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§o. lntroduction

We would like to study hypersurface quadrilateral singulari-

ties in this article. Because the study of them can be reduced

to the study of elliptic K3 surfaces with a section and with

a singular fiber of type *l O' we study such K3 surfaces,

too. We show that the possible combinations of rational double

points on fibers in the semi-universal deformations of such

singularities can be described by a certain law from the view-

point of Dynkin graphs. This i8 equivalent to saying that the

possible combinations of singular fibers in elliptic K3

surfaces which have a section and a singular fiber of type

can be described by a certain law using Dynkin graphs.

We always work over the complex number field C in this

article.

Now, there are 6 kinds of hypersurface quadrilateral

singularities (Arnold [1], [2], Looij enga [8]). Each of them

has the following normal f~rm of the d~fining function and the

Milnor number ~.

~ = 16.

J.L = 15.
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J.L = 14.

J.L = 15.

225 J 4 2x z + yz + y + ay z + by z, (a ~ 4),

y = 14.

J.L = 14.

All of them have modules number 2.

We deal mainly with the four cases JJ,O' ZI,O' Q2,0 and

wl , ° in this article. The remaining two cases SI,O' Ul , °
are treated only in the beginning part and will be studied

further in a forthcoming article.

To state theorems we need two definitions (Urabe [12],

[13], [14]). As for the precise definition of connected Dynkin

graphs, see section J.

Definition 0.1. (An elementary transformation)

A disjoint finite union of connected Dynkin graphs is called a

Dynkin graph. The following procedure is called an elementary

transformation of such a Dynkin graph:
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(1) Replace each connected component by the corresponding

extended Dynkin graph.

(2) Choose in an aribitrary manner at least one vertex from

each component (of the extended Dynkin graph) and then remove

these vertices together with the edges issuing from them.

pefinition 0.2. (A tie transformation)

Assume that applying the following procedure to a Dynkin graph

G, we have obtained the Dynkin graph G. Then we call the fol-

lowing procedure a tie transformation cf Dynkin graphs:

(1) Attach an integer to each vertex of G by the following

be theG. LetG . ofowith a connected component

rule: Now I let al' a 2 I ••• I a k be a root basis associated

k

l nia i
i=l

associated maximal root. Then the attached integer to the ver-

tex corresponding to a.
~

is

(2) Add one vertex and a few edges to each component of G

and make it into the extended Dynkin graph of the correspond-

ing type. Attach moreover the integer 1 to each new vertex.

(3) Choose in an arbitrary manner subsets A, B of the set of

vertices of the extended graph
......
G satisfying the following

conditions:

<a> A n B = •
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<b> Choose arbitrarily a component GI of the extended graph

G and let V. be the set of vertices in GI. Let N be

the sum of the numbers attached to elements in B n V.

(If B'n V = ., N = 0.) Let l be the number of elements

in A n V, and m
1

, m~, ••• , ml be the attached integers

to A n V. Then, the greatest common divisor of l + 1

numbers N, ml , m2 , ••• , me 1s necessarily 1.

(4) Erase out all attached integers.

(5) Remove vertices belonging to A together with the edges

issuing from them.

(6) Draw another new vertex called B which corresponds to a

long root. Connect 8 and each vertex in B by an edge.

Remark. Often the resulting graph G after the above proce-

dure (1) - (6) i8 D2t a Dynkin graph. We consider only the

cases where the resulting g~aph Gis. a Dynkin graph and then

we call the above procedure a tie transformation.

The number #(B) of elements in the set B satisfies

o ~ #(B) ~ 3. 2 = #(AnV) ~ 1.

Note that any connected Dynkin graph of type A, D or E

corresponds to a singularity on a surface (Durfee [6]).

When the Dynkin graph G contains a k of connected com­

ponents of type Ak , b l of components of type Dl , cm of

components of type Em, dn of components of type Bn , ..• , we

identify the formal eum

G = l akAk+ l blDl + l cmEm + 2dnBn +.•• with the graph G.
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Let L be a lattice (i.e. a free Z-module of finite rank

equipped with an integral symmetrie bilinear form). By p we

denote a prime number. The Hasse symbol of the inner product

space L. Q over the rational number field Q is denoted by

ep(L) = ±l. The symbol (')p is the Hilbert norm residue

symbol. By d(L) we denote the discriminant of L. Qp i8

· i *2 21the f1eld of p-ad c numbers. Qp c {a a € Qp' a ~ O} (Casseis

[4], Serre [11]).

Let x denote one of the 6 kinds of quadrilateral

singularities. Let PC(X) be the set of Dynkin graphs G

with components of type A, D or E only such that there

exists a fiber Y in the semi-universal deformation family of

the singularity X satisfying the following two conditions

depending on G.

(1) The fiber Y has only rational double points as singu-

larities.

(2) The combination of rational double points on Y just cor-

responds to the graph G.

Theorem 0.3. Set Xl = J 3 ,o' X2 = Zl,O' and X3 = Q2,O. Ac­

cording as m = 1, 2 or 3, we deal with the hypersurface

quadrilateral singularity Xm• We denote the number of ver­

tices.in the Dynkin graph G by r.

[I] The following two conditions (a) and (b) are equivalent.

(a) G € PC(X )
m

and one of the following conditions <1>, <2>,
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<3> and <4> holds for the root lattice Q = Q(G)

G.

of type

<1> r = 13 - m, md(Q) is a square number, and for every

prime number p ep(Q) = 1.

<2> r = 12 - m, and for every prime number p

ep(Q) = (-m,d(Q»p.

<3> r = 11 - m, and for every prime number p

<4>

*2- md(Q) (. Qp

r ~ 10 - m.

or

(b) G contains no vertex corresponding to a short root and it

can be'obtained from one of the following basic Dynkin graphs

by elementary transformations repeated twice.

The basic Dynkin graphs:

The case of m = 1, J 3 ,0 ES + F4 , B12 •

The case of m = 2, Zl,O E7 + F4 , ES + CB3 , B10 + CB1 ·

The case of m = 3, Q2,0 E6 + F4 , ES + F2 , B9 ·

[11] The following two conditions (A) and (B) are also

equivalent.

(A) and one of the following cond!tions <1>,

<2>, <3> holde for the root lattice Q = Q(G) of type G.

<1> r = 14 - m, and for e~ery prime number p

ep(Q) = (m,-d(Q»p.

<2> r = 13 - m, and for every prime number p

md(Q) (. Q*2
P

<3> r ~ 12 - m.

or e (Q) = 1.
P
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(B) G contains no vertex corresponding to a ahort root and

it ean be obtained fram one of the following essential basic

Dynkin graphs by one of the following 3 kinds of procedures.

The procedures:

<1> elementary transformations repeated twiee

<2> an elementary transformation following after a tie trans-

formation

<3> a tie transformation following after an elementary trans­

formation.

The essential basic Dynkin graphs:

The ease of m = 1, J 3 0 Es + F4,
The ease of m = 2, Z1 0 E7 + F4 , Es + CB),
The ease of m :c::I 3, Q2,O E6 + F

4
, ES + F2

[111] Let G be a Dynkin graph with eomponents of type A, D

or E only. Assume that we ean obtain G from one of the

basic Dynkin graph by tie transformations repeated twiee.

Then, G € pe (X ).m

Remarks. (1) (The Hilbert norm residue symbol) Let a, band

e be non-zero rational numbers. (a,b)p:c::l ±1,

(a,b)p = (b,a)p' (a,bC)p = (a,b)p(a,C)p' (a,b
2

)p:c::l 1,

(a,-a)p = 1, and (a,l-a)p = 1 for a ~ 0, 1.
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Consider the case where a and bare integers with

u and v are integers not divisible

by the prime number p. If P is odd,

where

p = 2,

is the Legendre quadratic residue symbol. For

(a,b)2 = (-1) (u-1) (V-1)/4+a(V
2

-1)/S+ß(U
2
-1)/S

(2) r = rank Q(G).

(3) If G = G' + G" for Dynkin graphs G, G', GII,

Q(G) = Q(G') '9 Q(G II ) (orthogonal direct sum)

(4) If L = L' $ Ln (orthongal direct sum) for lattices

L, L' and LU,

d (L) = d (L') d (L11), ~P (L) = e p (L I ) ~P (L") (d (L') "d (L" ) ) P •

(5) d(Q(Ak » = k+1, d(Q(Di » c 4, d(Q(E6 » = 3,

d(Q(E7 » = 2, and d(Q-(Es » a 1 ..

(6) ~p(Q(Ak» z::: (-1,k+1)p , and ~p(Q(D2) ) = ~ (Q (E » c: 1.p m

(7) As for the Dynkin graph of type CBk (k = 1, 2, 3) and

the Dynkin graph of type B1 , F2 , F3 (= C3), see section 3.

(S) It is easy to see that the condition [I] (a) implies the

condition [II](A).

(9) The maximal number of vertices of G E PC(Xm) is 15-m.

For example, Es+E6 , 2E7 E PC(J3 ,o).
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Let us show that 2E7 and A7+D6 are members of

PC(J),o)'

First consider the Dynkin graph ES+F4 . This i8 the es-

sential basic Dynkin graph for J),o' We apply a tie trans­

formation to this graph. At the second step we have the fol­

lowing graph.

2 4 6 5 4 ) 2 1 1 2 ) 4 2

a 7 a
6

a
5

a 4 a) a
2

a
1

a O ßO ß 1
ß

2 ß) ß
4

0 0-: 0 0 0 0 0 0 0 0 .-.

a S
)

and B = {a o' ß0>' We can check that the

condition on G.C.D. is satisfied for each component. Under

this choice we get the graph E7+B6 as the result of the tie

transformation.

Now, we can apply a transformation to E7+B6 once more.

At the start we have the following graph.

1 2 ) 4 ) 2 1 1 2 2 2 2 2

7
6

7
5

7 4 7) 7
2

7 1 ~O 6 1 6
2 15) 15

4 6
5

6
6

0 0 0-: 0 0 0 °1 0 0 0 •

~7 2 6
0

1

If an elementary transformation is applied and if we erase out

the vertices ~7 and 66 , we get the graph A7+D6 • If a tie

transformation is applied and if we choose A = {.,.o' 15 6> and

B = {Öl>' we get the graph 2E7 .
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By the above theorem [11], [IlI], one knows that

Here we would like to explain the relation between the

above theorem and elliptic K3 surfaces for those who are

interested in elliptic surfaces (Kodaira [7] ) • Let

~ : Z ~ C(~ pI) be an elliptic K3 surface. It has no mul-

tiple fibers. By Kodaira's result we have an elliptic K3

surface ~, z, ~ C' with a section C' ~ Z' whose com-

bination of singular fibers is same as that of ~. Therefore

we can assume from the beginning that ~ itself has a sec-

tion. Then we can associate each singular fiber with a con-

nected Dynkin graph of type A, D or E in a natural manner.

*I b ~--l' I b t Db+4
*11 ., II » ES

*111 Al' III t E
7

*IV A
2

, IV J E
6

A

Let G denote the formal sum of all connected Dynkin ,graphs

associated with the singular fibers of ~. Let PC be the set

A

of all Dynkin graphs G obtained from elliptic K3· surfaces

A

$ : Z ~ C. Note that G has a component of type D4 if and

*only if ~ has a fiber of type I o . Now, by Looijenga [8]

it i5 known that G+D4 belongs to PC if and only if G be­

longs to PC (J3,0). (See section 1.) Therefore one knows by
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the above theorem that possible combinations of singular fi­

bers in elliptic KJ surfaces with a singular fiber of type

*10 are subject to the law described above. The sets PC(Zl,O)

and PC(Q2,O) describe possible combinations of singular fi­

bers in elliptic KJ surfaces with additional conditions.

(See section 1.)

Now, we guess here that readers would like to know

whether the converse of the above [11] and [111] holds or does

not. Indeed, in the case m c 2, Zl,O' the converse statement

containing only the essential basic Dynkin graphs is true.

A Dynkin graph G with components of type A, D or E

only belongs to PC(Zl,O) if and only if we ean make G from

one of the essential basic Dynkin graphs E7+F4' Ea+CB3 by

elementary or tie transformations repeated 2 times. (We can

apply 2 different kinds of transformations once for each,

or ean apply 2 transformations of the same kind.)

In the ease m = 1, J 3 , 0' we have a unique exception

G = 3A3+2A2 • The Dynkin graph 3A3+2A2 belongs to PC(J3 ,o).

However, we cannot make 3A
J

+2A2 from either the basic Dynkin

graph Ea+F4 or B12 by a combination of 2 of elementary

transformations and tie transformations.

If G contains components of type A, D, E only and if

G # 3A3+2A2 , G belongs to PC(J3 ,o) if and only if we can

make G from the essential basic Dynkin graph Ea+F4 by 2

kinds of transformations repeated twice.
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is the unique

We do not diseuse the eonverse of [11] and [111] further

in this artiele. We will deal with it in the fortheoming

artiele.

The list of all maximal graphs in PC(JJ,o) with respeet

to the inelusion relation has been first given by F.-J.

Bilitewski. He has used the ealeulation based on Nikulin's

eriterion about lattiee embeddings. Here we express deep

thanks to Professor Bilitewski for showing me his list.

At the same time Btlitewski has given the following

deseription for PC(ZI,O)

PC(ZI,O). Set

and PC eQ2 0). First we consider,

.MI = {E6 , E7 , ES' Al} U {Dili = 4, 5, ••• }

~l = {(G, Go) IGEPceJJ,o), GO€~I' Go i8 a component of G.}.

Consider an element (G, Go> € ~l. We can write G = GI + Go.

We assoeiate Go with Go in the following manner, depending

on the type of Go. Then, we set G' = GI+GO.

ES I E
7

, D
4

I JA
I

,

E
7

I D
6

, DS • AJ+AI
,

E
6 lAS' Dt

I D
i

_
2

+A
I

(i~6) ,

Al •••
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Let <9' be the set of all G' obtained from elements
1

(G, Go) € <9
1

• Then, <9' = PC(ZI,O)·1

For PC(Q2,O) the description 18 like the following. Set

~2 = {E6 , E7 , ES' A2}

<9 2 = {(G, Go) IGEPC(J3 ,o)' Go € ~2' Go 18 a component of G.}.

For (G, Go) € <9 2 , we can write G = GI+Go• Associating Go

with Go in the following manner, we set G' ~ G1+GO•

Let <9'
2

be the set of all G'

J 2A
2

,

---+J ••

obtained from elements in <9 2 .

Then <92 = PC(Q2,O)·

Bilitewski's replacement depends on the theory of singu-

lar fibers in elliptic surfaces. It 1s clear and easy to

understand if the set 18 known.

In order to state the theorem for w
1
,o' we need intro­

duce another new concept "obstruction components". Some of the

components of the Dynkin graph are distinguished from the

others as obstruction components and they follow special

rules.
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Definition 0.4. When a component G1 of the Dynkin graph G

is an obstruction component, G1 follows the rules below.

[The rule under an elementary transformation].

Assume that making the corresponding extended Dynkin

graph a· from G, and erasing out several vertices and edges

issuing from them, we have obtained the Dynkin graph G'.
~ ~

(1) Let G1 be the component of G corresponding to G1 • If

the vertex erased from G
1

is unique, we can make any com-
f\j

ponent Gi of G' derived from G1 an obstruction component

of G'. (We can also make G'
1

a non-obstruction component of

G', if we want to.)
f\j

(2) When two or more vertices are erased from G1 , any com-

ponent of

component.

G' derived from is not an obstruction

(3) Obstruction components of G' are only those obtained

from obstruction components of G following the above rules

(1) and (2).

[The rule under a tie transformation].
f\j

Assume that making the extended Dynkin graph G from G

and choosing subsets A and B of the set of vertices in G
satisfying the condition, we have made the new Dynkln graph

G' depending A and B.
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(1) Assume that the sets A and B satisfy the following

condition #.

Let Vl be the set of vertices in the extended Dynkin

-# graph G1 corresponding to G1 • V1 n B =. and

V1 n A consists of a unique element.

Then, V -A
1

is the set of vertices in a component G'
1

of

G'. (Gi has the same type as GI.) This G'
1

is necessarily

an obstruction component of G'.

(2) When the sets A and B do not satisfy the condition

#, any component of G' containing a vertex belonging to

V1 - A i8 DQt an obstruction component.

(3 ) Obstruction components of G' are only those obtained

from obstruction components of G following the above rules

(1) and (2).

Remark. Usually we assume further that an obstruction com-

ponent is of type Ak with k ~ 4. (See Definition 3. 7 (2)

and Theorem 3.9.)

Theorem 0 • 5 • Let r denote the number of vertices in a

Dynkin graph G.

[I] The following conditions (a) and (b) are equivalent.

(a) and one of the following conditions <1>,

<2>, <3> and <4> holds for the root lattice Q = Q(G) of

type G.
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<1> r = 11, 3d(Q) is a square number, and for every prime

number p ep(Q) = (-1,3)p.

<2> r = 10, and for every prime number p

ep(Q) c (-3,d(Q»p(-l,3)p .

<3> r c 9, an for every prime number p

-3d(Q) f Q*2
P

<4> r ~ 8.

or

(b) G contains no vertex corresponding to a short root and

it can be obtained from one of the following basic Dynkin

graphs by elementary transformations repeated twice.

The basic Dynkin graphs:

[11] The following two conditions (A) and (B) are also

equivalent.

(A) G € pe (W1 , 0) and one of the following conditions <1>,

<2> and <3> holds for the root lattice Q = Q(G) of type G.

<1> r = 12, and for every prime number p e (Q) = (3,d(Q»p.p

<2> r = 11, and for every prime number p

3d(Q) f Q*2 or e (Q) = (-1,3) .
P P P

<3> r ~ 10.

(B) G contains no vertex corresponding to a short root and

it can be obtained from one of the above basic Dynkin graphs

by one of the 3 kinds of procedures in- Theorem 0.3 [11] (B).
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[III] Among the connected Dynkin graphs appearing as a com­

ponent of the above basic Dynkin graphs, we define that one of

type All 18 an obstruct10n component and any one of other

type i8 not an obstruction one.

Let G be a Dynkin graph with components of type A, D

or E on1y. Assume moreover that G conta1ns no obstruction

component. If we can make G from one of the basic Dynkin

graph by 2 of e1ementary or tie transformations, then

G € PC (W1 0).,

Remark. (1) As for the Dynkin graphs of type Bl and G1 ,

see section 3.

(2) The maximal number of vertices of G € PC(Wl 0),
For examp1e A13 , D13 , ES+DS ' E7+D6 € PC(Wl,o).

i8 13.

As for

true.

Wl,o' the converse statement of [III] i8 also

Under the definition of obstruction component8 as in the

above [II!], if a Dynkin graph G has components of type

A, D, or E on1y and if G has no obstruction components,

G belongs to PC(W1 0) if and only if we can make G from,
one of the above 4 basic Dynkin graphs by 2 kinds of

transformations repeated 2 times.

However, we do not diseuss the eonverse in this artiele.

We will show it in the fortheoming artiele.

Now, 2 kinds of quadri1ateral singularities 5 1 ,0 and

U1 ,0 are remaining. We ean easily formulate the eorresponding
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theorems to them. The basic Dynkin graphs for Sl,O seem to

be Ag+CB1 , E8+CB1 , B8+A1 , E7+CB2 , and E6+B3 • Those for U1 ,0

seem to be E8+G2 , E8+A2 (1/3), E7+G2 , E6+A2+A2 (1/3), and

A8+G2 . (See section 3 Agreement 2 for the notation A2 (1/3).)

However, the proof of them contains difficulties which we

cannot find in the four casea in this artiele. (For Sl,O we

cannot write down the Coxeter-Vinberg graph for A2/P and pI

has no niee deeomposition. For U1 ,0 the eorresponding

lattiee P has a proper overlattiee and because of this

reason we have to develope our general theory further . For

example, for U1 0' we have to introduee the dual extended,
Dynkin graph~ of type G2 as weIl aa the ordinary

121

extended Dynkin graph O~~ of type G2 .)
123

We will study Sl,O and U1 ,0 in a fortheoming artiele.

As for ge~eral elliptie K3 surfaces, we can formulate

the eorresponding theorem about combinations of singular fi-

bers in them. The basic Dynkin graphs in this case are 2ES

and D16 . The part [I] in the corresponding theorem is cer­

tainly true. The part [11] and [111] also hold. Perhaps there

may exist several exeeptions for the eonverse of [11] and

[111]. However, anyway, we do not have eonsidered this ease

elosely and we are not sure.

I would like to give a theorem dealing with all elliptic

K3 surfaces in a fortheoming artiele.

Besides there exist similar theorems for 14 exceptional

hypersurface sinqularities with modules number 1 (Arnold [1],

[2]). We would also like to deal with them in a forthcoming

artiele.
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The plan of this article i8 like the following. In

section 0 we stated the ma.in results •. Though many words were

necessary to state them, all of the graph-theoretical parts

were natural and simple. Once we understand them, they appeal

to our intuition. In section 1 we review Looijenga's results.

The relation between quadrilateral singularities and elliptic

K3 surfaces is explained. Our problem is reduced to the

problem on existence of the embedding of lattices with certain

conditions. section 2 is chiefly devoted to the calculation in

order to convert Looij enga' s condition on lattices into a

simpler condition on roet systems. In section 3 we first

introduce the concept of roet modules and develop the general

theory ef reot systems in.our situat~en. Secondly we do the

conversion using the results in section 2. Short roots and ob­

struction components are introduced to represent certain ob­

structions related to Looijenga's conditien. section 4 is used

to develope the theory of elementary transformations and tie

transformations. In particular, the theory for obstruction

compenents i8 develeped. The Coxeter-Vinberg graphs associated

with hyperbolie spaees are studied in section 5. They are

powerful tools to study reet systems in quasi-lattices. In

section 6, after dealing with eonditions on isotropie elements

written with the Hasse symbol and the Hilbert norm residue

symbol, we collect all ideas in the previous sections in

order.

Here I would like te express thanks to

Brieskorn and Professor F.-J. Bilitewski

discussions.

Professor E.

for useful
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§1. Qudrilateral singularities and elliptic K3 surfaces

The theme of this article i8 6 kinds of hypersurfaee quadri-

lateral singularities. To eaeh one of the 6 kinds we as-

aoeiate a quadruple

J 3 ,0(2,2,2,3) ,

W1 ,0(2,2,3,3),

U1 0(2,3,3,3).,

Zl,O(2,2,2,4),

5 1 ,0(2,2,3,4) ,

of integers.

Q2 0 (2 ,2, 2, 5) ,,

The exeeptional eurve in the minimal resolution of eaeh singu-

larity has 5 irredueible eomponents. Every component is a

smooth rational eurve. The following dual graph represents how

they interseet.

-p
1

-2
-p 0 -----<1----00 -p

2 4

-p
3

The numbers attaehed to vertices are the self-intersection

numbers of the eorresponding components.

Now, apart from the above graph, we consider a comhina­

4

tion of 2 Pi - 3 of smooth rational curves on a smooth sur­
i=l
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face whase mutual intersection 1s represented by the following
- .

dual graph (1). However, here, we represent particularly the

dual graph in the case Zl,o(2,2,2,4).

O---d---oO---oO---oO ( 1)

The 4 arms of the dual graph (1) have P1' P2' P3' P4 of

vertices respectively including the common central ane. We de-

fine that every curve corresponding to a vertex in the graph

has self-intersection number (-2) on the surface. We call

consisting of

this combination the curye at infinity IF = IF(P1,P2,P3,P4).

Related to IF, we define a lattice P = P(P 1 ,P2 ,P3,P4)

generated by the basis

4

q = l Pi - 3 vectors.

i=1

The basis B has one-to-one correspondence with the set

cf vertices in the dual graph (1) of IF(P1 ,P2,P3,P4). The bi­

linear form on P = 2 Ze is defined as fellows. For aach

e€B

e € B,
2e = e· e = (e, e) = +2. For two elements e, e' € B,

e·e' = (e,e') = -1, if the corresponding vertices to e and

e' are connected in the graph (1), and e-e' = (e,e') = 0 if

they are not connected in (1).

4

signature (2 Pi - 4, 1).

1=1

P 1s an even lattice with
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We choose special elements

for the convenienee of quotation later. Let e O be the one

eorresponding to the eentral vertex with 4 edges in (1). We

assign e 1 , e 2 , 8 3 , e 4 to the 4 vertiees eonneeted to the

eentral one eo. We ehoose e.
~

(1 ~ i ~ 4) in such a manner

that it belongs to the arm with length Pi. ·In partieular, e 4

belongs to the longest arm with length P4 ~ 3. The veetor eS

is assigned to the adjaeent vertex to the one assoeiated with

e 4 whieh is not assoeiated with eO.

9 2

0 0 0 - --e 1 8 0 e 4 eS

e 3

Under the above ehoiee, by Po we denote the sublattice

of P of rank 5 generated by eO' e 1 , e 2 , e 3 and e 4 • We de­

fine isotropie elements Uo € Po and V o € P by

U o = 2eO + e 1 + e 2 + e 3 + 8 4

Va = -(ua + es) = -(2eo + e 1 + e 2 + 83 + e 4 + es)·

One knows u2
= v 2

= 0 and u • V = 1. The sublattieeo 0' 0 0

HO = ZUO + ZVO is isomorphie to ~ hyperbolic plane H (the

even unimodular lattiee with signature (1, 1». Let P' de-
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note the orthogonal complement of Ho in P. One has

P = pI e HO (orthogonal direct sum) •

The starting point of this article 1s following

Looijenga's result. This is contained in his paper on triangle

singularities (Looijenga [S]).

We fix one of 6 kinds of hypersurface quadrilateral

singularities. Let G be a Dynkin graph with components of

type A, D or E only. Assume that there exists a K3 sur­

face Z satisfying the foilowing condltions (1) and (2).

(1) Z contains the curve at infinity IF = IF(P1,P2,P3,P4)

corresponding to the quadrilateral singularity as a sub­

variety.

(2) Let E be the union of all smooth rational curves on Z

which do not intersect with the curve IF. Then, the dual

and a lattiee embedding

graph representing the mutual intersections among the compo­

nents of E coincides with the graph G.

We define an open variety Y

associated with Z.

An open variety Y is defined to be the one obtained by

contracting each conneeted eomponent of E to a rational

double point and moreover removing the image of IF.

Now, let A3 == Q(2Es) m H m H e H denote the even uni-

modular lattice with signature (19, 3). By Q (G) we denote

the positive definite root lattice of type G. Under a eholce
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of an isomorphism which preserves the

bilinear form up to sign, we have an embedding of lattices

s = P e Q(G) C A3 '

considering the image of the sublattice of H2 (Z,Z) generated

by the classes corresponding to the irreducible components of

E and IF.

Theorem 1 • 1 . (Looijenga) (1) There exists a fiber isomorphie

to Y in (the non-positive weight part of) the semi-universal

deformation family of the quadrilatera·l singularity.

(2) The above embedding S C A3 satisfies the following con­

ditions (a) and (b). By S we denote the primitive hull of S

in A3 • S = {x € A3 I mx € S for some non-zero integer m.}

- with 2 i8 orthogonal to(a) If an element Tl € S Tl c:: +2 P,

then Tl € Q(G).

- with 2 satisfies(b) If an element Tl € S Tl = +2 Tl·u = 0,0

then either Tl € Po or Tl i8 orthognal to Po·

Theorem 1.2. (Looijenga) We fix one of 6 kinds cf hypersur-

face quadrilateral sinqularities. Let· G be a Dynkin graph

with components of type A, D or E only. By r we denote

the number cf vertices in G. The following condition are all

equivalent.
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(1) There exists a fiber Y in the semi-universal deformation

family of the quadrilateral singularity such that Y has only

rational double points as singularities and such that the com­

bination of rational double points on Y just agrees with G.

(2) There exists a K3 surface Z satisfying the eonditions

(1) and (2) just before Theorem 1.1.

(2') There exists a K3 surface Z satisfying the eonditions

(1) and (2) just before Theorem 1.1 and moreover the Picard

4

number p of Z is equal to l Pi - 3 + r.
i=l

(3) There exists an embedding of lattices S = P e Q(G) C A3
satisfying the conditions (a) and (b) in Theorem 1.1.

When we treat only geometrie situations, the arguments

become clearer if we assume that the lattice has the

opposite signature (3, 19) and Q(G) is negative definite.

However, we define the 8ign of the bilinear form on A3 and

Q(G) as above in this article, because we use much algebraic

theory on lattices and it 1s convenient for the use. There-

fore, note that the isomorphism H2 (Z) -=-. A3
sign of the bilinear forms.

reverses the

In the above item (1) it should be noted that Y is not

necessarily in the non-positive weight part of the deformation

family. However, if (1) holds, then we can choose another Y'

lying in the non-positive weight part satisfying the same con­

dition as Y.
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Next, we explain the relation to the theory of elliptic

surfaces. Let Z be a K3 surface satisfying the conditions

(1) and (2). Let C.
~

(0 ~ i < q) be components of the curve

IF on Z. We ass!gn the number i to Ci in such a way that

the vertex on the dual graph (1) corresponding to Ci is as-

sociated with the vector with the same number i for

o ~ i < q. The divisor defines a morphism

By definition

4

F c: 2CO + l C.
i=l ~

whose general fiber is a smooth elliptic curve.
4

~ has a singular fiber U Ci' wh1eh is of
1=0

* i <type 1 0 • If Ci . F ~ 0 for o ~ q, then Ci • F c: 1

and C. is a seetion of ~. In partieular ~ has the section
1

es· If a smooth rational curve D on Z satisfies D·F = 0,

then D is a component of a singular fiber of <P. In

particular, every connected component of E 18 contained in a

singular fiber.

SOIDe readers might notiee that the proof of Lemma (4.6)

in Looijenga [8] is incomplete. (He misses treating the ease

a' € Bo and B' ~ B
O

.) However, we ean easily complete the

proof and the claim itself i5 true. On the other hand, the

claim of Theorem (4.5) in Looijenga [8] is not complete unless

we add a certain condition on an isotropie element.
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§2. The theory of lattiees

In this artiele we freely use standard terminologies in the

theory of lattiees i.e. the theory of integral symmetrie bi­

linear forms (Cassels [4], Milnor-Husemoller [9], Serre [11]).

Let L be a free Z-module of finite rank and M be a

submodule. We say that M is primitive in L, if the quotient

L/M is a free module. An element x € L is primitive in L,

if Ix is primitive in L. On the other hand, if L/M is

finite, L is an ~ module of M. We denote the primitive

hull of M in L by P(M,L) = {x € Llmx € M for some non-
....,

zero integer m.} or M when we need not mention L. P(M,L)

is the minimal primitive submodule of L eontaining M.

Moreover, when L has asymmetrie bilinear form

( , ) : LxL --+ G:I with values in rational numbers, the pair

(L, ( , » i8 called a guasi-lattice. If the values of the

bilinear form are all integers, (L,(,»

lattice. For two quasi-lattices Land L'

is called a

we denote the

orthogonal direet sum L $ L' usinq the symbol $.

Let L be a quasi-lattiee and M be a submodule. The

orthogonal complement {x € LI For every y € M (x,y) = o.}

of M in L i8 denoted by C(M,L) or Mi when we need not

mention L. Note that (Hi)i = M when L i8 non-degenerate.

Next, assume that M is non-degenerate and primitive in

L. Then, L is an over-quasi-lattice of M e Mi. Choose two
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elements x, y € L/M in the quotient module, and ehoose their

representatives x, y € L. We ean write them in the form

x = xl + x2 and y = y + Y2 (Xl' Y1 € M • Q,
1

x2 ' Y2
€ MJ. • Q). If we set (x,y) :c::: (x2 'Y2) , this rational

number depends only on X and y, and does not depend on the

ehoiee of representatives x, Y € L. Therefore it defines a

symmetrie bilinear form on L/M with value8 in Q. In this

artiele we always give the -bilinear fo'rm in this ,manner to the

quotient module by a primitive non-degenerate submodule.

For simplieity we write x 2
c (x,x). Sometimes we write

(x,Y) = x·y. An element x with x ~ 0, x2 = 0 is ealled an

isotropie element.

Let L be a non-degenerate lattiee. The dual module

*L = Hom(L,Z) 19 identified with the submodule

(x € L. QI(x,y) € Z for every y € L.} in L. Q. *L be-

comes a quasi-lattice containing L. Then, the order of the

quotient group *L /L equals to the absolute value of the dis-

criminant d (L) cf L. We ca~l the quotient *L /L the 5Ü..§.-

criminant graup of L. The äiscriminant bilinear~

* *L /L )( L /L ----+ Q/Z

i8 defined for *x, Y € L by

bL (x mod L,Y mod L) - (x,y) mod Z.

A lattiee L i8 an~ lattiee, if x 2 i8 an even in-

teger for every x € L. otherwise it i8 ~.

We can define the discriminant guadratie !Qxm
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*qL L /L ~ Q/2Z

for a non-degenerate~ lattice *L. For x € L

qL (x mod L) = x
2 mod 2Z (Nikulin [10]).

Next, let L be a positive definite even lattice and

*qL : L /L ~ CQ/2Z be the discriminant quadratic form. By

* *~ : L ~ L /L we denote the canonical surjective morphism.

*For an element x € L /L we define the characteristlc number

u (x) -of x by

Lemma 2. 1 . (1) u (x) ~ 0 , u (x) cO<=> x = O.

(2) u(x) - qL(X) mod 2Z.

(3) Let Land L' be positive definite even lattices. We

* * * - *regard L /L + L' /L ' = (L " L') /L $ L'. Then for x € L /L

Y€ L'*/L' we have u(x + y) = u(x) + u(y).

Let G be a Dynkin graph with components of type A, D

or E only. We can define a lattice associated with G by

the same rule as we used to make the lattice P from the

graph (1) in section 1. The resulting lattice is the reet lat-

tice Q = Q(G) of type G (Bourbaki [3] ) • The root lattice

Q has a basis (a 2 = 2 +2) associateda 1 , ..., a k 1
... = a k =

with vertices of the Dynkin graph. The dual basis of it (a

basis of *Q ) is denoted by CaJ 1 , CaJ 2 , ••• , CaJ k • We call CaJ.
1.
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Example 2.2. L c Q(Ak ) (The root lattice of type Ak )

o-o-o~- - - - O~
1 2 3. 4 k-1 k

We assign numbers 1, 2, 3, ..• , k to vertices in the

Dynkin graph of type Ak from the end in order. By wi we

denote the fundamental weight associated with the i-th vertex.

* . ..L /L ~ Z/(k+l). v(W 1 ) 18 a generator of th1S cyc11c group,

and v(w i ) = iv(w 1 ). U(T(W i » = u(iT(w 1 » = i(k+1-i)/(k+1).

Example 2. 3 . (k ~ 4) (The root lattice of type

We assign numbers to the Dynkin graph of type Dk as

foliows.

1 2 3 k-3 k-2 k-1
0---<> ---<> - - - 0 -r;:-o

We consider the corresponding fundamental weight

fundamental root

w.
1

and the

W i = a 1 + 2a 2 + ..• + (i-1)a i _1 + i(a i + a i +1+···+ a k - 2 )

+ i(ak _1 + a k )/2 (1 ~ i ~ k-2)
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and

T(W 1 ) = T(W k ) - T(wk _1 ) = T(wk _1 ) - T(Wk )·

*If k i8 even, then L /L ~ 1/2 + Z/2, and T(wk _1 ) and

are generators of two components.

k is odd, then * ~L /L - 1/4, is a generator,

~(Wl) = 2~(wk)' and ~(wk-1) = -w(w k )·

We have u(~(wl» cl. and u(~(wk_l» = u(v(w k » = k/4.

Example 2.4. L = Q(ES) (The root lattice of type ES)

*L /L ~ Z/3. If x ~ 0, u(x) ~ 4/3.

Example 2.5. L = Q(E7 ) (The root lattice of type E7 )

*L /L ~ Z/2. If x # 0, u(x) = 3/2.

Example 2.S. L = Q(ES) (The roet lattice of type Es)

*L /L ~ {O}. L is a unimedular even lattice.

Lemma 2.7. Let G be a oynkin graph.with components of type

A, D or E only. Assume an element *f € Q(G) in the dual

module of the root lattice of type G satisfies 0 < f2 < 1.

Then, k = f 2/ (1-f 2 ) i8 a positive integer, and moreover G

contains a component GO of type Ak such that f is con-

tained in * f and Q(GO) together generateQ(Go) and

* particular f2 and f2 = k/(k+1).Q(Go) • In ~ 1/2

Proof. In Example 2.2 u(~(wi» = i(k+1-i)/(k+1) ~ 1 if

2 ~ i ~ k-1, and u(v(w 1 » = u(v(w k » = k/(k+1) ~ 1/2. Besides
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in Example 2.3, 2.4, 2.5 and 2.6, if - * -X € L /L, x '# 0, then

u (x) ~ 1. Our lemma follows from these facts and Lemma 2.1

(3) •

Q.E.D.

For each one of 6 kinds of quadrilateral sinqularities

under our consideration the lattice P was defined. It has a

decomposition pcp'; HO. P' i8 an even positive definite

lattice. We can define the characteristic number u(x) for

- *every element x € P' /P'.

Definition 2.8. -Let x be an element in *P' /P'. By q = qp'

we denote the discriminant quadratic form of PI.

(1) We call -x sn element of the first kinQ, if

g(X) - t mod 2Z for some number t with 0 ~ t < 1.

g(X) mod 2Z, call - gn element Qf the second(2) If - 1 we x

1ti.mi. Besides if u (i) and - has order we call it ßCI 1 x 2,

special element Qf~ 1l.L

(3) If for some positive integer k

q(x) - 1 + (1/(k+1» mod 2Z,

-x is called gn element of the third kißg and k i8 called

~ associated number of x. Besides if an element of the

third kind with the associated number 1 satisfies

u(x) = 3/2 and if it has order 2, then we cal! it ~ special

element Qf ~ ~ If an element of the th!rd kind with the
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associated number 2 satisfies u (X) CI 4/3 and if it has

order 3, then we call it A special element 2!~ ~.

(4) Any element neither of the first kind, ef the secend kind,

ner of the third kind is called ~ 2t ~ feurth kinQ.

(5) The associated numbers of the elements of the third kind

in *pI IP' are called the associated numbers of P or pI •

Indeed, special elements are related to short roots in

root systems. The above terminologies "type B, C or G" are

used to imply this relation.

The following proposition plays a key role later to con­

vert Looijenga/s condition (a) and (b) to a simpler condition.

Proposition 2.9. Fixing oQe of the ~ kinds of hypersurface

quadrilateral singularities, we consider the corresponding

lattices

(1) P'

(G') If

pI and

has the

~ € pI,

PO· Set Po = P' n PO·

following property (G').
2

~ = +2 and ~ ( Po' then is erthogo-

nal to Po.

(2) Let

*X € pI

- *x € P' IP I be an element of the first kind. Let

be an element such that x mod pI = x. If x 2 < 2,

then x is orthogonal to PO.

(3) For every element - *X € pI IP' of the second or third

satisfying the fol­

x 2 < 2 and x 1so 0
lowing three conditions: ~O mod pI = x,

not orthogonal to PO.

(4) Every element of the second kind 18 a special element of

kind, there exists an element

type B.
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(5) Every element of the third kind with the associated num­

ber 1 (respectively 2) i8 necessarily a special element of

type C (resp. type G).

(6) For "the former 5 kinds except the last one

U1 ,0(2,3,3,3) the following assertion holds.

If g(i) - 0 mod 21 - ."for x € PI/PI, then -x = o.

For this assertion does not hold.

Corollary 2.10. For every element

or third kind, u(x) < 2.

- *
X € P' IP I of the secend

In the rest of this section we show Proposition 2.9 for

each kind of quadrilateral singularity. Recall the following.

p c: pI $ HO. Po is the sublattice of P generated by

e O' e 1 , e 2 , e 3 and 8 4 • P' = P n PI. pI is the sublattice
o 0 0

of pI generated by e o ' e 1 , 8 2 and 8 3 . Po ~ 0(04) (the

roet lattice of type °4) •

The case of J 3 ,0(2,2,2,3).

pI ~ Po ~ Q(04). Obviously it has the property (G'). By·

Example 2.3 (k = 4), one knows that any non-zero element in

the discriminant group i8 of the second kind. By Example 2.3

we can check the rest of the proposition. In particular, P

has no associated numbers. It has special elements of type B.
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The case of Z1,0(2,2,2,4).

Let e 6 be the member of the basis B corresponding to

the end of the longest arm of the dual graph (1) • Set

e' = e
6 - uO· P' = Po e ZeG· e,2 = +2. Thus if the assump-

6 6

tion of (G' ) is satisfied, then TJ = ±e' and we have the
6

conclusion.

- *Every element x € P' /P'

the form x = y + z where y e

We can deduce the rest of the

(k = 1) and Example 2.3 (k .= 4) •

can be uniquely expressed in

* - *Po /Po and z e (ZeG) /ZeG.

proposition by Example 2.2

Consider the case y = z = o. The element x = 0 1s of

the first kind. However, obviously, if x e P',

x 2 = 0 mod 2Z, and x 2 < 2, then x 2 = 0 and thus x = O. For

x = 0, the assertion (2) holds.

If y = 0 and z -j. 0, then q(x) = 1/2 mod 21

is of the first kind. If *x e P , x mod P' = X, and

-and x

x2 < 2,

then x = ±eG/2 and thus x is orthogonal to Po. The as­

sertion (2) holds.

When y -j. 0 -and z = 0, q(x) =1 mod 2Z. The element -x
is of the second kind. By Example 2.3 one knows the assertion

(3). By (3) u(x) = 1. Sin~e x has order 2, it is a special

element of type B.

-When y -j. 0 and z ~ 0, q(x) =3/2 mod 2Z. The element

x is of the third kind with the associated number 1. We have

x has order

and y2 = 1.

satisfies the

y mod Po = y

knows this Xc

u(x) ~ 3/2. Since

such thatelementan y e P'o
setting xo = y + (e6/2), one

assertion (3). In particular,

2, it is a special element of type C.
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The assertion (6) is obvious by the above.

p has the associated number 1 and has special elements

of type Band of type C.

The case of Q2,o(2,2,2,5).

We associate vectors e O' e 4' eS' e 6 , e 7 in order from

the central one with 4 edges, with the S vertices on the

longest arm of the dual graph (1). Set and

pi = pi $ T, ando (the root

lattice of type A
2
). (G') follows easily from this decompo-

sition. write an element - *X € pi /Pl in the form x ~ y + z

where *Y € pi /Plo 0
and - *Z € T /T. We can apply Example 2.2

(k = 2) and Example 2.3 (k = 4).

- -If Y c: z = 0,

assertion (2) holde.

x = O. Then -x is of the first kind. ~he

When y ~ 0 and - q(x) 2/3 mod 2Z and - isz ~ 0, - x

first kind. * element satisfyingof the Let x € pi be an

x mod pi - and x 2 write it in the form= x < 2. We can

x = y + z where *Y € Po and *Z € T • One has Z2 ~ o. On

the other hand

then

Y € PO' since

and thus

y mod Po = Y = O. I f Y ~ 0,
222x ~ Y + z ~ 2, which i8 a

contradiction. Thus y = 0 and x is orthogonal to Po. One

knows that the assertion (2) holds in this ease.

If y ~ 0 and i = 0, then q(x) =1 mod 21 and x is

of the seeond kind. By Example 2.3 one knows that the

assertion (3) holds in this ease. In partieular, u(x) = 1.
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-since x haB order 2, it is a special element of type B.

The assertion (4) also holdB.

When y ~ 0 and z ~ 0, q(x) - 5/3 mod 2Z, and x is

of the fourth kind.

By the above one knows'the assertion (6), too.

P haB no associated numbers. It·has. special elements of

type B.

The case of W1 ,O(2,2,3,3).

We associate the ,vectors with the

vertices in the dual graph like the following.

e 4 es
e

1

X
0

e
2

0
9

3
9

6

Set f = e - uo + v = e
6 - e - 2Uo· We have P :c: pi i HO6 0 5

3

and pi = l Ze i + Zf. Moreover f2 = 4,

i=o

pi is like the following.

f·e = f·eo 1

the lattice

= f • e 2 = 0, and f· 9
3

= -1. The dual graph of

Set

-1 4
@
f
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Wo = (14eO + 7e1 + 7e2 + 8e3 + 2f)/6

w1 = (14eO + 13e1 + 7e2 + 8e3 + 2f)/12

w
2 = (1480 + 7e1 + 13e

2
+ 8e3 + 2f)/12

w3 = (4eo + 2e1 + 282 + 483 + f)/3

z = (2eo + e 1 + e 2 + 2e3 + 2f)/6.

They are elements in pI • Q. We can check wieej
;:: eS ij ,

zee. = 0, wief = 0 and zef = 1. Thus wo' ... , w3 ' Z i6 a
J

basis * coefficientof the dual module pI . Note that the of

e i in wj equals to wiewj, the coefficient of e j in z

2equals to wjez, and by the same reason z = 1/3. Moreover,

WO-2W1 , w2+sw1 , W3+4W1 , and Z-2W1 belong to PI. Thus one

knows the following. For an element

*x = x mod pI € PI/PI.

*x € P' we denote

Proposition 2.11. In the case of W1 ,0(2,2,3,3), the discrimi-

* *nant group P /P ~ PI/PI 1s a cyclic group of order 12. We

can take w1 or w2 as its generator. We have Wo = 2W1 ,

- -w2 = -sw1 ' w3 ;:: -4W1 , and z = 2W1 . For the discriminant

quadratic form q,

We continue to check Proposition 2.9. First we show the

property (G'). Assume TJ € pI, TJ2 = +2 and TJ ( Po. Set

3

TJ = 2a i e i + bf with integers a i and b. b ~ o. Corre­

i=o



- 39 -

3- l be6 • since1), we set 1} = aie i +
i=o

(0 ~ i ~ 3) and f2 2 2, haveICI e + we
6

sponding to

ei·f = e i ·e6

1)2 = ~2 + 2b2 • Since e o ' e1 , e 2 , e 3 and generate a root

lattice of type

2implies 2 = 1) =

Os and since

~2 + 2b2 ~ 4,

- -2
1) ~ 0, one has 1} ~ 2. It

which is a contradiction. An

element 1) satisfying the a8sumption of (G') never exists.

Thus (G') holds.

Next, we show the assertions (2)-(S). Let *X € PI/PI be

an element. We deal with each case separatedly.

(1) x = O. The zero element i8 of the first kind. The asser­

tion (2) holds in the case.

(2) x = iw
1

or ±sw1 . q(x) =13/12 mod 2Z. This element -x
is of the third kind with the associated number 11. An element

2
Xo = ±w1 , ±w2 satisfies Xo = 13/12, and it also satisfies

the assertion (3) in the proposition.

(3) x = ±2W1 . q (x) = 1/3 mod 2Z. This x is of the first

kind. Note that 2W
1

= z. We would like to show the assertion

(2) for x. To show it it suffices to see that if 1) € pI and

(z+TJ ) 2 < 2, then TJ = 0, because z is orthogonal to Po.

3 3

Corresponding to 1) = l aie i + bf, set ~ = l aie i + beG· We
i=o i=o

have (Z+TJ)2 = (1/3) + 2b(b+1) + ~2 < 2. Since b is an in-

teger, b (b+1) ~ O. I f
.......
TJ ~ 0, then and we have

(1/3) + 2 < 2, which is a contradiction. Thus

11 = O.

.......

11 = 0 and
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(4) x Cl ±3W1 • q(X) - 7/4 mod 2Z. This is of the fourth kind.

(5) x = ±4W1 . q(X) - 4/3 mod 2Z. This is of the third kind

with the associated number 2. Since w1 cz -w3 , and sinee

w~ = 4/3, the element Xo = ±w3 satisfies the assertion (3).

Besides ±4W1 has order 3 and the assertion (5) holds, too.

(6) x = 6W1 . g(x) =1 mod 2Z. This i8 of the 8econd kind. Set

z1 = (e1-e2 )/2. Sinee z1· e O cz 0, z1· e 1 = z1·e2 = 1, and

* --z1· e 3 = z1· f = 0, Z1 € P'. Besides Z1 = 6W1 , einee

z1 - 6W1 = - (7eo + 6e1 + 4e2 + 493 + f"). One knows that the

assertion (3) holds, since zi = 1 and Zl is not orthogonal

to PO. The assertion (4) holds, too, sinee 6W1 has order

2.

By the above one sees that the assertion (6) holds, too.

P has the associated numbers 2 and 11, and has spe-

eial elements of type Band of type G.

The case ,of Sl,o(2,2,3,4).

We associate vectors ao' e
1

, .•• , e 7 with vertices in

the graph as folIows.

Set e ' Cl u -eo 7 and

pI of HO = ZUo + ZVo in P 18 spanned by
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e e e e f and e '. We have0' l' 2' 3'

f-e 3 = -1, e'-e i = 0 (0 ~ i ~ 3) and e'-f = -1. Thus the

dual graph of the lattice P' i8 like the following.

Set

Wo = (12eo+6e1+6e2+7e3+2f+e')/5

w1 = (12eo+11e1+6e2+7e
3
+2f+e')/10

w2 = (12eo+6e1+11e2+7e
3
+2f+e')/10

w
3 = (14eo+7e1+7e2+14e

3
+4f+2e')/10

z = (2eo+e1+e2+2e3+2f+e')/5

w4 = (2eo+e
1

+e2+2e
3
+2f+6e')/10.

We can check the following.

wi-ej = Öij (0 ~ i, j ~ 3) , wi-f = wi-e = 0 (0 ~ i ~ 3) ,

z-ej = 0 (0 ~ j ~ 3) , z-f = 1, z-e' = 0

w4 -e j = 0 (0 ~ j ~ 3) , w • f = 0, w -e' :Cl: 1.4 4

Thus z 1s a basis of the dual module *P' • We

have the following proposition. We denote

- *x = x mod P' € P' /P' for *X € - P' •
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Proposition 2.12. In the case of 5 1 ,0(2,2,3,4), the discrimi-

* *nant group PI/PI =P /P is the direct sum of three cyclic

groups, each of which has order 5, 2, 2 respectively. The

first direct summand is generated by

Wo = z = 2W1 = 2W
2 = -4w = 2W4 · The second is generated by3

9 1 = SW1 and the third by g2 ::: SW2 • For the discriminant

quadratic form q

Besides

- - - -w3 = Z+91+g2 = w1+w2 and w4 = -2z+g1+g2 .

We check Proposition 2.9. First we show (G'). Assume

that Tl € pI, 2TJ = +2 and TJ f. PO. Correspondin9 to

TJ =

3

\ a.e.+bf+ce', setL 1 1

1=0

2

~ = l aiei+a3e4+bes+ce7· This

i=o

.....
TJ is

an element in the root lattice cf type generated by

since

c = 0, then

..... ""2
8 7 . Since TJ # 0, TJ is a positive

2 = TJ2 = ~2+2b2 ~ ~2 ~ 2, we have b = O.

and

integer.

3

2 = ( l
i=O

even

Thus

3

TJ = 2
i=o

a.e. € Po', which contradicts the assumption. Therefore
1 1

c -F- 0, and thus

3

l aiei = 0 and TJ = ±e'. Consequently TJ

i=o
i5 orthogonal to PO.
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Hext, we eheek the assertions (2) - (5). Let

be an element.

*X € P' /P'

(1) x = O. The zero element is of the first kind and satis­

fies the assertion (2).

(2) x = ±z. g(x) =2/5 mod 2Z. This -x is of the first kind.

To show the assertion (2) it suffices to see that if ~ € P'

and (~+Z)2 = z2 = 2/5, then ~ ~ O. Set
.....
~ = aoeo + a 1e 1 + a 2e 2 + a 3e 4 + be5 + ce?, eorresponding to

3

n = laie! + bf + C8'. If n ~ 0, then n2
> 0 and

i=o

2/5 = (~+Z)2 ~ n2 + 2b(b+1) + (2/5) > 2/5, which i5 a contra-

diction. Thus neO.

(3) x c ±2Z, g(x) == 8/5. ~his is of ~he fourth kind.

(4) x = gl or g2. g(x) == -1/2 == 3/2. This X is of the

third kind with the assoeiated number 1. We see the assertion

(3). Indeed, set Xo = (e1+e3+e')/2. Sinee

SW1-XO = 6eO+S81+3e2+3e3+f, we have Xo = gl. This Xo 16 not

orthogonal to Po' einee xc· e 1 ~ o. Besides x~ = 3/2 < 2.

When we treat the element g2' we can consider the element

(82+83+8')/2 instead. Lastly ane sees that x- i6 a special

element of type C, sinee it has order 2.

(5) x;:: ±z + gl

fourth kind.

or g(x) == 19/10. This is of the

(6) x = ±(2Z+91 ) or ±(2z~g2). g(x) = 11/10. This x is of

the third kind with the associated number 9. We have to show

the assertion (3). For

±(2Z+92), set Xo = ±w2 •

satisfies the condition.

±(2Z+91 ), set

For the both

Xo == ±w1 •

cases, this

For
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(7) X = g1+g 2. g(X) = 1. This is of the second kind. The ele­

ment Xo = (9
1

+92)/2 satisfies the condition in the assertion

(3) . It is also a special element of type B.

(8) -
±Z+91+92 • g(x) 7/5. It is of the fourth kind.x = -

(9) - ±2Z+91+g2 · g(x) 3/5. This is of the first kind.x = - Set

see

seesOne

it is easy to

Set

- 2
Xo = x, Xo = 3/5 and this Xo i8

to show the assertion (2), it suffices

2and (~+w4) = 3/5, then ~ belongs

2
~ +2~·W4 c O. Corresponding to

2
\ -2n·= L aiei + a 3e 4 + bes · n is an

i=o

that

set

integer.

o• On the other hand,

~ € P'

PO. Thus

AssumeZe' .

orthogonal to

to

to see that if

3

n = l aiei+bf+ce',
i=o

even non-negative

~2+2B = n2+2n.w =
4

that B ~ 0 for integers band c. Thus we have ~2 = 0

and B = o. It implies that n = 0 or n = -e'.

The assertion (6) 1s obvious.

P has the associated numbers 1, 9, and has special ele-

ments of type Band of type C.

The case of U1 ,O(2,3,3,3).

We assign numbers to the basis of P corresponding to

the dual graph as follows.
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Set f l = e 6-es-2uo and f 2 = e 7-es-2uo' The orthogonal com-

plement pi of HO = ZUO+ZvO in p is spanned by

e o' e l , e 2 , e 3 , f l and f
2

, ODe has fl'e i = 0 (i = 0, I, 3) ,

f l 'e2 = -1, f 2 'ei = 0 (i ;:; 0, I, 2) , f -e ::1-1 and2 3

f l 'f2 = 2, Thus the dual graph of pi is like the followiDg,

e
1

f 2 e~ e o e 2 f 1
@, 0 0 /@

, /

, 2 /
'---- --_._-"

We define a basis of the dual module *pi as follows

Wo = (22eO+lle1+12e2+12e3+2fl+2f2)/9

w1 = (1IeO+l0el+6e2+6e3+fl+f2)/9

w2 = (4eO+2el+4e2+2e3+fl)/3

w3 = (4eO+2el+2e2+4e3+f2)/3

zl = (2eO+e1+3e2+4fl-Zf2)/9

z2 = (2eO+el+3e3-2fl+4f2)/9,

and

For an element

are elements in

z. 'e. = 0
J. J

Wo - (W3 - 4Z 1 ),

w.-f. = 0,
J. J

w.-e. ::: 6 .. ,
J. ] J.J

check that

Zi'f j ::I 6 ij , On the other hand,

w1 + (w3+2z 1 ), w2+(W3-3Z 1 ) and z2-(W3+4Z 1 )

pi, Thus one knows the following proposition,

We can

*X € p' we denote *x = x mod pi € pi /P',

Proposition 2.13. In the case of U1 ,O(2,3,3,3), the discrimi-

* *nant group P /P ~ pi /P' i8 the direct sum of the cyclic
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group order 3 generated by w
3

and the cyclic group of

order 9 generated by - It be also represented as thezl· can

direct sum of the cyclic group of order 3 generated by w2

and the cyclic group of order generated by - the9 Z2· For

discriminant quadratic form q, we have

Besides, Wo = w3 - 4Z 1 , w1 c -w3 - 2Z 1 , w2 c -w3 + 3Z1 and

z2 = w3 + 4Z1 ·

since

(G'). Assume

and

is an element in the root
.....
~

We check Proposition 2.9. First we show

2
€ pi, ~ = +2 and ~ E PO. Set

generated by e O' e
1

, e 2 , e 3 , e 6
..... 2
~ 1s a positive even integer. Since

2 ..... 2 2 2 ..... 2
2 = ~ = ~ +2(b1+b1b 2+b2 ) ~ ~ ~ 2, we have

that ~

3

~ = \ a.e.L 1. 1.

i=o
3

~ = \' a.e.L 1. 1.

i=o
lattice
.....
~ '# 0,

~ € PO' which contradicts the assumptions. There exists no ~

satisfying the condition, and (G') holds.

Next, we show the assertions (2)-(5) for each element

- *x €. pI IP/.

-(1) x = o. This x is of the first kind. The assertion (2)

holds.
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(2) X = ±Zl. g(X) =4/9. This

show the assertion (2) it

-x i8 of the first kind. To

suffices to see that if

for ~ € P', then ~:= 0, because zl is

orthogonal to PO. Consider

B = bi + b1b2 + b~ + b1 = (b2+(b1/2»2 + b1 «3b1/4)+1), in

preparation to see this. We can show B ~ o. Now, set

3

~ = laie! + b I e 6 + b2e 7 , ~orresponding to
i=o

3

~ = l aie i + bI f 1 + b2f 2 € P'. Assume that
i=o

2 -2(n+z1) = 4/9 and n ~ O. Since ~ > 0, we have

4/9 ~ 4/9 + ~2 + B > 4/9, a contradiction.

(3) X = ±2Z1 . g(X) = 16/9. This is of the fourth kind.

(4) x = ±3ZI . gei) = o. This is of the first kind. However,

u (x) ~ 2 by Lemma 2. 1 (1), (2). Since the assumption of the

assertion (2) i5 never satisfied, (2) holds.

(5) x = ±4Z1 . g(x) = 10/9. This i8 cf the third kind with the

associated number 8. Set Xo = w3 - z2. One has Xo = -4Z1 .

This X o is not orthogonal to Po' since xO·e3 'I- o. On the

other hand x2 = 2 2 (4/3)-(2/3)+(4/9) = 10/9 < 2.0 W3-2w3·z2+z 2 =

One sees that the assertion (3) holde.

(6) x = ±w3 . g(x) = 4/3. This 1s of the third kind with the

associated number 2. Since w3 is not orthogonal to p'o and

sinee 2w3 = 4/3, one knows the assertion (3). Besides -x has

order 3 and i8 a special element of type G.

- ±w3 ± - g(x) This is of the fourth kind.(7) x = zl· - 16/9.

(8) X= ±(W3+2Z1). g(x) =10/9. This i8 of the third kind

with the associated number 8. Now, W1 c -(W3+2Z1)



Po' sinee

- 48 -

2
W1 ::I: 10/9 < 2, and w1 i8 not orthogonal to

w1·e1 # o. The assertion (3) holds.

(9) x = ±(W3-2Z1 ). g(x) =10/9. This i8 of the third kind with

the assoeiated number 8. Setting Xo = w2 - zl' one ean show

the assertion (3) by the s~me argument as in the above (5).

(10) X ~ ±(W3+3Z1 ). g(x) =4/3. This is of the third kind with

the assoeiated number 2. Set Xo = w3+3z1-(eO+e2+e3+fl). One

ean show that x~ = 4/3 < 2 and xO·e3 = 2 # o. One knows the

assertion (3). The element -x has order 3, and one has the

assertion (5), too.

(11) X = ±(W3-3Z1 ). q(x) =4/3. This i8 of the third kind with

the assoeited number 2. Now, w2 := -(W3-2Z1 ), w~ = 4/3 and

w2 1s not orthogonal to PO. One knows the assertion (3).

Besides one knows the assertion (5), too, sinee -x has order

3.

(12) x = ±(W3+4Z1 ). q(x) = 4/9. This i8 of the first kind.

- - - 2Here note that z2 = W3+4Z 1 and z2 = 4/9. Thus one ean show

the assertion (2) by the same argument as in the above ease

(2) x = ±Zl.

(13) X = ±(W3-4Z 1 ). g(x) - 4/9. This i8 of the first kind. We

would like to show the assertion (2). First note that

- - 2z1+ z 2 = W3-4Z 1 , (z1+z2) = 4/9 and zl+z2 1s orthogonal to

PO. Thus to show (2) it suff!ces to see that if

2 2(Tl+z
1

+z 2 ) = (zl+z2) = 4/9 for Tl E pi, then Tl er O. Con-

sider B::I: b~ + b 1b2 + b~ + b 1 + b 2 , in preparation to see

this. We can show B ~ 0 for integers b 1 and b 2 • Then, we

ean show ~ = 0 by the same argument as the above ease (2)

x = ±Zl.
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As for the assertion (6) in the proposition, it is ob­

vious, since g(x) = 0 mod 2Z for x = ±3Z
1

~ o.

In the case of U1 ,0 (2,3,3,3) , P has the associated

numbers 2 and 8, and has the special elements of type G.

We have established Proposition 2.9. This proposition is

the basis of the following arguments.

In the last part of this section, we want to make the

meaning of Proposition 2.9 -(6) clearer. Consider the last case

in particular. Associated with the basis e o'· • ., e 7
2

P, set u 1 = 3eO+2(e2+e3+e4)+eS+e6+e7. u 1 = 0, u1·e i = 0

(i ~ 1) and u
1
·e

1
= -3. Set further

Y1 -e + e 4 + eS - u 131 1

Y2 = -e + e 2 + e 6 - u 131 1

Y3 = -e + e 3 + e 7 - u1/3.1

We can check 2
= +2 (i c 1, 2, 3) • Sincey.

~

Lemma 2. 14 • (Nikulin [10]) Let L be a non-degenerate even

lattice and K be an even overlattice of L. We can regard

* *LeK C K CL. Set I CI K/L. We regard I as a subgroup of

*L IL. Set
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r.L = {x € L*/L Ib
L

(x, y) o mod Z .for every y € I} •

is an isotropie * i. e. , qL 1I(1) I subgroup of L /L, - o.
I.L *(2) = K /L.

(3) Assoeiated with the exaet sequenee

o ~ I ~ I.L o *---+. K /K -+ 0,

one has q~ = qL1I.L.

(4) Conversely, for any isotropie subgroup *I' C L /L, the

inverse image K' of I' by the natural surjective morphism

* *L ~ L /L is an even overlattiee of L.

Proposition 2. 15. The eorresponding lattice P has no even

overlattiee except P itself in the ease of the former 5

kinds J 3 ,0' Zl,O' Q2,O' w1 ,0

singularities.

and of quadrilateral

As for the last ease U1 0' P has a unique overlattice,
P1 except P itself. P1 has index 3 over P, and

P1 = P + ZY1 = P + ZY2 = P + ZY3 • Choosing one of Y1 , Y2 , Y3

corresponds to choosing one of the 3 arms with length 3 in

the dual graph of the' basis of P. If we choose Y1' the bi­

linear form on P1 i8 deseribed by the following dual graph.
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-e
. 5

Y1

e 1

0 0 0 0

e
6 .82

8
0 e·3

8
7

In particular, PI ~ QCE6) e H.
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§3. Root modules

We develop general theory of root systems in this section, and

we convert Looijenga/s condition (a) and (b) into a simpler

one by the theory introduced here and by the results in sec-

tion 2.

We always work fixing arbitrary one of 6 kinds of quad-

rilateral singularities. By P we denote the corresponding

lattice to it. The lattice~ pI, Po a.nd pI
o and the elements

uo' Vo € P are also defined.

An embedding P C A into another even lattice A i8

said to be ~, if it satisfies the following condition (G)

(Looijenga [8]) •

......
be the primitive hull in(G) Let P = P(P,A) of P A. If

...... 2 i8TJ € P, TJ = 2, TJ-U = 0 and TJ ( Po' then TJ0

orthogonal to PO·

On the other hand, if the image of P in A is primitive in

A, then the embedding i8 said to be primitive. By Proposition

2.15, every embedding of P into an even lattice i8 primitive

for the former 5 kinds of singularities.

Proposition 3.1. For an embedding of our lattice P into an

even lattice, it is good if and only if it is primitive.
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Proof. For the former 5 kinds it suffices to show that a

primitive embedding is a good embedding. On the other hand by

Proposition 2.9 (1) P has the property (G'). This (G' )

implies the desired claim.

Next·, we consider the case of U1 ,o. Similarly by

Proposition 2.9(1), a primitive embedding is a good embedding.

Any non-primitive embedding into an even lattice A can be

factored as P C PI CA. (See Proposition 2.15.) The element

Yl € PI satisfies y 1 -uO = 0 and Yl ~ PO' hut Y1 is not

orthogonal to Po' since Yl-e4 ~ o. Thus the embedding is not

good.

Q.E.D.

Proposition 3.2 (1) Let AN denote the even unimodular lat­

tice with signature (16+N, N). If N ~ 1, then the lattice P

has a primitive embedding into

(2) Besides if N ~ 2, for

AN·

any two primitive embeddings

L, L' : P C AN' we have an integral orthogonal transformation

~ : AN ~ AN with L' = ~L.

Proof. (1) By l(A) we denote the minimum number of genera-

*l(P jP) ~ rank P.tors of an abelian group A. Obviously

Now, P has signature (lPi-4, 1).

lPi-4 ~ 7. Comparing the signature of

(16+N)-(lPi-4) ~ 9+N>O

N - 1 ~o.

For ~ur 6

AN' one has:

cases
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Comparing the ranks of AN and P, one has:

rank AN- rank P = l6+2N-lPi+3

~8+2N~2+rank P

* *~2+l{P /P»l{P /P).

Appyling Nikulin [la] Theorem 1.12.2, one knows the existence

of an embedding.

(2 ) Bes idee i f N~2, one has a stronger inequality N-1>O

about the negative signature. Thus by Nikulin [10] Theorem

1.14.4 one has the uniqueness.

Q.E.D.

Remark. When N = 1, we cannot assert the uniqueness.

In Urabe [ 13] we have introduced the concept of root

modules. They have been a- kind of quasi-lattices satisfying

certain conditions. However, the conditions there are too

streng for our 6 casea under consideration. We would like to

define the concept of reot modules again in this article, as a

more general concept. In Urabe [13] we have had only irreduc-

ible root systems of type A,~, D or E. However, according

to the definition here, we have roet systems of all types

A, B, C, D, E, F er G, and moreover we have non-reduced root

systems of type CB (Bourbaki [3]).

In addition to these genralized root modules, we will

introduce the concept of obstructien compenents later.
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Now, let L be a quasi-lattice, FL be a submodule of

L such that the index # (L/FL) is finite. We define the set

R = R(L,FL) tor this pair (L,FL) as folIows:

We call the set R the XQQt system of (L,FL), and call an

element in R a .t:s22t. For any root a € R, "a
2 is called

the length ef a. A root with length ~ i5 called a long

XQQt. A root with length 1/-12, "2/3 or 1 i8 called a ahort

reet. Setting v 2 tor a root a€R, we call v thea = 2a/a a

co-root of a. We have aVeZa. Consider the following condi-

tion (R1)

(R1) 2(X,a)/a 2 = (x,av
) is an integer for every x € Land

a € R.

When (Rl) i5 aatisfied, for every a€R we can define an

isomorphism sa L~L preserving bilinear forms, by

setting for x € L

s (x)a
2 v v= X - 2(x,a)a/a = x-(x,a )a c x-(x,a)a .

We call s the reflection with respect te a. Indeed, on
a

L ~ m s defines the reflection whose mirror i8 the hyper­a

plane orthogonal to a. In particular,

and sesa -a

8
2 i8 the identitya



Sa(FL) = FL

If a € R

(R2)
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for every a € R.

and a 2
= 1/2, then 2a € FL.

Assume that the pair (L,FL) satisfies the three cenditiens

(R1) , (R2) and (R3). Then, we call this pair (L,FL) a XQQt

module. When L = FL, particularly we say that this root

module i8 regular, and we de net mention FL and abbreviate

it. (Sometimes we abbriviate

L '# FL.)

FL for simplicity even if

Any lattice i8 a regular reot module.

Let (L, FL) be a root module. The root system of the

reet module satisfies the most impertant axioms (SRII ) and

(SRIII ) of the 4 axioms for reet ·systems in Beurbaki [3]

o(Chap. VI, n 1. 1, Def. 1 and Re sume in the last part) and

thus it suits the name.

For a roet ß € R with length l/J2, a = 2ß i8 a long

root ßy 2 Y d= a , an s = S
a ß for the reflections. Setting

A A
R = R(L,FL) = {a € Rla 2 ~ 1/2},

we call
A

R the reduced root system of the root module

(L,FL). This satisfies the axioms

reduced axiom

and the

A A

(SRIV) If a € R, then 2a ( R.

of the axioms for root systems.
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The subgroup generated by all reflections with

a € R in the group of all integral orthogonal transformations

on L i8 called the~ group of (L,FL) and i8 denoted by

W(L,FL) or WeR). since it i8 obviously equal to the subgroup

generated by reflections corresponding to the reduced root

A A
system R, it is also denoted by WeR).

A

W(L,FL) = WeR) = WeR).

A

The submodule in L generated by R (respectively R)

i5 denoted by Q (R) (resp.
A

OCR»~ and is called the ~

guasi-lattice of R
A A

(resp. R). Q (R) ::l 0 (R). These are not

necessari1y 1attices. When it i8 a lattice, we ca11 it a root

lattice. Sometimes we write Q (L, FL) c Q (R (L, FL) ) for sim-

plicity, which is the submodule of L generated by roets, and

we ca11 it the root quasi-~attice cf tpe reet module (L,FL).

On the other hand, the submodule generated by all co-

roots Ya (a € R) i8 denoted by and is called the

co-root lattice. Indeed Q(RY
) 1s always an~ lattice. For

a, ß € R,

(aY,ß Y) € Z

Y Y 2
(a ,a ) = 4/a € 2Z.

be the submodule generated by all co-roots

A

corresponding to roots in the reduced root system R. Note

A

that Q(RY
) = Q(RY

).
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s Ca € R)
a

induces an isomorphism

s QCRv
) ~ QCRv

) of co-root lattices. Indeed, for ß € R,
a

The Weyl group WeR) acts on Q(Rv
).

Hext, let M be a submodule of L. Then, setting

FM :::: FL n M, (M,FM) i8 a-root module. A submodule is always

regarded as a root module in this manner. In other words, a

homomorphism qJ: (M, FM) ~ (L, FL) between root modules is

defined to be a homomorphism 'P: M~ L of modules which

preserves bilinear forms and such that qJ-1(FL) c FM.

A A

Lemma 3.3. Let R = R(L,FL) be the reduced root system of a

A

root module (L,FL). For every a € R,

v v vRa n Q(R ) c Za •

Proof. Easy. (See Urabe [13) Lemma 2.2.)

Remark. The above equality does not hold for a short root a

with length 1/~.

Note that if L is positive definite, then the root

system R(L,FL) 1s a finite set.

In the following we freely use standard concepts and ter-

minologies in the theory of root systems (Bourbaki [3]). Any
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finite reet system is uniquely decemposed into a direct suro of

irreducible ones.

Proposition 3.4 (1) Finite irreducible reot systems contain-

ing a long reot are classified into the following types. The

lower index represent8 the rank of the root system.

Ak(k ~ 1), Bk(k ~ 2), Ck(k ~ 4),

Dk(k ~ 4), E6 , E7 , Es' F3 , F4 , G2 ,

CBk(k ~ 1).

(Sometimes for the one of type F3 the name of the type i8

also called C3 .) A root system R of type CBk is non-re­

duced, i. e., R does not satisfy the axiom (SRIV)" The re-
A

duced root subsystem R consisting of all long roots and all

short roots with length 1 in R has the following type:

Al (k = 1), B2 (k = 2), F3 (k = 3), Ck (k ~ 4).

Every long root a in R is divisible, 1.e., a/2 € R.

(2) Any finite root system of a root module has at most one

component containing a sho~t root wit~ length 1/J2.

(3) Consider a finite root system of a regular root module.

Any irreducible component of it i8 never of type C. If an

irreducible component of it 1s of type CBk , then 1 ~ k ~ 3.

Besides, 1t has at most one component containing a short reet

with length 1.
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Proof (1) The main parts follow from Bourbaki [3]. Note that

A

by the axiom (R1) the reduced root system R of a non-reduced

root system R cannot be of type Bk with

2 2(2) If ~1:: ~2 :: 1/2 and ~1-~2 ~ 0, then

follows from this fact.

k ~ 3.

2
(~ 1+~ 2) Cl 1. It

(3) Assume k~ 4. ·Consider a free module
k

F = l Zf:..
i-1 1

of rank

k

k. Set L = l Z(f:../2). L is an overmodule of F with index
i=l 1

k 22 . We define abilinear form by f:. i Cl 2 (1~i~k), f:.i-f:. j = 0

(i ~ j). Then, (L,F) is a root module whose root system i8

of type CBk . Set is an even in-

teger.}. The pair (L',F) is also a root module, whose root

system is of type Ck • Set 13 1 = (f:. 1+f:. 2 ) /2 and

13 = (f:. 3+f:. 4) /2. Then, have 2 2 1, (11-(12 = 0 andwe 13 1 =.13 2
=2

13 1 ' 13 2€L' · However, 2
Cl 2 and 13 1+ß 2 f F. By this(13

1
+(

2
)

fact one sees the former half of the assertion. By the same

argument as in (2) one has the latter half.

Q.E.D.

Here we introduce three agreements in order to make the

following descriptions clearer. Consider the symbols of root

systems in Proposition 3.4 (1). In general situations we can

use these symbols (in particular, those of type A, D er E)

for root systems centaining no leng reot. However, in this ar-

ticle we obey the fellowing agreements.



- 61 -

(Agreement 1) When we use the symbols of irreducible root sys­

tems in Proposition 3.4 (1), they imply that the root system

contains a long root at the same time.

(Agreement 2) Consider the case where an irreducible root sys-

tem R contains no long root. Then, we have an irreducible

root system R' with a l~ng root and a positive real number

t such that R = <tala€R'}. If R' is of type X, then we

denote that R is of type X(t2 ).

(Agreement 3) (Exceptions) A reduced root system <a , -a} of

rank 1 i5 defined to be of type B1 if a 2 = 1, and of type
2GI if a c 2/3. A reduced irreducible root system of rank 2

consisting of enly short reets with length 1 is defined to be

Therefore, Bl = A1 (1/2), G1 = Al(l/J), and F2 = A2 (1/2).

Let R be a finite reot system. We can choose a ~

basis A = <a
1

,a
2

, ••• ,a
k

} C R ("une base de racines" in
oBeurbaki [3], Ch. IV, n 1.5. Semetimes it i5. also called a

fundamental system of reots.) when we fix a Weyl chamber. Each

fundamental ~ a.
~

i8 indivisible, i.e., a ./2 f R. A
~

is a

basis cf Q (R) •

We would like to explain the cencept of Dynkin graphs

here. We can draw a graph G by the follewing rules, cerre­

sponding to the reet basis A of R.
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(1) The vertices in G have one-to-one correspondence with

elements in A. Avertex has one of four different expressions

depending on the length of the corresponding root as folIows:

Length: .J2 1 J2/3 1/~

Expression: 0 • @) •
(2) If two roots a, /3 € A are orthogonal i. e. , a·/3 = 0,

then we do not conneet the two vertiees eorresponding to a

and (3.

(3) If two roots a, /3 E A are not orthogonal, then we

connect the two vertices c~rrespondin9 to a and ß by an

edge which is a single segment. (Note that if moreover a is

a long root, then a·/3 = -1.)

The resulting graph G is the Dynkin graph of the root

system R. It depends only on the isomorphism class of Rand

does not depend on the ehoice of A, since for another root

basis A' we have an element wEW(R) of the Weyl group such

that A' = w(A). Non-isomorphie two finite root systems have

different Dynkin graphs.

Our Dynkin graphs are slightly different from those used

eommonly. Next we explain the difference.

Dynkin graphs under common use have only one kind of ver­

tex, but have three different kinds of edges -a single seg­

ment, a double one and a triple one-. The difference of the

--
edge indicates the difference of the angle (a,/3)/Ja 2J/32 be-

tween a and ß. The absolute length of eaeh root is ignored,

but the mutual difference of the length between two roots is
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indicated by an arrow on a double or triple edge. Besides cus-

tomarily we do not associate a Dynkin graph with any non-re-

duced root system.

Our Dynkin graph of type CBk is the following.

8

8--...--... . ..-e--... (k vertices) •

Corresponding to a reduced root system of rank 1, we have

three different graphs 0,., @ depending on the length of

the root, but customarily they are not distinguished and all

of them have the same expression o. Even in the case of rank

2 , our graph of type A
2

0--0 and one of type F 2 .----e

are not customarily disti,!guished an,d are expressed by the

same graph 0-0. Besides our Dynkin graph of type G
2

is

o~, while customarily it is ~~.

Consider our Dynkin graph of a reduced irreducible root

system which is not of type G
2

. If it has apart like o----e,

we replace i t by ~o. After that, if we replace all

vertices corresponding to short roots by 0, the obtained

graph is the Dynkin graph under common use.

When a finite root system R has a k of components of

type Ak , bk of components of type Bk' .•• , we identify the

formal sum G C lakAk + lbkBk+... with the Dynkin graph of R,

and we say that R is of type G. We usa abbreviations like

R = R(G), Q(R) c Q(G), WeR) = WeG) etc.
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Next we explain the concept of extended Dynkin graphs

("graphs de Dynkin compl~t~" in Bourbaki [3]).

Let R be an irreduclble finite root system and A C R

be a root basis. The maximal root ~ € R is uniquely deter-

mined depending on 4. We can write it in the form

Tl = l n a. The coefficienta na i8 necessarily a positive

a€A

integer, and 1s called the coefficient Q:f .tM maximal l:22:t

+corresponding to a. The set A c A U {-Tl} 18 called the ~-

tended XQQt basis. We define the coeff1cient

maximal root corresponding to

2 Daa = o.
a€A+

- ~ to be n
-~

n of the
~

= 1. We have

Here we assume further that the rank of R i8 greater

than or equal to 2. The extended pynkin graph of R is the

resulting graph when we apply the same rules (1), (2) and (3),

which we used to make the Dynkin graph from A, to A+ 1n-

stead of A.

We define that the following 18 the extended Dynkin graph

for a finite root system of rank 1.

1

1
@

1
o

1
@)

1

•

2
e

1

1
o

The edge in the extended Dynkin graph of rank 1 is a QQlg seg-

meut. (Sometimes we use a single segment accompanied

with the mark ~ instead.) The attached integers in the above
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extended graph are the"coefficient8 of the maximal root. Even

these graphs of rank 1 are drawn basically by applying the

rules (1), (2) and (3) to A+. However, in the case of rank 1,

two elements in A+ are proportional. To express the fact of

proportion we use a bold edge.

Note in particular that the maximal root in the case of

type CB 18 a leng root.

For a reducible finite root system R, the disjoint union

of the extended Dynkin graphs of irreducible components i8

called the extended Dynkin 9raph of ~. The number of vertices

minus the number ef connected components i8 called the~ of

the extended Dynkin graph. The union ef the extended root

bases of the irreducible components i8 called the extended

XQQt basis of R.

In the following we show the extended Dynkin graphs for

main types. Numbers are the coefficients of the maximal roet.

1 1 1 1
o~.~o Ck+l vertices)

o
1

l' 2 1
0-.-0

12222

o~-a-. • .~=-vertices)

1 2 2 2 1
0-'-'- . ..-e-o (k+l vertices)
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1

1 O-!~ 1

1

1 1

0-1 o •••J
1 2 2 2

---t'lIO (k+l vertices)
1

1 2 J 2 1

1 2 J 4 J 2 1

2 4 6 5 4 J 2 1

.~. 1 2 2 1
F 2 F

J
0 • • 0

1 1

1 2 J 4 2 1 2 J
F

4
0 0 0 • • G

2
0 0 @

2 1
CB

1
8 c

2 2 2 2 1
CB

k
(k~2) (0 • • ••• --e 0 (k+l vertices)

!.
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When we choose an arbitrary vertex with the attached num-

ber 1 in a connected extended Dynkin graph, the graph ob­

tained by erasing out the chosen vertex and the edges issuing

from it is the corresponding Dynkin graph.

Lemma 3.5. Let A be an.even unimodular lattice, L be a

non-degenerate primitive sublattice, and M D C(L,A) be the

orthogonal complement of L in A.

(1) We define a morphism *A~ Hom(M,Z) = M by associating

an element X € A with a morphism defined by

Y € M~ (x,y). This induces an embedding of quasi-lattices

*M C M and an isomorphism *AlL ~ M of quasi-lattices.

(2) The composition M C A ~ AlL of the natural morphisms

i8 injective and it induces an embedding M C AlL of quasi­

*lattices such that the composition M C AlL ~ M coincides

with the inclusion *M C M •

* *(3) Let r: L IL ~ M IM be the canonical isomorphism ob-

tained by composing canonical isomorphisms (A/L)/M ~ AlL $ M,

* *(AlM) IL ~ AlL lD M, AlL:;: M and AlM:;: L . Then for discrimi-

nant quadratic forms,

*(x € L IL) •

Proposition 3. 6. Let P be the lattice corresponding to a

fixed one of 6 kinds of hypersurface quadrilateral singu-

larities.' Let A be an even unimodular lattice. Assume that

there exists a primitive embedding P C A. Let F denote the

orthogonal complement of P in A.
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(1) When we regard F as a subspace of a quotient quasi­

lattice AlP,

*F = (A/P) = {x€A/pl (x,y)€Z for every yEA/P.).

(2) For the former 5 kinds except U1 ,0' AlP is a regular

root module. Besides

F c {X€A/P!x2 is an even integer.}.

(3) For the last case U1 ,0' the pair

module.

(AlP, F) i8 a root

froof. (1) follows fram Lemma 3.5. First of all we show the

latter half of (2). In the following we identify A/P and *F

via the canenical isomorphism. The canonical surjective mor-

phism *A/P --+ (AlP) /F ~ F /F is denoted by TT. The composi-

tion * - * - *F IF ~ P IP~ P' IP' of the canonical isomorphisms

is denoted by r. The discriminant quadratic forms of P' and

F are denoted by qp' and qF respectively. Then, the as-
. -1

sertion i8 equivalent to that qF (0 mod 2Z) = {O}. Since

- -1qF = -qp,r, this 15 equivalent to that qp' (0 mod 2Z) = {O}.

However, this is equivalent to Proposition 2.9 (6).

We check the axioms ef reot modules. First let a € AlP

be a long root. For the former 5 kinds we have a € F by

the latter half of (2). For u1 ,0 a€F by definition. By (1)

2(a,X)/a2 = (a,x)€Z for every xEA/P.



- 69 -

Secondly assume ß2 = 1 for ß€A/P. Set

if = r(T(I3) )€P'*/P'. qp' (if) == -qp(1r(/3)) == 1 mod 2Z. ß i9 an

element of the second kind. By Proposition 2.9 (4) 2jf c: o.
"'"Since r i9 an isomorphism, 2v(ß) = 0 and thus 2ß€F. By (1)

2(ß,x)/13 2
= (213,x)€Z for every x€A/P.

Thirdly assume 7 2
= 2/3 for 7€A/P. Set

-- * - 2 -~=r(v(7))€P' /P'. qp,(7) - -qF(1r(7)) - -7 == 1+(1/3) mod 2Z. 7

i8 an element of the third kind with the associated number 2.

By Proposition 2.9 (5), 37 = O. Thus 3~€F. By (1)

2(7,X)/7 2
c (37,X)€Z for every x€A/P.

Lastly assume 6 2 = 1/2 for ö € A/P. Set

- - * - 2Ö = r(~(6))€P' /P'. qp'(ö) == -qF(~(ö)) == -6 == 1+(1/2) mod 2Z.

6 is an element of the third kind with the associated number

1. By Proposition 2.9 (5), 26 = o. Thu9 2ö€F. The axiom (R3)

i8 satisfied. By (1) 2(6,x)/ö 2
= 2(26,x)€Z for every x€A/P.

Now, since F i5 invariant under all integral orthognal

transformations on A/P by (1), the axiom (R2) is also satis-

fied in the case of

Q.E.D.

Definition 3.7. (1). Let (L,FL) be a root module. Let M be

a submodule of L, and M= P(M,L) be the primitive hull. We

say that M is!Yll in L if R(M,MnFL) = R(M,MnFL) for

root systems. An embedding of root modules whose image i8 full

is called a ~ embedding.

(2) Let k be a positive integer, G be a Dynkin graph. Let

be the decomposition into components and
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m
Q(G) = $ Q(G.) be the corresponding orthogonal decompositon

i=1 ~

of root quasi-lattices. Assume that there 1s an embedding

Q (G) C L into a' root module (L, FL). If a component Gi is

cf type Ak , and if the index of the primitive hull satisfies

[P(Q(Gi),L) : Q(Gi)]~k+1, then we say that Gi is an obstruc-

t12n component for this embedding with respect to k.

Lemma 3.8. We consider the situation in Definition 3.7 (2)

above. Besides, we assume that L is the root module AlP in

Proposition 3.6. If a component Gi is of type Ak , the fol­

lowing three conditions are equivalent. Set Qi = Q(Gi ) and

Qi = P(Qi,A/P).

(1) Gi i8 an obstruction component, i.e., [Qi:Qi]~k+1.

(2)

(3)

....,
[Qi:Qi] = k+1.

...., *
Qi = Qi·

Proof. We use the notation in Proposition 3.6. Since Gi has

no vertex corresponding to a ahort root, QiCF. By Proposition

3.6(1)

Since

equivalent.

0i] = k+1, the above (1), (2) and (3) are

O.E.D.
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Theorem 3.9. Let P be the lattice corresponding to one of 6

kinds of hypersurface quadrilateral singularities. Let A be

an even unimodular lattice with signature (16+N, N) with

N~l. Let G be a Dynkin graph without a vertex corresponding

to a short root and Q(G) be the root lattice of type G. We

consider an embedding P$Q(G) C A and the corresponding

induced embedding Q(G) C AlP defined as the composition

Q(G) C A ~ AlP of natural morphisms. Then, the following (A)

and (B) are equivalent.

(A) The embedding PGtQ (G) C A

tions (a) and (b) in Theorem 1.1.

satisfies Looijenga's condi-

(B) The embedding Q(G) C AlP is full and for every

associated number k of P with k~4, G has no obstruction

component with respect to k.

Proof. Set F = C(P,A). By v:A ~ AlP we denote the canoni­

cal surjective morphism.

(1) We will show that
/"'.../
Q(G) = P(Q(G),A/P) C AlP contains no

ahort root under the condition (b).

Let T} E Q('G') be a ahort root. We have T}2 I:: 1, 2/3 or

1/2. Chooae an element aEA with v(a) = T}. We can write it

in the form a = x+y * *(xEP , yEF ), since

* *P e F c A C P m F • By the definition of the bilinear form on

AlP, y2 = T}2 = 1, 2/3 or 1/2. There i8 a non-zero integer m

with mT} E Q(G), since T} belongs to the primitive hull. This

implies my € Q(G). We can assume that mx € P for the same
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at the same time and we have ma E P $ Q(G). Thus a

belogns to the primitive hull ~.

On the other hand, the element

a satisfies a·u O = a·vO = o.
*. 2xEP' • Obv~ously a =0 mod 2Z

we can assume further that

un~er this assumption one has

d 2 2 2_ 2_ 2
an x = a - y = -y =-~ - 1, 4/3 or 3/2 mod 2Z. The

element *x mod P'EP' IP' is of the second or third kind. By

(x-z) i9 not orthogonal to PO. By ex-
2 2a-z, we can assume that x - 2~ and x

Proposition 2.9(3)

(x-z) 2 = 2-TJ 2 and

changing a for

we have an element zEP' such that

is not orthogonal to PO. Consequently one has an element a€A

such that v(a) = ~, a 2 = 2, a·uo = a·vo = 0, aE~) and a

is not orthogonal to PO. Then, by the condition (b), aEPo.

This implies y = 0, which contradicts the fact y2 = ~2 ~ o.

Therefore we have no short root n.

(2) Assume that a component GO of type Ak in G is an ob­

struction component with respect to an associated number k~4

of P. We will deduce a contradiction from the condition (b).

Let Ao C Q(Go) be a root basis of Q(Go). Let ~ be

the fundamental weight corresponding to avertex at one of the

two ends of the Dynkin graph of A
O

• One has w2 = k/(k+l). On

the other hand, by Lemma 3.8 and by assumption one has

*Q(Go) = P(Q(Go)' AlP), and thus wEP(Q(GO)' AlP).

Then, we have an element a in the primitive hull of

PiQ (G) in A such that T(a) = wand a·uo - a·vO ~ o. We
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can write it in the form

a 2 _ 0 mod 2Z,

a == X+W *(x€P' ). since

X
2 _ -,,_, 2 _ d Z

~ l+(l/(k+l» mo 2 •

The element *x mod pI € P' /P' is of the third kind with the

associated number k. By Proposition 2.9 (3) we have an ele-

ment z € P' Buch that 2 l+(l/(k+l» =2-<.) 2 and(x-z) CI

(x-z) i8 not orthogonal to PO· Exchanging a by a-z, one

has element a€~) such that 'Ir(a) 2 = 2,an = 6.1, a

i8 not orthogonal to PO. By the con-

dition (b), a€Po' and 0 = v(a) = 6.1 # 0, which is a contradic­

tion.

(3) We will show that the condition (b) is satisfied, if ~

does not contain a short reet, and if. G has no obstruction

component for any associated number k~4 of P.

Let a be an element in the primitive hull of P$Q(G)

a 2 = 2 dan a is not orthogonal to

by a-(a-vo)uo one can assume further that

= o. We can write it in the form a = x+y

the case into four cases.

orthogonal

PO. Replacing a

it satisfies a-vo

* *(x€P' , y€Q(G) ). Here x is

2 = a 2 = x2+y2. Since both of p'

definite, we have o~y2~2. We divide

not

and Q(G)

to

are positive

<1> 1<y2~2.
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and *x mod P' € P' IP' i8 of the

first kind. By Proposition 2.9 (2) x is orthogonal to Po'

which contradict8 the choice of a.

<ii> y2;:: 1.

The element T(a) belongs to the primitive hull of Q(G)

in A/P. On the other hand, since v(a)2;:: y2 - 1, y(a) is a

ahort root , which contradicts the aS8umption.

since G has no vertex corresponding to a short root,

is a positive integer and G has a component

/"'....../ *such that Q(GO) = Zv(a) + Q(GO) = Q(GO) • By

i8 an obstruction component with respect to

Q(G) C T (F)

k = y2/(1_y 2)

of type

Lemma 3.8

and we have *Q(G)
~

J Q(G) in AlP. By' Lemma 2.7

k.

On the other hand, x2 = 2_y2 = 2-(k/(1+k» = l+(l/(l+k». The

*element x mod pi € pi IP' i8 of the third kind with the as-

sociated number k, and k is an associated number of P. By

assumption k~3.

If k = 3, then the second fundamental we!ght

* ~ 2w2 € Q(Go) c Q(Go) satisfies w2 = 1 and it is a ahort roet

in the primitive hull. It contradicts the assumption.

If k = 2, then v(a)2 = y2 = 2/3 and y(a) i8 a ahort

roet with length J2/3 in the primitive hull ef Q(G), which

contradicts the assumptien.

If k = 1, then v(a)2 = 1/2 and y(a) 18 a ahort reet
r---/

with length 1/-12 with 'Ir (a) € Q(G), which contradicts the

assumption, too.
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<iv> y2 = 0

We have y = 0 and *a€pl • By the property (G'), one

for a long

has a € PO. Thus the conclusion of the condition (b) holds.

(4) Under the condition (a), if 1)€P(Q(G) ,AlP)

root 1) € AlP, then 1)€Q(G).

In the case of U
1

,0 by the definition of a long root we

have 1) € 11" (F) C AlP. For the other 5 cases we have

1) € v(F) by Propositon 3.6(2). Thus, anyway, there i8 an ele­

ment ~ € F C A with v(~) = 1). This ~ 1s orthogonal to P

and it is contained in the primitive hull of Q(G) in A. By

the condition (a) one has ~ € Q(G), and thus

1) = T(~) € v(Q(G» c Q(G).

(5) If the condition 1) € P(Q(G) ,AlP) for a long root

1) € AlP implies 1) € Q(G), then the condition (a) holds.

Let a be an element in P(PGQ(G),A) with a
2 = 2 such

that it i5 orthogonal to P. Then, 1I"(a) € v(F), v(a)2 = 2 and

~(a) € P(Q(G), AlP). Thus vCa) is a long root in AlP. By

the assumption one has v(a) € Q(G). On the other hand, since

a € Fand P(Q(G),A) C Fand since viF 1s injective, one

has a € Q(G). Thus (a) holds.

Theorem 3.9 has been shown by the above.

Q.E.D.
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§4. Elementary transformations and tie transformations

By AN we denote the even unimodular lattice with signature

(16+N, N) for N~l. It is unique up to isomorphisms, and iso­

morphie to Q(2Ea) S ~ and also to T16$~. Here T 16 is

the even overlattice with index 2 over the root lattice

Q(D16 ) of type D16 .

We have defined the concept of elementary transformations

fer finite roet systems and Dynkin graphs in Urabe [13]. The

cencept of root modules in [13] is more restricted than the

concept of root modules in this article. Besides even the con-

cept of Dynkin graphs is slightly different from that in this

article.

In spite of such difference, the same definition of ele-

mentary transformations as before is effective even in our

present situation.

Here we give an example of a non-reduced root system and

explain it. Consider a Dynkin graph of type CB3 and the cer­

responding root basis A = {~,ß1,ß2>.

222By definition ~ = 1/2, ß1 = ß2 = 1. The maximal reet ~ is

equal te 2..,. + 2ß 1 + 2ß 2' which 1s a lang reet. Setting

+a = -~, we have the extended reet basis A c {-r,ß
1

,ß
2

,a>. The

irreducible cempenent centaining ..,. af the reet system gen­

erated by a proper suhset of A+ is non-reduced and cf type
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CB. Note that on the contrary the irreducible component con­

taining a of the root system generated by a proper subset of

A+ is reduced and it is of type A1 ,B2 or F3 .

Proposition 4.1. Let (L, FL) be a positive definite root

module and M be a·submodule of L.

(1) If M i8 primitive in L, then any root basis of the root

system of (M,MnFL) can be extended to a root basis of the

root system of (L,FL).

(2) If the torsion group of the quotient L/M is cyclic, then

.the root system of (M,MnFL) is obtained from that of (L,FL)

by one elementary tranformation.

Proof (1) The Weyl group ~(M,MnFL) =, W(M) of M acts' tran­

sitivity on the set of all root bases of M, and the action of

WeM) on M can be extended naturally to L. Thus it suffices

to show that there is a root basis AL for L such that AL

contains a root basis AM for M.

By assumption we have a linear mapping E : L ~ R such

that the kernel E-1(O) coincides with M. Regarding f as

an element in *L 8 IR, we consider the action of the Weyl

groups WeM) and W(L) = W(L,FL). Let *C C L 8 IR be a Weyl

chamber for W(L) such that the closure C contains E. Let

AL be a root basis for L corresponding to C. Set

A' = (a€ALI<a,E> = O) = (a€~LI The hyperplane orthogonal to a

passes through E.). Let W' be the subgroup of W(L) gen-

erated by reflections corresponding to roots in A'. If
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aEA', then E(a) = 0 and thus aEM. One knows W' C WeM). Let

I(W(L),f) = <gEW(L) Ig(f) = f} be the isotropie subgroup with

respeet to E. sinee for a € R(M,MnFL)

2 2s (f) ~ f-2<a,f>a/a = f-2f(a)a/a = f, one hasa
o

WeM) C I(W(L),E). Now, by Bourbaki [3] eh. 5 13 n 3 Prop. 2,

W' = WeM) = I(W(L),E). This implies that the Weyl ehamber for

W' 1s the Weyl chamber for WeM), and A' is a root basis

for M.

(2) First of all, note that Lemma 3.3 does not hold for a

ahort root with length 1/~.

By assumption we have a linear morphism f

f-1 (Z) = M.

L --+ IR with

Let AM C R(M,M n FL) be a roet basis for M. If AM

eontains a short root ß with length 1/~, then replacing ß
A A

with 2ß we can make the set AM. This AM is a root basis

A

of the redueed root system R(M,MnFL). By Lemma 3.3 and by re-

sults in Urabe [13] (Prop. 2.5, Cor. 2.6, Prop. 2.9(4), Lemma

A

2.10 in [13]) there is a root basis AL of the reduced root

A

system R (L, FL) such that for the extended root

A+ A
basis AL' that is, AM can be obtained from

mentary transformation.

A

AL by an e1e-

First we consider the case where AM contains ne short

tain a divisible root, then

root with length 1/~. Then,
A

AL does not eon-

is a root basis for
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and we have the claim. Thus in the fol-

A

lowing we consider the case where AL contains a divisible

A

root. By Proposition 3.4 (2) we have a unique component Al

form

2
'l' 1 CI:

A+
containing a divisible root. We can write Al in the

A+ 2 2
Al ;:: {2ß 1 ,'l'1'··· ,'l'k_1,2ß 2} with 13 1 = 13 2 = 1/2,

2
CI: 'l'k-1 Cl 1.

Here assume that 2ß 1 € AM and 213 2 € AM. We will deduce

A

a eontradietion. Now, the graph of A~ is the extended Dynkin

graph of type Al' B2 , F3 or Ck (k~ 4). The vertices eor­

responding to 2ß
1

and 2ß 2 are at the both ends. The sub-

A+
graph G1 consisting of vertiees corresponding to AM n Al

does not contain at least one vertex corr~sponding to a short

root under our assumption. Thus 2ß 1 and 2ß 2 belong to dif­

ferent connected components cf G1 • This implies that any reet

of M is orthogonal to either 213 1 or 2ß 2 •

Now, on the other hand, einee any two elements in AM

A

are linearly independent, the rank k of Al satisfies k~2.

Under the assumptien ß
1

, ß 2 € Land 2ß
1

, 213 2 € M. Besides,

sinee AM contains no short root with length 1/../2, ß1fM

and ß 2(M. The torsion part of L/M i8 cyclic and L/M has

only ene element of order 2 • Thus ß1-ß 2€H. On the ether

hand, since ß 1+'l'1+ •.. +'l'k-1+ß2 = 0, one knows

'l'1+ ... +'l'k_1+2ß1€M and '1'::: 'l'1+'Y 2+ ••• +'l'k_1€M. This 'l' is a

short roet with length 1, and satisfies 2ß 1 ·'l'#O and

2ß2·'l'~O. One has a contrad~ction.
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Therefore either 2ß 1(AM or 2ß 2(AM holds. If 2ß 1(A M,

set A1 ::I { ßl' 'Y l' ••• , 'Y k-l}. I f 2ß 2( AM' set

Al = {'Y l ,·· · ,'Y k - l ,ß2 } • Since
A A

root, AL = (A L - A1) U A1

+satisfies AM C AL.

Next, we consider the case where AM contains a short

a unique component containing a divisible root. Let

root ß with length 1/~. In this case

the eomponent of

write it in the

ß2 = ß,2 = 1/2, 'Yi = •••

A A

containing a divisible root. We can

and AL = (AL-Al) U Al. This AL is a root basis of R(L,FL)

and it satisfies AM C A~. -

Q.E.D.

Let F C AN/P denote the same module as in Proposition

3.6.

Lemma 4. 2 • ( 1 ) For any primitive isotropie element u in

AN+1/P belonging to F, there exists another isotropie ele­

ment v in F with u·v c 1.

(2) Set H = Zu + Zv and J = C(H,AN+1/P). One has the de­

composition AN+1/P ~ JiH. Besides, there is a primitive

embedding P C AN with AN/P ~ J.
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(3) For the former 5 kinds of quadrilateral sinqularities

except u1 ,o' any isotropie element in AN+1/P belongs to F.

Proot. (1) By primitiveness we have a homomorphism

f : A
N

+
1
/P --+ Z with f(u) = 1. By Proposition 3.6 (1) we

have an element v' € F with fex) - x·v' tor x € AN+1/P.

In partieular u·v' = 1 •. Sinee F . is an even lattice,

v,2 = 2m tor some integer m. Setting v = v'-mu, we have

v 2 = 0 and u·v = 1.

(2) Since H C F, x·u and x·v are integers tor all

x € AN+1/P by Proposition 3.6 (1). Thus we ean define an iso­

morphism ~ : AN+1/P --+ J~H by

~(x) = (x-(x·v)u-(x·u)v, (x·v)u+(x·u)v) € J e H.

"'" "'"Now, let u and v be elements in the orthogonal eom-

plement of P in AN+1 such that their images by the mor­

phism AN+1 --+ AN+1/P eoineide with u and v respectively.

""'2 ""'2 "'" "'"By Lemma 3.5 (2) we have u = v = 0, u·v = 1. Setting

H = Zu + Zv, K = C(H,A N+1 ), one knows that K is an even uni­

modular lattice with signature (16+N, N). The existenee of u

implies N~l. Thus we have an isomorphism K ~ AN' since in­

definite even unimodular lattice is uniquely determined by the

signature. The composition P C K ~ AN i8 a primitive embed­

ding such that AN/P =J.

(3) It follows from Proposition 3.6(1).

Q.E.D.
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By Proposition 4.1 and Lemma 4.2 one sees that the theory

of elementary transformations in Urabe [13] i8 effective even

in our general situation.

Theorem 4.3. Assume N ~ 1 (1) .Assume that for a given primi-.
tive embedding P C AN+1 , and for a positive definite full

root submodule L C AN+1/P, the orthogonal complement of L

contains a primitive isotropie element belonging to F. Then

for some primitive embedding P C AN' there i8 a positive def­

inite root submodule MO C AN/P with the following property.

The property: rank Mo ~ rank R(L) and for every positive

definite full root submodule M with MO C M C AN/P, the root

system of L is obtained from that of M by one elementary

transformation. In particular, the Dynkin graph of L is

obtained from that of M by one elementary transformation.

(2) conversely, let P C AN be a primitive embedding and

M C AN/P be a positive definite full submodule."Let R' be a

root system obtained from the root system R(M) of M by one

elementary transformation. Then, there is a full embedding

Q(R') C AN+1/P of the root quasi-lattice such that the

orthogonal complement of the image contains a primitive

isotropie element belonging to F.

Let us proceed to the theory of tie transformations. The

key parts in the theory of tie transformations in Urabe [14]

are the theory of elementary transformations and Fact 1.6 in

Urabe [14] section 1. It is easy to check that Fact 1.6 is es-
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sentially true even under the general definition of root mod-

ules in this article. However, of course, we have to replace

the expression

(l maa)2 c 1 or 2
a€A+

in the statement of Fact 1.6 by

(l maa)2 = min<ß 2 lß € A+}.

a€A+

We ean eheek that ~€F if 2
~ c 2 in the proof of

Proposition 1.5 in [14].

Theorem 4.4. Assume N ~ 1 (1) Assume that a primitive embed­

ding P C AN+1 is given. Let L C AN+1/P be a positive def­

inite full submodule satisfying the following eonditon <*>.

For some root basis A C R(L), for some long root a€A

<*> and for some isotropie element u belonging to F,

u·a = 1 and u·ß = 0 for every ß€A with ß~a.

Then, there are a primitive embedding P C AN and a positive

definite root submodule MO C AN/P with the following proper­

ty. The property: rank MO ~ rank R(L) ~ 1 and for every posi­

tive definite full reet submedule M with MO C M C AN/P, the

Dynkin graph of L i8 obtained from the Dynkin graph of M

by one tie transformation.
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(2) Conversely, for a primitive embedding P C AN and for a

positive definite full root submodule M C AN/P, if a Dynkin

graph G' can be obtained from the Dynkin graph of M by one

tie transformation, then there are a primitive embedding

P C AN+1 and a full embedding Q(G') C AN+1/P such that the

above condition <*> is satisfied for L = Q(G ' ).

Obstruction components are a concept which we cannot find

in my previous articles [13] and [14]. We would like to show

that they behave like the description in Definition 0.4.

In the following we assume that k~4 and H CI Zu+Zv

(U2 ~ v 2 _ 0, u·v c 1) i8 ahyperbolic plane.

We first consider the behavior under elementary transfor-

mations.

Let G' be a Dynkin graph. First, we consider the case

where a full embedding

into the orthogonal complement of u is given. Besides, we

assume that G' has an obstruction component G'
1

of type

A
k

• By definition

[P (Q (GI)' (AN/P) e H) Q(GI )] :: k+1.
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By p: (AN/P) $ H~ AN/P we denote· the projection to.

AN/P. Let M C AN/P be a positive definite full root submod­

ule containing the image p(Q(G')}, and Q(M} be the root

quasi-lattice of M.

Lemma 4.5. The component Q1 of Q(H) containing the image

p.(Q(Gi» is also of type Ak and (P(Q1,AN/P) : Q1] = k+1.

Proof. Let A' C Q(G/} be a root basis, and A' =
m'
U

i=l
A'i be

the decomposition into irreducible components. We assume that

the component G'
1

corresponds to Set

Ai = {ai,a2,···,ak}· We assign numbers to elements ai

.trom the end of the Dynkin graph in order. Let .

in A'1

be the first fundamental weight. By definition cu"a' = 11 1 and

cu"a! = 0
1 1.

tor 2 ~ i ~ k. By assumption cu' €
1

P(Q(G1},
(AN/P) $ H}.

Set a i = p(ai'> and cu! = p(cui)' Let A C Q(H) be a

m
reet basis and A = ,U Ai be the irreducible decomposition.

1.=1

By the theory of elementary transformations we can assume that

be the component containing

is a subset of the extended roet basisP (A ')

+
{al,···,ak } C Al'

Assume that is not of type Ak . Since

m +
U Ai' Let

i=l
One has

k ~ 4, by the
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classification of finite irreducible root systems with a long

root (Proposition 3.4 (1», one knows that there exist number

i with l~i~k and a long root ~ € A1 such that ß-a i = -1

and ~-aj = 0 for j~i, l~j~k. Then, we have

Wl-ß = -(k+l-i)/(k+l) ( l.

This contradicts Proposition 3.6 (1), since ß € F. Thus A1
i8 of type Ak and the index 18 k+I, since w

1
€ P(Q(Gl ),

AN/P). Q.E.D.

Next, we censider the situation when we go up from AN/P

to AN+I/P.
m

Let R be a finite root system and R::::I i!:lRi be the

irreducible decomposition. We assume that RI is of type Ak

with k~4. Assume that a full embedding Q(G) C AN/P such

that (Ql: Ql] = k+l for Ql = Q(R1 ) and QI = P(QI,AN/P)

i8 given. Let R' (C R) be a reot system obtained from R by

one elementary transformation. We assume moreover that

Lemma 4.6.

embedding

Under the above situation there exists a full



- 87 -

satisfying the following conditions (1), (2) and (3). Besides,

there also exists a full embedding satisfying (1), (2) and

(4). Here we denote Qi = ~(Q1) and Qi = P(Qi,(AN/P) eH).

(1) The image Qi of ~ 1s orthogonal to u.

(2) The composition of ~ and the projection

(AN/p)eH ~ AN/P ceincide with the

Q(R/) C Q(R) C AN/P.

(3) (Öi Qi] < k+1

( 4) (Qi Ql.J = k+1.

given embedding

Proof. Let A eRbe a root basis,
m

A = U A. be the irre­
i=l 1

be the extended reet
m

A+ = U A+
1=1 i

basis. If we denote the maximal root for Ai by Tl i' then

ducible decompositien, and

A+ = Ai U {-Tl i} ·i

For every i with 1 ~ 1 ~ m we have a proper subset

A+
m

A! c and R' 1s the root system generated by U Ai. Now,
1 i i=l

Al is cf type Ak and A+ consists cf k+l elements. By
1

assumption A'1 i8 also of type Ak and A'
1

i8 a subeet of

A~ consisting of k elements. we have k+l ways of choosing

Ai, and under any choice the basis Ai generates the same

root system R' n R
1

.

In order to define the embedding ~ satisfying (3), we

choose A'
1

in such a way that -n 1 € Ai· To define satis-
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m
fying (4) we choose A' with -11 1 ( Al'. A' = U Ai' is a

1 i m 1

free basis of Q(R'). We define the embedding ~ by setting

for a € A'i

--1 aSO~ (a)

aSu

Obviously it defines an embedding of quasi-lattices satisfying

(1) and (2). Besides, fullness follows from Proposition 4.2 in

Urabe [13].

We show the condition (3). Set Al = (a l ,a2, ... ,ak>. We

assume that the numbers are assigned from the end of the

Dynkin graph in order. If -11 1 € Ai, then there is a number j

(l~j~k) with aj = -Tl 1 • Now, if [Qi: Qi] ~ k+1, then for

w1 = {ka l+(k-1)a2+... +ak>/(k+1) we have ~(w1) € (AN/P) S H.

However, ~(w1) c w1S(k+1-j)u/(k+1). Thus

~(w1)·v = (k+1-j)/(k+1) f Z, which 15 a contradiction. We have

(3) •

When -Tl 1 ( Al' we have ~(w1) = w110, ~(w1) € Qi, and we

have (4).

Q.E.D.

By Lemma 4.5 and 4.6, one knows that obstruction

components behave like the rule in Definition 0.4 under

elementary transformation.
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In the following we eonsider obstruetion eomponents and

tie transformations.

Let G' be a Dynkin graph and Q(G') C AN+1/P be a full

embedding. We assume the following assumptions (01) and (02)

(01) G' has a eomponent G'
1

of type Ak with k ~ 4 such

that

(02) For some root basis A'e Q (G'), for some long root

a € A' and for an isotropie element u belonging to F,

a-U = 1 and ß·u = 0 for ~very ß€A' with ß#a.

Now, set v = u-a. We have 2 2u :c:: V = 0 and u·v CI 1.

Let p:J'9H --+ J denote the projection. Let

J :::I C(H,AN+1/P), one has AN+1/P = JlDH.
m'

A' = U A! be
i=1 1

the deeomposition into irredueible components. We assume that

Setting H = Zu+Zv,

the component G'
1

corresponds to Ai. By T we denote the

submodule of Q(G') generated by A'-{a}.

Let M be a positive definite full root submodule of

J ~ AN/P containing peT), and G be the Dynkin graph of M.

A reet basis A of M 1s decomposed
m

A:c:: U A.
i=l 1

into

we denote the extendedirreducible components. By
m

= U A+
i=l i

root basis. By the theory of elementary transformations, we

can assume that p(A/-{a}) C A+.



- 90 -

Lemma 4.7 (1) The element u i8 necessarily orthogonal to

Q (GI'> • In particular, A], C T.

(2) Let A+ be the component of A+ containing p(A],) . Al1

is also of type and for unique element +Ak some 'l' € Al'

Proof. (1) Set A], = {'l' 1 ' 'l' 2' • · • , 'l' k}' We assign numbers of

"'I'.'s trom the end of the Dynkin graph in order. Let
1.

be the first fundamental weight. w1• 'l' 1 CI 1 and w1- 'l' i = 0

,...-.......J *for 2~i~k. By (01) w
1

€ Q(Gi) = Q(Gi) . Assume that u is

nQt orthogonal to QCGi). The element a in (02) belangs to

Ai. We have a number j with a = 'l'j'. l~j~k. However,

u-W 1 c (k+1-j)/(k+1) f Z,

which is a cantradiction.

(2) First, note that ß-x € Z tor every long root ß € J and

for every element x € J by Proposition 3.6.

Assume that Al is D..Qt of type Ak • By the classifica-

tion of reet ,systems, ene has a leng reet ß € A+ and a roet1

'l' i € A' (l~ i~k) such that ß-P('l'i) = -1 and ß-p('l' .) = 01 J
fer j "# i, l~j~k. By (1) p(w1) € J. However,



- 91 -

ß-p(W 1) c -(k+1-i)/(k+l) ~ Z,

which is a contradiction. The latter half is obvious, since

A+ has k+l elements.
1

Q.E.D.

Lastly, we consider the ease when we 90 up from AN to

AN+1 by a tie transformation.

Let G be a Dynkin graph and Q(G) C AN/P be a full em-

bedding. By A we denote a root basis of Q(G) and A+ 1s

the extended root basis.

However, this time, we assume that G' i8 a Dynkin graph

obtained from G by one tie transformation and

be the full embedding obtained by the

transformation (Urabe [14]).

Corresponding to the procedure of the tie transformation,

we have subsets A, B C A+ with A n B =. which satisfy the

condition on G.C.D. with respect to coefficients of maximal

roots. We have

Q(G') = l Za+ l Z(a-u)+Z(u+v),
+a€A - (AUB) a€B

and A' = [A+-(AUB)] U {a-ula€B} U {u+v} is a root basis for

Q(G').

Here assume moreover that G has an obstruction compo-

nent G1 of type Ak in AN/P. We assume that the components

Al and A+ correspond to G1 ·1
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Lemma 4.8. The following (1.) and (2) a.re equivalent.

(1) In (AN/P) GI H, G' has an obstruction component G' of
1

type Ak such that it contains avertex corresponding to a

root in A+ - A.1

(2) A+ n B = • and A+ n A consists of a unique element.
1 1

Proof. (1) ~ (2). It follows from Lemma' 4.7. (2) ~ (1). Under

the assumption A' = A+ - A is a roet basis of type Ak and
1 1

i8 an irreducible component of A'. Let Gi be the component

of G' corresponding to Al' Then we have

= 1Za =

a€A l

This implies that the embedding Q(Gi) C (AN/P) GI H coincides

with the composition of the identification Q(Gi) = Q(G1), the

given embedding Q(G1) C AN/P and the embedding into the

direct summand AN/P C (AN/P) GI H. Thu8, when we compute the

index [P(Q(Gi)' (AN/P) i H) : Q(Gi»)' erasing out the prime

symbols and eH from the expression, we have the same number,

which is equal to k+1 by assumption.

Q.E.D.

By Lemma 4. 7 and 4. 8 one knows that obstruction compo­

nents behave like the rule in Definiton 0.4 under a tie trans-

formation.
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§5. Coxeter-Vinberg graphs

First we give a definition. An isotropie element u € AN+1/P

is said to be in A~ position with respeet te a positive

definite reot submodule L C AN+1/P, if either

nal to all roots in L, er for some root basis

of Land for some long roet a € AL' a-u a 1

u is orthogo-

AL(C R(L) C L)

and ß-u = 0
- -

for every ß € AL with ß ~ a.

New, if we have an isotropie element in a niee position,

and if it is primitive and belongs to F, we can reduce the

problem from AN+1/P to AN/P by elementary or tie transfor­

mations (Theorem 4.3, Theorem 4.4). Therefore existence of

such elements comes into question.

In this section we explain an effective method for the

reduction from A2/P to A1/P. The main tool in this method

is the Coxeter-Vinberg graph (Vinberg [15], [16], [17], [18],

·Conway-Sloane [5]). It is closely related to the geometry on

the hyperbolic space.

Let (L,FL) be a root module with l = rank L. We assume

that the bilinear form on L is non-degenerate and it has

signature (~-1, 1). The negative~ I L C L 8 m of L i8

defined to be

~L = {x € L 8 Rlx2 < O}.

The cone . I L has two eonnected components by the assumption

on the signature. Choosing one of two and fixing it, we denote

it by 1+. The ether compenent i8 I = - I+ • The quotient



- 94 -

~+/ffi+ by the multiplicative group ffi+ of positive real num­

bers can be regarded as a Lobaeevskir space of dimension 2-1.

The Weyl group W Cl W(L, FL) acts properly discontinously on

~± and ~+/~+. Let R = R(L,FL) be the root system. We de­

note the hyperplane in L 8 R orthogonal to a root a € R by

H c: {x € L GIllIRI(x,a) = O}.
a A connected component cf

Ha is called a fundamental polyhedron of w or a

Weyl chamber of W. The Weyl group W aets transitivelyon

the set of all fundamental polyhedrons. Choose and fix one

fundamental polyhedron C. By C we denote the closure of C.

Corresponding to the walls'of C, we 'choose a set A C R of

indivisible roots aa follows. (Note that H = H )a -a.

A = {a€Rla is indivisib1e, H n C contains an open seta

cf H, a is directed outwards from C.}a

We ca11 an element in A a fundamental XQQt. This set A is

defined depending on C. However, if we choose A' depending

on another po1yhedron C', A' and A are conjugate with

respect to the Weyl group W.

We can draw a graph from A following the rules below

which are similar to those for Dynkin graphs. The reeulting

graph i8 called the Coxeter-Vinberg graph of the root module

(L,FL). Indeed, it is defined by (L,FL) and does not depend

on the ehoice of the fundamental polyhedron.
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(1) The vertices in the graph have one-to-one correspondence

with elements in A. Avertex has one of four different ex­

pressions depending on the length of the corresponding root as

follows.

Length: -12

Expressions: 0

1

o

1/-12

• •

(2) If two roots a, ß € A are orthogonal a·ß = 0, then we

do not connect the two vertices corresponding to a and ß.

(3) If two roots a, ß € A are not orthogonal and if the

quasi-lattice Za+Zß generated by them is positive-definite,

then we connect the two vertices corresponding to a and ß

by a single segment

(4) If the quasi-lattice Za+Zß generated by two roots

a, ß € A is degnerate, then we connect the corresponding two

vertices by a bold segment

(5) If the quasi-lattice Za+Zfj generated by two roots

a, ß € Z i8 non-degenerate and indefinite, then we connect

the corresponding two vertices by a dotted segment •••••

Besides, if necessary, we add the intersection number a·ß to

the dotted segment.

As a practical method to construct the set of fundamental

roots, we have an algorithm due to Vinberg [16].

To carry out Vinberg's algorithm,.at the first step, we

choose and fix a vector V o € I+ called the controlling
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vector in the chosen component of the negative cone. Let Lo
be the set of vectors in L orthogonal to v 0 • Lo i5 a

positive definite root module. Let e
1

, e 2 , . . . , e
k

be a reot

basis for the reet system of LO•

At the secend step we choese e 2 € L for an integer

2 > k inductively. Assume that e 1 , . . . , e 2 - 1 have been

chosen. Set

If is empty, set

define e 2 to be an element a in R2 which attains the

minimal value for 2 2 and satisfies (a, V 0) ~ O.(a,vO) ja

Lastly, when Rl '# • for all 2 > k, we set

Av = {e1,···,ek,ek+1,···,e2'···> (an infinite set).

Then, coincides with the set A of fundamental

roots associated with some fundamental polyhedron C (Vinberg

[ 16 ] Prop • 4.).

Lemma 5.1. Let M C L be a positive definite full root sub-

module. A root basis ( C R(M) C M) for M is

necessarily conjugate to some subset of A with respect to

the Weyl group W(L) for L. In particular, the Dynkin graph

of M is a subgraph of the Coxeter-Vinberg graph of L.
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Proof. Note that the real number field m 1s a vector space

of infinite dimension over the rational number field Q. Be-

cause of this reason, we have a vector Vo € I+ in the nega­

tive cone such that M= {xELI(x,vo) = o}. Using Vo as the

controlling vector, we carry out Vinberg's algorithm. The root

basis of
"-I

M becomes a suhset of the constructed set AV' By

fullness~ the root basis of ~ i8 a root basis of M, and Av
is conjugate to a given set A of fundamental roots over W.

Thus we get the lemma.

Q.E.D.

In Vinberg's algorithm explained above a vector Vo with

v~ < 0 i6 used aa the controlling vector. We have another

similar algorithm u6ing an isotropie element as the control-

ling vector, which ia also due to Vinberg ([18] section 1.4).

Let u € L be a primitive isotropie element. Set r = Zu

and r.l :::I {x€LI (x, u) = o}. The pair

can be regarded aa a positive definite root module. By

p : r.l ---t r.l /1 we denote the canonical surjective morphism.

m
and AI =.U Ai

1.=1

be the irreducible decomposition. We assume that Ar gener-

ates over Q. (This condition i6 called the

compactness property. See Vinberg [18] section 1.3.) For each

root a € Ar we choose a root ~ € rJ., n R(L,FL) with
m

p(~)
"-I

{~Ia € A = U Ai Ai C rJ. is= a. Set Ai = Ai} and .r i=l
an irreducible root basis for l~i~m. Here we have 2 casea.
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(Case 1) The case where Ai contains a short root, the maxi-

mal roet for Ai i8 a long roet, and u (. FL.

Let B. be the maximal short root with respect to Ai·
~

-* -Set Ai 11:1 Ai U {- (B i +u) } •

(Case 2) otherwise.

Let '11 be the maximal reet with respect to Ai· Set

-* Ai U is the minimum positive in-Ai = {- (11 i +e Ou) } , where e
O

teger IS such that '1i+E.U is a root. (If T). is a short
~

root, ISO :c:::: 1. If 111 is a long reet, ISO is equal to the

minimum positive integer E. such that EU E FL.)

By the above we have for 1~ i~m. Let

be all the members in
m ..... *
U Ai.

i=1

t > k inductively. AssumeforNext, we choose

that we have chosen e 1 , ••• , e 2 - 1 • If the set of roots

Rt = (aER(L,FL) I (a,ei ) ~ 0 (1~i<2), (a,u) '# O}

is empty, set AV = {e1 ,e2 , ... ,e2_1}. If Rl '# ., we define

e 2 to be an element a in R2 which attains the minimal

value for (a,u)2/a 2 and satiesfies (a,u) < o.

When R2 '#. for all 2>k, we set

Av = {e1, ... ,ek,ek+1, ... ,et' ... } . (an infinite set).

Then, even under this definition Av coincides with the

set A of fundamental roots associated with some fundamental

polyhedron C (Vinberg [16], [18]).
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One knows the following. In the following the graph cor­

responding to a root basis plus (-l)-times the maximal short

root is also called the extended Dynkin graph.

m ..... *
Lemma 5,2, The obtained set U A. by the above construction

i=l ~

i8 conjugate to a subset of the set A of fundamental roots

for L ovar the Weyl group W, In particular, the extended

Dynkin graph corre8ponding to the Dynkin graph for I~/I 1s a

subgraph of the Coxeter-Vinberg graph for L,

Proposition 5,3, (Vinberg [18] section 2,4 and section 3,2)

The following four conditions are equivalent,

(1) The Weyl group W(L,FL) has finite index in the group of

all integral orthogonal transformations on L,

(2) A set A of fundamental roots of (L,FL) is finite,

(3) The polyhedron C/IR+ in the Lobacevskir space 1:+/IR+

associated with the fundamental polyhedron C has finite

volume,

(4) There are a finite number of vectors VI' ,." v l in the

closure of 1:+ such that the fundamental polyhedron C

coincides with the interior of the minimum convex body
l

containing the set U m+vi ,
iel

When we carry out Vinberq's algorithm, we need further

.some practical method to determlne whether the obtained set

{el"",ei } equals to Av or does not, For thls purpose we

have the followinq (Vinberg [16] Prop,- 11).
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Proposition 5.4. Consider one of the above 2 kinds of

Vinberg's algorithm. Let a be a subset of A
V

spanning

L • ~ over Q. Assume that we have obtained a graph G ap­

plying the above rules (1)-(5) to a instead of A. If the

graph G satisfies the fo11owing conditions <a> and <b>, then

a = Av' In particu1ar, (L,FL) satisfies the equivalent con­

ditions in Proposition 5.3.

Conversely, if (L,FL) satisfies a condition in

Proposition 5.3, the coxe~er-Vinberg graph G

satisfies the following <a> and <b> for B = Av '

of (L, FL)

<a> If a subgraph 8 of G is an extended Dynkin graph, then

we can find a subgraph T of G containing 8 such that T

is an extended Dynkin graph whose rank equa1s to rank L-2.

<b> Let a(T) denote the subset of a corresponding to the

vertices in a subgraph T of G. Let 8 be an arbitrary sub­

graph of G such that 8 i8 isomorphie to one of the fol­

lowing indefinite critical graphs. Let x € IMIR be an ele­

ment. If (x,a) = 0 for every a€B(8) and if (x,ß) ~ 0 for

every ß € 8-8(8), then x = O.

Indefinite critical graphs:

.--0000 @, o -----l@Fol---oO, @--n0
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Remark. The first one is a graph with only two vertices and

with a dotted edge. The latter 11 kinds of the indefinite

critical graphs except the first one belong to the elass of

Lanner graphs CVinberg [16] Table 3). In spite that there are

other kinds of Lanner graphs, only the above 11 ean appear in

our problem. This i8 beeause the angle between two roots

a, ß € A i8 either T/2, 2~/3, 3~/4 or 5~/6 in the ease

where the quasi-Iattiee Za+Zß is positive definite, and the

angle uniquely determines the ratio of the length of roots in

that ease.

We will write.down the Coxeter-Vinberg graph for the root

module A2/P in the ease of J 3 ,0' Zl,O and W1 ,0. We will

diseuse the ease of Q2,0' too.

The ease of

In this ease P ~ QCD4) e H. Let F denote the orthogo­

nal eomplement of P in A2 • We have F ~ CCQCD4 ) ,Al) and

Al ~ f 16$ H. f 16 1s the even overlattiee ovar QCD16 ) with
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index 2. An embedding Q(04) C f 16 is unique up to orthogonal

transformations and C(Q(04)' f 16) e:: Q(D12 ). Thus we have

- * - *F ~ Q(012) • Hand A2/P = F Q(012) e H.

Now, let K be the odd unimodular lattice with signature

13

(13, 1). We can write it in the form K:m l Zvi' where

1::0
2 2

Vo = -1, vi = +1 (1~i~13), and (Vi,Vj ) = 0 (i~j). We define

the elements w, f 1 , ..• , f 12 , g, h as follows:

w ct v O+v1+ ••• +v13 , 9 = V O+V13 ' h:: -(vO+v12 ),

f i = -vi +vi +1 (1~i~10),

f 11= vO-v11+v12+v13' f 12= -(vO+v11+v12+v13)·

Set M z::: {x€KI (x,w) == 0 (mod 2)} C {X=lxivillXi == 0 (mod 2)}.

The elements f 1 , ••• , f 12 , g, h are a basis for M. The

elements f 1 , ••• , f 12 is a root basis of type 012' and 9

and h generate a hyperbolic plane orthogonal to f i

(1~i~12). Thus we have M ~ Q(D12 )eH and

*A2/P ~ M = K+Z(w/2).

One knows that applying Vinberg's algorithm to the quasi­

lattice K+Z (w/2), we can draw the Coxeter-Vinberg graph of

A2/P. We carry out the algorithm with the controlling vector

vO. As the root basis for the orthognal complement of vO' we

take
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e i = -Vi +Vi +1 (1~i~12),

e 13= -v13 •

Succeedingly we get

13

eIS - (3VO+ l Yi)/2
i=l

Drawing the graph for these 15 vectors, we get:

1 2 3 4 5 6 7 a 9 10 11 12 13 15
O~I~~~~~~~~~~~

14 J

This eontains no indefinite eritieal subgraph. By Proposition

5.4, the above is the Coxeter-Vinberg graph for A2/P.

Corollary 5.5. Let P be the lattiee defined for the ease

J 3 ,0(2,2,2,3). For every positive definite full root submodule

L C A2/P, there exists a primitive isotropie element u € A2/P

in a nice position for L such that the root system of the

positive definite root module (Zu)~/Zu is of type Ea+F4 •

Proof. Considering eonjugation over the Weyl greup W(A 2/P),

we can assume that the reet basis AL fer L i8 a subset of

abeve {e1 , ••• ,e15>. On the ether hand, setting
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one has (u,eg ) = 1 and (u,ei ) = 0 for i~9, 1~i~15. Thus

u is in a niee position for L. Assume that we ean write it

in the form u = aw (a€Z, W€A
2
/P) .. Sinee w2 = 0, one has

(eg,w) € Z by Proposition 3.6 (1), (2). One has a 1:2 ±1

sinee a (eg , w) ;::: (ag' u) 1::1 1. Thus U 18 primitive. One ean

read off from the above graph that the root system of

(Zu).l /Zu is of type Ea+F4' sinee vertiees except 9 form

the extended Dynkin graph of type Ea+F4 •

Q.E.D.

u' is a primitive

13

Set u' = -(e
2

+2 l e i + e 14 ). This

i=3
isotropie element and the root system of (Zu' ) .l /lu ' i8 of

type B12 . The above Coxeter-Vinberg graph eontains only two

types - Ea + F4 and B12 - of extended Dynkin graphs of rank

12. Combining this with Lemma 4.2, one gets the following.

Corollary 5.6. Let P be the lattiee assoeiated with J 3 ,0.

The root system of the quotient quasi-lattiee A
1
/P is of

type G for some primitive embedding P C Al' if and only if

G = ES+F4 or B12 •

The ease of' Zl,0(2,2,2,4).
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In this case P = Po e T e Ho' Po =:: Q(04)

T ~ Q(A1 ). Let F be the orthogonal complement of P

for a fixed embedding P C A
2

• Since every embedding

and

is equivalent by Proposition 3.2, we can choose a convenient

one for our purpose. Regarding A
2

= f 16 eHe H, we can take

the direct sum of the embeddings for aach component Po C f 14 ,

T C H, Ho C H. Since C(PO,r16) e:: Q(012)' C(T,H) =:: ZVo

(V~ = -2), we have F =:: Q(012) mZVO (V~ = -2).

On the other hand, let K be the root lattice of type

12

B12 . We can write it in the form K = l ZV i where v1 = 1

i=l

(1~i~12), (Vi,V j ) = 0 (i ~ j). Set w = V1+V2+... +v12 € K.

The root lattice of type 012 can be identified with the sub­

lattice {x € KI(x,w) =0 (mod 2)} of K with index 2. Thus

we have

...., *A2/P = F = Z(VO/2) e [K + Z(w/2)].

using the expression in the right-hand aide, we can draw the

Coxeter-Vinberg graph. We use va as the controlling vector.

As the reet basis orthogonal to va' we take the following:

e i = -vi + vi+l (1~i~11)

e 12 = -v12 •

At the second step we get vectors:
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e 13 = VO/2 + Vl

e 14 = Va + Vl + V2 + V3 + V4

e15 = Vo + (Vl + v 2 +•.. + v 12 )/2.

Drawing the graph for these 15 veetors, we get the fo11owing

one.

10 11 12
9 0 0 • 15

8 13

7
14 1

0-16 0 2
5 4 3

By Propos~tion 5.4 this is the Coxeter-Vinberg graph for A2/P

in the case of

Coro11ary 5. 7 . Let P be the 1attice corresponding to

Z1 0(2,2,2,4). For every positive definite fu11 root submodule,
L C A2/P there exists a primitive isotropie element u € A2/P

in a nice position with respect to L such that the root sys-

tem for is either of type or of type

Preef. We ean regard that the roet basis AL for L is a

subset ef the above system of 15 veetors e 1 , ••• , e 1S • The

graph made from AL is a Dynkin graph and it has no bold

edge. Thus either e 1 (AL or e 13 ( AL·

First consider the case where e1 ( AL. Set
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This u
1

is a primitive isotropie element and

has the root system of type Ea+CB
3

•

(u1 ,e1 ) c: 2,

(u1 ,e i ) = 0

(u1,e10 ) = 1, and

(1~i~15, i~1, 10).

The veetor

tion.

is a long root. Thus is in a niee posi-

In the ease where e 13 ( AL' eonsider

This u 2 is also a primitive isotropie element and

(ZU2 )i/Zu2 has the root system of type E
7

+F
4

•

(u2 ,ea) :c:I 1,

(u
2
,e i ) m 0

(u2 ,e13 ) Cl 1,

( 1~ i ~ 15 , i~a, 13).

Thus is in a niee position in this ease.

Q.E.D.

Corollary 5. a . Let P be the lattiee eorresponding to the

ease Z1,0 (2,2,2,4). The root system of the quotient quasi­

lattice A1/P is of type G for some embedding P C Al if

and only if G = E7+F4 , ES+CB3 , or B10+CB1 .
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The quotient quasi-lattice A
2
/P does not satisfy the

equivalent conditions in Pr.oposition 5-.3. Thus we cannot write

down the Coxeter-Vinberg graph.

Lemma 5.9. Let A be an even unimodular lattice, and U and

T be non-degenerate primitive sublattice. Assume that U and

T are orthogonal to each other. Set M I:: P(ll $ T,A),

L = C(llfDT,A) and E;:: C(T,A). E is the primitive hull of

L i 11 and we have the induced embedding E/11 CA/lI. On the

other hand we can regard T as a submodule in A/11 via the

composition T c A ~ A/U of natural morphisms.

(1) Then, in AlU, P(T,A/U) = M/U and Elf! are the

orthogonal complements for ~ach other.

(2) The restrietion of the natural surjective morphism

A/TJ. ~ A/M to E/TJ. i5 an isomormphism onto the image R/M

which preserves the bilinear forms. Here R;:: (E $ T) + Mf and

thus R/E $ T - KlllfDT.

Now, set r = M/U fD T and

r~ = M*IUfDT C (UmT) *1 (l1mT) = (U*ITl) $ (T*/T).

following exact sequence:

We have the

o ~ r ~ rJ. a *----+ M IM ~ o.

On the other hand, we can regard that L C E/Tl. Thus we have

the inclusion relations
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L C E/n c E/M n E C A/M ~ *L ,

and we can regard (E/n) /L as a suhset of *L /L. By

* *r : L /L ~ M /M we denote the canonical isomorphism.

*rex) € M /M belongs to the image of

(3) An element *X € L /L belongs to (E/n)/L if and only if

I.l n «n*/U) S (O}) by

o.

Proof. Easy.

In our case the lattice

decomposition:

P has the following

and P' = Po S T. We denote

*group P' /P' has elements

P1 = Po S Ho. The discriminant

of the second kind (special

elements of type B), but it has no elements of the third
- .

kind. Thus it is enough to deal with only short roots with

length 1. We need not consider obstruction components.

N~l. We fix an embeddingCorollary 5.10. Assume that

Set E = C(T,AN). We identify T

AN/Pl . Then, T 1s primitive in

and the image of

and the restrietion

of the canonical surjective morphism 11' . AN/P1 --+ AN/P to.
E/Pl i8 injective, and the image 11' (E/P1) = (EiT)/P has

index 3 in AN/P. For the root system R(AN/P) C T(E/P1 ).
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Proof, Note that in the diseriminant group

* * *PI/PI l:Il Po /Po e T /T, any element of the second kind 1s

*conta1ned in the direct summand Po /Po' The inclus10n rela-

tion tor the root system at the last part follows trom this

fact, Other parts are easy,

Q,E,D,

Lemma 5,11, Let P be the lattiee defined in the ease for

Q2, 0 (2, 2, 2, 5) , The root system of the quotient A1/P is of

type G for some embedding P c Al if and only if

G = E6+F4 , ES+F2 or B
9

,

Proof, By Corollary 5,10 we have only to eonsider what the

root system of the orthogonal complement of T in A l /P1 is,

By Corollary 5,6 the root system of A1/P1 is elther of type

E
S

+F
4

er cf type B12 ,

Consider the ease where A
1
/Pl has the root system of

type ES+F4 , If the root system of T (It 1s of type A2 ,) is

eontained in the component of type ES' then G = E6 + F4 , and

if it lies in the component of type F4 , then G = ES + F2 ,

Next, we eonslder the ease where the roet system cf

A1/P1 i8 cf type B12 , Le~ Q C Al/Pl , be the root lattiee of

type B12 , We have T C Q, It is easy to see that the orthogo­

nal ccmplement S cf T in' Q contains a root lattice Ql

of type B
9

, Thus S :cl Zf e Q1 for some element E € S, Since

f2 = deS) = d(T) = 3, the root system of S is of type B
9

,

Conversely, we ean eonstruet an embedding P C Al whieh

Q,E,D,
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Lemma 5. 12. Let P be the lattice defined in the case of

Q2,O(2,2,2,5). For every positive definite full root submodule

L C A2/P, we have a primit~ve isotropie element u €A 2/P in a

nice position with respeet to L sueh that the root system of

(Zu)~/Zu i8 either of type E
6

+F
4

or of type E
S

+F
2

•

Proof. We use notations in Corollary 5.10 assuming N = 2.

By Q(L) we denote the sub-quasi-lattice of L gener­

ated by roots. By Corollary 5.10, Q(L) C T(E/P1 ). Let

p 11" (E/P1) --+ E/P1 denote the inverse morphism of 11" • Set

Q = p (Q(L). Let Q' be the sub-quasi-lattiee of peT $ Q,

A
2
/P1) generated by roots in it. Q' i8 an overlattiee of

TmQ. Note that TmQ i8 generated by roots in

assume that T C Q1' Then we have
m

Q = (Q n Q1) e ( e Qi)'
i::::2

Let
m

Q' = $ Q'
i::::1 i

be the irreducible decomposition of Q'. We

On the other hand,

is isomorphie to a subgroup of A2/T$E ~ Z/3 and it i8 a ey­

elie group. By Proposition 4.1 one knows that the root system

of T$Q 1s obtained from ·that of Q' by one elementary

m
transformation. Exeluding eommon eomponents m Ql, the root

1=2
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is obtained from the root basis

by one elementary transformation. Note that

Al
and

Al eontains the same number of elements, and Al has a eom­

ponent of type A2 eorresponding to T. We never have a short

root with length 1/J2 or J2/3 in our ease, and one knows

that the irredueible root basis A'1 is of type either

F4 , E
6

, E
7

, ES or A2 · Aecording as the type of A1.' Al is

of type F2+A2 , 3A2 , A5+A2 , E6+A2 or A2 • Let A! be a root
~

m
basis for Q' for 2~i~m. A' = U A' is a root bais of Q' •i i=l i

Now, our P1 is isomorphie to P in the ease

J 3 ,0(2,2,2,3) · Thus eonsidering a eonjugate ona, we ean regard

that A' is a subset of the system of 15 vectors just

before Corollary 5.5. Here we would like to show that there

exists a primitive isotropie element u' € A2/P1 satisfying

either the following (0)' and (1)' or the following (0)' and

(2) , •

(0)' The root system of (lU,)i/l u ' 18 of type ES + F4 .

(1)' u' i8 orthogonal to all elements in A'.

(2)' There exists a lang root a € A' - Ai such that

(a,u') = 1 and (ß,u') = 0 for every ß € A' with ß ~ a.

If 8 g ~ Al' then U o = -(910+2e11+3e12+4e13+2815)

satisfies the desired eondition.

Assume e g € Al. The graph of Al 1s a Dynkin 8ubgraph

eontaining the vertex 9 in the Coxeter-Vinberg graph for

J 3 ,0· On the other hand any Dynkin subgraph containing the

vertex 9 in the Coxeter-Vinberg graph for J 3 ,0 i8 never of

type F 4
or E. Thus C1lQI = 0, T = Q' and A' I::: {es,eg } or

l' 1
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By assumption

U1 = -(87+88+89+2811+3812+4813+2e15)

= s s s (uO). (s stands for arefleetion.)
8 7 e 8 e 9 a

One ean check that (ei ,u1 ) a 0 (i ~ 6, 7, 10, 1~iS15) and

(e
6

,u1) = 1. This u
1

satisfies the condition.

Hext, we eonsider the ease Al ;:: {e9 ,e10}· By assumption

u 2 = -(e7+2(88+e9+810+e11)+3812+4e13+2815)

es S S (u
1
).e

8
e

9
e 10

(u2 ,e i ) = 0 (i ~ 6, 8, 11, 1~i~15)

U2 satisfies the desired condition.

We have shown the existence of· u'.

Set I' = Zu'. By the condition we have. always T C I'~.

Set u = v(u') € A2/P and I = Zu. By Corollary 5.10, I is

primitive in v(E/P1 ) = (EeT)/p. If I is not primitive in

A2/P, we can write u c aw. (a€Z, wEA 2/P, wf(E$T)/P). We haV8

w2 = o. By Proposition 2.9(6) and Lemma 3.5(1) one knows that

w belongs to the image in A2/P of the orthogonal complement

F of P. In particular, we have W€E$T/P, which i5 a contra-

diction. Thus I is primitive even in A2/P. By Corollary

5.9, the set of all roots in I'~ orthogonal to T has one­

to-one correspondence with the set of all roots .in I via ~.
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Thus the root system of I~/I is equal to the root system

eonsisting of all roots in I'~/I' orthogonal to T. Here we

have identified T and the image of "T in I'~/I'. The root

system of I'~/I' i8 of type ES+F4 • Depending on whieh one

of two eomponents eontains T, the root system of I~/I is of

type either E
6

+F
4

or E
S

+F
2

•

Q.E.D.

The ease of

First, reeall the deeomposition P = P'iH. The diserimi­

*nant group P' /P' has elements of the seeond kind (special

elements of type B). Elements of the third kind in it has on-

ly the associated number 2· or 11. Thus it i8 enough to con­

sider only reets with length 1 or .J2/3 as short roots.

However, we have to count obstruction components of type All.

The diseriminant group * *P /P == P' /P' is a cyclie group

of order 12. Let 9 be a generator. We ean assume that for

the diseriminant quadratic form qp' qp(g) = 13/12 med 2Z.

On the other hand, for the root lattice Q = Q(A11 ) cf

type All' * *(QfBH) / (QfDH) == Q /Q is also a eyelie group cf

order 12. It has a generator h with ~H(h) =11/12 mod 2Z,

for the diseriminant quadratie form ~H· Thus qp:: -~H'.

This implies that there exists a primitive embedding

P C A
2

such that the orthogonal complement

is isomorphie to Q$H (Lemma 2.14, Lemma

F of

3.5) •

P in

Thus
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Proposition 3.2(2), for eyery primitive embedding P C A2 , the

orthogonal eomplement F of P in A2 i8 isomorphie to

(JiH.

be the odd unimodular lattiee with

Setting

satisfies

orthogonalthe

basis

be

m 0

thethatassume

define

We

(1~ i~ 13) ,

we

13

Now, let K = l
i=o

(13, 1).

2
vi = +1

signature

2v = -1,o

eomplement of Zw in K. Set

gl = v O+v13 '

f i = -vi +vi +1

9 2 c -(VO+V12 ),

(1~i~10), and

be the orthogonal proj eetion. By

Elements 9 1 , 9 2 , f 1 , ••• , f 11 are a basis for M.

H = Zgl+Zg2 is a hyperbolie plane, sinee gi = g~ = 0 and

(91 ,92 ) c 1. Elements f l , f 2 , .... , f 1l form a root basis of

type All' whieh is orthogonal to 9 1 and 9 2 . Thus one knows

M == Q(A11 ) lD H.

Let p: DQ ~ M8(Q

definition p(x) = x-(x,w)w/12, and p(x) = x if and only if

X€M~Q. For every x, Y € K8Q, (p(x),p(y)) = (x,p(y))

= (p(x),y).

Using the projeetion, set

r 2
= -13/12 and r € M8~.
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Here note that gl and 9 i = -vi +vi +1 (1~i~12) are

also a basis for M. (r,gl) c (vo,gl) C -1.

*(r,e i ) - (vO,ei ) c 0 (1~i~12). Thus M::J M + Zr. On the

*other hand, [M M] = Id(M) I = 12 and [M+Zr: M] c 12. One

* *knows M = M+Zr. Since A2/P == Fand F == Q (All) fit H == M,

one has an isomorphism of quasi-lattices

By using the expression on the right-hand side, we carry

out Vinberg's algorithm with the controlling vector r. As the

root basis orthogonal to r, we take

By the algorithm we get succeedingly

9 13 = vO+v1+v2-v13

e 14 c {3VO+(vl+ .•• +vs)-(Vg+ •.• +v13»/2

e lS = {4VO+(vl+···+vlO)-2(vll+v12+v13»/3

e 16 = {SVO+2(v1+···+v6)-(v7+···+v13»/3

e 17 = {svO+(v1+···+v1l)-3(v12+v13»/2

e lS = {7VO+3(vl+···+vS)-(v6+···+v13»/2.

Drawing the graph for this system of 1S vectors, we get

the following.
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We would like to apply Proposition 5.4 to this graph. It has

many dotted edges and we have to check the condition <b> in

Proposition 5.4. OWing to the following lemma also due to

vinberg, we can check it easily.

Lemma 5.13 (Vinberg [16] Proposition 2) We use the notations

in Proposition 5.4. Let S be an indefinite critical subgraph

of G. Let T be the subgraph of G consisting of vertices

not connected with any vertex in S by an edge and not be­

longing to S. If the following condition on an element

y € IMR is satisfied, then the condition <b> in Proposition

5.4 for SeS) i8 also satisfied. The condition: If (y,a) c 0

for every a € B(S)UB(T) and if (y,fj) s: 0 for every

ß € e - (S(S) U SeT»~, then y = o.

Let S

the vertices

one, and S

be the subgraph of the above graph consisting of

17 and 18. The unique edge in S i8 a dotted

i8 an indefinite critical subgraph. The cor-
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is the subgraph eonsisting of the vertiees

6, 7, 8, 9, 10 and I, 2, 3, 4, 12, 13, and T is a Dynkin

graph of type AS+E6 • In this ease

13 linearly independent veetors,

the eondition (y,a) c 0 for

B (S) u e (T) eonsists of

and 13 a:=- rank A2/P. Thus

a € SeS) U SeT) implies

y = o. By the above lemma, '. one knows that· Proposition 5.4 <b>

holds for S.

The reas~ning is the same even for other indefinite

eritieal subgraphs. By Proposition 5.4 the above is the

Coxeter-Vinberg graph in the ease of W1 ,O(2,2,3,3).

Corollary 5.14. Let P be the lattiee defined in the ease of

W1 ,o(2,2,3,3) and L C A2/P be a positive definite full root

submodule. Assume that the Dynkin graph of L does not eon-

tain a eomponent of type

tropie element

BI. Then, there i8 a primitive iso­

in a niee position for L such

that the root system of .. (lu).L /lu 1s of type

Proof. We ean assume that a root basis AL for L 1s a sub­

set of the above {el , ... ,e1S>. The graph for AL 1s a Dynkin

graph and it does not eontain a dotted edge, a bold edge, or

an extended Dynkin graph. In partieular, either e 17 ~ AL or

e18 ~ AL· By symmetry of the graph we ean eonsider only the

ease e 18 ~ AL· If e 18 ( AL and e17 € AL' we have further

that ell' e 14 , e16 f. AL' sinee the graph has no dotted edge

and no bold edge. If eIS' e17 f. AL' then either eIS ( AL or
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e 16 (. AL' sinee the graph has no bold edge. It suffiees to

eonsider only the ease e 16 (. AL by symmetry. Hext, eonsider

elements e lO ' e ll , e 1S • These form an extended Dynkin graph

of type G2 and at least one of them does not belong to AL.

We have four eases to be eonsidered.

Case (1) e 11 , e 14 , 8 16 , e 1S
( AL

Case (2) e 11 , e 16 , e 17 , e lS
(. AL

Case (3) e lO ' e 16 , e 17 , e.18 f. AL

Case (4) e 15 , e 16 , e 17 , e 18 ( AL·

Case (1) and (2).

In these eases e 11 , e 16 , e 18 f AL. Consider

2u1 = -(e14+ e 17 ). u1 = 0 and (u1 ,e i ) = 0 for

i # S, 11, 16, lS, l~i~lS. This U
1

i8 a primitive isotropie

element with .and for

13 € AL - {eS}·

Consider the subgraph in the above Coxeter-Vinberg con­

sisting of all the vertices not connected to either the vertex

14 er 17, plus the vertices 14 and 17 themselves. This

subgraph i8 the extended Dynkin graph ef type

fellows that the root system of

Ea+B1+G2 • It

i5 of type·

Case (J) •

Consider u 2 = -(e15+816 )· 2
11:1 o. (u2 ,ei ) ::: 0 foru 2

i~6, 10, 17, 18, 1~ i~ 18, and thus (13, u 2 ) = 0 for every
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ß € AL - {e6}. Besides (e6 ,u2 ) c 1. This U2 is a primitive

isotropie element in a niee position with respeet to Land

the reet system of (ZU2)~/ZU2 i8 of type E7+B3+G1 .

Case (4).

The four elements form the extended

Dynkin graph of type B3 . Thus one of them dees not belong te

AL. Depending on ene ef four, we have four subeases in ease

(4) •

Case (4.1) • e 7 , e 15 , e 16 , e 17 , e 18 ( Al·

Consider CI -Ce + 2e6 + 3e16)·
2 = o. (u3 ,ei ) = 0u 3 5 u 3

for i #- 4, 7, 15, 17, 18, 1~ i~18. Thus for every

ß € AL - {e4 } , (ß , U 3 ) cO. Besides

primitive and the reet system ef

(e4 ,u3 ) c: 1.

(Zu3 ) ~ /Zu3

This u
3

is

1s ef type

(u4 ,e i ) = 0

(ß,u
4

) CI o.

and the reet

Case (4.2). e 9 , e 15 , 8 16 , e 17 , 8 18 ( AL·

By symmetry of the graph, the reasoning 1s the same as in

(4.1). We ean consider the element u3 = -(2e10 + e 11 + 3e15 ).

ease (4.3). e 14 , e 15 , 8 16 , e 17 , e 18 ( AL·

Consider u 4 = -(e2+e3+ .•• +e13 ). u: = o.

(2~i~13), and thus for every ß € ·A L- {e1},

Besides (81 ,u4 ) = 1. This u4 . 18 primitive

system of (IU4)~/zu4 is of type All.
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Case (4.4). es' 8 15 , 9 16 , e 17 , e 1S ~ AL·

This is the last remaining case. If 8 14 € AL in this

case, then" {814} is an irreducible component of AL of type

Bl , which contradicts the assumption. Thus 8 14 ( AL' and case

(4.4) 1s reduced to the above case (4.~).

Q.E.D.

Corollary 5.15. Let P be the lattice associated with the

case W1, 0 (2 , 2 , 3 , 3). The root system of the quotient quasi­

lattice A
1
/P is of type G for some embedding P C Al if

and only if G c Es+B1+G2 , Es+B3+Gl , Bg+G2 or All.

Besides, if the root system of A1/P 15 of type All'

then A
1
/P i8 isomorphie to the dual quasi-lattice Q* of

the root lattice Q c Q(A11 ) of type All. In particular, for

any full embedding Q(Al1 ) C A1/P, the component All i5 an

obstruction one.
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§6. The Hasse symbol and the Hilbert norm residue symbol

In the beginning part of this section we explain the arithme­

tic conditions in our main theorems (Cassels [4], Serre [11]).

Proposition 6.1. Let Sand A be non-degenerate quasi-

lattices. We call the following claim I(S,A).

I(S,A) : For eyery embedding S C A, the orthogonal complement

of S in A eontains an isotropie element.

(1) Assume that for ~ embedding S C A, the orthgonal com-

plement of S

I(S,A) holds.

in A eontains an isotropie element. Then,

(2) Let AN denote an even unimodular lattiee with signature

(16+N, N). lf there exists an embedding such that

l(S,A N) holds, then there exists an embedding S C AN-I.

(3) Assume that S is a non-degenerate lattiee with signature

(s, 1) and that there exists an embedding S C A3 . Then, both

l(S,A 3 ) and I(S,A 2 ) hold if and only if the following elaim

J(S) for S holds.

J(S): One of the following conditions <1>, <2>, <3>, <4>

holds.

<1> S = 17, -deS) is a square number, and for every prime

number p E.p(S) ::::: 1.

<2> S = 16, and for every prime number p E. (S) CI 1
P
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<3> S = 15, and for every- ·prime numbe'r p

deS) ( ~*2 or e (S) 1::1 1.
P P

<4> s~14 .

(4) Under the same assumptions as in (3) , I(S,A 3 ) holds if

and only if the following claim K(S) for S holds.

K(S): One of the followlng conditons <1>, <2>, <3> holds.

<1> S .. 18, and for every prime number

ep(S) = (-l,-d(S»p.

<2> S = 17, and for every prime number

-deS) ( *2 e (S) 1.Qp or ::
p

<3> s~16.

p

p

Proof, (1) By ~ : S C A we denote an embedding. The condi-

tion that the orthogonal complement T (",,) of 'P(S) in A

contains an isotropie element can be expressed by three in-

variants; the signature of T(",,), the equivalenee class cf the

*2diseriminant of T('P) modulo ~ , and the Hasse symbol for

T (.,), However, these three invariante do not depend on the

choice of 'P and they depend only on Sand A. (In fact,

they depend only on S~Q and At~,)

(2) Let UEA N be an isotropie element orthogonal to S. By

exehanging u for the generator of· tQunA
N

, we can assume

further that u i8 primitive. Then, we have an element

v, E AN with (u,v / ) = 1, since AN 1s unimodular. Since AN

1s even, 1s an even integer. The element

v = v, - mu 1s isotropie and sati8fies (u,v) = 1. The sub-
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lattiee H c Zu+Zv is isomorphie to the hyperbolie plane and

we have a deeomposition AN = E $ H, and

position of the embedding seE + Zu

E + Zu ~ E defines an emb~dding seE.

(3), (4) See Urabe [13].

E ~ AN- 1 . The com­

and the proj eetion

Q.E.D.

The following table shows the signature, the discriminant

P eorresponding to 6

d (P), and the Hasse symbol e p (P)

number, or p = m.) for the lattiee

(Here p 15 a prime

kinds of hypersurface quadrilateral singularities.

signature d(P)

J 3 ,0(2,2,2,3) (5, 1) - 4 1

Z1,0(2,2,2,4) (6, 1) - 8 1

Q2,0(2,2,2,5) (7, 1) -12 1

W1 0(2,2,3,3) (6, 1) -12 (-1,3)p,
8 1 ,0(2,2,3,4) (7 , 1) -20 (-2,5)p

U1 ,o(2,3,3,3) (7, 1) -27 (-1,3)p

Let Q = Q(G) be a positive definite root lattiee of

type G and set 8 = P e Q. We have d(8) = d(P)d(Q) and

ep(s) = ep(p)ep(Q) (d(P),

J (P $ Q) and K(P e Q)

d(Q»p.- Therefore we ean rewrite

by using only the data for Q. The
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corresponding claim to J (P fD Q) is the arithmetric condi-

tions in [I] of Theorem 0.3 and 0.5. The corresponding one to

K(P fD Q) is the arithmetic conditions in [lI].

Our main theorems - Theorem 0.3 and Theorem 0.5. - are

the consequence of the above propositions in the previous sec-

tions.

Last of all we would like to explain how to deduce

Theorem 0.3 for the case of m = 1, 'J3 ,0. The deduction for

other cases and that for Theorem 0.5 is similar.

First, assume the condition [I](a) for m c 1. We will

show the condition [I](b). By Theorem 1.2, we have an embed-

ding S = NQ(G) C A3 satisfying Looijenga's condition (a)

and (b). By Theorem 3.9 the induced embedding Q(G) C A3/P is

full. Besides, since the condition J(P fD Q(G» in Proposi­

tion 6.1 is satisfied, both I(S,A 3 ) and I(S,A 2) hold. This

is equ~valent to that I(Q(G),AJ/P) and I(Q(G), A2/P) hold.

By Lemma 4.2 and by Theorem 4.3 one knows that there exists a

primitive embedding P C Al such that G is obtained from

the Dynkin graph cf A1/P' by elementary transformations re­

peated twice. By Corollary 5.6 the Dynkin graph cf A1/P i5

one the basic Dynkin graphs.

Conversely, assume the condition [I](b) for m = 1. Let

A

G be either B12 • We have a ful! embedding

A

Q(G) C A1/P for some embedding P C Al. If G i8 a Dynkin

A

graph obtained from G by elementary transformations repeated



- 126 -

twiee, by Theorem 4.J we have a full embedding Q(G) C AJ/P

satisfying I(Q(G),AJ/P) and I(Q(G),A 2/P). The indueed em­

bedding S ~ PiQ(G) C AJ satisfies I(S,A J ) and I(S,A 2 ). By

Proposition 6.1 we have the arithmetie eonditon in [I](a). By

Theorem J.9 S C AJ satisfies Looijenga's eonditions (a) and

(b), sinee the lattiee P has no assoeiated number in our

ease. By Theorem 1.2 G € PC(J3 ,o).

Next, we proeeed to the part [11]. Assume the eondition

[II](A) for m = 1. By Theorem 1.2 and by Theorem J.9 we have

a full embedding Q(G) C A3/P. By Proposition 6.1 I(Q(G),A 3/P)

holds. By Lemma 4.2 and by Theorem 4.3 we have a Dynkin graph

G' and a full embedding

tained from G' by

Q(G') C A2/P such that G is ob~

one elementary transformation. By

corollary 5.5 we have an isotropie element u € A2/P in a

niee position with respect to Q(G'). Thus there is a primi­

tive embedding P C Al such that G' is obtained from the

Dynkin graph of A1/P by one elementary or tie transforma­

tion. Besides by Lemma 4.2 and by Corollary 5.5 the Dynkin

graph of A1/P ~ (Zu)~/Zu i8 of type Ea+F4 , whieh is the es~

sential basic Dynkin graph. We have the eondition [11] (B) •

Note that the procedure of the third kind "tie after elemen-

tary" is dispensable.

Conversely aSBume that the condition [II](B) for m ~ 1.

If we apply the first procedure "elementary twiee" or the sec-

ond one "elementary after tie", then reversing the arguments

just above, one can deduce the eondition [II](A) for m = 1.

In the ease of the third proeedure "tie after elementary", by
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the similar reasoning one gete an embedding Q(G) $ P C A3

satisfying Looijenga's (a) and (b). Thus G € PC(J3 0) by,
Theorem 1.2.

Now, by assumption we have a Dynkin graph G' and a full

embedding Q(G') C A2/P such that G is obtained from G'

by a tie transformation. Since we can assume moreover that G'

is obtained from the Dynkin graph of A1/P by an elementary

transformation, I(Q(G'), A2/P) holde. Then, by the defini­

tion of a tie transformation, one sees that I(Q(G),A 3/P)

holds. One has also the arithmetic condition by Propositon

6.1.

The part [III] follows from Theorem 1.2, Theorem 3.9,

Theorem 4.4 and Corollary 5.6.

As for the proof of Theorem 0.5, note that Corollary 5.14

contains an additional conaition "L contains no component of

type BIll. However, this causes no problem because of the fol­

lowing reason: Let G'+B1 be a Dynkin graph containing a com­

ponent of type BI. Let G be a Dynkin graph obtained from

G'+B1 by one tie or elementary transformation. If G con­

tains components cf type A, 0 or E only, G can be ob­

tained even from G' by the same transformation.

In the next article we will show the converse of Theorem

0.3 and 0.5, part [lI] and [IlI].
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