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0 Introduction

The classification of singular cubic surfaces, made by Schlafli and Cayley in the last
century, and reconsidered by Bruce and Wall [BW]from the viewpoint of modern sin-
gularity theory (both over the complex numbers) gives rise to the following question:
Let k be an algebraically closed field of arbitrary characteristic p, f = f(=,, z1, 23, z3)
an irreducible homogeneous polynomial of degree 3.

Let X C IP] be the set of zeros of f in the projective space.

If X has no triple point (in a way, this is the most general case), it has at most
double points. They are seen to be rational singularities from the list of Artin [Art],
but in general, they do not appear in these normal forms. Hence, it is useful to
have a possibility of finding their type. This is given by a ”"geometric” extension of
the "recognition principle” of Bruce and Wall (loc. cit.). An equivalent condition is
found via the description of the "local resolution graph” and provides a possibility
to avoid some awful coordinate transformations.

Now, configurations of double points and the corresponding normal forms can be
calculated.

1 Two characterizations of rational double points

Let R be a complete local Cohen Macaulay k-algebra with residue field & of di-
mension d > 2. Spec R is said to be absolutely isolated if there is a resolution of
singularities consisting of blowing ups ¢; : Xi = Xi_1 (s = 1,...,t), X, = Spec R,
X¢ smooth. Sing(X;) finite and ¢; the blowing up of the reduced singular locus
Sing(X;) of X;. The set (y;) of morphisms is essentially unique and said to be the
canonical resolution. We associate to R the "local resolution graph” I‘ This 18 a di-

rected graph having as vertices the components of the formal scheme ]_[ (X )Sing(x. )

1ts arrows correspond to the morphisms of complete local rings mduced by the ;.
Thus, e.g. the graph
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comes from an isolated singularity which can be resolved by 4 blowing ups as above,
the singular locus of X3 consists of 2 points, and X3, X3 both have one singular
point.

Now let R be a double point (i.e. of multiplicity 2}, then R ~ k[z]/(f), where
z = (&,,...,%q4) are indeterminates, f € k[z] of order 2. Consider any w =
(Wo, ..., wq) € IR‘f“, such that w; < % [ is said to be semiquasthomogeneous
(sqh) of weight w if f =} a,z” such that

(1) fi= ¥ a,z” defines an isolated singularity,

vw(p)=1

(2 f-h= .(Z) e’
vu(v)>
Spec R is said to be sqh of weight w if there exists such an f as above.

1.1 Characterization:

For a complete local Cohen Macaulay double point Spec R of dimension d > 1, the
following conditions are equivalent:
(1) Spec R 1s absolutely isolated.

(ii) Spec R is sqgh of some weight w such that w, + ... + wg > g
Further, in (i1) the weight is up to permutation one of the following:

1 1 1
Aﬂ = ( Yy "J__)) n21
n+1 2 2
1 n—2 1 1
= — - >4
Dn = Gygmoyy 22 "2
111 1 ‘
Eg = (E:Z»Eﬁ' ’—2—)
1 21 1
B = (5;5,51-- ,5)
111 1
Eg = (3:5,5,- -,5)-

The weight X, (X = A, D or E, respectively) is uniquely determined by R and
called the "type” of the singularity. The local resolution graphs are the following
ones and correspond to the type as indicated:

(m = number of vertices)



graph type (condition)
A?m-l)mzl(s)
¢ — s — —_— & — Ay, m>1(NS)
Es, m=4(NI)
.
T
* — 0 — — & — Dy, m > 4, meven
l
.
*« — o — — s — Dyy1, m > 4, meven
l
®
.
T
¢ — o — & — Ey,m=17
! l
. .
.
1
* — 06— o — 6 — Eg, m=38
l .
L

The conditions (in brackets) are

S: The exceptional locus of the last blowing up ¢ in the canonical resolution is

smooth.

NS: The exceptional locus of ¢; 1s not smooth.

NI: For the quadratic suspension of dimension d + 2, the exceptional locus of the
first blowing up ¢, has nonisolated singularities (if R = k[z]/(f) for any
f, then R' = klz,2411,Za12)/(f + Tay1 - Tay2) 1s said to be the quadratic
suspension of dimension d + 2).

Proof: For the equivalence of (i), (ii) and the uniqueness of w cf. ([R], 3.3). The

remaining conditions follow from the proof of ([R], 3.2.).

Now let d = 2. The absolutely isolated double points are known to be rational. Their
equations have been computed by Artin ([Art], 3.) and are given in the following

list.

1.2 Artin’s equations of absolutely isolated double points:

I)p#2

o . n+1
Al Ty

— 133, n21l
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I

D} - et yrd4bad n>d4

Eg . o+ 1) + 73
Eg: zd + 7y + 23 + r2z;  (additionally for p = 3)
E7: T3 + T80 + T3
E}l: T2+ T,25 + 73 + v2z7  (additionally for p = 3)
By 3428 423
E}l: z) + 73 + 25 + 222 (additionally for p = 3)
E}. 23 + 2} + 23 + 2223 (additionally for p = 3)
Eg : 23 + 73 4+ 73 + Tox)  (additionally for p = 5)
M p=2
Al ! 4 37, .
DS . Ty + Tz + 73, n>2
D3, : ThT) + To22 + 23 + 32T T1Ty, 022, 1<r<n—-1
D3ty ehry + T2 + 22, n > 2
Dfpir: T+ Toxl + 23 + 20 T2y, n2>2,1<r<n-1

Eg: s + ziz, + :cg

E}: 3+ izy + 2t 4 2,72,

E?: T2 + T,75 + 23

E}: o3 + 2,23 + 73 + i1y 7,

E?}. €3 + .23 + 13 4 231,

E? : :ug + :noa:? + 33 + zo21%2

Eg: T3 + 25 + 73

Ei: 3+ o3 + 75 + 2,1l

E}: T3 + T3 + T3 + T,T Ty

E:. 73+ 2} + 23 + iz,

Eé : 9:3 + :r:f + mg + 22129

Obviously, X7, is sqh of weight X,,, i.e. by 1.1. and ([Art], 3.) we obtain

1.3 Remark:

(1) The map X| + X, gives the type of the singularity.

(ii) The Tjurina number 7 : {X]| all r} — IV is injective for a fixed type X,.

The symbol X will be used for the corresponding complete local ring and (by abuse
of language) its spectrum, too.



" 2 Singularities and normal forms

The singularities of the cubic surface X give rise to the possible normal forms (de-
pending on parameters, in some cases). Though differences from the classical case
can appear only in some characteristics p # 0, the application of 1.1. simplifies
coordinate transformations sometimes.

Let § = S(X) = X§,4x) be the formal scheme obtained from X by completion
along the singular locus. S will be called the type of the cubic surface X. The
classification can be done via S: If X has only isolated singularities and contains a
triple point, this is the only singularity, and X is the projective closure of the cone
over a smooth plane cubic. In any other case, X contains at most double points.
This is the situation considered here. The following description extends the list in
the paper of Bruce and Wall [BW], and some of the cases (which remain unchanged)
are only listed for completeness. Let P € X be singular, P = (0:0:0:1) € IP?
and (z, : @1 : 3 : z3) the homogeneous coordinates. We write

f=z3fs+ fs, fi= fi(z,,®1,23) homogeneous of degree :.

The classification of quadratic forms (in arbitrary characteristic) gives us the fol-
lowing possibilities:

A) fa=zt—z,2

B) fﬂ =T,

C) fi=g

Let L := V*(fs, f3) C IP? be the space of lines in X passing P, IP? with the coor-
dinates (&, : &1 : z2).

Case A: Obviously, P is an A; singularity of X. Further, Sing(X — {P}) is
in bijective correspondence with Sing(L), where a point Q@ € L of mutliplicity &
is mapped to an A,_; singularity of X — {P} (cf. [BW], Lemma 2). Thus all
possibilities for 5 are

S = Ay 241, A1lLAg, 3A;, A1l Ay, 2A, 4L A,
4A;, AjlLA,, 24,1LA;, A(1L24,, A;lL A

Here, the symbol n X always denotes X1t ... 1L X (n disjoint copies).

Case B (cf [BW], Lemma 3): The singularities of X — {P} correspond to
the points of Sing(L — {Q}), @ := (0: 0: 1), and under this bijection, a point of
multiplicity k is mapped to an A,_; singularity. Further, P is an Ay, 44, 41 singulanty
if k; denotes the multiplicity of L, = V(z,, f3) at Q. The only possible k; are
{kox kl} = {1}7 {1»2}: {11 3}

Thus, all possible cases are:

S = Ag, AQ.H.A}_, ZAQ, Ag.IJ.2A1, 2A2.U.A1,3A2,
Az, AslL Ay, A3lL2A,, Ay, AylLAq, As, Agdl Ay
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To see why the singularity at P is of the type claimed above, we may use the local
resolutions as follows:
Without loss of generality

f = T3F,h + f3($01 T, 332),

fi = To(GoT2 + 017,22 + a273) + 71(a32? + a4z172 + aszl) + a7,
Putting z3 = 1, we obtain an equation
Loy + T, - A(T,, T3) + 31 - HZo, ) =0

for X near P corresponding to the origin in A°.

(1) f3(Q)#0, then ag # 0 and P is A; (weight (E 5 %))

(2) f3(Q) =0, then ag = 0, k; = 1 implies a; # 2.

(2.1) k, =1 (equivalently ay # 0), P is A; (weight (2 1 ;{))

(2.2) ko, =2 (equivalently ay = 0 and a4 # 0):
Blow up P; after an obvious coordinate transformation you obtain a point that
is sqh of weight (%, 1, %), and therefore P is Aq.

(2.3) ko, = 3 (equivalently a, = a5 = 0 and a3 # 0):
One blowing up leads to a point of sqh weight (%, ;lf, %), Le. Pis Aj.

Case C: This case will be performed in full detail, including the relevant normal

forms.
Let 1 :=4—#L, #L the number of (closed points) of V*(z,, f3). Then ¢ € {1, 2,3},
P is the only singularity of X and has type Dy, Ds, E¢ for 1+ = 1,2, 3, respectively:
Let (Ci) be the corresponding case, f = £322 + 2, - g3(24, z3) + g3(21, 23), g¢ homo-
geneous of degree £. Depending on p = char k, we obtain after a linear homogeneous
transformation
(Cl) gs=23+ 2} for p# 3, and g3 = z¥z; + 23 for p = 3.
(C2) g3 =alzy and g2(0,1) #0
(C3) g3 =121 and g5(0,1) #0.
Using 1.1.(i1), in each case we obtain for P a sqh-singularity of the following type
and initial term (i.e. term of weight 1)

1 l 1
ozl +x1+:a, forp;é 3,and 22 + gz, + 23 forp=3

(C2) Ds= (:15, g, ;11_),

3 + ca:oa:§ + 23z, c#0
(C3) Ee=(},3 1)

2 4 cx,zl + 23, c#0

Case (C1): p # 3: For some linear form £, put

a c
Ty =Ty — E:‘Bo, Tq = Ty — 5.’50, I3 ‘= I3 + f(i‘o, T, 32)



to obtain the
NORMAL FORMS:  f = zlz; + ro,o123 + 23 + 23, r € {0,1}
SINGULARITY AT P: Dy ifp+# 23 and

Diifp=2
(If p # 2,3, the Hessian of f is £3z 2, and z3(36z,z; — 22), respectively. Both cases
r = 0,1 thus do not provide projectively equivalent surfaces. If p = 2, the Tjurina
numbers at P are r =8forr=0,r =6 for r =1.)

p=3 Use s, =2y — %xo, Tq 1= T, — QZ,, T3 := T3 + U &,, 71, T3).
NORMAL FORMS: [ = z2z3 + rz,z3 + 2?2, + 23, r € {0,1}
SINGULARITY AT P: D,
(The Hessians are z2z? and z2(z,z; — i), respectively, thus r = 0,1 provide
nonequivalent surfaces).

Case (CZ): A substitution z; := 23 — az,, T3 := T3 + £(z,, 1, £2) gives for
p=2

NORMAL FORMS: [ = zlz; + rz, 2175 + 7,22 + ziz,, r € {0,1}

SINGULARITY AT P: D} '

Further, for p # 2 we choose z, := z, + az,, z3 := z3 + {(z,, ;,2;) and obtain a

single

NORMAL FORM:  f = z2z;3 + 7,23 + ziz; with

SINGULARITY AT P: D

Case (C3): f can be transformed into
f = zlz3 4 az,e? + ba,z1s + To73 + 7.

Now we choose a coordinate transformation as before to obtain for
p=2

NORMAL FORMS: f = 2223 + rz,2,2 + z,22 + 23, r € {0,1}

SINGULARITY AT P: Ej

In the remaining cases, we choose

T =T + a,, Ty =23+ ﬁxlr I3 =1ZI3 +‘e(xos 3:1,.179).
The condition @ = b = 0 is expressed by
b+28=0, a+ b8+ p%+3a=0,

which is solvable for p # 3. Thus we obtain for
p#23
NORMAL FORM: f = 223 + 2,73 + 2
SINGULARITY AT P:  Eg
p=3
NORMAL FORMS: f = zlz; + ra,z1205 + 7,22 + 23, r € {0, 1}



o

SINGULARITY AT P: Ej
(since for r = 0, the Tjurina number is 7 = 9, and for r = 1 we have 7 = 7).

Note,

that Schlafli and Cayley mistakenly give only one normal form for surfaces

with a singularity of type Dy ([S], p. 229). This was already remarked in [BW]. The
given form of Schlafli (loc. cit.) is easily seen to be equivalent to the one above for
r = 1. In characteristic 2, both cases r = 0,1 give even nonisomorphic singularities
of type Dy.
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