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ON COMPLETE MANIFOLDS WITH NONNEGATIVE

RICCTI CURVATURE

Complete open Riemannian manifolds (Hn,g) with nonnegative sectional

curvature are well understood. The basic theorems are the Toponogov

Splitting Theorem and the Soul Theorem [CGl]. The Splitting Theorem has been

extended to manifolds of nonnegative Riceci curvature [CG2]. On the other

hand. the Soul Theorem does pot extend even topologically according to recent

examples in [GM2]. A different method to construct manifolds which carry a
metric with Rie > 0, but no metric with nonnegative sectional curvature,
has been given by L. Bérard-Bergery [BB]. This leads to the question (c.f.
also [Yl]): Is there teness_re mplete an _manjifo
with Ric > 0 ? The answer 1s certainly affirmative in the low-dimensional
special cases n = 2, where all notions of curvature coincide, and n = 3,
where nonnegative Riceci curvature has been studied by means of stable
minimal surfaces [MSY], [SY]. On the other hand, J.P. Sha and D.G. Yang
[ShY] have constructed complete manifolds with strictly positive Ricci

" curvature in higher dimensions. For example they can choose the underlying
" space to be Ra x 83 with infinitely many copiles of 53 x E?z attached to
it by surgery. It is therefore clear that any finiteness result for

_arbitrary dimensions requires additional assumptions.

The purpose of this paper is to establish the following main result.

Theorem A
Let M" be a complete open Riemannian manifold with Ric = 0. Suppose

that M" has diameter growth of order o(rl/n

). Then M® s homotopy
equivalent to the interior of a compact manifolds with boundary,

provided the sectional curvature is bounded away from -«,



The notion of diameter growth requires a precise definition. Roughly
speaking, we would like to measure the diameters of the "essential
components" of the distance spheres S(po,r) w.r.t. the intrinsec metric in
Mn\B(po,f-r) where % <f{ <l 1s a fixed number. Glven any open set
1c Mn, not necessarily connected, we shall write dim(Z,0) for the
~ diameter of any connected subset I C 3 measured w.r.t. the intrinsec
distance function of the open submanifold 1. Let C(po,r) denote the union

of the unbounded connected components of Mn\B(pO,r). We sget:
(0.1) diam(po;r) 1= sup diam(zk,C(po,fr)),

where the supremum is taken over all components of Ek of 3C(p0,r).

+

Definjition, Let £ : R

f-m+ be a monotonic functién. A Rlemannian
manifold M% with base point Py is said to have dlameter growth of order
o(f) [resp. O(f)], if and only if f(r)-l . diam(po;r) converges to zero
as r + @ « [resp. remains bounded].

This definition will be discussed further in section 1. Here we would
just like to point out-that the detalls have been arranged in such a way
that the diameter growth condition in Theorem A is as little a restriction
as possible. The reason for taking the supremum in formula (0.1) rather than
a sum or any other norm becomes even more clear when we present our result
in a slightly more general context. Quite in contrast to the Splitting
Theorem in {CG2]. Theorem A extends to manifolds with gsymptotically

nonnegative Ricci curvature thus going beyond a rigidity result.



Theorem B:
Let M" be a complete open Riemannian manifold with base point Py and
let ro(q) - d(po,q) for all q € Mo, Suppose that

0) there is a non-increasing function X : [0,») - [0,@)' such that
@

CO(A) - J r » A(r)dr converges and Ricq z -(n-1)+ X o ro(q) at all
0
points q € Mn,

) i) the sectional curvatures are uniformly bounded from below by

some (negative) constant Ko , and

ii) M" has diameter growth of order o(rlln) with respect to Py

Then all critical points of the distance function I, lie inside some
large ball B(pO,R), which therefore is a deformation retract of M" ,
and M" is homotopy equivalent to the interior of a compact manifold

with boundary.

Let us 1llustrate our results in one example. Lst M(dl'dz) be the

d d
connaected sum of infinitely many copies of § L. 5 2, where 1 <d, sd,.

1 2
(see Fig. 1) '
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Figure 1



If d1 = 1, the fundamental group grows exponentially and there cannot be a
complete metric with Ric 2 0 (c.f. Proposition 1). Nothing can be ?aid -
using such a classical argument - for metrics with asymtotically nonnegative
Ricci curvature. If d1 2 2 1t has not been known so far whether or not
M(dl,dz) can carry any metric with Ric =2 0 at all. It is easy to put
complete Riemannan metrics on the manifolds M(dl'dZ) such that their
diameter growth is of order O0(l) ("bounded diameter"). By Theorem B these

metrics cannot even have asymtotically nonnegative Ricci curvature, unless

possibly thelr sectional curvature K 1is not bounded away from -w.

Let us now discuss the additional hypothesis in Theorems A and B.
Bounding the diameter growth seems to be a very natural condition. In fact,
it is this condition which is violated in the Sha-Yang examples. On these
sanifolds of infinite type the metric can be chosen to have diameter growth

2). The condition also ﬂoes not hold for the

of order at most O(rl/
Bérard-Bergery examples (finite homotopy type, diameter growth = 0(r2/3)).
However, it does hold in the large class of the Gromoll-Meyer examples. They
all have even bounded‘diameter.

All these examplés have sectional curvature bounded away from -e.
Indeed this hypothesis appears to be a fairly weak assumption; it enters our
arguments only in an integrated form (c.f. Lemma 4.2).

In both theorems we have only claimed finite homotype type for every
single Mn, butbggg a uniform bound for a whole class of manifolds. Such a

bound does not even exist for the numbers of homotopy types of compact

manifolds with positive sectional curvature as the examples by Wallach show

[AW].



Nevertheless - as a consequence of Gromov's Betti numbers theorem (c.f. [A],
[G]) ; a uniform bound does exist for the homotopy types with coefficients
in any field. This holds even for non-compact spaces with asymptotically
nonnegative sectional cur;ature. However, such an estimate cannot hold for
tﬂe class of compact manifolds with strictly positive Ricel curvature,
according to examples in {ShY]. We do not know whether or not in our context
a fixed lower sectional curvature bound KO gives rise to an a priori

estimate for all the Betti numbers.

Many results on manifolds with Ric =2 0 are proven by volume comparison
(c.f. section 1). These érgumencs are not sufficient to prove Theorems A and
B. We need much stronger bounds for the distance fﬁnction. In fact, the main
result in section 2 is a lower bound on the hefght of thin triangles
involving just the lengths of their edges and a lower bound for the Ricci
curvature (c.f. Proposition 2.3 and Corollary 2.4). Here Toponogov's
triangle comparison theorem is not reqﬁired.

Our argument is modelled on the basic step in the proof of the
Splitting Theorem; we calculate a bound on the Laplacian of certaln distance
- functions and apply the maximum principle. In the case of the Splitting
' Theorem this bound is ﬁlways zero; in our non-rigid situation the bound can
" - and will - take different values. This problem is dealt with in Theorem
2.1, which seems to be a new estimate on "subharmonic" Lipschitz functions.

In section 3 we compute (as far as needed) the explicite bounds for the
thin triangles. In particular, we analyse the asymptotic curvature condition

so that in section 4 we will be prepared to prove a new critical pojint lemms

and deduce Theorem A and Theorem B.



s

1. <} Growt v a t

Our first goal is to show that both notions, volume growth and diameter
growth, can be used equally well to distinguish qualitatively between
hyperbolic spaces and manifolds with nonnegative Riccl curvature. It is a
direct consequence of the definitions that hyperbolic space has exponential
volume growth as well as exponential diameter growth. Notice that we are
considering the quantities' diam(S(po,r),Mn\B(po,f-r)), i.e. we have defined
the relevant distance between two points 9,9, € S(po,r) as the infimum

over the lengths of only those curves from 9, to q, which lie inside

Mn\B(PO-§°r) .

Proposition 1.1, (linear diameter growth)

Any complete Rlemannian manifold with Ric =2 0 has diameter growth

of order O(r) with respect to any point Py € M

This proposition 13 a direct consequence of Lemma 1.4 below. In order to
make our point clear, let ug state the>corresponding result for volume

growth next.

ositio (polynomial volume growth)

Let M" be a complete non-compact Riemannian manifold with

Ric = 0, let Py € M" be arbitrary. Then
i) vol B(po,r) s wnorn for r >0, and
ii) wol B(po,R) > % (% - 1)svol B(po.r) for 0 <r <R.

Here v, stand for the volume of the euclidean unit ball Bn(l). This

proposition completes our elementary comparison of volume and diameter
*
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growth. The-second inequality is due to E. Calabi and §.T. Yau {CGT], {Y2].
Since both statements are actually falrly direct consequence of the
well-known relative volume comparison theorem, it is in fact easy to ext;nd
them - of course only up to some positive factors - ts manifolds with
asymptotically nonnegative Riccl curvature as we have defined them. (Notice
thﬁt our condition is stronger than the condition of almost nonnegative
Ricel curvature at infinity, which has been introduced in section 4 of

[CGT]). A result which does not extend is the following

Proposition 1,3, (polynomial growth of xl)

Let M" be a complete Riemannian manifold with Ric = 0. Then

#la € ﬂl(Mn) | H sSr)s conster"

ol g0
In particular, the first Betti number bl(Mn,R) is bounded from above

by n.

Here "aﬂgeo stands for the geometric norm taken w.r.t. some base point 50
in the universal covering N, i.e. ﬂa"geo - d(ﬁo,soﬁo), where a 1is the
decktransformation repfesanting a € wl(Hn). The proposition is proved by
looking at the Dirichlet cell D around EO and the action of the
_decktransformation group. Given Py > 0, one compares the volume of

Dn n(So.po) to the volume of large béns B(Eo.r); c.f. [CG2], [M], and

also {An] for further results.

Remark, Working with manifolds of asymptotically nonnegative Riceil

‘curvature, one can in general at best pass to some finite coﬁering, and this



already weakens most decay conditions in relation to the degree of the
covering. This makes it clear where the proof of Proposition 1.3 breaks
down, when turning to manifolds with asymptotically nonnegative Riccl
curvature, Of course, it is also easy to give a direct counterexample.

Before we begin with the proof of Proposition 1.1, let us recall the

basgic tool:
Relatjive Volume Comparison Theorem, (R. Bishop [BS| and M. Gromov
(GLP], [MS])

Let Mn be a complete Riemannian manifold with Ric = (n-1)+x, and

let q € M" be arbitrary. Then

vol B{(q,r) vol Bn(r>
(L.1) Jol B(q.R) vol Bn(R) , provided 0 = r s R.

Here Bn(r) denotes a ball of radius r 1in the simply connected model

-space of constant curvature «.

Lemma_ 1 .4
Let M" be a complete Riemannian manifold with Ric = 0, and let

Py € M". Then for all r > 0,

(1.2) diam(po,r) < 46-(1 + %)-r where £ = %(1 - ).

Proof, Pick a maximal family of points qJ € S(po,r) such that the balls
BJ - B(qj,for) are disjoint. As BJ c B(po,(l + £)-x) C B(qj,(Z + £)-1),
it is standard to conclude - using the hypothesis Riec 2 0 via the relative

volume comparison theorem - that for all j,



(=)™ vol B(py, (1+€)1) S vol B

T+E s vol B(po,(1+$)r) .

]

and hence

2
€

(1.3) #la) s (L+ "

The balls B(qj,2£r) cover S(po,r), but they still do not intersect
B(po,Er). In particular, 1if B(qj,2$r) N B(qj,2$r) » ¢, then the minimining
geodesic joining qj and qj,, has length less than 4€ér and hence does
not intersect B(po,for) either. Therefore the lemma follows directly by

counting the number of balls B(qj,Zfr), as in inequality (1.3).

The proofs of Proposition 1.3 and Lemma 1.4 {llustrate how one can get some
length control from volume estimates. This works since -the standard volume

estimates are for metric balls and involve the radius which is already a

one-dimensional quantity. We have actually proved more: 1f M" is a

complete Riemannian manifold with- Ric < 0, then for all Py € Mn, r>290,

and all ¢ € (O,%) the following inequality holds:

(1.4) mednm%MRM%JLHN)S Ma%ﬂw.
. b)) )
]

Here the infimum is taken over all countable coverings I = (Z,) of the

3

distance sphere S(po,r). It is necessary to allow that a single Z, may

j

consist of several connected components of S(po,r). In this paper we are

not going to compare diameter growth w.r.t. different base points in detail.
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One should ;ertainly not expect a better statement than for volume growth;
this notion is known to be independant of the base point only if thaAvolume
does not grow superexponentially. Without referring to.Theorem B we do not
know how to prove, in the case of asymptotically nonnegative Ricel

curvature, that the diameter growth does not depend on the base point.
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2. Thip Triangles,

In this section we present an lnequality for thin triangles which
requires only a lower bound for the Ricci curvature and allows to generalize
the basic argument in the proof of the Cheeger-Gromoll theorem [CG2].

We begin with a fundamental estimate on "subharmonic® Lipschitz
unctions f : M" -+ R. Bounds for the Laplacian of such a function will be
formulated in terms of upper and lower barriers, just as in the proof of the

splitting theorem given by J. Eschenburg and E. Heintze [EH]. An upper
(lower) baxrier for £ at a point gq 1in the interior of the domain of £
1s by définition a Cz-function fq defined on a given neighborhood Uq of
q that fq =z £ (resp. fq < f) on Uq and fq(q) - £(q).

This analytic result already requires the lower bound for the Ricci
curvature. We ugse comparison with the standard model spaces Mz of constant
curvature; in polar coordinates these spaces are usually described in terms

‘of the functions:

1 . -
[ /; sin J; t k>0 cos J;' t e >0
sn(t) -4 t i k=0 and cm(t) -d 1 ; £ =0
1
— sinh /x t 3 k<0 cosh /-x £t ; x <0 .,
| = !

Qur estimates in particular will involve the expression

. sm(r) n-1
FZ.].) tpn,n(.p,l) - JJ [W] dr dt,

pstsr=<t
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which is defined for 0 < p s 2, provided «£ s «2. Note that the radially
symmetric function E(E) (= ?n K(d(;,a),i) on the punctured ball

5(5,2)\[5) in the model space Mz satisfies:

(2.2) 1) AR =~ 1 on B(p,)\(p}

i1) h(q)=0, grad E'E =0 for q € 8B(p, L)

These two properties determine the function P

eore
Let M" be a complete Riemannian manifold, and let

£ : B(p,R) C M® - [0,») be a Lipschitz function. Suppose that
i) Ricz (n - 1)« on B(p,R)

ii) dil £ s C1

i11) Af < Cz in the sense that for all q € B(p,R) and all ¢ > 0

there exists an upper barrier fq for £ such that

qu'e(q) <G, + ¢«

2

iv) f has a zero 2z at distance £ := d(p,z) < R

Then:

(2.3) f(p) = inf C,p + C.p (p,8) =: & (k,C,,C,.,0)
pe(0, 2) 1 2'n,x n 1’72
Remarks,

i) C1 2 0. Considering the zero z of £, it is clear that C2 z 0 as

well.

ii) Qn(n,Cl,O,l) - ¢n(n,0,C2,£) =0
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2

11i) Myers’ theorem states that 5-22 < n . This inequality is precisely

the condition under which ¢n(n,cl,cz.

2) 1is well defined and depends

continuously on its parameters.

Proof: Suppose the theorem is false. Using the continuity of ¢~ we can
pick x < x such that

2

(2.4) £(p) > & _(%,C £ 20 and R <

1%
Similarly these inequalities persist when CI’CZ and £ are replaced by
El - C1 + e, 62 - 02 +¢ and F =28 + ¢ , provided e € (0,R-2) 1is
sufficiently small. We shall give a lower bound h : B(p,R) = [0,») for £
such that h 1is strictly positive on B(p,f). In particular, this yields
£(z) = h(z) > 0, contradicting hypothesis (iv).

In order to define h let us consider the plecewise Cz-functions

$p : [O,R) - [0,o) defined by

El-(p-d> + EZ-¢n';(d,I) i 0sdsop
(2.5) %w)- Ef%jmj) ; psds?
0 + T <sd<Rr

Since the map d +— Ez-wn ;(d,f) is strictly convex, there 1s preclsely one

Py € (0,%] such that the function Ep is of class Cl. Clearly
0

%p (0) = ¢n(E,E ) < £(p). We set

'E ]
0 172

(2.6) h(q) - ap (d(p,q)) for q € B(p,R).
0
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It is clear that Cl,az >0 ,so h 1is strictly positive in B(p,?) and

vanishes outside this ball. It remains to show that
(2.7) £(q) = h(q) for all q € B(p,%).

Since f(p) > h(p), it follows directly from hypothesis (ii) that inequality
(2.7) holds on ETETEET. In the annulus A = B(p,ﬁ)\ETETFET one can apply
the maximum principle: If f - h had a local minimum at some q € A, then
its upper barrier fq,e/2-' hq would have a local minimum at q at well.
Here hq denotes the lower barrier for h constructed in Lemma 2.2 below.

e -
Therefore, A(fq,e/2 - hq)(q) < 02 + 7" C2 < 0, a contradiction which shows

that a local minimum of f - h cannot exist in A.

Lemma 2.2

At any q € A the function h defined in formula (2.6) has a lower

barrier h_ such that--Ah = C.,.
q q(q) 2

Proof; Given q € A, we pick a minimizing geodesic vy from p to q. Let

d = d(p,q) denote its length. For § € (0,d) we set

(2.8) h}(x) - Ezo wn,n(s + d(x,7(8)),5) for x € B(y(5),%-6).

The map p + C ;(p,]), 0 < p < %, 1is decreasing. The triangle

2.¢n,

inequality implies that



- 15 -

~h}<q) - h(q) and

(2.9) -
h}(x) < h(x) for X € B(v(86),% - &)

Since vy 1is minimizing, its restriction to ([§,d] remains minimizing, even
when it is extended a little beyond the endpoint q = y(d). Therefore the
distance function dy(&)(x) = d(y(6),x) 1is differentiable in a neighborhood

U} of +v(6,d] , and so is the function h}. It i3 a standard fact that

lgrad dv(s)ﬂ -1 and
(2.10) c, »
A 4 -1) —
v(5) < (n-1) s, ° dy(&) on US
We compute
Y = h 2
A hS(Q) = 02' ;;E Wn'z (p:l) Ip—d ¢ "grad dv(s)lq"
(2.11) + 8y Son 2 DI . oad (@)
| €2° 35 ®n,x v(5) "1

" - C;(d) Cn(d-S) 2 SE(f) n-1
= Cz + (n-l)Czo [Sz(d) - sn(d-S)] . £ [;E?E;] dr .

Since k < x, we can pick 6§ € (0,d) so small that the expression on the

right-hand side is = 62‘ Because of formula (2.9) the function hq - h}}Uz

i1s the desired lower barrier at q with A hq(q) =
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Theorem 2.1 has a direct geometric application. Let vy be a minimizing
geodesic joining two points Py Py e M". Given a third point p € M® we set

(c.f. Fig. 2.):

r,(p) = d(p,py) K i=-0,1,
(2.12) £(p) = d(p,v) , and
e(p) = IO(P) + r1(p) - d(po,pl) (the "excess function").

. Figure 2

By the triangle inequality,
(2.13) 0 < a(p) s 2-£(p)

We are going to imprové this inequality in the region where 2(p) is small,

1.e. at points p which are close to v .

Proposition 2.3

Let P:Py: Py and vy be as above, and let R > £(p). Suppose that
Ric =2 (n-1)x on B(p,R). Moreover, we assume that the Laplacian of the
excess function e 1is bounded by some constant CZ(R)' in the sense
that for all q € B(p,R) and all ¢ > 0 there is an upper barrier

eq « with Aeq’c(q) s CZ(R) + ¢. Then,
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: s {(r)yn-1
(2.14) e(p) s Inf (2p + Cz(r)- J J [sﬁzzs} dr dt) < 22(p).
0<p<L(p) K
pstsrsi(p)

In particular, when « s 0,

r

n- 1/n-1 ,

1,1 n
z'n-Z'(E 033 ) pon= 3,
(2.15) e(p) s 9 ) i L 1+ /1+cg£2
032 -[ +24n T 7 ] ;o= 2,
L 1+./1+C§.22 3

1
Here we have set 2 = £(p) and C3 -5 snlz(l) . C2(R).
Co 4
Let P,Py:P; and & be as above. Assume that M" {s a compléte
Riemannian manifold with Ric =2 0. If 2(p) < min{ro(p),rl(p)), then

inequality (2.15) holds with

n-1 1 1
(2.16) W '[ro(p)-i(p) ¥ rl(P)-f(P)]

On the right-hand side of (2.15) we see the factor ﬂn/n-l. The exponent
E%T occurs in the borderline Sobolev embedding Li(m“) - L“/“'l(m“) - for
the very same reason - ; it makes both inequalities scale invariant.

When n = 2, the exponent ;%T takes the value 2. However, there is a
logarithmic factor which makes our estimate (near £ = 0) even
qualitatively weaker than the bound obtained from Toponogov's theorem. But

when n = 3 and we assume only that Ric = 0, Toponogov's theorem does not

apply. ' -
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Proof of Proposition 2.3

Since dif e s 2, and since the excess function e vanishes at the
footpoint z of p on v, i.e. at a point in B(p,R), inequality (2.14) is
a direct consequence of Theorem 2,1, The proof of (2.15) is just
computational. Using t'ssta(l) - ss(t) and 1 sntz(l) < sntz(l) < anZ(l) ,

we calculate that

sm(r) n-1
20 + Cz(R)- J I [s&(t)] dr dt

pstsr<si(p)
2 2

(2.17) < 20 + su,u)“‘l- Cp(x) » JJ (%)“‘1 dr dt
p t

2

< 2 + % Cy - [p2 TR YLIN I tl'ndt]
p

We regard the above right-hand side as a function ¥(p). It follows from

inequality (2.14) that e(p) < inf{¥(p) | 0 < p < 2). The function ¢ |is

convex, and the infimum is achieved at the unique Po € (0,2 with

W'(po) = 0, or, more explicitly

n-1 1 n n 1 n
(2.18) 0 - 503 - (2 - po) < 3 032

When n = 3, we conclude that
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e(p) s w(po) - 2p0 + 1 03 . [ 2  n_ 22 + 2 o0 p2-n]

2 Po ~ 72 n-2 0
(2.19) -2%p0+%n—?zca-(pg - 2%
<2 EE% (% C.3)2n)1/n-1.
When n=2, we £find
z, In L .

(2.20) ‘ e(p) = W(po) il + C3 2 ’

In this case (2.15) follows by eliminating py from the right hand side

using the quadratic equation in (2.18).

‘Proof of Corollary 2 .4: Given 2(p) <R < min{ro(p),rl(p)l, we merely need

to show that in B(p,R) the Laplacian of the excess function e 1is bounded

n-1 n-1
ry(p)-R ~ r,(p)-R

by CZ(R> - in the sense of Proposition 2.3. In (2.15) we

can then pass to the limit R -+ £(p). So let us pick minimizing geodesics

Tor M from Pg» Py tO some: point q € B(p,R). We set
§
(2.21) e (x) = 25 + d(75(6),%) + d(7,(8),%) - d(py,p) . forxeM,

where § varies between 0 and min{ro(p),rl(p)} - R. each function e6

is differentiable when restricted to a suitable neighborhood Ug of gq.

Indeed, eg | Ug is an upper barrier for e at q such that
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5 n-1 n-1 n-1 n-1
: A + < * '
(2.22) eq(x) < ro(@)-8 * r ()-8  ry(p)-R-6  ry(p)-R-§

c.f. formula (2.10). Thus given ¢ > 0, we can choose B(e) > 0 so small

§(e)
q

that Ae (Q) = CZ(R)' as required.
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3. E cite Estimates fo S5 W otical Nonnegative

Ricei curvature.

In this section we are going to determine explicit bound for thin

triangles in our more general situation.

Proposition 3.1,

Let Hn be a complete Riemannian manifold of dimension n = 3, and let

P,Py.P, and v be as in (2.12); c.f. Fig 2. Suppose

’

L :-~d(p0,p1) = Z-ro(p) and, moreover, that there exists a

non-increasing function X : [0,=) - [0,») such that

CO(A) - J r A(r)dr converges and Ric|q = -(n-l)-Aoro(q) at all
0 -
points q € M". Then the height of the triangles can be bounded from

below in terms of ro(p) and the excess e(p):

ro(p)

1T . 1/n 1-1/n
(3.1) d(p,v) = min{zr,(p), —————, C,-r.(p) *(2e(p)) Y,
' &0 J 1+8C, (%) 40
& n-2 5 1/n
where C, = C,(n,\) = — ( )
4 4 17 n-1 %, T+8C, (1)

ema

i) For manifolds with nonnegative Ricecl curvature we have - as a direct

i
consequence of Corollary 2.4 - the stronger estimate:

=]
'

(3.1') d(p,v) = % min((ry(p), 1-1/n,

;—% . ro(p)l/n . e(p)
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115v81nce .Ca(Z,A) = 0, the Proposition holds trivially for 2-manifolds so
that we need not explicitly exclude this case in subsequent
applications. It has already been explained after Corollary 2.4, that
more reasonable estimates in the two-dimensional case shaould be based on

‘Toponogov's theorem; we are not going to state them here.

The convergence of the integral CO(A). which 1is a hypothesis of the
proposition, is essentially a decay condition on the lower curvature bound.
Roughly speaking, this bound must tend to zero a little quicker than

const-ro(p)-z. More precisely:

Lemma 3,2.

Let A : [0,») - [0,o) be a montonic function such that

CO(A) - I r A(r)dr converges. Then the monotonic functions
0

[ -]

(3.2) Al(r) - I A(t)dt and Az(r) - J Al(t)dt
r

T
exist, and moreover:

(3.3) rZA < ZCO(A) and rAl(r) 5 CO(A) for all r > 0.

This lemma, which has been proved in chapter II of [A], will be useful
in deducing Proposition 3.1 from Proposition 2.3. However, before we can
actually give this argument, we need to know more about the analysis of the

decay condition. Let us consider the Riccatil equation
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(3.4) Cou'(x) - u(r)2 - A(x)

For any L > 0 there are unique solutilons ug : (0,L}] » [0,») such that

ug(L) -0 and u; : (0,L) » (0,®) such that u (r) »+e for r - L.

Lemma 3

If CO(A) converges, then:

1} The solutions ug(r) of (3.4) depend monotonically on r and on
the parameter L. They are bounded by min{Al(r),/xz;j}, and hence in
the limit L -+ o, they converge to a non-increasing solution
u (0,=) =+ [0,m).

i1) The solutions u;(r) also converge monotonically in L and
uniformly on compact subsets of (0,=) to the solution u,. When

0 < r <L, the following inequalities hold:

(3.5) u_(x) < uZ(r) < u (r) + i%E s min(A; (2),A(D) + E%E'

Proof: Part i) of this lemma has also been proved in chapter II of [A}],
where the condition CO(X) < @ has been analyzed in detail. Anyway the
common upper bound for the functions ug as wall as their monotonicity is
obtained by a simple comparison of first order differential equatiops. In
order to prove part (i1), let us substitute u(r) = u (r) '+ v(r)'l into

equation (3.4). We see that the function v gatisfies

(3.6) v'(r) = -1 - 2u_(r)-v(r).
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Since any positive initial value v decays to zero within finite time, we

0
conclude that any solution u(r) which exceeds um(r) at some point cannot
exist globally on (0,») and is in fact some uz. Equation (3.6) also

1

imﬁlies that um(r) < u{(r) s um(r) + iz

For any § =z 0 let w: : (6,2) » (0,») be the unique non-increasing

solution of
(3.7) w'(r) + w(r)? - A(r) = 0,

with initial data given by lim w(r) = +w.
-4

emma 3.4;
Suppose that CO(A) converges. Then for all r > 0 and all ¢ > 0 there is

some 6(¢,r) > 0 such that
(3.8) w:(r) sv%; « (1 + J1+BCO(A) + € for 0 < § < §(e,1).

Proof: Set a = %(1 + J1+BCO(A)). By Lemma 3.2 it it clear that

A(r) s -a(l - a)r'2 for all r > 0, and so v'(r) + v(r)2 + a(l-a)r-z -0

i1s a comparison equation for (3.7). Its generic solution is
2a-1

(3.9) v?(r) - % + 23;1 §
2a-1 _2a-1
r -8
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Standard comparison arguments yield w?(r) < v;(r) for r > 6§ = 0.

Iﬁ subsequent arguments the Riccati equations (3.4) and (3.7), which have
been analyzed above, will be used as (one-dimensional) comparison equations
in the following geometric context: let dE _denote the distance function to
some point p € Mn, and_let ¢ be a unit speed geodeslic of finite length
which begins at c(0) -.5 and which does not intersect the cut locus CE
of p ; then dE is differentiable along ¢ except at p itself, and its

Hessian, viewed as a symmetric 1,l-tensor, satisfies
(3.10) Vc,Hess dE + (Hess dij-)2 + R(.,c’)e’ =0,

and hence the differentlal inequality

' 1 L 2,1 "ot
(3.10") do) (FTT Ad5) + (777 Ad)” + 227 < Ric e’,e'> 5 0.
Proof of Proposition 3.1, It is sufficient to consider the case where

ro(p)
J1+800(A)

goal is to apply Proposition 2.3 to the triangle Py:Py:P- The.lower bound

2(p) < fo(p) - mih{%ro(p), }. Let us choose Z£(p) <R <.§0(p). Our

x on the Ricci curvature in the ball B(p,R) can be controlled by means of

Lemma 3.3; it follows that
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J1+BCO(A) 6 JZCO(A)

(3.11) 5 e200)2 (L) s 2 ——— sinh § ———
P J28,0) /1485,

5 3 17

<§-sinh-5- 1—6'

In:ordar to be able to use Proposition 2.3, it is therefore sufficlent to
glve a weak upper bound ﬁﬁr the Laplaciaa of the excess function e on the
ball B(p,R). Upper barriers at some point q € B(p,R) can be defined as in
the proof of Corollary 2.4; we select minimizing unit speed geodesics Yo
Ty from Py Py to q. For small § > 0 and all x € B(p,R). we define:

(3.12) efl(x) - 26 + d(vy(8), %) + d(y,(6), %) - L,

Again, the point q = 10(r0(q)) - 1l(r1(q)) lies neither on the cut locus

of +v,.(§) nor on the cut locus of +v.(§). The distance functions d
0 1 7o (8)

and d are differentiable along the curves § | (§,r.{(q)] and
7, (8) 0 0

2 | (§,r,(q)], respectively. In particular, the differential inequality
(3.10') holds along both these geodesics.

Since Ric]| = -(n-1)A(r), comparison of (3.10') with the Riccati

10(r)

equation (3.7) yields

(3.13) Ad70(5) < (n-l)ws(ro(q)).

Since XA 1is supposed to be non-increasing, it follows from the triangle

inequality that Ric[ -(n-1)A(r). As the parametrization has been

v, (L-p) %
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reversed, the differential inequality for E%T Ad must be compared to

1,(6)

the Riccati equation (3.4) rather than (3.7). We conclude that

(3.14) Advl(s)(Q) S (n-1)eyy (L - ry(q)).

Our estimates above verify that each function es is an upper barrier
for the excess function e at q when restricted to a suitable

neighborhood Uz of this point. It satisfies

) © ©
(3.15) de (a) s (n-l)-[wa(r0<q>) + “L-s(L'fl(Q))] :
In the limit § - 0 the right-hand side of (3.15) converge to

(n-l)[w;(ro(q)) + u;(L-rl(q))]. Therefore Proposition 2.3 yields

n)l/n-l

-1
e(p) s 2 %T% -(§C3£(p) , where
(3.16)
Cy = nl, (%%)n'l-[w;(ro(p) - R) + sup uz(L-rl(P)-r)].-

S

' Of course, this estimate can be slightly improved by taking the limit

R =+ £(p). From 3.2 and 3.3 we conclude that

sup uz(L-rl(p)-r) < sup (um(L-rl(p)-r) + L

-]
|r}se | lr|s2 £y (p)+r
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JZCO(A) 1
< sup {

+
Ir|51 L-rl(p)-r rl(p)+r

}

'Jl+aco(A) 1

+
2r0(p)-3r ro(p)+r

(3.17) =< p [2 . }

6 1
(7 + J1+8CO(X)) ;—TET

Here we have used the inequalities L - rl(p) = ro(p) 22(p) = %ro(p) and

=

rl(p) =L - ro(p) = ro(p), and the assumption £2(p) < ro(p) itself.

Similarly, Lemma 3.4 yields that

(3.18) w;(ro(p) - 4(p)) s 5(1 + J1+8C () (p)

Combining (3.16) through (3.18), we obtain

ro()+(2e(eN™ T s X 22a )" .+ §

l—'lM

—Eg (1+J1+BC (A)) R

and the Proposition is proved.
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4, A New C ca

Before we can establish our main theorem, we need to recall another
concept:

Fix a point 'po € Mn- and consider the distance function

ro(p) - d(po,p) on M. A point p € M" is a ¢xritical point of Xy if and

only if for any non-zero tangent vector v € TpMn there is a minimizing
geodesic Yo to Py such that {(16(0),v) < %. It is easy to define a
continuous gradient-like vector field Vv on the complement of the set of

critical points of r,, which glves rise to the

0’
Isotopy Lemma; (c.f. [GS],(G])

Let 0 < p, < p,, and C a connected component of m)\B(po,pl). Let
U be an open neighborhood of C. Suppose that C contains no critical
point of Iy Then there exists

1) an isotopy from ETEET;;T to ETEET;;T\C which is the identity map

outside of U, and
11) an isotopy from Mn\B(po,pz) to (B(po.pz) U C) which 1is fhe identity

map outside U.

The hypthesis on sectional curvature enters the proof of Theorem B

through the following

lemma 4.,1. (Critical Point Lemma)

Let M be a complete Riemannian manifold with base point Py and let

n

p €M be a critical point of Ty Suppose that:
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0) there is a non-increasing function X : [0,®) - {0,») such that

o«
CO(A) - J rA(r)dr converges and that Riclq = -(n-l)-AorO(q) at ail
0
n
peints qe M,

1) . the sectlonal curvatures of M7 are bounded from below by -Az where

A 1is some positive constant, and

. 34 FCTNY)
i1) ro(p) = RQ i max{EK s 17A (1 + 1+8CO(A))].
Then any minimizing geodesié from Pg to a point in B(p,CaA-l+l/nf0(p)l/“),

when extended beyond its endpoint, will meet the cut locus Cp of Py
0 ,

before its length exceeds ZrO(p).

Here C, = C,(n,}) = %— n-2 3 __,yl/m

4 7 n-1 JTH8C, (%)

as in Proposition 3.1.

Proof: Assume on the contrary that there is a minimizing geodesic vy from

Py ' to some point Py € S(pO,ZrO(p)) such that d(p,v) = CaA'1+1/nr0(p)l/n.
Because of hypothesis (ii) we know that
1 Lo(P) -1+1/n 1/n
(4.1) min lg ro(p).—————-——— } = C4 < A . ro(p) .
./l+BCO(A) .

Therefore Proposition 3.1. implies that e(p) = %X .

On the other hand, we can reason as in the proof of the standard
critical point lemma: Let 7y be a minimizing unit speed geodesic from p
to py. Since p 1is a critical point of Ty there exists a minimizing

geodesic Yo from p to Py such that {(16(0),7i(0)) < =. Let us

TS
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' - - 5
consider the points Py = vo(p) and Py = 11(p), where p = ir - The
triangle inequality implies e(p) = 2p - d(EO,El). Applying_Toponogov's
theorem and the Law of Cosines to the 1sosceles triangle Eo,pﬁl, we obtain

that cosh Ad(po,pl) s coshZAp. Altogether:

(4.2) e(p) = 2p - At arcosh(coshzhp) > %K
This contradicts the upper bound for the excess obtained from Proposition

3.1, and the lemma is proved.

Remarks: i) Recall that the étandard critical point lemma is proved by
applying Toponogov's theorem twice (c.£. [G], [GS]). We have replaced one of
these steps by our estimate in Proposition 3.1. This way we can make use of
a lower bound for Riccl curvature, which in our case 1s quantitatively
considereably stronger than the lower bound for sectional curvature. The
price pald for working with the weaker notion of curvature is that we can
only control the height d(p,vy) of the triangle Py'P: Py from below,
"rather than its angle at - Py

11) Since the function. 2p - A-l-arccosh (coshZAp) is monotonically
increasing in p and bounded by A_lin(Z), it is clear that we are not
loging much when choosing p to be %X in the proof of the lemma. We
emphasize that Toponogov's theorem is only needed to get a uniform estimate
for the excess of the a priori bounded triangles Eo,pﬁl. This suggests that
a lower bound for sectional curvature which we have required in Lemma 4.1
might just be a technical hypothesis. It is an open question whether there
is a critical point lemma which involves gnly a lower bound on the Ricel

curvature,
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Roughly speaking, Lemma 4.1 confines the sice of the set of critical
points. This restriction, which is non-trivial on all complete Riemannian
manifolds, can be made more explicit for spaces satisfying a suitable

diameter growth condition.

o on 4

Let M" be a complete Riemannian manifold with base point Py Suppse

that

0) there 1s a non-increasing function A : {0,o) - [0,») such that

-]

CO(A) - [ rA(r)dr converges and Ric[q = -(n-1)x o ro(q) at all
0
points q € Mn,
1) the sectional curvatures are uniformly bounded from below by -A2
where A is soma'positive constant, and
ii) there exists R1 > 0 such that diam(po,r) < CA(n,A)A-]"H'/nrl/n

for all r > Rl'

Then, all critical points of r, are contained in the union of
B(pO'RZ) and all bounded components K of Mn\B(po,Rz), where

3 4
R2 = max {Rl’fx' 174 (1+J1+BCO(A))].

Notice that the constant Ca(n,A) contains a factor E%%, and so hypothesis

(11) implies that M" has dimension n = 3.

Proof: Assume on the contrary that there Is a critical peint p of r

which lies in an unbounded éomponent C of Mn\B(pO,R2+8), for some 6§ > 0.

By the Hopf-Rinow theorem there exists a sequence of points € C,

Py
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1l < j € », such that ro(pj) ~+~ o in the limit j -+ «. Let 7j be a
minimizing geodesic from Py to pj. It i3 a standard fact that a
subsequence of these geodesics Tj converges towards a ray <y emanating
from Py-

Clearly 7[R2 + §,o] ¢ C. On the other hand our critical point lemma

'1+l/nro(p)1/n- Using hypothesis (il) we

implies that d(p,vy) = Ca(n,k)-A
conclude that p and ﬁ o ro(p) lie in different connected components of

the distance sphere S(po,ro(p)).

S(pO,R2+6)

~— : \

P

) [/
lC(t) /
~ ! "
5 —
Y°r0(p, 4/ ——,——

A(t,p)

pox\

~

Figure 3

This figure depicts the basic problem which has been taken care of in the
proof of Proposition 4.2. Our reasoning is essentially that on the one hand

the annulus A(t,p) must contain a critical point'of ro, since the curve
c(t) leaves the component Z(t) of the distance sphere S(po,rooc(t)), while

on the other hand it cannot contain such a point by the estimate given in
Lemma 4.1. :

From the way the ray v has been constructed, it is clear that there is
a rectifiable curve ¢ : [0,1] = C such that ¢(0) = vy o ro(p) and
c(l) = p. Let Z(t) be the connected component of S(po,ro(c(t))) which

containg «y o ro(c(t)). Consider the set
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(4.3) A= {te(0,1] | c(t) & T(t)).

Now 0O e A, 1 ¢ A, and A cC [0,1] 1is a closed subset. Qur indirect proof
will be accomplish by deriving the contradiction that A 1is an open subset
of [0,1] as well. For this purpose let us pick some t € A. By hypothesis
(11), there is an e¢-neighborhood U E(t) = (x € M" | d(x,E(t)) < ¢} of
Z(t) such that

-1+1/n

(6.4) diam U_Z(t) < G, (n,A)-A ¢ (rgoe(t) - A

Choosing p > 0 sufficlently small, we may assume that the Intersection of

the annulus A(t,p) = B(po,rzoc(t)+p)\3(p0,rooc(t)-p) and Uez(t) is a
connected component of A(t,p). In light of Lemma 4.1, inequality (4.4)
implies that the component A(t,p) N UEE(t) contains no critical point of
Ty and therefore the isotopy lemma applies to this plece of the annulus. In
this context let us consider an open neighborhood U(t) of t iIn [0,1]
such that I(t') c a(t,p) n Uez(t) for all t' € U(t). The isotopies of the
sgt A(t,p) N ﬁez(t) In its neighborhood Uez(t), which we have cbtained
above, show that c(t's € Z(t') for all t' € U(t). Hence U(t) c A, i.e.

t 1s an interior point of the subset A ¢ [0,1].

Proof of Theorem B:
In dimension n = 2, we are just dealing with asymptotically nbﬁnegative
sectional curvature, and Theorem B turns out to be an easy Corollary to the

proof of the Betti numbers theorem as given in [A].
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'In the general case when M" has dimension n = 3 it is evident that
theée exists some radius R, > 0 such that diam(p,,1) < Ca(n.A)A-1+l/nrl/n
for all r > Rl’ simply because we are assuming that Mﬁ has diameter
growth of order a(rl/n). Hence it follows from Proposiflon 4.2 that all
critical points of r, are contained in some large ball .B(pO'R)' Notice
that we do not claim that Mn\EYEBTEET has only finitely many bounded
connected components K; this is only true for the complement of a generic
closed ball. Anyway, all but finitely many of the connected components K
are contained in B(p0,2R2), and this is all we have used.

Since M" is connected, the other assertions in Theorem B follow now by

standard Isotopy arguments.

Theorem A 1s a special case of Theorem B, and so we have proved it as
well. Finally let us point out that, in case one only wants to deal with
manifolds of nomnegative Ricci curvature, the isotopy arguments in the proof

of Proposition 4.2 are not needed. Instead we could refer to the following

[oY:} on 4

Let M" be a complete Riemannian manifold with Ric = 0. Then

(6.5) #m(i ¢ w %) - a0\ s 2

for any bounded domain @ C M™. Moreover, given any ball B(po,r) c Hn,
the boundary of each component of the complement Mn\B(pO,r) must be

connected.

Proof: As any complete manifold with two or more ends contains a line, we

conclude from the Cheeger-Gromoll splitting theorem that the universal
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covering M  has at most two ends. Now (4.5) follows by counting the

preimages in M of the point [Mn\ﬂl in the quotient space Mn/(Mn\n) ,

using the commutative diagram:

3’9 P
M > MY/ (M\Q)

o3
MP s MU/ (d\q) .

Suppose there is a ball B(ﬁo,r) such that the boundary of Mn\B(po,r) has
two or more connected components. Then xl(Mn) contains an {nfinite cyclic
group by van Kampen's theorem. Now a contradiction to lnequality (4.5)
arises, since jg is injective on this infinite subgroup of .ﬂl(Mn),

provided O 1s chosen sufficiently large.
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