# Cubic surfaces with double points in positive characteristic 

## Marko Roczen

Dr. M. Roczen<br>Humbodlt-Universität zu Berlin<br>Fachbereich Mathematik<br>Unter den Linden 6<br>O-1086 Berlin

Max-Planck-Institut für Mathematik
Gottfried-Claren-StraBe 26
D-5300 Bonn 3

Germany

# Cubic surfaces with double points in positive characteristic 

Marko Roczen

## 0 Introduction

The classification of singular cubic surfaces, made by Schläfli and Cayley in the last century, and reconsidered by Bruce and Wall [BW] from the viewpoint of modern singularity theory (both over the complex numbers) gives rise to the following question: Let $k$ be an algebraically closed field of arbitrary characteristic $p, f=f\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ an irreducible homogeneous polynomial of degree 3.
Let $X \subseteq \mathbb{P}_{k}^{3}$ be the set of zeros of $f$ in the projective space.
If $X$ has no triple point (in a way, this is the most general case), it has at most double points. They are seen to be rational singularities from the list of Artin [Art], but in general, they do not appear in these normal forms. Hence, it is useful to have a possibility of finding their type. This is given by a "geometric" extension of the "recognition principle" of Bruce and Wall (loc. cit.). An equivalent condition is found via the description of the "local resolution graph" and provides a possibility to avoid some awful coordinate transformations.
Now, configurations of double points and the corresponding normal forms can be calculated.

## 1 Two characterizations of rational double points

Let $R$ be a complete local Cohen Macaulay $k$-algebra with residue field $k$ of dimension $d \geq 2$. Spec $R$ is said to be absolutely isolated if there is a resolution of singularities consisting of blowing ups $\varphi_{i}: X_{i} \rightarrow X_{i-1}(i=1, \ldots, t), X_{0}=\operatorname{Spec} R$, $X_{i}$ smooth. Sing $\left(X_{i}\right)$ finite and $\varphi_{i}$ the blowing up of the reduced singular locus $\operatorname{Sing}\left(X_{i}\right)$ of $X_{i}$. The set ( $\varphi_{i}$ ) of morphisms is essentially unique and said to be the canonical resolution. We associate to $R$ the "local resolution graph" $\Gamma$ : This is a directed graph having as vertices the components of the formal scheme ${\underset{i}{i=0}}_{i-1}^{(1)}\left(X_{i}\right)_{\text {Sing }}^{\hat{A}}\left(X_{i}\right)$; its arrows correspond to the morphisms of complete local rings induced by the $\varphi_{i}$. Thus, e.g. the graph

comes from an isolated singularity which can be resolved by 4 blowing ups as above, the singular locus of $X_{2}$ consists of 2 points, and $X_{1}, X_{3}$ both have one singular point.
Now let $R$ be a double point (i.e. of multiplicity 2 ), then $R \simeq k[x] /(f)$, where $x=\left(x_{0}, \ldots, x_{d}\right)$ are indeterminates, $f \in k[x]$ of order 2 . Consider any $w=$ $\left(w_{o}, \ldots, w_{d}\right) \in \mathbb{R}_{+}^{d+1}$, such that $w_{i} \leq \frac{1}{2} . f$ is said to be semiquasihomogeneous (sqh) of weight $w$ if $f=\sum_{\nu} a_{\nu} x^{\nu}$ such that
(1) $f_{1}=\sum_{\nu, v(\nu)=1} a_{\nu} x^{\nu}$ defines an isolated singularity,
(2) $f-f_{1}=\sum_{\nu, v(\nu)>1} a_{\nu} x^{\nu}$.

Spec $R$ is said to be sqh of weight $w$ if there exists such an $f$ as above.

### 1.1 Characterization:

For a complete local Cohen Macaulay double point Spec $R$ of dimension $d>1$, the following conditions are equivalent:
(i) $\operatorname{Spec} R$ is absolutely isolated.
(ii) Spec $R$ is sqh of some weight $w$ such that $w_{o}+\ldots+w_{d}>\frac{d}{2}$.

Further, in (ii) the weight is up to permutation one of the following:

$$
\begin{aligned}
A_{n} & =\left(\frac{1}{n+1}, \frac{1}{2}, \ldots, \frac{1}{2}\right), \quad n \geq 1 \\
D_{n} & =\left(\frac{1}{n-1}, \frac{n-2}{2(n-1)}, \frac{1}{2}, \ldots, \frac{1}{2}\right), \quad n \geq 4 \\
E_{6} & =\left(\frac{1}{3}, \frac{1}{4}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \\
E_{7} & =\left(\frac{1}{3}, \frac{2}{9}, \frac{1}{2}, \ldots, \frac{1}{2}\right) \\
E_{8} & =\left(\frac{1}{5}, \frac{1}{3}, \frac{1}{2}, \ldots, \frac{1}{2}\right) .
\end{aligned}
$$

The weight $X_{n}$ ( $X=A, D$ or $E$, respectively) is uniquely determined by $R$ and called the "type" of the singularity. The local resolution graphs are the following ones and correspond to the type as indicated:
( $m=$ number of vertices)

| graph | type (condition) |
| :---: | :---: |
| $\bullet \longrightarrow \bullet \longrightarrow \quad \longrightarrow$ | $\begin{array}{ll} A_{2 m-1}, & m \geq 1(\mathrm{~S}) \\ A_{2 m}, & m \geq 1(\mathrm{NS}) \\ E_{6}, & m=4(\mathrm{NI}) \end{array}$ |
|  | $D_{m}, m \geq 4, m$ even |
|  | $D_{m+1}, m \geq 4, m$ even |
|  | $E_{7}, m=7$ |
|  | $E_{8}, m=8$ |

The conditions (in brackets) are
$S$ : The exceptional locus of the last blowing up $\varphi_{t}$ in the canonical resolution is smooth.

NS: The exceptional locus of $\varphi_{t}$ is not smooth.
NI: For the quadratic suspension of dimension $d+2$, the exceptional locus of the first blowing up $\varphi_{1}$ has nonisolated singularities (if $R=k \llbracket x \rrbracket /(f)$ for any $f$, then $R^{\prime}=k\left[x, x_{d+1}, x_{d+2}\right] /\left(f+x_{d+1} \cdot x_{d+2}\right)$ is said to be the quadratic suspension of dimension $d+2$ ).
Proof: For the equivalence of (i), (ii) and the uniqueness of $w c \mathrm{cf}$ ([ R$], 3.3$ ). The remaining conditions follow from the proof of ( $[\mathrm{R}], 3.2$.).
Now let $d=2$. The absolutely isolated double points are known to be rational. Their equations have been computed by Artin ([Art], 3.) and are given in the following list.

### 1.2 Artin's equations of absolutely isolated double points:

I) $p \neq 2$

$$
A_{n}^{o}: \quad x_{o}^{n+1}-x_{1} x_{2}, \quad n \geq 1
$$

| $D_{n}^{o}:$ | $x_{o}^{n-1}+x_{o} x_{1}^{2}+x_{2}^{2}, \quad n \geq 4$ |  |
| :--- | :--- | :--- |
| $E_{6}^{o}:$ | $x_{o}^{3}+x_{1}^{4}+x_{2}^{2}$ |  |
| $E_{6}^{1}:$ | $x_{o}^{3}+x_{1}^{4}+x_{2}^{2}+x_{o}^{2} x_{1}^{2} \quad$ (additionally for $p=3$ ) |  |
| $E_{7}^{o}:$ | $x_{o}^{3}+x_{o} x_{1}^{3}+x_{2}^{2}$ |  |
| $E_{7}^{1}:$ | $x_{o}^{3}+x_{o} x_{1}^{3}+x_{2}^{2}+x_{o}^{2} x_{1}^{2} \quad$ (additionally for $p=3$ ) |  |
| $E_{8}^{o}:$ | $x_{o}^{3}+x_{1}^{5}+x_{2}^{2}$ |  |
| $E_{8}^{1}:$ | $x_{o}^{3}+x_{1}^{5}+x_{2}^{2}+x_{o}^{2} x_{1}^{3}$ | (additionally for $p=3$ ) |
| $E_{8}^{2}:$ | $x_{o}^{3}+x_{1}^{5}+x_{2}^{2}+x_{o}^{2} x_{1}^{2} \quad$ (additionally for $p=3$ ) |  |
| $E_{8}^{1}:$ | $x_{o}^{3}+x_{1}^{5}+x_{2}^{2}+x_{o} x_{1}^{4} \quad$ (additionally for $p=5$ ) |  |

II) $p=2$

$$
\begin{array}{rll}
A_{n}^{o}: & x_{o}^{n+1}+x_{1} x_{2} \\
D_{2 n}^{o}: & x_{o}^{n} x_{1}+x_{o} x_{1}^{2}+x_{2}^{2}, \quad n \geq 2 & \\
D_{2 n}^{r}: & x_{o}^{n} x_{1}+x_{o} x_{1}^{2}+x_{2}^{2}+x_{o}^{n-r} x_{1} x_{2}, \quad n \geq 2,1 \leq r \leq n-1 \\
D_{2 n+1}^{o}: & x_{o}^{n} x_{2}+x_{o} x_{1}^{2}+x_{2}^{2}, \quad n \geq 2 & \\
D_{2 n+1}^{r}: & x_{o}^{n} x_{2}+x_{o} x_{1}^{2}+x_{2}^{2}+x_{o}^{n-r} x_{1} x_{2}, \quad n \geq 2,1 \leq r \leq n-1 \\
E_{6}^{o}: & x_{o}^{3}+x_{1}^{2} x_{2}+x_{2}^{2} & \\
E_{6}^{1}: & x_{o}^{3}+x_{1}^{2} x_{2}+x_{2}^{2}+x_{o} x_{1} x_{2} & \\
E_{7}^{o}: & x_{o}^{3}+x_{o} x_{1}^{3}+x_{2}^{2} \\
E_{7}^{1}: & x_{o}^{3}+x_{o} x_{1}^{3}+x_{2}^{2}+x_{o}^{2} x_{1} x_{2} & \\
E_{7}^{2}: & x_{o}^{3}+x_{o} x_{1}^{3}+x_{2}^{2}+x_{1}^{3} x_{2} & \\
E_{7}^{3}: & x_{o}^{3}+x_{o} x_{1}^{3}+x_{2}^{2}+x_{o} x_{1} x_{2} & \\
E_{8}^{o}: & x_{o}^{3}+x_{1}^{5}+x_{2}^{2} & \\
E_{8}^{1}: & x_{o}^{3}+x_{1}^{5}+x_{2}^{2}+x_{o} x_{1}^{3} x_{2} & \\
E_{8}^{2}: & x_{o}^{3}+x_{1}^{5}+x_{2}^{2}+x_{o} x_{1}^{2} x_{2} & \\
E_{8}^{3}: & x_{o}^{3}+x_{1}^{5}+x_{2}^{2}+x_{1}^{3} x_{2} & \\
E_{8}^{4}: & x_{o}^{3}+x_{1}^{5}+x_{2}^{2}+x_{o} x_{1} x_{2} &
\end{array}
$$

Obviously, $X_{n}^{r}$ is sqh of weight $X_{n}$, i.e. by 1.1. and ([Art], 3.) we obtain

### 1.3 Remark:

(i) The map $X_{n}^{r} \mapsto X_{n}$ gives the type of the singularity.
(ii) The Tjurina number $\tau:\left\{X_{n}^{r} \mid\right.$ all $\left.r\right\} \rightarrow \mathbb{N}$ is injective for a fixed type $X_{n}$.

The symbol $X_{n}^{r}$ will be used for the corresponding complete local ring and (by abuse of language) its spectrum, too.

## 2 Singularities and normal forms

The singularities of the cubic surface $X$ give rise to the possible normal forms（de－ pending on parameters，in some cases）．Though differences from the classical case can appear only in some characteristics $p \neq 0$ ，the application of 1．1．simplifies coordinate transformations sometimes．
Let $S=S(X):=X_{\text {Sing }(X)}$ be the formal scheme obtained from $X$ by completion along the singular locus．$S$ will be called the type of the cubic surface $X$ ．The classification can be done via $S$ ：If $X$ has only isolated singularities and contains a triple point，this is the only singularity，and $X$ is the projective closure of the cone over a smooth plane cubic．In any other case，$X$ contains at most double points． This is the situation considered here．The following description extends the list in the paper of Bruce and Wall［BW］，and some of the cases（which remain unchanged） are only listed for completeness．Let $P \in X$ be singular，$P=(0: 0: 0: 1) \in \mathbb{P}^{3}$ and（ $x_{0}: x_{1}: x_{2}: x_{3}$ ）the homogeneous coordinates．We write

$$
f=x_{3} f_{2}+f_{3}, \quad f_{i}=f_{i}\left(x_{o}, x_{1}, x_{2}\right) \quad \text { homogeneous of degree } i
$$

The classification of quadratic forms（in arbitrary characteristic）gives us the fol－ lowing possibilities：
A）$f_{2}=x_{1}^{2}-x_{o} x_{2}$
B）$f_{2}=x_{0} x_{1}$
C）$f_{2}=x_{0}^{2}$
Let $L:=V^{+}\left(f_{2}, f_{3}\right) \subseteq \mathbb{P}^{2}$ be the space of lines in $X$ passing $P, \mathbb{P}^{2}$ with the coor－ dinates $\left(x_{o}: x_{1}: x_{2}\right)$ ．

Case A：Obviousiy，$P$ is an $A_{1}$ singularity of $X$ ．Further， $\operatorname{Sing}(X-\{P\})$ is in bijective correspondence with $\operatorname{Sing}(L)$ ，where a point $Q \in L$ of mutliplicity $k$ is mapped to an $A_{k-1}$ singularity of $X-\{P\}$（cf．［BW］，Lemma 2）．Thus all possibilities for $S$ are

$$
\begin{aligned}
S= & A_{1}, 2 A_{1}, A_{1} \Perp A_{2}, 3 A_{1}, A_{1} \Perp A_{3}, 2 A_{1} \Perp A_{2} \\
& 4 A_{1}, A_{1} \Perp A_{4}, 2 A_{1} \Perp A_{3}, A_{1} \Perp 2 A_{2}, A_{1} \Perp A_{5} .
\end{aligned}
$$

Here，the symbol $n X$ always denotes $X \Perp \ldots ⿻ 彐 丨 刂$（ $n$ disjoint copies）．
Case $\mathbf{B}$（cf．［BW］，Lemma 3）：The singularities of $X-\{P\}$ correspond to the points of $\operatorname{Sing}(L-\{Q\}), Q:=(0: 0: 1)$ ，and under this bijection，a point of multiplicity $k$ is mapped to an $A_{k-1}$ singularity．Further，$P$ is an $A_{k_{+}+k_{1}+1}$ singularity if $k_{i}$ denotes the multiplicity of $L_{i}=V\left(x_{i}, f_{3}\right)$ at $Q$ ．The only possible $k_{i}$ are $\left\{k_{o}, k_{1}\right\}=\{1\},\{1,2\},\{1,3\}$ ．
Thus，all possible cases are：

$$
\begin{aligned}
S= & A_{2}, A_{2} \Perp A_{1}, 2 A_{2}, A_{2} \Perp 2 A_{1}, 2 A_{2} \Perp A_{1}, 3 A_{2}, \\
& A_{3}, A_{3} \Perp A_{1}, A_{3} \Perp 2 A_{1}, A_{4}, A_{4} \Perp A_{1}, A_{5}, A_{5} \Perp A_{1} .
\end{aligned}
$$

To see why the singularity at $P$ is of the type claimed above, we may use the local resolutions as follows:
Without loss of generality

$$
\begin{aligned}
f & =x_{3} x_{o} x_{1}+f_{3}\left(x_{o}, x_{1}, x_{2}\right) \\
f_{3} & =x_{o}\left(a_{o} x_{o}^{2}+a_{1} x_{o} x_{2}+a_{2} x_{2}^{2}\right)+x_{1}\left(a_{3} x_{1}^{2}+a_{4} x_{1} x_{2}+a_{5} x_{2}^{2}\right)+a_{6} x_{2}^{3}
\end{aligned}
$$

Putting $x_{3}=1$, we obtain an equation

$$
x_{o} x_{1}+x_{o} \cdot a\left(x_{o}, x_{2}\right)+x_{1} \cdot b\left(x_{o}, x_{2}\right)=0
$$

for $X$ near $P$ corresponding to the origin in $A^{3}$.
(1) $f_{3}(Q) \neq 0$, then $a_{6} \neq 0$ and $P$ is $A_{2}$ (weight $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ ).
(2) $f_{3}(Q)=0$, then $a_{6}=0, k_{1}=1$ implies $a_{2} \neq 2$.
(2.1) $\quad k_{o}=1$ (equivalently $a_{5} \neq 0$ ), $P$ is $A_{3}$ (weight $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4}\right)$ ).
(2.2) $k_{o}=2$ (equivalently $a_{5}=0$ and $a_{4} \neq 0$ ):

Blow up $P$; after an obvious coordinate transformation you obtain a point that is sqh of weight $\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{2}\right)$, and therefore $P$ is $A_{4}$.
(2.3) $\quad k_{o}=3$ (equivalently $a_{4}=a_{5}=0$ and $a_{3} \neq 0$ ):

One blowing up leads to a point of sqh weight $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{2}\right)$, i.e. $P$ is $A_{5}$.
Case C: This case will be performed in full detail, including the relevant normal forms.
Let $i:=4-\# L$, \# $L$ the number of (closed points) of $V^{+}\left(x_{o}, f_{3}\right)$. Then $i \in\{1,2,3\}$, $P$ is the only singularity of $X$ and has type $D_{4}, D_{5}, E_{6}$ for $i=1,2,3$, respectively: Let ( Ci ) be the corresponding case, $f=x_{3} x_{o}^{2}+x_{o} \cdot g_{2}\left(x_{1}, x_{2}\right)+g_{3}\left(x_{1}, x_{2}\right)$, $g_{\ell}$ homogeneous of degree $\ell$. Depending on $p=$ char $k$, we obtain after a linear homogeneous transformation
(C1) $g_{3}=x_{1}^{3}+x_{2}^{3}$ for $p \neq 3$, and $g_{3}=x_{1}^{2} x_{2}+x_{3}^{2}$ for $p=3$.
(C2) $\quad g_{3}=x_{1}^{2} x_{2}$ and $g_{2}(0,1) \neq 0$
(C3) $\quad g_{3}=x_{1}^{3}$ and $g_{2}(0,1) \neq 0$.
Using 1.1.(ii), in each case we obtain for $P$ a sqh-singularity of the following type and initial term (i.e. term of weight 1 ):
(C2) $D_{5}=\left(\frac{1}{2}, \frac{3}{8}, \frac{1}{4}\right)$,

$$
x_{o}^{2}+c x_{o} x_{2}^{2}+x_{1}^{2} x_{o}, c \neq 0
$$

$D_{4}=\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{3}\right)$,
$x_{o}^{2}+x_{1}^{3}+x_{2}^{3}$ for $p \neq 3$, and $x_{o}^{2}+x_{1}^{2} x_{2}+\dot{x}_{2}^{3}$ for $p=3$

$$
\begin{equation*}
E_{6}=\left(\frac{1}{2}, \frac{1}{3}, \frac{1}{4}\right), \tag{C3}
\end{equation*}
$$

$$
x_{o}^{2}+c x_{o} x_{2}^{2}+x_{1}^{3}, c \neq 0
$$

Case (C1): $p \neq 3$ : For some linear form $\ell$, put

$$
x_{1}:=x_{1}-\frac{a}{3} x_{o}, x_{2}:=x_{2}-\frac{c}{3} x_{o}, x_{3}:=x_{3}+\ell\left(x_{o}, x_{1}, x_{2}\right)
$$

to obtain the
NORMAL FORMS: $\quad f=x_{0}^{2} x_{3}+r x_{o} x_{1} x_{2}+x_{1}^{3}+x_{2}^{3}, r \in\{0,1\}$
SINGULARITY AT $P: \quad D_{4}$ if $p \neq 2,3$ and

$$
D_{4}^{r} \text { if } p=2
$$

(If $p \neq 2,3$, the Hessian of $f$ is $x_{o}^{2} x_{1} x_{2}$ and $x_{o}^{2}\left(36 x_{1} x_{2}-x_{o}^{2}\right)$, respectively. Both cases $r=0,1$ thus do not provide projectively equivalent surfaces. If $p=2$, the Tjurina numbers at $P$ are $\tau=8$ for $r=0, r=6$ for $r=1$.)

$$
p=3: \text { Use } x_{1}:=x_{1}-\frac{b}{2} x_{0}, x_{2}:=x_{0}-\alpha x_{0}, x_{3}:=x_{3}+\ell\left(x_{0}, x_{1}, x_{2}\right) .
$$

NORMAL FORMS: $\quad f=x_{o}^{2} x_{3}+r x_{o} x_{2}^{2}+x_{1}^{2} x_{2}+x_{2}^{3}, r \in\{0,1\}$
SINGULARITY AT $P$ : $D_{4}$
(The Hessians are $x_{o}^{2} x_{1}^{2}$ and $x_{o}^{2}\left(x_{o} x_{2}-x_{1}^{2}\right)$, respectively, thus $r=0,1$ provide nonequivalent surfaces).

Case (C2): A substitution $x_{2}:=x_{2}-a x_{o}, x_{3}:=x_{3}+\ell\left(x_{0}, x_{1}, x_{2}\right)$ gives for $p=2$ :
NORMAL FORMS: $\quad f=x_{0}^{2} x_{3}+r x_{0} x_{1} x_{2}+x_{o} x_{2}^{2}+x_{1}^{2} x_{2}, r \in\{0,1\}$
SINGULARITY AT $P$ : $\quad D_{5}^{r}$
Further, for $p \neq 2$ we choose $x_{1}:=x_{1}+\alpha x_{o}, x_{3}:=x_{3}+\bar{\ell}\left(x_{o}, x_{1}, x_{2}\right)$ and obtain a single
NORMAL FORM: $\quad f=x_{o}^{2} x_{3}+x_{o} x_{2}^{2}+x_{1}^{2} x_{2}$ with
SINGULARITY AT $P: \quad D_{5}$
Case (C3): $f$ can be transformed into

$$
f=x_{o}^{2} x_{3}+a x_{o} x_{1}^{2}+b x_{o} x_{1} x_{2}+x_{o} x_{2}^{2}+x_{1}^{3} .
$$

Now we choose a coordinate transformation as before to obtain for

$$
p=2:
$$

NORMAL FORMS: $\quad f=x_{0}^{2} x_{3}+r x_{0} x_{1} x_{3}+x_{0} x_{2}^{2}+x_{1}^{3}, r \in\{0,1\}$
SINGULARITY AT $P: \quad E_{6}^{r}$
In the remaining cases, we choose

$$
x_{1}:=x_{1}+\alpha x_{o}, x_{2}:=x_{2}+\beta x_{1}, x_{3}=x_{3}+\ell\left(x_{o}, x_{1}, x_{2}\right) .
$$

The condition $a=b=0$ is expressed by

$$
b+2 \beta=0, a+b \beta+\beta^{2}+3 \alpha=0
$$

which is solvable for $p \neq 3$. Thus we obtain for

$$
p \neq 2,3:
$$

NORMAL FORM: $\quad f=x_{o}^{2} x_{3}+x_{o} x_{2}^{2}+x_{1}^{3}$
SINGULARITY AT $P: \quad E_{6}$

$$
p=3:
$$

NORMAL FORMS: $\quad f=x_{0}^{2} x_{3}+r x_{o} x_{1} x_{2}+x_{o} x_{2}^{2}+x_{1}^{3}, r \in\{0,1\}$

SINGULARITY AT $P: \quad E_{6}^{r}$
(since for $r=0$, the Tjurina number is $\tau=9$, and for $r=1$ we have $\tau=7$ ).
Note, that Schläfli and Cayley mistakenly give only one normal form for surfaces with a singularity of type $D_{4}([S]$, p. 229). This was already remarked in [BW]. The given form of Schlafli (loc. cit.) is easily seen to be equivalent to the one above for $r=1$. In characteristic 2 , both cases $r=0,1$ give even nonisomorphic singularities of type $D_{4}$.

## References

[Arn] Arnold, V.I., Normal forms for functions near degenerate critical points, the Weyl groups $A_{k}, D_{k}$ and $E_{k}$ and Lagrangian singularities, Func. Anal. Appl. 6 (1972) 4, 3-25
[Art] Artin, M., Coverings of the rational double points in characteristic $p$, Complex Analysis and Algebraic Geometry, eds. Baily, W.L. Jr. and Shioda, T., Cambridge 1977, 11-22
[BW] Bruce, J.W., Wall, C.T.C., On the classification of cubic surfaces, J. London Math. Soc. 19 (1979), 245-256
[GK] Greuel, G.M., Kröning, H., Simple singularities in positive characteristic, Math. Z. 203 (1990), 339-354
[K] Knop, F., Ein neuer Zusammenhang zwischen einfachen Gruppen und einfachen Singularitäten, Invent. math. 90 (1987), 579-604
[R] Roczen, M., Recognition of simple singularities in positive characteristic, to appear in Math. Z.
[S] Schläfli, L., On the distribution of surfaces of the third order into species, Phil. Trans. Roy. Soc. 153 (1864), 193-247

