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Claim 3.10. Let

blowing up. Let g’ : 2’ — Y’ be a desingularization of X’.

Y’ — Y be either a finite cover or a

*
Then we have an inclusion p : g;m;,/Y, —_ T g*w;/Y isomor-

4
.

phic over Y{

Proof. The existence of p has been shown in [17] 1.8 and

(18], 3.2. p 1is an isomorphism over Y, by 3.9.

For v =1 3.7 follows from Kawamata’s positivity
theorem ([8] or [11]). It says that g*wz/Y is weakly

positive over Y, if there exists some U G Y such that:

i) Y - U 1is a normal crossing divisor.
ii) g l(U) — U smooth

iii) For k = dim 2 - dim Y the monodromy of ng*c -
g “(U)

around the components of Y - U is unipotent.

Those three conditions hold if one replaces Y by a
" finite cover of a blowing up, and 3.7 follows from 3.10 and

J.4.e.

For v > 1 we have to argue as in [18] §5:

Claim 3.11. Assume that S“(f*w;/Y @ tu) is globally genera-

v v=-1
ted over YO for some u >> 0. Then f*mx/Y ® * is weak-

ly positive



Abstract. Yang-Mills-Higgs fields over R? satisfying decay conditions
yield harmonic (or holomorphic ) maps of the 2-sphere at infinity to complex
homogeneous manifolds.

1. A smooth connection 4 and an additional smooth field ®, a Lie
algebra valued Higgs field, give together a gauge invariant field in the three
dimensional Yang-Mills gauge theory. For a configuration (A, ®) the action
is defined as A = [ {|Fal* + |Da®|*}dz, for Fa, the curvature of A4 and
D4® = d® + [A, ¥, the covariant derivative.

The Euler-Lagrange equations of the action are

dA(*FA) + [@, *DA(I)] =0, (11)

AA(b:O,AA:—*dA*DA (1.2)

( d4 is the covariant exterior derivative and * is the Hodge operator ) whose
solution is called a Yang-Mills-Higgs field.

We impose the asymptotical condition on a Higgs field, |®| — m,
constant > 0 as r = |z| tends to co. Here the norm is measured by an
adjoint invariant inner product. The value m is called the mass of (4, ®).

For gauge group G = SU(2) then the normalized Higgs field |®|~1® :
S2={zeR¥|z| =r} 5 § = {X € su(2);|X| = 1} defines the mapping
degree, a topological invariant, which we call (monopole) charge of (A4, ®).

We impose also other decay restriction on the fields |F4|,|Da®| =
O(1/r?) to ensure that the action is finite.

Amongst other Yang-Mills-Higgs fields there are particular configura-
tions, solutions of the Bogomolnyi equations F4 = £xD 4. A solution to the
equations, called a (magnetic) monopole, minimizes the action in a topo-
logical sense. The action has indeed the absolute lower bound; A > 8wk
in the space of charge £ > 0 configurations and A = 8=k if and only if a
configuration is a charge £ monopole.

So, the three dimensional Yang-Mills-Higgs theory would mostly likely
correspond to the four dimensional Yang-Mills theory([Itoh 15]). From
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Manton’s observation this correspondence is actually settled in such a way
that a time-direction invariant Yang-Mills field ( or instanton ) 4 =
S As;dz’ on R* is nothing but a Yang-Mills-Higgs field ( or monopole )
(A, ®), A = Ayda? + Azdz® + Aydz?, @ = A, on R?, the one dimensional
reduction of R* ([Manton 19]). S! invariant Yang-Mills fields are also in-
terpreted by the conformal invariance as Yang-Mills-Higgs fields on a hy-
perbolic three space([Atiyah 1],[Braam 3]).

As for the instanton case the twistor method was applied by Hitchin to
monopoles to transfer them into holomorphic vector bundles over the space
G(R?) of all oriented geodesics in R® and monopoles of charge & of some
decay conditions are characterized as spectral curves in the complex surface
G(R?) ([Hitchin 10]).

On the other hand, following the Nahm’s equations, the time-direction
invariant version of the ADHM instanton construction, Donaldson showed
that the space of charge k£ monopoles modulo gauge equivalence is isomor-
phic to the space of holomorphic maps f : P,(C) — P(C), deg f = k,
f(o0) = 0([Nahm 21],[Donaldson 5]).

Every holomorphic map and anti-holomorphic map are harmonic with
respect to a Hermitian structure on P;(C) and vice versa([Eells and Wood 6
]). So Donaldson’s theorem suggests that there be also a close link between
Yang-Mills-Higgs theory and theory of harmonic maps on a surface, namely
a charge k£ Yang-Mills-Higgs field to a harmonic map of degree k and a
monopole to holomorphic map of corresponding degree.

We would like to give a direct representation of Yang-Mills-Higgs fields
into harmonic maps by taking the limit of Higgs field ® at infinity. Actually
® is over R? a solution of the Laplace equations (1.2) in the presence of
the connection A ,and A4 has the polar coordinate expression A4(.) =
—D,D.(.)-2/rD.(.)+1/r? A", for the Laplacian A", on the 2-sphere $2 of
radius r. So, the limit ®,, gives rise to a harmonic map $? = §2, —» § =
{X € su(2);|X| = m} provided some decay rate conditions on A and ® are
satisfied, as is shown in Proposition 1 in section 2.

Charge one monopoles are explicitly described as Prasad-Sommerfield
monopole and its Euclidean parallel translations. This PS monopole is
spherically symmetric. See for its exact form (2.8) in section 2. Our in-
vestigation is guided by the PS monopole for lack of knowledge of decay
condition except for field strength decay estimate ([Jaffe and Taubes 17],
[Taubes 26] and [Hurtubise 13]).
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Qur approach might be inside the framework of Hitchin since the 2-
sphere at infinity is considered as a subspace P, in G(R?), oriented geodesics
through the origin, and to each monopole is associated a configuration of
P, and the spectral curve induced from the monopole.

However our method of taking the Higgs field at infinity is visualized in
geometrical sense and is generalized with no difficulty for arbitrary compact
simple gauge group G with a Higgs field of some symmetry breaking. The
Higgs field @, at infinity lies in a hypersphere of G, the Lie algebra of G,
as for G = SU(2). The symmetry breaking is then stated as that the image
of Bo, {Poo(d); & € 5%} sits inside an orbit under the G—adjoint action.

So @ induces a map S7 — G/K C G for the isotropy subgroup K at
some ®,.(2,). The homogeneous space G/K admits an invariant complex
structure and carries invariant Kahler metrics ¢ as explained in section
3([Itoh 14],[Atiyah 1]).

The homogeneous space G/K being a submanifold of the Euclidean
space G is equipped with the induced invariant metric g;, Hermitian with
respect to the complex structure.

For the simple G = SU(2) case the hypersphere in G, for example, the
unit sphere consists of a single adjoint orbit with the complex structure,
ad(X), for each point X and those metrics coincide.

As we will see in Theorem 2, the Higgs fields for general group & yield
at infinity harmonic maps from the Riemann sphere 57 to the homogeneous
spaces (G /K, ¢g1) under some decay conditions.

G —adjoint orbits in the Lie algebra are generically generalized flag
manifolds G /T for maximal tori T associated to elements inside the positive
Weyl chamber, contrary to Hermitian symmetric spaces of compact type
appearing as ”singular” orbits.

Because of the Prasad-Sommerfield limit on a Higgs field &, |®] —
m(r — o0), the order reduction phenomenon is observed of the Laplace
equations to first order equations.

The Laplace equations on @ reduce at infinity to the first order equa-
tions D4 ®o = 0 for the connection A., defined at infinity, or the Lax
type equations d®oo = —[Aoo, Peo)-

The Lax type equations are key equations from which we can assert
for a Yang-Mills-Higgs field that ®o, : S7 — (G/K,¢1) is harmonic and
further holomorphic, as is shown in Theorem 4 in section 4 and Remark
following Theorem 4. This fact shows us that contrary to the Donaldson’s
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correspondence Yang-Mills-Higgs fields yield holomorphic maps. We note
that @, gives rise to a harmonic map with respect to any Kéhler metric,
especially to an invariant Kahler metric on G/K.

The SU(2) case is discussed in section 2 and general compact simple
group case in section 3. In section 4 the first order equations are derived
from the Prasad-Sommerfield limit on the mass.

For general references for this paper the reader sees [Atiyah and Hitchin
2],[Hitchin 10],[Jaffe and Taubes 17] and [Eells and Lemaire 8).

The results obtained in this paper are mainly resumed in [Itoh and
Manabe 16].

The author would like to express his gratitude to Max-Planck-Institut
fiur Mathematik for the hospitality.
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2. Higgs field at infinity.

First we investigate the SU(2) gauge group case. Let (A, ®) be an
SU(2) Yang-Mills-Higgs field satisfying the appropriate decay conditions at
infinity

|®| =m+0(1/r),
|Fal,|Da®| = 0(1/r*) (2.1)

for the mass m > 0.

We fix a gauge so that the radial component A, = A(9/0r) of the
connection A vanishes on R?\ {0}. Such a radial gauge trivialization always
exists by using the parallel transport. There is ambiguity in fixing such a

gauge.

Define the limit of the Higgs field ® by @ : S7 — su(2), Puo(g) =
lim;—oo ®(t2), # € S7. From the decay of the field |D,®| in (2.1), @ is
at least C°. In what follows, however we assume ® is of C? class.

Since @ is a solution of the equations A4® = 0 on R3, the restriction

of ® to S2 satisfies
r2AL(Bs2) = 029 + 2r10, B, (2.2)
for the spherical Laplacian A7, on S2.

PROPOSITION 1([Manabe 18]). Let (A, ®) be an SU(2) Yang-Mills-
Higgs field with decay conditions (2.1). If, with a chosen radial gauge
trivialization, (A, ®) satisfies the asymptotical conditions

[divA(e), ®(2)], $(z)] = o(1/+?), (2.3)

Z[[Ai(m), [Ai(2), &(2)]], ®(z)] = o(1/r%), (2.4)

divA = 5 8/0z' A;, the divergence, then the Higgs fleld ®, at infinity is a
charge k harmonic map : §? — 8% = {X € su(2); |X| = m}, where k is the
charge of (A, ®).

PROOF. The map @, is considered as a limit of maps {®, : S —
su(2)}, ®.(2) = @(t2),t > 0 and we see with respect to the ordinary
Laplacian

Al® (&) = Jim A'®,(2) = lim t2(A®)52 )(1E). (2.5)
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On 5? the metric is t2(d6? + sin® 8de?) so that for ¥ : 52 — su(2)
ALY = —1/t*(DgDy¥ + sin™? 8D,D, ).
Because of A, = 1/r Y z'A; = 0 this is written as
ALY = A — [divA| s, V] - ) [Ai, [4s, 2], (2.6)
Thus we have for the Higgs field ®

A'®(z) = [divA(z), B(z)] + > _[Ai(2), [Ai(z), B(2)]],

z € 52 and hence

[A'2(2), &(a)] = [[divA(e), B(2)), B(2)] + ) _[[4i(2), [Ai(2), B(2)]], B(2)]
so that from (2.3) and (2.4)
[AI(I’OO(&J)) (1)00(5:)] =0, (2'7)

which implies that A'®., is orthogonal to §% C su(2), namely, ¥, is
harmonic.

REMARK 1. PS monopole (A, ®) is the charge one spherically sym-
metric monopole({Prasad and Sommerfield 22]);

A(z) = (1/sinhr — 1/r)1/r(bii + baj + b3k),

®(z) = —(1/tanhr — 1/r)1/r(z's + 2% + 2°k), (2.8)

by = 2%dz? — 23d2?, by = z3dx! — zldz®, by = zldz? — 2%d2'. {s,5,k} is
the standard basis of su(2). The PS monopole is fixed in a radial gauge
and because of the symmetry divA = 0 holds and it satisfies the decay
condition (2.4). In fact > [A;,[A4:, ®]] = f(r)® for some scalar field f(r)
of order o(1/r%). From the proposition the Higgs field @, at infinity must
be harmonic. The harmonicity is also seen directly since @, is in the PS
monopole case the identity map : S — S$? up to constant. By parallel
transport the PS monopole exhausts all monopoles of charge one.
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REMARK 2. The decay order of the divergence divA is estimated as
follows. For a Yang-Mills-Higgs field with the decay conditions (2.1) the
estimate 1s

divA = O((r ! logr)?), (2.9)

weaker than (2.3). The half part of the Euler-Lagrange equations d(xFy)
= —[®, *D 4 ®] reduces to

0/9(r*divA) = r*[®, 8,8 + [Aq, For] +sin~? 8[A,, F\]. (2.10)

Integrating this we have (2.9), since [®,8,®] = O(1/r?) and Fy,, F,, =
O(1/r), and the angular components Ay, A, are at least O(logr).
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Claim 3.9. Let Y be normal, Y’ non singular and
T : ¥’ —» Y a projective generically finite morphism. Assunme
that 3.7 holds for £f’. Then the base change map (([(6], III,
. 4
9.3.1) p : T f*QX/Y — f*”x N is an isomorphism over Yo.
Moreover 3.7 holds for £.

Proof. Since f*”X/Y is locally free and T generically
flat p 1is injective. If p were not surjective over Y6 we

could find some effective divisor F meeting Y6 such that

T det(f* X/Y) ® 0y,(F) = det (flw x’/Y') Since F must be an
exceptional divisor this contradicts the weak positivity of
det (£ X'/Y') over Y'. In order to see that 3.7 holds for f

we just remark that f o X/Y is a direct summand of

U f*wX/Y =7, £flw X'/Y' The weak positivity of f X/Y over
Yo follows as in 3.4.e.

Due to 3.8 and 3.9 we may assume Y to be non singular.
Moreover, whenever it is convenient; we may replace Y by a
generically finite cover. Let 6 : Z — X be a desingulariza-

tionand g=f o 6 : Z — Y. Since f-l(Y has rational

o)
Gorenstein singularities 4§ v, — w; is an isomorphism over

-1

v

2
v . .

£ “(¥,). and a7,y f*wX/Y is an isomorphism over Y,. g

is no longer flat. Nevertheless we get:



3. Symmetry breaking ansatz.

The proposition in section 2 is generalized for an arbitrary compact
simple Lie group.

Let G be a compact simple Lie group with Lie algebra G.

Suppose that (A, ®)is a Yang-Mills-Higgs field of gauge group G. The
norm |®| is assumed as for SU(2) to tend to a constant, the mass, m > 0
as r — oo. The norm |[.| is measured by a normalized Killing form —cB,

¢ > 0. The image of the Higgs field ®, at infinity is further assumed to lie

in a G—adjoint orbit @ = {4d(¢9)®(1,0,0);9 € G}.

Because of this symmetry breaking ansatz the orbit is written as a
homogeneous space G/K through the adjoint representation, where the
closed subgroup K is the isotropy at ®,,(1,0,0).

With no difficulty K is assumed connected, since otherwise we can
consider the universal covering G/K, of G/K ( K, is the identity component
of K ) ([Taubes 26)).

Before discussing the harmonicity of @, we recall invariant geometrical
structures which the space G/ K carries, i.e., the invariant complex structure
and invariant Kahler metrics. ,

For this we need some knowledge of compact semi-simple Lie algebras
([Humphreys12}).

Let

G°=He » CE,®CE_,
ccAt
be the root space decomposition of the complexification G€ of G associated
to some Weyl basis {H;, Eo, E_o}. A7 is the set of all positive roots.

The point X = ®,,(1,0,0) in the orbit « is assumed in the real Cartan
subalgebra Hg, the Lie algebra of a maxial torus. By using the Weyl
group argument X can be further assumed in a Weyl chamber as X =
Zizl yi(\/—_lH(,-)), y* > 0 in terms of fundamental weights A; € H* =
Homg(H,C), 2 =1,...,l. Here !l = rank§ = dimgH and H(;) € H is the
dual of fundamental weight A; associated to simple root «;,2=1,...,L

Denote by © the set of simple roots a; such that y* > 0 and by A*(©)
the set of positive roots {a = Ei-:l nia; € At;n; > 0 for some a; € 0},

The Lie algebra K of K is then written as

K=Hr® Y  RX,®RY,,
aEAT\A+(O)
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Xo =FEq + E—Q,Ya =V _1(Ea - E—a)- (31)

Note that Hg is given by the imaginary vectors Yi_, R(v—1H;), H;
is the dual of a; with respect to the Killing form B.
Define a subspace M in G by

aEAT(O)

giving the orthogonal decomposition of G; G = K @ M relative to B.

The tangent space Tx to the orbit & = G/K at X, in other words, the
image of ad(X) : G — G, is identified with the space M through ad(X).

Let J be the complex structure on Y (CE,®CE_,) given by J(E,) =
V—1E,, J(E_,) = —v/—1E_,, « € A*. Then, since J commutes with
ad(Z),Z € K,it is a standard argument that the restriction Jjo¢ defines an
invariant complex structure on G/ K.

It turns out that the orbit & = G/K is a compact, simply connected,
complex homogeneous manifold, called a C—space due to H.C.Wang [28],
which is endowed with invariant K&hler metrics g’s parametrized by #0
parameters(see [[toh 14] for details on invariant Kahler metrics ).

Remark that the second homotopy group wo(G/K) is isomorphic to
the homology group Ho(G/K;Z) and then to Z™n = #0.

When X =5, yi(\/—_lH(i)) is with all 4* > 0, K is a maximal torus in
G and G/ K is a generalized flag manifold. When all y* = 0 except one y*, we
have Kéahler C-spaces of second Betti number one. All irreducible Hermitian
symmetric spaces of compact type are described in this way. The C'—spaces
G /K have also parabolic description as G€ /P for the complexification G€
of G and parabolic subgroups P of G€ containg a Borel subgroup so that
K=GnP.

Each space G/K carries two invariant Hermitian metrics gy, g2 other
than g. The metric ¢; is induced from the embedding G/K C G and ¢; is
the restriction of —B to M. These metrics ¢,¢; and g, are in general not
the same ([Pressley 23 p.561)), whereas ¢ = g, = const.g; for Hermitian
symmetric spaces, because ad(X) : M — M is then the complex structure
J up to constant factor.

The subspace K in G being orthogonal to M gives the normal space
T of the orbit G/K in G at X because B(Z,ad(X)Y) = B([Z,X],Y)=0
for Z € K,ad(X)Y € Tx.
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So, as just for G = SU(2) it is a standard argument in harmonic map
theory that a map ¥ : §2 — (G/K, g1) is harmonic if and only if the vector
A¥(%) in G is in the normal direction K,Z € Si, namely the G-valued
function ¥ satisfies |

[AT(E), ¥(#)] = 0.

We are now in a position to state the harmonicity of ®., for general
compact simple gauge group as

THEOREM 2. Let G be a compact simple Lie group. Let (A, ®) be
a Yang-Mills-Higgs fleld of gauge group G with decay conditions; |®| =
m 4+ O(1/r), |Fal,|Da®| = O(1/r?). If it satisfles in a fixed radial gauge
the asymptotical conditions (2.3), (2.4) and the Higgs fleld ®., at infinity
has its image inside a G-adjoint orbit G/K C G, then @ : S2 — (G/K,¢1)
yields a harmonic map in the homotopy class [®] € m(G/K).

REMARK. It is stated in [Jaffe and Taubes 17] without proof that the
finiteness of the action for a Yang-Mills-Higgs field implies |®| — m, some
constant and |Fy|,]D4®| = O(1/r?)(see also[Taubes 25]).






- 33 -

Proof. We may assume Yo to be non singular. Let * : ¥’ — Y

be a morphism. We write £/ : X’ — ¥’ for the fibre product

-1
X xYY’ -— ¥’ and Y6 =T (Yo).

e .8. We may assume that Y is normal.

Proof., Let Y’ — Y be the normalization and ¢ an ideal

sheaf such that . ¢ C 0 and such that the support S of

b4

the quotient does not meet Y_.. Using 3.4,a and b, we are

0
allowed to replace Y by a blowing up with center in S and

hence we may assume ¢ to be invertible. By flat base change

(6], one has
*
prl*f’ 3 C OX .

This implies that T*((f;w;,/Y,) ® ¢§) is contained in

f*”;'/Y" Let f£° : X% =X xy.-.xYx — Y be the s~fold fibre

product. £5 is again a Gorenstein morphism and

s
5 v _ v
f*me/Y = @ f*”X/Y ((18], 3.4, for example). Repeating our

calculation for X° instead of X, we obtain

s

]
v v
T,((® f;ux,/Y,) ® #) as a subsheaf of @ f*QX/Y' The same

s
holds for S° instead of © . Choose the ample sheaf ¥ on

Y and % such that r*t ® 2 1is ample and T*Oy, ® jb

generated by its global sections for all b > 0. If 3.7 holds

. *
for £’ : X’ — Y’, then 22 b(f;m§,/,f,) o 2P o s is

globally generated over Y6 for some b >> 0. Then

Sza'b(f*w;/y) O-tzb is as well globally generated over Yo.



4, The first order equations.

The Higgs field @ of a Yang-Mills-Higgs field satisfies the Lapalce equa-
tions (1.2) and the norm |®| tends to the mass at infinity. Based on these
facts we derive the first order equations. Actually from (2.2)

AZ((I)lsf) = ?”283(1) + 270, P,

which yields as a distributional limit the Laplace equations over the 2-sphere
at infinity
As P =0 (4.1)

with respect to the connection A, at infinity.
Since |®,,| = m and

A(|(I’°O|2) = 2|D 4, (poolz +2 <84 Poo, P >,

® ., must be covariantly constant as a section of the bundle G over SZ..
In other words, ., satisfies

dP oo = —[Aco; Poo)- (4.2)
For the PS monopole A, is

Ao = (—sinpdf — sin 8 cosf cos pdp)i

+(cos pdf — sin 8 cos 8 sin pdp)j + (sin® 8dy)k. (4:3)

Remark that the notion of homogeneous connection on R3 \ {0} =
S$2. x R* appeared in [Hitchin 10] is just the A.

We now assume that A, be a C' connection on §2, to make sense the
Laplacian at infinity.

We take the (0,1)-part of (4.2) on the Riemann sphere S2, = P(C)
and Lie bracket-multiply it with ®, to get the d—equations on ®,

(0% 0o, Poo] — v _1/1((1)00)56‘:'00 = _[[A:oa Do) Poo] + v _1ﬂ(¢oo)[A:o> P o)

(4.4)
with respect to the smallest positive eigenvalue pu(®s) of —vV—1(Po) :
M — M.
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Let ¢ = £ + /=17 be the affine complex coordinate on S2%, = P;(C)
and Ay : 52, = 52 - R3; £ — % be a scale ¢(> 0) embedding.

Since the coordinates (z!,2%,2z3) of R? pull back by A; are written
through the stereographic projection as

ot = t/(IC]° +1),2* = tn/(IC]* + 1), 2 = t(I¢* — 1)/(IC]° +1),
the (0,1)-part A, is given at & € S7 with coordinate { = (%) as a limit
AL(3) = lim H{Ax(t8) + VoTAa(t) + CADI(CE + )7L (45)

We then immediately obtain the following

PROPOSITION 3. Let (A,®) be a configuration of gauge group G sat-
isfying the Yang-Mills-Higgs Euler-Lagrange equations (1.1),(1.2). Assume
that (2.1) is satisfled, and in a fixed radial gauge the Higgs field &, at
infinity lies inside a G—adjoint orbit G/K C G and the connection A, at
infinity is of C! class. Then as a G—valued function ®, satisfies

[0®00, Poo) = V=11 P ) 0P oo (4.6)

( #(® ) denotes the smallest positive eigenvalue of —/—1ad®,) provided
at £ € §?

[A1(t2) + V=1A2(22) + ((2)Aa(t), ®(t2)], B(t2)]

VT @oo)[ A1 (88) + VT Ag(82) + C(3) As(82), B(22)] = o(l/(t).7)
4,

The value p(®s) is independent of choice of # and in the SU(2) case
ad(®o) = p(Ps)J so that (4.6) is exactly the equations to @, being
holomorphic and is actually satisfied by the PS monopoles.

In the following theorem we assert that (4.6) gives rise to @, being
holomorphic for arbitrary compact simple group G.

THEOREM 4. Let (A, ®) be a Yang-Mills-Higgs field of gauge group G
with decay conditions at infinity |®| = m + O(1/r), |Fal,|Da®| = O(1/r%).
Assume with a fixed radial gauge trivialization ®,, lies in a G—adjoint
orbit G/K C G and the connection A, at infinity is of class C1.If (4.7)
in Proposition 3 is satisfied at each £ € 57, then &, : $? —» G/K is a
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holomorphic map and hence yields a harmonic map with respect to any
(invariant) Kahler metric g.

REMARK. The equations (4.6) for a G—valued function @, imply also
that @, : S¢ — G/K is harmonic with respect to the induced Hermitian
metric ¢;. In fact, differentiating (4.6) in the O direction we have

[00® 0, Poo) — [0P oo A OBoo] — V=11 P00 )OO = 0, (4.8)
and their complex conjugate

[00® o, Boo] — [0Po0 A 0Boo] + V=111 P00 )8OP o = 0 (4.9)
so that from 80 4+ 89 = 0 and [8®c A 0Pss] = [0Peo A OBoo] we sce
[00® 0, Poo] = 0 which says that &, is gy —harmonic.

PROOF of Theorem 4. From Proposition 3 ®, satisfies (4.6). The
proof is based on the root space decomposition. At each point £ € 52
(&) is written as ®o(2) = E?:] ¥ v/—1H(.y,y"% > 0 for the set © =
{ei),...,a;,} of simple roots. So ad(®..(£)) acts on MC, the complexified
tangent space T<,X = ®o(%) as

ad(X)Eia = £1/2V=1()_ mi; v ;") Exa,
j=1

a= ZLI mia; € AT(0) so that p(®eo) = 1/2min; y¥ |a;, |* because each
simple root a;; € A*(0),7 =1,...,n.

Fix a 7,1 < j < n such that u(®) = 1/2y% |a;; |* and define the
linear subspaces MT,M;' by M;" = >, CE4, where the summation is
over roots & = Y.i_, mia; € AT(0), m;; =1 and m;, = 0 for k # j and
M7 = M]. Then —/=Tad(X)Esq = £pu(a)Era with p(a) > p(Pe) and
p(a) = u(®s) when Ei, € M;h

Since 0Po0/0((£) = (Poo)«(8/C) is a tangent vector, we write it as
0% /0 = Y nen+(o) @ Ea +a~*E_, and then have

ad(X)0%o0 /0C = V=1p(®oo) Y _{a"Ea; Bo € MT}
+ V=1 {n(B)a’ Eg; Eg € M*\ M})
— V=Ti(®e0) Y {a7E_o; B_o € M7}
- V=1) {u(B)a~E_g;E_5 € M™\ M;}.
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It follows from (4.6) that a® = 0 for all @ > 0, that is, 8%,/ € M™.
This implies the differential (®4,). commutes with the complex structures
of P;(C) and of G/K, and thus @, is holomorphic.

That ®., is harmonic with respect to a Kéahler metric is standard in
the harmonic map theory on Kahler manifolds.

REMARK. It is known that there are SU(2) Yang-Mills-Higgs fields
on R3 of any charge which are not monopole ([Taubes 27]), while there are
no non minimal harmonic maps: P;(C) — P;(C) of any given degree ([Eells
and Wood 6]). As seen in this section the second order Laplace equations
reduce to the first order equations at infinity. This phenomenon explains

to a certain extent the different aspects relating to Yang-Mills-Higgs fields
on R? and harmonic maps of P;{C) ([Atiyah 1]).
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5.Further Remarks.

Theorems 2 and 4 obtained in the previous sections are considered
as giving an answer in principle to the harmonic map existence problem :
Given a C—space G/ K, a compact simply connected complex homogeneous
manifold, with an invariant Kahler metric ¢ and a given homotopy class v in
79(G/K), does there exist a harmonic map P;(C) — (G/K, g) representing
the homotopy class v 7 See related discussions for this problem [Eells and
Wood 7], [Burstall, Rawnsley and Salamon 4] and for a general existence
theorem [Sacks and Uhlenbeck 24].

However, for this, two problems remain. One is a problem on the exis-
tence of Yand-Mills-Higgs field whose Higgs field at infinity with a symmetry
breaking from G to a real parabolic subgroup K represents the homotopy
class v. See [Taubes 25| on the existence of monopoles for general gauge
group of nontrivial nonnegative generalized monopole charge. A neces-
sary condition for m = (my,...,my,) € Z" = m(G/K) that there exists
a monopole of generalized monopole charge m is that m is nonnegative
([Murray 20]). For argument of generalized monopole charge we refer to
[Taubes 26] and [Horvathy and Rawnsley 11].

Another problem is whether a thus derived Yang-Mills-Higgs field sat-
isfies the decay rate at infinity stated in Theorem 4.

We should next comment our theorems in a level of moduli space of
Yang-Mills-Higgs fields ( or of monopoles ).

Denote by M(XK,~y) the moduli space of Yang-Mills-Higgs fields whose
Higgs field lies in a fixed orbit G/K at infinity and represents a homotopy
class v € m(G/K). Then the theorems induce a map f : M(K,v) —
H,(P1(C); G/K); the moduli space of harmonic (or holomorphic ) maps
¢ : Py(C) - G/K representing v € m3(G/K) modulo isometries. The map
f is not necessarily injective. In fact Higgs fields ., at infinity coincide
for all monopoles (A%, %) arising from the PS monopole (A4, @) by parallel
translation z — z + a.

Yang-Mills-Higgs fields are defined also on complete open three dimen-
sional manifolds (see [Floer 9],[Braam 3]). Our investigation is applicable
to those manifolds .

o-1,






- 32 -

for some vy which are growing like mn. Therefore
Sn(T($ ® ¥)) will be globally generated over U for = >> 0

and 3.3e implies the weak positivity of T(¥ @ ¥).

Examples of positive tensor bundles are: det(¥), SU(3) and

AV (%). Especially, if r 4is the rank of % and

r-1

3V = foa (¥,0 then A (%) =%’ ® det(¥) 4is a positive

v’
tensor bundle. Using 3.3b and the equality

s2(¥ @ %7) = s2(%) @ S2(5') ® F © F’

one sees that weak positivity is compatible with tensor

products.

Theorem 3.7. Let v >0 and £ : X — Y be a surjective
projective flat Gorenstein morphism of reduced quasi projec=-

v
tive schemes. Assume that f*UX/Y ts locally free. Let

YO C Y be an open subscheme meeting all components of Y

-1

such that f ts normal with at most rational singulari-

(Y,)

tles, for Yq € YO. Then f*u;/Y ts weakly positive over the

non singular locus of Yo.
Of course 3.7 will be shown by reducing it to the case
v = 1, where it is nothing but the positivity theorem of
Kawamata & Fujita (dim Y = 1). Since we really need to keep
track of the locus where the sheaves are weakly positive we

sketch the proof:
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