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H. Kareher, U. Pinkall and I. Sterling

Abstract

In this paper we construct new exarnples of cornpact

imbedded minimal surfaces in 8 3 . We show some of these

provide counterexamples to the conjecture that imbedded

minimal surfaces separate 8 3 into two domains of equal

volume.
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1. Introductian

We begin with the well-known tessellations of s3

into cells having the symmetry of a Platonic solid in
I

·3]R,

and dihedral angle 2ß 1 • Dividing a cell by its planes of

symmetry we obtain as a fundamental region for the group

of symmetries a tetrahedron with dihedral angles

rr/2, rr/2, rr/2, n, ß1 , ß2 . (See Table 1). The tetrahedron is

determined by its dihedral angles.

Table 1

n,ß 1 ,82 Cell Type # of cells in genus of con-
tessellation structed surfaces

rr/3,rr/3,rr/3 Tetrahedral 5 6
(Self-Dual)

rr/4,rr/3,n/3 Octahedral 24 73
(Self-Dual)

rr/3,rr/3,rr/4 Tetrahedral 16 17
(or Cubical) (ar 8)

rr/3,rr/3,rr/5 Tetrahedral 600 601
(or Dodecahedral) (ar 120)

rr/3,rr/2,rr/3 Tetrahedral 2 3

rr/3,TI/2,rr/4 Cubical 2 5
"

TI/3,n/2,rr/5 Dodecahedral 2 11

rr/4,TI/2,rr/3 Octahedral 2 7

n/5,rr/2,rr/3 Isocahedral 2 19
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To construct a minimal surface in s3, we first find

a minimal surface with boundary, called a "patch ll
, within

a tetrahedron (from Table 1) which intersects orthogonally

all the plane-faces of the tetrahedron in planar geodesics.

Frorn the patch we obta~n a certain piece of the whole surface,

called a"boneIl, by repeatedly reflecting "patches ll through

those plane-faces of the tetrahedron which are not contained

in faces of the cell. Finally, we build the cornplete surface

using reflections through faces of the cells. (See Figs. 1-3).

Figure 1 Figure 2
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Figure 3

In § 2 we outline our strategy of constructing the

mentioned "patch ll
• A similar construction has been used

to obtain complete minimal surfaces in E 3 [S,p. 66, 6]

but in S3 the arguments are more involv~d. The necessary

control over the construction comes from lemmas based on the

maximum principle (§ 3). This is enough to prove existence (§4)

In §S we get sufficient control on the polar minimal surface

to prove that the "patch 11 is a graph in polar coordinates 'as in

Figure 1i'this irnplies irnbeddedness.

Such imbedded minimal surfaces divide S3 into two

components whose volumes were conjectured to be always equal

[7]. We have enough control on our surfaces to ensure in § 5

that for some of thern these two volumes are different.

For self-dual tessellations there is a simpler

construction. In the case (TI/3,TI/3,TI/3)
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Figure 4 Figure 5

(resp. (n/4,n/3,n/3)) one solves the Plateau problem for

the geodesic quadrilateral with all lengths n/4 (resp. n/8)

and opposi te angles equal n /2, n / 3 (resp. n /2 ,1r /4). Repeated

reflections through the boundary geodesics directly yield the

entire surface. One fifth (resp. one 24
th

) of this surface is

a"bone" with boundary on a tetrahedral (resp. octahedral) cell.

(see Figs. 4-5).

These simpler exarnples do seperate 53 into two

cornponents of equal volurne. Indeed, the fact that these

surfaces contain great circles irnplies that they separate S3

into congruent cornponents.
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2. Outline of construction

We assume the results of [3,4J. Whenever necessary,

n is fixed.

We want to find a minimal surface, in the fundamental

tetrahedron, intersecting all faces perpendicularly and

meeting those edges which have dihedral angles n/2,n/2,n/2,n.

Such a patch is conjugate to a minimal surface bounded by a

geodesic qudrilateral ABCD with angles n/2,n/2,n/2,n

at A,B,C,D. Such quadrilaterals have two free parameters,

e.g. the edgelengths ~1'~2 at A. The other two edge lengths

5 1 ,5 2 are determined by cos 51 cos ~1 = cos S2 cos t 2 and

cos ~1 cos ~2 = cos 51 cos S2 + sin 8 1 sin 8 2 cos n. (See Fig. 6).

A

D

Figure 6
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Let M(n,1 1 ,1
2

) denote the unique (§3) Plateau

solution for any such geodesie quadrilateral. The conjugate

minimal surfaee, denoted M*(n,11,12)~ determines by its

planar boundary ares a tetrahedron having, at the vertices

A*,B*,C*,D* of this "patch", dihedral angles n/2,n/2,n/2,n.

We have to choose 1 1 ,12 in such a way that the other two

dihedral angles are ß1 ,ß 2 from Table 1. These dihedral

angles are given as the angles between the normal planes

at the endpoints of the (spherically) planar curves 1*
1

resp. 1~. These curves are determined by their geodesic

(i = 1,2). We denote by

the functions a. (u) which gives the turning
1.

angle between the totally geodesie plane- through ABC and

the tangent plane of M(n,1 1 ,12 ) at the point on .e.. which
1.

has distance u from A. Then K. = a! [3, p. 368].
1. 1.

Lemma 1.

In this way the dihedral angles ß1 ' ß2
are determined by

the geodesie quadrilateral Q = Q(n,11 ,12 )· Note

Note a 1 (B) cas 1z·tan 11 > 0, °2(C)
cos 11·tan 12 > O.cos = cos =tan 51 tan 52

From [4,Thm. 2] and from the argument [3,p. 350] we have

The Plateau solution M(n,1 1 ,1 2 ) is contained in the

convex hull C(Q) of the boundary quadrilateral. The intrinsic

curvature of M is less than 1, except at D; therefore, all

the turning angle functions of the four edges are strictly

monotone. Hence, also, 1,,12,5,,52 are locally convex.
o
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The Frenet frame x,t,n of the curve

controlled by the Frenet equations

.Q,~ is
1

Xl :::: t
r
x

'
:::: a . cos Cl + b sin Cl

( 1 ) t l :::: -x + K.n or

1::
:::: -x . cos 0.

r l :::: -Kt :::: -x . sin a

where a:::: a i (n,.Q.1 ' t 2 ), K :::: a', a :::: t· cos a - n· sin 0.

b :::: t·sin a + n·cos 0.. Observe ß.:::: cos- 1 <t(~.) ,t(O».
1 1

The second version of the Frenet equations does not

need the derivative of the turning angle function 0..

This will allow us to prove continuity of the map

(6 1 ,ß 2 ) ::::: Fn(t1'~2) and to establish sufficiently narrow

bounds which imply that the (ß 1 ,ß 2 )-pairs of Table 1 are

in the range of

patches.

F - thus establishing existence of all then
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3. The maximum principle and basic lemmas

Maximum principle [5]. Suppose that M"M2 are two

branched minimal surfaces such that for a point

P E. M, n M2 the surface M, locally lies on one side of

M2 near p. Then the surfaces M
1

,M2 coincide near p.

We have already quoted from Lawson [4], that a minimal

surface contained in an open half sphere actually is contained

in the convex hull of its boundary - because, for equator

spheres S, it is clear what is meant by "M lies on one side

of SII. We wish to use'the following ruled minimal surfaces

("helicoids ll
) as comparison surfaces in the maximum principle.

A helicoid with constant turning speed t is given as

foliows: let c (s) be a geodesie (calied an axis) and e, (s) ,

e 2(s) orthonormal parallel fields along c. Then

H(s,t) := expc(s)t . (8, (5) cos (T • s) + 8 2 (S) . sin ( t· 8) )

(0 S 8 ~ 9.., OSt ~ -~) . The tangent turning angle along the

rulings i8 not constant, but is given by tan a(t) = T· tan t.

(t =, gives the Clifford torus, t = 2 Lawson's Klein bottle.)

The orbits of the rotation around c are transversal

to the helicoid except on c and its polar circle. We will

choose helicoids having as an axis one of the edges 9..,,9.. 2

of the quadrilateral Q and with the property that the convex

hull C(Q) can be rotated around the axis to a position

where it meets the helicoid only along the axis.
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Then we have an:

Extended maximum principle. If one rotates the Plateau

solution, M, of Q in either direction around the axis,

then M first meets the helicoid (excluding the axis) at

a boundary point. (This is also true in euclidean geometry.)

The same sort of "extended maximum principle" will be

applied below also to other cornparison surfaces than

helicoids.

Proof. Directly by the maximum principle the helicoid and M cannot

first meet at an interior point. We have to exclude the case

that the Plateau solution first becomes tangential to the

helicoid at interior points of the axis and not at the end-

-points. To do so we choose an auxiliary axis cinsuch a common

tangent plane by extending the touching ruling to t = -E

and choose c perpendicular to the rule. Now continue the

rotation of M around c a little further and rotate back

-around c . In this way the Plateau solution can be moved to

touch the helicoid from one side at an interior point -a

contradiction.
o

There is an optimal choice of such comparison helicoids

due to the following: If one describes the edge 8
1

(resp. 8
2

)

in helicoidal coordinates with axis 22 (resp. 2
1

) one finds

convex turning angle functions ~(u) given by

t f'J ( ) _ t an a( 2 ) 0 < ~ n ( () (n) Tl )an Cl u - tan 2 • tan u, - u ~ N note: Ni < Cl Ni < 2" •



-11-

The secant of ~ (u) has slope T
_ Ct(9..)

the initial- - -9..- ,

tangent of a(u) has slope tan Ct (.~) TheseT = .. aretan 9..

the optimal constant turning speeds for helicoids (axis 9.. . )
1

which touch the quadrilateral fram one side or from the

other .. Because of our extended maximum principle, they

leave the Plateau solution on one side .. Our notations are

such that is increasing, and

is decreasing .. We therefore get lower bounds for a 2 (resp .. -a
1

)

from the two helicoids with axis 9...
1

and turning speed T • ,
-1

and upper bounds with T.
1

(i;::: 1,2) ..

1L -1
(.!.1 .. tan u)Ct

2
(u) = tan

2L (the the function C(
2

)Ct
2

(u) = T .. u secant of
-2

( 2 ) 1U tan-1 (T
2

tan u):t
2

(u) ==

1U (the initial of C(
2

)a
2

(u) == T "u tangent,
similar formulas hold· :along 9.., ..

We surnrnarize this as

Lemma 2 ..
'L ·u

a~ (u) ~ Ct. (u)~aJ. (u)
1 ·11

o s u ~ t.
1

(i,j == 1,2) .. o

Lemma 3.. Any minimal surface with boundary Q and in the

convex hull of Q is the unique Plateau solution ..

Proof .. Since Q has geadesic edges, we can extend the

minimal surfaces by 180 o -rotation to a rim around the

quadrilateral .. Since the turning angles a.
1

are less than
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n/2 one can rotate a second copy of the convex hull by

180 0 around i. so that the two copies meet only along
1.

the edge 2 .. Having two different minimal surfaces
1.

bounding Q and in the convex hull clearly contradict our

extension of the maximum principle.

o

Lerruna 4.

Proof. Given E we rotate Q around 21 (resp. 22 ) by E.

A sufficiently small change of ~1'~2 in the rotated position

will leave the changed quadrilateral on one side of M. Again,

by the extended maximum principle, this proves that the new

turning functions are in an E-strip around the initial a.. I s.
1.

The second version of the Frenet equations now shows that

the Bi's change correspondlngly little.
o
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§4 Existenee

Lemma 5. Let s~x(s), s~ ~ (s) , and s~ X(s) ,

o ~ s ~ ~ be three locally convex ares on S2, of the same

length ~
TI

and
-,

denote the corresponding< "2 . Let K.,~ K

geodesic curvatures,

u
correspanding Frenet-frames with det (x,t,n) = 1, ~(u) = IO"K(S)ds

the integrated curvatures, etc. Assurne for all 5

(3)

Then

~ (5) "~ a (s) <2!.
2

a) <~(s), ·t(O) >;;; <x(s),t (0) > ~ <x(s) ,t(O) >

b) cos o.(~) - I~cos ((a/~) - a) <X(3)t. t(O) >ds

~ <t.(.~) ,t(O) >

for alls,

~ cos a(t) - I~ cos (a(~) - a)<x(s) ,t(O» ds.

Proof. b) follows easily from (1) ,(3) and a)

by using -(cos a (,Q.) cos 0.+ sin a (,Q.) sin 0.) =

~ -cos (a(~) - ~), etc. Ta prove a) we first show

cas (a(9..) -0.)

<X(s) ,x(O) > > 0 <t(s) ,x(O) > < 0 <n(s) ,x(O) > > 0

<x(s) ,n(O) > > 0 <t(s) ,n(O) > > 0 <n(s) ,n(O) > > 0

<x(s) x x~t) ,t(O) »0 for t> s. (See Fig. 7).

( 4 )
<x (s) , t (0) > >0 <n(s) ,t(O»< 0
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Remark. These inequality imply x and n are convex

(not only locally convex.)

Figure 7

By the Frenet equations, (4) clearly holds for small

s > O. It is therefore sufficient to see that none of the

scalar products in (4) can become zero for s > O. In the

cases <x(s) ,x(O» and <n(s) ,n(O», this follows from

the fact that the curves x and n have lengths ~

and a(~) respectively, both being less than n/2.

The tangent great circle of the eurve x never passes

through the point n(O), beeause then we would have

<n(s) ,n(O» = O. This together with the loeal eonvexity

of x implies all our inequality (4) involving t(s). A

similar argument (note that also n is a locally eonvex.



curve with curvature

about n(s).

~)
K
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implies the assertions in (14)

The geodesic segment from x(s) to n(s) cuts the

great circle polar to t(O) in a point y satisfying

<y ,x (0» >0, <y, n (0» > o. This implies our claims about

t (s) = x (s) x n (s), proving all of (4) (and the remark

following (4)).

Secondly, given E > 0, one may choose step functions

Q"a such that

(5 ) a(s) - E ~ Q(s) ~ a(s) :;;j ;:(s)~a(s) + E •

The corresponding x,~ given by the second version of

the Frenet equations (1) are then close to x in the sense

that 1im x,~ = x.
E+O

Therefore it suffices to prove a) for the case where

and - all polygons. We work now with and2' x, x are x x,

the case of x and x is similar. By subdividing we can-
assurne that the vertices of x and x correspond to the

same parameter values 0 = sn < sn-1 < ••• 51 < So = 9.- •

We define a one~parameter family of polygons x A ' 0 ~ A ~ n,

= x x = x, n

functions

corresponding to the integrated curvature

defined inductively on v as folIows:

Cto = a and for A = v + d, v E:: {o, ... ,n-1 }, 0 < d ~ 1, we set
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{

u (s)
a).. (s) = v

(1-d) a (s) + da(s)
v

for
s ~ (s 1,5 ]v+ V

All are non-decreasing, so the polygons

are convex, and hence the inequalities (4) are availRble for

x A• To compare polygons for different A, we a5sume, with

the obvious notation,

x
A

(0) = x (0) ,

(7 ) t
A

(0) = t (0) ,

n).. (0) = n (0) ,

for all A. Using this we will prove

(8) ddA <x
A

(5) ,t(O) >::; 0, for ).. ~.~,

and for every fixed s. This, obviously, will complete the proof.

Figure 8

s

Figure 9
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(6) means that the function a A is fixed except on

the interval (sv+1'sv] where it is moving upward at a

constant speed. (See Figs. 8-9). For the corresponding

polygon x A' this means that the angle at the vertex x(v)

is increasing at a certain rate, while the angle at x(v+1)

is decreasing at the same rate.

Clearly then, the last inequality (4) implies (8) for

S t (v,v+1]; and thus (since points xA(s) for s $ s are notv

rnoving at all) for s ~ sv+ 1. The increasing kink at

imposes on all S > s , an infini tesimalv

rotation with angular velocity vector w = -c x (5 )A v for

some constant c > o. The decreasing kink at x A(sv+ 1 )

induces a rotation wi th W = cX A (sv+ 1 ). The lineari ty of the

Frenet equation5 implies that the total effect on xA(s),

5 > s 1 is an infinitesimal rotation with angular velocityv+

(a) W = c(xA(sv+1) - xA(sv))

= ';;' t, (s) for some st. (5 1,5]
1\ v+ V

c > 0 together with the information in (4) then yields (8).

o

Theorem. The minimal surfaces listed in Table 1 exist; more

specifically: for all n, ß1 ,ß2 of Table 1 there exist
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Proof. The idea 1s to find a contractible curve

such that the curve

nonzero winding number around the point

Fn ( 9. (s ) ) has

(ß·
1

,ß 2 ) (See Figs.

10-11) •

61l.9

61l. ~

6a.6

S9. ~

S9.8

IMR~E IN 81,82 H/ERR 80XES,ETR=PI/3

\.1 81l.2
v
dJ
t.
Cl
V
"C

,

I ~,,~
.........

~
& '" -

""'\7

6 ~~
-

"S

~

~] H ~~ ~6 ~7 ~6 ~9 5'1 51 ~2 ]

19

21l

22

~1 L2 OUADRILATERRL,ETR=PI/3

LI (degrees:) Beta 1 (degrees)

Figure 10 Figure 11

This is easy for the third and fourth examples of

Table 1: (See Fig. 12) Along cos 9., cos 9. 2 = cos n wehave

rr/2 = Ci.. ::; ß.
1 1

(i = 1,2). Along the other three parts we have

lim ß. = o.. ; the small circle corresponds to the euclidean
E-+Q 1 1

limit where cos n= sin 0.
1

• sin 0. 2 ' and on the two straight

portions we have: 9. 2 -+ 0 (resp. 9., -+ 0) irnplies 0.
1

-+ TI/2

(resp. 0. 2 + TI/2). (This also werks for the first and secend

examples of Table 1 which were discussed separately in § ').
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2
2 = E:

2

Figure 12

The remaining five examples are obtained with some

numerical help based on b) of Lemma 5. Recall that

~(s) ,o(s) are explicit functions given in Lemma 2.

The corresponding ~(s),x(s) are either circles if

o = const. or meridians of minimal surfaces of revolution

in s3 which are given explicitly in [1,p. 25] in terms of

elliptic integrals; of course they are also given as solutions

of the Frenet equations (1).

For any n'~1'~2 we have the bounds ~(s) ,o(s) of

Lemma 2 for the turning angle functions 0(5) of M(n'~1'~2).

Lemma Sb) applied .to these explicit bounds and their

corresponding Frenet curves gives, through one more-integration,
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Bi S 'ß, :;i 1. (i = 1 ,2), which are shown as boxes
- 1 1

curve of the boxes surrounds the desired

in Figure 11. For this last step we rely on numerical

integration. The data then show that the continuous center

(ß
1

,ß 2 )-value at

such a distance that it is outside of all the error boxes.

stays in these error boxes, itsSince the curve F (.Q.(s})
n

winding number with respect.to is non zero .
o

a certain region R, in

Note that beyond existence the above method gives also

(t1 ,t2}-space, in which our desired

(t 1 ,t2 }-value must lie. Combined with our knowledge about

the boundary curve of the patch M* (see Lemmas 2 and 5) this

allows us to obtain pictures of the stereographie projections

of our surfaces, that are qualitatively correct.

(See Figs. 3 and 13-16).

Figure 13 Figure 14
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Figure 15 Figure 16



-22-

§ 5 Polar varieties, imbeddedness, and volume estimates

Let MP be the polar variety of M = M(n,1 1 '!2)'

defined by going a distance n/2 in the normal direetion

from M. It is again a minimal surfaee. The polar surfaee
p

is again M. Let Q be its boundary, ete.

Lemma 6.
p P

M cC(Q )

Proof. Let TI = plane (hP,BP,C P) = polar plane of

A = equator sphere in spherical polar coordinates centered

at A. Poles of "ver tical" (i.e. passing through A) planes

in this coordinate system lie in TI • Since no points of

(r,fl) F P
M = lie in TI , no tangent planes of M are vertieal

(in particular,
p

does through -A) •M" not pass A or Now

project MP to TI. This gives a loeal horneornorphism

P.
f: M' -+ rr, and, the boundary curves project 1 - 1 to TI.

Therefore, f is a horneornorphisrn onto the Ilinterior" eornponent

of TI - f (QP). So M P c f- 1
(f (M P) (= a spindle with cross

section QP), whieh is contained in an open hernisphere of 8 3 .

The lemma then follows by [4, Th 1].

o

Note. By the same argument as in Lemma 3, Mt is unique and

hence it is the Plateau solution of er.

Lenuna 7. M* = M*(n,1
1
,i2 ) CC(Q*) (resp. M~ CC(Q~)).
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Proof. By [4, Thm. 1], together with the faet that

M (resp. MP) is isometrie to M* (resp. M*P), it

suffiees to show that the intrinsie diameter of M (resp. MP)

is less than TI. The eireumferenee of Q , R.
1

+ R. 2 + 8
1

+ 8 2.,

is less than 4·TI/2. Two edges of QP are a 1 ' a 2 ' which

both 1ess than TI/2, and sinee
P

=180-Tl, we also haveare Tl

P P8
1

,82 both less than TI/2. Since M and MP are Plateau

dises we have, using two triangles, their areas bounded less

than TI .• Henee for any piece of them JK dA $ f dA < TI . Consequently

there are no geodesie loops. Then, the same argument as

[2, p. 108] shows that any two points of M (resp. MP)
are conneeted by a unique geodesie in M (resp. M?) shorter

than TI, and the lemma follows.
o

Lemma 8. For all (n,ß 1 ,ß 2 ) in Table 1, the surfaee

generated by M*(n,ß 1 ,ß2 ) is imbedded. (Compare Fig. 1).

Proof. For simplieity, we eonsider the case (n/3,TI/2,n/3)

in detail ; the other cases are similar. First, stereographically

proj ect so that the plane IT 2 containing R.i goes to S2 and now work in m.3.
C (Q*p) n 52 = R.iP • Any "vertical ll pl~ne (i. e. vertical to

52) in spherical polar coordinates around 0 roust have its

2normal on S. However, by Lemma 7, any interior normal to

M* lies outside 8 2 . Thus M* is a graph in these coordinates,

and the lemma follows.

o
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It was proved by Lawson that a compact minimal imbedded

surface in s3 separates 53 into two diffeomorphic

components. The following conjecture'is attributed to Lawson

[7, p. 692].

Conjecture. Any cornpact imbedded minimalsurface in S3

separates 8 3 into two cornponents of equal volurne.

The surface generated by M{TI/3,TI/2,TI/5) 1s a counter

example.

It suffices to prove M stays within a distance

TI /2- D (~23,8°) of its equator of reflections, E, where

4D - 2 sin (2D) = TI, since this tube around E contains half

the volume of 53.

By the analysis in the proof of Lemma 8, the maximum

distance fram E rnust occur on Si. By Lemma 1, and the

rernark following equations (4), Si is convex. Hence it

suffices to check that h = TI / 2 - sin-1 {tan . ( 15 ; I ) /tan <p 1

i5 less than TI /2 - D, where rp is given by cos ß1 = sin n cos ep.

Finally, by the Theorem, we know (~1'~2) lies

within a certain region, R, in {~1'~2)-space (e.g. here

.. 5 4 < ~ 1 <. 5 6, •01 < .e. 2 < 0 3). This gives

rnax h< 15° < rr/2 - D (the actual value is approximately 7°) •.
{S'..1,R. 2 )tR

(See F ig . 1 7) .
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Figure 17

Remark. Computer estimates indicate the area of

is less than that of the~ 1 ,3

genus three surfaces generated by M,{n/3,n/2,n/3). This lends

Lawson's three-hold torus

evidence to the conjecture that stereographie projections of

Lawson l s n-holed .tori t" are "op timal ll
, in the sense that

":> 1 ,n

they are absolute-minima of the Willmore integral, JH 2dA, among

surfaces. Similarly, Lawson's Klein bottleall genus n
T 1 ,2

at present is also a candidate to be " optimal ll
• (See Figs.

18 and 19).
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Figure 18 Figure 19
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