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§0. Introduction

We would like to study hypersurface quadrilateral singulari-
ties in this article. Because the study of them can be reduced
to the study of elliptic K3 surfaces with a section and with

a singular fiber of type I we study such K3 surfaces,

*
0’
too. We show that the possible combinations of rational double
points on fibers in the semi-universal deformations of such
singularities can be described by a certain law from the view-
point of Dynkin graphs. This is equivalent to saying that the
possible combinations of singular fibers in elliptic K3
surfaces which have a section and a singular fiber of type I;
can be described by a certain law using Dynkin graphs.

We always work over the complex number field € in this
article.

Now, there are 6 kinds of hypersurface quadrilateral
singularities (Arnold [1], [2], Looijenga [8]). Each of them
has the following normal form of the defining function and the

Milnor number u.

J3 0 : x3 + ax2y3 + y9 + bxy7 + zz, (4a3 + 27 # 0),
!
p = 16,
2, ot Xy +axy’ +bxy® +y + 2%, (42’ + 27 2 0),
!

u = 15,



Q2 0 ° x3 + y22 + axzy2 + bxzy3 + xy4, (a2 £ 4),
r
= 14.
wl 0 ° x4 + ax2y3 + bxzy4 + y6 + z2, (a2 # 4),
!
u = 15.
S1 0 ° x2z + yz2 + ys + ay3z + by4z, (a2 # 4),
!
y = 14.
U1 0 ° x> + x22 + xy3 + ay3z + by4z, (a(a2 + 1) # 0),
!
L= 14.

All of them have modules number 2.

We deal mainly with the four cases J pA and

3,0’ 21,0" 2,0
wl,o in this article. The remaining two cases sl,o' Ul'0
are treated only in the beginning part and will be studied
further in a forthcoming article.

To state theorems we need two definitions (Urabe [12],
[13], [14]). As for the precise definition of connected Dynkin

graphs, see section 3.

Definition 0.1. (An elementary transformation)
A disjoint finite union of connected Dynkin graphs is called a
Dynkin graph. The following procedure is called an elementary

trangformation of such a Dynkin graph:



(1) Replace each connected component by the corresponding
extended Dynkin graph. . -

(2) Choose in an aribitrary manner at least one vertex from
each component (of the extended Dynkin graph) and then remove

these vertices together with the edges issuing from then.

Definition 0.2. (A tie transformation)

Assume that applying the following procedure to a Dynkin graph
G, we have obtained the Dynkin graph G. Then we call the fol-
lowing procedure a tie transformation of Dynkin graphs:

(1) Attach an integer to each vertex of G by the following

rule: Now, let a,, a,, .;., a, be a root basis associated
k

with a connected component Gy - of G. Let 2 n.a, be the

i=1
associated maximal root. Then the attached integer to the ver-

tex corresponding to a; is n;.

(2) Add one vertex and a few edges to each component of G
and make it into the extended Dynkin graph of the correspond-
ing type. Attach moreover the integer 1 to each new vertex.
(3) Choose in an arbitrary manner subsets A, B of the set of
vertices of the extended graph G satisfying the following
conditions:

<a> AN B-=2¢



<b> Choose arbitrarily a component é of the extended graph

1l
G and let V. be the set of vertices in 51. Let N be
the sum of the numbers attached to elements in B N V.

(If BN V=9¢, N=0.) Let & be the number of elements
be the attached integers

in AN Vv, and m,, m ees, M

2’ £
to A N V. Then, the greatest common divisor of ¢ + 1
numbers N, My, My, «oey Wy is necessarily 1.

(4) Erase out all attached integers.

(5) Remove Qertices belonging to A together with the edges

issuing from them.

(6) Draw another new vertex called 6 which corresponds to a

long root. Connect 6 and each vertex in B by an edge.

Remark. Often the resulting graph G after the above proce-
dure (1) - (6) is pot a Dynkin graph. We consider only the
cases where the resulting graph G is a Dynkin graph and then

we call the above procedure a tie transformation.

The number #(B) of elements in the set B satisfies

0 < #(B) < 3. & = #(anvV) 2 1.

Note that any connected Dynkin graph of type A, D or E
corresponds to a singularity on a surface (Durfee [6]).

When the Dynkin graph G contains a, of connected com-

k
ponents of type Ak, be of components of type De, Ch of
components of type Em' dn of components of type Bn, ces, We

identify the formal sum

G =) aA+ ) b,D, + ) c E + ) d_B_ +... with the graph G.



Let L be a lattice (i.e. a free Z-module of finite rank
equipped with an integral symmetric bilinear form). By p we
denote a prime number. The Hasse symbol of the inner product

space L ® @ over the rational number field Q is denoted by

ep(L) = 11. The symbol ( , )p is the Hilbert norm residue
symbol. By d(L) we denote the discriminant of L. Qp is
*2

the field of p-adic numbers. Qp = (azla € Op, a # 0) (Cassels
[4], Serre [11]).

Let X denote one- of the 6 .kinds of quadrilateral
singularities. Let PC(X) be the set of Dynkin graphs G
with components of type A, D or E only such that there
exists a fiber Y in the semi-universal deformation family of
the singularity X satisfying the following two conditions
depending on G.

(1) The fiber Y has only rational double points as singu-
larities.

(2) The combination of rational double points on Y just cor-

responds to the graph G.

- - = = = - -
Theorem 0.3 Set Xl 3,0 X2 zl,O' and X3 QZ,O Ac

cording as m =1, 2 or 3, we deal with the hypersurface
quadrilateral singularity Xm. We denote the number of ver-

tices. in the Dynkin graph G by r.

[I] The following two conditions (a) and (b) are equivalent.

(a) G € PC(Xm) and one of the following conditions <1>, <2>,



<3> and <4> holds for the root lattice Q = Q(G) of type
G.
<1> r =13 - m, md(Q) is a square number, and for every
prime number p ep(Q) = 1.
<2> r =12 - m, and for every prime number p
ep(@) = (-m,d(Q)) .
<3> r = 11 - m, and for every prime number p
- md(Q) ¢ Q;2 or e (Q) = (-m,-1).
<4> r € 10 - m.
(b) G contains no vertex corresponding to a short root and it
can be ‘obtained from one of the foliowing basic Dynkin graphs

by elementary transformations repeated twice.

The basic Dynkin graphs:

The case of m =1, J : E, + F

3,0 8 4’ "12°
The case of m = 2, Zl'0 : E7 + F4, E8 + CB3, B10 + CBl'
The case of m = 3, Qz’o : E6 + F4, E8 + Fz, B9.

[II)] The following two conditions (A) and (B) are also
equivalent.
(A) G € PC(xm) and one of the following conditions <1>,
<2>, <3> holds for the root lattice Q = Q(G) of type G.
<1> r = 14 - m, and for every prime number p
= (m,-d .

ep(Q) (m, (Q))p
<2> r =13 - m, and for every prime number p

nd(Q) € @°2 or e (Q) =1 |

P P )

<3> r < 12 - m.



(B) G contains no vertex corresponding to a short root and
it can be obtained from one of the following essential basic

Dynkin graphs by one of the following 3 kinds of procedures.

The procedures:

<1> elementary transformations repeated twice

<2> an elementary transformation following after a tie trans-
formation

<3> a tie transformation following after an elementary trans-

formation.

The essential basic Dynkin graphs:
The case of m =1, J : E8 + F4
The case of m = 2, 2 : E7 + F4, E8 + CB3

Q2,0 : E6 + F4, E8 + F2

The case of m = 3,
[III] Let G be a Dynkin graph with components of type A, D
or E only. Assume that we can obtain G from one of the
basic Dynkin graph by tie transformations repeated twice.

Then, G € PC(Xm).

Remarks. (1) (The Hilbert norm residue symbol) Let a, b and
¢ be non-zero rational numbers. (a,b)p = %],

2
(alb)p = (bra)pl (afbc)p = (a:b)p(arc)pr (a,b )P =1,

(a,—a)p =1, and (a,l—a)p =1 for a # 0, 1.



Consider the case where a and b are integers with
a=rptu, b= ppv, where u and v are integers not divisible

by the prime number p. If p is odd,

= PP

where [5] is the Legendre quadratic residue symbol. For

2 2
(a,b)2 = (-1) (u-1) (v-1)/4+a(v--1)/8+p(u"-1)/8

(2) r = rank Q(G).
(3) If G =G’ + G" for Dynkin graphs G, G’, G",
Q(G) = Q(G’) ® Q(G") (orthogonal direct sum)
(4) If L =1L’ & L" (orthongal direct sum) for lattices
L, L/ and L",
a(L) = 4(L’)d(L"), 6P(L) = ep(L’)ep(L“)(d(L')hd(L“))p-
(5) d(Q(A,)) = k+1, d(Q(D,)) = 4, d(Q(Eg)) = 3,
d(Q(E;)) = 2, and 4(Q(Eg)) = 1.
(6) e,(Q(A)) = (-1,k+1) , and e (Q(D,)) = e (Q(E,)) = 1.

(7) As for the Dynkin graph of type CBk (k =1, 2, 3) and

the Dynkin graph of type Bl' Fz, F c3), see section 3.

3 (=
(8) It is easy to see that the condition [I](a) implies the
condition [II](A).

(9) The maximal number of vertices of G € Pc(xm) is 15-m.

For example, E8+E6' 2E7 € PC(JS,O)'



Example. Let us show that 2E7 and A7+D6 are members of

PC(I; o) -

First consider the Dynkin graph Eg+F,.

We apply a tie trans-

This is the es-
sential basic Dynkin graph for J3 0°
L}
formation to this graph. At the second step we have the fol-

lowing graph.

2 4 6 5 4 3 2 1 1 2 3 4 2

@, @g @ @a a3y a, a a, By By B, By B,

Q "] ] O \*] ] O O [+] O (o] § ——g
aB 3

Set A = (al, B4) and B = (ao, Bo}. We can check that the
condition on G.C.D. 1is satisfied for each component. Under

this choice we get the graph E.+B, as the result of the tie

transformation.

Now, we can apply a transformation to E7+BG once more.

At the start we have the following graph.

If an elementary transformation is applied and if we erase out

the vertices To and 56’ 7+D6' If a tie

transformation is applied and if we choose A = {10, 66) and

we get the graph A

B = {51}, we get the graph 2E7.
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By the above theorem [II], [III], one knows that

E.+D_, 2E., € PC(J

7 76’ 7 3,0)'

Here we would like to explain the relation between the
above theorem and elliptic K3 surfaces for those who are
interested in elliptic surfaces (Kodaira (71). Let
$ : 2 — C(= Pl) be an elliptic K3 surface. It has no mul-
tiple fibers. By Kodaira’s result we have an elliptic K3
surface ¢’ : 2’/ — C’ with a section ¢’ -— Z’ whose com-
bination of singular fibers is same as that of ¢. Therefore
we can assume from the beginning that ¢ itself has a sec-
tion. Then we can associate each singular fiber with a con-

nected Dynkin graph of type A, D or E in a natural manner.

*

1 — A, I ——— D

b b b+4
*
II —— ¢, ' —— Eg
IIT —— A, I35 —— E,
*
IV —— A, v —— E,

A
Let G denote the formal sum of all connected Dynkin graphs

associated with the singular fibers of ¢. Let PC be the set

A
of all Dynkin graphs G obtained from elliptic K3 .  surfaces

A
¢ : 2Z — C. Note that G has a component of type D if and

4
only if ¢ has a fiber of type I; . Now, by Looijenga [8]
it is known that G+D, belongs to PC if and only if G be-

4

longs to PC(J (See section 1.) Therefore one knows by

3,00"



- 11 -

the above theorem that possible combinations of singular fi-
bers in elliptic K3 surfaces with a singular fiber of type
I; are subject to the law described above. The sets PC(Zl'O)
and PC(Qz,o) describe possible combinations of singular fi-
bers in elliptic K3 surfaces with additional conditions.
(See section 1.)

Now, we guess here that readers would 1like to know
whether the converse of the above [II] and [III] holds or does

not. Indeed, in the case m = 2, the converse statement

21,0’
containing only the essential basic Dynkin graphs is true.
A Dynkin graph G with components of type A, D or E

only belongs to PC(2 if and only if we can make G from

1,0)
one of the essential basic Dynkin graphs E_+F,, Eg+CB, by
elementary or tie transformations repeated 2 times., (We can
apply 2 different kinds of transformations once for each,

or can apply 2 transformations of the same kind.)

In the case m=1, Jy 4 We have a unique exception
’

G = 3A_+2A.. The Dynkin graph 3A_+2A belongs to PC(J ).
37 4%2 ‘ 37472 3,0

However, we cannot make 3A3+2A2 from either the basic Dynkin

graph Eg+F, or B,, by a combination of 2 of elementary

transformations and tie transformations.

If G contains components of type A, D, E only and if
G # 3A,+2A,, 3,0)
make G from the essential basic Dynkin graph Eg+F, by 2

G belongs to PC(J if and only if we can

kinds of transformations repeated twice.
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In the case m = 3, G = 3A_ +A is the unique

2,0’ 3*A;
exception.

We do not discuss the converse of [II] and [III] further
in this article. We will deal with it in the forthcoming
article. |

The list of all maximal graphs in PC(J with respect

3,0)
to the inclusion relation has been first given by F.-J.
Bilitewski. He has used the calculation based on Nikulin’s
criterion about lattice embeddings. Here we express deep
thanks to Professor Bilitewski for showing me his list.

At the same time Bilitewski has given the following

description for PC(Z1 0) and PC(Q2 0). First we consider
r I

PC(Z) 4)- Set

A =(E,, E,, Eg, A U (Dele =4, 5, ...}

%, = ((G, G0)|G€PC(J3'0), G,€4,, G, 1is a component of G.).

Consider an element (G, G,) € $,. We can write G = G, + G,.
We associate G6 with G, in the following manner, depending

on the type of Go. Then, we set G’ = Gl+G6.

0 0
E7 —_— D6' D5 —_— A3+A1 ’
E6 —_— AS' De _— De_2+A1 (e26),
A
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Let @i be the set of all G’ obtained from elements

I =
(G, GO) € 91. Then, 91 PC(Zl,O)'

For PC(Q2 0) the description is like the following. Set
, ! :

4, = {Eg, E,, Eg, A,)

4. = {(G, G0)|G€PC(J

E

3’0), Go € 12, G0 is a component of G.).

For (G, Go) € ¢ we can write G = G,+G,.. Associating G/

2! 1 °0 0

with G0 in the following manner, we set G’ = G1+G6.

8 6’ Eg > 2A,,

E, — A A, —— ¢ .

Let gé be the set of all G’ obtained from elements in @2.

Then Qé = PC(QZ,D)'
Bilitewski’s replacement depends on the theory of singu-
lar fibers in elliptic surfaces. It is clear and easy to

understand if the set PC(J is known.

3,0

In order to state the theorem for we need intro-

w1,0'
duce another new concept "obstruction components". Some of the
components of the Dynkin graph are distinguished from the
others as ghstruction components and they follow special

rules.
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Definition 0.4. When a component G1 of the Dynkin graph G

is an obstruction component, G1 follows the rules below.

[The rule under an elementary transformation].
Assume that making the corresponding extended Dynkin
graph G- from G, and erasing out several vertices and edges

issuing from them, we have obtained the Dynkin graph G’.

(1) Let El be the component of [ corresponding to Gl' If
the vertex erased from 61 is unique, we can make any com-
ponent Gi of G’ derived from El an obstruction component
of G’. (We can also make Gi a non-obstruction component of
G’, if we want to.)

(2) When two or more vertices are erased from 51, any com-
ponent of G’ derived from [ is pot an obstruction

l
component.

(3) Obstruction components of G’ are only those obtained
from obstruction components of G following the above rules

(1) and (2).

[The rule under a tie transformation].

Assume that making the extended Dynkin graph ¢ from G
and choosing subsets A and B of the set of vertices in ¢
satisfying the condition, we have made the new Dynkin graph

G’ depending A and B.
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(1) Assume that the sets A and B satisfy the following
condition #.

[Let V, be the set of vertices in the extended Dynkin

# <{graph el corresponding to G.. V. N B = ¢ and

1 1 1
lV, N A consists of a unique element.
Then, V.-A 1is the set of vertices in a component G! of

1 1l
G’. (Gi has the same type as Gl') This Gi is necessarily

an obstruction component of G’.

(2) When the sets A and B do not satisfy the condition
#, any component of G’ -containiné a vertex belonging to
V1 - A is not an obstruction component.

(3) Obstruction components of G’ are only those obtained

from obstruction components of G following the above rules

(1) and (2).

Remark. Usually we assume further that an obstruction com-
ponent is of type Ay with k 2 4. (See Definition 3.7 (2)
and Theorem 3.9.)

Theorem 0.5. Let r denote the number of vertices in a

Dynkin graph G.

(I} The following conditions (a) and (b) are equivalent.

(a) G € PC(W and one of the following conditions <1>,

1,0)
<2>, <3> and <4> holds for the root lattice Q = Q(G) of

type G.
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<1> r =11, 3d(Q) 1is a square number, and for every prime
number = (-1,3)_.
p 6P(Q) (-1, )p
<2> r = 10, and for every prime number p
= (-3,d -1,3).. .
ep(Q) (-3, (Q))p( ' )p
<3> r = 9, an for every prime number p
*2
-3d ¢ = (-1,-1)_.
(Q) Qp or ep(Q) (-1, )p
<4> 1r € 8.
(b) G contains no vertex corresponding to a short root and
it can be obtained from one of the following basic Dynkin

graphs by elementary transformations repeated twice.

The basic Dynkin graphs:

E8+B1+G2, E7+B3+G B,t+G

1’ 9 "2/ A

11°
[II] The following two conditions (A) and (B) are also
equivalent.
(A) G € PC(Wl’O) and one of the following conditions <1>,
<2> and <3> holds for the root lattice Q = Q(G) of type G.
<1> r = 12, and for every prime number p ep(Q) = (3,d(Q))p.
<2> r = 11, and for every prime number p

3d(Q) € 0;2 or ep(Q) = (—1,3)p.
<3> r < 10.
(B) G contains no vertex corresponding to a short root and
it can be obtained from one of the above basic Dynkin graphs

by one of the 3 kinds of procedures in Theorem 0.3 [II] (B).
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[III] Among the connected Dynkin graphs appearing as a com-
ponent of the above basic Dynkin graphs, we define that one of

type All is an obstruction component and any one of other

type is not an obstruction one.

ILet G be a Dynkin graph with components of type A, D
or E only. Assume moreover that G contains no obstruction
component. If we can make G from one of the basic Dynkin
gréph by 2 of elementary or tie transformations, then

G € PC(W, ().

Remark. (1) As for the Dynkin graphs of type B1 and Gl,

see section 3.

(2) The maximal number of vertices of G € PC(W is 13,

1,0’

D E_+D E_+D_ € PC(W

For example Al 13+ EgtDg. ++Dg

3 1,0)"

As for W the converse statement of [III] is also

1,0’
true.

Under the definition of obstruction components as in the
above (III], if a Dynkin graph G has components of type

A, D, or E only and if G has no obstruction components,

G belongs to PC(W if and only if we can make G from

1,0)
one of the above 4 Dbasic Dynkin graphs by 2 Kkinds of
transformations repeated 2 times.

However, we do not discuss the converse in this article.

We will show it in the forthcoming article.

Now, 2 kinds of quadrilateral singularities and

51,0
U, , are remaining. We can easily formulate the corresponding
’
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theorems to them. The basic Dynkin graphs for S1 o Seem to
r

be A9+CBl, E8+CBl, B8+A1, E7+CB2, and E6+B3. Those for Ul’0

seem to be E8+G2' E8+A2(1/3), E7+G2, E6+A2+A2(1/3), and

Ag+G,. (See section 3 Agreement 2 for the notation A2(1/3).)
However, the proof of them contains difficulties which we

cannot find in the four cases in this article. (For we

51,0
cannot write down the Coxeter-Vinberg graph for A2/P and P’
has no nice decomposition. For Ul'0 the corresponding
lattice P has a proper overlattice and because of this
reason we have to develope our general theory further. For

example, for U we have to introduce the dual extended

1,0’
Dynkin graph @&—®—o of type G, as well as the ordinary
1 2 1

extended Dynkin graph o——o—@ of type Gz')
1 2 3

We will study Sl’0 and Ul’0 in a forthcoming article.

As for general elliptic K3 surfaces, we can formulate
the corresponding theorem about combinations of singular fi-
bers in them. The basic Dynkin graphs in this case are 2E8
and D,¢- The part [I] in the corresponding theorem is cer-
tainly true. The part [II] and {IXI] also hold. Perhaps there
may exist several exceptions for the converse of [II] and
[III]. However, anyway, we do not have considered this case
closely and we are not sure.

I would like to give a theorem dealing with all elliptic
K3 surfaces in a forthcoming article.

Besides there exist similar theorems for 14 exceptional
hypersurface singularities with modules number 1 (Arnold (1},
[2]). We would also like to deal with them in a forthcoming

article.
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The plan of this article is 1like the following. 1In
section 0 we stated the main results. Though many words were
necessary to state them, all of the graph-theoretical parts
were natural and simple. Once we understand them, they appeal
to our intuition. In section 1 we review Looijenga’s results.
The relation between quadrilateral singularities and elliptic
K3 surfaces 1is explained. Our problem is reduced to the
problem on existence of the embedding of lattices with certain
conditions. Section 2 is chiefly devoted to the calculation in
order to convert Looiljenga’s condition on lattices into a
simpler condition on root systems. In section 3 we first
introduce the concept of root modules and develop the general
theory of root systems in our situation. Secondly we do the
conversion using the results in section 2. Short roots and ob-
struction components are introduced to represent certain ob-
structions related to Looijenga’s condition. Section 4 is used
to develope the theory of elementary transformations and tie
transformations. In particular, the theory for obstruction
components is developed. The Coxeter-Vinberg graphs associated
with hyperbolic spaces are studied in section 5. They are
powerful tools to study root systems in quasi-lattices. 1In
section 6, after dealing with conditions on isotropic elements
written with the Hasse symbol and the Hilbert norm residue
symbol, we collect all ideas in the previous sections in
order.

Here I would 1like to express thanks to Professor E.
Brieskorn and Professor F.-J. Bilitewski for useful

discussions.
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§1. Qudrilateral singularities and elliptic K3 surfaces

The theme of this article is 6 kinds of hypersurface quadri-
lateral singularities. To each one of the 6 kinds we as-

sociate a quadruple (pl,pz,p3,p4) of integers.

J3’0(2'2'213)l 21'0(212I274)f Qz’o(zlzlzls)’
W) 0(2,2,3,3), S, (2,2,3,4),

Uy 0(2,3,3,3).

The exceptional curve in the minimal resolution of each singu-
larity has 5 irreducible components. Every component is a
smooth rational curve. The following dual graph represents how

they intersect.

-pl
=

-pz ° ] ° -p4

The numbers attached to vertices are the self-intersection
numbers of the corresponding components.

Now, apart from the above graph, we consider a combina-
4
tion of 2 P - 3 of smooth rational curves on a smooth sur-
i=1
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face whose mutual intersection is represented by the following
dual graph (1). However, here, we represent particularly the

dual graph in the case Z1 0(2,2,2,4).
r

(<] ] O 14 Q (1)

The 4 arms of the dual graph (1) have Py+ Pyr P3r P, of
vertices respectively including the common central one. We de-
fine that every curve corresponding to a vertex in the graph
has self-intersection numbgr (=2) on the surface. We call
this combination the curve at jinfinity IF = IF(pl,pz,p3,p4).
Related to IF, we define a lattice P = P(pl,pz,p3,p4)

generated by the basis B = {eo,e e } consisting of

1,.--, q"l

4
q= 2 P; - 3 vectors.
i=1
The basis B has one-to-one correspondence with the set

of vertices in the dual graph (1) of IF(pl,pz,p3,p4). The bi-

linear form on P = 2 e is defined as follows. For each

e€B
e € B, e2 = e*e = (e,e) = +2. For twec elements e, e’ € B,
e*e’ = (e,e’) = -1, if the corresponding vertices to e and

e’ are connected in the graph (1), and e+e’ = (e,e’) =0 if

they are not connected in (1). P is an even lattice with
4

signature ( 2 P; 4, 1).
i=1
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We choose special elements g, €1/ €5, €4, €,, €y € B
for the convenience of quotation later. Let e, be the one
corresponding to the central vertex with 4 edges in (1). We
assign e, e, e, €, to the 4 vertices connected to the
central one ey. We choose e, (1 { 1< 4) in such a manner
that it belongs to the arm with length pi.-In particular, e,
belongs to the longest arm with length P, 2 3. The vector eg

is assigned to the adjacent vertex to the one associated with

e, which is not associated with ey

Under the above choice, by P0 we denote the sublattice

of P of rank 5 generated by eo, e, ez, e, and e, We de-

fine isotropic elements u, € P, and vy € P by

u0 = Zeo + el + ez + e3 + 34

-(uo + e

<
n

= -(2e0 +e +e,+e, +e, +e

5) 1l 2 3 4 5"

One Kknows u2 = vg = 0, and U, * vy = 1. The sublattice

0
is isomorphic to the hyperbolic plane H (the

H0 = luo + Zvo
even unimodular lattice with signature (1, 1)). Let P’ de-
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note the orthogonal complement of Ho in P. One has
P=P @ H, (orthogonal direct sunm).

The starting point of this article is following
Looijenga’s result. This is contained in his paper on triangle
singularities (Looijenga ([8]).

We fix one of 6 kinds of hypersurface quadrilateral
singularities. Let G be a Dynkin graph with components of
type A, D or E only. Assume that there exists a K3 sur-

face 2 satisfying the following conditions (1) and (2).

(1) Z contains the curve at infinity 1IF = IF(pl,pz,p3,p4)
corresponding to the quadrilateral singularity as a sub-
variety.

(2) Let E be the union of all smooth rational curves on 2
which do not intersect with the curve IF. Then, the dual
graph representing the mutual intersections among the compo-

nents of E coincides with the graph G.

We define an open variety Y and a lattice embedding
associated with 2.

An open variety Y is defined to be the one obtained by
contracting each connected component of E to a rational
double point and moreover removing the image of IF.

Now, let A3 - Q(2E8) ® H® H® H denote the even uni-
modular lattice with signature (19, 3). By Q(G) we denote

the positive definite root lattice of type G. Under a choice
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of an isomorphism H?(2,Z) —> A, . which preserves the

bilinear form up to sign, we have an embedding of lattices

S =P®& Q(G) C A3 '
considering the image of the sublattice of HZ(Z,Z) generated
by the classes corresponding to the irreducible components of

E and IF.

eore (Looijenga) (1) There exists a fiber isomorphic
to Y in (the non-positive weight part of) the semi-universal
deformation family of the quadrilateral singularity.
(2) The above embedding S C A3 satisfies the following con-
ditions (a) and (b). By S we denote the primitive hull of S
in A, S =(x € A, | mx € s for some non-zero integer m.)
(a) If an element 7 € § with 7% = +2 is orthogonal to P,

then 7 € Q(G).

(b) If an element n € S with n2 = +2 satisfies neu, = 0,

then either n € P0 or m is orthognal to PO.

Theorem 1.2. (Looijenga) We fix one of 6 kinds of hypersur-
face quadrilateral singularities. Lett G be a Dynkin graph
with components of type A, D or E only. By r we denote
the number of vertices in G. The following condition are all

equivalent.
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(1) There exists a fiber Y in the semi-universal deformation
family of the quadrilateral singularity such that Y has only
rational double points as singularities and such that the com-
bination of rational double points on Y Jjust agrees with G.
(2) There exists a K3 surface 2 sétisfying the conditions
(1) and (2) just before Theorem 1.1.

(2’) There exists a K3 surface 2Z satisfying the conditions

(1) and (2) just before Theorem 1.1 and moreover the Picard
4

number p of Z 1is equal to 2 p; - 3 + r.
i=1

(3) There exists an embedding of lattices S =P ® Q(G) C A3

satisfying the conditions (a) and (b) in Theorem 1.1.

When we treat only geometric situations, the arguments
become clearer if we assume that the lattice A3 has the
opposite signature (3, 19) and Q(G) is negative definite.
However, we define the sign of the bilinear form on‘ A3 and
Q(G) as above in this article, because we use much algebraic
theory on lattices and it is convenient for the use. There-
fore, note that the isomorphism HZ(Z) —_— A3 reverses the
sign of the bilinear forms.

In the above item (1) it should be noted that Y is not
necessarily in the non-positive weight part of the deformation
family. However, if (1) holds, then we can choose another Y’

lying in the non-positive weight part satisfying the same con-

dition as Y.
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Next, we explain the relation to the theory of elliptic
surfaces. Let Z be a K3 surface satisfying the conditions
(1) and (2). Let Ci (0 { 1 < g) be components of the curve
IF on 2. We assign the number i to Cy in such a way that
the vertex on the dual graph (1) corresponding to Ci is as-

sociated with the vector ey with the same number i for

4
0 {1 < g. The divisor F = 2C0 + 2 ci defines a morphism
i=1

 : 2 — pl whose general fiber is a smooth elliptic curve.

4
By definition ¢ has a singular fiber U Cy» which is of
i=o0

. If c;* F#0 for 0¢1i<gq them C4 - F=1

00
and Ci is a section of ¢. In particular ¢ has the section

type I

c If a smooth rational curve D on 2 satisfies D¢F = 0,

5
then D is a component of a singular fiber of ¢. 1In
particular, every connected component of E is contained in a
singular fiber.

Some readers might notice that the proof of Lemma (4.6)
in Looijenga [8) is incomplete. (He misses treating the case
a’ € B0 and B’ # Bo.) However, we can easily complete the
proof and the claim itself is true. On the other hand, the

claim of Theorem (4.5) in Looijenga [8] is not complete unless

we add a certain condition on an isotropic element.
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§2. The theory of lattices

In this article we freely use standard_terminologies in the
theory of lattices i.e. the theory of integral symmetric bi-
linear forms (Cassels [4], Milnor-Husemoller [9], Serre [11]).

Let L be a free Z-module of finite rank and M be a
submodule. We say that M is primitive in L, if the quotient
IL/M 1is a free module. An element x € L is primitive in 1L,
if Zx 1is primitive in L. On the other hand, if L/M is
finite, L is an o¢over module of M. We denote the primitive
hull of M in L by P(M,L) = {(x € L|lmx € M for some non-
zero integer m.) or M when we need not mention L. P(M,L)
is the minimal primitive submodule of L containing M.

Moreover, when L has a symmetric bilinear form
(,) : IxL - Q@ with values in rational numbers, the pair
(L,( , )) is called a g‘gq_s_i,;lmim If the values of the
bilinear form are all integers, (L,( , )) is called a
lattice. For two quasi-lattices L and L’ we denote the
orthogonal direct sum L & L’ using the symbol 6.

Let L be a quasi-lattice and M be a submodule. The
orthogonal complement {(x € L| For every y € M (x,y) = 0.}
of M in L is denoted by C(M,L} or M' when we need not
mention L. Note that (M!')! =M when L is non-degenerate.

Next, assume that M 1is non-degenerate and primitive in

L. Then, L is an over-quasi-lattice of M & M'. Choose two
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elements X, y € L/M in the quotient module, and choose their
representatives X, Y € L. We can write them in the form
X = x, + X, and y = Y, * Y, (xl, Y, € MO Q,
Xy0 ¥, € M" ® Q). If we set ii,?) = (x,,Y,), this rational
number depends only on X and Yy, and does not depend on the
choice of representatives X, y € L. Therefore it defines a
symmetric bilinear form on L/M with values in Q. In this
article we always give the bilinear form in this_manner to the
quotient module by a primitive non-degenerate submodule.

For simplicity we write x? = (x,¥). Sometimes we write

(X,¥Y) = x*y. An element x with x # 0, x% = 0 is called an

i sotropi ] !
Let L be a non-degenerate lattice. The dual module

L* = Hom(L,Z) is identified with the submodule

{x € L®Q|(x,y) €2 for every y € L.} in L @ Q. L* be-

comes a quasi-~lattice containing L. Then, the order of the

quotient group L*/L equals to the absolute value of the dis-

criminant d(L) of L. We call the quotient L*/L the dis-
cxriminant group of L. The discriminant bilinear form

'L x LY/L — a2z

o

*
is defined for x, y € L by

n

bL (x mod L,y mod L) (x,y) mod Z.
A lattice L is an even lattice, if x2 is an even in-

teger for every x € L. Otherwise it is o¢dd.
We can define the discriminant quadratic form
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dp, ¢ L*/L — Q/2%

for a non-degenerate even lattice L. For x € L*
gy (x mod L) = x® mod 2Z (Nikulin [10]).

Next, let L be a positive definite even lattice and
qp, L*/L — Q/22 be the discriminant quadratic form. By
r: 1" — L*/L we denote the canonical surjective morphism.
For an element X € L*/L we define the characteristic number

v(x) of X by
—_ 2 * —_
v(x) = min{x“|x € L', w(x) = x.).

Lemma 2.1. (1) u(X) 2 0, v(X) =0 & X = 0.

(2) v(x) = qL(i) mod 2Z.

(3) lLet L and L’ be positive definite even lattices. We
regard L'/L + L’°/L’ = (L ® L’)"/L ® L’. Then for X € L'/L

7€ L'*/L’ we have u(X + 3) = v(X) + v(y).

let G be a Dynkin graph with components of type A, D
or E only. We can define a lattice associated with G by
the same rule as we used to make the lattice P from the
graph (1) in section 1. The resulting lattice is the root lat-
tice Q = Q(G) of type G (Bourbaki [3]). The root lattice
Q has a basis Ayr o eoey Ay (ai = .. = ai = +2) associated
with vertices of the Dynkin graph. The dual basis of it (a

* .
basis of Q) is denoted by Wqr Wor seey ©p. We call @5
the i-th fundamental weight. (ai°wj = 6ij-)
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Example 2.2, L = Q(Ak) (The root lattice of type Ak)
o—"0——0——0— — — — O0—0
1 2 3. 4 k-1 k

We assign numbers 1, 2, 3, ..., k to vertices in the
Dynkin graph of type A, from the end in order. By w; we

denote the fundamental weight associated with the i-th vertex.

[H4

L*/L Z/(k+1). 7w(w is a generator of this cyclic group,

)
1
and w(wi) = iw(wl). u(w(mi)) = U(ir(ml)) = i(k+1-1)/(k+1).

Example 2.3. L = Q(Dk) (k 2 4) (The root lattice of type

We assign numbers to the Dynkin graph of type Dk as

follows.

1 2 3 k-3 k-2 k-1

O =) Qe - == o———]———o
k

We consider the corresponding fundamental weight wy and the

fundamental root ai.

w, =a, + 2a2 + ...+ (i-l)ai_l + i(ai taj ..t

1 1
+i(e,_, +a)/2 (1€ 1< k-2)

+1 k-2)

= {a, + 2a, +...+ (k-2)a

Wyoq 1 5 + kak_l/z + (k—Z)ak/2}/2

k-2

= {a, + 2, +...+ (k-2)a + (k—2)ak_1/2 + kak/z}/2

k-2
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Thus we have Opoq ~ ¥ = @y _1/2 - 2 /2 and
w(wl) = v(wk) - v(mk_l) = v(wk_l) - w(ok).

If k is even, then L*/L 2 Z/2 + Z/2, and r(mk_l) and
v(wk) are generators of two components.

If k 1is odd, then L*/L x Z/4, w(wk) is a generator,
v(wl) = Zv(uk), and v(mk_l) = -v(mk).

We have u(r(wl)) = 1 . and v(v(wk_l)) = v(w(mk)) = k/4.

Examglg g M 5 s L
/L= Z/3. If X £ 0, v(X) = 4/3.

Q(EG) (The root lattice of type EG)

Example 2.5. L Q(E7) (The root lattice of type E7)

L*/L = 2/2. If X # 0, v(xX) = 3/2.

Example 2.6. L Q(Ea) (The root lattice of type EB)

L*/L 2 (0. L is a unimodular even lattice.

Lemma 2.7. Let G be a Dynkin graph with components of type
A, D or E only. Assume an element § € Q(G)* in the dual
module of the root lattice of type G satisfies 0 < §2 < 1.
Then, k = fz/(l-fz) is a positive integer, and moreover G

contains a component G, of type A such that § is con-

K
tained in Q(Go)* and § and Q(Go) together generate

Q(Go)*. In particular f2 2 1/2 and 52 = k/(k+1).

Proof., In Example 2.2 v(v(mi)) = f(k+1-1i)/(k+1) 2 1 if

2 ¢1i¢ k-1, and v(w(ml)) = v(v(mk)) = k/(k+1) 2 1/2. Besides
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in Example 2.3, 2.4, 2.5 and 2.6, if x € L'/L, X # 0, then
v(X) 2 1. Our lemma follows from these facts and Lemma 2.1
(3).

QoEoDo

For each one of 6 Kkinds of quadrilateral singularities
under our consideration the lattice P was defined. It has a
decomposition P =P’ @ H,. P’ 1is an even positive definite
lattice. We can define the characteristic number u(X) for

_— *
every element x € P’ /P’.

Definition 2.8. Let X be an element in P’ /P’. By q = qy.
we denote the discriminant quadratic form of P’.

(1) We call x an element of the first kind, if
g(x) = t mod 2Z for some number t with 0 ¢ t < 1.

(2) If q(xX) = 1 mod 2Z, we call X an element of the second
kind. Besides if u(x) =1 and x has order 2, we call it a
special element of type B,

(3) If for some positive integer k

q(Xx) = 1 + (1/(k+1)) mod 2Z,

X 1is called an element of the third kind and Xk is called
the associated pumber of X. Besides if an element of the
third kind with the associated number 1 satisfies
v(x) = 3/2 and if it has order 2, then we call it a special
element of type €, If an element of the third kind with the
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associated number 2 satisfies u(X) = 4/3 and if it has
order 3, then we call it g special element of type G.
(4) Any element neither of the first kind, of the second kind,
nor of the third kind is called gne of the fourth kind.
(5) The associated numbers of the elements of the third kind

in P'*/P' are called the associated numbers of P or P’.

Indeed, special elements are related to short roots in
root systems. The above terminologies "type B, C or G" are
used to imply this relation.

The following proposition plays a key role later to con-

vert Looijenga’s condition (a) and (b) to a simpler condition.

Proposition 2.9, Fixing one of the 6 kinds of hypersurface

quadrilateral singularities, we consider the corresponding

lattices P’ and Po‘ Set P6 =P'NP,.

0
(1) P’ has the following property (G’).
(G’) If n € p’, ﬂ2 =+2 and 7 ¢ P., then 7 1is orthogo-
nal to P6.
(2) Let X € P’*/P’ be an element of the first kind. Let

X € P'* be an element such that x mod P’ = x. If x* < 2,

then x is orthogonal to Pé.

(3) For every element X € p’*/p’ of the second or third

kind, there exists an element X, € pr” satisfying the fol-
lowing three conditions: Xq mod P’ =_§, xg < 2 and Xq is

not orthogonal to P6.

(4) Every element of the second kind is a special element of

type B.
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(3)
ber 1 (respectively 2)

Every element of the third kind with the associated num-

is necessarily a special element of

type C (resp. type G).
(6) For - the former 5 kinds except the 1last one
U1 0(2,3,3,3) the following assertion holds.
r
— R - * _—
If gq(x) = 0 mod 2Z for x € P’ /P’, then x = 0.
For U, , this assertion does not hold.
r
Corollary 2,10, For every element X € P’ /P’ of the second

or third kind, vu(x) < 2.

In the rest of this section we show Proposition 2.9 for

each kind of quadrilateral singularity. Recall the following.

P=P & H,_. P is the sublattice of P

0 0

[ —— ’ ’

ey, el, ez, e, and e,. PO = P0 n p’. PO
) ) 1 ’
of P generated by ey €5, €, and e,. Po

root lattice of type D4).

The case of J (2,2,2,3).
3,0

P’ =

Example 2.3 (k = 4),

the discriminant group is of the second kind.

we can check the rest of the proposition.

P6 = Q(D4). Obviously it has the property

generated by

is the sublattice

% Q(D,) (the

(G"). By-

one knows that any non-zero element in
By Example 2.3

In particular, P

has no associated numbers. It has special elements of type B.
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The case of 2 (2,2,2,4).
1,0
Let e be the member of the basis B corresponding to
the end of the 1longest arm of the dual graph (1l). Set
2
r = - r = ? I ’ - -
e; e u,. P Py @ Zee. eg +2. Thus 1if the assump

tion of (G’) 1is satisfied, then n

ieé and we have the

conclusion.

Every element x € P'*/P’ can be uniquely expressed in
the form x =Yy + z where Yy € Pé*/P6 and z € (leé)*/leé.
We can deduce the rest of the proposition by Example 2.2
(k = 1) and Example 2.3 (k = 4).

Consider the case y = z = 0. The element x = 0 is of
the first kind. However, obviously, if X € p/,
x2 = 0 mod 2Z, and x2 < 2, then x2 = 0 and thus x = 0. For
X = 0, the assertion (2) holds.

If y=0 and z # 0, then ¢(X) = 1/2 mod 2Z and X
is of the first kind. If x € P*, x mod P’ = X, and x° < 2,
then x = ieé/z and thus x 1is orthogonal to P6. The as-
sertion (2) holds.

When y # 0 and z =0, q(x) = 1 mod 2Z. The element X
is of the second kind. By Example 2.3 one knows the assertion
(3). By (3) wu(x) = 1. Since x has order 2, it is a special
element of type B.

When y # 0 and z # 0, q(x) = 3/2 mod 2Z. The element
x is of the third kind with the associated number 1. We have

2

an element y € P{ such that y mod P} = y and y° = 1.

Setting Xg =Y + (eé/z), one knows this x satisfies the

0
assertion (3). In particular, vu(X) = 3/2. Since X has order

2, it is a special element of type C.
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The assertion (6) is obvious by the above.
P has the associated number 1 and has special elements

of type B and of type C.

The case of Q2 0(2,2,2,5).

!
5r g1 € in order from
the central one with 4 edges, with the 5 vertices on the

We associate vectors eys €4, © e

longest arm of the dual graph (1). Set eé = eg - u, and
T = Zeé + Ze7. One has P’ = P6 ® T, and T = Q(Az) (the root

lattice of type Az)’ (G’) follows easily from this decompo-
sition. Write an element X € P’"/P’ in the form X =y + 2
where Yy € Pa*/Pé and z € T*/T. We can apply Example 2.2
(k = 2) and Example 2.3 (k = @).

If Yy=2Z=0, X=0. Then X is of the first kind. The
assertion (2) holds.

When Yy =0 and 2z # 0, q(x) = 2/3 mod 2Z and X is
of the first kind. Let x € P'" be an element satisfying

x mod P’ = X and x%° < 2. We can write it in the form

%*
X =y + 2 where Yy € P6* and 2z € T . One has 22 2 0. On
the other hand y € P}, since y mod P} = y =0. If y # 0,
then yz 2 2 and thus x2 = y2 + z2 2 2, which is a

contradiction. Thus y = 0 and x 1is orthogonal to P6. One
knows that the assertion (2) holds in this case.

If y#0 and z =0, then q(x) =1 mod 2Z and Xx is
of the second kind. By Example 2.3 one knows that the

assertion (3) holds in this case. In particular, v(x) = 1.
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Since x has order 2, it is a special element of type B.
The assertion (4) also holds.

When y# 0 and z # 0, q(x) = 5/3 mod 2Z, and x |is
of the fourth kind.

By the above one knows the assertion (6), too.

P has no associated numbers. It has special elements of

type B.

The case of W (2,2,3,3).
1,0
We associate the vectors €qr €41 -1 ©g with the

veftices in the dual graph like the following.

4 5
e,  —
€0
e ")
2 e, e
= - = - - = ’
Set £ eg u, + Vo ec eg 2u0. We have P P’ ® Ho
3
and P’ = 2 Zei + Zf. Moreover f2 = 4,
i=0
f-e0 = f-e1 = f - e, = 0, and f°e3 = =1. The dual graph of

the lattice P’ 1is like the following.

€,
-1 4
o——t——o—
el eo e3 f

Set
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w, = (14e0 + 7e1 + 7e2 + 8e3 + 2f)/6

0
w, = (14eO + 13e1 + 7e2 + 8e3 + 2f)/12
w, = (14e0 + 7e1 + 13e2 + 833 + 2f)/12
Wy = (4eo + Zel + 292 + 4e3 + £)/3
z = (2e0 + e, + e, + 2e3 + 2f)/6.

They are elements in P’ ® Q. We can check wi-ej = aij’

z+e, = 0, wi-f =0 and z+*f =1. Thus w z is a

3 o’ 37
. * .
basis of the dual module P’ . Note that the coefficient of

, W

ey in wj equals to wi-wj, the coefficient of ej in =z
equals to wj-z, and by the same reason 22 = 1/3. Moreover,

- - ’
Yo 2w1, w2+5w1, w3+4wl, and 2z 2w1 belong to P’. Thus one

knows the following. For an element X € P'* we denote

X = x mod P’ € P’ /P’.

Proposition 2.11. In the case of Wl 0(2,2,3,3), the discrimi-
!

nant group P*/P = P'*/P' is a cyclic group of order 12. We

, as its generator. We have W, = 231,

For the discriminant

can take ;1 or w

W, = ~5w;, W, = -4,
quadratic form q,

and z = 2w1.

q(w,) = q(w,) = 13/12 mod 2Z.

We continue to check Proposition 2.9. First we show the

property (G’). Assume n € P/, ﬂ2 = +2 and n ¢ P6. Set

3
n = 2 a;e; + bf with integers a; and b. b # 0. Corre-
i=0
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-~

3
sponding to n, we set n = 2 a;ey + beG. Since
i=0
3 [ 2=2
ey f = e e, (0 ¢ 1< 3) and f e, + 2, we have
2 ~2 2 ..
n® =n" + 2b". Since €y, €4, ez, e, and e6 generate a root

lattice of type D5 and since 1n # 0, one has 712 2 2. It
implies 2 = nz = ﬁz + 2b2 2 4, which is a contradiction. An
element 7 satisfying the assumption of (G’) never exists.
Thus (G’) holds. - | |

Next, we show the assertions (2)~(5). Let X € P’*/P’ be
an element. We deal with each case separatedly.
(1) X = 0. The zero element is of the first kind. The asser-

tion (2) holds in the case.

(2) x = tw. or isﬁl. g(x) = 13/12 mod 2Z. This element X

1
is of the third kind with the associated number 11. An element
Xy = iwl, iwz satisfies xg = 13/12, and it also satisfies

the assertion (3) in the proposition.
(3) x = 12w, . g(x) = 1/3 mod 2Z. This x is of the first

kind. Note that 231 = z. We would like to show the assertion

(2) for Xx. To show it it suffices to see that if 7 € P’ and

(z+n)2 < 2, then 7 = 0, because z is orthogonal to P’.

0

4
3 3
Corresponding to =7 = 2 a e; + bf, gset n = E a;e; + bes. We
i=0 i=0
have (z+n)2 = (1/3) + 2b(b+1) + 1% < 2. Since b is an in-

teger, b(b+l1l) 2 0. If 5 # 0, then 52 2 2 and we have

(1/3) + 2 < 2, which is a contradiction. Thus n=0 and

n = 0.
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(4) x = iaﬁl. g(x) = 7/4 mod 2Z. This is of the fourth kind.

(5) x = i4§1. g(x) = 4/3 mod 2Z. This is of the third kind

with the associated number 2. Since 31 = -33, and since
wg = 4/3, the element Xy = twa satisfies the assertion (3).

Besides i4§1 has order 3 and the assertion (5) holds, too.

(6) X = 651. g(x) = 1 mod 2Z. This is of the second kind. Set
z, = (el-ez)/z. Since z,°e, = 0, z,*e, = z,%e, = 1, and
z,vey = 2,°f =0, z, € p’*. Besides El = 651, since
z, - 6w1 = -(7eo + 6e1 + 432 + 4e3 + £f). One knows that the
assertion (3) holds, since zi = 1 and z, is not orthogonal
to Po. The assertion (4) holds, too, since 651 has order
2.

By the above one sees that the assertion (6) holds, too.
P has the associated numbers 2 and 11, and has spe-

cial elements of type B and of type G.

The case of S1 0(2,2,3,4).
! ’

We associate vectors €qr €1/ ooy €4 with vertices in
the graph as follows.
e, ¢
€4 % S
e, o—g ] ] )
2 e
0o
e, ¢
e, ¢
Set e’ = u,-e, and f = es-es-Zuo. The orthogonal complement

P’ of H, = luo + lv0 in P is spanned by
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e, e, e e f and e’. We have f-eo = f-el = f-e2 = 0,

2" 737

f-e3 = -1, e'oei =0 (0¢1i¢3) and e’+f = -1. Thus the

dual graph of the lattice P’ 1is like the following.

2 ’
e, e, £ e
Set
= ’
v, (12e0+6e1+632+7e3f2f+e )/5
= ’
v, (12e0+11e1+6e2+7e3+2f+e )/10
= 4
w2. (12e0+6e1+11e2+7e3+2f+e y/10
= ’
Wy (14eo+7el+7e2+14e3+4f+2e }/10
= ’
2z (2e0+e1+e2+2e3+2f+e /5
w, = (2e0+el+e2+2e3+2f+6e')/10.

We can check the following.

wi-ej = 51j (0 i, 3 € 3), wi°f = w; e = 0 (0£1i¢g 3),
z-ej =0 (03 ¢ 3), z f =1, z+*e’ =0
w4-ej =0 (0 < j < 3), & w,°f = O,lw4-e' = 1,

Thus Wor seer W z 1is a basis of the dual module pr*. we

4!
have the following proposition. We denote

- * *
¥ = x mod P’ € P’ /P’ for x € P’ .
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Proposition 2.12. In the case of 8, O(2,2,3,4), the discrimi-
[

nant group P'*/P' = P*/P is the direct sum of three cyclic

groups, each of which has order 5, 2, 2 respectively. The

first direct summand is generated by

Wg =2 = 2w1 = 2w2 = -4w3 = 2w4. The second is generated by

61 = 531 and the third by 62 = 532. For the discriminant

guadratic form g

- = - =2.2_1.2 .2
q(az+b1gl+b2g2) = za 2(b1+b2) mod 2Z.
Besides Vo T Z w, = -Zz+g1, w, = -2z+g2,
W, = z+g1+g2 = W, tw, and W, = -22+gl+g2.

We check Proposition 2.9. First we show (G’). Assunme
2

that n € P/, n° =+2 " and n ¢ P6. Corresponding to

3 2
= . . L4 = = . R . 1 =

n 2 alel+bf+ce , set n 2 alel+a3e4+be5+ce7 This n is
i=0 i=0

an element in the root lattice of type D, generated by

~r ~2
e, €, e,, e,, e and e,. Since 7 # 0, n is a positive
even integer. Since 2 = n2 = 712+2b2 2 52 2 2, we have b = 0.

3
= 2 2 -
Thus 2 = ( E aiei) + 2¢®. If ¢ = 0, then
i=0

3
n = 2 a;e, € P!, which contradicts the assumption. Therefore

3
c # 0, and thus 2 a;e; = 0 and =n = te’. Consequently 7
i=0

is orthogonal to P6.
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Next, we check the assertions (2)-(5). Let x € P'*/P’
be an element.
(1) x = 0. The zero element is of the first kind and satis-

fies the assertion (2).
(2) X = %z. q(X) = 2/5 mod 2Z. This X 1is of the first kind.

To show the assertion (2) it suffices to see that if = € P’

2

and (n+z)2 = z% = 2/5, then 7 = 0. Set

ﬁ = a.e. + a.e, + a.e_, + a,.e, + be5 + ce corresponding to

0 171 272 374 7

asey + bf + ce’. If n # 0, then ;2 > 0 and

i=0
2/5 = (n+z)? = 7§

e |
It
N tSNSNMDMwo

2, 2b(b+1) + (2/5) > 2/5, which 1is a contra-

diction. Thus 7§ = 0.

(3) x = $2z, q(x) = 8/5. This is of the fourth kind.

(4) X = al or 52. g(Xx) = -1/2 = 3/2. This x 1is of the

third kind with the associated number 1. We see the assertion

(3). Indeed, set Xy = (e1+e3+e')/2. Since
5w1—x0 = 6eo+5el+3e2+3e3+f, we have Xy = g,- This X, is not
orthogonal to P6, since x,%e, # 0. Besides xg = 3/2 < 2.

When we treat the element 62, we can consider the element

(e,+ej+e’)/2 instead. Lastly one sees that X is a special

3
element of type C, since it has order 2.

(5) x = 4z + 61 or iE+g2. g(x) = 19/10. This is of the
fourth kind.

(6) x = 1(22+§1) or i(zE}Ez). q(i)os 11/10. This x is of
the third kind with the associated number 9. We have to show
the assertion (3). For i(25+§1), set x. = tw.,. For

0 1l

i(2E+§2), set X, = tw,. For the both cases, this X

satisfies the condition.

0
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(7) x = §1+§2. g(x) = 1. This is of the second kind. The ele-
ment X, = (el+ez)/2 satisfies the condition in the assertion
(3). It is also a spécial element of type B.

(8) X = iE+§1+§2. q(x) = 7/5. It is of the fourth kind.

(9) x = 12?+§1+§2. g(x) = 3/5. This is of the first kind. Set
= T =% 2 _

Xy = iw4. One sees that Xg = X, X5 = 3/5 and this X, is

orthogonal to P.. Thus to show the assertion (2), it suffices

0
to see that if =7 € P’ and (n+w4)2 = 3/5, then mn Dbelongs

to Ze'’. Assume that n2+2n°w4 = 0. Corresponding to
3 2

n = E aiei+bf+ce', set 7 -= E aje; + a,e, + b95- 52 is an

even non-negative integer. Set B = b%-bct+c’+c. One sees

52+2B = n2+2n-w4 = 0. On the other hand, it is easy to see

that B 2 0 for integers b and c¢. Thus we have ;2 =0

and B = 0. It implies that n =0 or 7 = -e’.

The assertion (6) is obvious.
P has the associated numbers 1; 9, and has special ele-

ments of type B and of type C.

The case of U (2,3,3,3).
1,0
We assign numbers to the basis of P corresponding to

the dual graph as follows.
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Set f1 = es-e5—2u and f2 = e -e5-2u0. The orthogonal com-

0 7
plement P’ of H0 = 1u0+1v0 in P is spanned by
eqr €11 €5, e,y f1 and fz' One has fl-ei =0 (i=0, 1, 3),
f1°e2 = -1, fz-ei =0 (i =0, 1, 2), fz-e3 = =1 and

fl-f2 = 2. Thus the dual graph of P’ 1is like the following.

et
f e ] e. e f
2 3 0 "2 1
@F——o=— ®
\\ ,
N2 7

We define a basis of the dual module P'* as follows

Vo = (2zeo+11e1+12e2+12e3+2f1+2f2)/9

w, = (11e0+1oel+692+633+f1+f2)/9

W, = (4e0+291+4ez+293+f1)/3

W,y = (4e0+2e1+2e2+4e3+f2)/3

z, = (2e0+el+3ez+4f1-2f2)/9

., ='(2e0+e1+3e3-2f1+4f2)/9.
We can check that wi-ej = Eij' wi-fj = 0, zi-ej = 0 and
zi-fj = 6ij‘ on the other hand, Wo T (w3 - 421),
vy + (w3+2zl), w2+(w3—3z1) and zz—(w3+4zl) are elements in

P’. Thus one knows the following proposition. For an element

* _— *
X € P’ we denote x = x mod P’ € P/ /P’.

Proposition 2.13, In the case of U1 0(2,3,3,3), the discrimi-
I

nant group P*/P = P'*/P' is the direct sum of the cyclic
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group order 3 generated by w and the cyclic group of

3

order 9 generated by 2z It can be also represented as the

1'
direct sum of the cyclic group of order 3 generated by 52
and the cyclic group of order 9 generated by 22. For the

discriminant quadratic form g, we have

= b3y = 422, 2,2
q(aw3+bz1) = 32 + 9b mod 2Z.
Besides, Wg = W, = 421, Wy = -W, - 221, W, = -W, + 321 and
zZ, =W, + 421.

We check Proposition 2.9. First we show (G’). Assume
2

that n € P/, 11° = +2 and n ¢ P6. Set
3
n = z ae; + bleG + b2e7, corresponding to
i=0
3
n = 2 a;e, + b1f1 + b2f2. This 7 1is an element in the root
i=0
lattice generated by eor €1 €5, &4, & and e,. Since
ﬁ # 0, ﬁz is a positive even integer. Since
2 ~2 2 2 ~2 - _
2 =n" =n+2(b,;+b,b,y+by) 2 n” 2 2, we have b, b, = 0. Thus

n € P6, which contradicts the assumptions. There exists no n
satisfying the condition, and (G’) holds.

Next, we show the assertions (2)-(5) for each element
x e-p'*/P'.
(1) x = 0. This x is of the first kind. The assertion (2)

holds.
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(2) X =+4z,. gq(x) = 4/9. This x is of the first kind. To

1
show the assertion (2) it suffices to see that 1if
(n+zl)2 = zi = 4/9 for n € P’, then 1 = 0, because z, is
orthogonal to P!. Consider

0
2 2 _ 2
B =bl +bb, +bs + b, = (by+(b,/2))% + b, ((3b,/4)+1), in

preparation to see this. We can show B 2 0. Now, set

3
n = 2 a;e; + ble6 + bze7, corresponding to
i=0
3
= ’
n 2 aiei + blfl + b2f2 € P’. Assume that
i=0
(n+zl)2 = 4/9 and 7 # 0. Since ﬁz > 0, we have

4/9 = 4/9 + 7°

+ B > 4/9, a contradiction.

(3) x = izzl. q(x) = 16/9. This is of the fourth kind.

(4) X = i3§1. g(x) = 0. This is of the first kind. However,
v(xX) 2 2 by Lemma 2.1 (1), (2). Since the assumption of the

assertion (2) is never satisfied, (2) holds.

(5) x = t421. g(x) = 10/9. This is of the third kind with the.

associated number 8. Set xo = w3 - zz. One has xo = -4z1.
This Xq is not orthogonai to P6, since Xt e, # 0. On the
other hand xg = w§—2w3-z2+z§ = (4/3)-(2/3)+(4/9) = 10/9 < 2.

One sees that the assertion (3) holds.

(6) x = iaa. g(x) = 4/3. This is of the third kind with the

associated number 2. Since L is not orthogonal to P6 and
g = 4/3, one knows the assertion (3). Besides x has

order 3 and is a special element of type G.

since w

(7) x = 163 + El. q(Xx) = 16/9. This is of the fourth kind.
(8) x = 1(G3+221). q(x) = 10/9. This is of the third kind

with the associated number 8. Now, w, = —(G3+2El)
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wi = 10/9 < 2, and w is not orthogonal to P! since

1 o’

1€, # 0. The assertion (3) holds.

(9) x = 1(63-221). q(x) = 10/9. This is of the third kind with

w

the associated number 8. Setting X, = W, - z,, one can show

the assertion (3) by the same argument as in the above (5).

(10) x = i(§3+321). g(x) = 4/3. This is of the third kind with

the associated number 2. Set Xog = w3+3z1-(eo+92+33+f1). One
can show that xg = 4/3 < 2 and Xpte,y = 2 # 0. One knows the

assertion (3). The element x has order 3, and one has the

assertion (5), too.

(11) % = 1(53—321). g(x) = 4/3. This is of the third kind with

2
5 1), L2 4/3 and

5 is not orthogonal to P6. One knows the assertion (3).

Besides one knows the assertion (5), too, since X has order

the associted number 2. Now, w. = -(33—25

w

3.
(12) X = i(G3+4El). q(x) = 4/9. This is of the first kind.

Here note that Ez = G3+4El and z; = 4/9. Thus one can show

the assertion (2) by the same argument as in the above case

(2) x = iEl.

(13) x = i(G3-4z1). g(x) = 4/9. This is of the first kind. We

would 1like to show the assertion (2). First note that

- 2 _
zl+z2 =V, 421, (zl+zz) 4/9 and zl+z2 is orthogonal to
P6. Thus to show (2) it suffices to see that if
(n+zl+zz)2 = (zl+z2)2 = 4/9 for n € P’, then n = 0. Con-
. 2 2
sider B = b1 + blb2 + b2 + b1 + bz, in preparation to see
this. We can show B 2 0 for integers b and b.. Then, we

1 2
can show 71 = 0 by the same argument as the above case (2)

X = izl.
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As for the assertion (6) in the proposition, it is ob-
vious, since q(X) = 0 mod 2Z for X = 1351 £ 0.
In the case of v, 0(2,:’.,3,3), P has the associated
I

numbers 2 and 8, and has the special elements of type G.

We have established Proposition 2.9. This proposition is
the basis of the following arguments.
In the last part of this section, we want to make the

meaning of Proposition 2.9 (6) clearer. Consider the last case

U1 0 in particular. Associated with the basis €or -1 €
1
= 2 = . =

of P, set u, = 3e°+2(e2+e3+e4)+es+e6+e7. u, = 0, u, ey 0
(1 # 1) and u,°e, = -3. Set further

Y, = -e; + e, + eg - u1/3

Y, = —e, + e, + es - u1/3

Y, = -e, + e, + e, - u1/3.

We can check yi =42 (1i=1, 2, 3). Since

(u1/3)-3z1 = 3eoiel+e2+2e3+264+e5-e6+e7,

14

y, = Y, = §3 = 321 € P'*/P' P*/P.
Lemma 2.14. (Nikulin {10)) Let L Dbe a non-degenerate even
lattice and K be an even overlattice of L. We can regard

LCKC K* Cc L*. Set I = K/L. We regard I as a subgroup of
L*/L. set



It = (x € L*/leL(§,§) 0 mod Z for every y € I}.

(1) I is an isotropic subgroup of L*/L, i.e., qLII = 0.
(2) 1t = K*/L.

(3) Associated with the exact sequence

1 o *
00— —]1 —— K /K—90,

one has gquo = qLII*.
(4) Conversely, for any isotropic subgroup I’C L*/L, the
inverse image K’ of I’ by the natural surjective morphism

* %*
L -— L /L is an even overlattice of L.

Propogition 2.15. The corresponding lattice P has no even
overlattice except P 1itself in the case of the former 5

kinds J z W and S of quadrilateral

3,0" 21,0 9,0’ ¥1,0 1,0

singularities.

As for the last casé U P has a unique overlattice

1,0’

P1 except P itself. P, has index 3 over P, and

P, =P+1Zy, =P + Iy, =P + Zy,. Choosing one of Yir Yyr ¥,

corresponds to choosing one of the 3 arms with length 3 in

the dual graph of the basis of P. If we choose Y,s the bi-

linear form on P, is described by the following dual graph.



In

~€s5
Y,
€
[+] 0
96 _92

particular, P1 = Q(EG) ® H.
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§3. Root modules

We develop general theory of root systems in this section, and
we convert Looijenga’s condition (a) aﬁd (b) into a simpler
one by the theory introduced here and by the results in sec-
tion 2.

We always work fixing arbitrary one of 6 kinds of quad-
rilateral singularities. By P we denote the corresponding
lattice to it. The lattices P/, P and P!, and the elements

0 0

u,, Vo € P are also defined.
An embedding P C A into another even lattice A is
said to be good, if it satisfies the following condition (G)

(Looijenga ([8]).

() Let P = P(P,A) be the primitive hull of P in A. If

ned, n°=2, mu, = 0 and n € P}, then 7 is

orthogonal to PO'

On the other hand, if the image of P in A is primitive in
A, then the embedding is sqid to be p;imi;iyg. By Proposition
2.15, every embedding of P into an even lattice is primitive

for the former 5 kinds of singularities.

Proposition 3,1. For an embedding of our lattice P into an

even lattice, it is good if and only if it is primitive.
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Proof. For the former 5 kinds it suffices to show that a
primitive embedding is a good embedding. On the other hand by
Proposition 2.9 (1) P has the property (G’). This (G’)
implies the desired claim.

Next, we consider the case of Similarly by

Ul,O'
Proposition 2.9(1), a primitive embedding is a good embedding.
Any non-primitive embedding into an even lattice A can be
factored as P C P, C A. (See Proposition 2.15.) The element

Yy, € Py satisfies Y,*u, =0 and y, €P but vy, is not

0'

orthogonal to P, since Y,*e, # 0. Thus the embedding is not

4
good.

Q.E.D.

Propesition 3.2 (1) Let AN denote the even unimodular lat-
tice with signature (16+N, N). If N 2 1, then the lattice P
has a primitive embedding into AN’
(2) Besides 1if N2 2, for any two primitive embeddings

t, ¢t : PCA we have an integral orthogonal transformation

Nl
¢ : A, — AN with ¢’/ = ¢,

N
Proof, (1) By ¢&(A) we denote the minimum number of genera-
tors of an abelian group A. Obviously e(P*/P) { rank P.
Now, P has signature (Epi-4, l). For our 6 cases

291-4 { 7. Comparing the siﬁnature of .AN’ one has:

(16+N)=()p;=4) 2 9+N>0

N-1 20.
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Comparing the ranks of AN and P, one has:
rank AN- rank P = 16+2N-§pi+3
28+2N22+rank P

>2+8 (P"/P)>e (P*/P).

Appyling Nikﬁlin {10] Theorem 1.12.2, one knows the existence
of an embedding.

(2) Besides if N2, one has a stronger inequality N-1>0
about the negative signature. Thus by Nikulin [10] Theorem

1.14.4 one has the uniqueness.

Q.E.D.
Remark, When N = 1, we cannot assert the uniqueness.

In Urabe [13] we have introduced the concept of root
modules. They have been a- kind of quasi—lattices satisfying
certain conditions. However, the conditions there are too
strong for our 6 cases under consideration. We would like to
define the concept of root modules again in this article, as a
more general concept. In Urabe [13] we have had only irreduc-
ible root systems of type A, B, D or E. However, according
to the definition here, we have root systems of all types
A, B, ¢, D, E, F or G, and moreover we have non-reduced root
systems of type CB (Bourbaki [3]).

In addition to these genralized root modules, we will

introduce the concept of obstruction components later.
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Now, let L be a quasi-lattice, FL be a submodule of
L. such that the index #(L/FL) 1is finite. We define the set

R = R(L,FL) for this pair (L,FL) as follows:
R = {(a€FL]a%=2) U (BeL|p%=1/2, 2/3 or 1.

We call the set R the xoot gystem of (L,FL), and call an

element in R a root. For any root a € R, Va? is called
the length of «. A root with length V2 is called a long
root. A root with length 1/v2, v2/3 or 1 is called a short
root. Setting a’ = 2a/a2 for a root a€R, we call a’ the
co-root of a. We have a'€Za. Consider the following condi-
tion (R1)

(R1) 2(x,a)/a2 = (x,av) is an integer for every x € L and

a € R.
When (R1) is satisfied, for every a€R we can define an
isomorphism s, : L — L preserving bilinear forms, by

setting for x € L
2 v v
sa(x) =X - 2(x,a)a/a” = xX=(X,a )a = xXx-(x,a)a .

We call 8, the reflection with respect to a. Indeed, on

LR s defines the reflection whose mirror is the hyper-

plane orthogonal to a. In particular, 82 is the identity

= L]
and s, 8 _o
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(R2) sa(FL) = FL for every a € R.

2

(R3) If a € R and a” = 1/2, then 2a € FL.

Assume that the pair (L,FL) satisfies the three conditions
(Rl1), (R2) and (R3). Then, we call this pair (L,FL) a root
module., When L = FL, particularly we say that this root
module is reqular, and we do not mention FL and abbreviate
it. (Sometimes we abbriviate FL for simplicity even if
L # FL.)

Any lattice is a regular root module.

Let (L,FL) be a root module. The root system of the

root module satisfies the most important axioms (SRI and

1)
(SRIII) of the 4 axioms for root systems in Bourbaki [3]

[+]

(Chap. VI, n 1.1, Def. 1 and Résumé in the last part) and
thus it suits the name.

For a root P € R with length 1/v2, a = 28 1is a long

root , BY = 22", and Sy = Sg for the reflections. Setting

A A 2
R = R(L,FL) = {a € Rl|a“ # 1/2},

A

we call R the reduced root system of the root module

(L,FL). This satisfies the axioms (SRII), (S and the

RIII)
reduced axiom

A A

(SRI If a € R, then 2a € R.

v)

of the axioms for root systems.
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The subgroup generated by all reflections 8, with
@ € R in the group of all integral orthogonal transformations
on L is called the Weyl group of (L,FL) and is denoted by
W(L,FL) or W(R). Since it is obviously equal to the subgroup

generated by reflections corresponding to the reduced root

A A
system R , it is also denoted by W(R).

A
W(L,FL) = W(R) = W(R).

A
The submodule in L generated by R (respectively R)
A
is denoted by Q(R) (resp. Q(R)) and is called the xroot

A A
quasi-lattice of R (resp. R). Q(R) D Q(R). These are not

necessarily lattices. When it is a lattice, we call it a xoot
lattice. Sometimes we write Q(L,FL) = Q(R(L,FL)) for sim-
plicity, which is the submodule of L generated by roots, and
we call it the root quasi-lattice of the root module ~(L,FL).

On the other hand, the submodule generated by all co-
roots a' (a € R) is denoted by Q(R') and is called the
co-root lattice. Indeed Q(Rv) is always an even lattice. For
a, B € R,

(a¥,BY) € 2

(av,av) = 4/a2 € 27Z.

A
Let Q(Rv) be the submodule generated by all co-roots

A
corresponding to roots in the reduced root system R. Note

A
that Q(RY) = Q(R").
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The reflection sa(a € R) induces an isomorphism

8, ¢ Q(Rv) — Q(Rv) of co-root lattices. Indeed, for p € R,

YV - (a,BY)a" € Q(R").

s, (B') =B

The Weyl group W(R) acts on Q(Rv).
Next, let M be a submodule of L. Then, setting
FM = FLN M, (M,FM) 1is a root module. A submodule is always
regarded as a root module in this manner. In other words, a
homomorphism ¢ : (M,FM) — (L, FL) between root modules is
defined to be a homomorphism ¢ : M -~ L of modules which

preserves bilinear forms and such that ¢_1(FL) = FM.

A A
Lemma 3.3. Let R = R(L,FL) be the reduced root system of a

A
root module (L,FL). For every a € R,

\{

Re’ N Q(RY) = Za".

Proof. Easy. (See Urabe [13] Lemma 2.2.)

Remark. The above equality does not hold for a short root a
with length 1/v2.

Note that if L is positive definite, then the root
system R(L,FL) is a finite set.
In the following we freely use standard concepts and ter-

minologies in the theory of root systems (Bourbaki (3]). Any
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finite root system is uniquely decomposed into a direct sum of

irreducible ones.

Propos 3.4 (1) Finite irreducible root systems contain-
ing a long root are classified into the following types. The

lower index represents the rank of the root systemn.

Ak(k 2 1), Bk(k 2 2), Ck(k 2 4),

Dy(k 2 4), Eg, E;, Eg, Fy, F, Gy,

CB, (k 2 1).

(Sometimes for the one of type F, the name of the type is
also called C3.) A root system R of type CBk is non-re-

duced, i.e., R does not satisfy the axiom (SRIV)T The re-

A
duced root subsystem R consisting of all long roots and all

short roots with length 1 in R has the following type:

(k =1), B, (k=2), Fy (k =3), ¢ (k2 4).

Every long root a in R 1is djvisible, i.e., a/2 € R.

(2) Any finite root system of a root module has at most one
.component containing a short root with length 1/V2.

(3) Consider a finite root system of a regular root module.
Any irreducible component of it is never of type C. If an
irreducible component of it is of type CBk, then 1 ¢ k § 3.
Besides, it has at most one component containing a short root

with length 1.
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Proof (1) The main parts follow from Bourbaki [3]. Note that

A
by the axiom (R1) the reduced root system R of a non-reduced

root system R cannot be of type Bk with k 2 3.
2 2 ' ' 2
(2) If T L 1/2 and T,°75 0, then (11+12) 1. It
follows from this fact.
k
(3) Assume k24. -Consider a free module F = 2 Zei of rank
i=)1

k
k. Set L = z Z(ei/Z). L is an overmodule of F with index
i=1

2k. We define a bilinear form by ei = 2 (1<i<k), ei.ej =0

(1 # j). Then, (L,F) 1is a root module whose root system is
of type CBk' Set L’ = (Eai(ei/z)ELIEai is an even in-
teger.}. The pair (L’,F) 1is also a root module, whose root
system is of type Ck. Set Bl = (el+ez)/2 and
- 2 _ p2 _ . _
52 = (e3+e4)/2. Then, we have ﬂl —.Bz =1, ﬁl ﬁz =0 and
2 .

ﬁl’ ﬂzeL'. However, (Bl+ﬁ2) = 2 and ﬁl+32 ¢ F. By this
fact one sees the former half of the assertion. By the same

argument as in (2) one has the latter half.

QoEoDo

Here we introduce three agreements in order to make the
following descriptions clearer. Consider the symbols of root
systems in Proposition 3.4 (1). In general situations we can
use these symbols (in particular, those of type A, D or E)
for root systems containing no long root. However, in this ar-

ticle we obey the following agreements.
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(Agreement 1) When we use the symbols of irreducible root sys-
tems in Proposition 3.4 (1), they imply that the root system

contains a long root at the same tinme.

(Agreement 2) Consider the case where an irreducible root sys-
tem R contains no long root. Then, we have an irreducible

root system R’ with a long root and a positive real number

t such that R

{ta|a€R’}. If R’ is of type X, then we

denote that R 1is of type X(tz).

(Agreement 3) (Exceptions) A reduced root system {a,-ca) of

rank 1 is defined to be of type B1 if a2 = 1, and of type
G1 if a2 = 2/3. A reduced irreducible root system of rank 2

consisting of only short roots with length 1 is defined to be

of type Fz'

Therefore, Bl = A1(1/2), G1

lLet R be a finite root system. We can choose a xoot

= A,(1/3), and F, = Az(l/é).

basis A = {al,az,...,ak} C R ("une base de racines" in
Bourbaki [3], Ch. 1V, n’1.5. Sometimes it is. also called a
fundamental system of roots.) when we fix a Weyl chamber. Each
fundamental root ay; is indivisible, i.e., ai/z ¢ R. A is a
basis of Q(R).

We would like to explain the concept of Dynkin dgraphs
here. We can draw a graph G by the following rules, corre-

sponding to the root basis A of R.
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(1) The vertices in G have one-to-one correspondence with
elements in A. A vertex has one of four different expressions

depending on the length of the corresponding root as follows:

Length: vz 1 V273 1/v2
Expression: o e (© ®

(2) If two roots a, p € A are orthogonal 1i.e., a*f = 0,
then we do not connect the two vertices corresponding to a
and j.

(3) If two roots a, B € A are not orthogonal, then we
connect the two vertices corresponding to a and B by an
edge which is a single segment. (Note that if moreover a |is
a long root, then a+*f = -1.)

The resulting graph G 1is the Dynkin graph of the root
system R. It depends only on the isomorphism class of R and
does not depend on the choice of A, since for another root
basis A’ we have an element w€W(R) of the Weyl group such
that A’ = w(A). Non-isomorphic two finite root systems have
different Dynkin graphs.

Our Dynkin graphs are slightly different from those used
commonly. Next we explain the difference.

Dynkin graphs under common use have only one kind of ver-
tex, but have three different kinds of edges —a single seg-

ment, a double one and a triple one——. The difference of the

edge indicates the difference of the angle (a,ﬁ)/dazJﬁz be~-
tween a and P. The absolute length of each root is ignored,

but the mutual difference of the length between two roots is
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indicated by an arrow on a double or triple edge. Besides cus-
tomarily we do not associate a Dynkin graph with any non-re-
duced root system.

Our Dynkin graph of type CB, is the following.

CBl : ®

CBk(k22) : O—e———o—,..~e——¢ (k vertices).

Corresponding to a reduced root system of rank 1, we have |
three different graphs o, ¢, ® depending on the length of
the root, but customarily they are not distinguished and all
of them have the same expression o. Even in the case of rank
2, our graph of type A2 0——0 and one of type F} *o—e
are not customarily distinguished and are expressed by the
same graph o——o. Besides our Dynkin graph of type G2 is
o—@, while customarily it is QEE%p.

Consider our Dynkin graph ofra reduced irreducible root

system which is not of type G.,. If it has a part like o—e,

2°
we replace it by c—=o. After that, if we replace all
vertices corresponding to short roots by o, the obtained
graph is the Dynkin graph under common use.

When a finite root system R has a, of components of
type A, bk of components of type Bisr -++r We identify the
formal sum G = zakAk + Ekak+... with the Dynkin graph of R,
and we say that R 1is of type G. We use abbreviations like

R = R(G), Q(R) = Q(G), W(R) = W(G) etc.
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Next we explain the concept of extended Dynkin graphs
("graphs de Dynkin complété" in Bourbaki [3]).

let R be an irreducible finite root system and A C R
be a root basis. The maximal root 7 € R is uniquely deter-

mined depending on A. We can write it in the form

n = 2 n a. The coefficient n, is necessarily a positive
a€A
integer, and is called the coefficient of the maximal xoot

corresponding to a. The set AT =au {-n} 1is called the ex-
tended root hasis. We define the coefficient n_n of the

maximal root corresponding to - n to be n_n = 1. We have
2 na = 0.
a€A+

Here we assume further that the rank of R 1is greater

than or equal to 2. The extended Dvynkin graph of R 1is the

resulting graph when we apply the same rules (1), (2) and (3),

which we used to make the Dynkin graph from A, to A"t

in-
stead of A.
We define that the following is the extended Dynkin graph

for a finite root system of rank 1.

1 1 1 1
Al *  OveEEEmS—) Bl : gu——y

b 1 2 1
G1 O O] CBl :  Gememm—

The edge in the extended Dynkin graph of rank 1 is a bold seg-
ment. (Sometimes we use a single segment = accompanied

with the mark « instead.) The attached integers in the above
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extended graph are the coefficients of the maximal root. Even
these graphs of rank 1 are drawn basically by applying the
rules (1), (2) and (3) to A+. However, in the case of rank 1,
two elements in A+ are proportional. To express the fact of
proportion we use a bold edge.

Note in particular that the maximal root in the case of
type CB 1is a long root.

For a reducible finite root system R, the disjoint union
of the extended Dynkin graphs of irreducible components is
called the extended Dynkin graph of R. The number of vertices
minus the number of connected components is called the rank of
the extended Dynkin graph. The union of the extended root
bases of the irreducible components is called the extended
root basis of R.

In the following we show the extended Dynkin graphs for

main types. Numbers are the coefficients of the maximal root.

1l 1 ... 1 1

(k22) : oz—o0—,..,—0——0 (k+1 vertices)
k
\/

o]

1l

A

1l 2 2 2 2

———]———o—...—o———o
1 (k+1 vertices)

1 2 2 2 1
Ck (k24) : o—e—e—.,..—e—o (k+1 vertices)

B, (k23)

L 1]
[+]
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1 1

[

2 2 2 1

[
[ M)
w
V)
[

F, : et———e : . . o
2 1 1 3
1 2 3 4 2 1 2 3
F4 ) o o . . G2 ! o~——o—0
2 1
CB-1 P Ommm———
2 2 2 2 1

CB, (k22) : @——e—e—. . .—o—o (k+1 vertices)
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When we choose an arbitrary vertex with the attached num-
ber 1 in a connected extended Dynkin graph, the graph ob-
tained by erasing out the chosen vertex and the edges issuing

from it is the corresponding Dynkin graph.

Lemma 3.5. Let A be an.even unimodular lattice, L be a
non-degenerate primitive sublattice, and M = C(L,A) be the
orthogonal complement of L in A,

(1) We define a morphism A —— Hom(M,Z) = M* by associating
an element x € A with a morphism M—Z defined by
y € M — (X,y). This induces an embedding of guasi-lattices
MC M* and an isomorphism A/L & ' of quasi-lattices.

(2) The composition M C A — A/L of the natural morphisms
is injective and it induces an embedding M C A/L of quasi-
lattices such that the composition M C A/L = M* coincides
with the inclusion M C M".

(3) Let r : L*/L — H*/H:_ be the canonical isomorphism ob-
tained by composing canonical isomorphisms (A/L)/M = A/L & M,
(A/M)/L = AJL ® M, A/L = M* and A/M = L*. Then for discrimi-

nant quadratic forms,
- - - *
(%) = -qu(r(x)) (x € L'/L).

Proposition 3.6. Let P be the lattice corresponding to a
fixed one of 6 kinds of hypersurface quadrilateral singu-
larities. Let A Dbe an even unimodular lattice. Assume that
there exists a primitive embedding P C A. Let F denote the

orthogonal complement of P in A.
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(1) When we regard F as a subspace of a quotient quasi-
lattice A/P,

F = (A/P)" = (x€A/P|(x,y)€Z for every ye€A/P.}.

(2) For the former 5 kinds except U1 o’ A/P 1is a regular
’

root module. Besides
F = (xeA/Plx2 is an even integer.}.

(3) For the last case U the pair (A/P,F) is a root

module.

Proof. (1) follows from Lemma 3.5. First of all we show the
latter half of (2). In the following we identify A/P and F*
via the canonical isomorphism. The canonical surjective mor-
phism A/P — (A/P)/F = F*/F is denoted by w. The composi-
tion F*/F — P*/P —_ P’*/P’ of the canonical isomorphisms
is denoted by T. The discriminant quadratic forms of P’ and
F are denoted by dps and dp respectively. Then, the as-
sertion 1is equivalent to that q;I(o mod 2Z) = {0). Since
4y = -4p,T, this is equivalent to that q,, (0 mod 2Z) = (0.
However, this is equivalent to Proposition 2.9 (6).

We check the axioms of root modules. First let a € A/P
be a long root. For the former 5 kinds we have a € F by

the latter half of (2). For a€F by definition. By (1)

Y0
2(a,x)/a® = (a,x)€Z for every X€A/P.
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Secondly assume BS =1 " for BEA/P.  Set
B =T@@)er’ /P, qp, (B) = -gqp(v(B)) = 1 mod 2Z. F is an
element of the second kind. By Proposition 2.9 (4) 2f = o.
Since T is an isomorphism, 27 (f) = 0 and thus 2B€F. By (1)
2(B,x)/B2 = (2B,x)€Z for every x€A/P.

Thirdly assume +2 = 2/3 for TEA/P. Set

F=E(x (1))€P /P L ap, (7) = -qg(v(v)) ? =

- = 1+(1/3) mod 2Z. 7
is an element of the third kind with the associated number 2.

By Proposition 2.9 (5), 37 = 0. Thus 37v€F. By (1)

2(v,x) /7% = (3v,X)€Z for every x€A/P.

Lastly assume 62 = 1/2 for & € A/P. Set
5 = T(x(6))€P  /P7. qp, (B) = -qp((5)) = -62 = 1+(1/2) mod 2Z.
® is an element of the third kind with the associated number

1. By Proposition 2.9 (5), 26 = 0. Thus 26€F. The axiom (R3)
is satisfied. By (1) 2(6,x)/52 = 2(26,x)€Z for every X€A/P.
Now, since F 1is invariant under all integral orthognal
transformations on A/P by (1), the axiom (R2) is also satis-
fied in the case of U1 0°

r
Q.E.D.

Definition 3.7. (1). Let (L,FL) be a root module. Let M be
a submodule of L, and M = P(M,L) be the primitive hull. We
say that M is full in L if R(M,MNFL) = R(M,M\FL) for
root systems. An embedding of root modules whose image is full

is called a full embedding.
(2) Let k be a positive integer, G be a Dynkin graph. Let

G = Gy+...+G be the decomposition into components and
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m
Q(G) = @ Q(Gi) be the corresponding orthogonal decompositon
i=1

of root quasi-~-lattices. Assume that there is an embedding
Q(G) C L into a root module (L,FL). If a component Gy is
of type Ay, and if the index of the primitive hull satisfies
[P(Q(Gi),L) : Q(Gi)]2k+1, then we say that Gi is an.ghggggg-
tion compopent for this embedding with respect to k.

Lemma 3,8, We consider the situation in Definition 3.7 (2)
above. Besides, we assume that L is the root module A/P in
Proposition 3.6. If a component Gy is of type Ay, the fol-
lowing three conditions are equivalent. Set Q; = Q(G;) and
Q; = P(Q;,A/P).

(1) Gi is an obstruction component, i.e., [Ei:Qi]2k+1.

(2) [Qy:Q4] = k+l.

(3) @ = of.

Proof. We use the notation in Proposition 3.6. Since Gi has
no vertex corresponding to a short root, Q;CF. By Proposition

3.6(1)
* ~
Q; 2 Q) 2 Q-
Since [QI : Qi] = k+1, the above (1), (2) and (3) are

equivalent.

Q-EcDo
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Theorem 3,9, Let P be the lattice corresponding to one of 6
kinds of hypersurface quadrilateral singularities. Let A be
an even unimodular lattice with signature (16+N, N) with
N>1. Let G be a Dynkin graph without a vertex corresponding
to a short root and Q(G) be the root lattice of type G. We
consider an embedding ‘ POQ(G) C A and the corresponding
induced embedding Q(G) C A/P defined as the composition
Q(G) C A — A/P of natural morphisms. Then, the following (A)
and (B) are equivalent.

(A) The embedding P®Q(G) C A =satisfies Looijenga’s condi-
tions (a) and (b) in Theorem 1.1.

(B) The embedding Q(G) C A/P is full and for every
associated number k of P with k24, G has no obstruction

component with respect to k.

Proof. Set F = C(P,A). By w#:A — A/P we denote the canoni-

cal surjective morphism.

(1) We will show that 6(\?;/) = P(Q(G),A/P) C A/P contains no
short root under the condition (b).

Iet n € 6?53 be a short root. We have n2 =1, 2/3 or
1/2. Choose an element a€A with 7w(a) = n. We can write it
in the form a = X+y (xeP*, yeF*), since
P® FCACGP ® F . By the definition of the bilinear form on
A/P, y2 = nz =1, 2/3 or 1/2. There is a non-zero integer m
with mn € Q(G), since 7 belongs to the primitive hull. This

implies my € Q(G). We can assume that mx € P for the same
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m at the same time and we have mx € P® Q(G). Thus a
belogns to the primitive hull P6Q(G).
On the other hand, the element

a, =a - (a-uo)v0 - (a*v_)u

0’70

we can assume further that a satisfies asu, = a'v, = O.

Under this assumption one has xep’ ™, Obviously a® = 0 mod 2Z

and x% =a? -y%2=-y2=-9%2=1, 4/3 or 3/2 mod 2Z. The

also satisfies v(al) = 1. Thus

element x mod P'GP'*/P' is of the second or third kind. By

Proposition 2.9(3) we have an element z€P’ such that
(x-z)2 = 2-n2 and (x-z) is not orthogonal to Pa. By ex-
2 2

changing a for a-z, we can assume that x° = 2-q and x

is not orthogonal to P6. Consequently one has an element a€A

2 ’ ) T~
such that #(a) =n, a” = 2, au, = a*vy = 0, a€P®Q(G) and a
is not orthogonal to P6. Then, by the condition (b), a€P,.

This implies y = 0, which contradicts the fact y2 = n2 # 0.

Therefore we have no short root 7.

(2) Assume that a component GO of type AL in G is an ob-
struction component with respect to an associated number k24
of P. We will deduce a contradiction from the condition (b).

Let Ao C Q(G be a root basis of Q(Go). et o Dbe

o)
the fundamental weight corresponding to a vertex at one of the

two ends of the Dynkin graph of A 2

. One has w k/(k+1). On

0
the other hand, by Lemma 3.8 and by assumption one has
Q(GO)* = P(Q(G,), A/P), and thus we€P(Q(G,), A/P).

Then, we have an element a in the primitive hull of

POQ(G) in A such that =#(a) = v and a*u, = a*v, = 0. We
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can write it in the form a = X+tw (xEP'*). Since

a? = 0 mod 22,

x? = 0% = 1+(1/(k+1)) mod 2Z.

The element x mod P’ € P'*/P’ is of the third kind with the

associated number k. By Proposition 2.9 (3) we have an ele-

ment z € P’ such that (x-z)2 = 1+(1/(k+1)) = 2-¢°  and

(x-z) is not orthogonal to P6. Exchanging a by a-z, one
has an element a€PBQ(G) such that T(a) = o, az = 2,

a*u a*v, = 0 and a is not orthogonal to P.. By the con-

o~ 0 0
dition (b), a€P6, and 0 = v(a) = w # 0, which is a contradic-
tion.

. e
(3) We will show that the condition (b) is satisfied, if Q(G)

does not contain a short root, and if G has no obstruction
component for any associated number k24 of P.

lLet a be an element in the primitive hull of P#®Q(G)

such that asu, = 0, @2 =2 and « is not orthogonal to

P Replacing a by a-{(a-v_,)u one can assume further that

o)

0° 0
it satisfies a*vy, = 0. We can write it in the form a = x+y
(xep'*, yeo(G)*). Here X is not orthogonal to P’.

0
2 = a’ = x2+y2. Since both of P’ and Q(G) are positive

definite, we have 0$y2$2. We divide the case into four cases.

<i> 1<y2$2.
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In this case 0$x2<1 and x mod P’ € P’*/P' is of the
first kind. By Proposition 2.9(2) x is orthogonal to Pa,
which contradicts the choice of a.

<ii> y° = 1.
The element w(a) belongs to the primitive hull of Q(G)
in A/P. On the other hand, since w(a)? =y% =1, v(a) is a

short root , which contradicts the assumption.

<iii> 0<y2<1.
Since G has no vertex corresponding to a short root,

* P
Q(G) C w(F) and we have Q(G) 2 Q(G) in A/P. By Lemma 2.7
k = yz/(l-yz) is a positive integer and G has a component
G of type A

o k

Lemma 3.8 G, is an obstruction component with respect to k.
On the other hand, x° = 2-y> = 2-(k/(1+k)) = 1+(1/(1+k)). The

Y4 *
such that Q(Go) = Iv(a) + Q(Go) = Q(Go) . By

element x mod P’ € P'*/P' is of the third kind with the as-
sociated number k, and k 1is an associated number of P. By
assumption k¢3.

If k = 3, then the second fundamental weight

2
2

in the primitive hull. It contradicts the assumption.

v, € Q(GO)* ='6?§;3 satisfies w5 = 1 and it is a short root
If k = 2, then 1r(a)2 = y2 = 2/3 and w(a) 1is a short
root with length +v2/3 in the primitive hull of Q(G), which
contradicts the assumption.
If k =1, then r(a)z = 1/2 and w(a) 1is a short root
. ~
with length 1/v2 with 7w(a) € Q(G), which contradicts the

assumption, too.
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<iv> y2 =0

We have y =0 and aEP’*. By the property (G’), one
has a € P6. Thus the conclusion of the condition (b) holds.
(4) Under the condition (a), 1if n€P(Q(G),A/P) for a long
root 7n € A/P, then n€Q(G).

In the case of U1'0 by the definition of a long root we
have n € v(F) C A/P. For the other 5 cases we have
n € w(F) by Propositon 3.6(2). Thus, anyway, there is an ele-
ment 17 € FC A with #(m) =n. This 7 is orthogonal to P
and it is contained in the primitive hull of Q(G) in A. By

the condition (a) one has 7 € Q(G), and thus

n =7w(m) € 7(Q(E)) = Q(G).

() If the condition n € P(Q(G),A/P) for a 1long root
n € A/P implies n € Q(G), then the condition (a) holds.

Let a be an element in P(P®Q(G),A) with a® = 2 such
that it is orthogonal to P. Then, w(a) € 7(F), 7(a)2 = 2 and
m(a) € P(Q(G), A/P). Thus w(a) 1is a long root in A/P. By
the assumption one has w(a) € Q(G). On the other hand, since

a € F and P(Q(G),A) C F and since #|F 1is injective, one

has a € Q(G). Thus (a) holds.

Theorem 3.9 has been shown by the above.
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§4. Elementary transformations and tie transformations

By AN we denote the even unimodular lattice with signature
(16+N, N) for N21. It is unique up to isomorphisms, and iso-

morphic to Q(2Eg) © H' and also to T 60 H'. Here T is

b 16
the even overlattice with index 2 over the root lattice
Q(Dlﬁ) of type D16'

We have defined the concept of elementary transformations
for finite root systems and Dynkin graphs in Urabe [(13]. The
concept of root modules in [13] is more restricted than the
concept of root modules in this article. Besides even the con-
cept of Dynkin graphs is slightly different from that in this
article.

In spite of such difference, the same definition of ele-
mentary transformations as before is effective even in our
present situation.

Here we give an example of a non-reduced root system and

explain it. Consider a Dynkin graph of type 083 and the cor-

responding root basis 4 = (1,31,52}.

®——e——o

T Fr Py
By definition v2 = 1/2, Bi = ﬁg = 1. The maximal root 7 is
equal to 27 + 2B1 + 2B2, which is a long root. Setting
a = =-n, we have the extended root basis At = {1,ﬂ1,B2,a}. The
irreducible component containing + of the root system gen-

erated by a proper subset of A+ is non-reduced and of type
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CB. Note that on the contrary the irreducible component con-
taining a of the root system generated by a proper subset of

B or F..

A+ is reduced and it is of type Al' B, 3

opos o) Let (L,FL) be a positive definite root
module and M be a-submodule of L.
(1) If M is primitive in L, then any root basis of the root
system of (M,MNFL) can be extended to a root basis of the
root system of (L,FL).
(2) If the torsion group of the quotient L/M is cyclic, then
the root system of (M,MNFL) is obtained from that of (L,FL)

by one elementary tranformation.

Proof (1) The Weyl group W(M,MNFL) = W(M) of M acts tran-
sitivity on the set of all root bases of M, and the action of
W(M) on M can be extended naturally to L. Thus it suffices
to show that there is a root basis AL for L such that AL

contains a root basis AM for M.

By assumption we have a linear mapping f : L — R such
that the kernel f_l(O) coincides with M. Regarding § as
an element in L* ® R, we consider the action of the Weyl
groups W(M) and W(L) = W(L,FL). Let CcC L* @ R be a Weyl
chamber for W(L) such that the closure C contains . Let
AL be a root basis for L corresponding to C. Set
A' = (aeAL|<a,§> = 0) = {agALI The hyperplane orthogonal to «
passes through ¢§f.}. Let W’ be the subgroup of W(L) gen-

erated by reflections corresponding to roots in A’, If



- 78 -

a€A’, then E(a) = 0 and thus a€M. One knows W’ C W(M). Let
I(W(L),E) = (g€W(L) |g(E) = £} be the isotropic subgroup with
respect to §. Since for a € R(M,MNFL)

sa(f) = E-2<a,f>a/a2 = E-ZE(a)a/az = f, one has

W(M) C I(W(L),E). Now, by Bourbaki [{3] Ch. 5 §3 n°3 Prop. 2,
W/ = W(M) = I(W(L),f). This implies that the Weyl chamber for
W’ is the Weyl chamber for W(M), and A’ is a root basis

for M.

(2) First of all, note that lLemma 3.3 does not hold for a
short root with length 1/v2.

By assumption we have a linear morphism § : L —m R with
@ = m

Let AM C R(M,M N FL) be a root basis for M. If AH

contains a short root B with length 1/v2, then replacing 8

A A
with 28 we can make the set AM' This AH is a root basis
A
of the reduced root system R(M,MNFL). By Lemma 3.3 and by re-

sults in Urabe [13] (Prop. 2.5, Cor. 2.6, Prop. 2.9(4), Lemma

A

2.10 in [13]) there is a root basis AL of the reduced root

A A A
system R(L,FL) such that AM c AE for the extended root
A+ A A
basis AL' that is, AM can be obtained from AL by an ele-

mentary transformation.

First we consider the case where AM contains no short
A A
root with length 1/v2. Then, AM = AM. If AL does not con-
A
tain a divisible root, then A is a root basis for



- 79 -

A
R(L,FL) = R(L,FL) and we have the claim. Thus in the fol-

A

lowing we consider the case where AL contains a divisible

A

root. By Proposition 3.4 (2) we have a unique component Al
A A

of A containing a divisible root. We can write A

L in the

+
1l
Ay 2 2
form Al = (231,71,...,1k_1,252} with ﬁl = Bz =1/2,
12 - .2
1 e k-1

Here assume that 231 € AH and 232 € AH. We will deduce

A

= 1.

a contradiction. Now, the graph of A; is the extended Dynkin
graph of type ‘Al' Bz, F3 or Ck (k24). The vertices cor-

responding to 231 and 2B2 are at the both ends. The sub-

A
graph Gy consisting of vertices corresponding to AM n A'{

does not contain at least one vertex corrgsponding to a short
root under our assumption. Thus 251 and 2ﬁ2 belong to dif-
ferent connected components of G,- This implies that any root
of M is orthogonal to either 231 or 232.

Now, on the other hand, since any two elements in AH

A

are linearly independent, the rank k of Al satisfies k2.

Under the assumption Bl, 32 € LL and 231, 2B2 € M. Besides,
since AM contains no short root with length 1/V2, ﬁlen
and ﬁ2¢H. The torsion part of L/M 1is cyclic and L/M has
only one element of order 2. Thus ﬁl—ﬂzem. On the other
hand, since ﬁ1+11+...+1k_1+ﬁ2 = 0, one knows

To¥eoo+7) _(+2B,€M  and v = v, +v +...4v, (€M, This v is a
short root with 1length 1, and satisfies Zﬁl-w#O and

252-1#0. One has a contradiction.
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Therefore either 2ﬁ1€A or 2ﬁ2¢AH holds. If 2ﬂ1¢AM,

M
set Al = {ﬁl, Tor sees 1k-1}' If ZBZGAM, set
A A
Al = {11,...,1k_1,32). Since AL-Al - contains no divisible

A

A .
= (AL - Al) U A is a root basis for L and it

root, 1

AL
+
satisfies AH C AL'

Next, we consider the case where AH contains a short
A A+ A

root B with length 1/v2. In this case Ay, A; and A, has
A

a unique component containing a divisible root. Let AI be

A
the component of A;; containing a divisible root. We can
Ay
write it in the form Al = {25,11,...,1k_1,25'),
2 _p.2 _ 2 _ =2 = =
B - ﬁ’ - 1/2, 11 = e s - 'fk_l 1. Set Al {p""l’c-c"rk-l)
A A
and AL = (AL-Al) U Al. This AL is a root basis of R(L,FL)

L] ] L] + -
and it satisfies AH C AL.

QoEoDo

let FC AN/P denote the same module as in Proposition

Lemma 4.2, (1) For any primitive isotropic element u in
An+1/P belonging to F, there exists another isotropic ele-
ment v in F with u-v = 1.

(2) Set H=12Zu+Zv and J = C(H,Ay, ,/P). One has the de-
composition AN+1/P = JOH. Besides, there 1is a primitive

embedding P C AN with AN/P = J.
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(3) For the former 5 kinds of quadrilateral singqularities

except U any isotropic element in AN+1/P belongs to F.

1,0’
Proof. (1) By primitiveness we have a homomorphism
f : ANH_/P — Z with f(u) = 1. By Proposition 3.6 (1) we

have an element v’ € F with f(x) = x*v’ for x € AN+1/P.

In particular ‘u-v' = 1, - Since F- is an even lattice,
v'2 = 2m for some integer m. Setting v = v/-nu, we have
v2 =0 and u-v = 1.

(2) Since HCF, X°u and XV are integers for all

x € AN+1/P by Proposition 3.6 (1). Thus we can define an iso-

morphism ¢ : AN+1/P — J0H by
¢{x) = (x—(x*v)u-(x*u)v, (x*v)u+(x-u)v) € J & H.

Now, let U and Vv be elements in the orthogonal com-

plement of P in AN+1 such that their images by the mor-

N+l AN+1/P coincide with u and v respectively.
~2 2

By Lemma 3.5 (2) we have u¢ = v° = o, u-v = 1. Setting

phism A

H=12Zu + Zv, K = C(H,A one knows that K is an even uni-

N+1) ¢
modular lattice with signature (16+N, N). The existence of u

implies N21. Thus we have an isomorphism K & AN' since in-

definite even unimodular lattice is uniquely determined by the
signature. The composition P C K = AN is a primitive embed-
ding such that AN/P 2 J.

(3) It follows from Proposition 3.6(1).
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By Proposition 4.1 and Lemma 4.2 one sees that the theory
of elementary transformations in Urabe [13] is effective even

in our general situation.

Theorem 4.3. Assume N 2 1 (1) Assume that for a given primi-

tive embedding PCA and for a positive definite fuil

N+1'

root submodule L C A the orthogonal complement of L

n+1/ P
contains a primitive isotropic element belonging to F. Then

for some primitive embedding P C A there is a positive def-

Nl
inite root submodule M, C AN/P with the following property.
The property: rank MO = rank R(L) and for every positive
definite full root submodule M with Ho CMC AN/P, the root

system of L 1is obtained from that of M by one elementary
transformation. In particular, the Dynkin graph of L is
obtained from that of M by one elementary transformation.

(2) Conversely, let P C AN be a primitive embedding and
MCA/P bea positive definite full submodule. -Let R’ be a
root system obtained from the root system R(M) of M by one
elementary transformation. Then, there is a full embedding

Q(R’) C A of the root quasi-lattice such that the

N+1/P
orthogonal complement of the image contains a primitive

isotropic element belongind to F.

Let us proceed to the theory of tie transformations. The
key parts in the theory of tie transformations in Urabe [14]
are the theory of elementary transformations and Fact 1.6 in

Urabe [14] section 1. It is easy to check that Fact 1.6 is es-
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' sentially true even under the general definition of root mod-
ules in this article. However, of course, we have to replace

the expression

( 2 m a)2 =1 or 2
+ @
a€A

in the statement of Fact 1.6 by

() ma)? = ninp?|p € 4%,
Ta®
a€A

We can check that YEF if ¢ = 2 in the proof of

Proposition 1.5 in [14].

Theorem 4.4. Assume N 2 1 (1) Assume that a primitive embed-

ding P C AN+ is given. Let L C Agiy/P be a positive def-

1
inite full submodule satisfying the following conditon <*>,

For some root basis A C R(L), for some long root a€A
<k> and for some isotropic element u belonging to F,

ura =1 and u-p = 0 for every P€EA with PBza.

Then, there are a primitive embedding P C Ay and a positive

definite root submodule Mo C AN/P with the following proper-

ty. The property: rank Mo = rank R(L) - 1 and for every posi-
tive definite full root submodule M with My C MC AN/P, the
Dynkin graph of L 1is obtained from the Dynkin graph of M

by one tie transformation.
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(2) Conversely, for a primitive embedding P C AN and for a
positive definite full root submodule M C AN/P, if a Dynkin
graph G’ can be obtained from the Dynkin graph of M by one
tie transformation, then there are a primitive embedding
PCAN+

and a full embedding Q(G’) C A such that the

1 N+1/F
above condition <*> 1is satisfied for L = Q(G’).

Obstruction coﬁponents are a concept which we cannot find
in my previous articles [13] and ([14]. We would like to show
that they behave like the description in Definition 0.4.

In the following we assume that k24 and H = Zu+iv
(u2 = v = 0, u*v = 1) is a hyperbolic plane.

We first consider the behavior under elementary transfor-
mations.

Let G’ be a Dynkin graph. First, we consider the case

where a full embedding
Q(G’) € (Ay/P) ® H

into the orthogonal complement of u 1is given. Besides, we
assume that G/ has an obstruction component Gi of type

Ak' By definition

[P(Q(G]), (Ay/P) ® H) : Q(G])] = k¢l.
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By p : (AN/P) ® H— AN/P we denote - the projection to .
AN/P. let MC AN/P be a positive definite full root submod-
ule containing the image p(Q(G’)), and Q(M) be the root

quasi-lattice of M.

Lemma 4,5, The component Q1 of Q(M) containing the image
p(Q(Gi)) is also of type Ak and [P(Ql,AN/P) : 01] = k+1.

ml
Proof. Let A’ C Q(G’) be a root basis, and A’ = U Ai be
i=1

the decomposition into irreducible components. We assume that

the component Gi corresponds to Ai. Set
Ai = (ai,a',...,ai). We assign numbers to elements ai in Ai

from the end of the Dynkin graph in order. Let -

= (kal+(k-1)aj+...+2af  +al)/(k+1)

be the first fundamental weight. By definition wi-ai = 1 and

w'-ai =0 for 2 ¢ i< k. By assumption w! € P(Q(Gi),

1 1
(Ay/P) © H).
Set a; =p(af) and w, =p(w}). Let A CQ(M) be a
root basis and A = igl Ai be the irreducible decomposition.

By the theory of elementary transformations we can assume that

m

p(A’) 1is a subset of the extended root basis At = U AI. Let
i=1

+

Al be the component containing p(4]). One has

+
{al,...,ak) c Al.

Assume that A; is not of type A,. Since k » 4, by the

k
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classification of finite irreducible root systems with a long
root (Proposition 3.4 (1)), one knows'that there exist number
i with 1<i<k and a long root §p € AI such that ﬁ°ai = =1

and ﬂ’dj = 0 for Jj#i, 1<{j<k. Then, we have

0 *B = =(k+1-1)/(k+1) € Z.

This contradicts Proposition 3.6 (1), since B € F. Thus AI
is of type Ak and the index is k+1, since wq € P(Q(Gl),
Ay/P) - Q.E.D.

Next, we consider the situation when we go up from AN/P

to AN+1/P'

m
Let R be a finite root system and R = 121R1 be the

irreducible decomposition. We assume that R, is of type Ak
with k24. Assume that a full embedding Q(G) C AN/P such
that (@, : Q] = k+#1 for Q, = Q(R,) and Q, = P(Q,,Ay/P)
is given. Let R’ (C R) be a root system obtained from R by
one elementary transformation. We assume moreover that
’ =
R’ N R1 Rl.
Lemma 4,6. Under the above situation there exists a full

embedding

¢t Q(R’) C (Ay/P) @ H
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satisfying the following conditions (1), (2) and (3). Besides,
there also exists a full embedding satisfying (1), (2) and
(4) . Here we denote Qi = ¢(Q,) and Q] = P(Q],(Ay/P) @ H).
(1) The image Q7 of ¢ is orthogonal to u.

(2) The composition of ¢ and the projection
(AN/P)QH — AN/P coincide with '~ the given embedding
Q(R’) C Q(R) € A /P.

(3) Q] & Q] < k+1

(4) [Q : Q1 = k+1.

m
Proof. Let A CR be a root basis, A = U Ai be the irre-
i=1
+ no,
ducible decomposition, and A = U Ai be the extended root
i=1

basis. If we denote the maximal root for Ai by Ny then
+

Ay = Ay U {4
For every 1 with 1 < i {( m we have a proper subset
: m
Af C AI and R’ is the root system generated by U A{. Now,
i=1
A is of type A and A} consists of k+1 elements. By

1 k 1l

assumption Ai is also of type A, and Ai is a subset of
AI consisting of k elements. we have k+1 ways of choosing
Ai, and under any choice the basis Ai generates the same

root system R’ N Rl'

In order to define the embedding ¢ satisfying (3), we

choose 47 in such a way that -n, € Ai. To define ¢ satis-
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m
fying (4) we choose A! with -, € A/, A’ = U A! 1is a
1 1- 4 jmp 1

free basis of Q(R’). We define the embedding ¢ by setting

4
for a € Ai

a®0 (if a#-ni)
¢(a) =

adu (if a = -ni).

Obviously it defines an embedding of quasi-lattices satisfying
(1) and (2). Besides, fullness follows from Proposition 4.2 in
Urabe [13].

We show the condition (3). Set Ai = (ai'aé"°°'“i}' We
assume that the numbers are assigned from the end of the
Dynkin graph in order. If -n, € Ai,
(1¢j¢k)  with af = -n,. Now, if [6i : Q{)] 2 k+l, then for

then there is a number Jj

©; = (kal+(k-1l)aj+...+a])/(k+1) we have ¢(v,) € (A /P) @ H.
However, ¢(w1) = wle(k+1-j)u/(k+1). Thus
¢(ml)-v = (k+1-j)/(k+1l) € Z, which is a contradiction. We have

(3).
When -n, € A!f, we have ¢(v,) = 0,80, ¢(v,) € Ei, and we
have (4).

Q.E.D.

By Lemma 4.5 and 4.6, one knows that obstruction
components behave 1like the rule in Definition 0.4 under

elementary transformation.
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In the following we consider obstruction components and
tie transformations.
Let G’ be a Dynkin graph and Q(G’) C AN+1/P be a full

embedding. We assume the following assumptions (01) and (02)

(01) G’ has a component Gi of type A, with kX 2 4 such

that

[P(R(G]), Ayg,1/P) 1 Q(G])) = k+1.

(02) For some root basis A’ C Q(G’), for some long root
a € A’ and for an isotropic element u belonging to F,

a*u =1 and Pp+u =0 for every P€A  with PB#a.

2 2

Now, set v = u-a. We have uw" = v" =0 and u-v =1,

Setting H = Zu+Zv, J = C(H,AN+1/P), one has AN+1/P = JOH.
ml

et p:J®H — J denote the projection. Let A’/ = U Ai be
=1

the decomposition into irreducible components. We assume that
the component Gi corresponds to Ai. By T we denote the
submodule of Q(G’) generated by A’-{a).

let M be a positive definite full root submodule of

J = AN/P containing p(T), and G be the Dynkin graph of M.

m
A root basis A of M is decomposed A = U A, into
' i=1
. + moog
irreducible components. By A = U Ai we denote the extended
i=1

root basis. By the theory of elementary transformations, we

can assume that p(A’-{a}) C A+.
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Lemma 4.7 (1) The element u 1is necessarily orthogonal to

Q(Gi). In particular, Ai CT.

(2) Let AI be the component of at containing p(Ai). Al
is also of type Ak and for some unique element ~ € AI,

p(A!) = Ay - (0.

Proof, (1) Set Ai = {11,72,...,1k}. We assign numbers of
v.'’s from the end of the Dynkin Qraph in order. Let

1

01 = (kv +(k=1)7 4. .ot 7))/ (k+1)

"7, = 1 and W

*
)

be the first fundamental weight. W, vy =0

S
for 2¢igk. By (01) w, € Q(G]) = Q(6]

1

Assume that u is
not orthogonal to Q(Gi). The element a in (02) belongs to

Ai. We have a number j with e = 1j' 1{j<k. However,
weo, = (k+l-j)/(k+1) € Z,

which is a contradiction.
(2) First, note that p+x € Z for every long root p € J and
for every element x € J by Proposition 3.6.

Assume that al is pot of type Ak.
tion of root systems, one has a long root § € AI and a root

By the classifica-

L € Ai (1$i<k) such that B-p(1i) = -1 and B-p(wj) = 0

for J # i, 1<{j<k. By (1) p(wl) € J. However,
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ﬁ-p(ml) = ~(k+1l-i)/(k+1) € Z,

which is a contradiction. The latter half is obvious, since
+

Al has k+1 elements.
Q.E.D
Lastly, we consider the case when we go up from AN to
AN+1 by a tie transformation.

Let G be a Dynkin graph and Q(G) C A/P be a full en-
bedding. By A we denote a root basis of Q(G) and a”t is
the extended root basis.

However, this time, we assume that G’ 1is a Dynkin graph
obtained from G by one tie transformation and
Q(G’) C (Ay/P) ® H be the full embedding obtained by the
transformation (Urabe [14]).

Corresponding to the procedure of the tie transformation,
we have subsets A, BC AT with AN B =¢ which satisfy the

condition on G.C.D. with respect to coefficients of maximal

roots. We have

Qe’) = ) Za+ ) Z(a-u)+Z(u+v),
a€A¥-(AUB) a€B

and A’ = [AT-(AUB)] U {a-u|a€B) U (u+v} is a root basis for
Q(G’}.

Here assume moreover that G has an obstruction compo-
nent G1 of type Ak in AN/P. We assume that the components

A and A; correspond to G

1 1°
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Lemma 4.8. The following (1) and (2) are equivalent.

(1) In (AN/P) ® H, G’ has an obstruction component Gi of
type Ay such that it contains a vertex corresponding to a
root in AI - A.

(2) st ne = ¢ and AT n A consists of a unique element.
1 1

Proof. (1) ® (2). It follows from Lemma 4.7. (2) 2 (1). Under
the assumption Ai = AI - A 1is a root basis of type Ay and
is an irreducible component of A’. Let G] be the component
of G’ corresponding to Ai. Then we have

a6} = 2= ) 28 .

a€h’ BeA

1 1

This implies that the embedding Q(Gi) c (AN/P) ® H coincides
with the composition of the identification Q(Gi) = Q(Gl), the
given embedding Q(Gl) C AN/P and the embedding into the
direct summand AN/P C (AN/P) & H. Thus, when we compute the
index [P(Q(Gi), (AN/P) ® H) : Q(Gi)], erasing out the prime
symbols and ©H from the expression, we have the same number,
which is equal to k+1 by assumption.

Q.E.D.

By ILemma 4.7 and 4.8 one knows that obstruction compo-
nents behave like the rule in Definiton 0.4 under a tie trans-

formation.
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§5. Coxeter-Vinberg graphs

First we give a definition. An isotropic element u € AN+1/P
is said to be in a nice position with respect to a positive

definite root submodule L C A if either u 1is orthogo-

n+1/F
nal to all roots in L, or for some root basis AL(C R(L) C L)
of L and for some long root a € AL, a*u=1 and B+u =20
for every B € A, with B # a. '

Now, if we have an isotropic element in a nice position,
and if it is primitive and belongs to F, we can reduce the
problem from AN+1/P to AN/P by elementary or tie transfor-
mations (Theorem 4.3, Theorem 4.4). Therefore existence of
such elements comes into question.

In this section we explain an effective method for the
reduction from Az/P to Al/P. The main tool in this method
is the Coxeter-Vinberqg graph (Vinberg [15], (16]), [17], [18],
‘Conway-Sloane [5]). It is closely related to the geometry on
the hyperbolic space.

let (L,FL) be a root module with & = rank L. We assume
that the bilinear form on L 1is non-degenerate and it has

signature (€-1, 1). The negative cone EL CL@R of L is

defined to be

3, =(x€L® R|x% < 0}.

The cone . EL has two connected components by the assumption

on the signature. Choosing one of two and fixing it, we denote

it by 3 The other component is 3I_ = - E+ . The quotient

+l
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2, /R, by the multiplicative group m+ of positive real num-
bers can be regarded as a Lobadevskil space of dimension &-1.
The Weyl group W = W(L,FL) acts properly discontinously on
Ei and 2+/R+. Iet R = R(L,FL) be the root system. We de-

note the hyperplane in L ® R orthogonal to a root a € R by

Ha = {x € L ® R|(x,a) = 0}. A connected component of
3, -U BH is called a fundamental polyhedron of W or a
a
a€R

Weyl chamber of W. The Weyl group W acts transitively on
the set of all fundamental polyhedrons. Choose and fix one
fundamental polyhedron C. By C we denote the closure of C.
Corresponding to the walls of C, we choose a set A C R of

indivisible roots as follows. (Note that H = H_a.)

A = {a€R|a 1is indivisible, H N C contains an open set

of Ha, a is directed outwards from C.}

We call an element in A a fundamental root. This set A4 is
defined depending on €. However, if we choose A’ depending
on another polyhedron C’, A’ and A are conjugate with
respect to the Weyl group W.

We can draw a graph from A following the rules below
which are similar to those for Dynkin graphs. The resulting

graph is called the Coxeter-Vinberqg graph of the root module

(L,FL). Indeed, it is defined by (L,FL) and does not depend

on the choice of the fundamental polyhedron.
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(1) The vertices in the graph have one-to-one correspondence
with elements in A. A vertex has one of four different ex-

pressions depending on the length of the corresponding root as

follows.
Length: v2 1 V273 1/v2
Expressions: o ° © ® .

(2) If two roots a, B € A are orthogonal a°*f = 0, then we
do not connect the two vertices corresponding to a and B.

(3) If two roots a, B € A are not orthogonal and if the
quasi-lattice Za+ZB generated by them is positive-definite,

then we connect the two vertices corresponding to a and B8

by a single segment .

(4) If the quasi—lattice. Za+IB éenerated by two roots
a, B € A 1is degnerate, then we connect the corresponding two
vertices by a bold segment =,

(5) If the quasi-lattice Za+1p generated by two roots
a, B € I 1is non~-degenerate and indefinite, then we connect
the corresponding two vertices by a dotted segment e¢eece |
Besides, if necessary, we add the intersection number a-*f to

the dotted segment.

As a practical method to construct the set of fundamental
roots, we have an algorithm due to Vinberg [16].
To carry out Vinberg'é algorithm;-at the first step, we

choose and fix a vector L € 2+. called the controlling
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vector in the chosen component of the negative cone. Let L0

0 L0 is a
17 €3¢ ceer € be a root

be the set of vectors in L orthogonal to v
positive definite root module. let e

basis for the root system of L

o.
At the second step we choose e, €L for an integer
2 >k inductively. Assume that €1/ «ons €y 4 have been

chosen. Set

Re = {aeR|(a,ei) < 0 (1€i<e), (a,vo) # 0}.

If Re is empty, set Av = {el,...,ee_l}. If Re £ ¢, we

define e, to be an element a in Re which attains the

minimal value for (a,vo)z/a2 and satisfies (a,vo) < 0.
Lastly, when Re F for all ¢ > kK, we set
Av = {el,...,ek,ek+1,...,ee,...} (an infinite set).
Then, AV coincides with the set A of fundamental

roots associated with some fundamental polyhedron C (Vinberg

(16] Prop. 4.).

Lemma 5,1. Let MC L be a positive definite full root sub-

module. A root basis AH ( C R(M) C M) for M is
necessarily conjugate to some subset of A with respect to
the Weyl group W(L) for L. In particular, the Dynkin graph

of M is a subgraph of the Coxeter-Vinberg graph of L.
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Proof. Note that the real number field R 1is a vector space
of infinite dimension over the rational number field @. Be-
cause of this reason, we have a vector Vo € E+ in the nega-

tive cone such that M = {x€L|(x,v0) = 0). Using v as the

0
controlling vector, we carry out Vinberg’s algorithm. The root
basis of M becomes a subset of the constructed set Av. By
fullness, the root basis of M 1is a root basis of M, and Av
is conjugate to a given set A of fundamental roots over W.

Thus we get the lemma.

Q.E.D.

In Vinberg’s algorithm explained above a vector v with

o
vg < 0 is used as the controlling vector. We have another
similar algorithm using an isotropic element as the control-
ling vector, which is also due to Vinberg ([18] section 1.4).

Let u € L be a primitive isotropic élement. Set I = Zu
and I' = (x€L|(x,u) = 0}. The pair (I*/I, (FL N I*)+I/I)
can be regarded as a positive definite root module. By

p : I* — I'/I we denote the canonical surjective morphism.

Let A C I'/I be a roﬁt pasis for I*/I and AL = igl Ay
be the irreducible decomposition. We assume that AI gener-
ates I'/I @ Q over Q. (This condition is called the
compactness property. See Vinberg [18] section 1.3.) For each
root a € AI we choose a root a € I* N R(L,FL) with
p(a) = a. Set Ki = {a]a € Ay} and ZI = i§1 Zi . Ki c It is

an irreducible root basis for 1{i{m. Here we have 2 cases.
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(Case 1) The case where Zi contains a short root, the maxi-
mal root for Ki is a long root, and u € FL.

Let Bi be the maximal sghort root with respect to A

R e
set Ky =X, U (-(85+u)).

i.

(Case 2) Otherwise.

Let ny be the maximal root with respect to Ki' Set
K; = Ki U {—(ni+eou)}, where €q is the minimum positive in-
teger e such that ni+eu is a root. (If ny is a short

root, €g = 1. If ny is a long root, €5 is equal to the

minimum positive integer e such that eu € FL.)

By the above we have TI for 1<i¢m. Let

mo_,
be all the members in U 4A,.
j=1 1

Next, we choose e, €L for & > k inductively. Assume

e e

1' 2' .0y ek

that we have chosen e If the set of roots

1, LRI Y ] ee_lo

R, = (a€R(L,FL)|(a,ei) < 0 (1§i<e), (a,u) # 0}

is empty, set Av = (el,ez,...,ee_1

e, to be an element a in Re which attains the minimal

Y. If Ry, # ¢, we define

value for (a,u)z/a2 and satiesfies (a,u) < 0.
When Re # ¢ for all &>k, we set
Av = {el,...,ek,ek+1,...,ee,...) ~(an infinite set).

Then, even under this definition A coincides with the

v
set A of fundamental roots associated with some fundamental

polyhedron C (Vinberg [16], [18]).
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One knows the following. In the following the graph cor-
responding to a root basis plus (-1)-times the maximal ghort

root is also called the extended Dynkin graph.

m
Lemma 5.2. The obtained set U A; by the above construction
- i=1 .

is conjugate to a subset of the set A of fundamental roots
for L over the Weyl group W. In particular, the extended
Dynkin graph cofresponding to the Dynkin graph for 1I'/I is a
subgraph of the Coxeter-vinberg graph for L.

Proposition 5.3. (Vinberg [18]) section 2.4 and section 3.2)
The foliowing four conditions are equivalent.

(1) The Weyl group W(L,FL) has finite index in the group of
all integral orthogonal transformations on L.

(2) A set A of fundamental roots of (L,FL) is finite.

(3) The polyhedron C/R in the Lobadevskil space I /R

+ .
associated with the fundamental polyhedron c has finite

volume.
(4) There are a finite number of vectors Vir =ee1 Y, in the

closure of E+_ such that the fundamental polyhedron C

coincides with the interior of the minimum convex body

2
containing the set U R,v
j=1 7

il

When we carry out Vinberg’s algorithm, we need further
some practical method to determine whether the obtained set
{el,...,ee} equals to A or does not. For this purpose we

v
have the following (Vinberg [16] Prop. 11).
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Proposition 5.,4. Consider one of the above 2 Xkinds of

Vinberg’s algorithm. lLet 6 be a subset of Av spanning
L®Q over Q. Assume that we have obtained a graph G ap-
plying the above rules (1)-(5) to 6 instead of A. If the
graph G satisfies the following conditions <a> and <b>, then
8 = AV. In particular, (L,FL) satisfies the equivalent con-
ditions in Proposition 5.3.

Conversely, if (L, FL) satisfies a condition 1in
Proposition 5.3, the Coxeter-Vinberg graph G of (L,FL)

satisfies the following <a> and <b> for 0 = AV.

<a> If a subgraph S of G 1is an extended Dynkin graph, then
we can find a subgraph T of G containing S such that T
is an extended Dynkin graph whose rank equals to rank L-2.

<b> Let 6(T) denote the subset of 6 corresponding to the
vertices in a subgraph T of G. Let S be an arbitrary sub-
graph of G such that S is isomorphic to one of the fol-
lowing indefinite critical graphs. lLet x € IBR be an ele-
ment. If (x,a) = 0 for every a€6(S) and if (x,B) ¢ 0 for

every p € 8-8(S), then x = 0,

Indefinite critical graphs:

* .-..--* * * =
1 5 (1, 5 o, o, ® or @.)
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q:;;;;p O"l"s - q:::;;p ' q::;;;?
A2 VAN i I

Remark. The first one is a graph with only two vertices and
with a dotted edge. The latter 11 kinds of the indefinite
critical graphs except the first one belong to the class of
Lannér graphs (Vinberg [16] Table 3). In spite that there are
other kinds of Lannér graphs, only the above 11 can appear in
our problem. This is becéuse the ahgle between two roots
a, B €A is either =#/2, 27/3, 3v/4 or 5wv/6 1in the case
where the quasi-lattice Za+Zp 1is positive definite, and the
angle uniquely determines the ratio of the length of roots in
that case.

We will write down the Coxeter-Vinberg graph for the root

module AZ/P in the case of J Z and Wl We will

3,0’ “1,0 ,0°

discuss the case of Q2 0 too.
¥
The case of J3'0(2,2,2,3).

In this case P & Q(D;) ® H. Let F denote the orthogo-

nal complement of P in A We have F 2 C(Q(D4),A and

2° 1)

Al = F16@ H. r16 is the even overlattice over Q(Dle) with
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index 2. An embedding Q(D4) cr is unique up to orthogonal

16
transformations and C(Q(D4), rls) = Q(Dlz)‘ Thus we have

- o o o *
F2Q(D,,) ® H and A,/P & F = Q(D,,) ® H.

Now, let K be the odd unimodular lattice with signature

13
(13, 1). We can write it in the form K = z lvi, where
i=0

v2 = -1, v = 41 (1¢i13), and (Vi,v4) = 0 (i#]). We define

the elements w, f1’ ey f12, g, h as follows:

w o= vo+v1+...+v13, g = v0+v13, h= -(v0+v12),

fi = =VitVig (1<i<10),

£11° Vo V11tViztViar  £127 T VotV VotV g) -

Set M = {x€K|(x,w) = 0 (mod 2)} = {(x=px,v,|)x; = 0 (mod 2)}.

The elements f f h are a basis for M. The

12! gl
is a root basis of type D

l' LI )

elements f and g

i R f12 12°
and h generate a hyperbolic plane orthogonal to fi

(1¢i€12). Thus we have M = Q(Dlz)QH and
*
AZ/P M = K+Z(w/2).

One knows that applying Vinberg’s algorithm to the quasi-
lattice K+Z(w/2), we can draw the Coxeter-Vinberg graph of
AZ/P' We carry out the algorithm with the controlling vector

v As the root basis for the orthognal complement of v we

0.
take

0'
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e = ~Vi+vin (1<ig12),
€13~ V13-
Succeedingly we get
e,, = V +V.+v_ +V

14 0 "1 "2 "3
13

€5 = (3v0+ 2 vi)/z
i=1

Drawing the graph for these 15 vectors, we get:

1 2 3 4 5 6 7 8 9 10 11 12 13 15

° 0 ] 0 0 0 0 o o 0 © 0 —e ——o
14

This contains no indefinite critical subgraph. By Proposition

5.4, the above is the Coxeter-Vinberg graph for A2/P.

Ccorollary 5.5, Let P be the lattice defined for the case
J3'0(2,2,2,3). For every paéitive definite full root submodule
L C AZ/P, there exists a primitive isotropic element u € Az/P
in a nice position for L such that the root system of the
positive definite root module (Zu)*/Zu 1is of type E8+F4.
Proof, Considering conjugation over the Weyl group W(AZ/P),
we can assume that the root basis 4 for L 1is a subset of

L

above {el,...,e }. On the other hand, setting

15
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+2e. . .+3e_ _+4e. .. +2e

u = -(ey,+2e,,+3e,,+4e,,+2e,4),

one has (u,eg) =1 and (u,ei) =0 for 1i#9, 1<i<15. Thus
u is in a nice position for L. Assume that we can write it
in the form u = aw (a€Z, wﬁAz/P).-Since w2 = 0, one has
(eg,w) € Z by Proposition 3.6 (1), (2). One has a= %1
since a(eg,w) = (eg,u) = 1, Thus u 1is primitive. One can
fead off from the above graph that the root system of
(Zu)*/Zu is of type Eg+F,,
the extended Dynkin graph of type E8+F

since vertices except 9 form

4.
Q.E.D.

13
Set u’ = -(e2+2 E e; + e14). This wu’ is a primitive
i=3
isotropic element and the root system of (Zu’)*/Zu’ is of

type B The above Coxeter-Vinberg graph contains only two

12°

types — E_, + F4 and B 2-—~of extended Dynkin graphs of rank

8 1
12. Combining this with Lemma 4.2, one gets the following.

Corollary 5.6, Let P be the lattice associated with J3 0"
I

The root system of the quotient quasi-lattice Al/P is of
type G for some primitive embedding P C Al, if and only if
G = E8+F4 or B12'

The case of Z (2,2,2,4).
1,0
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In this case - P = P6 e T® Ho, P6 = Q(D4) and

T = Q(Al). Let F be the orthogonal complement of P in A2

for a fixed embedding P C Az' Since every embedding P C Az

is equivalent by Proposition 3.2, we can choose a convenient

one for our purpose. Regaréing Az = r16 ® H® H, we can take

the direct sum of the embeddings for each component P6 C r14,

’ o o
T C H, Ho C H. Since C(Po,r16) = Q(D12)' C(T,H) = lvo

o (V2 =-2).

On the other hand, let K be the root lattice of type

2 ~
(vo = -2), we have F = Q(Dlz) ® Zv

12
— 2 _
B12' We can write it in the form K = 2 Zvi where vy = 1
i=1

(1<i<12), (vi,vj) = 0 (i # j). Set w = VyHVote v, € K.

The root lattice of type D,, can be identified with the sub-
. lattice (x € K|(x,w) = 0 (mod 2)) of K with index 2. Thus

we have
A,/P 2 F o= Z(vy/2) ® (K + Z(w/2)].

Using the expression in the right-hand side, we can draw the

Coxeter-Vinberg graph. We use v, as the controlling vector.

As the root basis orthogonal to Vor We take the following:

e; = =vy + v, (1$1<11)

€12 T V12

At the second step we get vectors:
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e13 = v0/2 + v1

e14 = Vo + Vl + VZ + V3 + V4

+...+ VIz)/z.

e v, + (v1 + v

15 0 2

Drawing the graph for these 15 vectors, we get the following

one.

10 11 12

9 o o0— o o— ¢ 15

8 13

7 114 1

6 O O o o 2
5 4 3

By Proposition 5.4 this is the Coxeter-Vinberg graph for A2/P

in the case of Zl,O'

Corolla .7. Let P be the lattice corresponding to
21’0(2,2,2,4). For every positive definite full root submodule
LC AZ/P there exists a primitive isotropic element u € AZ/P
in a nice position with respect to L such that the root sys-

tem for (Zu)*/Zu is either of type E7 + F4 or of type

E8+CB3.

Proof. We can regard that the root basis AL for L is a

subset of the above system of 15 vectors e The

1' * e 0y 915.

graph made from AI. is a Dynkin graph and it has no bold

edge. Thus either e, ¢ AL or e, ¢ AL'

First consider the case where el ¢ AL' Set
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u1 = -(ell+2e12+2e13+2e15).

This u, is a primitive isotropic element and (Zul)"/lu1

has the root system of type E8+CB3.

(ul,el) = 2, (ul,elo) =1, and

(ul,ei) =0 (1$i¢15, i#1, 10).

The vector e, is a long root. Thus u is in a nice posi-

1
tion.
In the case where e, ¢ AL' consider
u2 = -(e9+2elo+3ell+4elz+2e15).
This u, is also a primitive isotropic element and

(Zuz)*/lu2 has the root system of type E7+F4.

(uzveg) = 1, (u2,913) = 1,

(uy,e;) = 0 (1€i<15, iz8, 13).

Thus u, is in a nice position in this case.

Q.E.D.

Corollary 5.8, Let P be the lattice corresponding to the
case Z, 0(2,2,2,4). The root system of the quotient quasi-
14

lattice Al/P is of type G for some embedding P C Al if

and only if G = E,+F,, Eg+CB or B,.+CB..

3’ 10 1l
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The case of Q2 o(2,2,2,5).
[4

The quotient quasi-lattice A2/P does not satisfy the
equivalent conditions in Proposition 5.3. Thus we cannot write

down the Coxeter-Vinberg graph.

Lemma 5,9, Let A be an even unimodular lattice, and I and
T be non-degenerate primitive sublattice. Assume that I and
T are orthogonal to each other. Set M=P(I ® T,A),
L = C(I8T,A) and £ = C(T,A). E 1is the primitive hull of
L® I and we have the induced embedding E/I C A/I. On the
other hand we can regard T as a submodule in A/IF via the
composition T C A — A/OI of natural morphisms.
(1) Then, in A/, P(T,A/D) = M/ and =/ are the
orthogonal complements for each other..
(2) The restriction of the natural surjective morphism
A/ — A/M to E/O is an isomormphism onto the image R/M
which preserves the bilinear forms. Here R = (5 ® T) + M, and
thus R/E ® T = M/IOT.

Now, set I = M/ 6 T and
1t = M*/meT c (meT)*/(meT) = (1*/m) ® (T¥/T). We have the
following exact sequence:

1L O *
00— I —1I" — M /M — 0.

On the other hand, we can regard that L C Z/0. Thus we have

the inclusion relations
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*

LCE/M =2/MNECA/MEL",

811

and we can regard (£/0)/L as a subset of L*/L. By
r : L*/L  — H*/H we denote the canonical isomorphism.

(3) An element x € L*/L belongs to (5/0)/L if and only if
r(x) € M*/H belongs to the image of I' N ((H*/H) ® (0}) by

g.

Proof., Easy.
In our case the lattice P has the following
decomposition:
P = P6 e T® Ho, P6 = Q(D4), T & Q(Az),

r = ’ = ’
and P P0 ® T. We denote Pl PO

group P'*/P' has elements of the second kind (special

o HO. The discriminant

elements of type B), but it has no elements of the third
kind. Thus it is enough to deal with only short roots with

length 1. We need not consider obstruction components.

Corollary 5.10, Assume that N21. We fix an embedding P C AN'
Set E = C(T,AN). We identify T and the image of T 1in
AN/Pl. Then, T 1is primitive in AN/P1 and the restriction
of the canonical surjective morphism = : AN/P1 —_ AN/P to
E/P1 is injective, and the image v(E/Pl) = (E&T)/P has

index 3 in AN/P. For the root system R(AN/P) Cc w(E/Pl).
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Proof. Note that in the discriminant group

P'*/P' = P6*/P6 (- T*/T, any element of the second kind is
contained in the direct summand Pa*/Pé. The inclusion rela-
tion for the root system at the last part follows from this

fact. Other parts are easy.

Q.E.D.

Lemma 5,11, Let P be the lattice defined in the case for

Q2 0(2,2,2,5). The root system of the quotient A1/P is of
I

type G for some embedding PC A1 if and only if

G = E6+F4, E8+F2 or Bg'

Proof, By Corollary 5.10 we have only to consider what the

root system of the orthogonal complement of T in Al/P1 is.

By Corollary 5.6 the root system of Al/P1 is either of type

E8+F4 or of type B12.

Consider the case where Al/P1 has the root system of

type E8+F4' If the root system of T (It is of type Az.) is

contained in the component of type E then G =E_ + F

8’ 6 4’
if it lies in the component of type Fuo then G = Eq + F,.

Next, we consider the case where the root system of

and

Al/P1 is of type Blz° Let QC Al/Pl_ be the root lattice of

type Blz' We have T C Q. It is easy to see that the orthogo-

nal complement S of T 1in - Q contains a root lattice Q1
of type Bg. Thus S = Zf @ Q1 for some element § € S. Since

§2 = d(S) = d(T) = 3, the root system of S is of type BQ.
Conversely, we can construct an embedding P C Al which
realizes each case G = E6+F4, E8+F2’ Bg.

Q.E.D.
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Lemma 5,12, Let P be the lattice defined in the case of
Q2'0(2,2,2,5). For every positive definite full root submodule
LC A2/P, we have a primitive isotropic element u €A2/P in a
nice position with respect go L such.that the root system of
(Zu)*/Zu is either of type E,+F, or of type Eg+F,.

Proof, We use notations in Corollary 5.10 assuming N = 2.

By Q(L) we denote the sub-quasi-lattice of L gener-
ated by roots. By Corollary 5.10, Q(L) C w(E/Pl). Let
p w(E/Pl) —_ E/P1 denote the inverse morphism of =. Set
Q =p(Q(L)). Let Q’ Dbe the sub-quasi-lattice of P(T & Q,
A2/P1) generated by roots in it. Q’ 1is an overlattice of

T®Q. Note that T®Q is generated by roots in

P(T9Q,A,/P;) N (TO(5/P;)) = P(T8Q,T®(Z/P,)).

m
et Q' = @ Qi be the irreducible decomposition of Q’. We
i=1

m
assume that T C Qi' Then we have Q = (Q N Qi) e (o Qi).
i=2

On the other hand,
P(T ® Q,A,/P)/P(TOQ,TO(Z/P))) = P(Q’,A,/P))/P(T0Q,TO(E/P,))
is isomorphic to a subgroup of Az/TQE 2 Z/3 and it is a cy-

clic group. By Proposition 4.1 one knows that the root system

of T®Q is obtained from that of Q’ by one elementary

=

transformation. Excluding common components ® Qi, the root
i=2
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basis A of Tﬁ(QﬂQi) is obtained from the root basis A’/

1 1
of Qi by one elementary transformation. Note that Al and
Ai contains the same number of elements, and Al has a com-

ponent of type A, corresponding to T. We never have a short
root with length 1/v2 or v2/3 in our case, and one knows
that the irreducible root basis Ai is of type either

Fer Eg/ E5, Eg oOr Az. According as the type of A, A is

1’ 1
of type F2+A2, 3A2, A5+A2, E6+A2 or Az. Let Ai be a root
m
basis for Qi for 2<i{m. A’ = U Ai is a root bais of Q’.
i=1
Now, our P, is isomorphic to P in the case

J3'0(2,2,2,3). Thus considering a conjugate one, we can regard
that A’ is a subset of the system of 15 vectors just
before Corollary 5.5. Here we would like to show that there

exists a primitive isotropic element u’ € AZ/P satisfying

1
either the following (0)’ and (1)’ or the following (0)’ and

(2)’.

(0)* The root system of (Zu’)*/Zu’ 1is of type Eg + F,.

(1)’ u’ is orthogonal to 511 elements in A’.

(2)’ There exists a 1long root a € A7 - Ai such that

(a,u’) =1 and (B,u’) = 0 for every P € A’ with B # a.

If eg

satisfies the desired condition.

4 = =
¢ Al, then u, (e10+2e11+3e12+4e13+2915)

Assume e, € Ai. The graph of Ai is a Dynkin subgraph

containing the vertex 9 in the Coxeter-Vinberg graph for
Jy g+ On the other hand any Dynkin subgraph containing the
r

vertex 9 in the Coxeter-Vinberg graph for Ja 0 is never of
L

I = = O/ ! =
type F4 or E. Thus QﬂQ1 o, T Ql, and Al {es,eg} or

I =
Al (eg, ).

€0
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Consider +the case Ai = {ea,eg}. By assumption
’
esr 59 € A’, Set
u, = —(e7+e +99+23 1+3312+4313+2e15)
= se7se8 9(uo) (sa stands for a reflection.)

One can check that (ei,ul) =0 (i1# 6, 7, 10, 1<i<15) and

(ee,ul) = 1, This u, satisfies the condition.

Next, we consider the case Ai = {eg,elo}. By assumption

e € A’. Set

g €11

5 = -(e7+2(e8+eg+e +ell)+33

= 8, 8, 5, (u
8 9 1

2+4e13+2315)

1) -

(uz,ei) =0 (i1# 6, 8, 11, 1<{i<15) and (uz,es) = 1, This
u, satisfies the desired condition.

We have shown the existence of u’.

Set I’ = Zu’. By the condition we have always T C I’*,
Set u = 7w(u’) € A2/P and I = Zu. By Corollary 5.10, I |is
primitive in v(E/Pl) = (58T)/P. If I 1is not primitive in
AZ/P, we can write u = aw. (a€Z, w€A2/P, we (E8T)/P) . We have
w2 = 0. By Proposition 2.9(6) and Lemma 3.5(1) one knows that
w belongs to the image in A2/P ‘of the orthogonal complement
F of P. In particular, we have we€E®T/P, which is a contra-
diction. Thus I is primitive even in AZ/P. By Corollary
5.9, the set of all roots in I’* orthogonal to T has one-

to-one correspondence with the set of all roots in I via 7.
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Thus the root system of I*/I is equal to the root system
consisting of all roots in 1I’*/I’ orthogonal to T. Here we
have identified T and the image of T in 1I’‘/I’. The root
system of I’!'/I’ 1is of type E8+F4. Depending on which one
of two components contains T, the root system of I'/I is of
type either E6+F4 or E8+F2.

Q.E.D.

The case of W (2,2,3,3).
1,0

First, recall the decomposition P = P’6H. The discrimi-
nant group P’*/P' has elements of the second kind (special
elements of type B). Elements of the third kind in it has on-
ly the associated number 2- or 11. Thus it is enough to con-
sider only roots with length 1 or +V2/3 as short roots.
However, we have to count obstruction components of type All'

The discriminant group P*/P = P'*/P’ is a cyclic group
of order 12. Let g be a generator. We can assume that for
the discriminant quadratic form dp: qp(g) = 13/12 mod 2Z1.

Oon the other hand, for the root lattice Q = Q(All) of
type Ayqs (QGH)*/(QGH) = Q*/Q is also é cyclic group of
order 12. It has a generator h with qQGH(h) = 11/12 mod 2Z,
for the discriminant quadratic form doen" Thus dp = ~doey-

This implies that there exists a primitive embedding
PC A2 such that the orthogonal complement F of P in A

2
is isomorphic to Q®H (Lemma 2.14, Lemma 3.5). Thus by



- 115 -

Proposition 3.2(2), for every primitive embedding P C A the

2'
orthogonal complement F of P in A is isomorphic to

2
Q8H.

13
Now, let K = 2 Zvi be the odd unimodular lattice with
i=0
signature (13, 1). We assume that the basis satisfies
vi=-1, vi=+1 (i3, (Vi,v4) = 0  (i#). Setting

Wom VLt YL, We define M to be the orthogonal

complement of Zw in K. Set

9y = VotVizr 9y = ~(Vgtvy,),
£

“Vitvig (1<i<10), and £197 = Vo~V11tV12*Y 3¢

i 0 11 "12 "13

Elements 9qr 9y fl' ceny fll are a basis for M.
H = Zgl+lg2 is a hyperbolic plane, since gi = g§ =0 and

(91,92) = 1. Elements f f

10 Lo ceeey fll form a root basis of

type Ayqv which is orthogonal to 9, and g,- Thus one knows
M = Q(A);) ® H.

et p : K8Q — MOQ be the orthogonal projection. By

definition p(x) = x-(x,w)w/12, and p(x) = x if and only if
X€EM8®Q. For every X, y € K8Q, (p(x),p(y)) = (x,p(Y))

= (p(x),Y).

Using the projection, set

r = p(vo) = (13v0+v1+...+v13)/12.

r? = -13/12 and r € MeQ.
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Here note that 9, and ey = -tV (1€i12) are

i+a

also a basis for M. (r,9;) = (v ) = =1,

0’9
(r,e;) = (vo,e4) = 0  (1¢i12). Thus M* O M + Zr. on the

other hand, ([M" : M] = |d(M)| = 12 and [M+Zr : M] = 12. One

knows M = M+Zr. Since AP F" and F = Q(A;,) ® HEMN,

one has an isomorphism of quasi-lattices
A,/P = M+Ir.

By using the expression on the right-hand side, we carry
out Vinberg’s algorithm with the controlling vector r. As the

root basis orthogonal to r, we take

e; = -vi+v. (1$i12).

By the algorithm we get succeedingly

813 = V0+V1+V2 -V13

e14 = (3V0+(V1+. . -+V8)-(v9+- . .+V13))/2

e, = {4v0+(v1+...+v10)-2(vll+v12+v13)}/3

€16 = (5v0+2(v1+...+v6)-(v7+...+v13))/3
e, = (5v0+(v1+...+v11)-3(v12+v13))/2

€g = {7v0+3(v1+...+v5)-(v6+...+v13))/2.

Drawing the graph for this system of 18 wvectors, we get

the following.



We would like to apply Proposition 5.4 to this graph. It has
many dotted edges and we have to check the condition <b> in
Proposition 5.4. Owing to the following lemma also due to

Vinberg, we can check it easily.

Lemma 5.13 (Vinberg [16] Proposition 2) We use the notations
in Proposition 5.4. Let S be an indefinite critical subgraph
of G. Let T be the subgraph of G consisting of vertices
not connected with any vertex in S by an edge and not be-
longing to S. If the following condition on an element
y € IBR is satisfied, then the condition <b> in Proposition
5.4 for 6(S) 1is also satisfied. The condition: If (y,a) = 0
for every a € 8(S)UB(T) and if (y.B) § 0 for every
B €6 - (6(S) UB(T)), then y = 0.

et S be the subgraph of the above graph consisting of
the vertices 17 and 18. The unique edge in S 1is a dotted

one, and S is an indefinite critical subgraph. The cor-
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responding T is the subgraph consisting of the vertices
6, 7, 8, 9, 10 and 1, 2, 3, 4, 12, 13, and T is a Dynkin
graph of type Ag+E.. In this case 06(S) U 6(T) consists of
13 linearly independent vectors, and 13 = rank A2/P. Thus
the condition (y,a) = 0 for a € B(S) U 6(T) implies
y = 0. By the above lemma, “one knows that Proposition 5.4 <b>
holds for S.

The reasoning is the same even for other indefinite

critical subgraphs. By Proposition 5.4 the above is the

Coxeter-Vinberg graph in the case of W, o(2,2,3,3).
r

Ccorollary 5.14., Let P be the lattice defined in the case of

Wl 0(2,2,3,3) and L C AZ/P be a positive definite full root
L4

submodule. Assume that the Dynkin graph of L does not con-

tain a component of type B Then, there is a primitive iso-

1‘
tropic element u € A2/P in a nice position for L such

that the root system of - (Zu)*/Zu - is of type Eg+B,+G,,

B9+Gz, E7+B3+G1 or All'

Proof. We can assume that a root basis AL for L is a sub-

set of the above {el,...,e }. The graph for AL is a Dynkin

18
graph and it does not contain a dotted edge, a bold edge, or

an extended Dynkin graph. In particular, either e, ¢ AL or
€3 ¢ AL. By symmetry of the graph we can consider only the
case e,g ¢ AL' If e g 3 AL and e € AL' we have further
that €117 €147 ©16 € AL' since the graph has no dotted edge

and no bold edge. If e then either e._ € AL or

18’ €17 € Ay 15
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e6 3 AL' since the graph has no bold edge. It suffices to

consider only the case e._ € A, by symmetry. Next, consider

16

elements e These form an extended Dynkin graph

€10’ ®11’ ©15°
of type G, and at least one of them does not belong to AL.

We have four cases to be considered.

Case (1) : €177 €147 @61 ©5g ¢ AL

Case (2) : €117 ©167 ©17¢ ©3g ¢ AL

Case (3) : €0’ €16’ ©17' ©18 c.AL

Case (4) : €151 €1¢s €191 €9 [ 3 AL.

Case (1) and (2).

In these cases 911’ 916’ el8 ¢ AL. Consider
- - 2 _ -
u, = (e14+ e17). u, = 0 and (ul,ei) = 0 for

i# 8, 11, 16, 18, 1£i<18. This u is a primitive isotropic

1
element with (ea,ul) =1 .and (B,ul) =0 for
B € AL - {98).

Consider the subgraph in the above Coxeter-Vinberg con-
sisting of all the vertices not connected to either the vertex
14 or 17, plus the vertices 14 and 17 themselves{ This
subgraph is the extended 6ynkin grapﬁ of type E8+B1+Gz. It

follows that the root system of (Zul)*/lul is of type

E8+Bl+G2.
Case (3).
. - 2 _ =
Consider u, = (e15+e16). u, 0. (uz,ei) 0 for

2
i#6, 10, 17, 18, 1{i{18, and thus (ﬂ,uz) =0 for every
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B € AL - {es}. Besides (eG,uz) = 1. This u, is a primitive

isotropic element in a nice position with respect to L and

the root system of (Zuz)"/lu2 is of type E7+B3+Gl.

Case (4).

The four elements e, e e e form the extended

8’ "9’ T14

Dynkin graph of type B Thus one of them does not belong to

3¢
AL. Depending on one of four, we have four subcases in case

(4).

Case (4.1). e, €151 €50 €140 €9 € Al.
. 2 _ _
Cconsider u, = -(e5 + 2e6 + 3e16). u, = 0. (u3,ei) =0
for i#4, 7, 15, 17, 18, 1<i¢a1s. Thus for every

B € AL - {e,), (B,u3) = 0. Besides (e4,u3) = 1, This u is

4 3
primitive and the root system of (Zu3)*/lu3 is of type

B9+G2.

15’ €16’ €17’ 15 € 4-

By symmetry of the graph, the reasoning is the same as in

Case (4.2). ey, ©

(4.1). We can consider the element ui = -(2e10 + e + 3e

Case (4.3). e e e € A

14 €157 ©16' ©17' C18 L
. 2 _ _
Consider u, (e2+e3+...+e13). u, = 0. (u4,ei) =0
(2¢1<13), and thus for every B €-AL- {el}, (ﬂ,u4) = 0,
Besides (el,u4) = 1. This u,. is primitive and the root

system of (Zu4)"'/1u4 is of type All'
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Case (4.4). € A_.

€gr ©157 ©167 177 €18 L

This is the last remaining case. If e,4 € AL in this
case, then {914} is an irreducible component of AL of type
B, which contradicts the assumption. Thus e,, € 4;, and case

(4.4) is reduced to the above case (4.3).

QoEoD.

Corollary 5.15, Let P be the lattice associated with the

case W, ,(2,2,3,3). The root system of the quotient quasi-
r

lattice Al/P is of type G for some embedding P C Al if
and only if G = E8+Bl+G2, E8+B3+G1' Bg+G2 or All'
Besides, if the root system of Al/P is of type Ayqv

then A,/P is isomorphic to the dual quasi-lattice Q* of
the root lattice Q = Q(All) of type All' In particular, for
any full embedding Q(All) C Al/P, the component A is an

11
obstruction one.
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§6. The Hasse symbol and the Hilbert norm residue symbol

In the beginning part of this section we explain the arithme-

tic conditions in our main theorems (Cassels [4], Serre (11]).

os o let 8§ and A be non-degenerate quasi-
lattices. We call the following claim I(S,A).
I(S,A) : For every embedding S C A, the orthogonal complement
of S in A contains an isotropic elément.
(1) Assume that for some embedding S € A, the orthgonal com-
plement of S in A contains an isotropic element. Then,
I(S,A) holds.
(2) Let AN denote an even unimodular lattice with signature
(16+N, N). If there exists an embedding S C A such that

N

I(S,A holds, then there exists an embedding S C A

N) N-1"

(3) Assume that S 1is a non-degenerate lattice with signature
(s, 1) and that there exists an embedding S C A3. Then, both
I(S,Aa) and I(S,Az) hold if and only if the following claim

J(S) for S holds.

J(S): One of the following conditions <1>, <2>, <3>, <4>

holds.

<1l> 8 = 17, -d(S) 1is a square number, and for every prime
number p ep(S) = 1.

<2> 8 = 16, and for every prime number p ep(S) = 1
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<3> s = 15, and for every prime number p
*2
d(s) ¢ or S) = 1.
(S) € Q ep(S)
<4> s€14.
(4) Under the same assumptions as in (3), I(S,A3) holds if

and only if the following claim K(S) for S holds.

K(S): One of the following conditons <1>, <2>, <3> holds.
<1> 8 = 18, and for every prime number p
8) = (-1,-4(S .
ep(8) = (-1,-4(5))
<2> 8 = 17, and for every prime number p
*2
-d(s) ¢ S) = 1.
(8) Qp or ep()

<3> s<l6.

Proof., (1) By ¢ : S C A we denote an embedding. The condi-
tion that the orthogonal complement T(¢) of ¢(S) in A
contains an isotropic element can be expressed by three in-

variants; the signature of T(¢), the equivalence class of the

discriminant of T(¢) modulo 0*2, and the Hasse symbol for

T(¢). However, these three invariants do not depend on the
choice of ¢ and they depend only on S8 and A. (In fact,
they depend only on S8Q and A®Q.)

(2) Let ueAN be an isotropic element orthogonal to S. By

exchanging u for the generator of QunA we can assume

Nl
further that u is primitive. Then, we have an element

v’ € AN with (u,v’) =1, since AN is unimodular. Since AN
2

is even, v’® = 2m is an even integer. The element

A v/ - mu 1s isotropic and satisfies (u,v) = 1. The sub-
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lattice H = Zu+Zv 1is isomorphic to the hyperbolic plane and

we have a decomposition A, =5 ® H, and E = A The com-

N N-1"°
position of the embedding SCE+ 1Iu and the projection
E + Zu — E defines an embedding S C E.

(3), (4) See Urabe [13].

The following table shows the signature, the discriminant
d(P), and the Hasse symbol ep(P) (Here P is a prime
number, or p = «.) for the lattice P corresponding to 6

kinds of hypersurface quadrilateral singularities.

signature d(P) ep(P)
J3'0(2,2,2,3) (5, 1). - 4 1
2y 0(2/2,2,4) (6, 1) -8 1
Q2’0(2,2,2,5) (7, 1) -12 1
W1'0(2,2,3,3) (6, 1) -12 (-1,3)p
S) 0(2:2,3,4) (7, 1) -20 (-2,5)
Uy, 0(2:3,3,3) (7, 1) -27 (-1,3)

Let Q = Q(G) be a positive definite root lattice of
type G and set S =P ® Q. We have d(S) = 4d(P)d4d(Q) and
ep(S) = ep(P)ep(Q) (d(P), d(Q))p.- Therefore we can rewrite

J(P® Q) and K(P® Q) by using only the data for Q. The
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corresponding claim to J(P © Q) is the arithmetric condi-
tions in [I]) of Theorem 0.3 and 0.5. The corresponding one to
K(P ® Q) 1s the arithmetic conditions in [II].

Our main theorems - Theorem 0.3 and Theorem 0.5. - are
the consequence of the above propositions in the previous sec-
tions.

Last of all we would 1like to explain how to deduce
Theorem 0.3 for the case of m=1, .J3,0' The deduction for
other cases and that for Theorem 0.5 is similar.

First, assume the condition [I]J(a) for m = 1. We will
show the condition [I)(b). By Theorem 1.2, we have an embed-
ding S = P8®Q(G) C A3 satisfying Looljenga’s éondition (a)
and (b). By Theorem 3.9 the induced embedding Q(G) C A3/P is
full. Besides, since the condition J(P @& Q(G)) in Proposi-
tion 6.1 is satisfied, both I(S,Aa) and I(S,Az) hold. This
is equivalent to that I(Q(G),A3/P) and I(Q(G), Az/P) hold.
By Lemma 4.2 and by Theorem 4.3 one knows that there exists a
primitive embedding P C Al such that G is obtained from
the Dynkin graph of Al/P' by elementary transformations re-
peated twice. By Corollary 5.6 the Dynkin graph of Al/P is
one the basic Dynkin graphs.

Conversely, assume the condition [I](b) for m = 1. Let

A

G be either E_+F,  or B

gtFy We have a full embedding

12°

A
Q(G) C Al/P for some embedding P C Al. If G 1is a Dynkin

A
graph obtained from G by elementary transformations repeated
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twice, by Theorem 4.3 we have a full embedding Q(G) C A3/P
satisfying I(Q(G),Aa/P) and I(Q(G),Az/P). The induced em-
bedding S = P8Q(G) C A3 satisfies I(S,A3) and I(S,Az). By
Proposition 6.1 we have the arithmetic conditon in [I](a). By
Theorem 3.9 S C A3 satisfies Looijenga’s conditions (a) and
(b), since the lattice P has no associated number in our
case. By Theorem 1.2 G € PC(J3'0).

Next, we proceed to the part‘[II]. Assume the condition
(IT](A) for m = 1. By Theorem 1.2 and by Theorem 3.9 we have
a full embedding Q(G) C A3/P. By Proposition 6.1 I(Q(G),A3/P)
holds. By Lemma 4.2 and by.Theorem 4.3 we have a Dynkin graph
G’ and a full embedding Q(G’) C Aé/P such that G 1is ob-
tained from G’ by one elementary transformation. By
Corollary 5.5 we have an isotropic element u € A2/P in a
nice position with respect to Q(G’). Thus there is a primi-
tive embedding P C Al such that G’ 1is obtained from the
Dynkin graph of Al/P by one elementary or tie transforma-
tion. Besides by Lemma 4.2 and by Corollary 5.5 the Dynkin

graph of A,/P % (Zu)*/Zu is of type E +F,, which is the es-

8
sential basic Dynkin graph. We have the condition [II](B).
Note that the procedure of the third kind "tie after elemen-
tary" is dispensable.

Conversely assume tha£ the condifion (II)(B) for m= 1.
If we apply the first procedure "elementary twice" or the sec-
ond one "elementary after tie", then reversing the arguments

just above, one can deduce the condition [II]J(A) for m = 1.

In the case of the third procedure "tie after elementary", by
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the similar reasoning one gets an embedding Q(G) ® P C A3

satisfying Looijenga’s (a) and (b). Thus G € PC(J by

3,0)
Theorem 1.2.

Now, by assumption we have a Dynkin graph G’ and a full
embedding Q(G’) C A2/P such that G is obtained from G’
by a tie transformation. Since we can assume moreover that G’
is obtained from the Dynkin graph of Al/P by an elementary
transformation, I(Q(G’), Az/P) holds. Then, by the defini-
tion of a tie transformation, one sees that I(Q(G),Aa/P)
holds. One has also the arithmetic condition by Propositon
6.1.

The part [III] follows from Theorem 1.2, Theorem 3.9,
Theorem 4.4 and Corollary 5.6.

As for the proof of Theorem 0.5, note that Corollary 5.14
contains an additional condition."L contains no component of
type Bl". However, this causes no problem because of the fol-

lowing reason: Let G’+B be a Dynkin graph containing a com-

1l

ponent of type B Let G be a Dynkin graph obtained from

1.
G'+Bl by one tie or elementary transformation. If G con-
tains components of type A, D or E only, G can be ob-
tained even from G’ by the same transformation.

In the next article we will show the converse of Theorem

0.3 and 0.5, part [II] and [III].
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