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Claim 3.10. Let T

blowing up. Let g'

y' ~ y be either a finite cover or a

z, ~ y' be a desingularization of X'.

Then we have an inclusion

phic over Yo'
p : isomor-

Proof. The existence of p has been shown in [17) 1.8 and

[18], 3.2. p is an isomorphism ovar y'o by 3.9.

For u = 1 3.7 follows from Kawamata's positivity

theorem ([8] or [11]). It says that q.w z/ y is weakly

positive over Y, if there. exists some U ~ Y such that:·

Those three conditions hold if one replaces Y by a

finite cover of a blowinq up, and 3.7 follows from 3.10 and

3.4.e.

For u > 1 we have ta argue as in [18] §5:

Claim 3.11.

ted over YO

ly positive

th ~ u u.Assume at 5 (f.wx/ y & ~) ~s globally qenera-

far some ~» O. Then f.w~/y 8 ~u-1 is weak-



Abstract. Yang-Mills-Higgs fields over R 3 satisfying decay conditions
yield harmonic (or holomorphic ) maps of the 2-sphere at infinity to complex
homogeneous manifolds.

1. A smooth connection A and an additional smooth field <1>, a Lie
algebra valued Higgs field, give together a gauge invariant field in the three
dimensional Yang-Mills gauge theory. For a configuration (A, <1» the action
is defined as A = JR3{IFA I

2 + ID A <1>1
2 }dx, for FA, the curvature of A and

DA <I> = d<1> + [A, <1>], the covariant derivative.
The Euler-Lagrange equations of the action are

(1.1)

(1.2)

( dA is the covariant exterior derivative and * is the Hodge operator) whose
solution is called a Yang-Mills-Higgs field.

We impose the asymptotical condition on a Higgs field, 1<1>1 --t m,
constant > 0 as r = lxI tends to 00. Here the norm is measured by an
adjoint invariant inner product. The value m is called the mass of (A, <p).

For gauge group G = SU(2) then the normalized Higgs field 1<pI-I <!> :

S; = {x E R 3
j lxi = r} --t S = {X E su(2); lXI = I} defines the mapping

degree, a topological invariant, which we call (monopole) charge of (A, <I».
We impose also other decay restriction on the fields IFA I, ID A <I> I =

O(1/r2
) to ensure that the action is finite.

Amongst other Yang-Mills-Higgs fields there are particular configura­
tions, solutions of the Bogomolnyi equations FA = ±*DA. A solution to the
equations, called a (magnetic) monopole, minimizes the action in a topo­
logical sense. The action has indeed the absolute lower bound; A > 87fk
in the space of charge k > 0 configurations and A = 87fk if and only if a
configuration is acharge k monopole.

So, the three dimensional Yang-Mills-Higgs theory would mostly likely
correspond to the four dimensional Yang-Mills theory([Itoh 15]). FrOfi



Manton's observation this eorrespondence is aetually settled in such a way
that a time-direction invariant Yang-Mills field ( or instanton ) A ==
L: Aidx i on R 4 is nothing but a Yang-Mills-Higgs field ( or monopole)
(A, <I», A == A 2 dx 2 + A3 dx 3 + A4 dx 4

, <I> == Al on R 3
, the one dimensional

reduction of R 4 ([Manton 19]). SI invariant Yang-Mills fields are also in­
terpreted by the conformal invariance as Yang-Mills-Higgs fields on a hy­
perbolie three spaee([Atiyah l],[Braarn 3]).

As for the instanton ease the twistor method was applied by Hitchin to
monopoles to transfer them into holomorphic veetor bundles over the spaee
G(R3

) of all oriented geodesics in R 3 and monopoles of charge k of some
deeay eonditions are charaeterized as spectral eurves in the complex surface
G(R3

) ([Hitchin 10]).
On the other hand, following the Nahm's equations, the time-direetion

invariant version of the ADHM instanton construetion, Donaldson showed
that the spaee of charge k monopoles modulo gauge equivalenee is isomor­
phie to the spaee of holomorphie maps f : PI (C) -. PI (C), deg f == k,
J( (0) == O([Nahm 21],[Donaldson 5]).

Every holomorphie rnap and anti-holomorphie map are harmonie with
respeet to a Hermitian strueture on Pl (C) and viee versa([Eells and Wood 6
]). So Donaldson's theorem suggests that there be also a elose link between
Yang-Mills-Higgs theory and theory of harmonie maps on a surface, namely
acharge k Yang-Mills-Higgs field to a harmonie map of degree k and a
monopole to holomorphie rnap of eorresponding degree.

We would like to give a direet representation of Yang-Mills-Higgs fields
into harmonie maps by taking the limit of Riggs field <I> at infinity. Aetually
<I> is over R 3 a solution of the Laplaee equations (1.2) in the presenee of
the eonneetion A ,and ~A has the polar eoordinate expression ~A(') ==
-DrDr(.) - 2/rDr(.) + 1/r2~Afor the Laplaeian ~A on the 2-sphere S; of
radius r. So, the limit <I>oo gives rise to a harmonie map Sr == S~ -. S ==
{X E su(2); lXI == m} provided some decay rate eonditions on A and <I> are
satisfied, as is shown in Proposition 1 in seetion 2.

Charge one monopoles are explieitly described as Prasad-Sommerfield
monopole and its Euclidean parallel translations. This PS monopole is
spherieally symmetrie. See for its exact form (2.8) in section 2. Our in­
vestigation is guided by the PS monop'ole for lack of knowledge of decay
eondition except for field strength deeay estimate ([Jaffe and Taubes 17],
[Taubes 26] and [Hurtubise 13]).
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Our approach might be inside the framework of Ritcmn since the 2­
sphere at inn.nity is considered as a subspace Po in G(R3), oriented geodesics
through the origin, and to each monopole is associated a conn.guration of
Po and the spectral curve induced from the monopole.

Rowever our method of taking the Riggs n.eld at infinity is visualized in
geometrical sense and is generalized with no difficulty for arbitrary compact
simple gauge group G with a Riggs n.eld of some symmetry breaking. The
Riggs field <P oo at infinity lies in a hypersphere of Q, the Lie algebra of G,
as for G == SU(2). The symmetry breaking is then stated as that the image
of <P oo , {<poo(x); x E Si} sits inside an orbit under the G-adjoint action.

So <P oo induces a map Si -4 GI K c Q for the isotropy subgroup I< at
some <I>oo(x o )' The homogeneous space GI]{ admits an invariant complex
structure and carries invariant I(ähler metrics g as explained in section
3([Itoh 14] ,[Atiyah 1]).

The homogeneous space GI]( being a submanifold of the Euclidean
space Q is equipped with the induced invariant metric gl, Hermitian with
respect to the complex structure.

For the simple G == SU(2) case the hypersphere in Q, for example, the
unit sphere consists of a single adjoint orbit with the complex structure,
ad(X), for each point X and those metries coineide.

As we will see in Theorem 2, the Riggs fields for general group G yield
at infinity harmonie maps from the Riemann sphere Sr to the homogeneous
spaees (GI]{, gl) under some deeay eonditions.

G-adjoint orbits in the Lie algebra are generically generalized flag
manifolds GIT for maximal tori T associated to elements inside the positive
Weyl chamber, eontrary to Hermitian symmetrie spaees of compaet type
appearing as "singular" orbits.

Because of the Prasad-Sommerfield limit on a Higgs field <1>, 1<1>1 -t

m( 'r -4 (0), the order reduetion phenomenon is 0 bserved of the Laplace
equations to first order equations.

The Laplaee equations on <1> reduee at infinity to the first order equa­
tions D A oo <1>00 == 0 for the conneetion Aoo defined at infinity, or the Lax
type equations d<1>oo == -[AOC), <poc].

The Lax type equations are key equations from whieh we ean assert
for a Yang-Mills-Higgs field that <POC) : Sr --+ (GI ](, gl) is harmonie and
further holomorphie, as is shown in Theorem 4 in seetion 4 and Remark
following Theorem 4. This fact shows us that eontrary to the Donaldson's
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correspondence Yang-Mills-Higgs fields yield holomorphic maps. We note
that <1>00 gives rise to a harmonie map with respeet to any !(ähler metric,
especially to an invariant !(ähler metric on G/ !(.

The SU(2) case is discussed in section 2 and general compact simple
group case in section 3. In section 4 the first order equations are derived
from the Prasad-Sommerfield limit on the mass.

For general references for this paper the reader sees [Atiyah and Hitchin
2],[Hitchin lO],[Jaffe and Taubes 17] and [Eells and Lemaire 8].

The results obtained in this paper are mainly resumed in (Itoh and
Manabe 16].

The author would like to express his gratitude to Max-Planck-Institut
für Mathematik for the hospitality.
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2. Riggs field at infinity.

First we investigate the SU(2) gauge group case. Let (A, <I» be an
SU(2) Yang-Mills-Higgs field satisfying the appropriate decay conditions at
inn.nity

j<I>1 = m + O(l/r),

IFAI, IDAq>1 = 0(1/1'2) (2.1)

(2.2)

for the mass m > O.
We fix a gauge so that the radial component Ar = A(%r) of the

connection A vanishes on R 3 \ {o}. Such a radial gauge trivialization always
exists by using the parallel transport. There is ambiguity in fixing such a
gauge.

Def1ne the limit of the Riggs field <I> by <1>00 : Si -+ su(2), cI>oo(X) =

limt-+oo <I>(tx), x E Si. From the decay of the field IDA<I> I in (2.1), <I>oo is
at least Co. In what follows, however we assurne <I>oo is of C 2 class.

Since <I> is a solution of the equations ßA<I> = 0 on R 3 , the restrietion
of <I> to S; satisfies

r-2~A(<I>IS~) = 8;<I> + 2r- 1or <I>,

for the spherical Laplacian ß Aon S;'.
~'r PROPOSITION 1([Manabe 18]). Let (A, <I» be an SU(2) Yang-Mills­

Riggs neld with decay conditions (2.1). If, with a chosen radial gauge
trivialization, (A, <I» satisfies the asymptotical conditions

[[divA(x), <I>(x)J, <I>(x)] = 0(1/1'2),

3

L[[A i ( x), [A i ( x), <1>(x)]], <1>(x)] = 0(1/1'2),
i=l

(2.3)

(2.4)

divA = ~ EJ/ox iAi, the divergence, then the Higgs field <I>oo at irrEnity is a
charge k hannonic map : Si -+ S2 = {X E su(2); lXI = m}, where k is the
charge of (A, <I».

PROOF. The map <I>oo is considered as a limit of maps {<Pt: Si -+

su(2)}, cI>t(X) = <I>(tx),t > 0 and we see with respect to the ordinary
Laplacian
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On S; the metric is t 2 (d82 + sin2 8dt..p2) so that for \lI : S; ---+ su(2)

Because of Ar = l/r L: xi Ai = 0 trus is written as

Thus we have for the Higgs field <P

x E S; and hence

[L\t <I> (x ), <I> (x )] = [[diV A (X ), <I> ( X )] , <I> ( X )] + L [[Ai (X ), [A i ( X ), <I> ( X )]], <I> (X )]

so that from (2.3) and (2.4)

(2.7)

which implies that L\1 tI>OCJ is orthogonal to S2 C su(2), namely, <POC! is
harmonie.

REMARI( 1. PS monopole (A, <I» is the charge one spherieally sym­
metrie monopole([Prasad and Sommemeld 22]);

A(x) = (l/sinh r - l/r )1/r(b1 i + b2 j + b3 k),

tI> (x) == - (1/ t anh r - 1/r )1/r (x l i + X
2 j + X

3 k ), (2.8)

b1 == x2dx~ - x 3 dx 2,b2 == x 3 dx 1
- x 1 dx 3 ,b3 == x 1 dx 2 - x 2dx 1

• {i,j,k} is
the standard basis of su(2). The PS monopole is fixed in a radial gauge
and beeause of the symmetry divA == 0 holds and it satisfies the decay
condition (2.4). In fact E[Ai, [Ai, tI>]] = J(r)iP for some scalar field J(r)
of order o(1/r2 ). From the proposition the Higgs field <P(X) at infinity must
be harmonie. The harmonieity is also seen directly sinee <I>OC! is in the PS
monopole ease the identity map : Si ---+ S2 up to constant. By parallel
transport the PS monopole exhausts all monopoles of charge one.
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REMARK 2. The decay order of the divergence divA is estimated as
follows. For a Yang-Mills-Higgs field with the decay conditions (2.1) the
estimate is

(2.9)

weaker than (2.3). The half part of the Euler-Lagrange equations dA ( *FA )

= -(<p, *DA <p] reduces to

(2.10)

Integrating this we have (2.9), since (<p,or<I>] == O(1/r2) and FBr , Fcpr ==
O(l/r), and the angular components AB, Acp are at least O(log r).
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Claim 3.9. Let Y be normal, Y' non singular and

T : Y' ~ Y a projective generically finite morphism. Assume

that 3.7 holds for f'. Then the base change map ([6], III,

* U f' U9.3.1) p: T f*w x/ y ~ .wx'/Y'

Moreover 3.7 holds for f.

1s an isomorphism over YO.

Proof. Since f*w~/y i8 locally free and T generically

flat p i5 injective. If p were not surjective over Yo we

could find some effective divisor F meeting y'o such that

/

* u U
T det(f*w x/ y ) 8 0y,(F) = detef~wx'/y'). Since F must be an

exceptienal divisor this contradicts the weak positivity of

detef~w~,/y,) over yo. In order to see that 3.7 holds for f

we just remark that f*W~/y is a. direct summand cf

* u U U
T.T f*w x/ y = T*f~wx'/y'. The weak positivity of f*w x/ y ovar

Yo fellows as in 3.4.e.

Olle to 3.8 and 3.9 we may assume Y to be non singular.

Moreover, whenever it 1s convenient, we· may replace Y by a

generically finite cover. Let 6 : Z ~ X be a desinqulariza­

tion and· 9 = f 0 ö : Z. ~ Y. Since r-1(yo) has rational

Gorenstein sinqularities 6*W~ ~ w~ i8 an isomorphism over

r-
1 ey

o )· and q*w~/y ~ f*w~/y i8 an isomorphism ovar Yo • g

iso no lenger flat. Nevertheless, we get:·



',.",

, ,.7~

3. Symmetry breaking ansatz.

The proposition in section 2 is generalized for an arbitrary compact
simple Lie group.

Let G be a compact simple Lie group with Lie algebra g.
Suppose that (A, <P )-is a Yang-Mills-Higgs field of gauge group G. The

norm I<I> [ is assumed as for SU(2) to tend to a constant, the mass, m > 0
as r -+ 00. The norm 1.1 is measured by a normalized I(illing form -cB,
'c > O. The image of the Higgs field <I>oo at infinity is further assumed to He
in a G-adjoint orbit a = {Ad(g)<I>oo(l, 0,0); 9 E G}.

Because of this symmetry breaking ansatz the orbit is written as a
homogeneous space GI]( through the adjoint representation, where the
closed subgroup ]( is the isotropy at <I>oo(l, 0,0).

With no difficulty ]( is assumed connected, since otherwise we can
consider the universal covering GI ](0 of GI]( ( ](0 is the identity component
of ]( ) ([Taubes 26]).

Before discussing the harmonici ty of <P 00 we recall invariant geometrical
structures which the space GIK carries, i.e., the invariant complex structure
and invariant Kähler metries.

For this we need some knowledge of compact semi-simple Lie algebras
([Humphreys12]).

Let
gC = 1-{ EB L CEo EB CE_o!

aE6.+

be the root space decomposition of the complexification gC of 9 associated
to same Weyl basis {Hi , E a , E_ a }. ß + is the set of all positive roots.

The point X = <I>00(1, 0,0) in the orbit a is assumed in the real Cartan
subalgebra 'Ha, the Lie algebra of a maxial torus. By using the Weyl
group argument X can be further assumed in a Weyl chamber as X ==
I:~=1 yi(HH(i))' yi > 0 in terms of fundamental weights Ai E H* ==
Home(1{, C), i = 1, ... ,1. Here 1 == rankg = dime 1{ and H(i) E 'H is the
dual of fundamental weight Ai associated to simple root ai, i = 1, ... ,1.

Denote by e the set of simple roots ai such that yi > 0 and by ß + (e)
the set of positive raats {a == L:~=1 niai E ß+; nj > 0 for some Gj E 0},

The Lie algebra Je of ]( is then written as

Je == 'Ha EB L RXa EB RYa ,

O'Eß+\ß+(8)
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X o == E o + E- o , Ya == yCI(Ea - E_ a ). (3.1)

Note that 'HR is given by the imaginary vectors 2::=1 R(HHi ), H i

is the dual of Gi with respect to the Killing form B.
Define a subspace M in 9 by

M == L RXa EB RYa ,

oEß+(8)

(3.2)

giving the orthogonal decomposition of Q; Q == Je ffi M relative to B.
The tangent space Tx to the orbit G == GI!< at X, in other words, the

image of ad(X) : 9 ~ g, is identified with the space M through ad(X).
Let J be the complex structure on 2:(CEo ffiCE- o ) given by J(Eo ) ==

HEo , J(E-oJ == -HE-o, G E ß+. Then, since J commutes with
adeZ),Z E JC,it is a standard argument that the restrietion JIM defines an
invariant complex structure on GI!(.

It turns out that the orbit a == GI!( is a compact, simply conneeted,
complex homogeneous manifold, ealled a C-space due to H.C.Wang [28],
which is endowed with invariant I{ähler metries g's parametrized by #8
parameters(see [Itoh 14] for details on invariant I(ähler metries ).

Remark that the second homotopy group 7r2 (GI!() is isomorphie to
the homology group H2 (GII(; Z) and then to zn,n == #8.

When X == 2:i yi(HH(i)) is with all yi > 0, !( is a maximal torus in
G and GI!( is a generalized flag manifold. When all yi == 0 except one yi , we
have Kähler C-spaees of second Betti number one. All irreducible Herrnitian
symmetrie spaees of compact type are deseribed in this way. The C-spaces
GI!< have also parabolie description as Ge I P for the eomplexification GO
of G and parabolic subgroups P of GO eontaing a Borel subgroup so that
!( == G n P.

Each spaee GI!( earries two invariant Hermitian metries gl, g2 other
than g. The metrie gl is indueed from the embedding GI!{ C 9 and 92 is
the restrietion of - B to M. These metrics g, 91 and 92 are in general not
the same ([Pressley 23 p.561]), whereas 9 . g2 == const.g1 for Hermitian
symmetrie spaees, beeause ad(X) : M ~ M is then the eomplex strueture
J up to eonstant factor.

The subspace Je in 9 being orthogonal to M gives the normal space
T~ of the orbit GIK in 9 at X beeause B(Z, ad(X)Y) == B([Z, X], Y) == 0
for Z E Je,ad(X)Y E Tx .
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So, as just for G == SU(2) it is a standard argument in harmonie map
theory that a map W : Si ~ (G/ K, 91) is harmonie if and only if the veetor
~w( x) in Q is in the normal direction iC, x E Si, namely the Q-valued
function W satisfies '

[~w(x), w(x)] == o.

We are now in a position to state the harmonicity of <Poc.> for general
compact simple gauge group as

THEOREM 2. Let G be a compact simple Lie group. Let (A, <1» be
a Yang-Mills-Higgs neld of gauge group G witb decay conditions; 1<1>1 ==
m + O(l/r), IFA I, IDA <I> 1 == O(1/r2

). If it satisfies in a nxed radial gauge
tbe asymptotieal eonditions (2.3), (2.4) and tbe Higgs neld <I>oc.> at infinity
bas its image inside a G-adjoint orbit G/]( C g, then <P oc.> : Si ~ (G / ](, 91)
yields a harmonie map in the homotopy class [<p oo ] E 1r2(G/]().

REMARK. It is' stated in [Jaffe and Taubes 17] without proof that the
finiteness of the action for a Yang-Mills-Higgs field implies I<pl ~ m, same
constant and IFAI, IDA<I>1 == O(1/r2 )(see also[Taubes 25]).
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Proof, We may assume Yo to be non singular, Let T : Y' ~ Y

be amorphism, We write f' : X' ~ Y' for the fibre product

X x y' ~ y'y and

Claim 3,8, We may assume that Y is normal,

Proof, Let y' ~ y be the normalization and 1 an ideal

sheaf such that T.' C Oy and such that the support S of

the quotient does not maet Yo• Using 3,4,a and b, we are

allowed to replace Y by a blowing up with center in Sand

hence we may assume , to be invertible. By flat base change

[6], one has

This implies that T• ( (f~(,J~, /y,) 8 ,) is contained in
u Let fS X

S
X )( y' ,., x yX y be the s-fold fibref.w X ' /Y' '

,
::::::11 ~,

product. fS iso again a Gorenstein morphism and

as a· subsheaf of

f
s u
.w

XS/Y

calculation for
S

T * ((8 f~w~,/y,) ~ :I)

([18], 3.4, for example). Repeat!ng our

instead cf X, we obtain
s

u
~ f*w x/ y. The same

s
holds. for S8 instead of 8'. Choose· the ample sheaf ~ on

Y and :I such that T*1 0)" i5 ample and T*Oy' 8 ~b

generated by its global sections for all b > o. If 3.7 holds

for f' , X' ~ Y', then 2a·b ,u 8 T*2b 8 ,b is. S (f.wx'/y,)

globally generated over Y' for same b » o. Then
0

2a-b u 0). 1 2b is as weIl globally generated over Yo·5 (f*w x / y )



4. The first order equations.

The Higgs field cI> of a Yang-Mills-Higgs field satisfies the Lapalce equa­
tions (1.2) and the norm 1<1>1 tends to the mass at infinity. Based on these
facts we derive the first order equations. Actually from (2.2)

which yields as a distributionallimit the Laplace equations over the 2-sphere
at infinity

6.A oo <1> 00 == 0

with respect to the connection A oo at infinity.
Since 1<1>00 I == m and

(4.1)

<1>00 must be covariantly constant as a section of the bundle 9 over S~.
In other words, <1>00 satisfies

For the PS monopole Aoo is

Aoo == (- sin <pd8 - sin () cos (J cos <pd<p)i

+(cos <pdB - sin () cos () sin <pd<p)j + (sin2 8d<p )k.

(4.2)

(4.3)

Remark that the notion of homogeneous connection on R 3
\ {O} ==

S~ X R+ appeared in [Hitchin 10] is just the A oo .

We now assume that Ace be a Cl connection on S~ to make sense the
Laplacian at infinity.

We take the (0,1 )-part of (4.2) on the Riemann sphere S~ == PI (C)
and Lie bracket-multiply it with <1>00 to get the 8-equations on cI>00

[8<1>ce, <1>00] - H/l( <1>oo)8<Poo == _[[AJ~, <PooL <p oo] + H/l( c:I>oo)[A~,<1>00]
(4.4)

with respect to the smallest positive eigenvalue /l( <p oo ) of -J=I( cI>00)
M-7M.
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Let ( = e+ H1J be the affine eomplex eoordinate on S~ = PI(C)
and At : S~ = Si --4 R 3

; x --4 tx be aseale t(> 0) embedding.
Sinee the coordinates (xl, x 2 , x 3 ) of R 3 pull back by At are written

through the stereographic projection as

the (O,l)-part A::' is given at x E Si with coordinate ( = ((x) as a limit

We then immediately obtain the following

PROPOSITION 3. Let (A, <I» be a connguration of gauge group G sat­
isfying the Yang-Mills-Higgs Euler-Lagrange equations (1.1),(1.2). Assume
that (2.1) is satisned, and in a fixed radial gauge the Higgs neid <1>00 at
infinity lies inside a G-adjoint orbit G/]( C g and tbe connection A oo at
infinity is of Cl class. Tben as a Q-valued function <1- 00 satisfies

(4.6)

( ,u(<I>oo) denotes tbe smallest positive eigenvalue of -Had<I>oo) provided
at x E Si

[[AI(tx) + yClA2 (tx) + ((x)A3 (tx), <ll(tx)] , <1>(tx)]

- yCl,u(<I>oo) [Al (tx) + yClA2 (tx) + ((x)A3 (tx), <I>(tx)] = o(I/t).
(4.7)

The value ,u(<1- 00 ) is independent of choice of x and in the SU(2) case
ade <I> ce) = ,u( <I>ce)J so that (4.6) is exactly the equations to <1>00 being
holomorphic and is aetua1ly satisfied by the PS monopoles.

In the following theorem we assert that (4.6) gives rise to cI>ce being
holomorphic for arbitrary compact simple group G.

THEOREM 4. Let (A, <1» be a Yang-Mills-Higgs neid of gauge group G
with decay conditions at innnity lcI>j = m + O(l/r), IFAI, IDA<1-1 = O(1/r2

).

Assume witb a fixed radial gauge trivialization <1>00 lies in a G-adjoint
orbit G/ K C g and the connection Ace at innnity is of class CI.lf (4.7)
in Proposition 3 is satisned Eit each x E Si, then <1>00 : si --4 G/]( is a
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holomorphic map and hence yields a hannonic map with respect to any
(invariant) I{ähler metric g.

REMARK. The equations (4.6) for a Q-valued funetion <1>00 imply also
that <1> 00 : si --+ G/ K is harmonie with respeet to the indueed Hermitian
metric g1. In fact, differentiating (4.6) in the 8 direetion we have

[88<1>00,4>00] - [84>00 /\ 8<1>00] - R,t(<1>00)88<1>00 = 0, (4.8)

and their complex eonjugate

[884>00,4>00] - [84>00 /\ 8<1>00] +R/l(4>00)08<I>00 = 0 (4.9)

so that from 88 + 88 = 0 and [0<1>00 /\ 8<1>00] = [8<1>00 /\ 8 <I> 00] we see
[a8<p oo , <1>00] = 0 whieh says that <1>00 is g1 -harmonie.

PROOF of Theorem 4. From Proposition 3 <1>00 satisn.es (4.6). The
proof is based on the root spaee decomposition. At each point x E Si
<I> 00 (x) is written as 4> 00 (x) = 2:::j=1 yij RH( ij)' yij > 0 for the set 0 =
{ Q i 1 , ••• , Q in } of simple roots. So ad( cI> 00 (x)) aets on Me, the complexified
tangent spaee Tf ,X = <I>oo(x) as

n

ad(X)E±o = ±1/2R(Lmijyij lQij 1
2 )E±0',

1'=1

Q = I:~=1 miQi E L\+(0) so that p( 4>00) = 1/2 minj yij [aij [2 beeause eaeh
simple root Gi- E L\+(8),j = 1, ... ,n.

J .

Fix a j, 1 < j < n such that /l( <1>00) = 1/2y1.j [aij 1
2 and define the

linear subspaces MJ, Mi by Mj = 2:0' CEO', where the summation is

over roots G = 2:~=1 miai E L\+(8), mij = 1 and mi Je = 0 für k # j and

Mi = Mj. Then -Rad(X)E±o = ±/l(a)E±O'with /l(a) > /l(<I>00) and

p(a) = J.l( 4>00) when E±O' E MT'
Sinee 8<I>00/8((x) = (<I>oo)*(8/8() is a tangent vector, we write it as

8<I>00/8( = 2:O'E6+(E» aO' EO' + a-O' E_O' and then have

ad(X)8<1>00/8( = R/l(<I>oo) L{aO'EO';EO' E Mt}

+ RL{/l(ß)aßEß; Eß E M+ \ Mj}

- Rp(4)oo) L {a- O E_O'; E_O' E Mi}

- RL{/l(ß)a- ßE_ß; E_ß E M- \ ,Mj}.



It follows from (4.6) that UD = 0 for all 0 > 0, that is, 8ipOCJ/8( E M -.
This implies the differential (<poc»* eommutes with the complex struetures
of PI (C) and of G/ K, and thus <P 00 is holomorphie.

That <P OCJ is harmonie with respect to a Kähler metric is standard in
the harmonie map theory on Kähler manifolds.

REMARK. It is known that there are SU(2) Yang-Mills-Higgs fields
on R 3 of any charge wmeh are not monopole ([Taubes 27]), while there are
no non minimal harmonie maps: PI (C) -* P1 (C) of any given degree ([Eells
and Wood 6]). As seen in this seetion the second order Laplaee equations
reduee to the first order equations at inflnity. This phenomenon explains
to a certain extent the different aspects relating to Yang-Mills-Higgs fields
on R 3 and harmonie maps of P1(C) ([Atiyah 1]).
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5.Further Remarks.
Theorems 2 and 4 obtained in the previous seetions are considered

as giving an answer in prineiple to the harmonie map existence problem :
Given a C-space GIK, a eompact simply eonneeted complex homogeneous
manifold, with an invariant Kähler metric 9 and a given homotopy elass [in
7r2(GIK), does there exist a harmonie map P1 (C) -t (GI ](, g) representing
the homotopy class [ ? See related diseussions for this problem [EeIls and
Wood 7], (Burstall, Rawnsley and Sahtmon 4] and for a general existence
theorem [Sacks and Uhlenbeek 24].

However, for this, two problems remain. One is a problem on the exis­
tence of Yand-Mills-Higgs field whose Higgs field at infinity with a symmetry
breaking from G to areal parabolic subgroup I{ represents the homotopy
elass [. See [Taubes 25] on the existence of monopoles for general gauge
group of nontrivial nonnegative generalized monopole charge. A neees­
sary eondition for m == (mI'.'.' m n ) E zn I'V 7r2(GII{) that there exists
a monopole of generalized monopole charge m is that m is nonnegative
([Murray 20]). For argument of generalized monopole charge we refer to
[Taubes 26] and [Horvathy and Rawnsley 11].

Another problem is whether a thus derived Yang-Mills-Higgs field sat­
isfies the decay rate at infinity stated in Theorem 4.

We should next eomment our theorems in a level of moduli spaee of
Yang-Mills-Higgs fields ( or of monopoles ).

Denote by M(K, ,) the moduli space of Yang-Mills-Higgs fields whose
Higgs field lies in a fixed orbit GIK at infinity and represents a homotopy
class , E 7r2(GIK). Then the theorems induee a map f : M(K,,) -t

1t,(PI (C)j GIK); the moduli space of harmonie (or holomorphic ) maps
'P : P1 (C) -t GIK representing, E 7r2(G/I{) modulo isometries. The map
f is not necessarily injective. In fact Higgs fields <I>0Cl at infinity eoincide
for aIl monopoles (Aa , q,a) arising from the PS monopole (A, <I» by parallel
translation x ~ x + a.

Yang-Mills-Higgs fields are defined also on complete open three dimen­
sional manifolds (see [Floer 9],[Braam 3]). Our investigation is applicable
to those manifolds .

5-1,





_..----~~-------

- 32 -

for some u. which are growing like ~. Therefore
~

Sn(T(S 8 2» will be globally generated over U for n» 0

and 3.3e implies the weak positivity of T(S. 2).

Examples of positive tensor bundles are: det(~), SU(S) and

AU(S). Especially, if r is the rank of Sand

r-1
SV = 2oa(S,Oy) then A (~) = SV • dateS) i8 a positive

tensor bundle. Using 3.3b and the equality

one sees that weak positivity is- compatible with tensor

products.

Theorem 3.7. Let U > 0 and f: X, ~ Y be a surjectiue

proJectiue ftat Gorenstein morphism of reduced quasi proJec-

Utive scheRes.• Assume that f*w
X

/ y is tocaLLy free. Let

YO ~ Y be an open subschefte meeting aLL components of Y

such that f-1(yo) ts normal 0ith at Rost rattonal singulari­

u
ties, for yO € YO. Then f*w x/ y ts weakly positive ouer the

non singular Loeus of yO.

Of course 3.7 will be shown by reducing it to the case

u ~ 1, where' it is nothing but the positivity theorem of

Kawamata.& Fujita (dim- Y = 1). Since we really need to keep

track of the, locus where the sheaves are weakly positive we

sketch the proof:
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