ONE REMARK ON CONSTRUCTION OF SEPARATED FACTOR-SPACE

Yu.A. Neretin

Max-Planck-Institut
für Mathematik
Gotfried-Claren-Str. 26
53225 Bonn

Moscow State Institute of Electronic and Mathematics Moscow, Novozavodskaya 25/11-6-27

RUSSIA

ONE REMARK ON CONSTRUCTION OF SEPARATED FACTOR-SPACE

Yu.A. Neretin
Datum 31 december 1995

Abstract. We discuss elementary constructions of boundaries of symmetric spaces.
?
Let M be a compact metric space. Let $M=\underset{\alpha \in A}{\cup} M_{\alpha}$ be a partition of M ($M_{\alpha} \cap M_{\beta}=\phi$ if $\alpha \neq \beta$). Then the factor-space A has canonical structure of a topological space. Recall that the set $P \subset A$ is closed if and only if $\cup_{\alpha \in P} M_{\alpha}$ is a closed subset in M. Let a_{1}, a_{2}, \ldots be a sequence in A. Let $a \in A$. Then $a_{j} \rightarrow a$ if there exist points $m_{j} \in M_{\alpha_{j}}, m \in M_{\alpha}$ such that $m_{j} \rightarrow m$ in M.

The space A is not need to be separated in Hausdorff sence. We are interested in the following question: how to construct separated analog of the factorspace A ?

1. Preliminaries. Hausdorff convergence

Let $N \subset M$ be a closed subset. Denote by M_{ε} the set of all points $m \in M$ satisfying the condition: there exist $n \in N$ such that $\rho(m, n)<\varepsilon$. Let [M$]$ be the space of all closed subsets in M. Hausdorff distance $d\left(N, N^{\prime}\right)$ in [M] between N and N^{\prime} is the infimum of $\varepsilon>0$ such that $N \subset N_{\varepsilon}^{\prime}$ and $N_{\varepsilon}^{\prime} \subset N$.

Recall that the metric space $[\mathrm{M}]$ is compact. Recall also two simple facts on Hausdorff convergence. Denote by \bar{S} the closure of the set S. Denote by $B_{\varepsilon}(m)$ the ball $\rho(m, n)<\varepsilon$.

Lemma 1. Let $N_{j} \in[M]$. Let $K_{\sigma}(\sigma \in \Sigma)$ be all limit points of the sequence N_{j}. Then
a) ${\overline{\bigcup_{\sigma \in \Sigma} K_{\sigma}}}$ coincides with the set of all $m \in M$ such that for all $\varepsilon>0$ the set $N_{j} \cap B_{\varepsilon}(m)$ is nonempty for infinite number of j.
b) $\cap_{\sigma \in \Sigma} K_{\sigma}$ coincides with the set of all $m \in M$ such that for all $\varepsilon>0$ the set $N_{j} \cap B_{\varepsilon}(m)$ is nonempty for sufficiently large j.

[^0]
2. Construction of separated factor-space

Let a partition $M=\cup_{\alpha \in A} M_{\alpha}$ satisfies the following condition
*) for each $B \subset A$ the set $\overline{\bigcup_{\alpha \in B} M_{\alpha}}$ is the union of elements of the partition.
Fix an open subset $\mathcal{A} \subset A$ such that factor-topology on \mathcal{A} is separated. Denote by $\tilde{\mathcal{A}} \subset[M]$ the set of subsets $\bar{M}_{\alpha}, \alpha \in \mathcal{A}$. Let our data satify the condition
**) the map $\alpha \leftrightarrow \overline{M_{\alpha}}$ is a homeomorphism of the spaces \mathcal{A} and $\tilde{\mathcal{A}}$.
Definition. The sepapated factor-space [[A]] is the closure of $\tilde{\mathcal{A}}$ in Hausdorff metrics.
Remark. Of course the construction depends on the set $\mathcal{A} \subset A$.

3. Description of the set [[A]]

By lemma 1 and the condition $*$) the elements $N \in[[A]]$ are unions of elements M_{α} of the partition. Hence we associate to each $N \in[[A]]$ subset $S_{N} \subset A$ of all $\sigma \in A$ such that $M_{\alpha} \subset N$. Denote by [A] the set of all subsets S_{N}. By construction we have canonical bijection $[[\mathrm{A}]] \leftrightarrow[\mathrm{A}]$.
? The following proposition is evident.
Lemma 2. Let $S \subset A$. Then the following conditions are equivalent
a) $S \in[A]$
b) There exist a sequence $a \in A$ such that each limit point of a_{j} is an element of S and each element $s \in S$ is a limit of the sequence a_{j} in yhe factor-topology on A.

Elements of $[A]$ we call admissible subsets.

4. Example: Complete collineations

Let M be the Grassmann manifold $G r_{n}$ of all n-dimensional subspaces in $\mathbb{C}^{n} \oplus \mathbb{C}^{n}$. Let $\lambda \in \mathbb{C}^{*}=\mathbb{C} \backslash 0$. Let $V \in G r_{n}$. Define the subspace λV :

$$
h \oplus p \in V \Leftrightarrow h \oplus \lambda p \in \lambda V
$$

where $h \in \mathbb{C}^{n} \oplus 0, p \in 0 \oplus \mathbb{C}^{n}$. Consider the partition of $G r_{n}$ into \mathbb{C}^{*}-orbits. Let $O p \subset G r_{n}$ be the space of graphs of invertible operators. Of course the space $O p$ coincide with the general linear group $G L_{n}(\mathbb{C})$. The factorspace $O p / \mathbb{C}^{*}=$ $G L_{n}(\mathbb{C}) / \mathbb{C}^{*}$ is the group $P G L_{n}(\mathbb{C})$ of invertible operators defined up to scalar multiplier.

We want to apply our construction to the space $M=G r_{n}$ and $\mathcal{A}=P G L_{n}(\mathbb{C})$. We have to describe all admissible subsets in $G r_{n} / \mathbb{C}^{*}$.
Example. Let $n=2$. Consider the sequence $Q_{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & n\end{array}\right) \in P G L_{2}(\mathbb{C})$. Then the set of limits of Q_{n} in $G r_{2} / \mathbb{C}^{*}$ consists of points $V_{1}, \ldots, V_{5}\left(=\right.$ subspaces in $\left.\mathbb{C}^{2} \oplus \mathbb{C}^{2}\right)$ enumerated below:

$$
\begin{array}{ll}
& V_{1}:(x, y ; 0,0) \\
& V_{2}:(x, y ; 0, y) \\
& V_{3}:(x, 0 ; 0, y) \\
& V_{4}:(x, 0 ; x, y) \\
& V_{5}:(0,0 ; x, y)
\end{array}
$$

where $x, y \in V$. The subspaces V_{1}, V_{3}, V_{5} are stable points of the group \mathbb{C}^{*}. The \mathbb{C}^{*}-orbits of V_{2}, V_{4} are 1 -dimensional complex curves.
Definition. Let $V \in G r_{n}$. Then
a) Kernel $\operatorname{Ker} V=V \cap\left(\mathbb{C}^{2} \oplus 0\right)$
b) Image $\operatorname{Im} V$ is the projection of V to $0 \oplus \mathbb{C}^{n}$.
c) Domain Dom V is the projection of V to $\mathbb{C}^{n} \oplus 0$.
d) Indefiniteness Indef $V=V \cap\left(0 \oplus \mathbb{C}^{n}\right)$.

Remark. Let $V \in G r_{n}$ Then the subspace V induces by the obvious way the invertible operator

$$
\operatorname{Dom} V / \operatorname{Ker} V \rightarrow \operatorname{Im} \mathrm{~V} / \operatorname{Indef} V
$$

We denote this operator by $\langle V\rangle$.
Definition. Hinge in \mathbb{C}^{n} is a collection

$$
\mathcal{P}=\left(Q_{0}, P_{1}, Q_{1}, P_{2}, Q_{2}, \ldots, P_{k}, Q_{k}\right)
$$

where Q_{j}, P_{j} are clements of $G r_{n}$ defined up to multiplier and
0.

$$
\begin{aligned}
& Q_{j}=\operatorname{Ker} Q_{j} \oplus \operatorname{Indef} Q_{j} \\
& P_{j} \neq \operatorname{Ker} P_{j} \oplus \operatorname{Indef} P_{j}
\end{aligned}
$$

1. For each $j=1,2, \ldots, k$

$$
\begin{aligned}
& \operatorname{Ker} P_{j}=\operatorname{Kcr} Q_{j}=\operatorname{Dom} P_{j+1} \\
& \operatorname{Im} P_{j}=\operatorname{Im} Q_{j}=\operatorname{Indef} P_{j+1}
\end{aligned}
$$

2.

$$
\begin{aligned}
& Q_{0}=\mathbb{C}^{n} \oplus 0 ; \operatorname{Dom} P_{1}=\mathbb{C}^{n} \\
& Q_{k}=0 \oplus \mathbb{C}^{n} ; \operatorname{Im} P_{k}=\mathbb{C}^{n} .
\end{aligned}
$$

Remark. Let P be the graph of an invertible operator $\mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. Then

$$
\left(\mathbb{C}^{n} \oplus 0, P, 0 \oplus \mathbb{C}^{n}\right)
$$

is a hinge.
Remark. The elements Q_{0}, \ldots, Q_{k+1} of a hinge are completely defined by the elements P_{1}, \ldots, P_{k}. The subspaces Q_{j} are fixed points of the group \mathbb{C}^{*}. The \mathbb{C}^{*} -orbits of P_{j} are 1-dimensional complex curves.

Theorem. The space $\left[P G L_{n}\right]$ of all admissible subsets in $G r_{n} / \mathbb{C}^{*}$ coincides with the space of all hinges.

The space $\left[P G L_{n}\right]$ coincide with the complete collineation space constructed by Semple (see [2]). It is a smooth algebraic variety and the group $P G L_{n}$ is an open dense subset in $\left[P G L_{n}\right]$. On equivalence of these two constructions see see [8]. Complete collineations is a partial case of complete symmetric varieties, see De Concini, Procesi [3].

5. Example. Furstenberg-Satake COMPACTIFICATION OF RIEMANNIAN SYMMETRIC SPACE

We will only discuss the case $P G L_{n}(\mathbb{R}) / S O(n)$. Consider the space $\mathbb{R}^{n} \oplus \mathbb{R}^{n}$ provided by a skew-symmetric bilinear form $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Let \mathcal{L} be the grassmannian of all Lagrangian subspaces in $\mathbb{R}^{n} \oplus \mathbb{R}^{n}$. Denote by \mathbb{R}^{*} the multiplicative group of real positive numbers. This group acts on \mathcal{L} by multiplications of linear relations on scalars.
${ }^{7}$ Denote by R the open subset in \mathcal{L} consisting of graphs of operators $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. It is easy to see that

$$
\{\text { matrix } S \text { is symmetric }\} \Leftrightarrow\{\text { the grapf of } S \text { is an element of } \mathcal{L}\}
$$

The group $G L_{n}(\mathbb{R})$ acts on R by the formula $g: S \mapsto g^{t} S g$. The stabilizer of the point $S=E$ is the orthogonal group $O(n)$. Hence $G L_{n}(\mathbb{R})$-orbit X of E is a homogeneous space $G L_{n}(\mathbb{R}) / O(n)$. Points of X correpond to positive definite matrices S.

Now we apply the construction of the sections $2-3$ to the space \mathcal{L} and to the open subset $X=G L_{n}(\mathbb{R}) / O(n)$. Then the completion consists of hinges

$$
P=\left(Q_{0}, P_{1}, Q_{1}, \ldots, P_{k}, Q_{k}\right)
$$

such that $P_{j} \in \mathcal{L}, Q_{j} \in \mathcal{L}$ and the operators $\left\langle P_{j}\right\rangle$ (see section 4) are positive definite.

6. Example. Boundary of Bruhat-Tits building

Let Q_{p} be a p-adic field. Let M be the space of all \mathbb{Z}_{p}-submodules in \mathbb{Q}_{p}. Let $B \subset M$ be the space of all lattices. The group \mathbb{Q}_{p}^{*} act on M in a natural way. Then the corresponding separated factor-space consists of collections

$$
\left(R_{0}, T_{1}, R_{1}, \ldots, T_{k}, R_{k}\right)
$$

where $0=R_{0} \subset T_{1} \subset R_{1} \subset T_{2} \ldots \subset R_{k}=\mathbb{Q}_{p}^{n}$ are elements of M defined up to multiplier, R_{j} are subspaces and images of T_{j} in R_{j} / R_{j-1} are lattices.

I thanks C. De Concini, S.L.Tregub and E.B.Vinberg for discussion of this subject.

Bibliography

1. E. Study, Über die Geometrie der Kegelschnitte, insbesondere deren charakteristische Probleme, Math. Ann., 27 (1886), 51-58.
2. I.G. Semple, The variety whose points represent complete collineations of S_{r} on S_{r}^{\prime}, Rend. Math. 10 (1951), 201-280.
3. Fürstenberg, H., A Poisson formula for semisimple Lie groups, Ann. of Math. (2) 77 (1963), 335-386.
4. Satake, I., On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. (2) 71 (1960), 77-110.
5. Alguneid, A.R., Complete quadrics primals in four dimensional space, Proc. Math. Phys. Soc. Egypt, 4 (1952), 93-104.
6. C. De Concini, C. Prochesi, Complete symmetric varieties, Lect. Notes Math., 996, 1-44.
7. Oshima, T., Sekiguchi, I., Eigenspaces of invariant differential operators on an affine symmetric space, Invent. Math. 57 (1980), 1-81.
8. Neretin, Yu. A., On universal completions of complex classical groups, Funct.Anal.Appl.,26:1.
9. Vinberg E.B., On reductive algebraic semigroups, Adv.Sov.Math., volume dedicated to E.B.Dynkin, to appear.
10. Neretin Yu.A., Hinges and Study-Semple-Furstenberg-Satake-De Concini-Procesi- Oshima boundary, to appear.
[^1]
[^0]: Key words and phrases. Hausdorff distance, symmetric space,complete collineations, complete symmetric varieties, linear relation, Satake- Furstenberg boundary, Bruhat-Tits building.

[^1]: `Adress Moscow State Institute of electronic and mathematics Current address: Max-Planck-Institute fur Mathematik, Bonn E-mail address: neretin@ mpim-bonn.mpg.de ; neretin@ matan.miemstu.msk.su

