspects of the topic.

It should be noted that (CA2) is in fact equivalent to a (weakened form
of) conjecture formulated by D.Robbins in [43] as a statement concerned with
calculation of the areas of cyclic polygons in terms of the lengths of their sides.
However D.Robbins did not use the concepts of linkage and configuration space
so the aforementioned relation between the two conjectures can only be stated
after having proven (CA1).

We now briefly describe the state-of-the-art regarding the four conjectures
above and then present more extended comments and new developments.
(CA1) has been proven [35] for arbitrary n. The Robbins conjecture has been
thoroughly studied and proven in full generality in [44], [10], [19]. Thus our
proof of (CA1) automatically implies validity of (CA2) for generic polygonal
linkages with arbitrary number of sides. (CA1*) has been proven for generic n-
arms with n arbitrary in [36] (even in a bit more precise form). Thus (CA2*)
also holds true in full generality. Thus the first two conjectures hold true
for generic closed and open planar polygonal chains with arbitrary number of
sides.

The third pair of conjectures appeared more hard, although there is prac-
tically no doubt that they are also correct. (CA3*) has been proven in [36]
for triple planar penduli using the parametric transversality theorem (or para-
digm) described, e.g., in [2]. The argument used in [36] is obviously applicable
for arbitrary n as well as for closed chains but the calculations become too
involved already for quadruple penduli and we failed to see the pattern for
general argument. So maybe it is not reasonable to apply this method in
straightforward way in general case and one should look for a more ingenious
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approach. However one can prove (CA3) for generic quadrilateral linkages by
a straightforward calculation of Hessian of area.

Situation with (CA4) and (CA4*) was obviously even more complicated
since one should first invent a way of calculating indices of cyclic configurations
from their geometry and this was by no means obvious. For n = 4 and n = 5
the indices have been calculated in [33], [18], but the form of those results
did not suggest a reasonable general algorithm. Such an algorithm has been
recently announced in [41] with outline of proof and the result looks quite
plausible but one should still wait for a detailed proof, which is promised
to follow soon. Granted this it should be already much easier to work out
a modification of the algorithm and prove its validity for arbitrary planar
multiple penduli. Thus there is good evidence that all these conjectures are
correct.

Quite complete and satisfactory as they are, these results by no means ex-
haust the suggested paradigm but rather suggest further perspectives as we
are going to show in the sequel. Before passing to generalizations we present a
few more comments. Recall that the following two basic results were obtained
in [35] and [36], respectively.

Theorem 2.1. ([35]) For a generic n-gon linkage L with nonsingular planar
configuration space, all critical points of A on C2(L) are given by the cyclic
configurations of L.

In order to formulate an analogous result for planar (robot) n-arms (or mul-
tiple planar penduli [36]) we need an ad hoc definition. For each configuration
v1, . . . , vn of a planar n-arm define the connecting side as the segment vnv0.
A cyclic configuration of a planar n-arm is called diacyclic if the center of its
circumscribed circle lies on the connecting side (thus vnv0 is a diameter of the
circumscribed circle). Obviously, the planar configuration space of n-arm is
diffeomorphic to torus T n−1.

Theorem 2.2. ([36]) For a generic planar n-arm R, all critical points of A
on C2(R) are given by the diacyclic configurations of L.

Both these theorems were proved by geometric methods but since all objects
are of algebraic nature we had in mind finding purely algebraic proof, which
appeared possible and suggested an algebraic reformulation of the basic result.
The main idea of the algebraic proof is to compare the polynomial system
defining the cyclic configurations with the one obtained from the Lagrange
multipliers method.

It is easy to see that the critical points of A in a generic configuration space
C2(n) can be counted as the real solutions to a certain (2n−4)×(2n−4)-system
Sl of polynomial equations depending on parameters li. Indeed, according to
Lagrange rule the gradient ∇A at a critical point should be linearly dependent
with the gradients of defining quadratic equations gi = l2i , i = 1, . . . , n− 1. In
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other words, the rank of Jacobi matrix (∇ g1, . . . ,∇ gn−1,∇A)T should be
equal to n − 1, which is equivalent to vanishing of all of its (n × n)-minors.
Since the number of variables is 2n − 4, generically this can be expressed by
vanishing of any collection of n−3 minors. Joining the arising n−3 polynomial
equations to the defining equations gi = l2i we obtain a system Sl mentioned
above. Notice that the left-hand-sides of this system do not depend on the
sidelengths li.

Analogously, using the well-known determinantal criterion of concyclicity for
four points (see, e.g., [13]) it is also easy to see that the cyclic configurations
correspond to the roots of another (2n− 4)× (2n− 4)-system Tl of polynomial
equations in the same 2n−4 unknowns. By Theorem 2.1, for all generic values
of parameters li, the projections of sets of real solutions to these two systems
on the ambient space of linkage coincide: P (ZR(Sl)) = P (ZR(Tl)). In view of
Nullstellensatz this fact indicates that there exists some kind of strong relation
between the two systems of equations and it is natural to have a closer look
at the ideals generated by their left-hand-sides.

The essence of matters can be clearly seen in the case of quadrilateral. The
Lagrange condition in this case is expressed by vanishing of the determinant
of Jacobi matrix (∇ g1,∇ g2,∇ g3,∇A)T . Thus the first system Sl in this
case is obtained by adding just one polynomial equation {P1 = 0} of algebraic
degree four to the defining equations of configuration space. At the same time,
the aforementioned determinantal concyclicity criterion for four points is also
expressed by a polynomial equation {P2 = 0} of (algebraic) degree four (all
equations are written in terms of Cartesian coordinates of movable vertices).
A direct computation shows that P1 is a scalar multiple of P2, which means
that all critical points satisfy the concyclicity condition and vice versa. Notice
that this conclusion now holds for all sidelengths and not only for generic ones.
Moreover, we see that the ideals I(Sl) and I(Tl) generated by the left-hand-
sides of both systems in the polynomial ring R4 coincide, which gives us a
pattern for the general case.

Proposition 2.3. For each quadrilateral linkage, one has the equality of ideals
I(Sl) = I(Tl) in R4.

It is now natural to extend our discussion of critical points of A to the case
of a singular configuration space. Taking into account that the underlying
space is a real algebraic variety with isolated singularities it becomes possible
to use the setting and results of the stratified Morse theory [23]. The general
definition of critical point from [23] in our situation reduces to the zero-set
of the ideal Sl. Finally, remembering that the concyclicity condition is also
fulfilled if the four points lie on the same straight line, we arrive to the following
result.
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Proposition 2.4. For each quadrilateral linkage Q, all critical points of A
on the planar configuration space C2(Q) are given by either cyclic or aligned
configurations of Q.

To show that this explication is essential, it is sufficient to look at the set of
critical points of area on the configuration space of a rhomboid (all four sides
of equal length). As is easy to see, it consists of three aligned configurations
(one of which is cyclic as well), four open arcs of cyclic configurations and two
isolated cyclic configurations.

To generalize the above discussion to n-gonal linkages with arbitrary n, let
us define the two ideals I(Sl) and I(Tl) in R2n−4 as the corresponding Fitting
ideals of the two matrices introduced above. Now, using Proposition 2.3,
specific sparse structure of the two matrices and induction one easily arrives
to the desired generalization of Theorem 2.1.

Theorem 2.3. For arbitrary n, the ideals I(Sl) and I(Tl) coincide.

One can now derive various conclusions in the spirit of Proposition 2.4 which
we will not dwell upon. Instead we notice that the same reasoning enables one
to obtain a similar extension of Theorem 2.2. However there arise some nuances
related to the condition of diacyclicity which we do not wish to discuss here
so we omit the corresponding statement for open linkages.

Returning to the case of quadrilateral notice that, taking into account the
squares of sidelengths in the r.h.s. of the above equations, each of the two
systems is a so-called free term deformation [2] of the same proper polynomial
endomorphism F4 of R4. In view of discussion in Section 1, its mapping degree
Deg F4 is well-defined. For quadrilateral linkage this does not give anything
interesting, since one can use our formula (1.2) to show that Deg F4 = 0.
However, notice that similar considerations yield a proper polynomial endo-
morphism Fn for arbitrary n. It would be interesting to find out if its degree
is sometimes non-zero and if so, what useful information one can derive from
the value of its degree.

Remark 2.1. The above comments show that polygonal linkage itself can be
considered as a deformation of a certain nonhomogeneous real quadratic map-
ping Q : R2n−4 → Rn−1. One can complexify it and it’s easy to check that it
has an isolated singular point at the origin. Thus its Milnor number is well-
defined and can be computed by the well-known formula due to Lê [39]. It
is now interesting to investigate how this can be used to obtain topological
information on configuration spaces of n-linkages (say, to obtain an estimate
for the sum of Betti numbers of configuration space).

3. Areas of cyclic polygons

We now intend to describe some applications of the above constructions and
results to the study of cyclic polygons by their own in the spirit of conjectures
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of D.Robbins [43]. Recall that the problem of counting and constructing cyclic
polygons was considered in [43], [51]. The geometric results contained in those
papers agree with the ones obtained by our methods.

As we have seen, the critical values of area function on configuration space
of a generic polygon can be explicitly calculated in terms of sidelengths. The
results of [43], [51] suggested a stronger version of this conjecture, namely, that
the set of critical values coincides with the set of real roots of a certain explic-
itly computable polynomial (the generalized Heron polynomial of D.Robbins
[43]). This is indeed true and we’ll now outline how this can be derived from
the properties of multidimensional logarithmic residue (MLR) [50] (one of the
guises of Grothendieck residue symbol [31]). The next statement is formulated
as a paradigm because we make no attempt to explicate the condition of gener-
icity and provide a rigorous proof. We believe that this makes sense since this
formulation gives a sort of ”raison d’être” for the results of [43], [51], [40] and
may serve as a guide for further research.

Paradigm 1. Let f, g1, . . . , gk ∈ Rn, k ≤ n − 1 be a generic set of real poly-
nomials in n variables. Suppose that the level set X = {g1 = 0, . . . , gk = 0} is
smooth and compact. Then the critical values of restriction f |X are the real
roots of a real polynomial in one variable whose coefficients can be algebraically
expressed through coefficients of f, g1, . . . , gk.

This can be derived from elimination theory by an argument similar to the
ones used by D.Robbins [43] and [10] but such an argument does not provide
a way of computing the corresponding polynomial. We describe a different
approach based on the properties of multidimensional logarithmic residue [50]
which, in principle, enables one to effectively calculate the coefficients of sought
polynomial since logarithmic residues can be computed using results of [50].

We start by some general facts concerned with MLR. Recall that the (global)
MLR is defined for a polynomial f ∈ CN with respect to a generic system
G = (g1, . . . , gN) of N complex polynomials by a well-known formula of Cauchy
integral type for which we refer to [50]. It is a complex number which will
be denoted by ResG f . In fact, it is required that polynomials gi form a
system of parameters, hence their zero set is finite [50]. If all polynomials
in question are real then ResG f ∈ R. It is also known that, if all roots
zi ∈ Cn of polynomial system {G = 0} are simple, then ResG f is equal to
the sum of fractions f(zi)/JG(zi) over all roots of {G = 0}, where JG = J(G)
is the jacobian of G. Thus ResG fkJG is equal to the sum of k-th powers
of values of f at the roots of {G = 0}. In other words, if one introduces a
(generalized Heron) polynomial H(f, G) whose roots are the numbers f(zi)
then ResG fkJG are the Newton sums of its roots. Hence the coefficients of
H(f,G) can be algebraically expressed through the first d Newton sums, where
d is the degree of H(f,G) (i.e., the number of roots of {G = 0}). At the same
time the numbers ResG fkJG can be effectively computed using the formulae
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and algorithms from [50]. Hence the coefficients of H(f, G) are also computable
in an algorithmic way. Thus the values of f at the roots of {G = 0} can be
computed as the roots of H(f,G). Moreover, if all polynomials in question are
real then the values of f at the real roots of {G = 0} can be computed as the
real roots of equation H(f, G) = 0.

It is now obvious how to apply this scheme in the situation of our paradigm.
Namely, writing down the Lagrange equations for the critical points of f |X
in the ”multiplier-free” form used above, one obtains a system S of n real
polynomial equations in n variables first k of which are the given polynomials
gi. Notice that the critical values of f |X are by definition the values of f at
the real roots of {S = 0}. Hence they can be computed as the real roots of
the polynomial H(f, G) introduced above. If the system of polynomials gi is
generic then the number of roots of {S = 0} is equal to the product of degrees
of equations (Bezout number), which provides the number d used in the above
considerations. Now we can calculate the residues ResS fkJS for k = 1, . . . , d
and find the coefficients of H(f, S), which gives the desired statement.

We do not make attempts to make the above argument rigorous because for
us this paradigm is basically of methodological importance. Indeed, combining
these considerations with our approach to configuration spaces and Theorem
2.1, one concludes that the results of [43], [10], [51] concerned with the existence
of generalized Heron polynomials for areas of cyclic polygons appear to be
very special cases of Paradigm P1. What seems even more important, they
can be applied to many other functions on configuration spaces of linkages, in
particular, to the energy functions of the type considered in the last section.

4. Area as a Morse function

In this section we present short comments on conjectures (CA3) and (CA4).
As was already mentioned, (CA3) for quadrilaterals can be proved by a direct
verification. For 3-arms, (CA3*) has been proven in [36] using the parametric
transversality theorem. A thorough examination of the proof shows that the
same reasoning can be applied for n-arm with arbitrary n. We do not formu-
late and prove those results here because we have recently realized that they
are special cases of the following general statement which we again formulate
in the form of a paradigm since we do not possess a rigorous proof in full gener-
ality. However there is little doubt that it can be proved using the parametric
transversality theorem along the lines of [36].

Paradigm 2. Let f, g1, . . . , gk ∈ Rn, k ≤ n−1 be algebraically independent real
polynomials in n variables such that g1, . . . , gk define a propomap G : Rn → Rk

which is generically of maximal rank k. Then, for generic l = (l1, . . . , lk) ∈ Rk,
the level surface Xl = {g1 = l1, . . . , gk = lk} is smooth and all critical points
of restriction f |Xl are nondegenerate (in the sense of Morse theory).
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Let us now describe the scheme of the proof. Smoothness of generic level
surface follows (of course) from Sard’s lemma. Consider now a generic level
Xl such that Jacobi matrix DG has maximal rank k at each point x ∈ Xl.
Without loss of generality we can assume that l = 0k and the minor formed
by the first k columns is nowhere vanishing on X0 = X0k

, which implies that
condition {G = l} is (locally) equivalent to u = R(v, l), where u denotes the
vector of first k coordinates of x, v denotes the vector of remaining n − k
coordinates and R is a differentiable function provided by implicit function
theorem. Then, for l close to 0k, the set S(f̂l) critical points of f̂l = f |Xl

is defined by the system of equations ∇uf̂l = 0 which can be written down
explicitly in terms of partial derivatives of f, gj by the same implicit function
theorem.

We now wish to show that, for generic l, the hessian h(f̂l) = det H(f̂l) of

f̂l is nonvanishing at all critical points of f̂l. Having in mind to apply the
parametric transversality theorem, let us consider the ”full” gradient ∇vlfl

and ”full” Hessian matrix H̃(fl) = D(∇vlf̂l) of f̂l taken with respect to all

n coordinates v, l appearing in f̂l. To apply the parametric transversality
theorem we need to show that ∇vlf̂l is a surjection over the origin of Rk. To
this end we calculate the second partial derivatives of f̂ by implicit function
theorem and examine the ”rightmost” k × k minor of H̃(fl) on the critical

set S(f̂l). For k = 1, it is straightforward to write down the entries of H̃(fl)

and simplify them using equations ∇uf̂l = 0 to see that nonvanishing of h(fl)
is equivalent to functional independence of f and G = g1. Thus, for k = 1,
one can indeed use the parametric transversality theorem to obtain the desired
conclusion. It seems that it should be possible to establish the paradigm in
full generality using induction but we are not yet able to overcome the arising
technical difficulties.

Anyway, we were able to proof the nondegeneracy of critical points for many
functions on configuration spaces so it is quite reasonable to consider the prob-
lem of calculating the Morse index of a critical point. A general method for
calculating the Morse indices in the setting of Paradigm 2 is provided by the
results of [24]. Namely, one just needs to calculate the so-called bordered Hes-
sian of the Lagrange function L = f +

∑
λigi and then the formulae from

[24] can be used to calculate the Morse index at each nondegenerate critical
point of f |Xl. Notice that this setting is meaningful even for k = 1, where it
enables one to establish a relation between Morse indices of f |{g1 = b} and
g1|{f = a} by looking at the behaviour of their gradients near a point p ∈ Rn,
where the level surfaces {f = a} and {g1 = b} have a first order tangency. One
may now wish to extend the above paradigm in such a way that it becomes
applicable to singular level surfaces as well. It seems that a natural framework
for such an extension is provided by the stratified Morse theory of M.Goresky
and R.McPherson [23].
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Regarding the signed area function on planar configuration space of a polyg-
onal linkage, it is especially interesting to find ways of computing the Morse
indices in terms of geometry of a cyclic (critical) configuration. As was already
mentioned, an algorithm for computation of Morse index of A in terms of ge-
ometry of a cyclic configuration of polygonal linkage was recently suggested
in [41]. There is little doubt that the method and the main result of [41]
may be modified to solve the problem for robot n-arms as well. It would also
be interesting to investigate if some information about the Morse indices of
cyclic configurations can be obtained using the generalized Heron polynomials
provided by [43] and our Paradigm 1.

5. Concluding remarks

We are going to describe a number of similar settings for which our conjec-
tures and results may serve as a paradigm. First of all, it is quite interesting
to investigate the critical points of area in singular configuration spaces. Quite
a lot is known about the structure of singular points of such spaces (see, e.g.,
[28]) and many examples have been investigated in big detail (see, e.g., [28],
[33]). As we have already seen, unlike to the generic case, critical points can be
non-isolated and they may also be given by aligned configurations. Both these
phenomena are observed for rhomboid linkage. This can be seen directly and
also follows from the algebraic considerations in Section 2. A natural way to
study singular cases is to examine the zero locus of the ideal I(Sl) introduced
in Section 2 using Gröbner bases and other tools of computer algebra.

Taking into account our Paradigm P1, it seems plausible that (CA2) is also
valid in this wider context. As to (CA3) and (CA4), they can be investigated
in the framework of stratified Morse theory of M.Goresky and R.McPherson
[23]. Namely, one can await that the area is a Morse function in the sense
of [23]. In singular case, instead of calculating Morse indices one can try to
describe the normal and tangential Morse data introduced in [23] and this
should be possible in terms of the shape of a critical configuration.

Next, one may try to treat in a similar way certain other natural functions on
the configuration space of polygonal linkage L which are sometimes called the
energy functions due to their interpretations and applications [9], [20]. For each
positive r and configuration V ∈ C2(L), function Er can be defined as the sum
of lengths of diagonals of V taken to power r. The most important examples of
such functions are given by the sum of diagonals D = E1 and sum of inverses of
lengths of diagonals E = E−1 (Coulomb potential) but some other functions on
C2(L) have also been considered in the literature [3], [9], [12]. For an integer
r, critical points of Er can, in principle, be treated using our approach, in
particular, their critical values should be algebraically computable in terms of
sidelengths in the spirit of generalized Heron polynomials of D.Robbins [43].
For brevity, we will only present a few remarks concerned with D and E.



CYCLIC POLYGONS AS CRITICAL POINTS 21

Notice that the absolute minimum of E defines the equilibrium of the sys-
tem of equal charges placed at the vertices of linkage and is thus relevant to
some problems emerging in electrostatics (see, e.g., a recent paper [20]). In
particular, it is known that, for a regular linkage, the absolute minimum of E is
given by its convex cyclic configuration (having the shape of regular polygon)
[20] (the same is true for D). For regular quadrilaterals and pentagons, one
can directly verify that the absolute minimum of E is nondegenerate (Hessian
matrix is nondegenerate). Granted this, a routine application of implicit func-
tion theorem proves that the same is true for linkages sufficiently close to the
regular one and the global minima of E for such linkages are close to the regu-
lar polygon. In particular, the minimal positive root of the generalized Heron
polynomial for E would give the effective electrostatic energy in equilibrium.
In both these cases using Lagrange method and some elementary algebraic ma-
nipulations it’s easy to write down a system of polynomial equations describing
the critical points and estimate their quantity using our signature formulae.
However, it appears difficult to derive any conclusions about the shape of
critical configurations directly from the corresponding system of polynomial
equations.

So a more elaborate strategy is needed to achieve some understanding of
critical points of E and our conjectures (CA1)-(CA4) suggest a possible line
of thinking. However, it was a priori clear that there was no hope for results
similar to Theorem 2.1 since it was known that already the number of local
minima of E is growing quite fast with n (see, e.g., [20], [4]). So there are
typically many more critical points of E on C2(L) than cyclic configurations
of L. In many concrete cases this can be shown by merely computing the
number of critical points using our signature formulae and comparing it with
the maximal number of cyclic configurations given by Robbins formula [43].

For linkages with a small number of sides, the interior angles of cyclic con-
figurations can be explicitly expressed through sidelengths. Taking the angles
as local coordinates on C2(L) and substituting them into equations obtained
by Lagrange method, one can verify if cyclic configurations are indeed critical.
For quadrilaterals, the cosines of interior angles of cyclic configurations are
easily computable in general case and one can check that cyclic configurations
are no longer critical points of E even in the case of a kite with sidelength
vector (a, a, b, b) with a 6= b. As a certain substitute for (CA1) one can com-
pare the critical points of D with those of E. There are no reasons for them
to coincide always but, as we have seen, sometimes this happens for the global
minimum of E. One can formulate several natural problems in this topic but
there are yet no results worthy of mentioning.

Next, it should be possible to prove the existence of a Heron-Robbins poly-
nomial in both these cases in the framework of our general paradigm P1.
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However, it remains obscure how to write down these polynomials in an ex-
plicit form. In principle this can be done algorithmically by computing a finite
number of Grothendieck residues, which can be done quite effectively (see, e.g.,
[50]). The nondegeneracy of the critical points of D and E should follow in
the framework of our Paradigm P2. This can be rigorously done for n = 4 but
the general case remains unsolved. And of course there is also the problem
of calculating Morse indices for typical critical configurations. Results and
constructions from [41] may appear helpful for working out an algorithm for
Morse indices.

Furthermore, notice that functions Dr can also be defined for arbitrary pla-
nar graphs. It’s unclear what could be a reasonable extension of our first
conjecture to this setting but the three others still make sense and may be
conveniently denoted as (CΓ2 − CΓ4). Moreover, our paradigms P1 and P2
provide good evidence for validity of CΓ2 and CΓ3 in reasonable generality. If
Γ is just an open polygonal chain then these statements are especially plausible
(cf. Theorem 2.2). Thus our approach may apparently yield a number of fur-
ther developments concerned with critical points of functions on configuration
spaces of planar linkages.

In conclusion, we outline similar settings for higher-dimensional configura-
tion spaces. For example, the oriented volume V is defined for a polygonal link-
age in an ambient space of arbitrary dimension, while energies Dr are defined
even for arbitrary graphs. In three dimensions one can in addition consider the
normalized determinant introduced by M.Atiyah [3]. Our paradigms suggest
that in all these cases one generically obtains a Morse function on configuration
space Ck(L) and its critical values can be calculated as the roots of a certain
explicitly computable polynomial in one variable. In the case of normalized
determinant this may help to prove the Atiyah conjecture on the positivity of
normalized determinant for configuration spaces of polygonal linkages.

Finally, part of our discussion makes sense for linkages in the spaces of con-
stant curvature, in particular, for spherical linkages. Some results for spherical
linkages have been obtained in [22] but this issue remains largely unexplored.
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