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Virtual cohomology of the moduli space of curves in

the unstable range

L. Clozel(*) anel T.N. \fenkataramana

O. - Introduction

Let Mg denote the moduli space of smooth, projective curves of genus 9 2: 2. The
cohomology space H i (M g), for i < ~, is independent of g; according to conjectures of
Mumford [5] it shoulel be represented by tautological classes which, in particular, are
Tate classes (for the natural action of Gal(Q/Q), taking etale cohomology). On the other
hand, it is known that for 9 » 0, Mg is of general type and, in particular, carries many
holomorphic sections of the plllricanonical bundle.

Harris anel Mumforcl [6] have a.,,,ked whether (for large g) Mg carried holomorphic
forms of degree 9, 29 - 1 or 30 - 3 : these degrees are suggested by the allowed degrees
for holomorphic fornlS on t.he space Ag of principally polarized Abelian varieties ([9])
and its coverings. In this paper we will answer the qUestiOIl, but only, unfortunately, in
a virtual fashion.

Write Mg = r 9 \'Ty , where 'Ty is the Teiclunüller space, and r g the Teichmüller group.
There is a naturalluap r y -+- Sp(y, Z) given by the action of f g on the cohornology of

" the "universal" curve of genus g. Let r y (N) be the inverse image in f g of the fuil level
N subgroup f(N) in f = Sp(g,Z). Thus f!J/fg(J.V) ~ Sp(g,71/N71) since f g -+- f is .
surjective.

Denote by Mg(N) the quotient rg(N)\'Ty , a Galois covering of Mg with group
Sp(g, Z/NZ)/(±l). Vve will prove :

THEOREM 1. - For ficerl g, antl N sufficiently large,

HO(lvtg(N), ni
) :I 0 for i = 0, 2g - 1, 3g - 3,

ass1J.1ning moreover that 9 > 3 (ij i = 2g - 1) anrl D> 5 (if i = 3g - 3).

Dur praof reHes on Cl method cleveloped in an earlier paper [2] and applied there to
the restrietion of holoI1l0rphic cohomology classes ta subvarieties of Shimura varieties.
\Ve use it here to study t.he restrietion to My (via the Torelli embedding) of holomorphic
cohomology classes on Ag. A simple differential computation implies that trus restrietion
is (virtually) injective. The theorem follows from existence results for holomorphic fonns
on Ag; the precise theorem we use is clne to Li [4].

Note that according to \Veissauer [0] 1 t.hat are no holomorphic forms on Ag in degrees
D, 20 - 1, 3g - 3, at least for 9 » O. Thus it may be natural to expect the same of Mg
(rather than its coverings !).

(*) Membre de 1'Institut universitaire de France
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1. - Differential calculus

Let Mg denote the nloduli space of smooth, projective curves of genus 9 ~ 2. We
use the transcendental realization of Mg as r 9 \ ~9' where ~g, the Teichmüller space,
is a bounded, contractible, holomorphically convex domain in C3g

-
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. The Torelli map t
which to a curve C associates its Jacobian is an injection of Mg into Ag, the space of
principally polarized Abelian varieties of genus !J.

The associatecl map f 9 ----+ f := Sp([], Z) is surjective, and we define r g (N) as the
inverse image in f 9 of the fulilevel N subgroup

(1.1) f(N) = {, Er:, =l[N]}

in r. We will consider the associated map

(1.2)

with Ag(N) the space of pl'incipally polal'ized Abelian varieties with fullievel N structure.
We view Ay(N) as the quotient f(N)\'Hg, where 'Hg is the Siegel upper-half space. We
will denote by G the Q-group Sp([]); thus G(lR) acts on Hg.

Let w be a holomorphic i-form on Ay(N), which we view as a form on 'Hg invariant
tmder reN). If , E G(Q) is seen as acting by (Ieft,) translations on 'Hg, ,·w is then
invariant under f(l) n rf(N)r-1, a congruence subgroup of f(l) which contains a
subgl'oup reM). ThllS r*w is Cl. i-forIn on Ay(M) for some NI .

.We will say t,hat w is virtually non-zero along ~9 if there exist.s r E G(Q) such
that

(1.3) t(Mr,*w # 0

1\1 being of course determined as above by ,. (*)
We denote by ni

Of n\ the sheaf of holoIllorphic i-fonns on a variety X. On Ag(N)
we have an invariant lneasure, and we can consicler the corresponding spaces of square­
integrable forms.

PROPOSITION 1. - ASS1L1ne W E HO(Ay(N), ni ) is sfj7Lf.Lre-integrable and non-zero
(i = [], 2[] - 1, 3g - 3). Then w is virtu(Jlly non-zero along ~g.

Proof: Suppose, on the contrary, that t(jVf)*r*w = 0 for a11 rand a11 M such that
f(l) n ,f(N),-l :> f(lV!). In particular, consider the lift t to ~g of the Torelli map :

(1.4)

(*) In [2} we woulcl have ternled w "stably non-vanishing along ~g II 1 hut this would be
confusing in the present context.
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If we view w as a form on Hy , ,·w then lnust vanish on i(~g), i.e. : T* (,*w) = O.
For , E G(IR), /*w is a holomorphic i-form on Hg that depends continuously on /. By
continuity we declllce that

(1.5) T* (/*w) = 0 , '"'I E G(lR) .

Now fix a point, E Mg and let C E ~9 be a base point above G. Let K be the
isotropy subgroup of T(C) in G(R), a group conjugate to U(g) C Sp(g, IR). Then we have
in particular

(1.6) i·(k*Wj) = 0 for a11 k E ](

where J = T(C) lifts the Abelian variety J = t(G), Wj is the form W at the point J, and

T· is the obvious Inap between exterior powers of the cotangent spaces at C and J.
Denote by V = V(w, J) the ](-span of the vector Wj E AiTj('Hg ) : we then have

LErvUvtA 1. - t~(V) = O.
c

Note that T~Hy) '" Tj (Ay) and T~(tty) ~ Tc(My). \Ve now describe the map
J C

T':'(ttg ) ~ T:"(Hy ) tlu'ough t.hese iclentifications. Thus we are interested in the natural
C J

map

(1.7)

where J is the Jacobian Vi:uiety of C.
Now both tangent spates are describecl by cleforrnation theory; for the Abelian variety

we have

(1.8)

Assurne that C is not hyperelliptic : then t(M g) is non-singular at t(C) and its
cotangent space is canonically described as

(1.9)

the space of quaclratic differentiaLe; on C. VVe have Cl canonical isomorphism HO(C, nc ) =
HO(J, nJ ) anel we want, to clescribe t* using these isomorphisms. Thus we get a map
t* : Sym2 HO(C,n) -+ HO(C,02n1) which, according to Andreotti and Mayer, [I} (see
also :Nlunlford [6, p. 88) is simply obt.ained by associating to symmetrie tensors the
corresponding quac1ratic differentials.

\Ve now turn to the represent.ation-theoretic int.erpretation of Lemma 1. Recall that
holomorphic1 L2 g-fonns on r\H!Jl r c r(l) being a congruence subgroup, correspond
bijectively to sublnodules of L~iS(r\G(lR)) isomorphie to a certain representation Aq,
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where q C Lie G(lR)0C = sp(g, C) is a parabolic subalgebra stable by a Cartan involution.
Trus is cl ue to P arthasara t. hy, Kumaresan anel Vogan-Zuckennan; for a precise descript ion
of the corresponclence in our context see [2], especially § 3C. We will use the notions
contained in this paper without further COlnment.

\Ve can realize 8p(g) as the group

(1.10)

Then J( = {(~ ~) : D = t A- 1
, A E U(g)}. We have the Cartan decomposition

9 = 2 EB P + EBp-, P+ being the holomorphic tangent space at the fixed point (here J)
associated to 1(. Then

(1.11)

Thus P+ is nattlrally identified to SYln2 (C!J). The fonn wJ is an elemtn of Aip+. We now
assume temporarily t.hat. 'i = g. Then q is the parabolic sllbalgebra associated to

Xl

o

(1.12) x=H o

o

o

Let (e!, ... ey) be the nat.ural basis of CY, allel let V(q) be the [<-span of the vector

(1.13)

Trus space is irreclucible, anel occurs exactly anee in A9p+. If wJ =1= 0, the f{-span of wl
is then the dual space of V(q) in A9P+ (see [2,§ 2]). Let (ei) be the dual basis.

LEMMA 2. - Assnme wJ =I- O. Then V = V(w, J) cont(J,ins e- (q) = (ei)2 i\ eie2 i\ . .. i\

eie;.

This is clear by mult.iplicity one, since e- (q) is dual to e(q).
\Ve now consider the restriction map t!..... Note that in our identifications the space C9

c
used to deseribe P+ is nat.urally iclentifiecl wit.h the holomorphic tangent spaee Ta(J); the
vectors ei are then different ial forms, on J, whieh form an orthonormal basis of HO (J, nJ )
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for the sCetlar procluct given by the canonical polarization. By lelnmas 1 and 2, if wJ :/= 0,

we must have th(e*(g» = O. By (1.8), (1.9) (tnel the description of the restriction map

following (1.9), we decluce that

(1.14)

an identity in A9 HO(G, \2)2.0 1). Consequently the quadratic differentials
(ei)2, (eiei), ... , eie; are linearly clepenclent. This yields a relation

(1.15)
9

ei (L O'iei) = 0
i=1

g

between differentials on C, which clearly implies that L aiei = 0, a contradiction.
i=1

\Ve have proved that if 'Y·w vanishes for a11 'Y E A(Q) when restricted to (the suitable

covering of) Mg, then wJ = 0 if J is the lift of the Jacobian variety of a non-hyperelliptic
curve : thus by elensity wJ = 0 for a11 Jacobian lifts. Vve many apply this concIusion to---8·w for 8 E G(Q) : the conclusion is that Ö·W vanishes on t(Mg) for any 8 E G(Q). This is
then true, by continuity, for any Ö E G(IR) anel W lUllst vanish : this proves Proposition 1
for i = 9.

Vve now extend t.he proof to t.he other allowable degrees. Note that Ag can have
. . 9(9 + 1) x (x + 1) h(h - 1)

holomorplllc COhOlllOlogy only in clegrees 1. = - = hg - ,
f)? f)

where h + x = 9, 0';:: h ;:: 9. (See \VeissrLucr [9], as V::ell as Partl~arathy [7J or [2, § 3C]
for L2-holomorphic fonns). In particular the only relevant degrees for restriction to Mg
are 9, 29 - 1 anel 39 - 3. \Ve consider the cases where i = 29 - 1 or 39 - 3. According to
[2, § 3e] the corresponding L'2-fonns on Ag are associated to representations Aq of G(IR)
of the following types. \Ve keep the notations recalled above (1.10) for Lie algebras, and
refer the reader to [2] for the description of the Vogan-Zuckerman theory in this context.

(1.16)

Xl

Xl

o

i = 29 - 1

o

o

o
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2 2q n P+ =< ejl ele2" .. 1 elCg, e2' e2 e3,· .. e2eg >
2 2e(q) = el /\ ele2 /\ ... /\ eley /\ e2 /\ e2e3 /\ ... /\ e2eg •

We now resume tohe previous analysis. As in the case of i = 9 we want to check that
t~(e· (q)) =I- 0, where now e(q) = (ei)2 /\ eie2 /\ ... /\ e;e;. To prove this we must show

that the associatecl quaclratic differentials on C are linearly independent. This amounts
to :

LEMMA 3. - Assume C sufficiently general. Then there exists an orihonormal basis
(wd 0f HO (C, 0) such th (Lt the f]luulra tic differentials wI, W 1w2 , ... ,w I W3, ... ,W2Wgare
linearly independent.

This follows from Petri's 1022 paper [8J; we rely on Nlumford's exposition in [6,
Lecture 1). Assunle C is not. hyperellipt.ic. Choose g points Xl, ... X g E C in general
position. Then we can t.ake a dual basis (Wi), wit.h (Wi)Xi =I- 0 and (wdxj = 0 (j =I- i). Petri
(and Mumforcl) then show t.hat. t.he quadrat.ic differentials wI, WIW2, ... ,WIWg , wi,· .. W2Wg

are linearly independent..
To complete the argument., we have to show that t.his can be ensured with the Wi

an orthonormal ba.sis. However this now follows frOITl Gram-Schmid orthonormalization.
(We need an orthollonnal basis to enSlu'e that. the Wi are a dual basis of the basis ei used
in Lemma 2, wit.hollt further lineal' algebra).

Nowassllme

(1.17)

x=H

Xl

'i = 3!J - 3 1 9 2: 3

o

o

o

o

q n P+ =< eI, ej e2,·· ., elegl e~, e2e3, e2 ey, e~: e3 e4,.·. e3eg >

e(q) = ei /\ ele2 /\ /\ e3ey .

The same argument now shows that proposition 1 follows from
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LEMMA 4. - For C s7tfficiently general in Mg anrl Wl, ... wg a suitable orihonormal
basis, the quad7'(Ltic rliflerentials Wf1 W 1W'2 1 ••• ,W 1W y , W~ , W'2 W3, ... W2 W9 1 W~, ... W3Wgare
linearly independent.

Proof (*) : "Ve may forget the orthogonalit.y condition since' it can be ensured by
orthonormalizatioll. Thus we want to show that for a generic basis of H = HO(C, O)
the indicated quadratic differentials are independent. Start with differentials Wl, ... ,wg

satisfying Petri's conditions (cf. after lemma 3, anel [6, p. 18D. Then [6, p. 18-19] the
differentials

(1.18)

are linearly independent. On the other hand, the differentials WiWj (i ~ j , i, j ~ 3) are
then linear combinations of the WIWi anel W2Wi (ibid., p. 19). Now take the new basis
obtained by replacing W3 by w3 = W3 + .A4W4 + ... + A.gWg • The space V generated by the
(2!J - 1) first differentials in (1.18) does not change. Nloclulo V, we now have

(1.19)

For .A = (..\4, ... ,A. y ) nearly () anel Ai ~ 0, (Wl, W'21 w3" .. w y ) is indeed a basis of H while
(1.19) shows that (w3) '2 , ••. ,w3wy is Cl basis for thhe quadrat ic cl ifferentials mod V. This
implies the lemrna, anel the proof of Proposition 1.

We conclude this paragraph with the remark that the square-integrability condition
in Proposition 1 is very likely superfluous. We explain how it could be removed. Let w
be a different ial form 0 n A y I invariant. under a subgroup r (N), anel consider the lifted
differential won Hg. If x E Hy anel !{ = !(x is the corresponcting isotropy sUbgrOUPl we
may view W x as an elernent of HomK (A i pt ,C) where pt is the holomorphic tangent space
at x. Then in degrees i = !J, 2g - 1, 3g - 3, W x should lie in the irreducible Kx-module
specified by A q , where q is the parabolic subalgebra associated to the degree. This is
strongly suggested by \:Veissauer's result [9] according to which Ag can have holomorphic

h(h - 1)
cohomology only in the degrees hg - ') (0 ::; h ::; g) allowed by the holomorphic

parabolic subalgebras A q , cf. before Lemi'na 3. Then the previous arguments apply to
prove Proposition 1. A stronger statenlent (which should also be true) is that the space
generated by wuncler G(IR) is of type Aq . Vve leave this to the interested reader.

(*) We thank D. PelTin anel A. Beauville for inclicating to us the proof of this lemma.
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2. - Existence of cohomology on Ay(l\T)

In order to apply proposition 1, we still need to show the existenee of the corresponding
classes on Ag(N). If we did not impose an L'l-conditiol1, (see the diseussion at the end of
the previous paragraph), we could, in a lot. of eases, simply quote a result of Weissauer
(IOJ :

THEORE~vl 2 (\Veissauer). -

(i) HO (A g(4), og) # 0 and HO(Ag(4),039 - 3 ) =1= 0 if!J is even

(ii) HO(Ag (4), 0 29 - 1) 1= 0 if 9 is odd.

However these differential fonns are not. euspidal, and there seems to be no reason to
assume that they are sqllal'e~integl'{\ble.We want to prove the existenee oE L 2-forrns of
type Aq , for the represent.at.ions Aq deseribed in § 1 (assoeiated to i = D, 2g - 1, 39 - 3).
For this we simply rely on a reeent theorenl of J .-S. Li. Using the theory of theta-series
he proves t.he following result.

Denote by Ai the il'reducible repl'esentat.ian of G with holomorphic cohomology in
degree i (i = 9, 2!J - 1, 3!J - 3). We denote by mult(Ai, L 2(f\G)) the multiplicity of Ai
in the discrete part of the L 2-space.

THEOREM 3 (Li [4]). - FOT fLny s1Lfficiently dee]J c071.gruence suugr01Lp r 01 Sp(y, Z),

(i) ffinlt(Ay,L2(r\G)) > 0 (j01' rL1I.Y D~ 1)

(ii) mult(A2y - 1 , L 2 (f\G)) > 0 (!J > 3)

(Hi) mult(A:~!J-3, L'l(r\G)) > 0 (!J > 5).

This is theorem 5.8 of (4, p. 20D}, anee t.be requisite notations are takell into account;
not.e that in [4, Eonnllla. (54)] the illgebra [, the reductive part of the parabolic subalgebra
q defining A q , is isoIllorphic to u(a) x SlJ(9 - 0') far each of our Iuodules Ai, as follows

easily from the oC".script,ion in [2, §3C]. (Here i = ay - a(a ; 1) , so a = 1, 2, 3).

This concludes the prooE oE theoreIil 1.
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