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Abstract: We show that the spectra of the Ly-realizations for a class of hypoelliptic (pseudo-)dif-
ferential operators are independent of p in an interval around p = 2 depending on the growth
properties of the symbol. For elliptic operators we obtain the classical boundedness interval of
Fefferman; in the general case we obtain a smaller interval which is as large as one can possibly
expect it to be.
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Introduction

Every differential operator 4 on Euclidean space naturally induces an unbounded operator A,
on L,(R™). The question to what extent its spectrum depends on p is of considerable interest
both in the theory of partial differential equations and mathematical physics.

This problem attracted additional attention when B. Simon conjectured that the spectrum
of a Schrédinger operator —A 4 V is independent of p. Following upon work by Simon and
Sigal, Hempel and Voigt [9] showed in 1986 that the conjecture holds for a rather general class
of potentials V.

Their result has since been extended in various directions. On the other hand, one also
knows many situations where the spectrum does depend on p. For several different aspects see -
e.g. Arendt [2], Davies [4], [5], Davies, Simon, and Taylor [6], Sturm [17].

Hieber [10] recently considered Fourier multipliers on R™. Under a hypoellipticity assump-
tion he was able to prove that the L,-spectrum of each such operator agrees with its La-spectrum
for all p in a certain interval around' p = 2. Through his paper we became convinced that it
should be possible to bring in pseudodifferential techniques.

In fact, the problem how the spectrum varies with p also has been considered in connec-
tion with algebras of zero-order singular integral and pseudodifferential operators. Here, too,
one encounters both phenomena in the literature: There are early results by Widom [19] and
Gohberg-Krupnik [8] on p-dependence, while the articles Alvarez-Hounie [1], Leopold-Schrohe
[14], and Schrohe [15] suggest invariance to a very large extent. Although the question of in-
vertibility is of a quite different type in the bounded context, some of the methods still apply.

In the present article we show that the spectrum of a hypoelliptic {pseudo-)differential op-
erator is independent of p in an interval around p = 2. Moreover, this interval is as large as we
can realistically expect it to be.
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The idea of our proof is rather simple: We show that the L,-resolvent is a pseudodifferential

. operator and therefore furnishes an inverse on all spaces where it is continuous. Apart from a
mild technical condition, we assume that the operator A is given by a symbol a of order m > 0
in Hormander’s class SL’,‘E for 0 €< § < p <1, and that it satisfies a hypoellipticity condition

which allows us to construct a parametrix with symbol in Sp“,g”r, m' > 0. Applying a theorem by
Fefferman [7] we see that the parametrix will only extend to a bounded operator on L,(R™), if
- Il) [n(1—p) < m'. Thisis precisely the interval where we establish p-invariance. In fact there is
a classical counterexample to boundedness if this condition is violated, namely the Fourier mul-
tiplier of Hardy-Littlewood-Hirschmann-Wainger; see [7]. It is given by op (exp(i[¢]'=7)/[¢]™ ),
where ['] is a smooth positive function on R™ with [¢] = |¢| for large |¢]. Its symbol is an element
in Sp_’g" yet the operator is unbounded on L,(R"™) whenever p falls outside the above range. In
the elliptic case, i.e., for m =/, this shows the maximality of the asserted interval.
Concerning Ly-spectra, 1 < p < oo, our result both extends and improves that of [10]: For
one thing, we cover the case of z-dependent symbols; for another, we get a larger interval of
independence if m' < m.
A certain draw-back of the pseudodifferential methods is that they require € *°-smoothness.
It is rather obvious that this assumption can be relaxed; it is much more difficult, however, to
say to what extent this is true. This will be the subject of a forthcoming publication. It seems
to be a new point, however, that we can guarantee an interval of p-independence in terms of
“symbol estimates, without requiring self-adjointness, Gaussian estimates, or uniform ellipticity.
i
1 Results

Let m>m'>0, 0 <d<p<1 andlet a: R" x R® = C be a smooth (C*°) complex-valued
function satisfying the following two conditions:

(i} |D?D£a(3:, ) < Cap (eymPlelelBl. 5 6 | g is an element of Sy = Ss(R™ x R™).
(ii} The argument of a(z,£) is a bounded continuous function, there is an R > 0 such that
a(z,£) is invertible for |£| > R, and
DgDfa(z,§)a™ (z,€)| < Cag (6)~ W,
a(z,0)7! < )™, €2 R.

The symbol a defines the pseudodifferential operator opa : S = S by means of the formula
fopalu(z) = [ ¢a(z, )ie)de. (1)

As usual, § = S(R™) is the Schwartz space of rapidly decreasing functions, 4(¢) = [ e **%u(z)dz
is the Fourier transform of u, and d€ = (2m)~"d¢.

The symbol a may also take values in the space of I x l-matrices over C. In this case, we
consider u in (1} as an l-vector of functions in §. For simplicity we shall write S, Ly, H;, C§°,
etc. without referring to either R™ or /. In the matrix-valued case we replace (ii) by the following
condition:

(ii’) There is a bounded, real-valued continuous function § = 6(z,£) and an R > 0 such that
all eigenvalues of a(z,£) are in the domain Q, ¢ defined below, and

|DEDa(z,€) o (a(@, &) — )~ < Cap (€)1 16| > R, ¢ € C\ Qe



The choice of the domains Q¢ goes back to Kumano-go [12, Chapter 8. One lets Q¢ =
(=8 Qg where, for m > m' > 0 and some fixed ¢y > 1,

Q= {z €C: ¢! (O™ < |z| < co (6™, and IImz| > ¢ (&)™ for Rez < 0}.
In particular it follows from (ii’) that |a(z, &)t < C (€)™
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Figure 1: The set {2

For 1 < p < oo we let A, denote the Ly-realization of A = opa with D(4,) = {u € L,
Au € L,}. Notice that A, is a closed operator. The resolvent set of A4, is wntten p(A,), thc
spectrum o(Ap).

We shall prove the following theorem.

1.1 Theorem. Given a symbol a with properties (i) and (ii) or (1) and (ii’), the spectrum of
the operators A, is the same for all 1 < p < co withm' > n|$ — 1 (1 —p).

1.2 Remark. {a) For p =1, all 1 < p < oo are admissible, since symbols in S?‘J define
bounded operators on Ly, cf. Illner [11]. In this case, the additional condition on the existence
of a continuous argument function {or its analog in the matrix case) is not nccessary, see Lemma
1.3 below. :

(b) For p < 1, the condition m' > n|§ - = (1 — p) guarantees the boundedness of operators

with symbols in S_§* " on Ly, see Fefferman [7]

1.3 Lemma. Let A = opa with an elliptica € 57%, 0 < § <1, m > 0. Then the spectrum of
Ap is independent of p for 1 < p < oo.

Ellipticity means that there is an R > 0 such that a(z, £) is both invertible whenever |¢| > R
and satisfies the estimate a(z, £)~! = O((&)™™).

2 Proofs

Let us start with the simplest case.

2.1 Proof of Lemma 1.3. The ellipticity of a implies that D(A, — A) = H", the Ly-based
Sobolev space of order m. Invertibility of A, — A as an unbounded operator on L, therefore
is the same as invertiblity of the pseudodifferential operator (A — A) o op (£)™™ as a bounded
operator on Ly. It is well-known that the latter is independent of p for 1 < p < oo, see e.g. [15,
Corollary 1.9]. o



The proof of Theorem 1.1 is more difficult; it is therefore split up into a series of propositions
and lemmata. We write lIJ’; s for the space of all operators B : § — & that can be written as
a pseudodifferential operator in the form (1) with a symbol b € Sf:,a’ 4 € R. The space
™% =Nyer lI!‘;’a is easily scen to be independent of the choice of p and 4.

2.2 Lemma. For every A € C there is a parametrix By = opby € 'II;?’ to A — X\ with
By(A-X) =1+ Ry, (A—A)By=I+Ry (2)

and Ry, Ry € O—=,

We understand (2) as an identity for operators on §.

Proof. First let a be scalar. For every fixed A, the symbol a(z,£) — A of A — X satisfies
conditions (i) and (ii). We obtain the assertion from [12, Chapter 2, Theorem 5.4]. For the
matrix-valued case we apply Kumano-go [12, Chapter 8, Theorem 1.2], see also Remark 2.8 and
Theorem 2.9 below. m]

2.3 Lemma. For A € p(4,) andp € S,
(A — A)7le = Brp — BaRop + Ri(Ay — N 'Ry in S
‘Here, By, Ry, and Ry are the psendodifferential operators from Lemma 2.2.

Proof. This is immediate since every one of these pseudodifferential operators is continuous
both on & and &', under the assumption § < 1. a

2.4 Outline. According to the composition rules for pseudodifferential operators, By Rs is an
element of ¥~°°. We are now going to show that

Ri(Ap, = N)'Ry € U, (3)

Then, in view of Lemma 2.3, we conclude that the restriction (4, — A)~!|s coincides with a

_m"

pseudodifferential operator in ¥ say C. By Fefferman’s theorem [7] the operator C' extends

pd
to a bounded operator on L, for all ¢ with 1 < ¢ < 0o and m' > n|} — %|(1 ~ p). Denote this

extension by Cj. The identity
(Ap =N (Ap=A)"'=1 on L,

shows that (A — X\)Cyp = ¢ for all ¢ € S since C : § - § is continuous. As Cj is closed, C,
maps Lq to D(A,), and
(A4g=A)Cy=1 on Ly
Similarly, A — X maps S to S and C(A — A) = on S. We conclude that Cy(A44 — A)u = u for
all u € D(Ag). Hence C; = (4, — A)71, 50 A € p(A4,).
It therefore remains to show (3). In order to do this we shall employ the following well-known
theorem. For a proof sce e.g. Ueberberg [18] or Schrohe [16].

2.5 Theorem. A scalar linear operator T : S —» &' is a regularizing pseudodifferential operator
if and only if for all multi-indices «, 8, and all s,t € R, the iterated commutator ad®z ad® D, (T)
extends to a bounded operator

ad®z ad’ D, T : Hy — H;,, for some p with 1 <p <oc . (4)



If T is an [ x I-matrix of linear operators, then T' is regularizing if and only if (4} holds for
each component. Equivalently we may ask the boundedness of

ad®zI ad’ D I(T) : Hy —» H}.

Here I is the!l x [ identity matrix. Recall the ad-notation: For a multi-index 8 = (81,...,08x)
one lets ad?D,(T) = ad? Dy, ...ad® D, (T) with adUD,,J. (T) = T and adea,j (T) = [Dg;,
adk_lDzJ. (T)], & 2 1. Analogously we define ad®z(T"}). The notation extends to expressions of

the form ad*S(T) for operators § acting on S or §’ provided that all compositions make sense.
Leibniz’ rule states that

adfS(MTe) = Y cxypad® S(T1)ad™ S(Ty).
k1+ko=k

For a pseudodifferential operator 7' = op ¢ one has
adz;(T) = —op(Dg;t)  and  ad Dy (T) = op Dy t. (5)
2.6 Reduction. We want to show that, for all multi-indices o, 8, and all s, ¢,
‘4 ad®z adf Dy (R1(A, = \)"'Rp) : HS — H} is bounded. (6)
‘ The definition shows that ad® D;(R;1(A, — A)"!Ry) is a linear combination of terms of the form

R{(Ap — \)7' R} with R}, Ry € ¥~%°. Hence it is no restriction to assume 8 = 0. On the other
hand, by Leibniz’ rule and (5) it is sufficient to consider operators of the form

ad s (Ap — N)7 RS

and to show that ad®z(A4, — A)~! is bounded in L,. In order to do this we shall first con-
sider a simple commutator [z, (A, — A)~!] where  now stands for any of the matrix functions
z11,...,z,1. In the case m < p it will be easy to show our result; see Lemma 2.7. For i > p
we shall use complex powers to reformulate A, — A as a composition of lower order operators.

2.7 Lemma. Assume additionally that m < p. Then [z, 4] € lIlg)J, and

[Ea (AP - ’\)—1] = _(AP - )\)_l[m’ (A - )‘)](AP - "\)_l
= (4= N7z, A4, - N7
= —Blz, Al(Ay = )7 + (A ~ )7 Rale, A (4, — )7

in £(S,8'). The right hand side furnishes an extension to an operator in L(L,), since (A, —
A~ e L(Lp) and B[z, A], Ra[z, A] € \I';,’a"' induce operators in L{Ly).
For m < p, induction therefore shows relation (6), and the proof of Theorem 1.1 is complete.

Proof. Choose a function ¢ € C§° with ¢(z) = 1 for small |z|. For 0 < ¢ <1 let ¢ () =
plex). Then {p. : 0 < € < 1} is a uniformly bounded family in S?,O. Let X, = op (pe(z)z).
The required identity holds with z replaced by X.. Moreover, the symbols of [X,, A] form a
bounded subset of Sg,a~ In view of the fact that X,u — zu in § for v € § we conclude from

Remark 1.2(b) that {X,, A]lv = [z, AJv in Hp_"" as € = 0% for v € L,. On the other hand,
[Xe, (Ap — M) u = [z, (Ap = \) M

in &’ whenever u € §, so we get the desired identity. m]



2.8 Remark. We shall next deal with the case where m > p by using complex powers. Condi-

-tions (i) and (ii), or (i} and (ii") respectively, are sufficient for the construction in the following
theorem.

Moreover, it is easily checked that the conditions are satisfied for A — A whenever they hold
for A. We merely have to change the constants R and ¢ in (ii’).

2.9 Theorem. There is a family {P, : z € C} of complex powers for A — A, satisfying
P, € ¥TRe% Rez >0, P, € U%R°? Rez <0, P, Py = P;1y, modulo¥™®, 21,2 € C,
and P = (A - )\)* modulo¥~% k € Nj.

For a proof see Kumano-go [12, Chapter 8§].

2.10 Preparation. Let {P,:2 € C} be as in Theorem 2.9. Choose an integer N > m/p and
find suitable R, R',R" € = so that A— X =P, + R and

N1
[z,P] = [z, Pjy + R = Y Pynlz, Pyn)Piv-1-xyn + R

k=0
2.11 Proposition. With the operators R and Py as in 2.10 we have

N-1

~[2, (A4 =N = 37 Pyl PynIPi—kyw
k=0

N-1
+ 3 (Ap = A7 Silz, Pyn ) Pi-1-ky N
k=0

N-1
+ > Py iz, Pyn]Sa(4p — 2)7
k=0
+ (Ap = NN (S1[z, Piyn)Sz + [z, R} (Ap — A) ™ (7)

in L(8,8") for suitable operators S1,S; € U~%.
Proof. Again choose a function ¢ € C§° with (z) = 1 for small |z|, let ¢.(z) = p(ez) and,
slightly more refined,
Xeg=op(ppe(z)ps(f)), 0<ge<l
Each of the operators X, ¢ is regularizing. We have, with suitable S, S € =%,
—[Xee, (Ap =271

= (Ap - )‘)_I[Xe,s'a P+ R](Ap - ’\)_1
N-1
= (Ap — A7 Py [Xe g, Pryn|Piv—i—iy v (Ap = A) 7

a
11
=]

Ap — A) M Xeg, R) (4, — X!

s+

= (Ap =N H(A = N)Py/v -1 + S} Xe e, PysH{Po1—kyw (A — X) + Sa}

R, o
2l
=1 (=)

— A7+ (4 = A7 [Xeg, RI(Ap — 1)
N-1
= Piyn -1[Xeg, PyniPi—iyw + 3 (Ap = N1 [Xe e, PuynIPo1—ky/n
0 k=0
N-1

Y Py 1lXes Pyn)Sa(Ap — X))
pa

+ (Ap = NS [Xe e, Py NIS2 + [Xe g, R)(Ap = X)7!

- =2

-+

6



forall 0 < ¢, <1 in L(S,S5').
Next fix € > 0 and write, for the moment, M, = op {z@.(z)). Clearly, op (pz(&))u = uin §
for v € S as € — 0%, Hence we obtain convergence

[XE,Eapl/N]u - [M51P1/N]u) (8)
(X Rlu - [Me, Ru ©)

in § for u € S. The symbols of the commutators {[X¢¢, Pi/n] : 0 < & < 1} form a bounded
subset of S::_J for u = m/N + § — p. Applying 1.2(b), convergence in (8) will hold in Hp‘"‘"“
for u € L,. Since R is regularizing, a corresponding argument shows that, for (9), convergence
is in L, whenever u € L,. On the other hand [X,z, (Ap — A)~'u = [Me, (4, — A)"u in &' for
u in S, so we get equation (7) with = replaced by M,. With analogous considerations as before
— in particular the fact that the symbols of the commutators {{M, Py} : 0 < ¢ < 1} form a
bounded subset of SS,J - we let £ = 07 and obtain the assertion. a

Notice that we may not apply the above computation with X, ¢ replaced by x: It is not clear,
for example, that (A, — A}~ !z, P, + R](A, — A)~! maps S to &', even though [X, ¢, P, + RJu —
[z, A + Rluin S. '

2.12 Corollary. [z,(A, — A)7!]: & = &’ extends to an operator in L(L,).

Proof. Each of the four summands on the right hand side of (7) extends to an operator in
L(Lp). Indeed, the first is an element of \II;,Q"I hence is L, bounded by Fefferman’s theorem.
In the other summands, the Ly-bounded operator (4, — A)~! is composed with a regularizing
pseudodifferential operator. m|

2.13 Conclusion. In 2.6 we had reduced the problem to showing that, for each multi-index
@, the operator ad®z(A, — A)~! is bounded in L,. For |a| = 1, the assertion has been shown.
On the other hand, the identity in Proposition 2.11 shows that the analysis of higher order
commutators reduces to this case. Hence the proof is complete.

2.14 Remark. It is possible to avoid the condition on the argument function in certain other
instances. For example suppose that m —m’ < p. Then we can show, just as is Lemma 2.7, that

((A4p —N)7' 2] = Bilz,AlBx+ (4, — \) 'Ry [z, AJRa(Ap — A7}
+By[z, A]R2 (Ap — A)7 + (A, — A" Ry [z, A] By

Hence the first commutator is bounded on L;, and so are its iterates, by induction.

Acknowledgment: The second author would like to thank M. Hieber for valuable discussions
on the subject.
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