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Abstract

Let M be a closed real analytic Riemannian manifold. We estimate
from below the volume of a nodal domain component in an arbitrary
ball, provided that this component enters the ball deeply enough. The
proof combines a generalized form of Hadamard’s Three Circles The-
orem due to Nadirashvili, Rapid Growth of Eigenfunctions in Narrow
Domains and the Donnelly-Fefferman Growth Bound. The estimates
are almost sharp and improve the estimates obtained from the smooth
case by Donnelly-Fefferman, Chanillo-Muckenhoupt and Lu.

1 Introduction and Main Results

Let (M, g) be a closed C∞-Riemannian Manifold of dimension n. Let ∆ be
the Laplace–Beltrami operator on M . We consider the eigenvalue equation

∆ϕλ = λϕλ (1.1)

The null set {ϕλ = 0} is called the λ-nodal set and any connected component
of the set {ϕλ 6= 0} is called a λ-nodal domain. Throughout this paper
C1, C2, . . . will denote positive constants depending only on the metric g.

In [DF90] H. Donnelly and C. Fefferman prove a local version of Courant’s
Nodal Domain Theorem. Their estimates were later improved by S. Chanillo
and B. Muckenhoupt and by G. Lu.

Theorem 1.2 ([DF90, CM91, Lu93]). Let ϕλ be as above. Let B be any ball
in M , and let Ωλ be a connected component of {ϕλ 6= 0}∩B. If Ωλ∩ 1

2
B 6= ∅

then
Vol(Ωλ)

Vol(B)
≥ C1

(
√

λ)α(n)(log λ)4n
,
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where α(n) = 4n2 + n/2. Here, 1
2
B is a concentric ball of half the radius

of B.

Given a ball B ⊆ M , this theorem gives an upper bound on the number
of “deep” components of nodal domains in B, where a deep component is
a component which intersects 1

2
B. For this reason, this theorem is called a

“Local Courant Theorem”.
The present paper is concerned with the Local Courant Theorem in the

case where (M, g) is a closed real analytic Riemannian Manifold. We show

Theorem 1.3. Let (M, g) be a closed real analytic Riemannian manifold.
Let ϕλ be as above. Let B ⊆ M be an arbitrary ball of radius R, and let Ωλ

be a deep connected component of {ϕλ 6= 0} ∩B. Then

Vol(Ωλ)

Vol(B)
≥ C2

(
√

λ)2n−2(R∗)n−1(log λ)n−1
,

where R∗ = max{R, 1/
√

λ}.

When we consider balls of arbitrary radius we get the bound

Vol(Ωλ)

Vol(B)
≥ C3

(
√

λ)2n−2(log λ)n−1
,

which is much better than the known bound for the general smooth case
given in Theorem 1.2. An interesting special case is when R < 1/

√
λ. Then,

we get the lower bound C/(
√

λ log λ)n−1, which will be shown to be sharp
up to the logarithmic factor. A simple example on a flat torus shows that
the sharp estimate for large balls cannot be bigger than C/(

√
λ)n. It would

be very interesting to understand whether this is the correct bound for balls
of arbitrary radius.

The proof of Theorem 1.3 relies on three properties of eigenfunctions de-
scribed below. Our main innovation comes in replacing the Propagation of
Smallness property used in [DF90] by a different much more simple Propaga-
tion of Smallness property due to Nadirashvili. In particular, we succeed to
eliminate the difficult Carleman type estimates from the proof of Theorem 1.2
in the real analytic case.

Propagation of Smallness. If an eigenfunction is small on a set E con-
tained in a ball B, and |E| is large then the eigenfunction is also small on
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B. In our work this principle takes the form of a generalized Hadamard’s
Three Circles Theorem on real analytic manifolds due to Nadirashvili. We
explain this principle in Section 3. The sharp estimate in the Generalized
Hadamard Theorem is the main source from which we get the improvement
in Theorem 1.3 relative to Theorem 1.2.

Rapid Growth in Narrow Domains. If an eigenfunction vanishes on
the boundary of a domain which is long and narrow then the eigenfunction
must grow exponentially fast along the direction in which the domain is
long. We emphasize that this is true on any smooth manifold. This property
has been extensively developed and investigated by Landis ([Lan63]) for a
certain class of solutions of second order elliptic equations. The version we
found in [Lan63] cannot be directly applied to eigenfunctions. A version
of it for eigenfunctions but with weaker estimates was proved in ([DF90]).
In Section 3 we formulate a sharp version of this property for solutions of
second order elliptic equations which can be applied to eigenfunctions. We
prove this version in Section 5. The proof combines the ideas from [Lan63]
and [DF90]. We replace some arguments from [DF90] by more elementary
ones.

Donnelly-Fefferman Growth Bound. For any two concentric balls Br1 ⊆
Br2 ⊆ M of radii r1, r2 rescpectively, one has ([DF88])

supBr2
|ϕλ|

supBr1
|ϕλ|

≤
(

r2

r1

)C1

√
λ

.

In this paper we follow the principle that on balls of small radius with
respect to the wavelength 1/

√
λ a λ-eigenfunction is almost harmonic. This

principle was developed in [DF88], [DF90] and [Nad91]. After rescaling an
eigenfunction ϕλ in a ball of radius ∼ 1/

√
λ, one arrives at a solution ϕ of a

second order self adjoint elliptic operator L in the unit ball B1 ⊆ Rn, where
L has coefficients bounded independently of λ, and ϕ has bounded growth
in the unit ball in terms of λ. This principle is explained in more details in
Section 2.

Organization of the paper: In Section 2 we rescale the problem for small
balls to a problem on the unit ball in Rn. In Section 3 we explain Propagation
of Smallness and Rapid Growth in Narrow Domains. In Section 4 we prove
the Local Courant Theorem for small balls rescaled in the unit ball of Rn.
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In Section 5 we prove Rapid Growth in Narrow Domains. In Section 6 we
apply Donnelly-Fefferman Growth Bound in order to prove Theorem 1.3. In
Section 7 we give two examples. The first one is a sequence of spherical
harmonics which demonstrate that Theorem 1.3 is sharp up to a logarithmic
factor for balls of radius smaller than the wavelength. The second one is a
sequence of eigenfunctions on a flat torus which shows that the estimate in
Theorem 1.3 cannot be true for large balls.

Acknowledgements: I would like to heartily thank Kolya Nadirashvili for
indicating to me that the Generalized Hadamard Theorem may be fruitful. I
owe many thanks to Leonid Polterovich and Misha Sodin for their continuous
encouragement and helpful discussions. I would like to thank also Dima
Jakobson for helpful discussions. The author is an EPDI postdoc fellow.
This paper was written in the IHES and MPIM-Bonn. The support of the
EPDI, IHES, and MPIM-Bonn is gratefully acknowledged.

2 Passing to the Wavelength Scale

In this section we apply rescaling in order to move from balls B ⊆ M of
small radius compared with the wavelength to the unit ball B1 ⊆ Rn. More
details are given in [Man].

Let L be the second order elliptic operator with coefficients defined in the
unit ball B1 by

Lu := −∂i(a
ij∂ju)− ε0qu , (2.1)

where aij, q are smooth functions, aij is symmetric and ε0 is a small positive
number. We assume the following ellipticity bounds

κ1|ξ|2 ≤ aijξiξj ≤ κ2|ξ|2. (2.2)

We also suppose
‖aij‖C1(B1) ≤ K, |q| ≤ K , (2.3)

and we consider the equation

Lu = 0 . (2.4)

Equation (2.4) with real analytic coefficients will be denoted by (2.4.RA).
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Given a function ϕ on the unit ball and 0 < r < 1, we define its (r-)growth
exponent by

βr(ϕ) := log

(
supB1

|ϕ|
supBr

|ϕ|

)
. (2.5)

The following theorem shows that if a solution ϕ has a deep positivity
component Ω of small volume, then it grows rapidly in B1. Here, we should
emphasize that the growth of ϕ is measured not only in Ω, but globally in
B1.

Theorem 2.6. Let ϕ satisfy (2.4.RA). Suppose ϕ(0) > 0, and let Ω ⊆ B be
the connected component of {ϕ > 0} which contains 0. Then,

Vol(Ω)

Vol(B1)
≥ C1

(β∗ρ0
(ϕ) log β∗ρ0

(ϕ))n−1
,

where ρ0, C1 depend on κ1, κ2, K, n, and where β∗r = max{βr, 3}.

In Section 6 we will see that Theorem 2.6 implies Theorem 1.3.

3 Properties of Eigenfunctions

As we explained in the introduction the proof of Theorem 2.6 involves the
following ingredients:

• Propagation of Smallness due to Nadirashvili. This is in fact a
generalization of Hadamard’s Three Circles Theorem. Given a subset
E ⊆ B1, we define its “radius” by

r(E) :=

(
Vol(E)

Vol(B1)

)1/n

. (3.1)

Theorem 3.2 ([Nad76]). Let ϕ satisfy (2.4.RA), and assume that
supB1

|ϕ| ≤ 1. Let E ⊆ BR. If supE |ϕ| ≤ r(E)γ then supBR
|ϕ| ≤

(c0R)σγ, whenever γ > γ0. γ0, σ, c0 depend on κ1, κ2, K, n.

We notice that this theorem is meaningful only for R < 1/c0.

In the case where E = BR and ϕ satisfies (2.4) this theorem was proved
by Gerasimov in [Ger66]. Nadirashvili extended Gerasimov’s result
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for operators with real analytic coefficients by replacing the innermost
circle by a general set.

We would like to remark that the proof in [Nad76] is for harmonic
functions. When one goes through the proof, one sees that the only
point where the harmonicity of ϕ is used is an interior elliptic regularity
estimate which is true for solutions of any second order elliptic operator
with real analytic coefficients (See [Hör64, Theorem 7.5.1].

• Rapid Growth in Narrow Domains: This property tells that if a
solution ϕ has a deep positivity component Ω of small volume, then ϕ
grows rapidly in Ω.

Theorem 3.3. Let ϕ satisfy (2.4). Suppose that ϕ(0) > 0, and let Ω
be the connected component of {ϕ > 0} containing 0. Let 0 < r0 ≤ 1/2.
If Vol(Ω ∩Br)/Vol(Br) ≤ ηn for all r0 < r < 1, then

supΩ ϕ

supΩ∩Br0
ϕ
≥

(
1

r0

) C1

ηn/(n−1)

.

We emphasize that this theorem is true also in the smooth case. We
bring a proof of it in Section 5. One should compare this theorem
with [Lan63, Theorem 4.1] and [DF90, pp. 651–652].

4 Proof of Theorem 2.6

In this section we combine Theorem 3.2 and Theorem 3.3 in order to prove
Theorem 2.6. We first give the idea of the proof.
Sketch of proof: Rapid growth in narrow domains implies that if |ϕ| ≤ 1
and Vol(Ω) is very small, then ϕ should be very small on a set E located
near the center of the ball B. Then we apply the propagation of smallness
principle in order to say that ϕ is also very small on a ball containing E.
Thus, ϕ must have a large growth exponent β.

We now move to the full proof. The following theorem is a first version
of Theorem 2.6.

Theorem 4.1. Under the assumptions in Theorem 2.6

Vol(Ω)

Vol(B1)
≥

(
C1ε

β∗ρ0
(ϕ)

)(n−1)/(1−ε)

.
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for all 0 < ε < 1/2.

Proof of Theorem 4.1. Let η = r(Ω) be the “radius” of Ω as defined in (3.1).
We may assume

η < (ε/γ1)
(n−1)/(n(1−ε)), (4.2)

where γ1 is a large constant to be specified below. Otherwise, the theorem
becomes trivial. Let c0 > 1 be as in Theorem 3.2, and let ρ0 = 1/(c0e).
Define

r0 := sup

{
r :

Vol(Ω ∩Br)

Vol(Br)
≥

(
η

ρ2
0

)n−nε
}

. (4.3)

Observe that

r(Ω ∩Br0) = r0

(
η

ρ2
0

)1−ε

= r0

(
r(Ω)

ρ2
0

)1−ε

≥ r0

(
r(Ω ∩Br0)

ρ2
0

)1−ε

.

Hence,
r0 ≤ ρ2−2ε

0 r(Ω ∩Br0)
ε ≤ ρ0r(Ω ∩Br0)

ε ≤ ηε . (4.4)

In particular, r0 ≤ ρ0. Theorem 3.3 and Inequality (4.4) give together

supΩ∩Br0
|ϕ|

supΩ |ϕ|
≤ r

C1(ρ2
0/η)n(1−ε)/(n−1)

0 ≤ r(Ω ∩Br0)
C2ε/ηn(1−ε)/(n−1)

. (4.5)

By assumption (4.2), the exponent in the right hand side of (4.5) is large
enough in order to apply Theorem 3.2 with E = Ω ∩Br0 . Hence,

supBρ0
|ϕ|

supB1
|ϕ|

≤ (c0ρ0)
εC3/ηn(1−ε)/(n−1)

= e−εC3/ηn(1−ε)/(n−1)

.

In other words,

βρ0 ≥
εC3

ηn(1−ε)/(n−1)
,

which is equivalent to

Vol(Ω)

Vol(B1)
≥

(
εC3

βρ0

)(n−1)/(1−ε)

.
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Proof of Theorem 2.6. Let A = β∗ρ0
/C1. If A ≤ 10, then Theorem 4.1 shows

that Vol(Ω) is bounded from below by a positive constant. This immediately
implies Theorem 2.6. Otherwise, take ε = 1/ log A in Theorem 4.1. Observe
that ( ε

A

)1/(1−ε)

≥ ε

A

( ε

A

)2ε

=
e2ε log ε−2

A log A
≥ e−3

A log A
.

5 Rapid Growth in Narrow Domains

In this section we prove Theorem 3.3. It will follow from the classical growth
Lemma:

Let ϕ satisfy (2.4). Let By
R = B(y, R) ⊆ B1. Suppose ϕ(y) > 0, and

let Ωy be the connected component of {ϕ > 0} ∩ By
R which contains y. The

Growth Lemma is:

Lemma 5.1 ([Lan63, Theorem 4.1], [DF90, pp. 651–652]). For all A > 1
there exists γ(A) such that if

Vol(Ωy)

Vol(By
R)

≤ γ(A) ,

then
supΩy

|ϕ|
supΩy∩By

R/2
|ϕ|

≥ A .

In particular, γ does not depend on R, neither on y.

We give a proof of this lemma in Section 5.1. Its proof is based on ideas
from the proof in [DF90], where we replaced several arguments by more
elementary ones.

As a corollary of the preceding lemma, we obtain a first version of rapid
growth in narrow domains:

Theorem 5.2. Let ϕ satisfy (2.4). Let Ω be a connected component of
{ϕ > 0} which intersects B1/2. Let η > 0 be small enough. If

Vol(Ω)

Vol(B1)
≤ ηn ,
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then
supΩ |ϕ|

supΩ∩B1/2
|ϕ|

≥ e
C1

ηn/(n−1) .

Proof of Theorem 5.2. We notice that Ω touches ∂B1. Otherwise, since ε0 is
small, by the maximum principle ([GT83, Cor. 3.8]) ϕ is identically 0 in Ω,
which contradicts the definition of Ω.

We decompose B1 \B1/2 into N equally distanced spherical layers, where
N will be chosen below. Let tk = (1/2+k/(2N)), k = 0 . . . N . Let A0 = B1/2,

and Ak = Btk \ Btk−1
for k = 1 . . . N . Set Ã0 = A0 ∪ A1, ÃN = AN−1 ∪ AN ,

and
Ãk = Ak−1 ∪ Ak ∪ Ak+1

for 1 ≤ k ≤ N − 1. There exist ≥ N/2 values of 1 ≤ k ≤ N for which

Vol(Ω ∩ Ãk) ≤ 6Vol(Ω)/N .

Let l be any one of these values. Let y ∈ Ω ∩ Al, and let R = 1/(2N).

Consider the ball By
R = B(y, R). By

R ⊆ Ãl, and we check that

Vol(Ω ∩By
R)

Vol(By
R)

≤ Vol(Ω ∩ Ãl)

Vol(B1)(1/(2N))n
≤ 6Vol(Ω)(2N)n

NVol(B1)
≤ 6(2η)nNn−1 . (5.3)

Set A = 10e/9 and take N = b(γ(A)/(6(2η)n))1/(n−1)c. Inequality (5.3)
and the Growth Lemma applied in By

R with Ωy ⊆ Ω ∩By
R show that

sup
Ω∩fAl

ϕ ≥ sup
Ω∩By

R/2

ϕ ≥ Aϕ(y) .

Since this is true for all y ∈ Ω ∩ Al, we get

sup
Ω∩Bl+1

ϕ ≥ sup
Ω∩fAl

ϕ ≥ A sup
Ω∩Al

ϕ . (5.4)

Now we apply the following maximum principle:

Theorem 5.5 ([GT83, Corollary 3.8]).

sup
Ω∩Ak

ϕ ≥ 0.9 sup
Ω∩Bk

ϕ ,

whenever ε0 (cf. (2.1)) is small enough.
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Hence, from (5.4) we obtain

sup
Ω∩Bl+1

ϕ ≥ 0.9A sup
Ω∩Bl

ϕ = e sup
Ω∩Bl

ϕ .

And since this is true for ≥ N/2 values of k we finally have

supΩ ϕ

supΩ∩B1/2
ϕ
≥ eN/2 ≥ eC1/ηn/(n−1)

.

An iteration of Theorem 5.2 gives Theorem 3.3:

Proof of Theorem 3.3. Let N be a positive integer for which (1/2)N+1 < r0 ≤
(1/2)N . N = blog(1/r0)/ log 2c. Set tk = (1/2)k. It follows by scaling from
Theorem 5.2 that

supΩ∩Btk
|ϕ|

supΩ∩Btk+1
|ϕ|

≥ eC1/ηn/(n−1)

,

for all 0 ≤ k ≤ N − 1. The point is that the bounds (2.2)-(2.3) on the
operator L remain true after rescaling. Hence,

supΩ |ϕ|
supΩ∩Br0

|ϕ|
≥ supΩ |ϕ|

supΩ∩BtN
|ϕ|

≥ eC1N/ηn/(n−1)

≥ eC1 log(1/r0)/(2ηn/(n−1) log 2) =

(
1

r0

) C2

ηn/(n−1)

.

5.1 Proof of the Growth Lemma

Proof of Lemma 5.1. Let g(t) be a smooth function defined on R with the
following properties

• g(t) = 0 for t ≤ 1,

• g(t) = t− 2 for t ≥ 3,

• g′′(t) ≥ 0.
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Let δ > 0 be small and let gδ(t) = δg(t/δ). Let ϕδ = (gδ ◦ϕ) ·χΩy , where χΩy

is the characteristic function of Ωy. ϕδ is a smooth function with compact
support in Ωy. We notice that 0 ≤ ϕχΩy−ϕδ ≤ 2δ. In particular, ϕδ → ϕχΩy

uniformly as δ → 0. We now calculate Lϕδ:

Lϕδ = χΩyε0qϕ · (g′δ ◦ ϕ)− ε0qϕδ .

Let us denote the right hand side by f .

Lemma 5.6.
‖f‖Ln(B) ≤ 2ε0δK|Ωy|1/n

We postpone the proof of this lemma to the end of this section. Recall
the following local maximum principle:

Theorem 5.7 ([GT83, Theorem 9.20]). Suppose Lu ≤ f in By
R ⊆ B1. Then,

sup
By

R/2

u ≤ C1

|By
R|

∫
By

R

u+ dx + C2‖f‖Ln(By
R) ,

where C1, C2 depend only on κ1, κ2 and K.

Applying the local maximum principle to ϕδ gives

sup
By

R/2

ϕδ ≤
C1

|By
R|

∫
By

R

ϕδ dx + 2C2δε0K|Ωy|1/n .

Letting δ → 0 we obtain that

sup
Ωy∩By

R/2

ϕ ≤ C1

|By
R|

∫
Ωy

ϕ dx ≤ C1|Ωy|
|By

R|
sup
Ωy

ϕ

Thus, we may take γ(A) = 1/(C1A).

To complete the proof of the Growth Lemma 5.1 it remains to prove
Lemma 5.6.

proof of Lemma 5.6. When ϕ ≥ 3δ, f = 2ε0δqχΩy , and when ϕ ≤ δ, f = 0.
We notice that gδ(t) ≥ t − 2δ and g′δ(t) ≤ 1. Hence, when δ ≤ ϕ ≤ 2δ, f ≤
2ε0δqχΩy , and when 2δ ≤ ϕ ≤ 3δ, f ≤ ε0qϕχΩy −ε0q(ϕ−2δ)χΩy = 2ε0δqχΩy .

We have shown that |f | ≤ 2ε0δqχΩy . Integration gives

‖f‖Ln(By
R) ≤ 2ε0δK|Ωy|1/n.
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6 Proof of Theorem 1.3

In this section we show how Theorem 1.3 is implied from Theorem 2.6.

Proof of Theorem 1.3. Let B ⊆ M be a ball of radius R ≤
√

ε0/λ. Sup-
pose that ϕλ is positive on Ωλ. Let y ∈ Ωλ ∩ 1

2
B. Consider the ball By

R/2.
By scaling we arrive at a function ϕ defined in the unit ball B1 ⊆ Rn. ϕ
satisfies (2.4.RA), and ϕ(0) > 0. ϕ also satisfies the growth bound:

Theorem 6.1 ([DF88]).

βr(ϕ) ≤
√

λ log(C1/r) .

If we substitute in Theorem 2.6 the Donnelly-Fefferman Growth Bound
we get

Vol(Ωλ)

Vol(B)
≥ C2

Vol(Ωλ)

Vol(By
R/2)

≥ C3

(
√

λ log λ)n−1
.

Let now B be a ball of radius R >
√

ε0/λ. Recall the Faber-Krahn
Inequality:

Theorem 6.2. Let Aλ be a λ-nodal domain. Then

Vol(Aλ) ≥
C2

(
√

λ)n
.

Hence, if Ωλ ⊆ B, then

Vol(Ωλ)

Vol(B)
≥ C3

(R
√

λ)n
≥ C4

(
√

λ)n
,

which completes the proof.
So, we may assume Ωλ touches ∂B. We decompose B \ 1

2
B into spherical

layers, each of width
√

ε0/λ. In each spherical layer we can find a ball B′

of radius (
√

ε0/λ)/2 such that Ωλ cuts 1
2
B′. By the preceding step the total

volume of Ωλ is

Vol(Ωλ) ≥
∑
B′

Vol(Ωλ ∩B′) ≥ C5R
√

λ/εVol(B′)/(
√

λ log λ)n−1 .

The last inequality gives

Vol(Ωλ)

Vol(B)
≥ C6

(
√

Rλ)2n−2(log λ)n−1
,

which completes the proof of Theorem 1.3.
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7 Examples

7.1 An Example on Sn

In this section we show that Theorem 1.3 is sharp up to the (log λ)n−1 fac-
tor. The example we give will be a sequence of spherical harmonics on the
standard sphere Sn. Let us denote by Hn

k the space of spherical harmonics
on Sn of degree k.

Proposition 7.1. There exists a sequence (Y n
k )k≥1 ∈ Hn

k with the following
properties:

1. The number of nodal domains of Y n
k is ≥ c1,nk

n.

2. There exist ≥ c2,nk
n−1 nodal domains of Yk which have the north pole

on their boundary.

Corollary 7.2. For every eigenvalue λ and r < 1/
√

λ there exists an eigen-
function ϕλ, a nodal domain Aλ and a ball B of radius r such that

Vol(Aλ ∩B)

Vol(B)
≤ C3(n)

(
√

λ)n−1
,

and Aλ ∩ 1
2
B 6= ∅.

Remark. The last corollary shows that the exponent in Theorem 1.3 cannot
be improved even if we fix the radii of the balls considered.

Proof. λ = k(k + n − 1) for some integer k ≥ 0. Let Y n
k be as in Proposi-

tion 7.1. Let B be a ball of radius r < 1/k centered at the north pole. By
Proposition 7.1 that there exists a nodal domain Aλ for which

Vol(Aλ ∩B)

Vol(B)
≤ C4(n)

kn−1
.

The result follows since λ ∼ k2.

We now prove Proposition 7.1. First, we introduce spherical coordinates
and we review elementary facts about spherical harmonics.

13



Lemma 7.3. A point on the sphere Sn is parametrized by (θ1, . . . , θn−1, ϕ),
where 0 < θl < π, 0 ≤ ϕ ≤ 2π, and

x1 = cos θ1 ,
...
xn−1 = sin θ1 . . . sin θn−2 cos θn−1 ,
xn = sin θ1 . . . sin θn−1 cos ϕ ,
xn+1 = sin θ1 . . . sin θn−1 sin ϕ .

We recall the definition of the zonal spherical harmonics and Legendre
Polynomials. Details can be found in chapter 3 of [Gro96]. Consider the
natural action of the orthogonal group O(n + 1) on Sn. It induces a repre-
sentation of O(n + 1) on Hn

k . The zonal spherical harmonic Zn
k,p of degree k

with pole p ∈ Sn is defined as the unique spherical harmonic in Hn
k , which

is fixed by the stabilizer of the point p in O(n + 1), and admits the value 1
at p. The Legendre polynomial P n+1

k (t) is defined to be the polynomial on
[−1, 1], for which

Zn
k,p0

(θ1, . . . , θn−1, φ) = P n+1
k (cos θ1) ,

where p0 is the north pole. It is easy to see that for any p ∈ Sn

Zn
k,p(x) = P n+1

k (〈p, x〉) .

Lemma 7.4 ([Gro96, Proposition 3.3.7]). P n
k is given by

P n
k (t) = αn(−1)k(1− t2)−(n−3)/2 ∂k

∂tk
(1− t2)k+n−3

2 ,

where αn are some constants which depend on n.

We define also the associated Legendre functions:

En
k,j(t) = (1− t2)j/2(∂j

t P
n
k )(t) .

The next lemma is an inductive construction of spherical harmonics:

Lemma 7.5 ([Gro96, Lemma 3.5.3]). Given G ∈ Hn−1
j , let

H(θ1, . . . θn−1, ϕ) := En+1
k,j (cos θ1)G(θ2, . . . θn−1, ϕ) .

Then, H ∈ Hn
k .
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Proof of Proposition 7.1. We prove it by induction on n. For n = 1, we take
Y 1

k (ϕ) = sin kϕ. Suppose the result is true for n− 1. Set

Hn
k,j(θ1, . . . , θn−1, ϕ) := En+1

k,j (cos θ1)Y
n−1
j (θ2, . . . , θn−1, ϕ) .

By Lemma 7.5 Hn
k,j ∈ Hn

k . From Lemma 7.4 one can see that En+1
k,j has

exactly k− j distinct zeroes in the interval (−1, 1) it follows that the number
of nodal domains of Hk

n is ≥ c1,n−1(k− j)jn−1, of which c1,n−1j
n−1 touch the

north pole. We define Y n
k := Hn

k,bk/2c.

7.2 An Example on Tn

The following example shows that the exponent in Theorem 1.3 is ≥ n. We
do not know whether this is a sharp example.

Let Tn be a flat torus parametrized by (x1, x2, . . . xn), where 0 ≤ xk < 2π.
Let ϕ = Πn

j=1 sin kxj. ϕ is an eigenfunction corresponding to eigenvalue
λ = nk2. Each nodal domain is of diameter < c/k and has area ≤ c/k2.
Hence, if we take a ball B ⊆ Tn of radius 1 and we let Aλ be a nodal domain
close to the center of the ball, we have

Vol(Aλ ∩B)

Vol(B)
≤ C(n)

(
√

λ)n
.
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