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0. — Introduction

Let M, denote the moduli space of smooth, projective curves of genus g > 2. The
cohomology space H*(M,}, for i < £, is independent of g; according to conjectures of
Mumford [5] it should be represented by tautological classes which, in particular, are
Tate classes (for the natural action of Gal(Q/Q), taking étale cohomology). On the other
hand, it is known that for g >> 0, M, is of general type and, in particular, carries many
holomorphic sections of the pluricanonical bundle.

Harris and Mumford [6) have asked whether (for large g) M, carried holomorphic
forms of degree ¢, 29 — 1 or 3y — 3 : these degrees are suggested by the allowed degrees
for holomorphic forms on the space A, of principally polarized Abelian varieties ((9])
and its coverings. In this paper we will answer the question, but only, unfortunately, in
a virtual fashion.

Write My = [',\T,, where T, is the Teichmiiller space, and Ty the Teichmiiller group.
There is a natural map I'y, — Sp(y, Z) given by the action of 'y on the cohomology of
the “universal” curve of genus g. Let I’ (V) be the inverse image in I'y of the full level
N subgroup I'(N) in T' = Sp(y,Z). Thus I',/T,(N) = Sp(g9,Z/NZ) since Ty — T is -
surjective.

Denote by M,(N) the quotient [,(N)\T,, a Galois covering of M, with group
Sp(g,Z/NZ)/(£1)}). We will prove :

THEOREM 1. — For fized g, and N sufficiently lurge,
HY M, (N), Q) #0fori=g, 291, 3g—3,
assuming moreover that g > 3 (if i=2¢g — 1) and g > 5 (¢f 1 = 39 — 3).

Our proof relies on a method developed in an earlier paper [2] and applied there to
the restriction of holomorphic cohomology classes to subvarieties of Shimura varieties.
We use it here to study the restriction to M, (via the Torelli embedding) of holomorphic
cohomology classes on A,. A simple differential computation implies that this restriction
is (virtually) injective. The theorem follows from existence results for holomorphic forms
on Ay ; the precise theorem we use is due to Li [4].

Note that according to Weissauer [9], that are no holomorphic forms on A, in degrees
g, 29 — 1, 39 — 3, at least for g >> 0. Thus it may be natural to expect the same of M,
(rather than its coverings!).

(*) Membre de I'Institut universitaire de France
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1. — Differential calculus

Let M, denote the moduli space of smooth, projective curves of genus g > 2. We
use the transcendental realization of M, as [',\T,, where T,, the Teichmiiller space,
is a bounded, contractible, holomorphically convex domain in €393, The Torelli map ¢
which to a curve C associates its Jacobian is an injection of M, into A,, the space of
principally polarized Abelian varieties of genus g.

The associated map I'y — I" := Sp(g,Z) is surjective, and we define I'j(N) as the
inverse image in I'y of the full level IV subgroup

(1.1) F(N)={yeT:y=1[N]}
in I'. We will consider the associated map
(1.2) H(N) : My(N) = T,(N\T, — Ay(N)

with Ay (N} the space of principally polarized Abelian varieties with full level N structure.
We view A, (N) as the quotient T'(N)\H,, where H, is the Siegel upper-half space. We
will denote by G the Q-group Sp(g); thus G(R) acts on H,.

Let w be a holomorphic i-form on A,(NV), which we view as a form on H, invariant
under T'(N). If v € G(Q) is seen as acting by (left) translations on Hy, y*w is then
invariant under T'(1) N AT'(N)y~™!, a congruence subgroup of I'(1) which contains a
subgroup T'(M). Thus v*w is a i-form on A, (M) for some M.

We will say that w is virtually non-zero along T, if there exists v € G(Q) such
that

(1.3) HMY' v 'w #0

M being of course determined as above by 7. (¥)

We denote by 0 or Q% the sheaf of holomorphic i-forms on a variety X. On A (N)
we have an invariant measure, and we can consider the corresponding spaces of square-
integrable forms.

PROPOSITION 1. — Assume w € HO(A,(N),¥) is square-integrable and non-zero
(i =9,29 — 1,39 — 3). Then w is virtually non-zero along T,.

Proof : Suppose, on the contrary, that t(M)*y*w = 0 for all v and all M such that
(1) NyT(N)y~! 5 T'(M). In particular, consider the lift ¢ to T, of the Torelli map :

(1.4) t: T, —H, .

(*) In [2] we would have termed w “stably non-vanishing along T,”, but this would be
g & g
confusing in the present context.



If we view w as a form on H,, v*w then must vanish on HT,), ie : t*(y*w) = 0,
For v € G(R), v"w is a holomorphic i-form on H, that depends continuously on v. By
continuity we deduce that

(1.5) t(vw)=0, v GR) .

Now fix a point v € M, and let Ce T, be a base point above C. Let K be the

isotropy subgroup of £(C) in G(R), a group conjugate to U(g) C Sp(g,R). Then we have
in particular

(1.6) t'(k’wy) =0forallke K

where J = (C) lifts the Abelian variety J = ¢(C), w7y is the form w at the point J, and

t* is the obvious map between exterior powers of the cotangent spaces at C and J.
Denote by V = V{(w, J) the K-span of the vector wy € A‘T}"-(’Hg) : we then have

LEMMA 1. — ?é.(V) =0.

Note that TJ:.(HQ) = T7(A,) and Té.(Tg) = Ta(M,). We now describe the map
Té.(Tg) — T:;“(Hg) through these identifications. Thus we are interested in the natural
map

(1.7) t*: T7(A,) — T (My)

where J is the Jacobian variety of C.
Now both tangent spaces are described by deformation theory; for the Abelian variety
we have

(1.8) T;(A,) = Sym*H%(J, Q).

Assume that C is not hyperelliptic : then t(M,) is non-singular at t(C) and its
cotangent space is canonically described as '

(1.9) T&(Mg) = HY(C,@*Q¢)

the space of quadratic differentials on C. We have a canonical isomorphism H°(C,Q¢) =
H%(J,Q;) and we want to describe t* using these isomorphisms. Thus we get a map
t* : Sym*HY(C, Q) — H%(C,®?Q!) which, according to Andreotti and Mayer, [1] (see
also Mumford [8, p. 88) is simply obtained by associating to symmetric tensors the
corresponding quadratic differentials.

We now turn to the representation-theoretic interpretation of Lemma 1. Recall that
holomorphic, L? g-forms on I'\'H,, I' € I'(1) being a congruence subgroup, correspond

bijectively to submodules of L2 (I'\G(R)) isomorphic to a certain representation Ag,
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where q C Lie G(R)®&C = sp(g, C) is a parabolic subalgebra stable by a Cartan involution.
This is due to Parthasarathy, Kumaresan and Vogan-Zuckerman; for a precise description
of the correspondence in our context see (2], especially § 3C. We will use the notions
contained in this paper without further comnment.

We can realize Sp(g) as the group

(1.10) {9=(g g)eU(g,g):ty(_qg 167)9=(—?_g 109)}

A 0
0 D
g==tdp+ ®p-, p; being the holomorphic tangent space at the fixed point (here J)
associated to K. Then

Then K = {( ) D =1tA"1 A ¢ U(g)}. We have the Cartan decomposition

(1.11) p+={(8 g):‘B:B,BeMn(C)}.

Thus p4 is naturally identified to Sym?(C¥). The form w7 is an elemtn of A*pl.. We now
assume temporarily that ¢ = g. Then q is the parabolic subalgebra associated to

Ty \

(1.12) r=v—1 0 . | eLier K,z #0 .

\ 0/

Let (e1,...ey) be the natural basis of C¢, and let V(q) be the K-span of the vector

(1.13) e(q) =el nejes A--- Neiey € Ap, .

This space is irreducible, and occurs exactly once in A9p,. If w55 0, the K-span of wy
is then the dual space of V(q) in A9p (see [2,§2]). Let (e}) be the dual basis.

LEMMA 2. — Assume wy # 0. Then V = V(w, J) contains e*(q) = (e3)* Aeles A- A

LI

eleg.
This is clear by multiplicity one, since e*(q) is dual to e(q).
We now consider the restriction map tfé. Note that in our identifications the space CY

used to describe p.. is naturally identified with the holomorphic tangent space Tp(J); the
vectors e} are then differential forms, on J, which form an orthonormal basis of H°(J, )



for the scalar product given by the canonical polarization. By lemmas 1 and 2, if wy # 0,
we must have {é-(e‘(g)) = 0. By (1.8), (1.9) and the description of the restriction map
following (1.9), we deduce that

(1.14) (61)2/\---/\8{6; =0,

an identity in AYHO(C,®°Q'). Consequently the quadratic differentials

*

(e1)?, (ele3),. ... € e, are linearly dependent. This yields a relation

9
(1.15) e} (Z azel) =0
=1
g
between differentials on C, which clearly implies that Z aze; = 0, a contradiction.
i=1

We have proved that if v*w vanishes for all ¥ € A(Q) when restricted to (the suitable

covering of) M, then wy=0if J is the lift of the Jacobian variety of a non-hyperelliptic
curve : thus by density w5 = 0 for all Jacobian lifts. We many apply this conclusion to

§*w for § € G(Q) : the conclusion is that §*w vanishes on t(M,) for any § € G(Q). This is
then true, by continuity, for any § € G(R) and w must vanish : this proves Proposition 1
for i =g.

We now extend the proof to the other allowable degrees. Note that A; can have
glg+1) z(z+1) h(h-1)
5 T g M
where h+x =g, 0’2 h > g. (See Weissauer {9], as well as Parthasarathy {7} or [2, § 3C]
for L2-holomorphic formns). In particular the only relevant degrees for restriction to My
are g, 29 — 1 and 3¢ — 3. We consider the cases where i = 29 — 1 or 3g — 3. According to
[2, § 3C] the corresponding L?-formns on 4, are associated to representations A4 of G(R)
of the following types. We keep the notations recalled above (1.10) for Lie algebras, and
refer the reader to [2] for the description of the Vogan-Zuckerman theory in this context.

holomorphic cohomology only in degrees i =

(1.16) 1=2g—1

T
)

—T1
—I
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QO py =< e],€1€2,...,€1€,,€5,€2€3,...€2€4 >
e(q) =ef/\eleg/\---/\eley/‘\eg/\egea/\---/\egeg .

We now resume the previous analysis. As in the case of 1 = g we want to check that
t’é(e‘(q)) # 0, where now e(q) = (e])? Aelef A - A ese;. To prove this we must show
that the associated quadratic differentials on C are linearly independent. This amounts
to :

LeMMA 3. — Assume C sufficiently general. Then there exists an orthonormal basis
(wi) of H%(C,§Y) such that the quadratic differentiuls w? wiws, ... ,wiws,. .., wiw, are
linearly independent.

This follows from Petri’s 1922 paper {8]; we rely on Mumford’s exposition in [6,
Lecture 1}. Assume C is not hyperelliptic. Choose g points z1,...2z4 € C in general
position. Then we can take a dual basis (w;), with (wi)z; # 0 and (wi)z; = 0 (j # ). Petri
(and Mumford) then show that the quadratic differentials w?, wyws, . .., wiw,, w3, .. - Wolg
are linearly independent.

To complete the argument, we have to show that this can be ensured with the w;
an orthonormal basis. However this now follows from Gram-Schmid orthonormalization.
(We need an orthonormal basis to ensure that the w; are a dual basis of the basis e; used
in Lemma 2, without further linear algebra).

Now assume

(1.17) i=3y—-3,9>3

/:1:1 \

Ty
T

-T]
-T

0/
2 2 2
qNpy =< e],e162,...,€1€4,€3,€2€3,... 6264, €3,€3€E4,...€3E45 >

e(q) =ef/\ele»2/\---/\egey.

The same argument. now shows that proposition 1 follows from



LEMMA 4. — For C sufficiently general in My and wy,...w, a suitable orthonormal
basis, the quadratic differentials w'f,wlwg, Wy, w%, waws, . . .wgwg,wg, ... W3wg are
linearly independent.

Proof (*) : We may forget the orthogonality condition since it can be ensured by
orthonormalization. Thus we want to show that for a generic basis of H = H%(C, Q)
the indicated quadratic differentials are independent. Start with differentials wy,...,wy
satisfying Petri’s conditions (cf. after lemma 3, and [6, p. 18]). Then [6, p. 18-19] the
differentials

2

2 2 2 2
(1.18) W, WIWY, -« W1y, WY, .+« Waldg, W3, Wy, .+ . -y Wy

are linearly independent. On the other hand, the differentials wiw; (¢ % 7, ¢,7 > 3) are
then linear combinations of the ww; and waw; (ibid., p. 19). Now take the new basis
obtained by replacing w3 by wj = w3 + Agwq + - -+ + Ayw,. The space V' generated by the
(29 — 1) first differentials in (1.18) does not change. Modulo V', we now have

(1.19) (W) =wi 4+ A2wg+ -+ )\gwﬁ
UJéLLM = /\4(4)4

’ 2
UJ3LU'9 = Ang .

For A = (A4,..., A ) nearly 0 and A\; # 0, (wi,wy, wg,...wy) is indeed a basis of H while
(1.19) shows that (w})?,... ,whw, is a basis for thhe quadratic differentials mod V. This
implies the lemmma, and the proof of Proposition 1.

We conclude this paragraph with the remark that the square-integrability condition
in Proposition 1 is very likely superfluous. We explain how it could be removed. Let w
be a differential form on A4,, invariant under a subgroup I'(V), and consider the lifted
differential w on H,. If x € H, and K = K is the corresponding isotropy subgroup, we
may view w, as an element of Homg (A*p}, C) where p} is the holomorphic tangent space
at z. Then in degrees i = g, 29 — 1, 3g — 3, w; should lie in the irreducible K,-module
specified by Ag, where q is the parabolic subalgebra associated to the degree. This is

strongly suggested by Weissauer’s result [9] according to which A, can have holomorphic

h(h -1
cohomology only in the degrees hy — ¥ (0 € h < g) allowed by the holomorphic

parabolic subalgebras Aq, cf. before Lemma 3. Then the previous arguments apply to
prove Proposition 1. A stronger statement (which should also be true) is that the space
generated by @ under G(R) is of type A;. We leave this to the interested reader.

(*) We thank D. Perrin and A. Beauville for indicating to us the proof of this lemma.



2. — Existence of cohomology on A, (N)

In order to apply proposition 1, we still need to show the existence of the corresponding
classes on A, (). If we did not impose an L?-condition, (see the discussion at the end of
the previous paragraph), we could, in a lot of cases, simply quote a result of Weissauer
(10] :

THEOREM 2 (Weissauer), —
(i) H°(A,(4),09) # 0 and H°(A,(4),02%973) # 0 if g is even
(i) H%(A,(4),0Q%71) 0 if g is odd.

However these differential forms are not, cuspidal, and there seems to be no reason to
assume that they are square-integrable. We want to prove the existence of L2-forms of
type Aq, for the representations A, described in §1 (associated to i = g, 29 — 1, 3g — 3).
For this we simply rely on a recent theorem of J.-S. Li. Using the theory of théta-series
he proves the following result.

Denote by A; the irreducible representation of G with holomorphic cohomology in
degree i (i = g,2g — 1,3y — 3). We denote by mult(4;, L*(T'\G)) the multiplicity of A;
in the discrete part of the L2-space.

TueoreM 3 (Li [4]). — For any sufficiently deep congruence subgroup I' of Sp(g, Z),
(i) mult(4,, LHT\G)) > 0 (for any g > 1)
(ii) mult(Azg—1, L2 (T\G)) > 0 (g > 3)
(iii) mult(As,—s, LXT\G)) > 0 (g > 5).

This is theorem 5.8 of [4, p. 209], once the requisite notations are taken into account;
note that in [4, forinula (54)] the algebra [, the reductive part of the parabolic subalgebra
q defining A,, is isomorphic to w(a) x sp(y — «) for each of our modules A;, as follows
ala—1)

5 ,s0 @ =1,2,3).

easily from the description in (2, §3C]. (Here 1 = ag —
This concludes the proof of theorem 1.



10.

REFERENCES

. A. Andreotti, A. Mayer, On period relations for abelian integrals on algberaic curves, Amm.
Sc. Num, Sup. Pisa 21 (1967), 189-238.

. L. Clozel, T.N. Venkataramana, Restriction of holomorphic cohomology of a Shimura variety
to a smaller Shimure variely, preprint.

. J. Harris, D. Mumford, On the Kodaira dimension of the moduli space of curves, Inv. Math.
67 (1982), 23-86.

. J.-S. Li, Non-Vanishing theorems for the cohomology of certain arithmetic quolients, J. reine
angew. Math. 428 (1992), 177-217.

. D. Mumford, Towards an enumeratlive geomelry of the moduli space of curves, Arithmetic

and Geometry (M. Artin, J. Tate eds.) (1983), Birkh#user, Boston, Basel-Stuttgart, 271-326.

D. Mumford, Curves and their Jacobtans, U. Michigan Press, Ann Arbor (1975).

. R. Parthasarathy, Holomorphic forms on '\ G/K and chern classes, Topology 21 (1982),
152-175.

. K. Petri, Uber die invariante Darstellung algebraischer Funktioner einer Verdnderlichen,

Math. Ann. 88 (1922), 242-289.

R. Weissauer, Vektorwertige Siegelsche Modulformen kleinen Gewichles, J. reine angew. Math.

343 (1983), 184-202.

R. Weissauer, Divisors of the Siegel modular variely, Number Theory, New York 1984-85,

Lecture Notes 1240, Springer-Verlag.

10



