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UNIVERSAL FAMILY OF THE SUBGROUPS OF AN ALGEBRAIC GROUP

MICHAËL LE BARBIER GRÜNEWALD

Abstract. We construct a moduli space for the connected subgroups of an al-
gebraic group and the corresponding universal family. Morphisms from an al-
gebraic variety to this moduli space correspond to flat families of connected al-
gebraic subgroups parametrised by this variety. This moduli space is obtained
by gluing together infinitely many irreducible projective varieties of bounded di-
mension along closed subvarieties.

Regarding families of non-connected subgroups of an algebraic group, we
show that, given sich a family, the corresponding family of identity components
is an irreducible component of the former, and the quotient of a family of groups
group by the family of their identity components exists.

1. Introduction

Let G be a complex connected algebraic group. A flat family of subgroups
of G parametrised by a variety P is a subvariety H ⊂ G× P such that the projec-
tionH → P is a flat morphism and the scheme-theoretic fiberHp at any p ∈ P is a
closed subgroup of G. We construct a moduli space and a universal family for the
connected subgroups of a complex algebraic group and discuss a few examples:
tori, abelian varieties, SL2 and SL3.

1.1. Notations. Let G be a complex connected algebraic group, and g its Lie al-
gebra. We fix an integer k and denote by Γ the set of k-dimensional connected
subgroups of G. A connected subgroup H of G is determined by its Lie alge-
bra L(H), as a subalgebra of g, so we denote by Gr(k, g) the Grassmann variety
of k-spaces in g, by Λ ⊂ Gr(k, g) the variety of k-dimensional Lie subalgebras of g
and by A the set

A = { L(H) | H ∈ Γ }
of algebraic k-dimensional Lie subalgebras of G. The terminology algebraic was
introduced by Chevalley [2]. We will take advantage in our construction of the
natural operation of G on these sets.

1.2. Main results and structure. It belongs to moduli space problems that we
have to allow more general objects than algebraic varieties in order to obtain a
satisfying construction. Namely, we introduce the category of bouquets of alge-
braic varieties (4.1), that contains all algebraic varieties and objects obtained by
gluing together possibly infinitely many algebraic varieties along closed subvari-
eties. These bouquets are similar to ind-varieties introduced by Shafarevich [11]
and Kumar [7].
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We describe in Section 4 a structure P of bouquet on Γ and show that the
set-theoretic universal family

H = { (g, H) ∈ G×P | g ∈ H }

is actually a bouquet-theoretic universal family (4.7). The irreducible components
of P are projective varieties and those of H are quasi-projective.

Theorem (4.7). Let P be an algebraic variety, and denote by
(1) F the set of flat families of k-dimensional connected subgroups of G parametrised

by P;
(2) M the set of morphisms from P to P.

Then the map F → M sending a family H to the morphism to Λ mapping p ∈ H
to L(Hp) and the map from M → F sending a morphism ψ to the family ψ∗H define a
natural correspondence between F and M.

The bouquet structure on P is a posteriori defined by the fact that H is a final
object in the category of flat families of k-dimensional subgroups of G. The Lie
functor L puts Γ and A in a one-to-one correspondence, but the topology induced
by Gr(k, g) on Γ is much coarser than it needs to be with respect to the universal
property of H, see Section 4. From the three stages we need to go through before
get to the proof of Theorem 4.7—the construction of the moduli space P, of the
universal family H and the proof of the universal property—the second one draws
most of our efforts. For this we need to show the

Theorem (3.6). Let P be an irreducible constructible subset of Λ. If P is contained in A,
then the closure P̄ of P in Λ is also contained in A and H(P̄) equals H(P).

Note that the restriction of the tautological family H(P̄) mentioned in the state-
ment of our Theorem 3.6 is flat. The tautological family can be described through
to the exponential map of G:

Corollary (3.8). The set (exp× idΛ)(h(P̄)) is actually H(P̄), it is in particular alge-
braic.

This Corollary is actually equivalent to Theorem 3.6, and we first thought at it
as an intermediary result on the road to Theorem 3.6. However we were not able
to overcome the difficulties tied to the analytic nature of the exponential map,
and had to put things the other way around. Section 3 is devoted to its proof,
that is built on two principles: First we do not need to show that all of H(P̄) is
an algebraic variety but we are allowed to work on a smaller set of parameters
(see 3.5). Second we observe that some discrete invariants of groups behave
semi-continuously in families (see 3.15 and 3.19). This observation allows us to
find the suitable small subset of parameters over which we are able to prove the
algebraicity of the set-theoretic family.

While the representation theory of algebraic groups provides us with a wealth
of examples of families of algebraic groups (see Example 2.4) it is unwise to expect
them to have irreducible fibres (see Example 2.5) even in the case where the family
is a connected variety. In Section 5, we first show that the set-theoretic family of
subgroups of G deduced from an algebraic one by replacing each fibre by its
identity component is algebraic as well 5.3. Second, we show how to construct a
quotient of a family of subgroups by the family of its identity components 5.7.
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2. Elementary properties of families of subgroups

2.1. Definitions and examples. The definition of family of subgroups that we
introduce is a close variation on the definition of families of subvarieties (see [6,
III.9.10]). However, we allow disconnected fibres. We then show two results
allowing us to construct new families of subgroups, by pushing a family forward
or backward through a morphism or intersecting its fibres with a fixed group.
Less elementary construction theorems must be deferred until we have gathered
the necessary prerequisites (section 3).

2.2. Definition. Let X and P be two algebraic varieties. A family of subschemes
of X parametrised by P is a subvariety V of X × P such that the morphism π :
V → P obtained by restricting the projection of X× P on P to V is surjective. The
fibre Vp of the family at p is the subscheme π−1(p) of X.

The family is irreducible when V is irreducible. The family is reduced at p ∈ P
if the maximal ideal mp of OP,p generates the ideal of Vp. The family is reduced
when all its fibres are reduced. The family is flat when the morphism π is flat.

We often refer to a subset V of X × P under the term “set-theoretic family”
when it needs not be a subvariety of G× P. In this context we refer to the families
defined above under the term “algebraic family.”

2.3. Definition. Let G be an algebraic group and P a variety. A family H of
loose subgroups of G is a family of subschemes of G such that each fibre Hp is
supported by an algebraic subgroup of G. A family of subgroups of G is a loose
family whose fibres are reduced.

A family H of loose subgroups of G parametrised by P is trivial when it is of
the form H × P, where H is a subgroup of G. Such a family is reduced.

We denote by ι : G → G the inverse map of G, and by µ : G × G → G its
product map. These morphisms extend to families: we define

ιP : G× P → G× P
(g, p) 7→ (ι(g), p) and µP : G× G× P → G× P

(g1, g2, p) 7→ (µ(g1, g2), p).
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If H is a family of loose subgroups of G parametrised by a variety P, we denote
by H ×P H the fibred Cartesian square of H, it is a family of loose subgroups
of G × G parametrised by P whose fibre at p is Hp × Hp. The morphism ιP
restricts to H → H and the morphism µP to H×P H → H.

2.4. Example (General form of families). Let X and P be algebraic varieties and V
a family of subschemes of X parametrised by P. The stabiliser GV of V in G
defined by

GV =
{
(g, p) ∈ G× P

∣∣ ∀x ∈ Vp gx ∈ Vp
}

is a family of subgroups of G parametrised by P and each family of subgroups
of G can be presented as a stabiliser.

2.5. Example (A connected and reducible family). Let T be a torus in G = SL2
and U a unipotent subgroup of SL2 such that TU is a Borel subgroup of SL2. Let
also

P1 = U ∪ { 0, ∞ }
be a projective line compactifying U. Consider the operation of SL2 on itself
defined by conjugation and construct the closure V in G× P1 of

V o =
{
(utu−1, u) ∈ G× P1

∣∣∣ (t, u) ∈ T ×U
}

.

For each u ∈ U the fiber Vu is a torus of G and at u ∈ { 0, ∞ } the fibre is the
unipotent radical of a Borel subgroup of G. Now let H = GV be the centralizer
of V in G. At each u ∈ U the fibre Hu is the centralizer of the torus Vu in G, that
is an extension of the Weyl group of G by Vu. It has two connected components.
At u ∈ { 0, ∞ } the fibre Hu is H?u itself. Hence V is connected but has two
irreducible components that dominates P1. We show that is possible to do the
quotient of a group by its identity component in families (5.7). Here the quotient
space consists of two copies of P1 glued together along { 0, ∞ }.
2.6. Example (A loose family). We now give an example of a family of loose
subgroups of C2 that is not a family of subgroups. Let C be the plane cuspidal
cubic, whose algebra of regular functions is

C[p1, p2]/(p2
1 − p3

2),

and consider the family H0 of lines in C2 meeting C at (0, 0) and a distinct point:

H0 =
{
(x, y, p) ∈ (C2 × C) \ { (0, 0) }

∣∣∣ p1y− p2x = 0
}

.

The closure H of H0 in C2 × C is the zero subscheme of the ideal generated by

p1y− p2x and y2 − p1x2.

In this family, each fibre is supported by a line in C2, but the fibre at (0, 0) fails
to be reduced. Hence this family of loose subgroups of C2 is not a family of
subgroups of C2.

3. Differentiation and integration of families

3.1. Differentiation of families of groups. Let G be an algebraic group, P an
algebraic variety and let H be a family of subgroups of G parametrised by P.
We construct the corresponding family of Lie algebras. For this, we consider the
trivial family g× P as a subvariety of the relative tangent bundle to G× P.
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3.2. Definition. The family L(H) of Lie algebras associated to H is

L(H) = TH∩ (g× P).

Serre [10] studied the analytic structure of algebraic varieties. We recall some
of his results in Appendix A. They allow us to relate the flatness of H and
of L(H) through the exponential map of G:

3.3. Proposition. Let H be a family of connected loose algebraic subgroups of G para-
metrised by P. This family is flat if, and only if, L(H) is flat.

Proof. The exponential exp : g → G induces a biholomorphism from a neigh-
bourhood W0 of 0 in g and a neighbourhood W1 of the identity e element in G. It
follows from A.3 that the flatness of H at each point of H∩W1 × P is equivalent
to the flatness of L(H) at each point of L(H) ∩W0 × P. �

3.4. Corollary. Let H be a family of connected k-dimensional algebraic subgroups of G
parametrised by P. If H is flat, then there is a morphism ψ : P → Gr(k, g) such
that L(H) is obtained by pulling back the tautological bundle T → Gr(k, g) through ψ.

3.5. Integration of families of Lie algebras. We study the possibility of going
backwards in the process of differentiating a flat family of connected subgroups
of G. With the notations of the previous section, ψ(P) is a constructible subset
of Λ contained into the set A of algebraic subalgebras of g. We show that the
integration of a flat family of algebraic Lie algebras is possible, let us introduce
some notations before we state our main theorem.

For any subset P of A we write h(P) for the set-theoretic family of subalgebras
of g obtained by restricting to P the tautological bundle T → Gr(k, g). For all p ∈
A we denote by Hp the connected subgroup of G whose Lie algebra is hp and
by H(P) the set-theoretic family of connected subgroups of G defined by

H(P) =
{
(g, p) ∈ G× P

∣∣ g ∈ Hp
}

.

We can now state our main

3.6. Theorem. Let P be an irreducible constructible subset of Λ. If P is contained in A,
then the closure P̄ of P in Λ is also contained in A and H(P̄) equals H(P).

This theorem follows from Proposition 3.12 and Proposition 3.25 below. For
now, we give two corollaries of 3.6:

3.7. Corollary. With the notations of 3.6, H(P̄) is a flat family of connected subgroups
of G whose corresponding family of Lie subalgebras of g is L(H(P̄)) = h(P̄).

Proof. We have L(H(P̄)) = h(P̄), but the right hand side is the restriction to P̄
of the tautological bundle T → Gr(k, g), so it is a flat family of linear subspaces
of g. By A.3, the corresponding family of groups is flat. �

3.8. Corollary. The set exp× idΛ(h(P̄)) is actually H(P̄), it is in particular algebraic.

Proof. For complex connected algebraic groups, the exponential map is always
surjective, so this result follows from 3.6. �
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3.9. Proof of 3.6 — Construction of families. We present some elementary con-
structions of families of groups.

3.10. Proposition. Let P be an irreducible algebraic variety and H ⊂ G× P a family
of subschemes of G parametrised by H. If there exists an open subset V of P such that the
restriction of H to V is a family of loose subgroups of G, then H itself is a family of loose
subgroups of G.

Proof. Let θ : G × G × P → G × P be the morphism defined by θ(g1, g2, p) =

(g1g−1
2 , p). Note that a family H ⊂ G × P of subvarieties of G is a family of

subgroups of G if, and only if, θ(H×P H) ⊂ H.
Since H is an irreducible subvariety of G × P, it is the closure in G × P of

the restriction H(V) of H to V. The relation θ(H(V) ×P H(V)) ⊂ H(V) and
the continuity of θ imply θ(H×P H) ⊂ H ×P H. Hence H is a family of loose
subgroups of G. �

3.11. Proposition. Let P be an irreducible algebraic variety and let H ⊂ G × P be a
set-theoretic family of subgroups of G. IfH is an irreducible constructible subset of G× P,
then there is a dense open subset V of P, such that the restriction ofH to V is an algebraic
family of loose subgroups of G parametrised by V.

Proof. Let U be the largest open subset of the closure of H in P × G contained
in H. Since H is constructible, U is dense in the closure of H.

Take any fibre Hp meeting U. The set Up = U ∩Hp is open and dense in Hp,
thus for any g inHp the open dense subsets ι(Up)g and Up have a common point.
This shows that g belongs to µ(Up ×Up), that must be equal to Hp. It implies
that µP(U ×P U) contains U. But the morphism µP is flat, hence µP(U ×P U) is
open in H̄ ([6, III, ex. 9.1]) and contained in H. From the maximality of U follows
that U = µP(U ×P U).

The set of parameters p corresponding to a fibre meeting U is constructible and
dense in P, hence it contains a dense open subset V of P. The restriction of the
set-theoretic family H to V equals U ∩ (G×V), hence this family is algebraic. �

3.12. Proposition. Let P be a constructible subset of Λ contained in A. If there is an
open subset U of P̄ contained in P such that H(U) is algebraic, then P̄ is contained in A
and H(P̄) = H̄(P), in particular it is algebraic.

Proof. Let V = H̄(U) the closure of H(U) in G × Λ. By 3.10 this is a family of
loose subgroups of G. Considering the zero section of H(U) makes it clear that
the projection of V to Λ is P̄, hence V is parametrised by P̄. We only have to show
that the Lie algebra of the reduced fibre of V at p is hp, since this implies at once
that p belongs to A and that Vp = Hp.

To study V closely we consider neighbourhoods W0 of 0 in g and W1 of e in G
that are biholomorphic through the exponential map of G. Now let p ∈ H̄ \U
and x a closed point in Vp ∩W1. Since x belongs to the closure of H(U), there
is a curve C in H(U) such that x ∈ C̄. Looking through the exponential we
see that exp−1(C ∩W1) is contained in h(U). But the family h is locally trivial
and the closure of h(U) in g×Gr(k, g) is h(Ū) = h(P̄). It follows that exp−1x
belongs to hp and that the Lie algebra of the group supported by Vp must be
equal to hp. �
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3.13. Corollary. Let P be a constructible subset of Λ contained in A. The set-theoretic
family H(P̄) of connected subgroups of G is algebraic if the set-theoretic family H(Q) is
algebraic, where Q is

(1) either a dense open subset of P̄;
(2) or the closure of G · P in Λ;
(3) or the intersection P̄ ∩ T of P̄ with a subvariety T of Λ such that

P ∩ (G · (P ∩ T))

is dense in P̄.

3.14. Corollary. Let G be an algebraic group, P a variety, and Hi (i ∈ { 1, 2 }) two
families of loose subgroups of G parametrised by P. If for each p in P the group H1

p nor-
malises H2

p and H1
p ∩H2

p is finite, then the restriction of the set-theoretic family H1H2

defined by
(H1H2)p = H1

pH2
p

to a suitable dense open subset of P is algebraic.

3.15. Proof of 3.6 — Levi-Malcev decomposition. We study the behaviour of
Levi-Malcev decomposition in families of Lie algebras. The rigidity of semi-
simple Lie algebras proved by Richardson [9] implies the semi-continuity of the
application sending a Lie algebra to the isomorphism class of its semi-simple
part. Let us recall this rigidity theorem:

3.16. Theorem (Richardson [9, 9.2 and 9.6]). Let P be a subvariety of Λ and p ∈ P.
We denote by s a semi-simple Lie algebra contained in Hp. Then there is an analytic
neighbourhood W of p in Λ and an analytic map ψ : W → Aut(g) such that ψ(p) is the
identical transformation and ψ(q) maps s into Hq for all q ∈W.

Let S be the set of isomorphism classes of semi-simple Lie algebras. We de-
note the isomorphism class of a semi-simple Lie algebra s by S(s). The set S is
countable, ordered by the relation

S(s1) ≤ S(s2) ⇐⇒ there is an injection s1 → s2.

Each non-empty subset of S has at least one minimal element. For each Lie
algebra h we denote by S(h) the isomorphism class of a semi-simple part of its
Levi-Malcev decomposition.

3.17. Proposition. Let P ⊂ Λ be a locally closed subvariety of Λ. If S(s) is a minimal
element of {

S(hp)
∣∣ p ∈ P

}
,

then the set
P′ =

{
p ∈ P

∣∣ S(hp) = S(s)
}

is Zariski closed in P.

Proof. Consider the variety

HomL(s, h(P)) =
{
(u, p) ∈ HomL(s, g)× P

∣∣ Im u ⊂ hp
}

.

Since S(s) is minimal along the isomorphism classes of the semi-simple factors
occuring in Levi-Malcev decomposition of fibres of h(P), a morphism from s to hp
is either zero or injective. The set P′ is thus the projection on P of

HomL(s, h(P)) \ { 0 } × P
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and is constructible. By Richardson’s Theorem the sub-levels of the map from P
to S defined by p 7→ S(hp) are closed in the analytic topology. Hence P′ is closed
in the analytic topology and constructible, it must also be closed in the Zariski
topology. �

3.18. Corollary. The map Λ→ S sending a Lie algebra to the isomorphism class of its
semi-simple factors is lower semi-continuous, in the Zariski topology.

3.19. Proof of 3.6 — Integration of solvable families.

3.20. Proposition. Let P be a subvariety of Λ. If P is contained in A and if each fibre
of h(P) is a solvable subgroup of G, then the map sending p ∈ P to the rank of hp is
lower semi-continuous, in the Zariski topology.

We start with two lemmas:

3.21. Lemma. If h is an algebraic Lie subalgebra of g, then any Cartan sub-algebra of h
is algebraic.

Proof. The algebraic Lie algebra h contains the algebraic hull of any of its Lie
subalgebra, and the algebraic hull of a diagonalizable sub-algebra is again diag-
onalizable. �

3.22. Lemma. Let s be a semi-simple Lie algebra and a a subalgebra of a maximal torus
of s. If a is algebraic, then the restriction to a of the Killing form of s is regular.

Proof. Let Φ be the roots of s with respect to a maximal torus of s containing a.
The Killing quadratic form evaluates on a ∈ a to

∑
α∈Φ

α2(a).

But a is algebraic, so there is a basis of it such that the α ∈ Φ take integral values
on its members. On the rational linear subspace of a spanned by this basis,
the Killing quadratic form is positive definite, hence regular. The space a is the
complexification of this rational linear subspace aQ and the Killing form is then
the complexification of a regular form on aQ, it must be regular as well. �

Proof of 3.20. By Ado’s Theorem we can assume that our Lie algebras are subalge-
bras of some simple Lie algebra s. It follows from the two previous lemmas that
for p ∈ P the unipotent radical of hp is the kernel of the map hp → h∗p defined by
the Killing form of s. The conclusion the follows from Chevalley’s Theorem on
the dimension of the fibres of a morphism. �

3.23. Theorem. Let P a locally closed sub-variety of Λ. If P is contained in A and each
fibre hp is solvable, then the set-theoretic family H(P) of subgroups of G is algebraic.

Proof. We may assume that G · P = P (3.13 point 2). Let b be a Borel subalgebra
of g. The set T of parameters p ∈ P such that hp is contained in b is constructible
and meets all orbit of P under the operation of G. By 3.13 point 3, we only
need to prove the proposition in the case where P = T. The Lie subalgebra b
of G is algebraic, let B be an algebraic subgroup of G such that L(B) = b, note
that B · P = P.

Let s be a maximal torus of b, u its unipotent radical, and let m be the maximal
rank of the solvable algebras hp for p ∈ P. Since the rank is semi-continuous (3.20)
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we may use 3.13 a last time to restrict ourselves to the case where each p in P
corresponds to a fibre hp meeting s along a m-dimensional subspace.

Since s ∩ hp is an algebraic subtorus of s, it can not move and there is a
subtorus s′ of s such that s ∩ hp = s′ for all p ∈ P and S′ a connected subgroup
of G whose Lie algebra is s′.

Now we denote by hu(P) the family of unipotent radical of the fibres of h(P),
it is defined by

hu(P) = h(P) ∩ (u× P).

The exponential map restricts to an algebraic morphism on u, thus

Hu(P)(exp× id
P
(hu(P)))

is an algebraic family of subgroups of G. We conclude with 3.14 that

Hp = Hu
pS′

defines an algebraic family of subgroups of G parametrised by P, and L(H(P)) =
h(P). �

3.24. Proof of 3.6 — Integration of general families.

3.25. Proposition. Let P be a quasi-projective subvariety of Λ. If P is contained in A
then the set-theoretic family H(P) is an algebraic subvariety of G× P.

Proof. Taking 3.13, point 1 and 3.18 into account, we may freely assume that all
the semi-simple factors of the fibres h(P) are isomorphic to a fixed semi-simple
algebra s. Moreover all semi-simple factors of a Lie algebra are equivalent under
the operation of the unipotent isomorphisms of this algebra. We may invoke 3.11,
point 3 to restrict ourselves to the case where s is a subalgebra of each fibre
of h(P). The unipotent radical of a Lie algebra is the kernel of its Killing form,
hence the set-theoretic family hr(P) of Lie subalgebras of g whose fibre at p is
the unipotent radical of hp is algebraic. By 3.23 there is an algebraic family H of
connected subgroups of G parametrised by P such that L(H) = hr(P). Let S be
the connected subgroup of G whose Lie algebra is s, we conclude by 3.14 that

H(P) = (S× P)H,

hence it is algebraic. �

4. Moduli space and universal family

4.1. Bouquet of algebraic varieties. The moduli space we construct is not an
algebraic variety, but is a ringed space obtained by gluing together possibly in-
finitely many algebraic varieties along closed subsets.

4.2. Definition. Let X be a set of irreducible algebraic varieties. A gluing pat-
tern (F, h) for X assigns to each pair (X, Y) of elements of X a closed subset FYX
of X and an isomorphism hYX : FYX → FXY, tied to satisfy the following proper-
ties:

(1) For all X ∈ X , one has FXX = X and hXX is the identity map.
(2) For any triple (X, Y, Z) of elements of X , the composition hZYhYX agrees

with hZX whenever it can be defined.
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A gluing pattern on a set of algebraic varieties defines an equivalence relation
on the disjoint sum of the elements of X . The quotient space X/(F, h) of this
equivalence relation carries a natural structure of ringed space.

The Zariski topology on X/(F, h) is the final topology on the set X/(F, h),
with respect to the natural injections X → X/(F, h). Since the various FYX are
closed, the maps X → X/(F, h) are closed immersions, the set of irreducible
components of X/(F, h) is X , and a subset U of X/(F, h) is open if, and only if,
for all X ∈ X , the trace U ∩ X is open in X.

If U is such an open subset of X/(F, h), the ring O(U) of regular functions
on U is the subring of the ring

∏
X∈X
OX(U ∩ X)

spanned by the elements that define a function on the quotient X/(F, h).

4.3. Definition. A bouquet of algebraic varieties is a ringed space X/(F, h).

The name is suggested by the analogy between the gluing pattern of the mod-
uli space for 1-dimensional connected subgroups of SL3 described in 6.12 and the
one of a bouquet of circles in Topology.

Defining a morphism between two bouquets is the same as defining a set of
morphisms between their irreducible components, that are compatible with their
gluing patterns. In the category of bouquets, one can again glue together a family
of bouquets, and obtain a new bouquet.

Note that if E is a vector space and k an integer, the tautological bundle over
the Grassmann variety of k-dimensional subspaces of E is a final object in the
category of flat families of k-dimensional subspaces of E over a bouquet.

4.4. Remark. Bouquets of algebraic varieties are called infinite-dimensional varieties
by Shafarevich [11] or ind-varieties by Kumar [7]. However, these authors seem
to have been interested by the case where the variety obtained after gluing is
irreducible and infinite dimensional at its general point, while the varieties we
are interested in are finite dimensional at their general point, and have infinitely
many irreducible components. We thus felt that it would be misleading to refer
to the objects we encountered under one of the afore mentioned names.

4.5. Construction. Let XP be the set of all irreducible subvarieties of Λ that are
contained in A and XH the set

XH = {H(P) | P ∈ XP }

of irreducible subvarieties of G × Λ (3.6). We define a gluing pattern (A, h)P
(resp. (A, h)H) for XP (resp. XH) by assigning to each pair (P1, P2) of elements
of XP (resp. XH) the closed subset P1 ∩ P2 of P1 and the morphism from P1 ∩ P2
to P2 ∩ P1 obtained by restricting the identical transform of Λ (resp. G×Λ).

4.6. Definition. The bouquet of algebraic varieties P = XP/(A, h)P is the mod-
uli space for connected subgroups of G and H = XH/(A, h)H is the universal family
for connected subgroups of G.

The universality of these objects lies in the following

4.7. Theorem. Let P be an algebraic variety, and denote by
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(1) F the set of flat families of k-dimensional connected subgroups of G parametrised
by P;

(2) M the set of morphisms of ringed spaces from P to P.
Then the map F → M sending a family H to the morphism to Λ associated with L(H)
and the map from M → F sending a morphism ψ to the family ψ∗H define a natural
correspondance between F and M.

4.8. Remark. One can introduce the category of flat families of connected sub-
schemes of G parametrised by bouquets of algebraic varieties. It follows from
Theorem 4.7 that H→ P is a final object in this category.

5. Family of identity components

The set of connected components of an algebraic group is naturally identified
with the quotient group of the group by its identity component. We show that
the set-theoretic family Ho of the identity components of the fibres of H is an
algebraic family, and the family of quotients H/Ho can be constructed for the
general parameter.

5.1. Closedness.

5.2. Proposition. Let G be an algebraic group, P a quasi-projective variety, and H a
family of loose subgroups of G parametrised by P. For each p ∈ P there is a closed
subset Fp of H that contains all the identity components of the fibres of H and meets Hp
exactly along its identity component Ho

p.

Proof. Let Kp be any projective completion of G such that the connected compo-
nents of the closure of Hp in K are the closures of the connected components
of Hp (see B.4), and let Q be any projective completion of P. We consider the
inclusion of G × P in K × Q and the Stein factorisation of the projection to Q of
the closure X of the image of H in K×Q:

X
f−−−→Q′ → Q.

Now let Fp = H∩ f−1( f (
{

θp(e)
}
×Q)), this is a closed subset of H that contains

the identity component of each fibre of H and meets Hp precisely along Ho
p. �

5.3. Corollary. Let G be an algebraic group, P a variety, andH a family of (resp. loose)
subgroups of G parametrised by P. The set-theoretic family

Ho =
{
(g, p) ∈ H

∣∣∣ g ∈ Ho
p

}
of the identity components of the fibres ofH is closed inH and defines an algebraic family
of (resp. loose) subgroups of G parametrised by P.

Proof. Being closed is a local property, hence we may assume that P is an affine
variety. By 5.2 we have

Ho =
⋂

p∈P
Fp

which shows that Ho is a closed subset of G × P. Since each fibre Ho
p of Ho is

open in Hp, the former is reduced when the latter is. �
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5.4. Quotient.

5.5. Proposition. Let G be an algebraic group and P be an affine variety. For all
family H of loose subgroups of G parametrised by P, there exists a projective variety X,
an embedding of G × P in X × P and an open subset U of P such that for all p ∈ U
the connected components of the closure of Hp in K are the closures of the connected
components of Hp.

In other words, there exists a compactification of H such that the various con-
nected components of a general fibre in H have no common points at infinity.

5.6. Lemma. Let L be an affine group and P an affine variety. For all family H of loose
subgroups of L parametrised by P, there is

(1) a finite partition Q of P;
(2) representations (VQ)Q∈Q of G;
(3) morphisms dQ : P→ VQ;

such that for all Q ∈ Q and all p ∈ Q we have dQ(p) 6= 0 and the stabiliser of [dQ(p)] ∈
P(VQ) in G is Ho

p.

Proof. Let E be a finite dimensional L-stable linear subspace of OL ⊗OP contain-
ing generators of the ideal I of the family Ho of identity components of H, and
let W = E ∩ I. For each p in P, we denote by ε(p) the partial evaluation mor-
phism from OL ⊗OP to OL sending a function f to the function ε(p)( f ) defined
by ε(p)( f )(g) = f (g, p). The linear subspace E = ε(P)(E) of OL spanned by
partial evaluations is finite dimensional, and contains all the spaces

Wp = ε(p)(W), p ∈ P.

Let δ : P→ N be the function defined by p 7→ dim Wp and put m = max { δ(P) }.
For each p in P there is a subsystem of (ε(p)(w1), . . . , ε(p)(wm)) that is a basis
of Wp. Let γ be a function choosing for each p ∈ P indices in { 1, . . . , m } of
such a subsystem. Let Q be the partition of P defined by the function δ× γ. For
each Q ∈ Q we set

VQ = Λδ(Q)E

and, with γ(Q) =
{

i1 < · · · < iδ(Q)

}
,

dQ(p) = ε(p)(wi1) ∧ · · · ∧ ε(p)(wiδ(Q)
).

When p ∈ P belongs to Q ∈ Q, the map dQ does not vanish at p. The ideal of OG
spanned by {

ε(p)(wi1), . . . , ε(p)(wiδ(Q)
)
}

is the ideal of Ho
p, hence the stabiliser of [dQ(p)] ∈ P(VQ) in G is Ho

p (see [1, 3.8
and 5.1]). �

Proof of 5.5. According to the Chevalley structure Theorem [4], G is an extension
of an abelian variety A by an affine group L. We apply the lemma to L and put

V =
⊕

Q∈Q
VQ and d =

⊕
Q∈Q

dQ.
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We denote by prQ the projection from P(V)×P(VQ) to P(VQ) of the closure of the
graph of the projection from P(V) to P(VQ). The latter is a rational G-invariant
map that is defined at [d(p)] for each p ∈ Q.

Starting with K0 any projective compactification of G we let X = K0 × P(V)
and define the embedding

θ : G× P → X× P
(g, p) 7→ (g, gd(p), p).

Now choose p ∈ P, Q ∈ Q containing p and consider two different connected
components h1Ho

p and h2Ho
p, where { h1, h2 } ⊂ L, ofHp. The stabilizer of [dQ(p)]

in L is L ∩Ho
p (B.3), hence the two subvarieties

h1Ho
pdQ(p) and h2Ho

pdQ(p)

of P(VQ) are disjoint. Since they are isomorphic to the abelian variety Ho
p/(Ho

p ∩
L), they are furthermore closed in P(VQ). We conclude that h1Ho

p and h2Ho
p are

respectively mapped by (idG ×prQ× idP) ◦ θ into the two disjoint closed subva-
rieties

K0 ×
{
[h1Ho

pdQ(p)]
}
× { p } and K0 ×

{
[h2Ho

pdQ(p)]
}
× { p }

of G× P(VQ)× P, so their closures in X× P remain disjoint. �

5.7. Corollary. Let G be an algebraic group, P a variety, and H a family of loose
subgroups of G parametrised by P. The projection H → P admits a Stein factorisation

H π0−−−→π0(H)→ P

of H → P: the morphism π0(H) is an algebraic variety, the morphism H → π0(H) has
connected fibres and the morphism π0(H)→ P is proper and finite.

The fibre of π0(H) at p ∈ P is the group π0(Hp), so we were able to perform
the quotient Hp/Ho

p in all the fibres of the family H simultaneously.

Proof. Let j : H → X× P the embedding provided by 5.5, it is enough to define π0
on an open cover of P so we may restrict ourselves to the case where P is affine,
and admits a projective compactification Q. Now the wished Stein factorisation
is obtained by restricting to H → P the Stein factorisation of the projection on Q
of the closure of j(H) in X×Q. �

6. Examples

6.1. Families of subgroups of tori. Let S be a torus. A 1-parameter subgroup λ
of S is characterized by its initial tangent vector λ′(1) ∈ s. The correspondence
between 1-parameter subgroups and initial tangent vectors induces a group iso-
morphism between the group of all 1-parameter subgroups of S and the lat-
tice Y ⊂ s of their initial tangent vectors. A connected subgroup of S is a torus as
well, and is characterized by the set of its 1-parameter subgroups, hence we have
a natural bijection between the set Γ of k-dimensional connected subgroups of S
and Gr(k, Y) ⊂ Gr(k, s).

6.2. Proposition. Let S be a torus, P a variety and H a family of loose subgroups of S
parametrised by P. If each irreducible component of H dominates P, then H is a trivial
family.
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Proof. We first assume that H is irreducible, so that each fibre is connected (5.3).
Let then L(H) ⊂ s× P be the algebraic family whose fiber at p ∈ P is the Lie
algebra of Hp. This family is equidimensional, hence there is an open subset Po

of P such that its restriction to Po is flat. The universal property of the Grassmann
variety yields a morphism ψ : Po → Gr(k, g) such that L(H) is the pullback of
the tautological bundle on Gr(k, g). But ψ takes its values in Gr(k, Y) which, in
the euclidean topology, is a totally discontinuous topological space. Hence ψ is
constant and H is a trivial family above Po, it must then be trivial above all of P.

We now treat the case where H may have multiple connected components. By
the case where H is irreducible there is a subtorus S′ of S such that Ho = S′ × P.
By Baire’s Theorem there is an exponant N ∈ N that kills all the fibres of the
image of H in S/S′ × P. The subgroup C of S consisting of elements killed by N
is finite and if C′ =

{
s ∈ C

∣∣ ∃p ∈ P s ∈ Hp
}

then H = C′S′ × P, so it is a trivial
family. �

6.3. Families of subgroups of abelian varieties. A variation (6.8) on the rigidity
lemma for projective morphisms [8] and the Stein factorization enable us to show
that families of subgroups of abelian varieties are constant (6.7).

6.4. Proposition. Let A be an abelian variety, P a variety and H a family of (loose)
subgroups of A parametrised by P. The set-theoretic family

Ho =
{
(a, p) ∈ A× P

∣∣∣ a ∈ Ho
p

}
of subgroups of A is an algebraic family of (loose) subgroups of A.

Proof. We show that Ho is a closed subset of H. Since being closed in A× P is a
local property, we may assume that P is affine, and therefore admits a projective
completion X.

Now consider the Stein factorisation

H̄ f−−−→X′ → X

of the projection to X of the closure H̄ of H in A× X: the variety X′ is projective,
the morphism f has connected fibers and X′ → X is finite. We have then

Ho = H∩ f−1( f ({ e } × X),

which shows that this set is closed. For each p, the map Ho
p → Hp is an open

immersion, hence each Ho
p is reduced when each Hp is. �

6.5. Corollary. Let A be an abelian variety, P a variety and H a family of (loose)
subgroups of A parametrised by P. If H is irreducible, then each of its fibre is connected.

6.6. Corollary. Let A be an abelian variety, P a variety and H a family of loose sub-
groups of A parametrised by P. If each irreducible component ofH dominates P, thenHo

is irreducible.

Proof. The fibres of Ho → P are irreducible, let n be their minimal dimension. By
Chevalley’s Theorem for the dimensions of the fibres of a morphism, the general
fibre of Ho → P has dimension n. There exists an irreducible component H1

of Ho whose general fibre has dimension n. Hence H1 and Ho agree above a
dense open subset of P. Since each irreducible H2 component of Ho dominates P,
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it meets H1 along a dense open subset of H2, so that H2 ⊂ H1. We conclude
that Ho is irreducible. �

6.7. Proposition. Let A be an abelian variety, P a variety and H a family of loose
subgroups of A parametrised by P. If each irreducible component of H dominates P,
then H is a trivial family.

We start with two lemmas:

6.8. Lemma (Rigidity lemma variant). Let X be a complete variety, Y and Z any
varieties, V ⊂ X × Y an irreducible family of connected subvarieties of X parametrised
by Y admitting a section, and f : V → Z a morphism. If there exists a member of V
contracted to a point by f , then there is a morphism g : Y → Z such that f = g ◦ prY,
where prY is the projection of V to Y.

Proof. Let s : Y → V be a section of V and let g : Y → Z be the map defined
by g(y) = f (s(y), y). Since V is irreducible, we only need to show that f and g ◦
prY agree on a dense open subset of V .

Let y0 be a parameter such that Vy0 is contracted to a point z0 by f , and let U
an affine neighbourhood of z0 in Z. Let F = Z \ U its complement and G =
prY f−1(F). Since f−1(F) is a closed subset of X × Y and X is complete, the
projection G of f−1(F) on Y is closed. Further y0 6∈ G since f (Vy0) = z0. There-
fore V = Y − G is a non-empty open subset of Y, for each y ∈ V the complete
connected variety Vy gets mapped by f into the affine variety U, hence to a sin-
gle point of U. But this means that for any x ∈ X, y ∈ V, we have f (x, y) =
f (s(y), y) = g ◦ prY(x, y). �

6.9. Lemma. Let A be an abelian variety, P a variety and H a family of loose subgroups
of A parametrised by P. If H is irreducible, then it is a trivial family.

Proof. Since H is irreducible, it has connected fibres (6.5). Let p be a point of P
dominated by a connected fiber Hp of H. According to a theorem of Chow [3,
Theorem 1] there exists an abelian variety Z and a group homomorphism f0 :
A → Z whose kernel is Hp. Let f be the restriction to H of f0 × idP. The fiber
at p is contracted by f to the unit element of Z, hence it follows from Lemma 6.8
that f can be factorized out through the projection prP of H → P. Consequently,
each fiber Hq of H is contained in the kernel Hp of f0. We conclude with the
theorem on the dimension of the fibers of a morphism that there is an open
subset V of P above which each fiber actually equals Hp. But H is irreducible
and equals the closure of Hp ×V in A× P that is, that the family H is trivial. �

6.10. Lemma. Let A be an abelian variety, P a variety and H a family of loose finite
subgroups of A parametrised by P. If each irreducible component of H dominates P,
then H is a trivial family.

Proof. By Baire’s Theorem, there is a common exponent N ∈ N that kills all the
fibres of H. But the subgroup B of A consisting of its elements of order N is
finite, and H is a subvariety of B × P. Since each irreducible component of H
dominates P, this subvariety is of the form B′ × P for some subgroup B′ of B. �

Proof of 6.7. By 6.6 the family Ho of connected components of H is irreducible,
and by 6.9 it must be trivial. Let B be the connected closed subgroup of A such
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that Ho = B× P. According to Chow [3, Theorem 1] there is an abelian variety Z
and a morphism of algebraic groups f : A→ Z whose kernel is B.

We denote by fP the morphism A× P → Z× P associated to f and by fP(H)
the image of H through this morphism. It is a closed subvariety of Z × P, and
defines a family of loose finite subgroups of Z whose irreducible components
dominate P. We conclude by 6.10 that his family is trivial, of the form B′ × P.
Hence H = f−1(B′)× P is also a trivial family. �

6.11. Universal family for SL2. We proceed in two steps, analysing first the one-
dimensional subgroups and second the two-dimensional subgroups. We let G =
SL2.

One-dimensional subgroups. The operation of G on P(g) = Gr(k, g) has two or-
bits: the closed orbit is the set of nilpotent elements in P(g) and the open one is
the set of semi-simple elements. Thus each one-dimensional Lie subalgebra of g
is algebraic: A1 = P(g) and the universal family of one-dimensional subgroups
of G is a smooth irreducible variety of dimension 3.

Two dimensional subgroups. A 2-dimensional subgroup of G is a Borel sub-
group B. According to the theory of reductive groups, their set Γ is the vari-
ety G/B ' P1. The universal family of 2-dimensional subgroups of G is the satu-
ration with respect to the operation of G of the set { (B, g) | g ∈ B } in G/B× G.
This is a smooth irreducible algebraic variety of dimension 3.

6.12. Universal family of one-dimensional subgroups of SL3. This example
demonstrates the hairy structure of the moduli space, while remaining tractable.
We let G = SL3 and describe the moduli space of one-dimensional subgroups
of G.

Our first task is to describe A1 as a set, to do this we take advantage of the
operation of G on Λ = P(g). It follows from the Chevalley-Jordan decomposition
that the tangent space to a one-dimensional subgroup of G is either spanned
by a semi-simple element of g or by a nilpotent element. The group G has two
nilpotent orbits

{
N 6,N 3 } in P(g) whose dimensions are respectively 6 and 3,

each of them is included in A. In order to parametrize the semi-simple orbits
of G in A, we introduce a torus S of G and A(S)1 ⊂ A1 the countable set of the
algebraic Lie 1-dimensional subalgebras of L(S). Since any semi-simple element
in P(g) is G-conjugated to an element of L(S), we may conclude that

{Gp | p ∈ A(S) } ∪ {N 6,N 3 }

is the partition of A1 in G-orbits. An irreducible subvariety of Λ1 contained in A1.

Appendix A. Observation of flatness through a biholomorphism

Let X be an algebraic variety and OX its structural sheaf. We denote by Xan

the corresponding analytic variety and by Oan
X the sheaf of holomorphic functions

on Xan. Note that X is endowed with its Zariski topology while Xan is with its
euclidean one. We denote by φ the natural map Xan → X. It is is a morphism of
ringed spaces, that enables us to define the analytic extension F an of a sheaf F
of OX-modules by

F an = φ−1F ⊗φ−1OX
Oan

X ,
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this is a sheaf of Oan
X -modules. Serre [10] introduced the notion of flat pair of

rings (ibid. définition 4). The following statement results immediately from [10,
Corollaire 1, p. 11] and [10, Proposition 22, p. 36].

A.1. Proposition. For all sheaf ofOX-module F and all x ∈ X, the natural map Fx →
F an

x is injective.

We use it to compare flatness of F and F an through a biholomorphism.

A.2. Proposition. Let f : X → P a morphism of algebraic variety and F a sheaf
of OX-modules on X. For all x, Fx is a flat (OP)x-module if, and only if, F an

x is a
flat (Oan

P )x-module.

Proof. Recall that, when A is a ring, an A-module M is flat if, and only if, for any
finitely generated ideal a of A the natural map a⊗M→ M is injective.

If Fx is not a flat (OP)x-module, the kernel of the map (OP)x ⊗ Fx → Fx
contains a non-zero element. This element also belongs to the kernel of the
map (Oan

P )x ⊗ F an
x → F an

x and is non-zero by A.1, so F an
x is not a flat (Oan

P )x-
module.

The converse assertion is implied by the fact that a flat module remains flat
after base extension [6, 9.1A]. �

A.3. Corollary. Let P be a variety and for i ∈ { 0, 1 } a morphism fi : Xi → P, a
sheaf Fi of OXi -modules, and a point xi ∈ Xi. If there is a local biholomorphism ψ :
W0 → W1 mapping a neighbourhood W0 of x0 in X0 to a neighbourhood W1 of x1 in X1
and such that f1|W1

= ψ ◦ f1|W1
and ψ∗ F an

0

∣∣
W0

= F an
1

∣∣
W1

, then F0 is flat at x0 if,
and only if, F1 is flat at x1.

Appendix B. Construction of certain compactifications

B.1. Proposition. Let X be a variety, G be an algebraic group and L be a subgroup of G
operating on X. There exists a G-variety G×L X and a closed immersion of L-varieties j :
X → G×L X such that, for all G-variety Y and all immersion of L-varieties jY : X → Y,
there is a unique morphism of G-varieties f : G×L X → Y such that j = f ◦ jY.

Furthermore, there is a G-invariant projection G×L X → G/L whose fibre above the
co-set L is j(X), and this projection is proper if, and only if, X is complete.

Proof. Let L operate on G × X by l · (g, x) = (gl−1, lx). This is a free action
and the geometric quotient G ×L X exists [5]. It fulfills the conclusions of the
proposition. �

B.2. Corollary. When X and G/L are complete, so is G×L X.

B.3. Corollary. If O1 and O2 are two distinct orbits of L in X, then GO1 and GO2
are two distinct orbits of G in G×L X.

Proof. Let x1 and x2 two points in X and assume that Gx1 and Gx2 have a common
point. These two orbits are then equal, and there is g ∈ G sending x1 to x2. Using
the projection G×L X → G/L, one sees that g belongs to L, so that Lx1 = Lx2. �

Let G be an algebraic group, by Chevalley structure Theorem [4], there is an
exact sequence of algebraic groups

1→ L→ G α−−−→ A→ 0
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where L is an affine group and A an abelian variety. The group L is the maximal
affine subgroup of G. Remark that a subgroup H of G is connected if, and only
if, α(H) and H ∩ L are connected.

B.4. Proposition. Let G be an algebraic group and H a subgroup of G. There is a
projective completion K of G such that the connected components of the closure of H in K
are the closures of the connected components of H.

Proof. Let L be the maximal affine subgroup of G. By Chevalley’s Theorem on
homogeneous spaces of affine groups [1, 5.1], there is a linear representation E
of L containing a line D whose stabilizer in L is the identity component Mo

of M = L ∩ H. The orbit of D under the operation of M on P(E) is a finite
subset F ' M/Mo of P(E).

Let X = G×L P(E) and K0 be any projective completion of G. We consider the
morphism

θ : G → K0 × X
g 7→ (g, gD)

and claim that the closure K of θ(G) in K0 × X is a suitable compactification.
Assume that H has multiple connected components and let h1Ho and h2Ho

be two of them, where { h1, h2 } ⊂ H. The connected components hi HoD of
the orbit HD are isomorphic to the abelian variety Ho/Mo, hence are complete
varieties. They are furthermore disjoint by B.3. We can conclude that the con-
nected components hi Ho are mapped under θ into the disjoint complete subvari-
eties K0 × hi HoD of K0 × X, so their closures are disjoint. �
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