ON THE SHARPNESS OF NOVIKOV TYPE
INEQUALITIES FOR MANIFOLDS WITH FREE
ABELIAN FUNDAMENTAL GROUPS

A.V. Pazhitnov
Max-Planck-Institut Institute of chemical physics
fiir Mathematik AN USSR, 117977
Gottfried—Claren—Strafie 26 Moscow, Kosygin str., 4

D—5300 Bonn 3
USSR

Federal Republic of Germany

MPI/90—61






( To appear in Math. USSR - S4.
69 (1931) ne. 2. )

ON THE SHARPNESS OF NOVIKOV TYPE INEQUALITIES

‘FOR"MANIFOLDS WITH FREE ABELIAN FUNDAMENTAL GROUPS

-,
A}

UDC 515.164.174

Pazhitnov A.V,.

In papers [l],[2] S.P. Novikov has constructed an analogue
of Morse theory for "multivalued Morse functions", i.e. for
closed but, generally, non-exact Morse l-forms on smooth mani-
folds. Recal; that a closed l-form & on a smooth manifold M"
is called a Morse form, if all the zeros of &} are nondegene-
rate, or, equivalently, if locally &) = dh, where h 1is a Morse
function. In this case the index indccd of each zero ¢ of
the form w is defined. Denote mp(u)) the number of zeros of
the form & of index p. _ |

One of the Sasic problems of this theory in the finite-di-
mensional case is the following: for a given cohomology class
ge. Hl(M, R} find the numbers cp(M, ; ), where O <« p< n,
providing the lower estimates (sharp if possible) for the Morse

numbers mp(u&) of any form W , belonging to the class ;

ml,,(w)? o (M,IwJ),osf:sry (0.1)

Recall that the estimates (0.1l) are said fo be skarP for a
manifold M and a class & if there exists a Morse l1-form @,
belonging to f , such that inequalities (0.1l) appear to be
equalities for all p.

For & = O the estimates (0.l) are provided by Morse in-
equalities; in this case cp(Mn, 0) = Bp(M) + qP(M) + qp_l(M),

_ where bp(M) stande .fer the rank of Hp(M) and qp(M) - for
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the torsion number of HP(M) (i.e. the minimal number of gene-
rators of torsion subgroup. Tors Hp(M)). .

For .ﬂan =0, n %6 these estimates areAsharp (Smale's
theorem [3]). |

For any cohomolog}y class F K= Hl(M, R) (and also for any
form W :[wJ = ; ) we define the ir;ationality degree of 5‘ -to
be the maximal number of Q-linearly independent periods of
(or, equivalently, the rank of Im(g': JTlM — R)). The forms

w of irrationality degree 1 will be called rational.

. For a class ; # O having irraticnality degree 1 (these
are exactly the multiples of the integer classes) the estimates
(0.1) were suggested by S.P. Novikov [l],[Z] (cf. later). The
sharpngssAof these estimatés for the case ﬂiMn =Z, nx2 6
has been proved by M.Sh. Farber [4]. A -

For ﬂlM =% any Morse l-form is up to the positive cons-
tant the differential of the Morse map M — Sl; thus the
fshaqmess problem is equivaient to the problem of constructing
a Morsemap f : M —» Sl_ with a minimal number of critical
points of all indices. The necessary and sufficient condition

1 without critical points

-0f existence of a map. f: M—w=S

(i.e. fibration) was supplied by W. Browder and J. Levine [5]
(it's easy to check the equivalence of this condition to the
condition arising-from Novikov inequalities).

The main purpose of the present paper is to obtain the
estimates of the type (0.1) for the forms of arbitrary irratio-
nality degree and to prove the sharpness of the estimates ob-
tained for generic cohomology classes [yq] and manifolds M"

satisfying Jl'an =z™, n 7% 6 (and some additional homotopical
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restrictions; for precise formulation see theorem 0.1 below).
These results were partly announced in- [6].

We begin with definitions (cf. [1],[2]).

Let G be a group, 3’: G — R - a homomorphism. Denote
by A the group ring Z[GJ. Consider the set of all linear com-

binations (infinite- in general) )\ = E ngg, such that the
C geG

intersection of supp p) (where supp A= {g]ng 7! O} C G) with
any set {g );(g) p c} is finite. It is easy to see that the
resulting abelian group is a ring. We denote it by A; (Note,
that A; is the 'completiorhu of A with respect to the system
of subrings, but not ideals.)

For G ='E£ the group ring A =z[c] =E[ti'l, ceey tzl]
is the ring of Laurent polynomials with integer coefficients;
the. completion A_; i's the ring of all the power series A =

{

for ahy c the set supp A cecntains only finite number of in-

=.;5AItI (where I = (il,...,r 1,) G'ZZ"’), AIG Z), such that

.dices I, satisfying §(I) » c. The ring Z[Z] will be further
denoted by L. For (=1, ¢# O the ring _A_;, (denoted further
by L ) is the ring of all integer Laurent power series with the
finite negative part (we suppose that g(l) < Q).

Next we recall some results from [1],[2].

Let «wW be a Morée l1-form on a manifgid M (M having an ar-
bitrary fundamental group); denote f & Hl(M, R) its cohomolo-
gy class. Consider the minimal cover;ng p : ﬁr; —> M, for which
the pullback of w is exact: p*cu = df. This covering corres-
ponds to the subgroup Ker( ;: JTlM —-r R) << JTlM and is regular

with the structure group 'Ee,' where 6 is irrationality degree

of W. The critical points of £ : M? —> R and the paths of

§
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steepest descent of f give rise to Novikov complex C;(E; S0 ).
The latter is an analogue of Morse complex of a single-valued

function f on a compact manifold M. Novikov complex is a free

g where A= Z[‘ZZ.CJ

finitely generated complex over the ring /L

(note that homomorphism g factors through 12‘ by definition).
The number of free j\;-generators of Cp(ﬁ?,u)) equals mp(uJ).
Homology H*(C*(M?,u))) is isomorphic to homology
H, (C, (M) ) @ A)-

A S

Consider for instance a cohomology ciass ‘g of irrationali-
ty degree 1. The covering ME — M" is infinite cyclic. The
ring 1\; is the ring T =’E[[t]][t-l], which is known to be a
principal ideal domain. For any finitely generated module M
over a principal ideal domain R the rank b(M) and the tor-
sion number g (M) are defined; for any free finitely generated
R-complex C, £he number of free. generators ‘P(Cp) is not

G(H, () 4 (Hy(C)) + 4 (M, (0x)

Hence, for rational forms
mP(w)a 5(#,, (/‘7})? Z)«L iﬁf?(/qg)f Z,>+¢ (#P‘f(@)?2> (0.2

(see T1],[2]); see also [4]} for another proof).

J.-C. Sikorav proved (see for a proof § 1 of the present
paper) .that for any k the completion J\; of the ring j& =
='E[ﬂ.k] with respect to a homomorphism. ¥ : zX >R of a ma-
ximal irrationality degree k 1is a principal ideal domain.

- Therefore the same argument as above emables us to obtain the
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aﬁalogues of (0.2) for the forms of arbitrary irrationality
degree.

We will need still another variant of these inequalities,
dealing with forms of arbitrary irrationality degree, but aris-
ing from maximal free abelian covering. To produce it we need
one more algebfaic lemma.

Namely, let m = rkHl(M) and ;onsider a class 'fe:Hl(Mf R)
of the maximal irrationality degree m. Dencte by bp(M,g ) the

rank and by qp(M,§ ) the torsion number of .the module

Hp(c*(ﬁ) ® A;) , where M — M stands for a 'sz-coveriflg, cor-

responding to the homomorphism ;IlM — HlM/Tors HlM,J&==z[zm].

For [w] =% we have

m'f,(f&) > %(M, 5)"‘@7,,(/‘4, ¢) 9 py (M.¢) (0.3)

One easily proves that bp(M, g ) does not aepend on §
J.-C. Sikorav has also éroven that qp(M, £ ) does not depend
on g in any connected component of the complement in ‘
Hl(M, R) = R" to the finite union f; of hyperplanes [I’
each of which is determined by a linear equation with integer
cdefficients (see §l of the present paper). Note, by the way,

that the definition implies

9 (M;[WJ):C}),P (M) c[w_])) lc>o.

Now let & be any element of Hl(M, R) \ g Fl. We set by

definition qp(M,g ) = g (M, g'), where g' is an arbitrary ma-

p

ximally irrational class, sufficiently close to & . Suppose that

w is a Morse l-form, such that [w]} € X (M, R) \ U F}. Approxi-
i

mating w with the maxtmally irrational forms we obtain the
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inequalities (0.3) also for the puﬂqhﬁduénﬂf—nwmwmuJ)arbitrary-
cohomology class [w]eH (M, R) \ U F'

Our notations differ here from that of Ll] L?] In these,
papers bp(M, ), qp(M, ) stand for numbers which we denoted
by b(Hp(ﬁg ) f T ), q(H (M§ ) @ T ). Still these notations
correspond rather well to one another. Namely, lemma 2.6 from
§2' asserts that for rational cohomology classes g , belonging
1)

’

to some dense conical open set U we have

bp(M'E) b(H (Mg)ﬁ L)f qp( ;)—qH(M§)® L)
Now we can state the main theorem of the present paper.
Theorem 0.1. Let M" be a smooth compact connected mani-

fold without boundary, Tran =2Z™, n3 6. Suppose that for

some r: 2 £ r £ n-4 the homology Hp(ﬁn) of the universal

cover vanishes.for r-1 € p € r+2.

Then there exXists an open dense conical subset ﬁ c:Hl(M, R) =

Rm, such that any ¥ & U can be realized.by a Morse l-form

w : [w] = Yy + which has the minimal possible number of zeros

of any index p in the class ¥y this number being equal to

the righthand side of (0.3).

Applying lemma 2.6 frém $ 2 we immediately deduce from
here the result concerning the sharpness of classical Novikov

inequalities (0.1).

Corollary 0.2. Under the assumptions of theorem 0.1 there

1) A subset U c:mm is called conical if x e U > txe U

for every t > O.
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1 m

exists the conical dense open set V < H (M, R) =R, such that
ﬁor any rational cohomology class Y€ V the Novikov inequaliti-
es (0.1) are sharp (i.e. any rational Xes V ' can be realized
by a Morse form u)iwith mp(u}) equal to the righthand side of
(0.1)). |

m

Corollary 0.3. For a smooth manifold M?  with .Nan =7,

n 2 6 and U four-conné&ted, there exists a conical dense
open set U ClHl(M, R)., such that any integer class £ € U can
be realized by a Morse map' E: M — Sl, which has the minimal
possible number of zeros of any index p in the class g .
Denote by mp([w]) the righthand side of (0.3). InvtheA

proof of theorem 0.1 we use actually not the vanishing of the

universal cover homology, but the weaker condition m.(y) =

mr+l(5) = mr+2(x)'= 0. Hence we get |
Corollary 0.4. For a smooth manifold M® with len =z",
n »6, the set of cohomology classes )€ Hl(M, R) , realizable
1

(up to multiplicative cbnstaﬁt) by é fibration M —» §7, is
contained in the open cone V< Hl(M, R}, which ié determined
by the condition m*(x') = 0. This cone contains an open dense
subset Vo’ any rational class of which is realized by a fib- .
ration. |

This corollary gives a partial generalization (for diﬁensions
26) of Thurston's result [7], concerning the fibrations of 3-
manifolds over a circle.

It is natural~; to ask if one can weaken the assumptions of
theorem 0.1, keeping the conclusion. The Morse l-form @ is

called minimal if it has the minimal possible number of zeros

W
(e}

of all indices in its cohomology class [Mﬂﬂ If ﬁiMn ='Zm, n
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and JtE Hl(M, R) 1is an arbitrary cohomeclogy class the préblem
of existence of a minimal form in Y ’seems to be rather diffi-
cult. Indeed, if Y = O this problem is just the problem of
existence of minimal Morse functions on the manifolds with free
abelian fundamental groups. The latter problem is not yet comp-
letely solved; a detailed treatment can be found in [87,[9]. Ta-
king into account the theorem 0.1 we can describe the situation
as following. We treat Morse lﬁférmé as multivalued Morse func-
tions; the monodromy of each function of this type is given by

m real numbers. The condition of zero monodromy (corresponding
to usual Morse functions) proves to be too rigid for the known
methods to deform the function into minimal one. If the class

J is of a general position {actually it is sufficient that X is
close enough to some class 5’0, having the Q-linearly independent
periods) the Morse form belonging to U can be deformed into
minimal one.

It's now natural to state-the conjecture: tﬂe set of cchomo-
logy classes 3’65 Hl(M, R) = R", realizable by minimal Morse
forms, contains the complement to finite union of hyperplanes,
determ;ned by linear equations with' integer coefficien;s. This
hyperplanes corresponpd to "uncomfortable" monocdromy conditions.
fhe set of these‘hyperplanes must contain the hyperplanes f;
mentioned above and maybe smth. else.

The restriction

m‘&(f)?’m’wf(ﬂ:””u.z(a’)=0

is imposed for technical reasons. Still the author does not

know if it is removable.
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Now we'll sketch the main idea of the proof of theorem 0.1
and the contents of the paper.
§§'l, 2 include the proof (not published before) of J.-C.

Sikorav's theorems on the euclidean property of Novikov ring and

on the numbers q*(M,g ). We also prove here that in many cases
one can replace the NoQikov ring j\; by a suitable localization
A of the ringg/L. (This is essential for the proof of theo-

(%)

rem 0.1.) We also prove here that for a generic rational class
I the number bp(M,§ ) coincide with the rank of the module

Hp(ﬁ§ ) @ T, and the number qp(M,g ) - with its torsion number.
L‘ '

In §3 we prove the Poincare duality formula for Novikov .
homology.

§§ 4, 5 contain some auxiliary material. We recall here
the results on Morse functions on the cobordisms, due to V.V.
Sharko ( $4) and prove some algebraic lemmas ( $5).

In § 6 we produce two another proofs of inequalities (0.3).
They usé only Morse theory for the functions on the compact
" manifolds with boundary. These proofs are formally independent
of the properties of Novikov complex, which was discussed above
to'clarifj the roots of the present work. Thus the present work
is self-contained. The first proof makes use of the algebraic
lemmas of § 2 and reduces the problem to the case of cyclic
covering; then we refer to [4]. The second proof is independent
of [4]. In §6 we also state some algebraic conjecture; if it
holds, the second proof provides the general Morse type estima-
tes for rational forms, similar to [é].

$ § 7, .8, 9 are devoted directly to the proof of theorem 0.1.

It is sufficient to"prove this theorem for the rational
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cohomology classes of géneral position. We'll prove it for any

‘rational class Y » which is sufficiently close to the maximally

irrational class y'. The point is that in this case the modu- -

les H*(ﬁn,jX have the resolutions of length two (although

()
the ring I\(J) is not the principal ideal domain). This enables
us to apply here the scheme of proof of sharpness due to Brow-
der-Levine-Farrell-Farber (6$7, 8). Instead of . Smale's theo-
rem on the minimal functions on‘simply-connected manifolds we
use the corresponding Sharko's result [8].

The Browder-Levine-Farrell-Farber scheme does not work
through directly. We ‘use here the non-simply-connected:surgery
and while constructing the Morse form sought we come across the

obstruction of Farrell type [10]. (To define this obstruction

correctly we need the vanishing of H*(Mn) in four successive

m-l])

dimensions.) The obstruction lies in a zero group C(E[Z
(see [10]) but we need to realize this vanishing geometrically
which requires some extra arguments ( § 9).

‘The author is grateful to S.P. Novikov for attention to the
work and valuable discussions. The authqr is also grateful to
J.-C. Sikorav and V.V. Sharko for the Qery timely information
of their results and also to P.M. Akhmetiev, O.Ya. Viro, V.L.
Kobel'skii, A.S. Mischenko, Yu.P. Soloviev, V.G. Turaev and

V.V. Sharko for valuable discussions.

$1. The Novikov ring is euclidean

Denote Z[‘Ed] =Za[til,..., tzl] by A and let ;:‘ZZ‘C -+ R

be a homomorphism. Recall from the introduction that Novikov ring

1(% consists of power series N = 4Zja1 tT (where I = (i, «eny
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ic)(—_‘ ‘Zd) . such that for every ¢ the domain §>, ¢ contains
only finite number of indices I, belonging to supp A (recall
that suppA = {II ap # o).

Theorem 1l.1. (J.~C. Sikorav). If 5 : Ze — R 1s a mono-

morphism, then j\'- is euclidean.

1

Proof. First of all note that injectivity of ; implies
that for any c € R the set {g(x) = C } contains at most one

element. Therefore any element A of the ring_[\; .contains a

principal term ar tIO, which is uniquely determined. For
o]

AeA; we define the height h())€ R and the norm [[Aflez ,

setting h(A) = E (1), mg I = ]aI [. we'll prove that j\; is
o

euclidean with respect to this norm.
13

remainder. Without losing generality we may assume that the

Suppose that A,B € /\,. We are to divide A by B with a
principal terms of these power series are ao-ﬂ, bo-ﬂ (. stands
- for the unit of the group Z ).

Divide a, by bO with a remainder: a, = m0b0»+ dy-

If q,  # 0, then A =mpB + Q where fall= lag - mobol =
= ,qo‘<:lbo\ and the division is over. If not, apply the same
procedure to the power series Q. Going on in the same fashion,
we construct the sequence of polynomials M and the segquence

i
of Power serlesl Q;, such that. A =.M;B +Q;, M/, = My + o
where u, ., is a monomial, located lower (with respect to § ),
than any monomial of Mi; h('“1+1’ = h(Qi). ;f at some step we
obtain ”Qi” < \bol = ||BJ , then our sequence stops and the di-

vision is over. If this never happens, consider the power series

00 .
M = iéo‘ Ai+ I claim that M eA;.



-12-

Indeed, let £ = Ih(B - bo-n)l. Suppose that we've already
proved that only finite number of mopomials Fs is located above
the level ( g = -Ng ), and let -Ph+l‘be the first monomial lying
below this level. Denote K the number of monomials of the
power series én’ lying in the stfatum-(N+l)€<§ £ -Neg . It.is
clear that :Ph+l+K lies below the level & = -(N+1)& . Thus
M € A and it's clear that A = MB.

Rgmark 1.2. Consider 'Ze as a lattice in Rc and extend

& to a linear functional on RC. Consider the cone CC Re,
formed by intersection of a finite number of half-spaces and
lying in the domain ( 5‘$ 0). One deduces easily from the proof
of theorem 1.1 that if all the monomials of a, b are contain-
ed iﬁ C , then the mbnomials of Q,M also are contained in C.

4

Definition 1.3. Let X : 2 —%né . be any homomorphism (not
necessary injective). Define the multiplicative subset ch:j&
as following: SH =4{1 + P}, where all the monomials of P be;
long to the domain ¥ < 0.°(If y is injective, S is just the
set of polynomials with the principal term equal to 1l.) Set
11(3) =sTIA .

Theorem 1.4. Let 5 : Z? —» R be a monomorphism. Then
J\(g)“ is euclidean.

Proof. We introduce some notations. Suppose that e = {el,
ey ee} is a collection of independent integer vectors in
me, such that f(ei)<: O. Denote by M(e) the set of all 1li-

near combinations of e, with integer nonnegative coefficients,

i

o ¢
by C({e) - the cone in Rﬂ, generated by the vectors' e, by
M(e) - intersection of ’Ze and C(e); by Z[M(e)], 'Zz[ﬁ(e)] -

the subrings of.f&, generated by monomials whose exponents belong

-
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to M(e) (correspondingly to M(e)). The ring zZ[M(e)] is iso-
morphic to the polynomial ring Z[ul,... ,uc]. The ring 'Z[ﬁ(e)]
is fiﬁitely generated as a module over its sub ring Z[M(e)],

- therefore it is noetherian.

Consider the ideal I cz[ﬁ(e)],consisting of all Laurent
polynomials having the zero coefficient at 1. The ring of all
the power series in monomials, belonging to f&'(e) ’ cdincides
with the completion of 'Z[fv"l(e)] with respect to I (and is con-

tained in A_). Consider the localization

SE) L ZIF ()], whexe S(e)=1+1c Z LM ().

~ ~ .
The ring 'Z‘Z[M(e):' is a faithfully flat module over the ring

S(e)'-l'z[ﬁ(e)] (since the latter is Zarisky ring; see [ 11, ch.III,
§3]). This implies that the equation ax = b, where a,b &
S(é)-lz[ﬁ(ei] , has a solution in 'Z[ﬁ(e)]A if and only if it
has a solution in S(e)-ll[ﬁ(e)].

Now we can prove the theorem 1.4. The ring A( is con-

§)

tained in A;_ and inherits from there the norm || |l

We'll show that A\ is euclidean with respect to this

(£)
norm. It suffices to divfde a by b, where a,b€/A , h(a) =
h{(b) = 0. Apply now the division procedure described above.

If it finishes after finite number of steps, we have a = mb + g,
where m,qg eA and the division is over. If not, we have a =

= bx, where x & A; Choose.any collection e = {el,..., eﬂ}.

of vectors for which supp a,supp b« C(e). Then a,b & Z[ﬁ(e)]

—~ ~
and remark 1.2 implies that  x& 'ZZ[M(e)} + hence

-1 ~
x € ,S‘(e) Z[ M (@DJCA(;)-

Q.E.D.
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g

since they both are principal ideal domains

Remark 1.5. The ring A iggéaithfully flét module over

its sub”fing 1\(5),

and a ¢ /\(gy is invertible in [\( if and only if it is

invertible in A; (see [11, ¢ 1.

)

Thus /\; and jl(g) have the same homological properties.

has some technical advantages over the ring A

3

The rJ".ng _A (E) |
the replacement of /\; by /X(g)

proof of the exactness theorem.

is used essentially in the

Remark 1.6. For (=1 the faithful flatness of A _ =

5
=7 [[t]][t-l] over A = -l'ZZ[t, t_l] is well known (see [11,

) " 5%
ch. 3]). This property implies that the equation Px = Q where
p,0 €z[t, t™1] is solvable in Z[[t]]1[t™!]) if and only if it
is solvable-in S *zft, t™1] (where s is the multiplicative
;ubset {l + tP(t)}). This fact was known already to Hurwitz

(see [12, problem 156]).

§2. The numbers b, (¥), q,(&)

Suppose that C, is a free finitely generated complex over
A = ’ZZ[E?’] and § : 28 >R is a monomorphism. Consider the

complex S-lC* = C, ® [\(g). The homology modules
A

+9;9("Ci*:g§.zl(§j) = H, (C, )j%il/yﬁ;) | !

are finitely generated over principal ideal domain /& there-

(5)°

fore the rank bp(C*,g') and the torsion number qp(C*,g ) of

are defined (the torsion number of

3

a module is by definition the minimal number of generators in

the module H _(C,) @ A
P

the submodule of torsion elements). For a manifold M" and a

1

~.. Maximally irrational £ € H (M, R) we set bp(M,;') = bpﬂ;(ﬁ)fg).
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qp(M,g y = qp(C*(H),g ), where M —> M is the maximal free

abelian cover. Note that in the introduction we defined these

numbers using the modules H,(C, (M) ® j&;); these two defini-
A -

tions are the same. Indeed the faith. flatness of Jl_ over J\
| £ 5 (5)

ACf) 6
Next we'll study the behaviour of b (C* £), q (C*,§ ),
where C, 1is fixed and § varies. For this purpose we .need
lemma 2.1. Denote by M the set of all monomorphisms 'Ee —r R,
M C?Re.

Lemma 2.1. Let al,...,ane;/\ . Then the set of £ 6 for

which the greatest common divisor of elements Ay eeer A, (abb-
reviated further as g.c.d. (aj,..., a)) in,/L(g) is equal
to 1, is the intersection of M and several components (maybe

none at all) of the complement U = me \lJ r; in Re to the
i

finite union of some integer hyperplanes (i.e. hyperplanes, de-
termined by linear equations with integer coefficients) FACZERE.
Proof. Denote by AA the g.c.d. of elements Ayr-eer @y

in the unique factorization domain /&. Then the set sought con-
sists of those g's for which the principal coefficient of po-
lynomia% A with respect to ¢ is equal to 1. Denote by <{A)
the convex hull in me of the subset supp A.C.me. For an edge

¥ of the polyhedron (A ) denote by f} the hyperplane in

€

Hom(Z ", R) = R , consisting of all the homomorphismé ;, vanish-

ing on ¥ . The lemma is now obvious: the set U is Rc'\lJ r;,
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Theorem 2.2. (J.-C. Sikorav). 1. The number bp(c*,g)

does not depend on f ; it is equal to the rank of the module
H_(C,) ® {‘A_} over the fraction field{A} of A .
PTA

2. There exists a finite collection of integer hyperplanes
fz_C.Hom(ZE,EU =R , such that qp(c*,g ) does not depend on’
£in any connected component of me-\\J rl.

i

Proof. 1. The module

o (Cr 8L (y) = A, (C) 844,y

can be presented as a sum of a free module of rank bp(C*,g }
and a torsion module. When we pass to }A}, which means additio-

nal localization, the torsion module disappears and the free

module of rank bp(C*,g ) survives.
2. Recall that the pth torsion number qp for a complex
Doy 2,
Pt P pt7

over a principal ideal domain can be calculated as follows. Con-
sider the matrix D of the homomorphism ap._Denote by d_ the
g.c.d. of the r-minors of D and by S - the greatest r for.
which dr = 1. Then qp,= rk D - 4.

Now our assertion is easily deduced from lemma 2.1.

Remark 2.3. One can prove (similar to [13],[14]) that the
.number bp(C*, E) is qual to the dimension of pﬁh homology
of C, with coefficients in l-dimensioﬂal local system,deter-
mined by a generic representation p : ti —)f:)(ti) &€ €. The
numbers bp(C*,f ) can be computed in terms of usual homology
with real coefficients and Massey operations, see [13].

4

Now let § ‘be a homomorphism Z~ — R, whtth is not con-
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tained in lei. Define the numbers bp(C*,}') = bp(C*),qu;,f)
by setting bp(C*,g') = bp(C*, E') qp(C*,§ ) = qP(C*, t'), where
E' is any maximally irrational homomorphism sufficiently close

"to f.

The numbers M), qp(M,_f) 2) are defined and calculated

bp(

in terms of maximal free abelian covering ﬁ\—# M. .It appears
however that for a generic class ¥ they can be computed in
terms of cyclic cove;ing M - M and coincide with correspond-
ing classical Novikov numbers of [lJ,[zj.

To prove this we need a simple lemma (which we'll use also
many times in the sequel).

Lemma 2.4. Let M, N be finitely generated mcdules over
a noetherian commutative ring W, and S be a multiplicative
subset of W. For O € W we denote S(c) the multiplicative

subset, generated by 6.

Then 1) if £ : SdlM —r S_lN is a homomorphism of s'lw-

. -1 -1
modules then there exist o €W and f(c) : (c)M — S(G)
such that S—lf(c) = £;
' -1 -1
1 ! . - -
2) if e &€ W and f(e),f(e) : (e)M —+~S(e) are homo
. -1 -1 _ _ amlov
morphisms of S(e)w modules, such that § f(e) = f =8 f(e),
; -1 R | '
then theF? exists o' € W, such that S(G o) ( y = S(c'e)f(e)
3) if £ : S-lM —> S-lN is an isomorphism then there
) -1 -1
exists o &€ W and f(o) : (ch —> S( o) N, such that f(c) is
an isomorphism and S 1f = f

Proof. 1) Denote by Mo’ NO the kernels of localization

2) Our definitions here differ from the standard ones: usual-

1y bp(M) denotes the pth Betti number of M.
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maps M —> s-lM, N — s~ In; they are finitely generated, since

W 1is noetherian.

Consider any 3'6 S, annihilating both MO and NO. The lo-

calization maps S(H)M-—¢ S lM, S?;)N —» s"IN are injective.

Pick any finite system of generators m, of M. There exists

: -1
Y€ S, such that f(mi) e;S 3) Thus the modules S(;A)M’
S?;Q)N are the submodules of S °M and correspondingly of s,
and f sends one of them into the other. Now we set G = 5) ’

_ -1
£ o) _.fls(xg)m

The first claim of the lemma is proved.
-1

2) The homomorphisms S(H)f(e) and S(K) both are
restrictions of the homomorphism £ : S-lM - 5 lN to submodule
-1 -1

M S M.
S(QE) <

3) follows from the first two points.

Corollary 2.5. Let C_ and D, be finitely generated free
complexes over a.commutative noetherian ring W. Suppose that
S_lc*'v S_lﬁ*. Then for some O € W we have

1

A
St C% - S(o*) g’b%

Return now to numbers b,, g,. Let é* be a free finitely
generated complex over the ring A ='z['zak]. Let £ : z¥ > ® be
a homomorphiém: of irrationality degree 1. The image of f is
isomorphic to Z. Denote by (_f) the homomorphism of the group
rings 1\_—%JZEE] = L which is obtained from the composition of
;‘ cz¥ >z with (-1) :Z —>Z by passing to group rings ((-l)

is due to our sign conventions). Denote by S < L the multi-

plicative subset, consisting of Laurent polynomials with prin-
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cipal coefficient 1. Set

£ (Ce,£) ———tkg‘(#{f,(d,&gﬁ{_i),

%, (o 2)= g (o (e 8870)).

Here the structure of A -module on S-lL. is defined via homo-
morphism () : A—1 s L (so the s™ip -rﬁpdule Hp(c,Ir @S-JL)
depends on I3 ).

Lemma 2.6. Any maximally irrational homomorphism 3: Zk -+ R
possesses an open conical neighbourhood . U(g )  in the set

HomZX, R), such that the following equalities hold for F€& U(Y):

& (C*)Z>:/9F (Ce 8D, 75 (C{faé/) ’gep(cx.ff)

Proof. Consider for all p isomorphisms

gy 20 (Ce ),
#(C')@A()f»(@A >@(J§i A(w/ap Agy )

where ajgp)éA ='ZZ[ZZkJ is divisible in __A by aé?i and
X—principal terms of Laurent polynomials aép). are eqﬁal to
oL:gp) .1, where oL]gp)é Z, d J(p) # + 1. Consider the free fi-
nitely generated J&-complex' D,, defined as follows. The module

D is the sum of free modules F_, E_, Bp of the ranks corres-

P p b
pondingly bp(C*,X), qp(C*,X), qp_l(c*,g). The differential
dp : Dp —> Dp—l vanishes on Fp i 3P and sends the kth free

generator by ‘of the module B; to the element a}((p)-ek where
ey is the kth free generator of the module Ep. It is known
that any complex over principal ideal domain is homotopy equiva-

lent to a standard one like this; from this we easily deduce
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that ¢, @ A (3) is homotopy equivalent to D, ® A () Since
.A.is noetherian, C, and D, become equivalent when localized N
with respect to the‘multiplicative subset generated by a single

element O g S {see lemma 2.6). Consider now any rational ho-

5
momorphism g :-zk —» Q@ which is close enough to Y + SO that
1) each polynomial ajfp) has only one g—principal term, name-

: (P) .4 .
ly oLj 1 ; 2) & Sg. The .complexes C, @A(;), D, @A(g)

are homotopy equivalent over /&( ) The homomorphism (g) : A —

—» 5”1 can be factored through S}lA = A(;) and to calcu-

late the homology of C, @ S_lL we can use the complex

@* ®A(£)® S_ii.r— @*}1@— S L

The complex D, is described above; using 1) we’easily get
€ (Cx
#/(;2) ® 35~ (@3 L)EB

%GB( %, 0 S—1L /&,(P)S-4L )

1 ’ ’

where Ejfp) e sy, 'é{j(p) : ~j(p)l ; the Y -principal coefficient

of P g equal to oLJ!p) # +1. Now the lemma follows eavsily.
The argument applied here will often be used in the sequel..
Remark 2.7. It is easy to see that for any connected mani-

fold M and any maximally irrational € Hl(M, R) the numbers

bo(g) and qo(g) vanish. Indeed, the module HO(F‘.I) ~ Z 1is

annihilated by any element of ’E[ZEJ of the type 1 - t, where

t 622.6. Choosing t e-zz.e with g‘(t)-< 0O we get S-lHo(l\_‘l) = 0.
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§3. Duality properties

Re#all first the formulation of Poincare duality for non-
simply-connected manifolds.

Let M" be a smooth manifold (not necessary orientable).
The universal covering . MY is equipped with the fundamental
n-cycle U (infinite in general). The intersection /) U_ defines
an isomorphism D between cohomology Hc*(ﬁn, Z) with compact

support and homology Hn_*(Mn,‘Z). Define the automorphism X

of the group ring Z [JT]_M] by setting X(g) = E(g)g-l, where
g € J,M, €(g) = -1 if the orientation ‘of M is changed
along y and £(g) =1 1if not.

1
lian (we'll need only this case in the present paper).

To simplify the statements we'll suppose that J.M is abe-

Homology and cohomplogy groups of M are the Z [ﬂiM ]—mo—
dules, and the isomorphism D 1is subjected to the following
commutativity relation: D(gx) = X]g)D(x). Isomorphisms of
that kind are called X-isomorphisms. Thus we have the X-iso-

morphism of 2 [JTlM] -modules

W T) 4, ().

Note that there exists the natural isomorphism of =z EF&MJ—

modules

HF (/VI Z) Hy (F/omz[ M](C (M) Z(=, M]))

- For a 'E[}TlM] -module G we denote the modules

o (ﬂomZﬁGM] (C*//qk), QJ),

He (¢, /M)Z%])
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*
by H (M', G), H,(M", G).

Thus we have the X-isomorphism of Z LJTlM_] -modules

D H(M, Z[??,MJ)—?#/,L_* (/Of) (3.1)

Now we turn to the case JI M = Ze. Set A=‘ZZ[JT1M]. Let

‘b/ be a homomorphism 'Ee —~ R (not necessari;y injective). It

is clear that X sends Sy to S"E and thus defines an iso-
—- A

morphism X : A (=41 Localizing D, we get the follow-

(5)

ing lemma.

Lemma 3.1. There exists a X-isomorphism

_@ #F‘( _/l())—’ "'P[ A(__)> (3.2)

of A‘X’ -module (left) andA(_b,) -module (right).
. Module G over a ring W is called principal, if it is
isomorphic to a direct sum 6f modules of the type W/aW (where

a &€ W). Suppose now that all the modules i(NI A are

(6)

principal for r g p and fix the decompositions

/gt ol v
H, (M”™ Am) (@11&(&,))@( 1/1(3)/“6”/%))

0 €T 575.
. Applying lemma 5.1 from §5 (which provides the standard
presentation for a complex with principal'homology) to the comp-

lex (M ) @ A ;, we get

m(M AQ(J) N(Ga A(ar) ) @
@(jci"/i(!) /Qt'[z—i')/k(ﬂ ) y 0TS

Now the Poincare duality (3.2) implies

(3.3)

A

f .
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}n-?,
#(M A((r))( (a’))@

gt n-q -1
68(@ Af*a’)/%(‘?i e )-/l(-a,) ))fz-psa}gn_
4

Corollary 3.2. For a monomorphism Y ¢ Z7 — R,

(3.4)

Ce=trt , 200¥) =Gn 2 4 (¥
Proof. First equality follows immediately from the above.
To prove the second we recall that for any module N over a
principal ideal domain R the_number qk(N) equals the number
of nonzero ideals J in any decomposition N = R/Jl B ...
@ R/Jrl where Ji C:Ji+l' We can choose decomposition (3.3) to
be of this kind, then the decomposition (3.4) is also of this

kind, Q.E.D.

§4. V.V. Sharko's results concerning Morse function

on non-simply-connected cobordisms

In this paragraph we recall from [8] some results, which
we'il use later. Let (W; Vo, Vl) be a ménifold with boundary
dW, consisting of two components V_, V,. Any regular Morse
function £ : W — R, constant on VO and on Vlf together with
the suitable gradient-like vector field gives rise to a Morse
complex, defined over Z Erle. This complex is simply homotopy
eqguivalent to_ C*(ﬁn, GO), where %n stands for the universal
covering of W. In some cases the inverse also holds, i.e. the
given free finitely generated coﬁplex C, over Qz[}TlWJ, simply
homotopy equivalent'ﬁo C*(%n, VO) can be realized as a Morse
complex for some Morse function on (W; V

of Vl)-

Theorem 4.1. (see [[8, proposition 6.1]). Suppose that
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Iy (V) —> I (W) <= JT (V) are isomorphisms. Then any free

finitely generated Z [JTlWJ—complex of the type
= < .
C, /0« C,<C ... Cnﬁz‘:——o} (4.1)

simply homotopy equivalent to C*(ﬁh, Vg_l), can be ‘realized as
- Mo;se complex of some regular Morse function f : W — R, |
which is constant on vy and on v,

The idea of the proof is the following (see [ﬁ]). First we
choose a regular Morse function £ on the cobordism (w; Vo’ Vl)
without critical points of indices 0, 1, n-1, n (this is pos-
~ sible since ‘Jrl(vo) —> 'Jl'l(W) < Jrl(vlf are isomorphisms}).
Denote the corresponding Morse complex by C*(fo). The compiexes
Cur C*(fo) are simply homotopy equivalent. By Cockroft-Swan

15] Cu(f)) ® Dy~ C, ® D,, where complexes D, (i = 0, 1) are

i (
direct sums of complexes of the type O « F eig— F ¢« 0. The
complexes Dl’ D2 can be chosen so as to concent;ate in di-
mensions 2 £ * £ n-2 (as C,, C,(fo) do). The procedure of
édding (or subtracting) the complex O «— f eig— F ¢« O can be
realized by correspopding changes of the function fo’ so that
we obtain at an end a function £ with the Morse complex C,.
The details can be found in [8]. -

Remark. We'll need this theorem for ]1W =7Z . In this
case -the notions of the homotopy equivalence and the simple
homotopy equivalence coincide. Therefore, any complex of the
type (4:1), homotopy equivalent to C*(ﬁn, 32_1) can be rea-
‘lized as a Morse complex of some fuﬁction.

The paper [8] contains also the results concerning minimal
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Morse functions. We reprqduce them here partially. We won't need
them in the proof of thecrem 1 and we'll make use of them only
in $6 and.in remark 2 of §7.

For some classes of fundamental groups any cobordism

(w;-vo, Vl), where JTl(VO) -2 JTl(W)-é— b (Vl) are isomorphisms,

1
possesses a Morse function, having a minimal possible (among all
the Morse functions) number of critical points of all indices.
Namely, let Wh(JTlW) = O.V Theorem 4.1 implies that existence
of such function is guaranteed if we find among the freé finite-
ly generated Z Eﬁlw]-complexes of the type (4.1) the complex
C*O,thich has the minimal possible number of generato;sAin

each dimension. The following theorem can be proved purely al-
gebraically. |

Theorem 4.2 (see [8, proposition 4.8]). Let Q be an
-IBN-ring (which means that free modules Qn gnd Q" are not
isomorphic if m # n) and also an s-ring (which means that for
any finitely generated Q-module N the condition N & Qn:= Qe
implies N =~ Qe—n).

Then for any free finitely generated Q-complex C, there
exists a free finitely generated Q-complex C;, homotopy equi-
valent to C,, which has the minimal possible number of generé—
tors in each dimension among free finitely generated complexes,
homotopy equivalent to C,. The complex C; is called minimal.

There is also a simple critgrion‘to decide whether a given
complex is minimal (in its homotopy type) or not. |

Definition. The pair (N, M) of modules over a ring Q,
where N <M, is called irreducible if there ex{sts no module

F & N , which is a direct summand of M. The pair (N, M) is
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called strongly irreducible, if for any n 2> O the greatest
possible rank of a free submodule F of N ® Q", which is a di-
rect summand of M 6 Qn, equals n. Our terminology differs here
from that of [8].

. Theorem 4.3 (see [8, theorem 4.7]). A Q-complex
B

C:*:= i’O “ (j; e C;LA%——(D/g
is minimal if and only if for each i the pair (3,(C;), C;_ ;)
is strongly irreducible.(We 'mnpij that Q<5 an J-.B/V,i-’zing,.‘)

If the ring Q possesses a non-trivial homomorphism to a

field, then the rank of a freg module is correctly defined. All
the group rings %[G] enjoy this property. The ring 'ZZEZZ(’J is

also an s-ring, see.tld,[;7].

$5. Algebraic lemmas

First of all we prove the lemma (already used in §3) on the
standard presentation for complexes.

Lemma 5.1. Let W be a commutative ring and

C = {quk& C(}L‘r'Of

*

be a free finitely generated W-complex. Suppose that for p £ k

the W-modules HP(C*) have the free resolutions of length 2
Ve b
C>4”'#/ (<C;€> <—ﬁ-/r.é'll'c; «— ()
7 P P
Then C, .is'homdtopy equivalent to a free finitely genera-

ted cdmplex ; )

_ |
Cl =0 C/e— <= C/e0f
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such that
1) Cy = Cy if x k42 ;
2) for p < k we have Cé = Gp—l (3] Fp ; furthermore,

4 . /I . 4 -
BPlFf;;O’ (’Df’ Gf—i') = Spp—_f_: P-i_-)F < CP-]

1 1
and Im(8p+1 : C

p+l

) L}
i i F .
— Cp) < Cp coincides with Im Lf p C

P-L

P

Proof is by induction on p. For p = O the assertion is

obvious. To produce the induction step we suppose that the asser-

tion is proved for all k < m and prove it for k = m.

for

Suppose that C,

k

satisfies the assumptions of our lemma

m. Find a complex C; which satisfies the conclusion

of lemma for k =m - 1

as G

m~-1

I (0,05CL— Cot)

is a free module

& K_, where Y l G
m m -

. The image

Imy 1= G,_;+ hence C% cag be decomposed

1= id. We may assume that Km

is a free finitely generated W-module (having added if necessa-

ry a complex O €« G

m, m+

1,

m-1

i Gy < Oy located in dimensions

to C,).- The complex C, splits into the sum of two

complexes

Ex
D

(D,

mensions

There is an epimorphism

—
——-

i

'is

{0 < 61/4——'

/ /
e Cpg S Cpyg <= Of

{0 <« O Ky <.}

located in dimensions 7 m). Here H_(D,) x H_(C,) = H_(C,).

m
id

Now add the complex O -« F.m 4———.Fm <« O, located in di-

m, m+l, to D,

L]
and consider the resulting complex D,.
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DM/:KM@ E% —g#m(@*/) ~ 74/,% (C*)/

where P IFm = Q, Pl Km is a natural projection.
1 . ) . 1
The map P : Km @ Fm — Hm(C*), defined by P_ Km = 0,

P'|Fm = J is another epimorphism onto the same module.

By [8}, lemma 1.10 there exists an isomorphism
(¢ Km @Fm'_—" Ko, @/——m

such that P¥>? = P. That means that we can find another decom-
position DA = Km & Fm (1.e. choose another free basis), such
that the projection P : Dé — Hm(D;) ='HQ(C*) is given by

P Km =0, P|F =T, It is clear now that we can split the

complex O <€— K <&— K < O (located in dimensions m, m+l) off

the D;. In the resulting complex

P
/" O: 1 Yy ?mwf Jg
the image Im am+1 coincides with Im¢ <& F , since the projec-

"
tion D, —> H (D) ~ H_(C,) coincides with J . It is clear now

m
that the complex E, ® D, satisfies the points 1), 2) of the
conclusion for k = m.

Remark. We do not prove (and do not use) assertions con-
cerning simple homotopy equivalence.

In order to state our next. lemma, we introduce some notations.

set /A =IQZ[’Z t] and let y :%Z — R be a rational homomor-
phism (i.e. xR Imy = 1). We'll study the localizations s”1a
of A-modules A. We can assume that there is.chosen a system

of generators (t, t;, ..., tﬂ-l) for a group 'ze, such that

e o £ - |
"® Y is the projection of Z onto the direct summand ‘Z, generat-
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ed by t, and that x(t) = -1,

Set

R ='zz[tfl,..., tzfl]? z[zf'l],

p = R[t], s = {1 + tQ(t) | Q(t) € R[t]}, . (5.1)
kK =slp, s'= {e" In en}, ['=s""1s7tp = s';z\_.
Lemma 5.2. Let A be a finitely generated P-mocdule, such
that S;}A is a principal fﬂ—module. Fix a decomposition
-1 6 | .$ '
s;a=(8 [ e (e ([/a.l)(£)),
Y i=1 j=1 J J
where aj = aj,O + aj,lt + aee, aj'k'GE%. aj’o # 0 is non-

invertible element of R.
Then there exists a finitely generated P-module B < A,

such that

~

<

1) st K (ej)) @ (

. j (K/ajK) (£1)),

B~(®
i=

T

1
2) t"a ¢ B for some N.
Proof. ©Note first that we may assume that ey and fi be-

long to A. Furtherﬁore, having mulfiplied ey and fi by’ tN,

where N 1is large enough, we may assume that the module

P(ei, fj)c: A is free of t-torsion.

- We'll show that P(ei, fj) satisfies 1).
Consider the K-submodule K(e;, £5) of the module s71a.

It is easy to see that

K(e, ﬁ)xcéécg_{f))(ei))@
o(e (57 /oy P (#))
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We show that K(ei, fj) is the S-lcocalization of P-module
Ple,, fj). Indeed, K(e,, fj) is an S lP-module, hence there

éxists an epimorphism

4 ~1
P S ('D(eiﬁ%))"’k@i/ﬁjc A
Now we show that %) is an isomorphism.

Denote by éi' f.

]
the map of this module to its localization; they generate over

the images of ei'fj E-P(ei, fj) under

K the entire module S-l(P(ei, £4)). Consider any x =2§¢iei +
+'2:Pifj’ belonging to Ker ¢ , where ‘iiﬂpj € P. Observe that

-1 .
d.igi =0 ".ﬁjfj in the module S ~A, which means that

eV (et Q) die = 0=t Tt W ))g p

in module A for some natural Ni’ Mj and Qi(t),Wj(t)GE P.
- The module P(ei, fj) is free of t-torsion by construction,

therefore

(7+i Wj(‘é‘))/jﬁ:— 0: (H—f@i- [—f))a/z e,

in A. It is clear now that x = 0 and thus, Ker ¢ =0 and

P(ei, fj) satisfies the requirement 1) of the conclusion.

Observe next that the localization SE;P(ei, fj) .coinci-
des with the entire module S_lA, and A 1is finitely generated.

¥

Therefore there exists an element tN(l + tQ(t)) of P such

that tN(l + tQ({t))a & P(ei, fj) for all a € A. Consider now

the module

B ={achA|3 Q)P (nttDae Pl £
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The noetherian property 'implies that B 1is finitely gene-

rated; it's obvious that- S-lB:; S—lP(ei, fj). By construction

tNA c B. Lemma is proved.

For a P-module M we denote by TortM the submodule of

elements, annihilated by some degree of t, by tM - the submo-

dule of elements, annihilated by t, by Mt - the factormodule

M/tM.

Lemma 5.3. For a P-module M the localization map M —>

—> S_lM induces : .

1) an isomorphism M/tM =» S-lM/tS—lM,

R

la) an isomorphism M/tM :%-S_lM/tlS-l

M for any natu-
ral g,

2) a monomorphism M —a-t(s-lM),
1

2a) a monomorphism TortM —>-Tort(s- M) . _

Proof. 1) Injectivity: suppose that m & M and m = ———E———n
. -1 ) l+tQ(t)
in § "M. Then - '

-y
0?ﬁ@%fﬂﬂt=¢n+x

where (1 + th(t))x = 0. Therefore (1 + th(t))m = tn' , hence
m & tM.

Surjectivity: — B op- )

1+tQ(t) 1+tQ(t)

la) Note that if n € M, Q(t) € P the following equality

holds in the module s *M/t3s7 Iy ;

" = _ )+ Q) ?~1 n
o~ (e +@00)" )

Now the surjectivity is straightforward. Further ifm = —— n ,
1+tQ (t)
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where n,m & M, the equality

= -t Q) 4.+ (£0E))E IR

holds in s ImM/t9s™ImM ang injectivity is also proved.

2) if tm =0 and m+—>» 0 in S-lM, then
(1 + tQ(t))m = 0O >+ m = 0.
2a) if t'm =0 and (1 + tQ(t))m = O, then

N-1

(t + tNo(t))m = 0 ¥ ln = 0 ;

proceeding further in a similar way, we find m = O.

Lemma 5.4. Let -a = a, + alt + ... + aNtN € P, where
a; € R, aj # 0 1is hon-inyertible element-of R, g 1is a na- -
tural number. Then .

1) the factors K_ = K/(a, th), P, = B/(a, t%) of the
rings K, P by the ideais, generated by a, tg, are isomqrphic
as rings and as P-modules;

2) the ring P, is isomorphic as an R-module to the module

Rq/F(Rq), where F : R — Rq is injective and is given by the

matrix

_ Qp A, Ay ... 6?_%
', a ... Q,Z_i (5.2)

Qo
Thus the R-module Pq has a free resolution of length 2 ;
3) the multiplication map t6 : Pq —> P€+q (where €>~O)
is injective and induces an epimorphism

Exé/;(_@*%k)f—? Ext] (£, R)

The module HomR(Pq, R) 1is trivial.
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Proof. 1) The embedding P < K induces a map Pq — Kq
which is a ring homomorphism and a P-module homomorphism. The

L) —> K/ (¢?)

is an isomorphism (see lemma 5.3), hence the map

(P /%)) fta) =K /(%)) />

also is an isomorphism.

2) The ring P/(tq) = R[t]/(tq) is a free. R-module with
basis 1, t,..., t37%. ‘

The multiplication by a € P is given in this basis by the
matrix (5.2). Since ao # 0 and R has no zero divisors, F
is a monomorphism.

3) Suppose that x E'Ker(te_: P —> P(*q), i.e. t 6x =

q
E+q where x,N,M € P. The ring P 1is a unique facto-

¢ 4

= Na + Mt
rization domain and t
Furthermore, since é has no zero divisors, x = N'a + Mtq,
hence x = 0 in Pq.

Next observe that the map te : Pq —> P£+q‘ lifts to reso-

lutions in a following way:

0 é—p%'eagftj/(f@)iﬁ[ﬂ/fé%)é‘ O
bet o o ) £S [¢°
O £, = RIE] (%) <= olt] (et <0

The right arrow is a monomorphism onto the direct summand.
This implies the surjectiVity of the map of Ext's.
. The equality HomR(Pq, R) = 0 1is obvious.

does not divide a, therefore N = t N'.

~
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Lemma 5.5. 1) The fing K = S_lP is an IBN-ring and an

s-ring.

2) A free finitely generatéd K-complex
C:;+ = z(C) - szgg_ﬁf_.ﬁe——— 62345—'C>i? ’

is minimal if and only if the free finitely generated R-complex

Co/tCy = {0« €, fCia. = Cp /HC=0F

is minimal.
Proof. 1) We can embed K into its field of fractions, hence

K is an IBN-ring. The ring R = K/tK 1is an s-ring, therefore

to establish the s-property for K it is enough‘fo prove the

following: fér a finitely generated K-module N, which is free

0of t-torsion any collection (nl,...,ns) of the elements of N,

.which forms a basis of N/tN over R, is a basis of N over K.

To prove this we consider the free module F(el,..., e )

S

and the homomorphism ¢ : F(el,..., es) — N, gending ey to n; -
Denote J the projection N —» N/tN; Since,~ﬁocp is surjec-
tive, N/Im\p ’=‘t(N/Im¢P ).

The element t belongs to the radical of K, and, using
Nakayéma's lemma we get N/Imy = b, i.e. ¢ 1is surjective.
Next we show that Y is a monomorphism. Indeed, suppose th;£
Zfai-ni = 0 where ay € K, and some ay is‘nonzero. We can
assume that a € P and that there exists the number i fér
which the free term of the polynomial ay is not equal to zero
(here we use that N 1is free of t-torsion). Reducing this equa-

lity modulo t we obtain the contradiction.

2) By the minimality criterion (see the theorem 4.3) it
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suffices to prove that for a homomorphism ?': Fl,—» F2 where
Fl' F2 are finitely generated: free K-moaules the pair (IHl?, F2)
is strongly irreducible if and only if the pair (Im P F2/tF2)
is strongly irreducible (where Lpt : Fl/tFl'_’ Fz/tF2 denotes
the homomorphism q) reduced mo@ulo t).

Suppose that the pair (Ith, Fz)}is irreducible. We'll show
that the pair (Im\ft, Fz/th) is irreducible. (The inverse imp-
lication is obvious.) Indeed suppose that opposite is true, i.e.

there exist elements (el,..., e £ . fh)' such that fje:nny

l'..
and the images €i, f} in Fz/tF2 form the basis of this mo-
dule. By p. 1) the elements €1rever €y fl""' fn form the
basis of F2; we get the contradiction.

The assertion concerning the strong irreducibility is prov-

ed on the same lines.

§6. Novikov type inegqualities

The simplest way of proving (0.3) 1is the follqwing. Let
w be a maximally-irrational form. We can find a rational form
W', belonging to a very small neighbourhood of W, such that
mp((u') = mp(uJ). Now we apply lemma 2.6 and reduce the problem
to proving Novikov inequalities (0.1l); the latter are treated
in [1],[2], see also [4].

We produce here one_morerproof of the Novikov type inequa-
lities, which in our opinion clarifies the general homological
reasons for these inequalities to arise.

Recall first from Morse theory some well-known facts. Let
(W: Vo' Vl) be a compact manifold with boundary oW = VOlJ Vl'

f .- a Morse function on W, constant on Vo and on Vl. The func-
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tion £f gives rise to a relative cell complex (K, VO), homotopy
‘equivalent to (W, VO). The number of relative p-cells of (K{ VO)
is equal to mp(f). Considgr any regular covering K over K
with a structure group G and denote by VE the preimage of
VO in K. The chain complex of the relative cell complex (K, Vo)
is a free Z[G] - complex with m,(f) free Z[G] -generators in
dimension® p. Any homotopy equivalence P (K, VO) — (W, V;)
(which we assume to be cellular} induces an isomorphism oftz[G] -
modules H, (K, VO) —>H, (W, V). This implies that there exists
a free finitely generated '2(@] -complex é; ~ C, (W, VO), such
'

tha; _piCp) = mp(f).

Consider now an arbitrary rational Morse l-form w on M
and set Lw] =2

We may assume (having multiplied w by'a constant) that
w = df , where f 1is a map of M to Sl.

consider the cyclic covering M —» M, on which W  becomes
exact: w = df, f : M —> R. Denote V the preimage in M of
any regular value c¢ of the map £ (or, equivalently, the pre-
image in M of the corregponding regular value of f: MM —>R).

Denote t the generator of the deck transformation group J
of M; set V™= {x 'S ﬁlf(x) <c , V+ = {x €M \f(x) Z c}. We can
assume that tV < V ; set W = tV' N V . The manifold M is
the countable union of "bricks" tkw, k € Z. There is a Morse
function f on the cobordism (W; VvV, tV).

. A .
Consider now the regular covering M L, M with a struc-

ture group

/‘4(/\//, Z)/Tow #7[/\//,2) = th’
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It can be factored through the cyclic covering:fﬁ —> M —> M.
The composition M —E» M £+ R will be denoted by £, the p-
-.preimages of W, V, vt, v7 - by W, G,'§+, ¥~ correspond-
ingly. Choose now a triangulation of W and extend it to a
triangulation of M. Then V', v, V', ¥~ also get the trian-
gulations. The chain complex c, (V") is a free finitely gene-

A

m'l], p = R[t]):

rated P-complex (recall from (5.1) that R =‘ZEE
the R-complex ¢, (V7 )/tc,(¥7) 1is the same as C,(W, tV). The
manifold W 1is a covering of W and by the above we get the
following:
There exists a free finitely generated P-complex C, = c, (V),
such that the R-complex C_ /tC, 1is homotopy equivalent to an
- R-complex D,, having exactly mp(f) generators of dimension p.
Consider now the complex S-lc; (wé use the notations (5.1)).
It is free finitely generated K-complex and since K 1s an
IBN, s-ring (by lemma 5.5), we can find a minimal K-complex C*O.
in the homotopy type of Sflc* (see §‘4). By the'same lemma the

complex C*O/tc*O is minimal in the homotopy type of

-1

s, () est

o~ — ~ A - Pa el ~
C. (V) S c (VH/tc, (V) =
~ A A ~ ~ A
= L C(V, tV ) T C, (W, tV )

Note that mp(tu) = pJDp). The R-complex D, is homotopy
equivalent to C*(%, t%);.this homotopy type contains a minimal
complex C*O/tc*o,’having exactly ‘u(Cpo) generators in each
dimensionr = '

[,
Note further that the localized complex S lC*o (recall

that S 1T denote the localization with respect to t) is homo-

topy equivalent to
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./’i -~ - LT-{ -1 /\) ,
ST =87 e - 87, (7
Thus we have constructed a free finitely generated K-comp-

lex C*O, such that
/=1 yo -1 A
STl ~ ST e, (/)
‘'~ ©
h4P (10) 2-/uf< (T Ci_*:>_
This implies of course

"oy, (w) z Mp [C;) (6.2)

for some free finitely generated [ -complex C*l, homotopy equi-

. -1 A
valent to S "C,(M).

(6.1) .

. . '-1.-1 .
Conjecture. The ring [ =5 S P is an s-ring, l.e.

any finitely generated stably free module is free3).

If this conjecture holds, then the homotopy type of any
finitely generated Iﬁ—complex N, contains a minimal complex,
numbers of generators of which are the invariants of homotopy

type of N, (see § 4). Denote these numbers by mp(N*). Then we

malw) = mp ( iy Cu ()

Next we deduce (0.3) from (6.2). Let 2 be a rational co-

1

homology class, A GLHl(M, Q, C, be a free finitely generated

3) The validity of s-property was analyzed for the rings of

the similar type, see [18]. However for r itself the conjec-

ture seems,not settled.

fo b
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S'_ls_lP—complex, homotopy equivalent to S;}C*(ﬁl

Note that C*l is an S, -localization of some free finitely ge-
nerated /\-complex C*z. The A-complexes C, () and C*2 be-
come homotopy equivalent already after localization with res-
pect to some element O°€ SA (see corollary 2.5). For any ma-
ximally irrational class )' & Hl(M, R) , sufficiently close to

2, the element o belongs also to SA' , hence
-1 Ay

The ring S?%_[L is a principal ideal domain (see theorem 1.4},

therefore the number of generators of C*2 in dimension p 1is

not greater than
: ~1 A -1 -~ ~f
¢ (s, x/p_(M))+ 9 (S 10D ) 4.5, /,/g,,/r?),_
and, having recollected (6.2), we obtain (0.3). |

[4

¢7. Reduction to a surgery problem

Let ¥ be a maximally irrational .cohomology class. Then

I\(J) is a principal ideal domain (théorem 1.1), hence
st i, m ¥ H (, A, bpe(a!)A ) e
Yy p’ 3 jo1
q, (y)

¢ o A, ./ alP) )
j=1 (3) J ~/\(3)

We may assume that aj(p)e‘_A_ r thus we get
b () qp(a)
s'al(ﬁ,Z)%'s;[ e A) o eA/a A)]

¥ T i=l j=

Together with lemma.2.4 this implies that modules
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Hp(ﬁ'r 'B) and
b_(}) a_(f)
P P (p)
( 8 /L) @ ¢ eA/ajA_)
i=1 j=1

become isomorphic after localization with respect to multiplica-

tive set, generated by some element & € S The & belongs

)"

also to the set S for every )\ (in particular, rational),

A
sufficiently close to Y .
Thus for the elements J of some open dense set

U C Hl(M, R) = ®™ we get

-l ~ -~ E -I A E -] (p) -I
4 Z e S t j : ol

The number qp depends ©of course on A; in‘the comélement in
Hl(M, R) to r; the number qp equals qp(x ) (see introducti-
~on). To obtain the proof of theorem 0.1 it suffices to prove
the following ‘
Theorem 7.1. Let .ﬂan =‘Zm, ngzeo Iand suppose that

Ais a rational cohomology class, € at (M, @) , such that

=M., = O for some r : 2 s r € n-4.
1

Then there exists a Morse map £ : Mt —> s, inducing from the

{7.1) holds and mr = mr+l

fundamental class i o©of circle the element, which is a multi-
ple of A , such that m _(£) = m_= b_ + g+ g

p P P P p-1
It is sufficient to prove this theorem under the additional

(for O pg ).

assumption that A is an integer cohomology-class which 1is de-
fined by the projection of " H, (M, Z) =Z" onto the first di-
rect summand Z. In the course of this and two subsequent sec-

tions we suppose that this condition holds, without stating this
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any more.

Let. V1« M® be a connected smooth submanifold of codi-
mension 1, V¥V be a normal vector field on V. The pair (Vn_l,v)
is called an admissible splitting ) 1f

1) ;Hl(vn-l) —> .Fl(Mn) is a monomorphism onto the sub-
group KerA = z™ L,

2) the Pontryagin-Thom construction with respect to vy de-

1 1/

termines a map Mn —» S, representing the class A€ H (M, Z).

The existence of admissible splittings is proved in [}O] .

under the assumption that the homotopy fiber of A : M ~%>Sl

has a finite type (cone can show that for M =z"

this is equi-
valent to the following: the class A satisfies (7.1) with
bp = qp = 0 for all p).

The same proof is valid for arbitrary cohomology classes.
(Note also that the results of [19] iﬁply that for any Morse
map £ : M —+-Sl, whiéh represents A and hés no critical
points 6f indices O, n the level surfaces f_l(c) -are con-
nected and ﬂi(f-;(c)) —> Ker A 1is an epimorphism.)

Consider the infinite cyclic covering p s M0 —a-Mn, cor—
responding to A . For an admissible splitting Vn—l the pre;
image p—l(vn-l) consists of countably infinite number of co-
pies of vl which divide #" into countably infinite number’
of‘"bricks" W' Qwh %_Vn_l U tv?! (where t 1is a generator
of fhe structure group of the covering), see the picture below.

. Vn-l an . “n
Now fix any copy of c M7, it divides M into two parts:

4) We will omit 'vjin the notations if no confusion is pos-

sible.
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V+ and V . (We assume_ here and elsewhere that for every admis-

sible splitting 'V the lifting of V into M  is chosen and
fixed. In this case the notations V+, Vv  etc. make sense.) The
intersection V' /) V_ equals Vn—l,vthe vector Y points into
+

v'. and tV < V.

Furthermore,
. i . >,
7 ) <3, (V)= 5, ()~ 2"

the universal covering M is divided by Vn_l

YT and ¥~ (all this can be found in [10]).

into two parts:

One easily sees that any triangulation of M, such that

Vn-l is a subcomplex, determines a free finitely generated P-com~

plex C*(g_) (in the notations (5.1)); the complexes S -lC*(ﬁ—)

and C*(ﬁn) coincide, and, therefore
Nn" B /""4 A"——
He (R )~ ™"y (V)
The factorcomplex C*(%")/tc*(v_) is the chain complex of the

triangulation of the pair (W", Evn_l).

Suppose now that 2 satisfies (7.1) for p <€ k, and that

(p) (p) (p)
2" Pry QJ-P L+

7 =40 1
where aj(g) are nonzero, noninvertible elements of R. An ad-
r

missible splitting V will be called k-regular if for p < k

4 |
~1 ~ Py Yp b /Gt
S #P(V)Z)NC?,,S P)EB(J@ES féj, Sf)(?.z)

Lemma 7.2. Suppose that J'l‘an =z®, n3z6, A€ Hl(M, Z)

satisfies (7.1) for p § k, where k € n-4. Let V be an admis-
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sible splitting. Then there exists a k-regular splitting VO,
obtained from V by surgical modifications of indices < k+1,
' made inside V' < MR, )

The proof of the lemma will be given in §8 ' (the main
ideas were outlined in [6]).

Now we'll deduce from this lemma the existence of a Morse
form in a class Y with the required number of zeros of indi-
ces k.

First of all note that given an admissible splittiﬂg V and
a Morse function £ on the cobordism (W; V, tV), we can produce
from this data a Morse map £ M- Sl, belonging to A (for
this purpose we change f in the small neighbourhood of the
boundary v U v 1 5o that it becomes a projection on the
second factor of ghe collar: VPt x (o,e] — [o0,€], afterwards
we glue together V an@ tV). The ﬁap b Has the same critical
points as £.

59 we proceed as to construct a Morse function with the
required Morse numbers on the cobordism (Wo; Vg tVo), where W

o~
is the part of M, lying between VO and tVo.

First calculate the homology Hp(ﬁ;, t%o:-z)=
~ ~ ~ ~ ~-' ~

Ho (W, E0) s, (G20 )= AU EH (V)
(First identification is due to excislon axiom. To get the se-
cond we observe that the map Hp(fég) ;? HP(V;) - of the exact
sequence of the pair (VO, tVO) coincides with multiplicat%on
by t and the latter is injective since the module B, = HP(G;)
is free of t~torsion.)

Furthermore
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H (V)/td (V) ~ B_/tB_ =~ (bg R @ (qg ra® R, p gk
p o’/ TTptot T TP T T 0y 521 . 3077 N

(the last identification follows from lemma 5.3). Besides that,

bO =q, =0 (remark 2.7) and bl =q, =0 since M 1is simply=

connected; - hence from corollary 3.2 we conclude that bn =9q, =

= b = Q0. Thus the homology mOdules H*(ﬁo, t%é) va-

n-1 - 9n-1
nish outside the dimensions 2 € % ¢ n-2 and are principal
/) [ﬁi(woi]—modules for p <« k. According to lemma 5.1 we can

find a complex C, ={O<— Co &= ove & C < 0} which is

2

homotopy equivalent to C*(ﬁ EVO), and has by +q; *+ a4

o!
free generators in dimension i (Qhere 2 1< k € n-4).

According to the theorem 4.1 and the remark following it
we can realize C, as the Morse complex of some Morse function
f on the cobordism (W,, tV ). This function gives rise to a
l-form, which satisfy the requirements. Thus we have proved the
following assertion.

Theorem 7.3 (see [ﬁ])S). Suppose that miMn =2z"™, n 3y 6.

I, ®

Then any element X of some dense open conical set U CH
can be realized by a Morse form u)g;SQl(M), which has the least
possible numbér of zeros of indices p where O £ p £ n-4 among
all the forms of the class Y - This number equals bp + qp(g ) o+
+ qp_l(?), where 3 is any maximally irrational cohomology

class sufficiently close to ¥ .

Now we'll use duality and do surgery also "from another end".

>) The assumptions here are weaker then in theorem 0.1, but

the result is concerned only with the indices p: O € p € n-4.
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-In addition to ({(5.1) we 1introduce some new notations:

5 = r[el], S={1+ctoch)oeher(cY
R=5', 5 ={t"|new}, T=5"1571F = '(lH)A

Note that if (V, V) is an admissible splitting with res-

pect to ), then (V, -V ) is an admissible splitting with res-

pect to (-A) and all the results above hold for (- A) (with

t replaced by t-l). Note that (V, V) = (V, —V)+

If theeclass ). satisfies (7.1) for p < k then according

to (3.4) the following holds:

-1 - € -
Fea (M’LZ)’“—V(@ fgc-;\i)AD @
%4 -1
87 (5 AN/ K E) S AY)

‘for s 2zn-k (recall that bS = Db ).

n-—s
Suppose now that 1 £ r £ n-4 and (V,¥) is an admissible
-sp(it‘ting. Applying lemma 7.2 (where k = r) we get an r-regu-
lar SPEi'tfl'n}(Vo, \’O).. applying lemma 7.2 to the :sPeitting,
(Vo’» - \70) , cohomology class (-A) and k =n-r - 3 we get an
(n = r - 3)-regular 'SPEitﬁhg, say (Vl; -Vl) ' corresponding to
(- A\). Note that V1 is obtained from VO' by a sequence of
surgical modifications of indices g n-r-2, consequently, the
T — - T —

homology of (Vl, \?l)

dimensions r. Hence (Vl' Vl) is also an r-regular splitting.

coincide with that of (VO, 'vo) in
An. admissible splitting (V,v ) is called r-biregular if
(V, ¥) is r-regular with respect to A and (V, -¥) is (n-r-3)-

regular with respect to (- A).
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We have proved that r-biregular"spdittiﬂgsexist for

.

l £r< n-4.
Remarks. 1. 1In §9 we'll deduce from the above that un-

der the assumptions of theorem 7.3 every element gy of some

dense open conical U c:Hl(M, R} can be realized by a Morse

form « having a minimal Morse numbers of all indices except
two adjacent ones, say r, r+l where 1 £ r £ n-4.
2. Here we'll show that any (n-3)-regular splitting V

is also n-regular. Consider the free finitely generated complex

s™lc, (V7). The ring K = S *P is an IBN, s-ring (lemma 5.5),
hence the homotopy type of this complex contains a minimal free

°©_ -0 _

finitely generated K-complex C*o. Note that c.° = C n~1

0 1
= Cn0 = 0. Indeed, the complex C*o/tc*O is R-minimal (see lem-

ma 5.5) and belongs to the homotopy type of
STC (V) /% ST C (V)= Co(V52V)

There exists a Morse function £ on the cobordism (W; V, tVv),
which has no critical points of indices 0, 1, n-1, n. The cor-
responding complex C,(f) has no generators in dimensions

O, 1, n-1l, n and since C*O/tC*O is minimal and rC*o/tC*onu

Culf)~ C, (W, tV) we get c,°/tc,° =0 for i =0, 1, n-1, n.

Therefore, Ci0 =0 for i =20,1, n-1, n.

The homology modules HS(C*O) have the resolutions of
length two for s § n-3. Therefore there exists a complex C*l,

in the homotopy type of C*O,_which is standard in dimensions
Qo

* < 1n-3 and moreover Cnl = Q, Ci_lv= B & 2, where 'a\B is

injective 9)2Z = 0. Therefore

F oty (C ) nth (870, (D), p(F )y
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1

Now we realize C*l/tc* by a Morse function and get our asser-

tion.
© For ﬁan =Z the (n-3)-regqular splittings always exist
(see {4]). The author does not know if the same holds for
mM #Zm, m >1 and any A .
To cope with the dimensions left we are to impose the rest;
riction m, =m .1 =m
This restriction is an analogue (for this three barticular di-

r+2 = 0, where mg = bS tdg * 9 -
mensions) of the Farrell condition for existence of a map
£ Mt — Sl, which realizes a given cohomology class and has
no critical peoints at all.

Lemma 7.4. Suppose Jan =fzm, n 2> 6, the integer cohomo-
logy class A satisfies (7.1) and (V, ¥) is an (r-1l)-biregular

splitting (here 1 € r < n-2).

Suppose further that m.=m_, = 0.
Then 1) ﬁr(ﬁn, V) =0
2) Hr+l(ﬁn, V_) is a free finitely generated R-module and

t 1is its nilpotent endomorphism.

+

M?, V') together with the endo-

Thus the module Q = H (M

r+l
morphism t 1is an object of the category é?(z@zm'l], id) which
consists of free finitely generated ’Eﬁzm-l]—modules and their
nilpotent endomorphisms (see [10]). The corresponding Grothen-
dieck group vanishes (see [lOJ), therefore our pair (Q, t) is
edual to zero modulé relations in this group. To realize this

equivalence in geometric setting we need the third "critical

point free" dimensionl
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Lemma 7.5. Suppose that the assumptions of lemma 7.4 hold,
and, moreover, m.,, =0, 2 £ r £ n-4.
Then there exists an (r-1)-biregular splitting (v, ), such

that
H (M V)=0, Hy (M T)=0.

Thé proofs of lemmas 7.4 and 7.5 will be presented in $9.
Now we'll deduce from them the theorem 7.1. Let (V,V) be an ad-
missible splitting constructed in lemma 7.5, (W; V, tV) be a

correspending brick in M. Compute the homology H, (W, 63). For

p S$r-1
As g ?
F/P(M’Z'éV)cs(@?,Q )@(@PR/QJ(Z)R)
S AS J=1 7

(see 7.2). Since (V, =-V¥) is (n—r-2)-regular,

. €s Yn-5-1 nos-1)
(7, 0)=(8 R Ya( 878 /105 R),

for s gn-r-2.

Apply now the Poincare duality to the manifold W with two
components V, tV of the boundary.

The R-modules Hs(ﬁ, V) are principal for s < n-r-2 and
it is easy to calculate cohomology Hs(ﬁ, V) for s € n-r-2.

Applying the Poincare duality arguments from ,§3 we get

H ~ ’“)'V é; s % /// (»)
P(W)tl/ ”C@f’Q)@(J?fR d‘]')? /Q)),OZ?.’*J.

Since mr+2 = 0,

F?’-L+L[w7,t9)':%7‘m(0jt\7’)$0
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From the exact sequence of the triple’ (t_lﬁ_, V7, tV) we

: —1x- M- . -n,"Y -
obtain Hr (t "V , tVv } = 0 and (by induction) Hr+2(t bz

+2
tV7) = o.
Passing to direct limit in n —= o0 we get Hr+2 (1‘-71', t.\'f—) = 0.

From the exact sequence of the triple (M, V , tV ) (using

~

H, (M, V)= H, M, tV7) = 0 for « = r, r+l, r+2) we get

%¥;+1(/¢7;15u77) ::%%;(/57’;'i'ﬂ7”:)::69

Now we collect together results of our computations and see that
8 4o
B (W, tV) is isomorphic to (@ R) @ ( ® R/aP) R) for all p.
P = ' j= 3.0
o . i=1 j=1
Now we apply the same argument as in proof of theorem 7.3 and

the theorem 7.1 is proven.

8. Construction of p-reqular splitting

This section is devoted to the proof of lemma 7.2 We prove

it by induction in k.

Note first that every admissible splitting V is l-regular.

A -

Indeed, since %ﬁ is connected, the map t : V -9-3' induces

the identity homomorphism in the group Ho(v-), hence S_lHO(G_) =

= 0. The same argument proves b

o = q0 = Q. Fu;thermore, the

commutativity of NiMn implies that t 1induces the identity

homomorphism also in the group Hl(;-) (which is isomorphic to

Hl(v-)), therefore S-lHl(G-) = 0.

The induction step will be produced by means of lemma 8.1

and lemma 8.2. In both lemmas we assume that .Nan = z", ﬂ:; 6

and that A satisfies (7.1) for p < k.

Lemma 8.1. Let k € n-4 and suppose that an admissible
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splitting V is (k-1l)-regular (i.e. V satisfies (7.2) for
p £ k-i). Then there exists an-admissible sélitting Vor ob-
tained from V by a sequence of surgical modifications inside
vt of indices <€ k+1l, such that

1) the P-modules Hp(v;) and HP(VB) are isomorphic for
p £k-1,

2) the P-module Hk(vg) is isomorphic to Hk(v-)/Tbréﬁévr)

(recall that Tor M denotes the submodule of all elements of

t

t
M, annihilated by some power of t and

M denotes the sub-
module of elements, annihilated by t).

Lemma 8.22 tef k €n-3 and suppose that Vv 1is a '(k-1)-
regular splitting, such that A = Hk(§"> is free of t-torsion.
Suppose that B 1s a P-submocdule of A,‘such that tA< B<C A
and B/tA 1is a cyclic R-module.

Then there exists an admissible splitting VO, obtained
from V by a sequence of surgical modifications inside V+ of
indices =< k+1, such that

1) the P-modules Hp(ﬁg) and Hp(v-) are isomorphic for
p k-1,

2) there is an epimorphism of P-modules Hk(ﬁg) —>» B with

t

the kernel Hk(VO):z Tort Hk(VO).

Both lemma proved, the induction step is made as follows.
Let V be a (k-1l)-regular splitting, k £ n-4. Having applied
lemma 8.1 we may assume that P-module Hk(V_) have no t-torsion.

Consider the P-module Ak = Hk(ﬁ_). The condition (7.1) holds

for p < k, hence by lemma 5.3‘the:e exists a submodule B, < Ay

such that
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t’LAﬁ < Bé C—A& for some %

-1 gi ¥ 4) (8.1)
S8 x (e 5P aa(ge1S"P/a§ '$-p)
1= 4=

Choose the filtration of Bk

" ) 1) w)
Zf /4{‘”'5% < £g£ C:'_- - Zgi = Kg£
such that Bél) are P-submodules in Bk' and factormodulgs

Béi)/Béi_l) are cyclic R-modules and tBéi)cz Bﬁi-l).

(1)

Since Ak has no t-torsion, the module Bk is contain-

ed in tr-lAk. Applying lemma 8.2 to the admissible splitting

(1)
k k

wards the t-torsion in the resulting homology Hk(ﬁg—) (by means

r-lV r-lA

t and the modules trAkcz B <t and killing after-

"of lemma 8.1) we get an admissible splitting Vs such that

~ ~o— ~ - 1
Hs(vl ) ~ HS(V ) for s < k-1 and Hk(vl ) Bﬁ ). Applying,

further, the lemma 8.2 to the manifold Vl and the medules

él)c; tBéz)c: Bil) (and killing afterwards the t-torsion by

means of lemma 8.l1) we get an admissible splitting V2, such

tB

A - —~ A - ) _ ' ~ e ~ (2)
that HS(V2 } HS(Vl )} for s <€ k-1 and Hk(v2 ) tBk .
Since the P-module Ak has no t-torsion, tBéz)aj Béz). We

proceed.further in a similar way and in m steps~get an admis-
sible splitting Vk' satisfying the conclusion of lemma 7.2.

The proof of lemma 8.1.

0. First of all we note that since P is noetherian and
TortHk(v-) is a fihitely.generated module, it suffices to cons-
truct for any ol éEtHk(ﬁj) a new admissible splitting VO, sa-

tisfying the requirement 1) and the requirement

, #, (\2’)@-'#,% (77) /)
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Indeed, suppose that tNTortHk(v_) = 0. Performing seve-
ral times the mentioned construction we get a manifold V', sa-
tisfying EM—lTortHk(V'_) = 0, and we end by induction in N.

l. By rep eating the argument, exhibited during the broof

of theorem 7.3, we find first of all
#(M’/“é&')w/(\?—fﬁ') (GB R)®
@(® Q/a ) < k-1,

~ -

' -~ Y ~ o
Furthermore, the complex C,(W, tV) = C,(V , tV ) is homotopy

(8.2)

equivalent to a free finitely gehefated R - complex

On-
C, =100, <=, <of

which through dimensions £ k-1 1is of the standard type, ‘corres-

ponding to the representation (8.2). This means that for r £ k-1

b q q__ b q

we have c.=(R) P @ () P o (r) P L3l P=o0, 3w P-=o,

: q.._ q._ q._
and the differential 3|(R) P71 : (m) P o (m) Pl ¢, is
given by a diagonal matrix with diagonal entries a(rol) .  Be-
sides, the image

f;-f T4-1 T4-2
?{--C;,*—rdgfcs@ ‘e R ek
k-1 a{x=1) )
coincides with the submodule ( @& J R) < (R) (see
- j_l ,

lemma 5.1). This implies that Ker a splits off as a direct

-1 ,tha.‘t]

' summand: C, = Ker Bk @ (R) and a l(R) Te-1 is a diagonal

k
injective_operator. Having added to C, if necessary the complex

Ag-1 Ax-1 . .
0O «<— (R) «— (R) «— O,. located in dimensions (k, k+1),

we may assume that Ker ak is a free R-module.
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According to theorem 4.1 and the remark following it we
can realize C, by a regular Morse function én the cobordism
(W; V, tV). This function gives rise to a handle degomposition
of the pair (W, tV). Denote by Y the fesult of attaching to Vv

of all the handles of indices <k-1 and those handles

-1 q
of indice k, which correspond to the direct summand (R) k_lc:ck.

The upper boundary of Y (which forms the result of cor-

responding surgical modification of tV) will be denoted by Vl

(see the picture). We have attached only the handles of indices

m=1 na v

i, where 2 € i € n-4, hence J'I'l(Y) = JTl(Vl):: Z 1

is again an admissible splitting.

Lemma 8.1.1. 1) The embedding VI < V™ induces an iso-
morphism HS(Vl_)-—r Hs(ﬁ_) for s ¢ k-1.

2) The embedding (tV) < ﬁl— induces an isomorphism
HS(tV } —> HS(Vl ) for s 3z k..

The proof of lemma 8.1.1. 1) Consider the segment of the

1)

B (T 0 ) th (U7 )= B () (75 07),

I+1

exact sequence of the couple (V , V

The manifold W is obtained from Y by attaching handles of

indices yak, hence for s £ k-1 we have Hs(ﬁ, ?):x HS(V-, 51‘)=
= 0 and 1) is proved for s <€ k-2.

Further, note that the boundary operator
20 K (W, V) Hy (Y, V) :

vanishes by construction (recall that the cellular decomposition
of (ﬁ,‘§) starts with k-dimensional cells, having zero boundary

in the cell complex of (W, tV); the k-dimensional cells with
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nonzero boundary are included into Y). Therefore the image of
differential H (V Vl,) —->-Hk_l(vl ) is contained in
Im(Hk_l(tV ) — Hk-l(vl )) and also (by obvious reasons) in
Ker(Hk(Vl-) — Hk_l(V-)). But V is (k-l)-regular, hence the
homeology Hk_l(v_)- has no t-torsion and the map Hk_l(tv_) —

—> H}‘{_l(

T (0 Hy (VS0 )= Hy (07))=0

and this proves p.l).

V") has no kernel. Consequently

2) Consider the segment of the exact sequence of the pair

(Vl', tV )

%M( ﬁV)a#(%w%ﬁ/f(V)ﬁ f&)

N ~ ~
tv ) = (Y, tV) contains only the cells of dimensions > k. Fur-

By construction the cell decomposition of the pair (V

thermore, the boundary operator in dimension k 1is injective, -

thus Hs(vl , tV) = 0 for s % k. This implies our assertion.
2. Now we turn directly to proof of lemma 8.1.
We'll consider the admissible splitting tV instead of V

and kill the element ol etH tv-) P oL & Ker(Hk(t\}'-) —r Hk(V—)).

K

Consider the embedding of manifolds vV, —> X, where X =
=W \NInt Y=V N Vl+ (see the picture). By excision H*(i, ";l)x
~a -~ - ~N -
H, (V , Vl ). The first nonzero homology H*(G-, Vl ) appears

in dimension k, therefore the strong Hurewicz theorem for

simply~-connected pairs implies that the Hurewicz mép

£{522+1(<£i 62;) ' £+1 (r)( )

[

is surjective. Pick an element a of V,) such that

i1 (X0
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da € Hk(gl) is homologous in V.  to the element =« and an

1

element A of JT X, vl)es JTk+l(X, v

k+1 1)
According to the corollary 1.1 of [20](Siebenmann's theo-

such that H(A) = a.

rem) any element of Jri(Qq, P}, where @ 1is a manifold and P
is a component of dQ, can be realized by a smooth embedding
i-1

) —> (@9, P), provided 1 < g-3, . (Q9,

of the disc (Di, S j

Py = 0 for J <€ 2i-g+l.

Set for our purposes Q% = X, P = Vi, q=n, i-= k+1.
The groups J, (X, Vl) = JT*(g,'Vl) vanish for « £ k-1. Ob-
serve now that 2i-g+l = 2(k+1l)-n+l1l = k + (k-n) + 3 &€ k-1, and
thus- the assumptions of Siebenmann theorem hold. Realize now
the element A €~Nk+l(x, Vl) by a -smoothly embedded disc, con-
sider a small tubular neighbourhood of this disc and attach it
to V; (see the picture). Denote by VO the boundary of mani-
fold thus obtained; V_  is the result of a surgical modifica-

tion of V, with respect to the sphere OA.

The embedding V < Vo— induces an isomorphism Hs(ﬁ_) —

— Hs(vo ) for s £k-1. and for s = k we have Hk(vO ) =
Hk(v_)/(oc) (here (o) stands for the R-submodule in Hk(v_),
generated by of ). Recall now that for s ¢ k-1 the homology

modules Hs(vi-) are isomorphic to. HS(G-);: Hs(tgb) and if

s = k then H (Vy ) A Hk(tv ) consequeptly Hk(vo ) = HﬂtV)/(dJ

and using p. 0 we get the manifold sought. Lemma 8.1 is proved.
Proof of lemma 8.2. Consider the admissible splitting

Vi < W, constructed in p.l of the proof of lemma 8.1l.

We have the embeddings

-ﬁé' (¢ \7-) - TtA CB;_CA———#‘ (\7—) | ;
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here A/tA = Hk(ﬁ-, tV ). Consider a generator m of the R-

module B/tA < A/tA and the image m' of m in the module

~

Hk(ﬁ-, Gl‘)tz H, (X, vl). We've shown in the course of proof of
lemma 8.1, that Hk(ﬁ, 51) is a first nontrivial homology mo-

dule of the pair (X, V)) and that it is isomorphic to T, (X,

~

- Vl)asﬂTk(x, Vl). By the virtue of argument similar to that of

the proof of lemma 8.1 we can realize m' Gﬂﬂk(x, Vl) by a

smoothly embedded disc (DX, gk-1

}. Attach now the corresponding
handle u (see the picture). Denote by V0 the ;pper bounda-—
ry of the manifold obtained; V0 is the result of the surgi-
cal modification of" vy with respect to the sphere om'., Now
we'll show that Vo satisfies the conclusion of lemma 8.2.
Observe that Om'eg Hk+l($1") vanishes (oﬁherwise the
map Hk-l(ai_) —H,_, (V') would have a non trivial kernel, and
f-“a-g- induces an
isomorphism in (k—l)-homologf and Hk_l(ﬁ-) has no t-torsion).

this is impossible since the embedding v

- o~

Thus we get from the exact sequence of the pair (Gg ' Vl )

1) HS(V0 ) = HS(V } for s <€ k-1
2) Hk(G;—):: Hk(Gi') @ R(fW), where R(@) is a free module

generated by an element m, which is sent by the composition

He (V) Hy (07) =t (O V) )

to the element m'.

P~

Compute now the image of Hk(G;—) under the map VO — V .
Since Hk(tg") — kavl_) is an isomorphism, the image of
o~ _ ~ - ~— . ~— _
Hk(vl ) — Hk(vo ) equals the image of Hk(tV ) in Hk(v‘) = A,

i.e. the submodule tA CA.

The homology Hk(Gl—, tV ) vanishes by construction (see
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the proof of lemma 8.1), thus the injectivity of Hk({f-, £VT) —

1
the triple (V , V

—> Hk(‘\‘i-, V.7) follows immediately from the exact sequence of
l-' tV"). Therefore the projection of Hk(v-)-:: A
onto Hk({}-' tV") =% A/tA  sends the image of W in Hk(ﬁ\?_)
to the element m & A/tA.

Therefore the image of Hk({;o-) in A = Hk(G_) equals
.tA + {(m) = B.

Now we'll compute the kernel of Hy (,V...O..) — A. If x& Hk(vb_)'

L S—

goes to zero via the map vo —» V™ then tx € H (Vo-) goes to

k
zero via the map tVO— — tV ¢ 50-; that means tx = O. On the

other hand, A lacks t-torsion, hence

75'&_6 #é (lZF)C./(e'L(,(/-k, (lZ‘)_ML/ﬁ (V-D - '6/_/:6 /\Z—D
Lemma 8.2 is proved. : '

. 9. The surgery in the dimensions left

The pfoof of lemma 7.4 will be split into several lemmas.

Lemma 9.1. Let M' be a manifold, Jr]'_Mn =z™. Suppose
that a class Y& Hl(M, Z) is represented by an epimorphism
z™ —>Z and that s'lHq(Mn, Z) = 0.

~

Then for any admissible splitting V the module Hq(ﬁn. V)

is a finitely generated R-module (we use the notations (5.1))

isomorphic to Ker(Hq_l(:\}_) —-}Hq_l(ﬁ)). If VvV is (g-1) -regu-
lar then Hq('f&n, ?f_) = 0.
Proof of lemma 9.1. The condition S-]'HC_I (Fin) = 0 means

that every cohomology class x & Hq (M") is annihilated by some
polynomial 1+tQ(t), Q(t) &€ R(t] =zz[zz"“1] [t] hence x = -tO(t)x.

~

Hence Hq(\’;-) —qu(Mn) is an epimorphism. Furthermore,

Ken (A/i_l (lf/\'“)—-—? #2:,' (./q))’r% Tow, #2_7[G-)
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and since Hq_l(Vf) is finitely generated over P, Torth(v_)

is finitely generated over R. Now the lemma follows directly

from the exact sequence of the pair (M°, V ).

P e

r-l(V )

—> Hr_l(ﬁ) is injective, hence Hr(ﬁ, V) =0 and we get

For an (r-1l)-regular splitting V the map H —
the point 1) of lemma 7.4.

Lemma 9.2. Suppose that M is a manifold, xiMn =‘Em,

Y& Hl(M', Z) 1is an epimorphism z™ —» %, the modules S_]'Hp(gl)

satisfy (7.1) for p < k and (V,V ) is k-regular. |

Then for all natural g,

1) the R-modules' Hp(§_, t3V7) have resolutions of length 2
for p <k,

2) the homomorphism
W) HEEPUTETE)

induced by embedding of the pairs is an epimorphism for p £ ks).
Proof. 1) Compute first the homology Hp(v-, tV"). Since
V is k-regular, the embedding t3 < V™ induces in p-homo-

~ [
logy a monomorphism, which equals t9 Hp(V ) —b-Hp(V ) . Hence

o (7 2%7) = H, (V) 2, (V7).

Since (7.2) holds for HP(G_) we can apply lemma. (5.4) to com-

6) We mean the cohomology of corresponding universal cover-

ings with coefficients in the R==I:EH¢V_J-module R, or equi-

valently the cohomology with compact supports.
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pute the above factor.

We get

Ho (\/ tY V)~ (@ P/t"’Q)@(@ P/(ajjt“’)p)'v
x @ R )e (@ R?/ﬁfa'(Q*)) e

where Fép) B Rq-—> R is a” monomorphism, given by the matrix
P @ (r)
J)O 2 j) 2 R aj)?/
(p)
af e Q‘,(P)
J.)O ? ? j;i’i
O . (p)
QJ‘)O

The assertion 1) 1s proved.
Next we note that for a free finitely generated complex C,,
such that for p £k the module HP(C;) has a free resolution .

of length 2, the spectral sequence

EN- ExtP(H(CO,R) =
>ty (Homg (€0, RY) =H#" ‘(c,,R)

degenerates in E, for p £ k and there exists a functéri al
exact sequence

-

0 — Ext’ (H l(C),R)—>HP s R) —> Hom(H (C,), R) —> O

[

The embedding (t'V , gt ¥y @, £ ¥) induces the

homomorphism of these exact sequenceé which is an epimorphism
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-

on the left (by virtue of lemma 5.4.3) and an epimorphism on

the right (obviously), hence the middle map
~ o ' ~Ne 94l Al P
YO0 AVEUT) s @V D)

is an epimorphism. Lemma 9.2 is proved.

Lemma 9.3. Let JrlM = Zm, nzeo6, 'Aé Hl(M,‘ZZ) be an epi-

morphism ‘Em —>»Z, 1l £r € n-2, m. =m. 4

I

0, (v,¥Y) be an
(r-1)-biregular splitting.

Then there exists a natural number 9, such that for
9 »>q, the embedding (V, t*V ) — (M, t%V") induces an iso-

morphism .
~ Ay X ~ Z - i
Mo (0 2407) B My (17, 5V '

and the differential of the exact sequence of the triple (M, V ,

tqﬁ-) induces an isomorphism
fv’\'__‘, ~ q v~
Moot (K1, V )i o, (V2% V7D

Proof. Consider the exact sequence of the triple

W, T, W

oty () g (B, ) b (V7E°D)
>ty (5, 2%) ot (17, V)
- B (7)) — H, (N, 2% 7).

According to lemma 9.1 Hr(ﬁ, tqv_) = 0 and Hr+l(ﬁ’ 5-)::

Hr+l(ﬁ’ tIV7) is finitely generated over R, hence for q suf-

ficiently large the embedding (ﬁ, th-)c: (ﬁ,'ﬁ—)-»induces the
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zZero mép in (r+l)-homology. That implies the second statement
of the lemma.
To prove the first it suffices to verify the surjectivity

of the map H +2(ﬁ, tIY7) - Hr+2 (M, V7). For this it suffices

" in turn to verify the surjectivity of the map H +2(t-z\7-}

t3) — Hr_'_z(t-e'v_, ¥7) for all natural ( , q.

Consider now the manifold z = t3v* N t_EV- with the boun-

dary tiv Uy t_cv,' the manifold 2z = vin t-(V- with the
boundary Vv U t-ZV and the embedding of pairs (Z, ty) < (z,

v N tqvf") . This embedding is a map of degree 1, i.e. it sends

the infinite fundamental cycle u, & Hinf( R VR {V) to
Cycéed i £ —CV
the infinite fundamental Uz & H n (z ’ V Ut V). Thus we
: o

‘obtain a commutative diagram

N, - o nC/ h-t- ~+ 'N.
Hyv (i’ﬁfl/_;—-:_f_q’V'#)@—Z ! zz(éQ/V "-['5 l/f)
4 o
Yooy (47, 07) L2 (07, £407)

The horizontal arrows are isomorphisms bf“Pdiﬂbafé duality, and
'it suffices to show that the rlghthand arrow 1s an eplmorphlsm
:Slnce (V,0 ) is (r 1) biregular, (V, -9 ) is (n—r—2)—regular
and we'deduce the required assertion from lemma 9.2 p.2).
.Lemma. $.4. Under the assumptipns of lemma 9.3 for any g
there exists a Morse function ¢ on the cobordism v~ N,

r+2.: .
+1 ©Of the corresponding complex C, (¢ )_=.{_0 < C, €.

. t9v), such that the differentials ar 2 Cp > Culis

C —>C

r+2

€&~ ... €« C <—O} vanish.

n-2
Proof. We proceed similarly to the proof of lemma 8.1.

Denote by wq the manifold Vv /N t9v"  with the boundary
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v U tdv. By lemma 9.2 the R-modules Hp(ﬁé, t3Y) have the’

resolutions of length 2 for p < r-1. Represent the complex

C*(ﬁg, tq§) up to homotopy by a standard one C*o (lemma 5.1)

and realize C* as a Morse complex of a regular functlon b

on the cobdrdism W. Denote by Vl a level surface .fﬂl(c),

separating the critical points of indices £ r-1 from critical

points of indices 2 r. Vq.is the result of a surgical modifi-

cations of indices ( r-1 of the manifold t3v. set Yq =

I q., + ot - s
=V t2v X =V v these notations are similar to
'qn q’ “q q/\q(

the notations of lemma 8.1; the picture illustrates after'new
cessary corrections the present situation as well). The Morse
function (-f) gives rise to a handle decomposition of the pair

(Wﬁ, V), and xq is precisely the result of attaching all the_

handles of indices € n-r to V. The Morse complex of

7(-f) \(Xq, V) looks likevz 0 «— D2 €«—. .. Dn—r'e_ O} . Fur-

thermore, the embedding (xq, V) ~> (Wq, V) . induces an isomor-

- phism 'in the homology Hs(ﬁé,'G) —>'Hsﬂwq, ;) for s £ n-r.

Apply now lemma 7.2 to (n-r-2)-regular splitting (V, -¥V) to
get a Morse function f on the cobordism'(xq, V), such that

its Morse complex -LO — D« ... <—ﬂf)n_r < O} is standard

2

in dimensions £ n-r-2. Since qg_r_z = 941 5

o . ~
tial 6n r-1t Dn 1 Dn —pe2 vanishes.

O the differen-

Define now a Morse function ‘f "by setting q’\Y £,

o

(flxq = - (Vq is a level surface for f and for £ and
- we may assume that Elv, = fg‘vq and that in a neighbourhood

) o0 g ) o .
-of Vq both £f and (—f) colincide with the coordinate, normal
to Vq ,50 that the definition makes sense).

The Morse complex of this function coincides ‘with c, (£)
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for x<£r-1 and with C*(-E) for = » r+l. Hence the differen-

tial an_r_l vanishes. By construction
b °q
_ r-1
C..y(f) =R @ B,
- b,_y"d A b,_1-q
where ’3\ R T 1 = 0, 'olB is injective, R r-1 —

_ ~ qzy . . s
—> Hr_l(C*(f)):s Hr-l(wq' t2V) 1is an isomorphism. (Here wo

use = 0.) Therefore the differential 7 T must vanish.

‘qr-l
Lemma 9.4 is proved.

Proof of lemma 7.4. We are to prove p.2 of the statement
(p.1 was proved in lemma 9.1). For this we'll construct a free
- {maybe infinitely generated) TZEamhl]-complex D*; suoh'that ho-
mology of D, is isomorphic to H, (M, ¥7) and the differentials
ar, 3r+2 of this complex vanish. From this the lemma follows
easily (similarly to [@o, lemﬁa 3.5]). Indeed, Hr(D*) =

A aa

H_ (M, V) = 0, implies H 1(M-,-'V ) Q"D = Dr+l' i.e. Hr+1 M, V)

is progective By lemma 9. 3 thls module is finitely generated,
.hence (by Suslin-Qulllen theorem).free.
- To construct D, we pick a number N 95 and consider

the embeddings
FH )@V Y

’The union of this sequence is (M, V ); ‘the direct limit commutes

_'w1th homology and we .get
Lim Hy (t”‘/\/ l/) #(M v)

Choose a triangulation of this pairs in such a way that every -

pair is a subcomplex of the next one. The factorcomplex of the
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t—ZkN - t-2(k—l)N v

kth pair by (k-1)th is ( v, ) . We have prov-

ed in lemma 9.3 that the differential maps H_, (M, V) iso-
morphically onto Hr(ﬁﬂ, tYU7), hence the differential ar :

Hr(%", ) —» Hr_l(tNG_) vanishes. In the same lemma we have

proved that Hr+2(t-2kNG“, ¥7) is mapped surjectively onto

- - - - ~_ .
H_,,(t 2kNG= - ¢=2(k=LING=) “7pis implies that the differential
3.+ O.,, ©Of the exact sequence of the triple (£~ 2KNG,

t-z(k—l)NG-, V™) vanish.

We'll need a purely algebraic

Lemma 9.5. Let X, < Y, be free finitely generated comp-
lexes, such that Xn are direét summandséf Yn' Suppose that
X, and Z; = Y,/X, are homotopy equivalent to the free finite-

. . . . ' N ' .
ly generated complexes X, and correspondingly Z,, such that -
1

- rth and (r+2)th differentials of X, . gpd Z,. vanish. Suppose.

further that the differentials

&y, Hy (Z*')_’ /"l'z-f(x*); ‘.'&'chz : y?;«f-.z (Z* >_> ’C/ZH (X*>

in the exact sequence of the pair (Y,, X,) vanish.

Then there exists a pair of free finitely generated comp-
lexes §; C:§*, homotopy egquivalent to the pair X, & Y., and
such that the modules X, are direct summans in- Y,, and the
@?ﬁferent;a}s _aruvandu 3&+2 of the complex §; vanish.

Proof of lemma 9.5. -According to Cockroft-Swan [15] the
complexes X, and X; (as well as 2, and Z;) can be made iso-
morphic by adding to them several complexes of the type

m5“;;'F fié_ F «— O, Qhéfe F 1is some free module. From this
we easily deduce that there exists a pair of complexes x;c: Y;

. , )
(the modules xn being the direct summands of Yn), such that’
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L] ' ]
Y,/X,% 2Z,. Consider now the free generators z of the mo-

i
] ]
dule Z_. Our assumptions imply Bzi € X,_yi furthermore, these
elements are homologous to zero in this complex, hence they are

' .
zero itself (since ar\ X. = 0). The same argument proves that

. L ]
8r+2 vanishes. |

Return now to the sequence (9.2). According to lemma 9.5

there exists a sequence (l)C: x(z)c: .+, wWhere Xii) are
free finitely generated complexes, Xél)

summands in x£i+l)

being the direct

, and the homotopy equivalences

2N

C. W, V) < c,(t _2 vV, Vv)Ic..
{ ) -
x:u = X e N
Now we set D, = Xil) =‘¥i$ X, and lemma 7.4 is proved.

Proof of lemﬂa 7.5. It will occupy the rest of § 9. We
ebtain the proof by reproducing ﬁhe argument of [lo] in our
seﬁt;ng..We exhibit the argument here,'elabofating on these
parfs which need modification.

'Denote by (3(R) " the category formed by pairs'kF, £) Qhere"
F 1is a free finitely generated 'R-module and £ 1is a nilpotent
endomorphism of F. (As always. R =2z[z" ']. The definition
is somewhat simplified in comparison with [;O]; we omit the

. eutomorphism o{»since fundamental groups are abelian and we
use the free modules 51nce all R- prOJectives are R-free ) De-
‘note by C(R) the set of equivalence classes of 1somorphism
"classes of7objects from é?(ax with.;espeqt to equivalence re-

iulation,-genereted by two .relations: |

1) (7, )~ (FOF', £®O0)

2) if the sequepee.‘Q.—? (F2,_f2) —> (Fl, fl) —> (F

. | s _ o’ fo)'*
- —»0 is exact, then (Fl, fi)rQE(F2q fz) 3] (Fo, fo)'
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It is proved in [10] that C(R) = O.
Suppose now that the assumptions of lemma 7.4 hold. Then
the module Hr+l(ﬁz V) together with the endomorphism t gi-
ves rise to an object of G;(R), which we denote by c¢(V,v ).
It vanishes when we pass to C(R)., We will now prove (following
[10]), that this equivalence to zero can be realized geometri-
.cally, so.that we can construct an (f-l)—biregular splitting
(V', ¥') with c¢c(Vv',¥') = 0 (i.e. satisfying thg conclusion
of lemma 7.5). | _
The ring R 1is a subring of 'Q[EWIMJ, stable witﬁ_respeqt
to automorphism X {see § 3). Denote by EEE(M; N} the set of
all XFhomomorphisms of R-module N into R-module M. For any
&(R)-object X = (F, £) we define.the dual X =(Hom (F, R), +£),
where we choose (+) if t €JM preserves the orientation and
() if not. P
| Lemma 9.6. Under the assumptions of lemma 7.4
Y G20 AT/
Proof. The manifold (V, -¥ ) is an (n-r-2)-reqular Qplit—
ting and

€ (V)= (b (4,700,870,

. We know from lemma 9.3 that Hr4l(ﬁ,‘3_)s: Hr(z-, th“)
for g sufficlently large, hence )
eV, Y ) e H (VT W), By

The same lemma implies that

(V- (Hy oy (2977 07) 274)

Pl
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for gq sufficiently large. The Poincare duality implies that
there is a X-isomorphism .

r N

A -~ ~ 4
SV, e W), o) o~ @ 2T, VD), 6

(£hé sign (+) appears if t 1is orientation preserving, bther-
wise (-) appears). The lemma 9.4 implies that we can choose

a cell aecomposition of a pair (Vf,_tgv—) such that in .the
resulting chain complex C*(G_, £9v7) the differential ar+2

vanishes. Moreover, lemma 9.3 and p.2 of lemma 7.4 imply that

'Hr(v_,“tqv_) is a free module. Hence we obtain

m "W, W), +t) x (Homm (V, £, B, +t)

and since Hom(M, R) is X -isomorphic to Hom(M, R), the lemma
follows.
A triangular object of G (R) is by definition an objeét

(F, f) together with a filtration 0 =F CF,C ... CF_ = F,

1
such that all the faétors Fiv1/Fy are frée modules of rank 1-

" and f(F'i"Jrl) < Fi.. .
" The basic role in realizing geometrically the relations
is played by the following lemma.
Lemma 9.7. Suppose that all the assumptions of lemma 7.5

hold and c(V,‘Q) = (P, f). Suppose given an exact sequence
0= (0,0) — (£, 0)—— (P.4)—0
2 - . 99 ’
'pf the obﬂects of L (R), where (EUcPJ is a triangular object.

), such

Then there exists an r-bifegular splitting-(vo,vO

~ that :

o
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Procof. Denote Pi the image of F
the filtration of F, mentioned above).

i in P (where {Fi} is

Lemma 9.8. Let 1 <€ n. There exists an admissible split-
ting (Vi,'Vi), obtained from (V,Vv) by a sequence of surgical.
modifications of indices < r-1 and of indice (r+l1) - (all the

modifications take place inside V+), such that HS(Vi-):: HS(V_)

V,7, V) = H_ (M, V) is

isomorphic to the map p; =P ]Fi : Fi — P,

for s £ r-1 and the map Hr+1

First we deduce lemma 9.7 from lemma 9.8.
Set i =.n. We'll show that (V ;Y ) is an r-biregular

L J— ~

splitting Con51der the exact sequence of the triple (ﬁ,'vn', v):

’L/u-fr(v V)-_?’L/Z-fﬁ(M )—_7
_”%:M [M v )—-771/(]/; ..»N‘).

The left'a;:qw is the ep;morphiSm Fy > Py, the right ‘group va-
.~'~- _'._ . .
nishes. Therefore Hr+l(M' Vo } = O. 'Since V_ is (r-1)-regular

and m_ = 0 we deduce from lemma 9.1 .thatu~Hr(ﬁ, §n-) = 0.

Hencg Hr(vn-f tvn ) = 0, and, consequently, Vn._is r-regular.
Further, 65' is obtainéd from V. by attaching hgndles of indi-
. ces r+l, hence the homolégy of vt did not change through
" the dimensions n-r-3, and consequently, V_ is r-biregular.
Furthermere, m,.,, = O and lemma 9.1 implies that the R-module
Hr+2(ﬁ, V) is finitely generated; which implies that for N

sufficiently large there exists an epimorphism Hr¥é(t*N§-; V’)-é

(-A) =

+2(t V ' 3-) = Q. Now our conclu-

—?'Hr+2(ﬁ,‘§-). But (V, = V) }s {n-r-2)-regular and mn - 2

= 0, hence (by lemma 9.2) H£

sion follows from the exact sequence
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7L/Z+,é, (/\7) 'VV")_? ;{C-f'.& (ﬁ: \,\/;‘)‘? #’E-F'/(O;v: \7‘)'—’%-&1 [ﬁ% 17‘) -

Proof of lemma 9.8. Induction in 1. Suppose that we've

constructed an admissible splitting Vi’ satisfying the requi-
r+l(Vi : V), the
homomorphism Hr+l(vi y V) > Hr+l(M, v, indpced by embed-

red properties. We'll identify' F. with H

dihg of the pairs, - with p |F,, the image p(_,, (V.7, Ve
CHr+l (M, V } - with Pi. Choose an element ei-l-le F. +1 such
that Fi+l = Fi @ Rie i+l).
V). p( i+1) " by v€ Hr+l(M, v ) Note that p( x) = ty.

Denote te, by x &€ Hr+l(v ’

-’('tfiiz",'

(gi ,_V ) equals x and image . j,O

We prove first .that there exists an element G'GEH r+l
~

V )}, such that to § Hr+l

in Hr+1(ﬁ’,v-) equals y.
Indeed, choose some chains v g Cr%l(M)' X e;cr+l(vi ),

‘which represent y and x. The chain ty -isAhomologous.to

p(x) ‘modulo'vh, i.e.  t¥ = p(X) + v + Ou, where v € Cr+l(v )

¥ €Cy,y

-1,

- The - chain & =t (X + v) is .a relative cycle in

lN__ ~~

1(t v vy ehd the homology class_ q‘_of & satlsfy

EI-

the requlrement.
Consider now the admissible splitting t-lvi. and apply to
it the procedure described in p.l of the proof of lemma 8.1

(where k =r). We get the manifold vlc:-t’lvi'

Note that Vv is obtained from V by attachlng handles--

l
~ _l-.n

of indices £ r-1, since m. = O. The Vl r £V , - are simply

- - ~
" connected and the first nonzero homoclogy group of (thi ,Vl)'

sits in dimension r. Therefore the Hurewicz homomorphism
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is surgective., Consider the element G'G\ﬁ}nq(t-1V -, V1_),

such that H(6') equalsAto the ¢, reduced modulo V., . By the

1
same argument as in the proof of lemma 8.1 we realize o' by
the embedded disc D = (D™*1, sT) and attach to v,” a small
tubular neighbourhood at this disc. The upper boundary of the
manifold thus obtained will be denoted V. +1° We claim that
this manifold satisfies the conclusion of lemma 9.8 for the
number (i+1),

_ Indeed, if 8 ¢ r-i, then
(Vi) L/(v) H(f"v) #(v)

Note further that the R-module Hr+1(vi*1’ )y contalns
‘an ‘element 'SY, such that the image of -S' in H 1(v V;)

equals H(6') and the image of s}_in_iH. (t" V ) equals -

77, ¥, )and Te 2y (87 v

i+1?

TG, Indeed the chaine D =

'r+1 17

v ) ‘are homologoua modulq‘.f}_, ;.e.‘ D,; 5+ R o Bu, where
R EiCr+1(V ). Now set S' = D - R. . B o

Congider the exact sequence of the trlple (V1+1’ V17; vy

fr/r.z,( 1 )_9‘%1#1(1/ V)—_?
7 ’L’('L-f-f ( z+1>V’)i’ t+1(\/z‘:4 V)_?# (\’/: N)

o)

The first module from the right and the first module from the o
left vanish. Thus

#""’” (\/:H"{: ) T 1-; Q”)QD/Q(O_)% -
’Z+1(V SV )e,@(r)
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Now we extend the identification F; = H_ ,(V,”, V) to an
isomorphism of the R-modules « : Fi+1 _"Hr+1(vi+1’

) = S, Since tS =x in H, 1(V

V) by

- setting ¢ (e V') =F

i+l i ?
the map ¢ commutes with the action of +t; since the cycle

i’

S 1is homologous to y modulo V™, the composition of ?

and the mep H (Vs

r+1° i+1°

Py > Py

V) - Hr+1(M’ ) equals
Pi+1 |

The induction step is over.

Now weAshow how to realize geometrically the relation 2)
of the definition of C(R). More precisely, suppose that the
agsumptions of lemma 7.5 hold. Let (V, V) be an (r-1)~b1re-
gular splitting, such that c(V,3) = (F E ) Let

0= (B )= B ) —E f)~0

be an exact sequence of ob;]ects from G(R) We'1l show that )

~ there ex1sts an (r-1)-biregular splitting (V', v'), such that .. -

e(vr, Y1) = (F, eF
'Let

0——7(:9 sﬂ)—P(CQ QL) (}f)—_?o
0= (B, 0) — (6,4)~E, £)— 0

‘be the exact sequences of objects from {(R), where Qs ¥,),

o %2 e__fo>-

(Q1,tp1) are triangular (such sequences exist, see [ﬁo lemma

1. 2]) Since. F_, F, are free we have F, = F_® F2 and f,

is given in this representation by the matrix (io ?. , where

o0 4,

g is & homomorphism F2 —> F,. This enables us to construct
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the following exact sequences of objects of (& (R):

0_? (hRePr, %@%);e(@é@@o,%@‘v@“’
— (ﬁ@ /—;)ﬂ@?@) — 0,

0~ (R6R, 4,00)— (426, y)- (Rok £) =0

(9.3)

~ where the middle objects are both triangular. The details (in
slightly different notations) can be found in [jo, Pe 338].
Next we apply lemma 9.7 and find an r-biregular manifold
(Vo, VO), such that c(Vb,*JO) = (P2 ®P, Y,8& %?0). The
manifold (V, -vo) is an (n-r-3)-biregular splitting and

_ E * + *
c(Vy, =V,) = (B, @P , =(P, @ L)) (by lemma 9.6).
Since r > 2 and (n-r-3) + 1 < n-4 we can apply lemma .9.7
again, this time -~ to the exact sequence, dual to the first
sequence from (9.3). Now we get a manifold (V,,V,), such
that c(V1,‘91) = (F2 =) Fo, f2 2] fo)*, and'one more applica-

tion of lemme 9.6 completes the proof.
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