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LOWER ESTIMATES FOR THE SUPREMUM

OF SOME RANDOM PROCESSES

B. I(ASHIN AND L. TZAFIURl*

In this paper we consider randoln processes of the type

Il

L ~j(t)'Pj(x),
j=1

where {~j} j'=l is a systenl of independent randonl variables on a probability space
(T, T, T) and <I> = {CPj}jl=1 is a systenl of functions in an L2()[, E,p) -space with
(~Y, E, p) being anothcr proba,bility spacc.

Many probleills in functional analysis anel probability theory lead to the inves
tigation of the expectation (relative to T)

11

JE 11 L ~j(t)l.pj(x) IIL~(It) .
j=1

A well-known result of this type having Inany applications is the esthnate

"
JE 11 L'1'j(t)e2rrij

;V IIL=:S C(n log 11.)1/2,
j=1

(1)

(2)

( with {1'j ( t )}~ I being thc usual Raelcnlachcr variables), firs t formulatcel in an
explicit Inanner by H.. Salenl anel A. ZygnnulCl [7]. In the sanle paper [7], it was
shown that the esthnate (2) is exact in the sense that

H

JE 11 L Tj(t)e2rrij
;l; lIL

N
~ c(n log 11.)1/2,

j=l

for all 11. anel sonle constant c > O.

A sinlilar question was considercd for stationary Gaussian processes whilc trying
to find necessary and sufficient conditions for thc continuity H.S. of thc trajectory
of processes of the type

co

L ajrj(t)e2rrijx,
j=1

*This work was perfol'med while both authors visited the !vlax-Planck-lnstit.ute in Bonn, GermRny.



with (Lj E IR for an j l anel {/j}~l being a systenl of independent Gaussian variables
satisfying 1E''''fj = 0 aud JEI J j 12 = 1, for an j (cf. X. Fernique (2]).

The behaviour of the expression (1) in the case when {r.p j} is a system of char
acters of a loca11y conlpact abelian group G rcstrictcel to a conlpact synullctric
neighbourhood 11 of the ielentity clelncnt 0 E G was considereel in papers of lvIar
cus, Pisier, Talagrancl anel others. A cletaileel presentation of this topic can be
founel in thc books [5J and [4J. The approach to obtain lower estinlates useel in [5J
anel [4] is based on the conlparison of the expectation (1) with the quantity

JE 1I L '"'0 (t )r.p j ( x) 11 f., co ( JI b
j=l

(3)

which in turn is estilnatecl by using variants of Slepian's len1n1a. This leInma enahles
us to estimate froI11 below expressions of the fonn

"

anel thus also the expression (3), provieleel that the points {Xk}k=l are chosen in 11
in such a l11anncr so that the vectors

k = 1,2, ... ,rn., are far away fron1 each other in the euclidean Inetric in Cn
. In this

way, the lower cstiI11ate of (3) is contro11ecl by the € -entropy in the C!i -Iuetric of
the set r ~ = {lVz:} xE F. Thc realization of t.hc ahovc prograrn is not tri vial even in
relatively siluple cases.

The Iuethod used in the present paper relies instead on a sharper version (with
precise estiluates of the error tenn) of the central liluit theoreIll for sequences of
independent vectors in IR. 2

• Dur approach is, in 80n1C sense, areturn to the original
Iuethod of R. 8a1eIu anel A. ZygIuund [7] though their Iuethod calu10t be applied
elirectly in this case. The al'gulllcnt clescribed bclow is not linütecl in use for the
theorenl provecl in the sequel but ean be applied also to 1nore general situations (
see also the remarks at the end of the paper). Thc lower estiIllate of (1) is connected
with a special selcction of points {:/: k} i.~~ 1 in X which Inaxilnü~es SOlne cnergy type
functions. In the case considered in thc paper, the Inain role of the selection i8 to
ensure that the average

111

is relatively sl11a11, which is llluch easier than guaranteeing thc eondition appearing
in the entropy estinlate of r<fl that a11 the scalar pro cluc ts (vi!x Je' llVXl)' k =1= e, are
sma11 in absolute value.
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Theorenl. For every lVI < 00 thcre exists (L consta11,t C = c(lVI) > 0 s'uch that,

whenevcr {tpd i= 1 is CL system of fnnctions in an L 2(tl) -space s(Liisfving:

20
11 2::;::1 aitpi I[ L 2 (1l):::; 1I1(2::;~ 1 lai 1

2 )1/2) für all {ad i~l}

(Lnd {~i} i~ 1 are inrlependent random, variab1es over a probability spa ce (T, r, T)
with

30 JE(~;) = 0, JEI~iI2 = 1 and (JEI~iI3)1/3 :::; AI) für all -i}

then

n

JE 11 L~itpi IILoo(It)~ c(n log n)I/2
i=1

The proof consists of several steps.

Step 1. For € > 0 consider the set

anel notice that, by our assull1ption,

~,r3 J 11C 1\'1 n 3 3
Il(E1)-f.- :::; L Itpi(X)1 dlL :::; }vf 11

i=1

l.e.

so that

p(Ed ~ 1 - f..

Next notice that if

1
11

'""' 2tp(.T) = - ~ Itpi(X)[
n i=1

then 11 tp IILdJL)= 1 allel

11 'P 11 L 3 /,(,,) = ~ (Jcf 1'P;j2)3 /2 cl/I )2/3 :S ~ t 11 'Pi IILC"):S M 2
.

i=l i=1

Consider the set

1
E 2 = {x : tp (x) > -}

4
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and observe that

so

~ ::; J<p(x)dp ::;11 <p IIL3 /
2

(j,) ft(Ed/ 3
::; Jv[2 ft(E2 )1/3

E2

l.e.

Now put

and notiee that

fronl whieh it follows that

The final conclusion is that if E = ~ (3/41'12
)3 then the corresponding set E =

EIn E3 has the following properties:

(i) /-l (E) 2:: 0' ( lvI) = :H 4 tri )3 > 0

(iii) x E E =} <p(x) = ~ 2:~:: 1 l'Pi (x) 12 satisfies

1 4A12

4 < 'P(x) < ,(NI) = 2(-3-)3

Step 11. Change of density. Consicler the lueasure 1/ defined by:

4



and notice that [J is a probability nleasure on the salue lueasure space as p so that
if

1 ~ h ~ n,

then

'Ph(XHj 'P(Il)dp/'P(x)p(E))1/2

E

xE E

(iii) 1/;(a:) = ~ L:;::: 1 I'lfli (x) 12 = Jt.p(u )dp/p( E) = 1(2, x E E,
E

\vhere

Finally, notice that for x E E a.nel t E T,

11 Il

1L ei(thvi(a:)! ~ 5~131 L Ei(t)tpi(X)1

so that

;=1 ;=1

n n

JE 11 LE;(t)4'i(.'t)XE IILN(LJ)~ 51\1
3 JE 11 L ~i(t)t.pi(X) IILN(ll) .

i=1 i=1

Hence, it suffices to prove our assertion for thc systenl {tPi}i~l on the set E, intro
ducecl above.

Ster 111. There exist points {a: j} ;~= I in E so that

Moreover, one can asStllUe \vithout 10ss of generality that {x j} jl=l are points of
approxinlative continuity for a11 the functions {tPd'i~l' Indccd, notice that
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which of course COlllpletes the argllluent.

Step IV. For x E E anel p > 0 fixeel, put

11

Ep(x) = {t E T, L ~i(t)7j;i(X) > pJn logn}.
i=1

Dur aim is to show that, for sorne p = p(lvI), n '2: no(lvI) and d = d(M) > 0, we
have that

1I

(*) T( UEp(xj)) '2: cl.
j=1

1/

11 L ~i(t)4}i(X)XE(X) IIL~(v)'2: pJn logn
i=1

so that

n

!E 11 L Ei(t)4'i(:r}XE(x) 11 L co (v) '2: pdJn logn,
i=l

thus proving the assertion for n '2: 11.0, by using thc observation l1lade at the end of
Step 11. The extension to all n is inl1l1ediate.

Step V. Put f(t) = 2:jl=! XEp(xj)(t); t E T, and observe that if T(Ujl=1 Ep(xj)) <
cl, for sonle d > o~ then by the Cauchy-Schwal'tz inequa.lity,

n

!Elfl ~ (!ElfI2)1/2 . T(U E p(Xj))1/2 < cl1/
2(IElf12)1/2,

j=1

whieh lllcans that the assertion

(**)

ß



ilnplies (*). So now we sha11 find a cl = d(1\1) > 0 for which (**) holcls.

Ster VI. In oreler to estilnatc JElfl anel (JElfl2)1/2, we sha11 use a. sharper version
of the one anel two-cliIncnsional ccntral linüt theorcn1 containing an cstiInatc of
thc error tenn. Anlong Inany results. of this type exposed in the book of R.. N.
Bhattacharya anel R.. R.anga R,ao [1], we sha11 use the fo11owing one due to V.
R.otar' [6] (see Coro11ary 17.2 in [1]).

Proposition 1. There exists a constant Cl = CI (rn) < 00 so that, wheneve1'
{~Yi}~=1 are independent random vectors in IRTH for which IE(~Yi) = 0; 1 ~ i ~ h J

then

SUPIQh(A) - <I>o,v(A)I:::; Clh-l/2p3A-3/2,
AEC

where C de710tes the dass of (Lll Borel 1neasurable convex sets in IR In J

h

pr = h- 1 LIE 114Y, 11"; l' ~ 1,
;=1

A is the smallest eigenv(Ll-ne 0/ the m,atrix 1/ = h- 1 L:;=1 cov(~Yd {recall that if
Xi = (~Yi,l, ... ,~Yi,m); i = 1,2, ... ,h, tken cov(4Yd = (JE(~YilC . Xi,)) ) fl,'j= 1), Qh (A)
is the ]JTobability 0/ the event that (~Yl + ... + .Yh )/hl / 2 belongs to to convcx set A
andJ finallYJ <POl v denotes the nonnal distrib'ution whose density /unction is

'Po,v(Y) = (2rr )-"'/2 (det V)-1/2 exp{ - ~(Y, V-I Y)}, Y E RH>.

The first application of thc proposition abovc is donc in thc one-clin1cnsional
case, whell, for fixed 1 :::; j :::; 11., we put

4Y i (t) = ~i(t)4)i(Xj); 1 :::;·i :::; 11., t E T.
Then, it is easily verified that

11

P3 = n- I L IEI~i 13 14J;(x j )1 3 ~ lV[3 ß(lvJ),
;=1

and

11

11 = n- I L 14J i(;t:j)l2 = ](2.

i=1

It follows that

IT(Ep(Xj)) - (27f)-1/2I{-1 {CO exp{-y2j2I{2}dyl:::;
Jp.;rog;i

::; C11\;]3ß(1\1)I{-3 n -l/2 < ß'(A1)n- 1 / 2 ,

7



for sonle new constant ß' (1\1) < (Xl.

For functions 91 and 92 of a paJ:anlcter (, wc sha11 use the expression 91 ::=::: 92,
whcnever there exists a universal constant 0 < C' < (Xl such that

for a11 values of ( in the dOlllain under cOllsideration, anel 92 « 91 if only the right
hand siele inequality above is true. vVith this notation, it is well known that

j= exp (_y2 /2) dy ~ Cl exp (_(2 /2); ( > 1.

Hcnce,

] 00 ';'00ea:p (_y2 /2](2) dy = ]( exp (_w 2/2)dw ::=:::
p~ K-lp~

} ~2 }~2

~ {2 / ~'2} ~ _p2j21\"2
::=::: ~ exp - p log n 21\.. ::=::: ~ n

pVlogn PV10g 11.

Therefore, if we choose P < t thcn

p2 1
')1·~2 < ~..... ~ ....

Hence, the error tenn, which is < ß'(1\;J)n- I
/

2
, can be neglecteel relative to the

tenn

(27r)-1/2 ](_1]00 exp{ _y2 /2l\.-2} dy.
p~

The outconle of these considerations is that, for a11 1 ::; j ::; n,

2 2/21'2

]
00 '2. '2 1( 11 - P \

r(Ep(x j)) ;;:< exp {-y /2A~ } dy ;;:< ---===--
p~ pJlog n

which inlplies that the function .f introduced in Stcp V satisfies

Also

n

IElfl2 = L r(Ep(x j)) + L T(Ep(x j) n Ep(Xk))
j=l j, k=l

ji:k
11

= Elfl + L r(Ep(xj) n Ep(Xk))
j1 k=l
j#k

s

,



Therefore, if we will prove the cxistcncc of a constant D = D(lvI) < 00 so that (
for SOlne p = p(lvJ) < 1/2 ),

(***)
n

L T(Ep(x j) n Ep(:l:k)) ~ D(lElfl)2
j, k=l

j=/- k

then, since JElfl ~ (IElfl)2 (as a conscquence of the fact that IElfl is large), it \vould
follow that

IElfl2 ~ (1 + D)(IElfl)2,

thus proving condition (**) anel thc thcorenl.

Siel) VII. In order to prove (***), we dividc thc set of all pairs (j, k) with 1 ~ j #
k ~ n into two sets:

anel l72 = af. By Stcp III, we conclucle that

so that

Next we consider the pairs (j, k) E 0"1. To this end, we fix such a pair .5 = (j, 1.::) E 0"),

anel consiclel' thc l'anclOnl vcctors in IR 2 definccl by

In the case, it is readily verified that

Since lElei)2 = 1; 1 ~ 'i :::; n, it fo11ows that

9



anel

Hence,

anel

trace 11 8 = 21(2 ::; 2,(M)

Denate the eigcnvalues of 1/'~ by /\1 anel 1\2 anel suppose that 0 ::; /\1 ::; ,A2. Then, on
one hand, /\1 + /\2 ::; trace 11 8

::; 2,(.i\1) which yields that ,A2 ::; 2,C!l1). Therefore,
since clet 11 8 = /\1 /\2, wc get that

1
22 :::; )1] . ,A2 :::; 2,(1i1),A] .

By using the estilnate clescribecl in Step VI, it follows that

for SOHle constant C2 = C2 (A1) < 00. Hence:

which yields that, for SCHne new canstant. C3 = C3 (1\1) < 00,

Thus,

10



Since

1I

(JEIf I)2
= L T ( E p ( ~; j )) . T ( E p ( x k ) )

j,/..:=l

it is only natural to con1parc thc expression L:SE"'l T(Ep(x j )nEp(Xk)) with L:SE"'l T( E p(x j))'
T(Ep(Xk))' Notice that

where 101 ~ C4 11. - 1/2, for SOIne constaut C4 = C4 (.1.\1) ~ 00. In order to con1pare
these two expressions, observc first that

1

det Vs

-~ Z=:~1 'l/Ji(Xj)'l/Ji(Xk))

1(2

so if we introduce the notation

1 n

Hfs = - '" 'I/; i ( X j ) 'I/J j ( x k )
n~

i=1

then

which yields that

L T(Ep(~rj) n Ep(Xk)) ~ 0 3 ('11. 3
/
2+

SE"'l

Fix s = (j,k) E a}, put as

definition of all

I 2 ancl bs
1.....2-~

K2

l\}~\V; ancl l10tice that, by the

22 > a2 - b2 = 1 > 1/ (lvI)2
- 8 S ](.1 _ H12 -, .

s

It follows that l with L = L(lvI) > 16,(111),

11



~(L2 ) 21 (a
8

- b~) n- 2 +1 p
:=:: 2 exp{- . (L 2 + l)pZ log n} = ---Z----

L p log n 2 L p log n

However, the choice of L ensures that, for large '17.,

anel thus that

L r(Ep(xj) n Ef}(Xk)) ::;
8E/71

for sonle constant Cs = C5 (1\1) < co.

Ster VIII. In order to estinlate the double integral above and to cOluplete the proof
of the theorenl, it is enough to show that, for SOlne constant C = C(ll/I) anel for an)'
pair (y 1 , Y2) wi th pvrogn ::; y 1 ,Y2 ::; L PJlog n, the following (pointwise) estirnatc
holds:

For this purpose set

and observe that

00

a1 = US,>.
,,,=4

ivIoreover, the selection of the points done in Step III ilnplies that

12



2-2 "10.1 < '"' IHl 1
2 < ]\l1

2
n

1 - L..,; 8 - 0'(1\1)2 l

8E6 r

l.e.

(

2 ')21' 11.]1,11
2

)lOri ::; rain n 1'" a(1'1F 1

for r = 4,5, . , '. Also notice that, for any s E or anel Yl, Y2 2 O~

I ( 2 2) b -~ - 2 (2 2 ) Ia.'l Yl + Y2 - 2 .'l Yl Y2 - 1\ Yl + Y2 =

for sonle constant GIß< (XL Hencc,

proviclecl IYll, IY21 ::; Lpj[()gn. Fl'Olll thc last incquality, taking into account that
n Ce2- r+l L

2
p2 ::; Ci = C i ( .~1) if r 2 log2 log2 11, wc get that

The last thing that we have to check is that for p = p(1\1) > 0 sluall enough,



for SOlue constant Cg = Cg (Al). This cOlllpletes the proof of the theorCln. 0

Relllarks. 1. The conlparison of thc L l and L 2-nonns, considered in the Step
V of the proof abovc~ has already been used in [7] and recently also in [3], in
order to estilnate the Inininulnl on thc unit circle of the absolute value of randonl
polynolnials with coefficients equal to ± 1.

2. As a generalization of the result nlentioned as a rel11ark in [7] p. 282, we can
obtain the following proposition, by using cssentially the sanle 111ethod as above.

Proposition 2. With {~;}i~l and {<p;} i~ 1 as in thc statc7nent 0/ the Theore7n}
o< a < 1/2, Z as arbitrary subsct 0/ )( 0/ 7neW;'lJ,re p(Z) ~ '/7,-1T lLnd

then

11

JE 11 L~itpi I'L=(z,/J)~ c'(n log n)I/2,
i;;;; 1

where c' = c'(a, Al, 1\1,1\2) > O.

Let us adel that condition 2 in the statel11ent of thc Theorenl above can bc also
weakened by replacing 1\1 with n lT

, 0 < a < 1/2.

3. Thc condi tion of boundedness in thc L 3 - non11 for both {~i }i~ 1 anel {tp i } i~ 1 in
thc statenlcnt of the Theorcl11 can be rcplaccd by the weaker conclition of unifonn
boundeclness in SOlll€ L p -spacc: p > 2. Thc proof reluains the sanle cxcept that
instead of Proposition 1 one nlust usc Corollary 18.3 froln [1].

R.EFERENCES

I. R.N. Bhatt.acharya alld R. Ranga Roo, Normal approximation and Asymptotie Expansions,
J. \Viley (1976).

2. X. Pernique, Regularite des trajeetoires des fonetions aleatoires gaussiennes, Lect. Notes in
Mat.h. 480 (1975), 1-9ß.

:1. S. I\onyagin, On the minimum 0/ the mod'U1U!~ 0/ random trigonometrie polynomials, Math.
Zametki 56 (1994), N:I, 80-10 l.

4. M. Ledoux anel M. Talagrand, Probability in Banach spaees, Springer Verlag (1991).
5. M. Marclis anel G. Pisier, Random Fourier series with applieatio1l.8 to harmonie analysis,

Princeton Univ. Press (1981).
G. V. Rotar.
7. R. Salem and A. Zygmund, Some TJropertie.'1 of tri90nometric 8erie,'1 Wh08C tenns have random

Sig1k'l1 Acta Math. 91 (1954), 245-:10 1.

STEKLOV MATHEMATICAL INSTITUTE l Moscow, HEBHEW UNIVERSITY OF JERUSALEM.

14


