INTERSECTION OF SUBGROUPS IN FREE GROUPS AND
HOMOTOPY GROUPS
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ABSTRACT. Let K be a two-dimensional CW-complex with subcomplexes K1, Ko, K3
such that K = K; UK, U K3 and K7 N Ky N K5 is the 1-skeleton K of K. We construct
a natural homomorphism of m (K)-modules

RiNReN R3
[Rl, RonN R3] [Rg, R3nN Rl][R3, RiN Rg] ’
where R; = ker{m(K') — m(K;)}, i = 1,2,3 and the action of m1(K) = F/R1R2R3
on the right hand abelian group is defined via conjugation in F. In certain cases, the
defined map is an isomorphism.

7T3(K) —

1. INTRODUCTION

Given a free group F' and normal subgroups (n > 2)
Ry,...,R, CF,
we consider the quotient group
Rin---NR,

B HIUJ:{l,...,n} [miel R;, mjeJ Rj] ‘

Here [ denotes the intersection of subgroups in the free group F' and [] is the product
of commutator subgroups as indicated. In fact, the abelian group I,, has the natural
structure of an F//R; ... R,-module, with the group action defined via conjugation in F'.

The computation of the abelian group I,, is highly non-trivial. In fact, Wu [6] showed
for the special case F' = (zy,..., 2, 1), Ri = (x))F, i=1,....n— 1, R, = {2y ... 2 1)F
that

L.(F,Ry,...,R,)

L.(F Ry,...,R,) = m,(S%)

is the n-th homotopy group of the 2-sphere.
It is one of the deep problems of algebraic topology to compute homotopy groups
7,(S?). In low degrees one has (see [5]):
n ‘ 2 3 4 5 6 7 8 9
7Tn(52) ‘ 7 7 ZQ ZQ Z4@Z3 ZQ Zg Zg

On the other hand, for n = 2, one has a general description of the group I1(F, Ry, Ry)
in terms of homotopy groups of certain spaces. For this we consider a connected 2-
dimensional CW-complex K with subcomplexes

Ki,....K, CK,
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for which K U---UK,, = K and K;N---NK, is the 1-skeleton K' of K, with F = 7 (K")
and

Ry = ker{m (K") — m(K;)}, i=1,...,n.

In fact, Gutierrez-Ratcliffe [3] show that for n = 2 one has an exact sequence of 7 (K)-
modules

0 — iymo(Ky) + dama(Ky) — ma(K) — L(F, Ry, Ry) — 0,
where 4, is the map induced by the inclusion K; — K, j = 1,2. In this case,

RiN R,y
I(F, Ry, Ry) = ————.
( ) [R17 RQ]
It is the purpose of this paper to combine the results of Wu and Gutierrez-Ratcliffe
respectively and to study a corresponding generalization. We conjecture that each element
a € 1,(S5?) determines a natural function (n > 2)

oy mo(K)/(iymo(Ky) + - - +inma(Ky)) — L(F, Ry, ..., Ry).

For the example of Wu above K can be chosen to be the 2-sphere S? and «, carries in
this case the identity of S? to o showing that «, is non-trivial. In general, c, is not a
homomorphism of abelian groups.

Proposition. Let n = 2. If « is a generator of wo(S?) = Z, then a, eists and is given
by the map mo(K) — Iy(F, Ry, R2) of Gutierrez-Ratcliffe [3].

Moreover, as a main result of this paper we prove the following

Theorem. Letn = 3. If a € m3(S?) is a generator, then there is a well-defined function
o, which is a quadratic map inducing a natural homomorphism of w1(K)-modules

a# . 7T3(K) — Ig(F, Rl,RQ,Rg).

For the example of Wu, one has K = S? and in this case ay is an isomorphism.

2. THE EXAMPLE OF WU

Recall the description of homotopy groups of the 2-sphere due to Wu [6]. Let F[S']
be Milnor’s F-construction applied to the simplicial circle S'. This is the free simplicial
group with F[S'], a free group of rank n > 1 with generators zy,...,z, 1. Changing
the basis of F[S'],, in the following way: y; = z;x;. +11, Yn—1 = Tn_1, We get another basis
{Y0, -+, Yn-1} in which the simplicial maps can be written easier. A combinatorial group-
theoretical argument then shows that the functor 7,,.; applied to the example of Wu in
the introduction gives exactly the n-th homotopy group of the loop space QXS!, which
is isomorphic to the homotopy group of m,,1(S5?) (see [6] for explicit computations). In
fact, we have

~ (- N o) N0 (Y1)
[W—1.%0, - -, Yn—1]]

Y

Tn+1 (52)
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where F is a free group with generators vo,...,¥n-1, ¥-1 = (Yo---Yn_1) ', the group
[[Y-1,Y0, - - -, Yn—1]] is the normal closure in F' of the set of left-ordered commutators
(250, .., 2 (1)

with the properties that e; = £1, z; € {y_1,...,yn,_1} and all elements in {y_1,...,yn_1}
appear at least ones in the sequence of elements z; in (1). A standard commutator calculus
argument, given essentially in Corollary 3.5 of [6] shows that

[y-1,90, - s yn]] = H [mRi>ﬂR]’]>

T0J={1,...n+1} i€l jed

where Riy1 = (y)t, i = 0,...,n — 1, R,y1 = (y_1)¥. Hence we have the following
isomorphism
]n+1(F7 R17 cee Rn-i—l) = 71'”_,’_1(52), (2)
Consider first the most elementary case n = 2. In this case we view the 2-sphere S? as
a standard complex constructed from the group presentation

(1 | 2,271,
Clearly then
o )N a7
B = oy () =7

with 21 a generator of this infinite cyclic group.

3. THE CATEGORY I,

For n > 2, denote by K, the category with objects K = (K,Ky,...,K,). Here K
is a two-dimensional CW-complex, K; is a subcomplex of K, i = 1,...,n, such that
K=K U---UK,,and K!' = K;N---NK,. A morphism in Homy, (K, L) for K,L € K,
is a map

f:K'— L
between 1-skeletons of K and L, such that f can be extended to a map f: K — L, with
the property f(K;) C L;, i =1,...,n.

Denote by R,, (n > 2) the category with objects (F, Ry, ..., R,), where F'is a free group
and R; is a normal subgroup in . A morphism in R,, between two objects (F, Ry, ..., R;)
and (F',R},...,R)) is a group homomorphism g : F' — F’ such that g(R;) C R}, i =
1,...,n. This category was also considered in [1].

There is a natural functor between these two categories,

Fu  Kn — Ry,
defined by setting
Fo i (K Ky, ... Ky) — (m (K, Ry, ... Ry,
where R; = ker{m (K') — m(K;)}.

Proposition 1. The functor F, defines an equivalence of the categories KC,, and R,,.
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For n > 2, define the functor
I,: R, — Ab,
where Ab is the category of abelian groups, by setting
_ _ Rin---NR,
L,: R=(F,Ry,...,R,) — I,(R) := .
HIUJ:{l,...,n} [miel R;, mjeJ Rj]

Clearly, for any R € R, the abelian group I,,(R) has a natural structure of F/R; ... R,-
module, where the group action viewed via conjugation in F'.

4. THE SURJECTION ¢ AND THE CONJECTURE ON

In this section we show the following result.

Proposition 2. For an object S, in K, associated to Wu’s example in R, there is a
surjection

q: Homg, (S,, K) = mo(K) /(i1 (K1) + .. in(Ky)),
which is natural in K € K,,.

For a € 7,,(5?) = I,F,(S,) we thus obtain the following diagram

Homy, (S, K) ———4+—— m(K)/(i1ma(K1) + - - - 4+ inm2(K5))

where o*(f) = fi(a).

Conjecture 1. For each o € 7,(S?) there exists a function a, for which the diagram
commutes. Hence v, is well defined and natural provided q(f) = q(g) implies o*(f) =
a*(g).
Recall that for a given two-dimensional complex K, the free crossed module
0 :my(K,K') — m (K"
can be defined as follows. The group (K, K') is generated by the set
{e¥ | ais a 2-cell in K, w € m(K")}

with the set of relations

{evefe, es", u=vrov w}, (3)

where 1, € m (K?) is the attaching element representing e, (see, for example, [2]). The
homomorphism 0 is defined by setting 0 : e¥ +— r%. Hence every element from ker(0) =
Ty(K) can be represented by an element X' ... eX®=, such that 7=t ... rZ"" is trivial
in T (Kl)
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Consider the two-dimensional sphere S? as the standard two-complex constructed from
the following presentation of the trivial group:

(1, Ty | @1y, Y. (4)

This presentation defines an element S,, from IC,,:

S, =(S*Li,...,Ly,), (5)
with L; = \/?:_115 LU e;, where e; is the 2-cell corresponding to the relation word z;, i =
1,...,n—1, e, is the 2-cell corresponding to the relation word z 1, --- 2"

Let f € Homg, (S, K). It means that there exists a homomorphism between two free
groups f : F,_ := F(xy,...,x,) — m (K") such that

f(z;) € ker{m (K") — m;(K;)}, i=1,...,n—1 (6)
and f can be extended to a homomorphism between two crossed modules:
o1

71—2(52’\/?:_1151) n—1

f’l fl (7)
m(K K = m (K
For a given group homomorphism f : F,,_; — 7 (K"') with the property (6), the necessary
and sufficient condition of the existence of the extension (8) is the condition

f(zy--2,) C R, i=ker{m (K") — m(K)}.
For K = (K, K, ...,K,) € K,, we now define the canonical (forgetful) map
q: Homy, (Sn, K) — mo(K)/(i1mo (K1) + . . . inma(Ky)),

which carries a morphism S? — K to the underlying map S? — K. Here the natural
maps i; : m2(K;) — K are induced by inclusions K; — K. Using the language of crossed
modules, we can describe the map ¢ as follows. Denote by {si,...,s,} the set of 2-
cells in S? viewed as the standard two-complex for the group presentation (4). Then
the map f” defines elements f'(s,) € m(K, K'). Observe that 9;(s;...s,) = 1 and the
element s; ... s, presents the generator of my(S5?). Since the diagram (8) is commutative,
O (f'(s1)...f'(sn)) =1 and the element f'(sy)...f'(s,) represents certain element from
ker(0y) = mo(K), which is exactly ¢(f). Let us show that this map does not depend on
an extension (8). Suppose we have another extension of the homomorphism f:

m (52, Vi) 2 F,

f”l fl (8)

(K, KY =2 m(KY

with f”(s;) # f'(s;) at least for one j (1 < j < n). It follows that da(f'(s;)f"(s;)™") = 1,
hence

Fl(s3) " (s5)7" € im{iy = oK) — ma(K)}
Therefore, the images of elements f'(s;...s,) and f”(s1...s,) are equal in the quotient
mo(K)/(iymo(Ky) + .. . iyme(K,)) and the map ¢ is well-defined.

Lemma 1. The map q is surjective.
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Proof. Consider the diagram (8). Now let ¢ = eZ"'...eZ"" be an arbitrary element
from ker(0y). Lets enumerate all cells of K in the following order: ej,,..., e, with
i € Ki, i =1,...,m. Clearly, the set of relations (3) in m(K, K') gives a possibility
to present the element ¢ in the form

= TLet - [Letn
with some w;, € m(K'). Then we define the map f : F,_; — m(K') by setting
flx) =TL rzifj" Then we can extend it to f : my(S%, VIZISY) — mo(K, K') by f'(s;) =

Fwn, « .. .
[[.7:. " This is correct, since

([ (s50) = D[ (s1) - ['(sn=1)) " = f(O(s1. .. 501)7").

Then the homotopy class corresponding to the element ¢ € mo( K, K') coincides with ¢(f)
and the surjectivity of ¢ is proved. O

5. PROOF OF THE CONJECTURE FOR n =2 AND n =3

We now describe the map ¢ in the conjecture by use of identity sequences which repre-
sent elements in mo(K), see [4]. Let F be a free group with basis X and R a certain set
of words in F'. Consider the group presentation

P=(X|R) (9)
¢, © = 1,...,m are words in F, which are conjugates of elements from R, i.e. ¢; =
tF t; € R, w; € F. Then the sequence

c=(c1,..,Cm) (10)

is called an identity sequence if the product c;...c,, is the identity in F. For a given
identity sequence (10), define its inverse:

clt=(clt ... c).
For a given element w € F, the conjugate ¢ is the sequence:
= (... ),

which clearly is again an identity sequence. Define the following operation in the class of
identity sequences, called Peiffer operations:
(i) replace each w; by any word equal to it in F’;
(ii) delete two consequtive terms in the sequence if one is equal identically to the inverse
of the other;
(iii) add two consequtive terms in the sequence if one is equal identically to the inverse of
the other;
(iv) replace two consequtive terms c¢;, ¢;41 by terms ¢; 11, ¢, Jrllcl-ciﬂ;
(v) replace two consequitive terms c¢;, ¢;y1 by terms ciciyic; ', ci.

Two identity sequences are called equivalent if one can be obtained from the other by
a finite number of Peiffer operations. This defines an equivalence relation in the class
of identity sequences. The set of equivelence classes of identity sequences for a given
group presentation (9) denote by Ep. Then Ep can be viewed as a group, with a binary
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operation defined as a class of justaposition of two sequences: for identity sequences ¢y, ¢o
and their equivalence classes (c1), (ca) € Ep, (1) + (c2) = {(¢1¢2). The inverse element of
the class {(c) is (¢™!) and the identity in Ep is the empty sequence. It is easy to see that

Ep is Abelian. For two identity sequences ¢ = (¢q,...,¢yp) and d = (dy, ..., dy), we have
(ed) = ((c1,. .. Cmydy, .. dy)) = ((dy, . . . dg, ¢t cdiedm))

by the relation (iv). Since d; ...d,, =1 in F, we have
(cd) = ((dy,...,d,c1,...,cm)) = (dc).
Furthermore, Fp is a F-module, where the action is given by
(cyof=(), feF.

It is easy to show that
(cyor={c), r € R,

i.e. the subgroup R acts trivially at Ep. To see this, let r = rf“’l .. .rki”’“, r, € R, v; € F.
Then for any identity sequence ¢ = (cy, ..., ¢y), by (ii), (iii), (iv),
((e1,. . yem)) = ((e1y . em, 7T . . ,r,f”’“,r,f“’“, LTy =
(ro ,r,f”’“,c’{, cey O ) = ().

Thus Ep can be viewed as a G-module. It is not hard to show that for a given presentation
P, the second homotopy module 75 (Kp) is isomorphic to the identity sequence module
Ep (see, for example, [4]).

For a given K choose the elements e; , € m(K, K'), i =1,...,n,a € A which represent
the corresponding two-dimensional cells in K;, ¢« = 1,...,n with the natural property
8(62',0() - RZ',

where R; = ker{m (K') — m(K;)}, i = 1,...n, and the normal closure of the set
{0(ein) | @ € A} in m(K?) is equal to R;. Clearly, K is homotopically equivalent to a
wedge

K~\/5VKp,
jeJ
where Kp is the standard two-complex constructed from the group presentation
(X |0(€in), i=1,....,n, a € A),

with X being a basis of 71(K'). Then we have the following natural isomorphism of
1 (K)-modules:

WQ(K)/(ilﬂg(Kl) + -4 Znﬂ'Q(Kn)) ~ ﬁg(Kp)/(ilﬂ'Q(Kpl) —+ 4 inﬁg(Kpn)),
where P; is the following presentation of the group m; (K;):
(X | 0(ein), a € A)

fori=1,...,n. o
Let f,g € Homg, (S,, K). Then we can present
f(ifi):TY) 1'...7“,(%) =101,
(n)FW1n (n) FWknm

f(xl"'xn>zrl ...Tkn
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for some r](-i) € {0(ein), a € A} and w;,; € m(K"). Analogically for g € Homy, (S,, K):

N tw) o tw!
1(3) =%, 1@) Tt g
g(x;) =r] T dti=1,...,n—1,

! !
1(n) Wi n () EWy
g(xy---xy) =1 T

n

The following Lemma follows directly from the definition of the map ¢ and the above
description of the second homotopy module for the standard complex in terms of identity
sequences.

Lemma 2. Using the above notation, q(f) = q(g) if and only if the identity sequence

(1) FTwin () EWknn () FWy (1) Fwia
(Tl 7“‘7lrkn 7rk;1 ,...,...,7”1 )

is equivalent to an identity sequence of the form

1 1 n n
(() 1) (n) ())

ST sy S ey S ey S

with ng‘) € {0(i0)™, w € m(K")} such that s sl(j) is triwial in m (KY) for every
1=1,...,n.

Let (K, Ky, K») € Ky. The 7 (K)-module mo(K) /(1172 (K1) +isma(K>3)) can be identified
to the module of the identity sequences of the type

(c1y--scm), ¢j €{0(cia)", wem(K'), a €A, i=1,2} (11)

modulo the sequences of the form (c1, . .., Cmys Cmyt1, - - -5 Cm) Wither, ..o ey € {0(c1.0)", w €
T (KN}, Cmyity - -y Cm € {0(c2.0)", w € m(K')} with

Cl.-Cmy =Cmy4l---Cm =1

in T (Kl)
Every identity sequence (11) with the help of Peiffer operations of the type (iv) can
be reduced to the sequence of the form (cq,...,Cmy, Cmys1y- -+, Cm) With ¢1,... ¢y €

{0(c1.0)", w € T (KN}, Cmygt1s---s0m € {0(can)®, w € m(K')}. Then for a generator
x € m3(5?), the map

. . RiNR
Ay s oK)/ (inma(Ky) + dama(K2)) — ﬁ
is given in the above notation by
Ay (Crye oy Cmyy Cong g1y e ooy Cm) > C1w+ - Cy [ R, Ra.

First observe that A, is the homomorphism of 71 (K) = 71 (K"')/R; Re-modules. Secondly,
A, clearly is an epimorphism. The fact that A, is a monomorphism is not difficult (see
Theorem 1.3 [4] for the complete proof). Hence we have the following exact sequence of
7 (K)-modules due to Gutierrez and Ratcliffe [3]:

RN Ry

0— i17T2(K1) + i27T2(K2) ﬁ) 7T2(K) — m — 0. (12)
1,

Theorem 1. Conjecture 1 is true for n = 3.
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Proof. In this case we view S? as the standard complex constructed for the group presen-
tation

<.T1,fl?2 ‘ x17x2ax2_lxl_l>
with
I3(F5(5%)) = I3(F (21, m2), {w1) ™), (ap) F0m2) (gt yFenm)y ~ 7

with a generator given by the commutator [z, xs).

Let K = (K, K, Ky, K3) € K3. Denote F = m;(K"'). Denote the sets of words in F:
Ri = {0(eia, a € A}, i =1,2,3. By RF we mean the set {r*, r € R;, w € F}. The
m (K)-module mo(K)/(i1me (K1) + toma(K3) +i3ma(K3)) can be identified with the module
of the identity sequences

c=(c1,...,cm), ¢; ERFVURSURY (13)
modulo the sequences of the type
(Cly vy Cmyy Cmyt1s« -+ s Cings Cmgt1y « - 5 Cm) (14)
with ¢1,...,¢my € Rf, Crmy+1y - -3 Cm € Rg, Crmg+1s - - -3 Cm € R:f and
€l Cmy = Cmyt1 - Cmy = Cmgt1 « -« Cm = 1, (15)
in F.
Divide the sequence (13) into the three ordered subsequences
(CrysevesCr)y (CspyevsCs)y (Cyyenycr), (16)

where ¢,, e RY, i=1,...,0,¢cs, R, i=1,....k, ¢, e RY, i=1,... hand

< Ty < oo Ty, S < Sy <L e Sy, b <ty < e < Uy,

{rl,...,rl}U{51,...,sk}U{t1,...,th}:{1,...,m}.

Denote

Ci = Cp;, 1= 1,...,1,

_ H’!“>5'CT]' .

Cloi==¢Cs; " T 0=1,...,k,

Hr >s.: Crz

_ (Hrz>ti CTz)Hsj>z1 Csj o .

Cl+k+i:Ct1 ,2:1,...,h.
Clearly,

Cl,--,Cq € Ry, Gy, .., Cyn € Roy Cryngt, -+ Cynrn € R3
and the sequence
(€1, s Crikin) (17)

is made of the sequence (13), applying the Peiffer operations of type (iv). At the first step
we replace all terms c,, to the left side of the sequence. At the second step we replace all
terms c,, between elements ¢,,-s and ¢;;-s and get the sequence (17). Denote

re:==¢C1...C € Ry,
S¢ 1= Ciy1---Cyk € Ro,

te := Cipkt1 - - - Claktn € Rs.
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In these notations, for the generator z := [z, xo] of I3(F3(S?)) construct the map
. : : RiN Ry N R3
Ay mo(K K K K ,
m )/ (o B + ool Ho) 4 dsmal Hs)) = [R1, Ry N R3][ Ry, Rs N Ry][R3, Ry ﬂ?ﬂ)
18

where F' = m(K?'), R; = ker{F — m(K;)}, i = 1,2, 3, by setting
Ax . (Cl, ce ey Cm) — [T’C, SC].[Rl, R2 N Rg][RQ, Rg N Rl][Rg, Rl N RQ]

Since r.s.t, = 1 in F', we have [r., s.] € Ry N Ry N R3.
Lets show that the above map A, is well-defined. Let ¢’ be an identity sequence equiv-
alent to the sequence c. Defining elements r., s, t. as above, we have to show that

[’f’c, SC] = [’f’cl, Sc/] mod [Rl, R2 N Rg] [Rg, Rg N Rl] [Rg, Rl N Rg] (19)

Since we above defined map A, is trivial for any sequence of the type (14) with conditions
(15), the equivalence (19) is necessary and sufficient for the correctness of the map A,.

First observe that if the sequences ¢ and ¢’ differ by the Peiffer operations of the type
(ii) or (iii), the equivalence 19 holds. The only nontrivial Peiffer operations needed to
check are operations (iv) and (v). Since (v) is converse to (iv), it is enough to prove the
equivalence (19) for the case ¢’ is obtained from ¢ by the single Peiffer operation of the
type (iv):

G = Cit1, Cpyq = cl-jrllciciﬂ, c;- =cj, jFLiI+1
for some 1 < i < m.

The cases i, +1 € {r,....,m}, i,i+1 € {s1,...,sx}, 4,0 +1 € {t1,...,tn} are
trivial. In these cases 1. = rv, s, = s, hence the needed equivalence (19) follows. In
the case i + 1 € {ry,...,r;} also nothing to prove since the definition of the elements
Te, Sc involves the process of repeating of such operations. In the case i € {t1,...,¢,} or
i+ 1€ {ty,...,tn} we clearly have [r., s.] = [rv, s¢] mod [Ry, Ry N R3)[R2, R3 N Ry].

Only nontrivial case to consider is i € {ry,...,r}, i +1 € {s1,...,8x}. Clearly then,
[Tery S| = [ren, Ser], where the sequence ¢” is obtained by applying again the operation
(iv) to the sequence ¢ :

/" -1 7 -1 -1
Ci = Cip1CiCit1y Cipr = i1 G Cit1CiCig1-

Let ¢; = ¢,,, ¢iy1 = ¢,,. Repeating the operation (iv), we can deform the sequences ¢ and
c” to the form
ro=ri+1,...,rj.1=rj0+1 rjpo=ra+1...,m=r_+1
without changing [r., s.] and [re, s.]. Now we can form the triple of words in F:
Ri=RiU{cy ... ¢, 1 Cy1...a}, Ry =TRa, Ry=TRs.

Clearly, this triple preserves the triple of normal subgroups R;, Ry, R3 and we can consider
the new identity sequences for the triple of words R} U R, U R} formed by gluing the
elements ¢, ,...,c,,_,and ¢, 1,00, Gy

= (R Gy G KR,

It is easy to see that

[T’C’ SC] = [’l"c///7 SC///]
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in F. Hence, we can always assume that [ = 3, ¢,, = ¢; and reduce arbitrary case to this
one using the described procedure. In these notations, we have sequences

C= (% ey 3k, Cryy Ky ooy Ky Cryy Cooy Fy ooy %, Crgy %, oy %)
"= (g Gy ke %, 000 Gl K, Oy %y ).
Then
[Tca Sc] = [Crlcrgcrg> Sl]a
[TC”’7 SC’”] = [cmcﬁgecwv 52]7
where

S = ( H nglcwcw)( H 0222073) ) 6223 . ( H Crs H Cs]

s;<T1 r1<s;<Se Se<s5;<T3 r3<s;
C, C,
S — crlcT;E Crg crge Crg CroCseCrg c,«3
2 — ( Cs; )( Cs; ) " Cse ’ ( cs]
s;<r1 r1<s;<Se Se<85;<T3 7“3<SJ

We then have

C -1 -1 —1¢o—1 c _
[crl Crze Crs, 52] = G, Gy, [crg ,Cse] 52 07”107”;e CTBS2 -
-1 -1 1
CT3 CT’Q [CTQ ?
1

~1-1,.-1 —1 —cso[,—1
clete Sy e et ot s )i ey 3, o mod [Rg, Ry N Ry,

—1¢o—1 —1 —cs. Cs
CSe] 7“1 52 CT3 Crg ecrgecmcrl 7“2 CT352

since Sy e ler, "¢ € Ry, [}, ¢s.] € Ri N Ry. Therefore,
(& — —1 -1¢-1 -1 _—c
[y s cry, So] = ¢ e et Sy e e e ey ey €83y S2 - mod [Rs, Ry N Ry).

However,
Cry Cpif Cry So = Cpy CryCryS1 € R,
therefore, Sy = ¢, ¢cr, " ¢y, S1 and we have
[Cr €2 Cryy So] = [CryCryCry, S1] mod [R3, By N Ry).

Hence, we always have the needed equivalence (19) and we proved that the map A, is
well-defined. O

For the generator z € m3(S?) denote by A the composite map of the natural projection
mo(K) — mo(K)/iyma (K1) + iama(K2) + i3ma(K3) and the map A,:

RiNRyNR3
[Ry, Ry N R3][R2, Rs N Ry|[R3, R1 N Ry)’
Proposition 3. Letb e i127T2(K1 U K2> +i137T2(K1 U Kg) +’i237T2(K2 U Kg) Q WQ(K) where
the maps i12, 113, 123 are induced by the inclusions
22K1UK2—>K, i132K1UK3—>K, 7:232K2UK3—>K.

Then A(a+b) = A(a) for every a € ma(K).

A:m(K) —

Proof. Let a be an element from my(K') presented by identity sequence (16) and the
element b be an element from ilg(K 1 U Ky) C my(K) presented by the identity sequence
(dy,...,dy,e1,...,ep) with d; € R , € € Rg. Then the element a 4+ b can be presented
by the following identity sequence

C(CL-Fb) = (Cm?"'?CTpdl;-- dl’> gi dll;---acgimdl/aelw"76k’7f17"'7fh’)7
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with f1,..., fi € RY. Denote a1 = ¢,y ...cpyag =dy ... dp,by =cq, .. .Cs, by =e1...cp.
Then we have
[a1ag, b$2by) = a5 tay tby tas tby tasarbyashy =
ay by tas b arbiaghy = ay by tarby mod [Rz, Ry N Ry,
since ay € Ry N Ry, a;'by'ay 'by' € R, asb, = 1. Hence A(a + b) = A(a).
In the case b € i13m (K7 U K3) + ig9gma( K3 U K3), we have obviously, that the elements

which represent A(a + b) and A(a) are equal modulo [Ry, Ry N Rs][Re, R3 N Ry] hence
A(a +b) = A(a). O

The following example shows that the map A is not always surjective.

Example. Let F' be a free group with generators x1,z,. Consider the following sets of
words:

Ri = {71}, Ro = {[w1, 2]}, R3 = {[z1, 22, 21]}.
Denoting R;, Ry, R3 the normal closures of the sets Ry, Ro, R3 respectively, we have
[Rh RQ N R3]7 [R27 R3 N Rl]? [R37 Rl N R2] - 74(F)7
where v4(F') the 4-th lower central series term of F. However,
[331, Ta, .Tl] & (Rl N Ry N Rg) \ ’}/4(F),
since [z1, xg, 1] is a basic commutator of length three in F. Suppose we have
A(.CL’) = [.CEl, T, xg].[Rl, R2 N Rg] [Rg, Rg N Rl][Rg, Rl N RQ]
for some element x of the second homotopy module of the standard complex constructed
for the group presentation
(w1, | 21, [T1, T2, [21, 22, 21]).
Then
[1, 9, x1] = [r,s] mod v4(F) (20)
for some r € Ry, s € Ry, such that
rs € Rs. (21)
However, the condition (21) implies that r € v,(F), since s € 75(F). Therefore [r,s] €
~v4(F) and the equivalence (20) is not possible. Hence, the map A is not surjective.

Theorem 2. The map A is a homogenous quadratic map, i.e.
A(a,b) = Ala+b) — A(a) — A(D)

is bilinear and A(x) = A(—x) for any a,b,z € m(K).

Proof. For x,y € mo(K(x | R,ursURs)), consider the cross-effect

RiNRyNRy
[R1, Rs N R3)[Ra, B3 N Ry|[Rs, Ry N R’

Represent elements a, b by identity sequences:

cla) = (c1,...,¢m), c(b) = (c},...,C).

A(a,b) = A(a +b) — Ala) — A(b) €
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Consider the corresponding divisions of the sequences ¢(a) and ¢(b):

{Cryy ooy U{esys oo Y U{e, et ={a, . emt

{chs e, YU{cg, e Y ULcy, o b =1d, )

with ¢, ¢, € RY, ¢, ce € REY, ¢, ¢; € RE. Consider then the induced division of
2 7 K2

the sequence c(a +b) = (c1,...,¢m, ¢}, ..., ), which represents the element a + b €
7T2(K<X | R1UR2UR3>> :

{CrseesCns oy G Y U e,y Gl csk,}U{ctl,...,ctn,cgl,...,c%n,}.

For the description of the functor A(a,b), using the Peiffer operation (iv) to the sequences

¢(a) and ¢(b), we can reduce the general case to the case of [ = 1,k = 1,I' = 1,k =1
with 1 < s1, 7y < 81. Denote x1 = ¢, y1 = ¢s,, T2 = ¢}, Yo = €5, -
Then

Aa) = [z1,11], A(b) = [z2, 2],
Ala +b) = 122, y1*ya).

We have
Ala +b) = [x1, y2] [T, yo] (1, Y7 *] "2 [22, y7?]*
= [xl,y2]””2 ['r%y?]['rluyl ][%;yl] mod [R?n RN Rz]
= |71, 1]"™ [$2ay2]$1 Ty y1 1$29613/1 mod [R3, Ry N Ry
= @1, Y] (22, Y] [12, y1]" [71,91] mod [R3, Ri N Ry

Since 1y, Tay2 € Rs,

A(a,b) = Ala+b) — A(a) — A(D) = [1, Y2 [z, y1]**  mod [Rs, Ry N Ry
(@1, [22,31]" mod [Rs, Ry N Ry

lys ' a1][yr tx2]  mod [Rs, Ry N Ryl

Now lets show the linearity of the functor A(x, %), i.e. that

Ala+b,d) = A(a, ¢) + A(b,d), (22)
A(a, b+ d) = A(a,b) + A(a, d) (23)

for arbitrary elements a, b, d € (K (x | r,ur,URs))- Let c(a), c(b) and ¢(d) be the identity
sequences represented the elements a,b and d respectively. Again, without loss of gener-
ality we can assume that these elements are represented by identity sequences with single
element from each class R;. Denote the correspondent pairs by z1,y1 C c(a) (the set-
theoretical inclusion means that xy, y; are elements of the sequence c(a)), za,y2 C ¢(b),
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x3,y3 C ¢(d). In this notation, modulo [Ry, Ry N R3][Re, R3 N Ry|[R3, Ry N Ry], we have

Aa+b,d) = [y; ", miao][ys 'yr ™, o3

_ T
yS 7‘7:2 [y?) ,.7}'1] [le ]yl [yl 2,1’3]

Ys 7$2 Ty y3$1 y3x1y1x2y2x3 yz $2 311 $2$3

)
)
Ys b wolay tysry y3$1y1($2y2$3 Yo $21$3)$3 yy s
]
]
]

y3 ax233 (5172y25173 Yo 332 333)?/3331 ysxlylxg y1 3325173
-1 _.—1 -1 -1 -1
ys b ol lys b wsley ey tesysa sy gty ey

ys ' wollyy s wslag tay sy ) yr  wslay v

[
[
[
[
[
[

lys ' 2allys ' wsllys ' e lyr ' @)
= A(a,d) + A(b, d),

since [y; ', @1][y; ' 23] € Ry N Ry and (22) follows. The equality (23) can be proved
analogically.

Now let us prove that A(—x) = A(z). Clearly, we can assume that our identity sequence
representing the element = € my(K') has the form

(Th S1, tl)

with 71 € R1, 81 € Ro,t1 € R3. The inverse sequence, which represents the element —x
has the form

(thsihr):
Then we have

A=) = [rT 8T ] = [s7Y,m] = [, 1] = [, 1] = A(z)  mod [Rs, Ry N Ry,

Theorem 3. The function A induces the homomorphism of F /Ry Ry R3-modules

A m(K) — Ry N Ry N Ry
e [R1, Ry N Rs][Ra, Rs N Ry][Rs, Ry N Ry)’

Proof. Let x € mo(K(x | R,ursURs))- Present by the sequence

c(x) =(c1,. .., Cm).

For a given element f € m(K), present this element as a coset f = w.R;RsR3 for some
element w € F. Then the element fox € m(K(x | R,Uur,URs)) Can be presented by
sequence

c(x)? =(cf, ..., co).
);

It follows directly from the definition of A(x), that
A(f 9} il?) = A(l‘)w mod [Rl, R2 N Rg] [Rg, Rg N Rl] [Rg, Rl N Rg]

Since m3(K) = I'my(K), we have the needed homomorphism of F'/R; Ry R3-modules due
to Theorem 2. O
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Example. For two-dimensional sphere S?, clearly, A defines the isomorphism (2):
A . 7T3(S2) — ]3(?3(5'3))
with S5 € K3 defined in (5).

Example. Consider a group presentation
P={(v1,...,x5 | 11,...,77)

of a group G. Let P’ be another presentation of G with k + 2/ generators and 3/ relators
given by

!/ -1 -1 _—1 -1
P _<xla"'7xk7y17"'ayl7zla"'7zl‘ylw"aybzlyl yeea AYp 52 Ty 2 Tl)

Then the standard complex Kp/ is the union KUKy U K3, where K1, K5, K3 are standard
complexes of the following presentations

<xla"'7xk’7yl7'"7yl7zl7"'7zl‘yl7"'ayl>a
—1 —1
<xla'"7xkayl7'"7yl7zl7"'7zl‘Zlyl a"'7zlyl >7
-1 -1
(T4 oy Thy YLy oo oy YLy ZLy e e 20| 20 TLy ey 2] TT)

respectively. Denoting K = (Kp/, K1, Ky, K3) € K3, we have the following isomorphism
of G-modules: B

7T3(K7>) ~ 7T3(K’p/) ~ Ig(fg(K))
This isomorphism follows directly from the description of Kan’s loop construction GKp

and the fact that for a simplicial group G, with Go generated by degeneracy elements,
one has m(G.) ~ I3(Gy, ker(dy), ker(dy), ker(ds)).
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