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Introduction; 1In oréer to study homological properties of an arithmetic
group I' , it is helpful to know a contractible locally finite (regular)
cell complex € on which it acts with finite quotient. Then, for
instance, C/; ( E a torsionfree subgroup of finite index in I ) is a
finite Eilenberg-MacLane complex for ; , whose homologiles may thus be
computed combinatorially (cf. [Br], Ch.I, 4), Starting with the
(contractible) symmetric space of maximal compact subgroups of the
corresponding real group G , such a complex is provide& by Borel-Serre
compactification ([BS]). However, for more explicit calculations it
would be advantageous to find deformation retracts-as small as possible
with all the desired properties. For GL and SL grouﬁs, such
subspaces have been described in {Se2], [So], [Me], [SV], and [As]. This
paper, which is basically a shortened translation of [Sc], intends to
define similar spaces for Spn(l) and for the automorphism groups of
indefinite unimodular quadratic Z-lattices (i.e. "inner product
Z-spaces" in the sense of [MH]; their discriminant is #1 ). We shall

decrease dimensions manifestly by only 1 , but it will be shown that

_ further savings can be made once the complex has been computed. The

dimension eventually achieved cannot be less than the virtual

cohomological dimension of I' , which means in our cases (by [BS],



11.4.3) that at most r dimensions can be disposed of, Qhere r 1is the
Witt index (resp. n/2 ). - It is quite likely that the main results
remain valid without the unimodularity assumption, but in this case some
of the proofs would become much longer (c¢f. also [Grl] and [Gr2]).
Generalisations from Z to other rings and the introduction of certain
"sets of weights"” (on classes like the ones deflned in 2.5 below, cf.
[As]) may be possible as well. -

Among the criteria for the formulation of this text are brevity and
concreteness; the reader is asked to accept occasional fluctuation in
language (which is mainly geometrical like in [As]), and the onus of
some straightforward verifications. Since the proofs are logically ;.
interwoven to a high degree, variants of known facts.are sometimes
.Included without mention, and the distinction "lemma" - "corollary" etc.
loses most of itg meaning.

Kind help from H.Behr, J.Wolfart, and others is gratefully acknowledged,
also support by the Australian European Awards Programme, the Deutsche

Forschungsgemeinschaft, and the Max-Planck-Institut fur Mathematik. -

§8 1 The real groups G

1.0 Notatjons and definitions: Let M*(*) denote the set of matrices,
*t the transpose of a matrix. I, 1is the unit matrix, and
Ib .
I i eM _(Z) . R® and Z® mean sets of columns. If § is
a,b 0 a,b

an additive subgroup of R™ , and M a matrix out of Mm(R) , then §



endowed with the bilinear form v,w p vaw will be called (S,M) , so
that Aut(S,M) := { g € GL(S) | gtMg =M } . The columns of a matrix A
are indexed Ai , and by abuse of notation no difference will be made

between A and the set {A;} (in given order). E.g., saying " m 1is a

i
basis of m-Z" " 1is to mean that [mi} is a Z-basis of that module.
Y - 1& c.um(m)‘ shall contain the upper triangular matrices, %ﬁ those
with positive dlagonal entries. ¢ and ¢" are the analogous notations
for lower triangular matrices. -

By the Witt decomposition theorem, the real groups to be considered may

be fixed as

G = Aut(Rn.J) , where J := Is R
el

r
r 2 1 (expressing that the form be indefinite),
¢ = +1 (to determine whether the form is to be symmetric or
symplectic),

n=13+ 2r , and

[ 8=0 1f e = -1 ]

The data r , s , and ¢ are assumed fixed throughout this paper, thus
J , G etc, are fixed as well., - An unspecified trisection of the index
set l...n in a matrix means 1l...r , r+l...r+s , and xr+s+l...n . As

an example to this notation, note that (a,b,c) € G is equivalent to

t t t t
0 - aiJaj cich - aink - kaci and (L
t t
kab1 - 61m , aich - 6ij for i,j=1...r , k,l=1...3 .

Finally, K := G n On(R) , which is‘a maximal compact subgroup of G .



* %
l;l Let ¢ consist of those g € G which have the form g I *
‘ ' 0 0 *
with £ € %: . Calculation shows that in fact ¢ is the set of all
2 -£pt -2x
e-j0 I, b € GL_(R) (1)
0 0 2

with 2 € Q+ and

,xt + ex - ptp -0 . (2)
1.2 Remarks; Define M~ := (ve R%|n“Jv =0 V meM ) and M :-

(v € Rnlmtv =0 VmeM } for the remainder of this text. One may
convince oneself of the fellowing facts by geometric considerations or
by.straightforward matrix computation:

{1): Let b be a basis of a totally isotropic subspace S of (Rn,J)

in other words, b € Mn p(m) has rank p = r , and btJb = 0 . Then we

have, orthogonally for both bilinear forms, -
R =51 (s nsh L5 | | " (1)
Also there Is a u € K which respects this decomposition, i.e. its

columns distribute on it in given order. wu:b = £-In p

, 2 e %: , can be
forced. .

(ii);: Let S be as in (i), then s~ is positive semidefinite (and
s¥ n st positive definite) 1ff p = r .

{1i1);: ("Iwasawa decomposition"): For g € G there is exactly one

u € K such that u-g € ¢ .-

(iv); As an open set of coset representatives, ¢ is homeomorphic to

K\G . Furthermore, the data 2 , x , and p from 1.1 define a



homeomorphism from ¢ to some Rﬁ x RY {(take 1.1(3) into account).

1.3 ILemma; For this technical lemma (which, however, also has a

geometrical meaning), we consider a space (Rn,JA) with an X € éLs(R)

a
I * ‘
and J, := [ A5 r] . Let B := —%—-1;- be a basis of a totally
I _—
r 0| *

'isotropic subgpace in it with a € Mi(R) (this implies of course

r

al »
[o]
a € GLi(R) ; 1=0 1s allowed). Then we have B = | 0 | #* ,
0 o
L b
beM (jsr-i) : and if in addition B-R° nI_ _-R® = I_  .a-R',
r-i,] n,r n,i

then rk(b) = j

Proof: To prove the last assertion (the others are straightforward),

r-1

assume b-v =0 , v e R . Then B-[S] is an isotropic vector of the

* *

form {*] , by (mn,Jw)-isotropy even [0] , 8o the assumption forces it
0 0

to be in I 'a~mi thus B- 0 -1 ca-w =B |¥

n,i ’ v n,i 0

is a basis, v =0 q.e.d:.

] , W€ mi . As B

8 2 The arithmetic groups [

2.0 A "lattice" (In,M) with a symmetric M € GLn(i) is called of
type II if the quadratic form induced by M asumes only even values on
Z" . Otherwise it is said to be of type I. Obviously the type is

invariant under isomorphisms.



2.1 Fact: For a triple r , s , ¢ , there is only one isomofphism
class of lattices (Zn,H) such that (Rn,H) is isomorphic to (Rn,J) ,
except if ¢ =1 and s = 0 mod 8 , where two ;lasses exist, one of
each type.- Proofs can be found e.g. in [MH] I, 3.5 (case e=-1) resp.

[Sel] V, Th. 4 to 6 and §3 (e=1).

2.2 In these exceptional cases we take the liberty to deal with the
class of type II only, to avoid further complications. This
(inessential) restriction can be justified by the fac£ that the
automorphism groups of the two lattice classes are commensurable up to
isomorphism, as shown in 2.3 below. Thus it suffices to regard but a
single group T (r , s, and "¢ always assumed fixed ). Fix a matrix

k € SLB(Q) such that k is of

t t
(1) W*) Mk’
type II (cf. {Sel] V, 1.4), and define k(i) € SLSi(Q) to be the direct

€ SLB(Z) and (Ig,k

matrix product of 1 samples of k(l) . Now we define permanently:
{ I s not divisible by 8 (or s=0)
K =

8
k - ieNl !
(1) 8 81 , €

e Ir
J = kK € SL (Z) ,
x n
eIr

I
&5 = { T x . e SLn(Q) )

- 3 - t -
T = aut(Z,J ) = { v € GL (Z) | ¥ Jy=J)
Since J = ﬁ-tJnﬁ-l , obviously (Rn,Jn) is isomorphic to (Rn,J)

Also, (Zn,Jn) is of type II if ¢=1 and s = 0 mod 8 , as desired.



2.3 In the latter case, a representative of type I is (Zn,J) (if
s%0 ) resp. (Zn,ﬂ) with M := [Ir -1 ] (1f s=0 , whence J = Jx)‘ We
r

1 1

have I = GLn(Z) Nk GCg =g GLh(Z) &£ N G, the latter group has a
subgroup of mutually finite index in common with Aut(Zn,J) -

GLn(Z) N G , as can be seen by clearing denominators. The same argument
1/2 I -1/2 1

I 1

r] takes the role of x . So the
T T

works for "s=0 , where [

missing groups are commensurable up to isomorphism to our T's .

2.4 In proofs we will also have to consider .(ZS,M) with a positive
definite M € SLS(Z) . We collect some facts:

(1): For a given s there is only a finite number of isomorphy classes
of such objects; 1f s < 7 , just a single one.

{ii1): The spaces (QS,H) , 8 fixed, are pairwise isomorphic, in
particular to (QS,IS) (follows e.g. from [Sel], Ch.V, 1.3.6, 2.11
Th.2, Ch.IV Th.7 & 9).

(111): Type II again only occurs if 8|s-, e;g. with (Zs

t
ks/8)%(s/8)’
([Sel], Ch..V §2 Th.2 Cor.l). -

2.5 Thanks to these results, we may permanently fix a finite nonempty
set 1 C SLS(Q)' (1), such that W &€ SLS(Z)‘ ¥V wel , and that
{(Zs,wtw) | w €] 1s a set of representatives for those isomorphy
classes from 2.4(1), except that In the case s = 0 mod 8 only those of
type II are admitted. We may assume‘ x € 1 . Kneser's algorithm from

[Kn] can be used to calculate Q , which he actually accomplished for



s < 16.

2.6 Define for each w e @}

w

' 1
J :-[ v w r] e SL (Z) ,
n
el
r
then (an,Jw) is isomorphic to (IRn,JK) , and (Zn,Jw) is of type II
if 8|s , SO (ln,Jw) *is isomorphic to (ln,Jn) by 2.1. This means
that we can fix permanently matrices Bw € GLn(Z) (which may be viewed
as bases of Z° ), such that
BB ~J . (1)
WK W w

It is convenient to take Bn - In

2.7 The lattice l(Zn,Jn) will now be examined from a geometric point
of view, imbedded into (Rn,JK) . We begin with some more definitions:
For an S c R” .leﬁ

$° = (22| 2 o=-0 Voes ),

<S> : be the R-span of S . !
A subgroup U of Z" will be called sublattice only 1if

Uo<i>niZ ("c" always holds) . | (1)
Note that for two sublattices U and V one has

UcV » [U=V o rkU=tkV] . (2)
A set which i1s a basis of a sublattice is called primitive.

¥ : will denote the set of maximal totally isotropic sublattices.

2.8 Remarks:; (i) (Gauss): If P € Q are two sublattices, any basis



{pi} of P can be completed to one {pi,qj} of Q . In particular, if
-P » Q , one finds an element of Q that is primitive with {pi} (cf.
2.7(2)).

(ii1); As sublattices correspond one-to-one to their Q-spans in q )
they can be handled like vector spaces. E.g., together with P and Q ,
P° and P n Q are sublatticps; rk P° @n - rk P .

(111): Every element of ¥ has rank r . To see this, take bases

o]

(py) {pi,qj} , and {pi.qj,tkl -:B of P, P°, and Z°

. oo*
respectively according to (i). Then BtJKB has the form [o * *] and
* Kk %k

determinant 1 . Thus the lattice spanned by {qj} is of discriminant

1 and anisotropic (because P was maximal totally isotropic), so it
must be definite (cf. [Sel],Ch.V, Th.3), i.e. <{qj}> anisotropic. From
<P%> - <P> @ <(qj}> , it follows that <P> is maximal totally
isotropic, hence the assertion. - lNote that this statement is generally
false if one admits a non-unimodular matrix (symmetric of Witt index

r ) instead of Jn . -

2.2 Theorem: Given a matrix (‘basis’) b such that b-Zr € ¥ , one
can find a ¥y €T and a unlque w € 1 such that b = 7~Bw-In r
Proof: Once a completion B = (b,c¢,d) € GLn(Z) satisfying
t
B JK B = Jw , (L)

has been constructed, v := B-B;,1 is in T (because of (1) and 2.6(1))
and fits the theorem.

To achieve this, we start with a completion like the one from 2.8(iii),
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N 00 *
so we have B J B = |0 * * and
o % *
t t
det(b de) = 1 = det(c Jnc) . (2)

This basis will be modified step by step to fulfill the remaining

requirements of (1). Firstly, assume by induction that d(i):- {djljsi)
already satisfies the following ones:
bucu d(i) is primitive, (3)
t
kasdj - sk,j {k=1,..r, i=i), and (4)
¢ :
desdm - 0‘ (3 ,msi) . (5)

Then the Z-span S of (3) and {bJ|j>i}° are two sublattices both

(1)
of rank r+s+l (cf. 2.8(1i)), the latter containing the former,

therefore they are equal. Now change d to complement (3) to form a

i+l
basgis of {bj|j>i+1}° (cf. 2.8(1,ii)). Without losing any achievements
(always assume those dk with k>i+l adjustable to restore the basis

property automatically), we may still alter d by adding elements of

i+1
s,.% to it. Taking d . (btJ d,):d, as our new d we have
(1) i+1 T §=i VP3k%970 Y, {+1
b;Jndi+l = 0 for Jj»i+l . In fact, abbreviating n:-bi+§J~di+1 , the
t Ir:-l © ¥
matrix b-JKd - S " has determinant *1 by (2), thus 5 =1 can
o %

. Next we reduire d tJ d

be obtained py adjusting the sign of d 141 %441

i+l
to be even. If s 1{s a multiple of 8 , this must be the case already,
by definition of J. (which is hereby motivated). Otherwise cR®  is
anisotropic ‘and positive semidefinite (since bR ® cR® = b~ , cf.
2.8(iii) and 1.2(ii)), 1.e. positive definite, also its discriminaﬂt is

1 (cf. (2)), therefore, by 2.4, ¢-Z% contains an element v with

thKv odd. In the same vein an above, we may still add elements of b°
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to d 1° replacing the latter by d, ,+v , 1f necessary, and then by

i+ i+l

d - 1/2 (4 . This continues our

i+l
induction hypotheses, so we end up with bthb -0, dthd = 0 , and

. T .t
14196%410 Pis1 7 st (947.%40)

btJnd - Ir . - Now the ¢; can be doctored on by elements of b-Z"° at
r t . t

liberty: Taking ¢y - Jfl (ciJndj)'bj for . yields cindj = 0 and

conserves ciJij =0 for all i and j . As above one sees that the

matrix cthc defines abpositive definiterquadratic form Z" -+ Z which
in the case Bls assumes even values only. By definition of G , there
must be a w out of it and a n € GLS(Z) such that chtJncm.- wtw .
The replacement c-m for c¢ fulfills with ctJKc - w'w the only
remaining condition for (1). -

To prove the uniqueness assertion, assume b° = b-Z" @ c.Z° -

b-Z" ® ¢c-Z° to be two decompositions of the above kind, and =_ , =

b’ e

the projections induced by the first one. Then for wv,w € c-Z° we have
t ‘ t, t

(wc(v)) Jn(xc(w)) - (xb(v)+1c(v)) JK(xb(w)+ﬂc(w)) -v an ; thus

xcl_ is a homomorphism of positive definite lattiées, bljective by a
c: '

symmetry argument. The corresponding matrices (versions of w'w )
therefore are congruent; by definition of @ they must be equal, whence

the claim.
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§ 3 Reduction theory for T

3.0 The real group belonging to [ 1is 5'165 . However, it is more
comfortable (in view of 1.2(i)) and topologically equivalent to let T
act on the space |

4 = G-x
by multiplication from the right, since K-$.I' = 9 holds. The
corresponding homogeneous space is

X = K\g .
In the sequel it is understood that most constructions on 9 descend to

X . - The following reduction theory of that action is centered about

the notion of :N , using the results of § 2 :

1‘1__2;99931;195; Given he€ % and a basis b of b-Z e X , one can
find yeTI' , ue K, and a unique w € 1 such that h:=uhy € 9 has:
2 -fpw -4x
h = w ) -B , and (1)
£-t

I -b

1-Bw~ nr . ‘ (2)

£ can be required to be in 4" or to be in ¢t ; the data £ , x , and
p may now be regarded as functions 4£(h) = £(h,w) etc. of h and w
satisfying

xt + €X - ptp -0 . (3

Let us define permanently one more function of that kind:

y = y(h) = y(h,w) = 27007 = (27555
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Then one may switch between the 4" and the ¢ option without
changing z , x , and p .
Proof: Take vy and w from 2.9 to satisfy (2). Now h-y € 8 , whence

. I
calculation with 2.3(1) and 2.6(1) yields h-y-B | * wl € G . For
. I

this matrix we can therefore find a u from 1.2(i) (sulitably adjusted
in case of the 2+ option, whence the last claim), so (1) and

(3) = 1.1(2) follow. -

3.2 Define the volume of a matrix m as
vol m := (det(@®m))/2 2 0

We collect some facts about this definition for reference:

(A); vol(um) =volm 1if ue O (R) |,

(i): vol(m-g) = volm If o € iSL*(R) ; therefore

(a) we can define

vol M. := vol m- if m is a Z-basis of the lattice M = m-Z :

(this agrees with the notion of ordinary volume of a fundamental
parglleiotope. The reader may find geometric formulations for all
these remarks.),

(b) wvol [g :] - vol [g 2] by column operations, if a 1s regular.

(341): vol(m-o) 2 vol m if o € M*(l) N GL%(R) ,

(ivd; If m is a square matrix, vol m = |det m| |,

a
() vol | b | = detl/z(ata +b + cel)  , e.g.

a0
(vi): vol |O byl =vol a - vol b ,
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a .

{(vii): vol [b] = detl/z(ata+ctc) = vol [2] ("empty" matrices allowed).
c

(viil): Given two subgroups A and B of Z" with bases a resp.

b , such that <A>N<B> = {0} , and some g € GLn(R). Then
vol (g-( <AUB> n y A )) s vol (g-a) - vol (g'b)
To prove this, (i) allows us to calculate with respect to a ONB (basis

out of On(R) ) whose columns span first g-<A> , then g-(<A>®<B>)

a B
I.e., g-(a,b) transforms to [0 7] with det a % 0 . Now
0
A+B C <AUB> n 2 ;
vol(g(<AUB>NZ™)) < vol(g(A+B)) (by (i11))
= vol(g-(a,b)) = vol a - vol vy (by (ii,b), (vi)?
< vol @ - vol [5] -  (by (vii))

= vol(g-a) - vol(g-b) qg.e.d.. -

(1x): Define X, : GL;(R) - R* , j<i such that A,

product of the square roots of the j smallest eigenvalues of n'm .

{m) denotes the

This is a continuous function, and given b € M1 J(IR) , m€E Gli(m)‘,

/
one has

j(m)-vol b .

(Written with respect to an appropriate ONB, this amounts to the known

vol{m-b) = A
"minimax principle"). -

Two'auxiliary reduction concepts have to be recalled:
3.3 We shall encounter the following sets:
L i-(zewl |22e2Z) ,ven.

They are in fact groups (lattices), and Lw = R® . The "Dirichlet
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domains" (sometimes called "Voronoli cells")
a = (pE€ R® { ptp < (p+z)t(p4z) Vzel ) ,veq,

are compact rectilinear polyhedra with finitely many faces, and for any

p E R® there is a A € A, with p + 12 € L

3.4 A real i-by-j matrix b of rank ] shall be called M’-reduced
(cf. [Wa], 2, §3), if [the form defined by] btb is Minkowski-reduced
(M-reduced for shoft) in the more familiar sense (ibd. or [Bo], §2):
Thus for any basis b there is a ¢ € GLj(Z) such that b-o ("change
of Z-basis") 1is H'-reducgd. Together with b , u-b (ueoi(m)) is also

M’ -reduced.

3.5 lemma; For a numbgr c and a matrix m € GLi(R) , there are only
finitely many subgroups B of 7t with vol(m-B) s ¢ .
Proof; For such a B of rank, say, p let b be a M'-reduced basis
of m-B, and u(m) := min {vtvlv € mli - {0} 0 . The “Minkowski
inequality” (cf. {Wa], 2, §7) yields

i 2

n b:bv < k-det(b"b) < k-vol?b 5 k-c? ,
y=1 .

where k depends but on p . This implies
2,1 -1 2 1-1
b:by s ke (b)) s ke p(m)
As m 1is fixed and by € m-li , all bu and thus B must be from a

finite set gq.e.d..

3.6 Corollary: In a nonempty famlly of subgroups of zZ" , those
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elements B with minimal wvol(m:B) for a fixed m € GLp(R) form a

finite nonempty subset.

3.7 We are now ready to apply these results to the situation of 3.1.
For h e€$ define

Ah) (= ( Ne N | vol BN < vol bM V M € & )
According to 3.6, this is always a finite nonempty set. Note that <h:-N>
( N integral) is maximal totally isotropic ig (Rn,J) iff NeXN . ny
vy € ' (which by left app;ication causes a permutation of XN ) and
u €K gives

N € A(h) = vol(uhy-y N) = vol hN < vol(h-yM) = vol uhyM
for all M e ¥ (cf. 3.2). This translates to

A(u-hey) = 7 Ah) | (1)
In particular A descends to X . lso, let

k(h) := vol hN for a N € A(h) ;
then (1) implies

kK(u-h-vy) = k¢h) . (2)

3.8 Our prospectiﬁe fundamental domain 1s the following set:

.- U
F well Fw i

where Fw consists of all h € 4 with the following properties:
2 -fpw -Ax .1
(a) h has the form h = W P -Bw from 3.1(1), implying
2t
3.1(2) ,

(b) wvol hN = vol hB I [ = vol(I ‘B) =det £] VMedXN ,
wn,r n,r
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or equivalently: BwIn,rZr € A(h) , or likewise: Idet £| = &£(h)
.(c) E_t is M’'-reduced, {.e. y 1s M-reduced ,
(d) 2 e ¢ (say) ,
(e) 1If € = -1 : |xij| <1/2 for all 1s1i,js i ,
(f) 1f ¢ = 1 , we have
(fl) P; € Aw (cf. 3.3) for all 1=<1i sr,
(f2) Py is in a fundamental domain of the finite group
Aut(w'tls,IS) c OS(Q) ; this domain may be defined by
demanding P, to have minimal euclidean distance in its

orbit from a chosen non-fixed-point in rR" ;

(£ |xij - xji[ <1 forall 1<si,jsr.

3.9 Theorem; Given any h € ¥ and N € A(h) , there are wel,

L4

(U-F)

vy€Tl and u € K such that v-N=B 1 " and -u-h-y € F . Thus
‘ wn,r w
K-FIT =4 or, slovenly, U\ ' =X .
Proof: Much like in 2.9, imagine that h 1s being changed to some

u-h-y until h € FU . 3.1 yields conditions (a) and (b) of 3.8 already

-t
c
(keep in mind 3.7(1)). With a suitable Bw[ Is ]Bw-l erTl
c

(= ¢ € GLr(Z) by 2.6(1)) , (e¢) is obtained. Achieve (d) as in 3.1,

then we are still free to apply any y € T' of the form

I * * *
Bw[ r Is * B;l . With 2.6 again, we see this to be equivalent to:
I

.1 Ir -Qtwtw -Z .
B "-y-B = I Q| € SL_ (Z) with (1)
w s I n
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2% + ez = Q% . (2)

The effect of this application is

2 p 2, ) (3

PPp o+, o

X PX+Z+puwQ . (5)
Let'us first consider the case ¢ = -1 . We can find numbers Zij for

1 s ] such that Izij + xijl < 1/2 . This is true for 1 > § as well
if we set zij:-zji , as x 1is also symmetric [3.1(3)]. This 2Z makes
a valid 4 with (2), and produces (e) by (5) (all w , p , Q etec. are
"empty”, thus Qtwth =0 etc.). -

Now let ¢ = 1 . Find columns q € Lw from 3.3 such that P, +4q; € Aw

and put Qi te- w'lqi e Z° (!) . Another integral matrix is then given

0. 1<)
by zij - { 1/2 Q;wtwqi i=j (this exp;ains the use of Lw ).
Qjuw, 1>]

These data satisfy (1) and (2), ylelding (fl) by (4). - Now a

T ' -
y - Bw[ ro B;l €l (1.e. me Aut(zs,wtw)) can be admitted; if (a)
I .

1
1s restored by means of u = [ LT € K , nothing is lost: In
I

fact the effect on h 1is p p wm-lw-lp -uw nttp, 2 p2, x P X ; as

w-tmtwt is an arbitrary element of ut(wZS,Ir) , which group conserves
Lw and Aw s (fz)_can be assumed additionally. -

At last, (1) can still be activated with Q = 0 . Choosing zij for

1 <j to satisfy )l < 1/2 , we find again that the

|zij RZACEN

same holds for 1 > j 1if we stick to (2). Let us rewrite (5) as
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X =x + 2, so we have I;ij'ﬁjil - Ixij+zij-xji-zji| -

2-11/2 (xyy-%yq) - zji| < 1, vhich settles (£f,). -
’ t. . 1/2
3,10 Corollary: (1): If e =1 and Sw is the maximum of (v v)
for v e Aw ("radius”; Sw:-O i1f s5=0 ), one obtains:
2
0= X0y <1/2 Sw , and (L)
|x1j| s12 6, +1) . (2)

($1): p and x are bounded on Fw (thus on F ).

Proof: (i): From 3.1(3) we find x - 1/2 pzpi 2 0 , whence (1), and

i
X, +X - ptp < 62 (Schwartz inequality), thus |x -
i3 731 it} w ij

172 |(x ) + (x i)| < 1/2 (§,+1) by 3.6(f,).

-X +x
1y "j4 1373
(i1i) can be collected from 3.6(e,f1) and (1).

§ 4 e ants and ess

4,0 In the case ¢=-1 , s=0 , the above amounts to the well;known
Lagrange or Minkowski theory on SLZ(I) . To extend some clasgsical
results about that to our general case, we make use of the traditional
notion of Siegel sets (cf. [Bo],2.7). Also we shall define a fund of

constants i.e. positive real numbers which depend only on r , s ,

Cy o
and ¢ . All this, and the use of the letters x and y , is intended
as a reverence for C.L. Siegel, to whom the results of §% 3 and 4 are
due Iin the case e=-1 ([S1], cf. 9.1 below) in a different formulation.
The reader who prefers a "modern" language will not find it hard to

translate this. -

From the proof of our "main reduction theorem" we forestall the
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principal step for future reuse. Note that
1/2

heF = k(h) =det 2= det ’“y , and (1)
+ -1/2 ' :
1ed = 211 - Y11 . (2)

4.1 Proposition: Let h be as in 3.1 with £ € €' . Assume that
vol(h-Bw-In,r) < vol h-E (L)

for all those E € L r(Z) such that E-Z° € ¥ and B;lE looks like

In . but for the first column. Then
. 2
(i): in case e¢ =1 , 111 < c1 ,
{(11);: 1if however e¢=-1. 2 2 < (1-x 2).1/2 provided that |x I 1
i 11 11 11
Proof: We shall concoct a particular E of that kind. For an onset,
8
gty | o ]
z
0 Ir-l
write B;IE - 2§wi1ﬁv 0 , where u = u(w) 1is the common
g2 |
zzﬁ 0
(. 0 )
denominator of the components of 2-w'1 . Once €k and v e Z have

been chosen arbitrarily, there is & z € N so that.the matrix remains
integral and becomes primitive. Computing the isotropy property as
usually, we find thgt E satisfies all our requirements.
Now let us choose S8 = 0 and v for the case 38 = 0 as follows:
Abbreviating

A= (ﬁpl-V)t(ﬁpl-V) ,
denoting the volume of the s-dimens;onal unit sphere by d(s) and
fixing some 0 < e <1, we demand |

e
A s = , and 2
p (2)
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28 8/2
18] S_ﬁ : (3)
d(s) e
This is not too immodest, because (2) and (3), read as conditions on
real B and v , define a "skew cylinder” in Rs+l of Lebesgue volume
25+1 ; the Minkowski lattice point theorem gives us integral such data,

not both zero. In fact B » 0 , otherwise (2) would say vtv 5 % <1,

i.e. v =0 . With this E , let us compute (1):

r 3

B o]
22110 e 0
22- ,
. * * “rr
- - E - '
|det 2] = vol thIn,r < vol hE = vol [258(v-fp,) 0
Lolip1g2
22118 0
“ 0 7

[the 1,1-entrj may be deduced from (Rn,J)-isotropy; now by 3.2(iii)
this expression cannot get smaller if we replace 5 by pi=max(p(w)) ,

aléo 3.2(11)(b) an& 3.2(v) allow us to put 0 for * and continue:]

2.2 2 4,-2.1/2
S p (2727 + 67X + 4700 -|£22-...-£rr|
, 2,-2 :
- |det 2]-u-(x + 28 4
2 .2 -2 1-pi _l-e .
Thus p(A+28°2,1) 21 ; 472 "EE > 528 3 > 0 by (2) and (3), or
) 2pp 2u—Lz 5
d(s) e
2. 225+l“s+1
11 s+1

d(s)z(es-e )
The best choice of e would have been E%T , ylelding

223+1ps+l(s+1)s+1 )

d(s)2ss
The case s=0 1s left to be dealt with. Or rather assume only s<7

Cl"'

(vhence w and B, are just I, bz 2.4%1)) to obtaln alternative
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ol @
__Ir-l
constants lateron. Take E = |0]| 0 . Then (1) reads:
1
0 0
“A11*11 ° W
222. o
* iy
' * __Ir 2 2t ,-4.1/2
|det 2] s vol P, 0 - [det 2| (x47+2;1P{P1+417)
-1
41 0
. 0 4
(derived the same way as above), which ylelds with 3.1(3):
2 -1
211 < (1-x11) if ¢ =1 and lell 1, (4)
in particular
) ,
211 €1 1f e=1 and s =0 |,
and also part (ii) of the proposition., -
4,2 Theorem; 3 .
4 For h e Fw Y11 Z 9 0 holds

Proof: The conditions for proposition 4.1(1) are fulfilled by
3.8(a,b,d), thus »

Y11 b2 l/c1 {(remember (4.0(2)) 1f =1 .

Furthermore, 3.8(a,b,e) and 4.1(ii) result in

172 -3 (3/4)1/2 for e=-1, q.e.d. -

2
11 = (I-xyy)
To obtain the promised alternative constants in the cases 1 <3 <7 we

use the fact that SI = max { 1 , 91/2/2 )}  (proof by induction; LI
s n

1s known as "The Dn-Lattice“). So 3.10(1), 4.0(2), and 4.1(4) combine to

2
Y11 2 l-xll =21 -1/2 SIS - mié {L/2, 1-s/8) >0 ,

since s s 7 was presumed ("coincidence").
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4.3 Corollarxy: #(h) = Cq holds for all h e ¥ .
Proof: Because of 3.7(2), it suffices to consider h € Fw for any w .
Thus y 1s M-reduced, the "Hermite lnequality" runs as Y11 S ¢ det y

(cf. [Sel], 2.2), whence by 4.0(2) and 4.2 :

/2

a 2
11 /2 -

k(h) = (det y)-l/2 < (c c

1
s (e4/e)) 3

4,4 Corollary: There is a g, € GLn(Q) for each w € 0 , such that

Fw-gw i1s contained in a Siegel domain for GLn(R)

[
Proof: Set ¢ := 1 €0 (Z) , &+ := I , and define
1 r - $1

[
g, i~ Bw[ wl € GL_(Q) . Then for any h e F_ we obtain
I
[y -Lﬁpt -1 2% +
h' = i-h-gw - I P € On(m)-F;-gw N ﬂn .
-t
2 .
Ve know already from 3.8(c) and [Bo], 2.7, that
2°F - diag(zii,...,z;i)-p lies in a fixed Siegel domain, i.e. p € m:
comes out of a fixed compact set and
-1 -1
0 < 211 < °521+1,1+1 Yyisi ¢ . _ (1)

The analogous decomposition of h’ 1is
. - -t t -t
1 -1 tp t -tp P -~ip X
r"£11’1"1'£11"£rr)' ' IS E . (2)

Like p , the last matrix is bounded owing to 3.10(11). The analogon of

h! = diag(ﬂr

(1) holds by (1) itself, plus (this is the crucial point) 4.2, 'which

- -1 _ -1/2 -1/2 '
contributes 211/1 1/211 Y11 = y . Since Siegel domains are

invariant under left multiplication with On(R) , the proof 1s finished.
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4,5 Corollary ("Slegel property"): The set (y € ['| K-F-y NRFwg)
("neighbours") 1is finite.

Proof: Let T be a Siegel domain comprising all those (fininely many)
Siegel domains mentioned iﬁ 4.3, s0 Kngw C on(m)-z -3,

g, € GLn(Q) . If KFy N KF » ¢ , there are w,p € I with

KFw7 N KF, » ¢ , thus 25;11 N Eg;l » ¢ . The "Siegel theorem"” (cf.

¥
[Bo], Th. 4.6) tells us that this holds for only finitely many

v € GLn(Z) even,

4,6 Corollary: If h e Fw , X(h) it 1is taken out of a finite stock.
Proof: 3.9 applied to M € A(h) gives us some u-h-y € F, , thus
h e Fw N KF¢1 , which means that « is of the sort 4.5, In 3.9 we had

M- 1Bwlr , proving the claim.

4,7 Corollary: #X(h) 1is bounded on ¥ (resp. on X )
Bﬁggﬁ; This is a direct consequence of 4.6, since by 3.7(1), it

suffices to consider h € Fw .

4,.8(§) Lemma: The conditions 3.8(b) follow from finitely many of them.
Proof: Such a condition is indispensable with a particular M e ¥ {iff

there is a he$ satisfying all 3.8, except that vol hM < vol thIn .

) r 1
violates 3.8(b). Then h(f) T- S § ‘h  (rzl) preserves
rl

3.8(a), (c) through (f), and in fact 3.8(b) for N = M , since
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(r) 1-11 or
vol(h'"’B I ) =vol| 0 | =+ volnB1I_ , | (2)
wn,r 0 wr
" A
whereas, if B is a Z-basis of hN ,
c
vol(h{™N) = r°T det}?(aCA+r?B Ber*ctC) 2 +'F vol BN . (3)

Now choose a basis m of M whose first 1 columns span the

a *
o1 *
sublattice M n B I_ _Z° (of course, 1 < r). Then h-m = *
wn,r — 5
b
with det a » 0 » det b by 1.3, hence (use 3.2(1i,b) etc.)
vol(h{™ ) = r'ildec al-fr-ildet cf 0 . (&)

From (2), (4) and the fact that everything is coﬁtinuous in 7, one
deduces that there must be some r > 1 such that

vol(h{™ M) = vo1(h{™B I ) , which means n(" e , M e 2n(™)
4.6 shows that only a finite number of M can occur this way. -

(1) The reader who feels like some more exercise may convince himself
by these means that eagh Fw is nonempty and in fact noncompact, and
(more important) that all hypersurfaces of 9 or X defined by,

vol M - volN=0 (M, Ne ¥ ) are nonsingular.

4,9 Corollary: Each Fw , and thus F , is closed.

Proof: All the inequalities of 3.8 describe closed sets. It remains to
show that finitely many of them suffice to define F . This is known for
3.8(c) (cf. [Wa),1l,88 for a proof analogous to the above one), and 4.8

settles 3.8(b).
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4,10 In 4.6 one may have noticed that the "reason" for F to be
noncompact is that k(h) can become arbitrarily small (see also 5.2
below). Indeed, we have a _

_ Corollary: Given any &k > 0 , F(k) := {(h € Fl k(h) 2 k& } 1is compact.
Eiggﬁ; .This gsaet is closed as we have séen in 4.9, so we are done once
we know that each' (FwnF(k))ogb lies inside some compact set. In fact
it is contained in a Siegel set by'd.h, thus all that is left to do is
to find a positve lower bound for jrr in 4.4(2) (which then suppliles

an upper bound for l;i free of charge). From 4.4(1) we compute:

S R -(r-1)(r-2)/2,-(x-1)
lrr - 211 e £r-1,r-1 det £ 2 Cq 211 det 2
- céy](_;_:-l)/z(det 2 cécér'l)/z(det gy 1/2 (by 4.21)

= cécé k (by 4.0(1), 3.8(b)[thifd version], and hypothesis).

§ 5 The retraction

5.0 To understand-tha deformation retraction (of 9 or X ) defined
below, it might be helpful to 1magin; the orbit space x/r as a set of
"rotating lattices” K-h-ZV . Roughly~speaking, the process then amounts
for such a lattice to finding the intersection of the "smallest totally
isotropic sublattices"” and inflating its R-span while compressing some
perpendicular R-space, until a further such "smallest sublattice"
exists. This procedure (the ﬁrinciple‘of which 1s gimilar to the one

used in {So] and [As] and in fact dates back to Procrustes) 1s repeated
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as many times as possible. - We start with some lemmas on X(*) , of

which 5.4 is most important:

5.1 Lemma; For any (relatively) compact set C C 9 the set h:C Ah)
is finite.
Proof: If hecC, Ne€X(t), 4.3 and 3.2(ix) yield: ¢, = &(h) =

3
vol hN = Ar(h) vol N2 A(C) vol N (with some A(C) > 0 ); 3.5 grants‘

the lemma.

2.2 Corollary: k(*) 1is continuous on 9 (or X ).
Proof: Choose a relatively compact neighbourhood C of he ¥ .

Thereon k(h’) 1s the minimum of wvol h'Ni

i.e. of finitely many continuous functions.

( Ni provided by 5.1),

5.3 Lemma; Given Mc ¥ , HM) := the$| Mc A(h) )} 1is closed.
Proof: Stralghtforward from the definition. '

3.4 lemmg: For h e 9 there is a neighbourhood U such that
X(h’') c A(h) for all h’' € U .

Proof: "Take C and the N from 5.2, H(*) from 5.3, then

i

U=¢C - H((Nii) fulfills the requirements.

U
{1|Ni€1(h))

5.5 Our deformation will run along. geodesics of ¥ . This notion
presumes a totally 1sotroplic subspace S of (Rn,J) , which will later

be obtained as indicated in 5.0,
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For any subspace V C R" {with ONB (vil), let

g R® - v [wep f (viw)vi ] ‘ (1)

denote the Euclidean orthogonal projection onto V . We can now define
ps(t) € nn(m) for t O
by postulating that the corresponding linear application be (remember

1.2(1))

woptm(w) +x N (w) + t'l-n (w) . (2)

§ (s nst) s=t

2.6 Remarks:
(i1): Witha. ueK from 1.2(i), we have

tIdI ]
r-d

pg(t) = u: s 'l , hence pg(t) €G

A1) pg(1) = In :

5,7 Define:
R(h) := Nis'lﬂ(h) N, (vhich is a sublattice, possibly (0} ),
8, = (he 9] rk R(h) = 1)
Note that
" A(h') c Ah) = R(h') DR(M) . ‘ (1)

By 3.7(1), these and all the following constructions descend to X

(thus Xi makes sense), furthermore, I acts on @i . As soon as we

have gseen that each 91 deforms to its subspace % we know that

i-1

90 is a deformation retract of @r = 9 . So let us regard some 1=l as
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fixed. For an R of rank i put
4, = (he$| R(h) =R} C¥-6 |
These form a disjoint union

U

8 -%1 YV r%
The @R are open relative to ‘91 (5.4; thus @1_1 is closed), and in
fact the relative boundaries @; - QR are all contained in 91_1 :
C -t .
R(h) - R for h e QR - QR (2)

(use 5.4 and (1)). Therefore it suffices to deform each G; onto this
boundary. Assume from now on R fixed as well. Let us abbreviate

h(T) T- p<h_R>(f)-h €8 (for hesd K6 r> 0).
h,,, =h (5.6(11)) . (3)

(1)
5,8 lemma; h(,) is continuous in h and 7 .
Proof: Show that the u in 5.6(i) for S ="<hR> can be chosen to

depend continuously on h .

2.9 1In order to study the behaviour of our volumes under this first

approach of a deformation, we define:
vol h, M : A
oth,r M) 1= —— (hed ,r>0,Mek) (1)

k)

(recall that 1 = rk R 1is fixed). We know from 5.8 and 5.2 that this
function Is continuous in h and r , also by definition
o(h,1, M) 21 Yh , M , (2)

p(h,l,M) =1 e« Me Ah) . (3)
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The following lemma forms the most important cog wheel of this

machinery:

5.10 Lemma; let he%, Me X .

(a) If Rc M, oCh,r,M) 1is constant in r ;
(b) Otherwise ¢(h,r,M) 1s strictly decreasing in r .
Proof: Write P := <h-R>, L :=<h:M>, m some basis of M . Choose
an u € On(R) that respects the Eucli&ean-orthogonal decomposition
R'=(LnpP) L (LnP"nPYH) L @WnPhH L (WnB)np
L@ arhtararh 1 (@™ nph (1)
with dimensions, say,
a, 8, v, i-a, w, and 1-v . : : (2
Also choose some b € SLr(R) such that the columns of h-m'b respect
L=hmbR = (LnP) 1 (LoP nph) 1 @wn?™ 1 @wnah

( Q simply denoting the span of the previous three spaces). Thus

(7 Ia : ) (A 3
Iﬂ B

r-lI ' c ‘

P (r) = u. ! rl -u-l hmb = u. D
<hR> i-a ! ,

Iw D

-1

I D"

~ T i-‘yj - J

K
The D have § := r-a-f-vy columns. We compute, using 3.5(1i) etc.:

Iyl h r_ivol(u_lp<hR>(f)u-u-lhmb)

1/2

M-
(r)
- r"Ydet ral|det B|]det r Yc|-det??(+2p D+D’ EDr4r " 2pnpw)
- pritenrHs 12 pDar 2pr Eprar ApnDmy . (4)

|det A det B det C|-det
Ad (a): We have P c L C P by total istropy, (3) and (1) thus yield

¥y =0=§ and i-a = 0 , hence (4) reads: t-ivol h(r)M - |det A det B[
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which settles this case.

Ad (b): The dimension formula contributes pS+y = dim(LnPl) = n-(n-r+l) =
r-i , or -i+ta-746 = -14r-B42y < -y < 0 , thus r YOI 4o
decréasing. even strictly so if vy » 0 . Also, 1f one rewrites out of
(4y: DD+ 2D’ Eprar *ptpr - Dtn+f'2[g;]t[D:]+(f’“-f’2)D"tD" , ome can
see that making r smaller amounts to adding a positive semidefinite
matrix, which is definite 1if rk[g;] = § > 0 .. Therefore we are through
if we either show the latter conditionor v = 0 . Now PZ L ¢ 28 (L

. being maximal totally isotropic); by (3) 6§ = 0 1mplies v » O . Thus

5 D’

only the case § » 0 1s left: Assume z € R D"

with [ ]-z = 0 , then
0 0 & 1l
hmb-[z] lies in u-|D{-R c (LN P  nP (ecf. (1)), but also in
0 .

hmbR® = L , hence it is O , and z = O since hmb is a basis. So the

rank claim is proved as well. -

5.1) Corollary: For h € QR and N € X(h) , 5.9(3) and 5.10(b) yileld

@h,r,N) =1 , t.e. volh N=rik@) Vr>o0, L
providing a more suggestive version of 5.9(1):
vol h, M
- () .
o(h,r M) —) h(T)N vMeXN . (2)

5,12 The value of r at which the deformation will be stopped is
ro(h) = dnflr 2 1f 3IM: REM, othrM) =1) (he)

(admit e« for the moment).
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2.13 lemmasg:
{1): From 5.7(2) and 5.9(3) deduce
ro(h) -1 1if he‘QR-‘QR
(11); Now assume h € QR . 5.9 then says that ¢(h,1,M) 1 if
M & X(h) , in particular if RE M . ¢ beiqg contionuous, we see that
ro(h) is actually the infimum of all r21 such that
pth,r M) <1 YVREZEM (or Y M e Xh) , using 5.10(a)),
or equivalently (by 5.11(2) and 5.10(a)) such that
A(h » A(h) . 1
(B y) = Ah) .ﬂ (1)
5.11(2) then offers

k(h ) = rt &(h) Visr<r(h)

(r)
thus the hard-earned boundedness assertion 4.3 yields
7, () < ©

and we can write:

h = h(

o €49 for all h e %h .

r (1)
(111); Furthermore, one can replace "inf" by "min" . Indeed, for
h e 9R (otherwise (1) hits the point), the opposite assumption

J(hb) = X(h) (cf. (1)) would imply j(kkfo(h)+q)) c A(h)

(0 s n < some q°>0) by 5.4 and continuity, nay even "=" using
5.10(a). That would mean p(h,fo(h)+q,M) >1 vMgAt), 0s9n s N

(cf. 5.11(2)) contradicting the definition.
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5,14 Jemma: Let us point out:

(€&D) he‘QRah(f)e‘QRV15r<ro(h) :
(1i) h e QR = ho € QR - 9R |
Proof: (i) is immediate from 5.13(1l). By continuity this and 5.13(i)
imply ho € QE . But an N € 1(hb) responsible for (1) cannot have

Rc N (5.10(a)!), which means. h° -3 QR .

5.15 Now we can define our deformation
gR : $R X [0,1] = %R ,

(h,w) p h w
(r ()"
We have seen that we are indeed moving inside QE and ending up with
the.uhtouched subspace @; - @R . The only (and mosf crucial) assertion

left to prove is

5.16 Lemma; ro(h) is continuous in h € §; .

Proof: We shail find some relatively open subset U of g; with

heU (h regarded as fixed), on which o is continuous.lDenote
(le j € I (finite nonempty index set)} := (N € X(h )| R € N)

We find ¢(h,f°(h),N ) =1 (5.11(4) resp. 5.9(3)) and

]

¢(h,fo(h)+l987,N ) <1 (5.10(b)) for all j . By continuity there is

]
some U’ , relatively open in 9  , where ¢(h',r°(h)+1987,Nj) <1
vVh' e U’ , eI (I 1is finite). But we had w(h'.l,Nj) =1, so

strict monotony (5.10(b)) gives us unique r,(h') € [1, ro(h)+1987] )

3
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such that e¢(h',r,(h'),N,) = 1 , Each of these is a bounded function

3 ]

having a closed graph (by uniqueness and continuity, behold the pivot

point!), thus it is continuous. Therefore o,(h') := h‘f

3 J(h')

is another

continuous function U' =+ 4 . Now let V be a neighbourhood of hb in

4 where «A(h") C J(Q) YV h" € V according to 5.4. Then

.on -1
U = jer aj )

is open with respect to U’ , thus to @; as well, and contains h ,

because o,(h) =

]

function is given by r’'(h’') := min{r

h(fj(h)) - h(fo(h)) eV vy . é last continuous

J(h')lj € I) . The claim

(b)) = r'(h') VheU |
would finish the proof. Now "s" can be assembled from the definitiomns.
The assumption "<" on the other hand implies that there is some h'eU
and M- with ¢(h',f°(h'),M) =1 and ¢¢h',r'(h’'),M) <1, so no
élement of J(hb) is in d(h'(f,(h,))) since we had
e(h',r'(h) ,N;) 21 Vj .(always use 5.10(b)). But fixing a j(h') €I

]

for h' € U such that r'(h’) = holds, yields

) h'(r'(h')) - aj(h,)(h!) ; also the definitions of U and V demand

J(aB(h,)(h’)) C X(h ) , whence the desired contradiction.
5.17 Theorem: X. := \90 - {Kh € X| N N = (0)) has trivial

0" K NeX (h) . .
homotopy type, and T operates on it (discontinuously and properly).
Broof; X was seen in 1.2(iv) to be contractible, so the above homotopy
equivalence, which also makes sense.on X (even on x/F ), transfers it

to Xo . The other assertions are also inherited from X (well known)
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and will result once more from § 7. -

§ Compactnes

6,0 We want to gsee by means of 4.10 that 90 N F 1s compact. Put

@' = (hed| 3NN €A : AN. = (0) ) and
N.N, N nR,

0
6y = (he 90| Ny NN, oo (0} V Ni,NJ € A(h) } ,
thus
8y =8 UG . , (1)

€.l Theorem: he9$; = k(h) 21 .
Proof: By 3.7(2) and 3.9 we may assume h € Fw n 96 and with some pair

: A
z”-Nl; B;INZ - [B]-z"’,

from the defihition: B I
, wn,r c

i

N
] € Hn r(Z) . Actuaily, det C » 0 , because 1.3 applies. Hence

*
k(h) = vol hNé - vol tt
2 °C

-1/2

> |det £7%] = det /2(2%2) - |det ¢| = k(n) det ¢| 2 k(n)'L,

as claimed.

6.2 To show the corresponding property for %6 , we need an important

Lemma; There is a constant ce > 0 such that for any h € 4 and any

totaly isotropic sublattice T of (Zn,Jn) there is a T’ € ¥ with

TcT' and vol hT' < c6-vol h
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Proof: From 3.2(i,11) we see that this claim only concerns the
5rotating lattice™ KhI' and therefore need only be proved for
reprasentativeé. Also put rk T -:.f < r (otherwise the lemma is
trivial). 3.6 guarantees a T' € ¥ with T cC T’ and

vol hT' < vol hN for all N € ¥ containing T . (1)

Entering into 3.1 with an anterior completion of some basis of T to

one of T' , we may assume besides 3.1(l) (with 2 € ¢t ):

o
I
T" =B .I_ 2% —r (2)
v n,r ! 0
0
-t A *x
Write £ " = [0 *] with X € GL (R) y P -r . Now let us proceed
(m 3 :
I
r
similarly as in 3.9: Apply v = Bw- Is -B;l to make A
m-t
If
\ »

M’ -reduced, renew et € o* , and in case ¢=-1 achieve |x11| s 1/2

I -2
by means of some vy = [ r I ] . - Now any E-Z' € ¥ with
r
L[
B; E - r-1| contains T by (2), so (1) implies vol hI' < vol hE
* 0
* 0
for all such E . But these are precisely the conditions of 4.1, which

1/2 . 41/2 ,-1/4
yields 211 s ¢y resp. !11 <2 3

familiar Hermite constant, we also have

. If ", denotes the

Py P < P2 o p/2 bl
£11 11 < "p det A = p jElljj . All this composes to
2p+1.p+1, P4
vol hT = det * ) =det £ - 11 £
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> £i§q;p/2det 2= ¢p det £ = wp vol hT' (some ¢p >0)
by (2). One may (or may not for tighter calculation) take the smallest

¢p to obtain the lemma.

6.3 Ibeo;gm; k(h) 2 c7 for all h e %6 .
Proof; Fix h € 8" and an arrangement X (h) =: (N | J=1,...,#f(h)}

0 ]
i
S, = n N ;
i jul b

and let o be the largest 1 with S, » (0) . The definition of ¥}

i 0
tells us 2 < o < #{(h) . In order to show inductively the existence of

constants ki such that

vol hS1 < ki-k(h) . : (L)

agsume 1 < o fixed as well. Similarly to 6.2, take h’ :=: uhy from

3.1 of the form 3.1(1) with £ := £(h’) € 4" (1) and

r - .
7Bw1n,rz - N:l.+1 ! 7BwIn,aza - S:[+1 ! ' (2)
-1 -1 e
As Si+1 - Si n Ni+1, (and Bw v Si is totally 1isotropic - in
I
%
n 0 '
(R ’Jw) ), 1.3 is applicable: Si - 1Bw 0 : € Mn,a+ﬂ(l) , where
° 4
*
rkb=48 . Writing £ =-: [g v] (v e GLB(R) ), and using N, as in

6.2, we thus have (employ 3.2 as uéually):

B %
0
vol hSi - vol h'-y'lSi - vol 0 * | = det u detl/z(btu-lv-tb)
[
° %
> vol h'y 'S, - ng/z nin?’2 (" %2) S (v B2y | 2z € ZP-(0))

2 vol hs,, - ng/z nin?’? (0 %252 %2)| 2z € Z5-(01)
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. B/ B/2 ‘
z vol hSi+1 nﬂ cy (3)
(to obtain the last assertion from 4.2 and 3.8(c), observe that the
respective minimum is not changed by the process of 3.9 if we start it

with h' and I_ rzr ). This settles (l). In fact we can take

k2 -1 _ (4)
since for i=1 (3) reads: k(h) = vol hS1 2 det u det'lu [det e|
= detzp det'll 1l = v012h52 (lc(h))'l . Now, o being bounded (4.7),
vol hSa S cg k& (h) (5)

holds. 1f we set

S F- Nl N Na+1 ( » {0) by definition of 96 ), and
T:=m<5usS>nZ" c N ,
o 1
-we have (from (1) and (4), renumerating the Nj )
vol hS s kz-k(h) - k(h) . . - (6)
Since we postulated S n Sa - Sa+1 = {0} ,'3.2(viii) 1s tailored to
measure:
vol hT s vol hS vol hSa < ca(k(h))2 . ' (7

At last let T’ € ¥ be obtained from 6.2 for our T , then

k(h) s vol hT' S ¢,

-1
k(h) 2 (csca) =iey .-

vol hT s csca(k(h))z or

6.4 Remarks: (1) The reader may have noticed that some of those
estimates can be tightened by known methods. Here however just one
improvement will be given that provides further insight as well:

Assume ;he order of the N chosen such that ¢ 1is minimal, which

3
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implies M, := "N, m {0) V 1<j=<o+l . The spaces <M,> are

3 isj 4 h|
lsi<o+l

linearly independent [ <Mj> n <ingi> C <Mjan> = {0) ] , and together

they span a totally isotropic subspace M of (Rn,Jn) [ miEMi , ijMJ

> mi,mj € Nk ] , which means 3 < o+l < dim M 5 r or
2<a<r ;. | )
96 -¢ 1f r=1o0r 2

Also, with suitable permutations of [lejSa} we can enter into the

proof at 6.3(5) to obtain wvol hM, = csk(h) ¥y ; the role of T s

J
played by T := M 0 Z" which allows o-fold application of 3.5(viii):
* vol T = 111 vol hif, s c‘;"l;c(h)"*l . (2)

Although this does not look like a general improvement of 6.3(7), for

r =3 (where we had o = 2 and ¢, = 1) we get 3 = dim M

8

-tk T>2+41, thus T e A , and (2) specifies: k(h) s vol hT < k(h) ;
¢y = 1 (defined in 6.3) 1f r = 3

Other intersection lattices may offer special advantages as well. -
(11) The bisection 6.0(1) is not completely natural. Indeed, 6.1 (and
the part of 3.9 referred to therein) can be viewed as "limiting case" of

6.3 (resp. 6.2). -

6.5 Theorem: Given any subgroup T s T of finite index,

X, - g
O/F - K\ O/P is compact.

Broof: This space is the projection image of : (90 NF-y (v

representing left cosets), which is compact by 4.10 and the above.
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6.6 Remark:; Despisers of Siegel sets may use the results of this
section to show that %0 is contained in some "Stuhle}-Grayson domain
-of semistability” as defined in [Grl], and take Grayson's compactness
result (ibd., Th. 7.18) instead of 4.10, (Notice that those domains have

the same dimension as 9 .)
§ 7 Triangulability

1.0 In this chapter we deviate from our general concept by providing a
kind of cross-country existence proof, which in return might be applied
to similar cases without much modification. Thus substantial
simplifications can be anticipated in actual calculations. [By the way,
skilful modelling may start with taking 3.8e) and f) not too literally.]

ﬁecall the following

7,1 Definition: A subéet of R® 1is called semialgebraic set ("sas"),
if it is a (finite!) Boolean combination of some ({x & Rnl P(x) ; 0,
P(*) polynomials. A function mk 5> — RB® vhose graph is a sas will

be refered to as semialgebraic application ("saa") (cf. (Co], 1.1, 2.9). .

2.2 Remarks and quotations:
{4 6,9, Glh(m) etc. (but not [ ) are canonically sas's.
(11) If £,g,and h aresaa's, so are £(g(*)) and h'' if (and

where) defined.
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(i1i{i) Any algebraic function (e.g. division and square root) is a saa
on its domain of definitioh:

(iv) The closure of a sas and the image of a sas under a saa are again
sas'’s ([Co],_2.7, 2.10)

{v) (Lojasiewicz, cf. [Co], Theorem 4.10): if a compact set S 1is the
disjoint union of finitely many saé's Si , then there is a homeomorphic
saa f onto a simplicial complex C = U o, (o, affine simplices in

some real space)ﬁ such that each Si is a union of some f'l(a

(vi) Such a 'f-l(a

j)
j) is a sas by (i1) and (iii).
72.3: Now let us draw forth that old ¢ from 1.1, regarded as a sas in
1;3 real hull. It is homeomomorphic to X ..and with the wu(*) £from 1.2
the projection writes

p:9-¢, hpubsh hgt
u(*) is a saa by 7.2(111) ("orthogonalisation proéess?), thus ¥ as
well. The aqtion of a vy €T descends to the saa

prooy imues DonTE (wed
Writing ; for the sas ¥(F) , we have

; o[ = ¢
1.4 Actually we need a sas F' C ; of T-orbit representatives.
Firstly, a corresponding set for GLn(Z) acting on ﬁg ‘can (e.g.) be
constructed as follows: Switch to the equivalent model of positive

definite matrices (always check saa and sas properties) acted on

linearly by g € GLn(Z) S g?fg . Voronoi'’s reduction theory ([Vo])
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divides this space into convex polyhedral cones edged by some
semidefinite matricest GLn(Z) permutes the latter as well (not just
p?ojectively!), thus also their barycentres. A system of representatives
of the induced projective barycentric subdivision (freed from its

indefinite parts) consists of finitely many simplicial cones and serves

our purpose. - Now let M be the version of this set in a "tilted
%; " that contains ¢ , and 1y be I'-coset representatives of the

finite (by Siegel property) set (g € GLn(Z)l FAMg » ¢ )} . The
somewhat brutal definition F’' := g (; n ﬁyi) has the desired features
(in practice a hand-made sample is to be prefered). -

Fo = F' N #(90) is qnother sas by 4.6, thus f;‘ as well (barring

always denotes closure).

A
7.5 Lemmg: We can fix a triangulation F = Ug such that each ¢
o =1 i i
. u
is a sas, Fo - Vo, and
i=1
[ ai,aJ <'ak » O 07 N aj “d)] » 4= In . L

Proof: Apply 7.2(v) to F° - FOU(FO-FO) . As Fo ‘is a set of
I-representatives in ¢($0) , (1) can be obtained from this
triangulation by barycentric subdivision wherever necessary (performed

affinely in the affine model'first to conserve the sas features).

1.6 To force respect for the I'-action (whose saa property will chiefly

provide the necessary authority), we refine one ;I after the other

( 1 =4 ). For the moment we content ourselves with a regular cell
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k-1
structure. Assume Sk -y (aio ') already carries a I'-invariant such
1=1

structure {fm) with sas’s for cells, all ¢ (isk-1) and o, NS,

j 7k
(j=zk) being unions of fm's . Now ;; [ € ¥(F) ] can have nonempty

i

—

intersection with only finitely many 0,07 or T [ C some o 0 7' ]
by Siegel property 4.5. These induce a disjoint decomposition of g,
7.2(v) applies once more. Since all interfering Tn 2re contained in
;; , they form a subcompléx that is being refined. Transport of that
triangulation to ;;o ' makes no problem because of 7.5(4). The result
is a new complex Sk+1 recovering all induction hypotheses, thus

" eventually Foo T = ¢(90) i1s made such a complex. Now it is.easy to
refine this to a topological triangulation (e.g. of w(go)/r ) by
centrally subdividing all closed cells (they are closed simplices with

their faces refined!) in an order of increasing dimension, respecting

each time the triangulation of the boundarf accomplished before.

7.7 Theoxrem; x0/1: is triangulable for any subgroup I of T .

Proof: The structure of 7.6 obviously descends to ¢(g0)/; , which is

-

homeomorphic to XO/F .



§ 8 Dimension

8.0 We shall see that out of the r steps In § 5 (of which but the
last achieved compactness relative to T ), only the first one reduces
the dimension by 1 .

Abbreviate U for In rZr , and 10 for (U, J-U)

AlO :
8.1 lemma;: A(g) consists of those M-Z' with M = Fzzﬂ such that
0|B

(A,B) 1is an r-by-r permutation matrix. (Hence xM =M .)

Proof: As 'k € SL_(Z) and vol(sI_ ) = 1, k(g) must be 1 . Thus

a
NZ' € A(x) , N = l b ) , means in case e = 1 :
c
atc + b%kb £ cfa =0 , and A (1)
det(N°s%xN) = 1 . : (2)
From (1) we deduce
(a4c)t(a-c) - ata + btntnb + ctc - thth , (3)

thus det(a-c) = 1 , and replacing N by N-(a-h)-l ("change of
basis"), (3) reads

NgsN-1_ . (5)
For e = -1, (Nzr,IZr) is a lattice of discriminant 1 in

(er,lzr) , hence it must respect the "irreducible decomposition"

2r

L (Z,1) of the latter (cf. [MH], I.3.1 and 1I.6.4), i.e., (5) holds
i=1 ’

after change of basis. - From (5) and the isotropy condition, NZ® can
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easily be seen to be one of the MZ" of the claim; on the other hand

these obviously are in *(g)

8,2 lemma: In every-neighbourhood V of g there is a h € %0 with

X(h) = 16.

Proof: If r =1, £ 1tself does the job. So let r = 2 . Define

’ j : i‘
f j

wherever § 1is positive definite. For a fixed £ > 1 , one can see by

€M_(R) and n(£,0) € ﬁ: guch that ntn = &

computation that q(s,g)ii i1s strictly decreasing in ¢ 2 0 (unless
i=1 where it is constant) as well as in 1 ("collapsing r-pod").
Therefore a continuous function ¢(£) =2 0 1s defined by postulating

det n(£,0(€)) =1 , (1)

and for psr-1, £ >1 we have

0, = det n(£.0(8)); 4, > 1 @
Let us take '
n(€,c(€)) "
h = 3 evVv

ﬂ(f,f(f))]
with small enough a § > 1 to have A(h) c X(g) (it exists by

continuity, 5.4, and ¢(1) = 0 ). Now consider some M with its A and
B from 8.1, such that O = rk(B) =: g » r . Observe
(B,4) %5%(B,A) L = 6% , (o = £1) . Therefore
R -t -t{ O
vol hM = vol n "A vol nB = vol 1 ‘vol nI
Ir-ﬁ r,p

1 2 '
)-6‘6 - Bﬁ >1. (cf. (1) and (2)).

-1
- (Gr /83
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On the other hand wvol hU = vol hJU = 1 by (1), which amounts to the

assertion.

8.3 Theorem: The diménsion.of XO (as a cell complex, say,) is one
less than that of X .

Proof: The two diménsions are not equal: In ¢ , ¢($o) (even

¢($r_l) ) 1Is recruited from the smooth algebraic hypersurfaceé defined
by vol gxM = vol N ( M, N € X(px) , cf. 4.8(i1)), actually from
locally finitely many of them, as 5.4 shows., - Conversly, if one-

- intersects the p-image of a 5.4-neighbourhood of the h found in 8.2
with one of those manifolds, the result is containqd in ¢($0) , proving

that the latter space cannot have a smaller dimension than claimed.

8.4 Trying to make that finite (simplicial) cell complex x0/F smaller
still by hand is a tempting idea. Namely, if a.cell is a face of only
one other cell, both cells may be removed ("pressed in with the thumb").
However, remember that in order to cater for those important
torsion-free subgroups, we are avaliled only by manipulations tht Iife
to deformations of Xo . We shall see that this can indeed be effected

whenever r = 2 .

8.5 Assume from now on r = 2 , and that X(*) is constant on each

simplex of X_. (we can achieve this by additionaly accommodating the

0
finite number of interfering sas’'s { ¢ € ¢ | A(px) = A } in the

process of triangulating ?; in 7.5). We know that there 1s a highest
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dimensional simplex adjacent to K-g , whereon X(*) = “o . Applying

0
gsome |M Is JM (M as in 8.1), which is in TI' and stabilizes g , we

o

find that there is another such cell having {MZI, JMZI} for X . So
there must be a l-codimensional simplex r near K:.x which is face of
exactly one of those.gimpiices with X = Jo ; call the latter ¢ . On r
we must have A D do U (N) with some N € X(x) . In lemma 8.6 we.are
going to see that actually "=" holds, so that near  r optside o K(*)
must be either (U,N} or (JU,N} . But this means that we are leaving

X r and ¢ (and thelr I-translates) can indeed be removed from X

0’ 0

without changing the homotopy type.

8.6 lemma: In fact :s-uootm on r .
Broof; Suppose X contains four lattices U, JU, N, and L . Then at
least one of the following two cases applies:

a) Some canonical unit vector is in U N L N N , some other in
UnLnJN , and a third one in U n JL.n JN , or the roles of U and
JU or those of L and N are interchanged.

b) Such a unit vector is found in Un L NnJN and another one in
UnJL N ﬁ .- . -

Now regard the three dimensional submanyfold of ¢ consisting of those

matrices that differ frﬁm In only in the corresponding entries, namely.

2y c e .eac
b -be

-1 (case a)) resp. - (case b)). The
-1 ‘ -1

N .
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equations vol U = vol @JU = vol gL = vol ¢N , transformed into
polynomialé, have no solutiops in that subspace but In , even if
complex entries a , b , ¢ are admitted. This contradicts the fact that
the codimension in X of ¢ 1s 2 . (Note that arguments like this one

can be used to prove 8.2 and 8.3 likewise.) -

8.7 Such proce@ures may obviously be performed as long as boundary
cells like 7 are available. The key lies in those sets X whose
members have a common intersection if any one of them is removed. This
implies #X < r (cf. 6.4), which gives an intuitive illustration of the
fact that the codimeﬁsion of the final deformation retr&ct In X cannot

exceed r . -
8 9 Speclal cases

9.1 Siegel’s version of our §§ 3 and 4 In the case € = -1 ([S1i])
translates as follows: His space H of symmetric matrices z = x + iy

€ Mr(C) ( x,y real, y positive definite) is our ¢ via

£ -2x
P [ 2-t] P X + 127yt

(cf. [S1i], VI Lemma 6). Also, his left T'-action
A B] . -1
[C DJ o z := (Az+B) (Cz+D)
is anti-isomorphic to our right hand one by
-1
t(poy) = v 7 o (p)

As T acts transitively on X (cf. 3.1(2)), 3.8(b) can be written

Idet £(¢)| < [det 2(¢01)| Vyerl
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This is precisely Slegel’s reduction condition that det y'l (= det2£)
be minimal in the I'-orbit. Thus the two fundamental domains correspond

-1
to one another except that he wants y to be M-reduced, not y .

9.2 For the case ¢ = -1, r =2 , Gottschling computed the bounding

hypersurfaces of that fundamental domain ([Go]). His
Ct T
"Assozlationsklassen® of matrix pairs (C,D) are the elements N A
D

of X . Thus %b N F corresponds to the union of those faces that

t
belong to a pair (C,D) such that [C ]-Zr a} In rlr = {0} (cf. also

Dt '
[si]), VI, §30). These are exactly the ones given in [Go], (10), namely

(C,D) = (S’Ir) with

se 505866 Ee) e

The incidence structure of these manifolds has not yet been computed.

9.3 If (e,r,s) 1is (-1,1,0) , (1,1,1) , or (1,1,2) , G acts on
the "upper half plane” resp. the "upper half space" in a well-known
manner, and in fact our deformation retract could have been obtained by
tthe methods of [Sel] resp. [Me] (making the obvious adjustments owing
to the fact that under the "Weil isomorphisms" T’ does not remain

integral). -
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