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Abstract

We study non-holonomic overideals of a left differential ideal J ⊂ F [∂x, ∂y] in two variables
where F is a differentially closed field of characteristic zero. The main result states that a principal
ideal J = 〈P 〉 generated by an operator P with a separable symbol symb(P ), which is a homoge-
neous polynomial in two variables, has a finite number of maximal non-holonomic overideals. This
statement is extended to non-holonomic ideals J with a separable symbol. As an application we
show that in case of a second-order operator P the ideal 〈P 〉 has an infinite number of maximal
non-holonomic overideals iff P is essentially ordinary. In case of a third-order operator P we give
few sufficient conditions on 〈P 〉 to have a finite number of maximal non-holonomic overideals.

AMS Subject Classifications: 35A25, 35C05, 35G05
Keywords: differential non-holonomic overideals, Newton polygon, formal series solutions.

1 Finiteness of the Number of Maximal Non-holonomic Overideals

of an Ideal with a Separable Symbol

Let F be a differentially closed field (or universal in terms of [8], [9]) with derivatives ∂x, ∂y and a linear

partial differential operator P =
∑

i,j pi,j∂
i
x∂j

y ∈ F [∂x, ∂y] be of order n. Considering e. g. the field of

rational functions C(x, y) as F is a quite different issue. The symbol symb(P ) =
∑

i+j=n pi,jv
iwj we

treat as a homogeneous polynomial in two variables of degree n. We call a left ideal I ⊂ F [∂x, ∂y] non-
holonomic if the degree of its Hilbert-Kolchin polynomial ez + e0, i.e. if its differential type [8], equals
1. We study maximal non-holonomic overideals of the principal ideal 〈P 〉 ⊂ F [∂x, ∂y] (obviously there
is an infinite number of maximal holonomic overideals of 〈P 〉: for any solution u ∈ F of Pu = 0 we get
a holonomic overideal 〈∂x−ux/u, ∂y −uy/u〉 ⊃ 〈P 〉). We assume w.l.o.g. that symb(P ) is not divisible
by ∂y (otherwise one can make a suitable transformation of the type ∂x → ∂x, ∂y → ∂y + b∂x, b ∈ F ,
in fact choosing b from the subfield of constants of F would suffice).

Clearly, factoring an operator P can be viewed as finding principal overideals of 〈P 〉 and we refer
to factoring over a universal field F as absolute factoring. We mention also that overideals of an ideal
in connection with Loewy and primary decompositions were considered in [6].

Following [4] consider a homogeneous polynomial ideal symb(I) ⊂ F [v, w] and attach a homoge-
neous polynomial g = GCD(symb(I)) to I. Lemma 4.1 [4] states that deg(g) = e (called also the
typical differential dimension of I [8]). As above one can assume w.l.o.g. that w does not divide g.
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We recall (see [3], [4]) that (Ore [1]) the ring R = (F [∂y])
−1 F [∂x, ∂y] consists of fractions

of the form β−1r where β ∈ F [∂y], r ∈ F [∂x, ∂y]. We also recall that one can represent R =
F [∂x, ∂y] (F [∂y])

−1 and two fractions are equal β−1r = r1β
−1
1 iff βr1 = rβ1 [3], [4].

For a non-holonomic ideal I denote ideal I = RI ⊂ R. Since ring R is left-euclidean (as well as
right-euclidean) with respect to ∂x over skew-field (F [∂y])

−1 F [∂y], we conclude that ideal I is principal,
let I = 〈r〉 for suitable r ∈ F [∂x, ∂y] ⊂ R (cf. [4]). Lemma 4.3 [4] implies that symb(r) = wmg for a
certain integer m ≥ 0 where g is not divisible by w.

Now we expose a construction introduced in [4]. For a family of elements f1, . . . , fk ∈ F and
rationals 1 > s2 > · · · > sk > 0 we consider a D-module being a vector space over F with a basis
{G(s)}s∈Q where the derivatives of G(s) = G(s)(f1, . . . , fk; s2, . . . , sk) are defined as

dxi
G(s) = (dxi

f1)G
(s+1) + (dxi

f2)G
(s+s2) + · · · + (dxi

fk)G
(s+sk)

for i = 1, 2 using the notations dx1
= ∂x, dx2

= ∂y.
Next we introduce series of the form

∑

0≤i<∞

hiG
(s− i

q
)

(1)

where q is the least common multiple of the denominators of s2, . . . , sk (one can view (1) as an analogue
of Newton-Puiseux series for non-holonomic D-modules).

Theorem 2.5 [4] states that for any linear divisor v + aw of symb(P ) and any f1 ∈ F such that
(∂x + a∂y)f1 = 0 there exists a solution of P = 0 of the form (1) (and conversely, if (1) is a solution
of P = 0 then (∂x + a∂y)f1 = 0 for an appropriate divisor v + aw of symb(P )). Furthermore,
Proposition 4.4 [4] implies that any solution of the form (1) of r = 0 such that (∂x + a∂y)f1 = 0 for
suitable a ∈ F (or equivalently ∂yf1 6= 0) is also a solution of ideal I (then the appropriate linear form
v + aw is a divisor of g), the inverse holds as well.

In [5] we have designed an algorithm for factoring an operator P in case when symb(P ) is separable.
In particular, in this case there is only a finite number (less than 2n) of different factorizations of P .
Now we show a more general statement for overideals of 〈P 〉.

Theorem 1 Let symb(P ) be separable. Then there exists at most n = ord(P ) maximal non-holonomic
overideals of 〈P 〉 ⊂ F [∂x, ∂y]. Moreover, if there exists a non-holonomic overideal I ⊃ 〈P 〉 with the
attached polynomial g = GCD(symb(I)) then there exists a unique non-holonomic overideal maximal
among ones with the attached polynomial equal g.

Proof. Let a non-holonomic ideal I ⊃ 〈P 〉. Then βP = r1r for suitable β ∈ F [∂y], r1 ∈ F [∂x, ∂y]
and a polynomial g = GCD(symb(I)) attached to I is a divisor of symb(P ).

We claim that for every pair of non-holonomic ideals I1, I2 ⊃ 〈P 〉 to which a fixed polynomial g
is attached, to their sum I1 + I2 also g is attached. Indeed, any solution of the form (1) of P = 0 such
that (v + aw)|g, is a solution of r = 0 as well due to Lemma 4.2 [4] (cf. Proposition 4.4 [4]) taking
into account that symb(P ) is separable, hence it is also a solution of I as it was shown above and by
the same token is a solution of both I1 and I2 (in particular I1 + I2 is also non-holonomic). The claim
is established.

Thus among non-holonomic overideals I ⊃ 〈P 〉 to which a given polynomial g|symb(P ) is attached,
there is a unique maximal one. Now take two maximal non-holonomic overideals I, I ′ ⊃ 〈P 〉 to which
polynomials g, g′ are attached, respectively. Then g, g ′ are reciprocately prime. Indeed, if v + aw
divides both g, g′ then arguing as above one can verify that (1) is a solution of I + I ′, i. e. the latter
ideal is non-holonomic which contradicts to maximality of I, I ′. 2
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Corollary 1 Let symb(P ) be separable. Suppose that there exist maximal non-holonomic overideals
I1, . . . , Il ⊃ 〈P 〉 such that for the respective attached polynomials g1, . . . , gl the sum of their degrees
deg(g1) + · · · + deg(gl) ≥ n. Then 〈P 〉 = I1 ∩ · · · ∩ Il.

Proof. As it was shown in the proof of Theorem 1, polynomials gj |symb(P ), 1 ≤ j ≤ l are
pairwise reciprocately prime, hence g1 · · · gl = symb(P ). Moreover it was established in the proof of
Theorem 1 that every solution of P = 0 of the form (1) such that (∂x + a∂y)f1 = 0, is a solution of
(a unique) Ij for which (u + aw)|gj , thus every solution of P = 0 of the form (1) is also a solution
of I1 ∩ · · · ∩ Il. Therefore the typical differential dimension of ideal I1 ∩ · · · ∩ Il equals n (cf. Lemma
4.1 [4]). On the other hand, any overideal of a principal ideal 〈P 〉 of the same typical differential
dimension coincides with 〈P 〉; one can verify it by comparing their Janet bases. 2

Remark 1 One can extend Theorem 1 to non-holonomic ideals J such that homogeneous polynomial
GCD(symb(J)) is separable: namely, there exists a finite number of maximal non-holonomic overideals
I ⊃ J .

2 Non-holonomic Overideals of a Second-Order Linear Partial Dif-

ferential Operator

In this section we study the structure of overideals of 〈P 〉 when n = ord(P ) = 2. The case of a
separable symb(P ) is covered by Theorem 1. However, it is an open question, whether one can verify
existence of a non-holonomic proper overideal of 〈P 〉.

Let symb(P ) be non-separable. Then applying a transformation of the type ∂x → b1∂x+b2∂y, ∂y →
b3∂x + b4∂y for suitable b1, b2, b3, b4 ∈ F one can assume w.l.o.g. that P = ∂2

y + p1∂x + p2∂y + p3

(it would be interesting to find out when one can carry out these transformations algorithmically).
First let p1 = 0. Then P is essentially ordinary, i.e. it becomes ordinary after a transformation as
described above; for any solution u ∈ F of the equation P = 0 we get a non-holonomic overideal
〈∂y − uy/u〉 ⊃ 〈P 〉.

Now suppose that p1 6= 0. Then P is irreducible (see e.g. Corollary 7.1 [4]). Moreover we claim
that 〈P 〉 has at most one maximal non-holonomic overideal. Let I ⊃ 〈P 〉 be a non-holonomic overideal.
Choosing arbitrary non-zero elements b1, b2 ∈ F define the derivation d = b1∂x + b2∂y. Similar to the
proof of Theorem 1 there exists r ∈ F [d, ∂y ] = F [∂x, ∂y] such that 〈r〉 = IR1 ⊂ R1 = (F [d])−1 F [d, ∂y ].
Then βP = r1r for suitable β ∈ F [d], r1 ∈ F [d, ∂y] and symb(r) = (b1v+b2w)mg for an integer m and
g|w2. If g = 1 then I cannot be non-holonomic because of Proposition 4.4 [4] (cf. above). If g = w2

then similar to the proof of Corollary 1 one can show that the only non-holonomic overideal of 〈P 〉
among ones to which polynomial w2 is attached, is just 〈P 〉 itself.

It remains to consider the case g = w. Applying the Newton polygon construction from [4] to
equation r = 0 and a divisor w of symb(r), one obtains a solution of the form (1) of r = 0 with
G = G(x), thereby it is a solution of P = 0. On the other hand, applying the Newton polygon
construction from [4] to equation P = 0, one gets at its first step f1 = x. At the second step f2 is
obtained which fulfils equation (∂yf2)

2 + p1 = 0, where f2 corresponds to the edge of the Newton
polygon with endpoints (0, 2), (1, 0), so its slope is 1/2. This provides a solution of equation P = 0
of the form (1) with G = G(x, f2; 1/2), therefore equation P = 0 has no solutions of the form (1)
with G = G(x). The achieved contradiction shows that there are no non-holonomic overideals I with
attached polynomial w. This completes the proof of the claim.

Summarizing we can formulate (cf. [5] for factoring P over not necessarily differentially closed
fields)
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Proposition 1 A principal ideal 〈P 〉 for a second-order operator P = ∂2
y + p1∂x + p2∂y + p3 with

non-separable symb(P ) has
i) no proper non-holonomic overideals in case p1 6= 0;
ii) an infinite number of maximal non-holonomic overideals in case p1 = 0.

3 On Non-holonomic Overideals of a Third-Order Operator

Now we study overideals of 〈P 〉 where the order n = ord(P ) = 3 (we mention that in [4] an algorithm
is designed for factoring P ). Due to Theorem 1 it remains to consider non-separable symb(P ). We
mention that few explicit calculations for factoring P are provided in [7].

3.1 Symbol with two Different Linear Divisors

First let symb(P ) have two linear divisors; therefore one can assume w.l.o.g. (see above) that w is its
divisor of multiplicity 2 and v is its divisor of multiplicity 1. One can write

P = ∂2
y∂x + p0∂

2
x + p1∂

2
y + p2∂x∂y + p3∂y + p4∂x + p5.

Suppose that p0 6= 0. The Newton polygon construction from [4] applied to equation P = 0 and
the divisor w of symb(P ), yields a solution of the form (1) of P = 0 with f1 = x at its first step. At its
second step the construction yields f2 which fulfils equation (∂yf2)

2 + p0 = 0 and which corresponds
to the edge of the Newton polygon with endpoints (1, 2), (2, 0), so with the slope 1/2. This provides
G = G(x, f2; 1/2) in (1).

Let a non-holonomic ideal I ⊃ 〈P 〉. Choose d = b1∂x + b2∂y for non-zero b1, b2 ∈ F . As in
the previous Section there exists r ∈ F [d, ∂y ] such that 〈r〉 = R1I ⊂ R1 = (F [d])−1 F [d, ∂y]. Then
βP = r1r for suitable β ∈ F [d], r1 ∈ F [d, ∂y ]. Rewrite symb(r) = (b1v + b2w)mg where g|(vw2).
If either g = w2 or g = v, one can argue as in the proof of Theorem 1 and deduce that there can
exist at most one maximal non-holonomic overideal of 〈P 〉 with the property that the polynomial
attached to the overideal is either w2 or v. Similar to the proof of Corollary 1 one can verify that if
there exist maximal non-holonomic overideals I2, I1 ⊃ 〈P 〉 with attached polynomials w2 or v then
〈P 〉 = I1 ∩ I2. As in Theorem 1 the existence of a maximal overideal with the attached polynomial
w2 (or v, respectively) follows from the existence of any non-holonomic overideal with the attached
polynomial w2 (or v, respectively).

If either g = w or g = vw then applying the Newton polygon construction from [4] to equation
r = 0 and divisor w of symb(r), one obtains a solution of r = 0 (and thereby, of P = 0 due to Lemma
4.2 [4]) of the form (1) with G = G(x) which contradicts to the supposition p0 6= 0 (see above). Thus,
in case p0 6= 0 ideal 〈P 〉 has at most two maximal non-holonomic overideals (similar to Theorem 1).

When p0 = 0 this is not always true, say for P = (∂x + b)(∂2
y + b3∂y + b4) (cf. case n = 2 in the

previous Section). It would be interesting to clarify for which P this is still true.

3.2 Symbol with a Unique Linear Divisor

Now we consider the last case when symb(P ) has a unique linear divisor with multiplicity 3. As above
one can assume w.l.o.g. that symb(P ) = w3, so

P = ∂3
y + p0∂

2
x + p1∂

2
y + p2∂x∂y + p3∂y + p4∂x + p5.

Keeping the notations we get 〈r〉 = R1I and βP = r1r. Then symb(r) = (b1v + b2w)mg where g|w3.
If g = w3 then arguing as in the proof of Corollary 1 we deduce that the only non-holonomic overideal
of 〈P 〉 to which polynomial w3 is attached, is just 〈P 〉 itself. Let g|w2. Applying the Newton polygon
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construction from [4] to equation r = 0 and linear divisor w of symb(r) one gets a solution of r = 0
(and thereby of P = 0) with either G = G(x) or G = G(x, f2; 1/2) where ∂yf2 6= 0 (cf. above).

Application of the Newton polygon construction from [4] to equation P = 0 (and unique linear
divisor w of symb(P )) at its first step provides f1 = x. The second step requires a trial of cases.
First let p0 6= 0. Then the second step yields f2 which fulfils equation (∂yf2)

3 + p0 = 0 and which
corresponds to the edge of the Newton polygon with endpoints (0, 3), (2, 0), so with the slope 2/3.
Thus we obtain a solution of the form (1) with G = G(x, f2, . . . ; 2/3, . . .), hence 〈P 〉 in case p0 6= 0
has no non-holonomic overideals with attached polynomial g being a divisor of w2 (see above). Now
assume that p0 = 0 and p2 6= 0. Then the second step provides solutions of P = 0 of the form (1)
with two different possibilities. Either the Newton polygon construction chooses the vertical edge
with endpoints (1, 1), (1, 0) as a leading edge at the second step, then it terminates at the second step
yielding a solution of the form (1) with G = G(x) (we recall that in the construction from Section 2 [4]
only edges with non-negative slopes are taken as leading ones and the construction terminates while
taking a vertical edge, so with the slope 0, as a leading one, in particular the edge with endpoints
(1, 1), (1, 0) is taken as a leading one regardless of whether the coefficient at point (1, 0) vanishes). As
the second possibility the construction yields a solution of the form (1) with G = G(x, f2, . . . ; 1/2, . . .)
where f2 6= 0 fulfils equation (∂yf2)

3 + p2∂yf2 = 0 corresponding to the edge of the Newton polygon
with endpoints (0, 3), (1, 1), so with the slope 1/2. One can suppose w.l.o.g. that the Newton polygon
construction terminates at its third step (thereby G = G(x, f2; 1/2)), otherwise 〈P 〉 cannot have a
non-holonomic overideal to which a divisor g of w2 is attached (see above).

If g = w2 then any solution H2 of P = 0 of the form (1) with G = G(x, f2; 1/2) is a solution
of r = 0 because otherwise rH2 6= 0, being also of the form (1) with G = G(x, f2; 1/2), cannot be
a solution of r1 = 0 taking into account that symb(r1) does not divide on w2 (cf. Lemma 4.2 [4]).
Else if g = w then rH2 6= 0 (again taking into account that symb(r) does not divide on w2) and
therefore r1(rH2) = 0. Hence for a solution H1 of P = 0 of the form (1) with G = G(x) (see above)
we have rH1 = 0 since otherwise rH1 being also of the form (1) with G = G(x) cannot be a solution
of r1 = 0 (again cf. Lemma 4.2 [4]). Then arguing as in the proof of Theorem 1 one concludes that
in case p0 = 0 and p2 6= 0 ideal 〈P 〉 can have at most two maximal non-holonomic overideals (with
attached polynomials w and w2, respectively). Similar to the proof of Corollary 1 (cf. the preceding
Subsection) one can verify that if there exist maximal (non-holonomic) overideals I1, I2 ⊃ 〈P 〉 with
attached polynomials w and w2, respectively, then 〈P 〉 = I1 ∩ I2. As in Theorem 1 the existence of a
maximal overideal with the attached polynomial w (or w2, respectively) follows from the existence of
any non-holonomic overideal with the attached polynomial w (or w2, respectively).

Furthermore, let p0 = p2 = 0, p4 6= 0. Then as in case p0 6= 0 we argue that the second step of the
Newton polygon construction applied to equation P = 0 yields f2 which fulfils equation (∂yf2)

3+p4 = 0
and which corresponds to the leading edge of the Newton polygon with endpoints (0, 3), (1, 0), so with
the slope 1/3. Thus the Newton polygon construction yields a solution of P = 0 of the form (1) with
G = G(x, f2, . . . ; 1/3, . . .) and again 〈P 〉 in case p0 = p2 = 0, p4 6= 0 under consideration has no
non-holonomic overideals with an attached polynomial being a divisor of w2.

Finally, when p0 = p2 = p4 = 0 the ideal 〈P = ∂3
y + p1∂

2
y + p3∂y + p5〉 has an infinite number of

maximal non-holonomic overideals (similar to the second-order case P = ∂ 2
y + p3∂y + p5, see above).

Summarizing we conclude with the following

Proposition 2 Let P be a third-order operator with non-separable symb(P ).
i) When symb(P ) has two different (linear) divisors (one of which of multiplicity 2) then we can

assume w.l.o.g. that P = ∂2
y∂x+p0∂

2
x+p1∂

2
y +p2∂x∂y +p3∂y +p4∂x+p5. If p0 6= 0 then 〈P 〉 has at most

two maximal non-holonomic overideals. Moreover if there exist two different maximal non-holonomic
overideals I1, I2 ⊃ 〈P 〉 then 〈P 〉 = I1 ∩ I2;
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ii) when symb(P ) has a single linear divisor (of multiplicity 3) then we can assume w.l.o.g. that
P = ∂3

y + p0∂
2
x + p1∂

2
y + p2∂x∂y + p3∂y + p4∂x + p5. If either p0 6= 0, either p2 6= 0 or p4 6= 0 then

〈P 〉 has at most two maximal non-holonomic overideals. Moreover if there exist two different maximal
non-holonomic overideals I1, I2 ⊃ 〈P 〉 then 〈P 〉 = I1 ∩ I2. Otherwise 〈P = ∂3

y + p1∂
2
y + p3∂y + p5〉 has

an infinite number of maximal non-holonomic overideals.

It is a challenge to design an algorithm which produces non-holonomic overideals of a given differ-
ential ideal J ⊂ F [∂x, ∂y].

Appendix. Explicit formulas for Laplace transformation

We exhibit a short exposition and explicit formulas for the Laplace transformation [2].
Let Q = ∂xy + a∂x + b∂y + c be a second-order operator and Ln =

∑
0≤i≤n li∂

i
x a Laplace divisor

of order n, in particular Q, Ln form a Janet basis, hence

PQ = (∂y + a)Ln (2)

for a suitable P =
∑

0≤i≤n−1 pi∂
i
x. This form of P is obtained by comparing the highest terms

which divide on ∂n
x in (2)). Comparing the highest terms in (2) which divide on ∂y, we get that

Ln = P (∂x + b). Thus

PQ = (∂y + a)P (∂x + b). (3)

We have Q 6= (∂y + a)(∂x + b) iff 0 6= ab + by − c =: K0.

Lemma 1 If K0 6= 0 then there are unique B, C such that

(∂x + B)Q = (dxy + a∂x + B∂y + C)(∂x + b) (4)

Proof. (4) is equivalent to a linear algebraic system for B and C.

aB − C = by + ab − ax − c, (c − by)B − bC = bxy + abx − cx.

Therefore (3) holds iff P = P1(∂x + B) by means of dividing P by ∂x + B with remainder.
Substituting the latter equality to (3) and making use of (4) we obtain the equality

P1(dxy + a∂x + B∂y + C) = (∂y + a)P1(∂x + B). (5)

Now (5) is similar to (3) but with the order ord(P1) = ord(P ) − 1 = n − 1 and a new second-order
operator Q1 = dxy + a∂x + B∂y + C. Continuing this way we get the Laplace transformation with
K1 = aB + By − C etc. 2

More uniformly denote b0 := b, c0 := c, then b1 := B, c1 := C, b2, c2 etc. obtained from Lemma 1.
Denote

Ki := abi + (bi)y − ci, Qi := dxy + a∂x + bi∂y + ci.

Corollary 2 There exists Ln satisfying (2) iff for the minimal m such that Km = 0 we have m ≤ n.
In this case

Ln = Pn−m(∂x + bm−1) · · · (∂x + b0) (6)

where Pn−m =
∑

0≤i≤n−m pi∂
i
x is an arbitrary operator of the order n − m which fulfils

Pn−m(∂y + a) = (∂y + a)Pn−m. (7)

For any order n − m ≥ 0 such an operator Pn−m exists. The pair Q, Ln constitutes a Janet basis of
the ideal 〈Q, Ln〉. The ideal 〈Q, Lm〉 is the unique maximal non-holonomic overideal of 〈Q〉 which
corresponds to a divisor y of symb(Q) = xy (see Theorem 1).
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Proof. Applying Laplace transformations as above, if m > n we don’t get a solution of (2) after
n steps since (3) with PQn = (∂y + a)P (∂x + bn) would not have a solution with P of the order 0. If
m ≤ n then successively following Laplace transformations we arrive to (6) in which (7) is obtained
from equality PQm = (∂y + a)P (∂x + bm) (3)) and taking into account that Km = 0. 2

Remark 2 Due to (2) existence of a Laplace divisor is equivalent to reducibility (in a special form)
of Q in the ring (F [∂x])−1 F [∂x, ∂y] (see above).
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