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Reduction theo[y decreasing dimensions

Il
o (f.Z)and some

n
So (Z2for

by Alexander Scheutzow

Introduction: In order to study homological properties of an arithmetic

group r , it is helpful to know a contractible loeally finite (regular)

eell eomplex C on which it acts with finite quotient. Then, for

instanee, c/~ (r a torsionfree subgroup of finite index in r) 1s a

finite Eilenberg-MaeLane complex for r, whose- homologies may thus be

computed eombinatorlally (cf. [Br], Ch.I, 4). Starting with the

(eontraetible) symmetrie space of maximal eompact subgroups of the

eorresponding real group G, such a complex 1s provided by Borel-Serre

eompaetification ([BS]). However, for more explicit calculations 1t

would be advantageous to find deformation retraets as smal1 as possible

with all the desired properties. For GL and SL groups, such

subspaces have been described in [Se2], [So], [Me]', [SV], and [As]. This

paper, whieh is basically a shortened translation of [Sc], intends to

deflne slmi1ar spaces for Sp (Z)
n

and for the automorphism groups of

indefinite unimodular quadratic Z-lattices (i.e. "inner product

Z-spaces" in the sense of [MH]; their discriminant is ±l). We shall

decrease dimensions manifestly by only 1 , hut it will be sho~ that

further savings ean be made once the complex has been computed. The

dimension eventually aehieved caunot be less than the virtual

cohomologlcal dimension of r , 'which maans in our eases (by [BS],
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11.4.3) that at most r dimensions can be disposed of, where r is the

Yitt index (resp. n/2). - It is quite 1ikelY that the main resu1ts

remain valid without the unimodularity ass~ption, b~t in this case some

of the proofs would become much longer (cf. also [Grl] and [Gr2]).

Generalisations from Z to other rings and the introduction of certain

"sets of weight~" (on c1asses 1ike the ones defined in 2.5 below, cf.

[As]) may be possible as weIl. -

Among the criteria for the formu1ation of this text are brevity and

concreteness; the reader is asked to accept occasional f1uctuation in

1anguage (which is main1y geometrica1 1ike in [As]), and the onus of

some straightforward verifications. Since the proofs are logically

interwoven to a high degree, variants of known facts are sometimes

.in~luded without mention, and the distinction "lemma" - "corollary" etc.

loses most of its meaning.

Kind help from H.Behr, J.Wolfart, and others is gratefully acknowledged,

also support by the Australian European Awards Programme, the Deutsche

Forschungsgemeinschaft. and the Max-Planck-Institut fur Mathematik. -

§ 1 Tbe real groups G

1.0 Notations end definitions: M (*)
*

denote the set of matrices,

*t the transpose of a matrix. l* is the unit matrix, and

an additive subgroup of

I ._ [alb]
a,b . E M b(Z)

B,
and zm mean sets of columns. Ii S

and M a matrix out of M (ffi) , then
m

is

s
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endowed with the bilinear form v,w r vlMw will be called (S,M) , so

that Aut(S,M) :- ( g E GL(S) I gtMg - M } . The columns of a matrix A

are indexed Ai ' and by abuse of notation no differenee will be made

between A and the set {Ai} (in given order). E.g., saying 11 m is a

basis of m·Zn " 15 to mean that {mi} 1s a Z-basi5 of that module.

'lt - ~ C M (IR)m . m shall contain the upper triangular matrices, ~+ those
m

with positive diagonal entries. ~ and ~+ are the analogous notations

for lower triangular matrices. -

By the Witt·decomposition theorem, the real groups to be eonsidered may

be fixed as

G :- Aut(~n.J) ,where J :- ['IrIslr] •

r ~ 1 (expressing that the form be indefinite),

f - ±l (to determine whether the form is to be symmetrie or

symplectic),

n - s + 2r , and

s - 0 if € - -1 ]

The data r, s, and f are assumed fixed throughout this.paper, thus

J, Gate. are fixed as well. - An unspecified triseetion.of the index

set 1 ... n in a matrix means 1...r, r+l ... r+s, and r+s+l ... n. As

an example to this notation, note that (a,b,c) E G 15 equivalent to

i,j-l ... r, k,l-l ... s

Finally,

t t t
- CiJC j - aiJbk - bkJc1

t
aiJCj - 5ij for

K :- G n 0 (m) , whieh 1s a
n

and

maximal compact subgroup of

(1)

G
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[~.e *~s:*]L1 Let <p eonsist of those g E Gwhich have the form

(1)

is the set of all

E GL (IR)
n

-;X]
-t

1

.e E ~+ . Caleulation shows that in fact
r

[

.e -.ep t

g - 0 I s
o 0

.e E ,+ andwith

with

t t
.x + fX - P P - 0 (2)

1.2 Remarks; Define 't/ meM } and .LM ;-

nl t(v E IR m v - 0 V meM ) for the remainder of this text. One may

eonvinee oneself of the fol1owing facts by geometrie eonsiderations or

by straightforward matrix eomputation:

~ Let b be a basis of a totally isotropie subspace S nof (IR ,J) ,

in other words, b E M (IR)
n,p

has rank p sr, and tb·Jb - 0 . Then we

have, orthogonally for both bilinear forms, .

mn _ S ~ (S~ n S~) ~ S- (1)

Also there 1s aue K whieh respeets this daeomposition, i.e. its

eolumns distribute on it in given order. u·b - 1·1 .e E ~+ , ean ben,p , p

foreed.

(ii); Let S be as in (i), then S~ is positive semidefinite (and

SZ n S~ positive definite) iff p - r .

(ii1); ("Iwasawa deeomposit10n"); For g E G thera 1s exaetly one

u E K such that u'g E ~ . -

(iv); As an open set of eoset representatives, <p is homeomorphie to

K,G . Furthermore, the data .2 , x , and p from 1.1 def1ne a



homeomorphism from ~ to same nfxuf
+
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(take 1.1(3) into aecount).

a EGLi (IR)

1.3 Lemma: For this technica1 lemma (whieh, however, also has a

ngeometrical meaning), we consider aspace (m ,JA) with an A e GLs(ffi)

[~~*: 1B :-~ be a bas1s of a totally

isotropie subspaee in it with a E Mi(IR) (this implies of course

1-0 15 allowed). Then we have B - [ : I ~ ].
b E Mr_i,j (j~r-i)

then rk(b) - j .

and if in addition B·mr n I .mr
n,r

iI . a·1R
n, i

Proof: Ta prove the last assertion (the others are straightforward),

r- i ' . [0)assume b·v - 0 , v E ffi • Then B· v 1s an isotropie vector of the

form [~] ,by (ffi
n

,Jw)-1sotropy even [~] , so the assumpt10n forces 1t

to be in i
I ·a·ffi, thusn,i

15 a b~sis, v - ° q.e.d ..

§ 2 Tbe arithmetic groups r

iwelR . AB B

2..a.Q A "lattice" with asymmetrie M E GL ('1.)
n

is ca1led of

type 11 if the quadratic form indueed by M asumes only even values on

Zn . Otherwise it 1s said to be of type I. Obviously the type i5

invariant under isomorphisms.
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2.1 Fact: For a tripie r, 9 , E , there is only one isomorphism

elass of 1attiees 19 isomorphie to n
(IR ,J) •

matrix product of i sampies of k(l)

:- {~;i)
s not divisible by

IC Si i E INs -

J [eI t Ir] E SL (Z):- K. IC
K. n

r

& :- [Ir IC IJ E SL (1II) ,n

exeept if E - 1 and S. 0 mod S , where two elasses exist, ane of

eaeh type.- Proof9 ean be found e.g. in [MH] I, 3.5 (ease E--1) resp.

[SeI] V, Tb. 4 to 6 and §3 (!-1).

z.z In these exeeptional eases we take the liberty to deal with the

e1ass of type 11 only, to avoid further complications. This

(inessential) restriction can be justified by the fact that the

automorphism groups of the two lattice classes are commensurable up to

isomorphism, as shown in 2.3 below. ThUB it suffices to regard but a

single group r (r, s , and .! always assumed fixed ). Fix a matrix

k(l) E SLS(Gl) such that k(~)k(l) E SLS(Z) and (t·,k(~)k(l» i8 of

type 11 (cf. [Sel] v; 1.4), and define k(i) E SLSi(~) to be the d1rect

. Now we define permanently:

S (or 9-0)

Since

r :- Aut(Zn ,J ) - ( .., E GL (Z) I ..,tJ .., - J ) .
IC n IC IC

-t -1 n
J - IC J & ,obviou5ly (IR ,J) 1s isomorphie to

- IC . IC

n
(IR ,J) .

Also, (Zn,J) 15 of type 11 if E-l and ~. 0 mod S • as desired.
I<.
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.2....1 In the latter ease, a representative of type I is (1ln ,J) (if

s..O ) re5p. (Zn,M) with M :- (Ir .I ) (if 5-0 , whence J - J ). We
ICr

have Z -1 ~ li GL (Z)
-1 the latter group has ar - GL ( ) n IC G~ = ~ n G ,n -. n

subgroup of mutually finite index in common with n
Aut(Z ,J) -

GL (Z) n G ,_ as can be seen by clearing denominators. The same ~rgument
n

works for -s-o , where takes the role of &. So the

missing groups are commensurable up to isomorphism to our r's

~ In proofs we will also have to consider (~,M) with a positive

definite M E SL (Z) . We collect same facts:
s

~ For a given s there is only a finite number of isomorphy elasses

of such- objects; if s ~ 7 , just a single one.

(ii); The spaces s
(IQ ,M) , s fixed, are pairw1se isomorphie, in

particular to (~S,Is) (follows e.g. from [SeI], Ch.V, '1.3.6, 2.11

Th.2, eh.IV Tb.7 &"9).

(lii); Type 11 again only occurs if 81 S' , e. g. with er ,k(s;8)k(s/8»

([Sel], Ch .. V §2 Th.2 Cor.l). -

~ Thanks to these results, we may permanently fix a finite nonempty

tset 0 C SL (IQ) (!). such that w w E SL (Z)· 'tI wen . and that
s s

{(ZS,wtw) I wEn} 1s a set of representat1ves for those isomorphy

elasses from 2.4(1), exeept that in ehe ease s g 0 mod 8 only those of

type 11 are admitted. We may assume IC E n . Kneser's algorithm from

[Kn] ean be used to ealeulate 0, whieh he actually aceomplished for
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s :s 16.

~ Definefor eaeh w E 0

E SL (I)
n

then (IRn,J)
b.I

Lf 81s , so

is- isomorphie to (IRn
,J )

K.

n(Z ,J ) 'is isomorphie to
w

, and (Zn,J) is of type 11
w

by 2.1. This means

that we ean fix permanently matrices B E GL (Z)
b.I n

as bases of Zn ) , such that

.BtJ B --J
'W K. b.I 'W

It i5 eonvenient ,to take B I
IC n

(whieh may be viewed

(1)

2.I The lattiee (Zn,J) will now be examined from a geometrie point
. K.

of view, imbedded into (mn,J) . Ye begin with some more definitions:
K.

For an S c mn let

<S> : be the m-span of S .

A subgroup U of Zn will be called sublattice only if

(nC" always h01ds) (1)

Note that for two sublattices U and V one has

u c V ~ [U - V ~ rk U - rk V ]

A set whieh is a basis of a sublattiee is ealled primitive.

(2)

N :- will denote the set of maximal totally isotropie sublattiees.

2.8 Remarks: iil (Gauss): If P C Q are two sublattiees, any basis
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{Pi} of P ean be eompleted to one {Pi,qj} of Q . In partieular, if

P ~ Q , one finds an element of Q that is primitive with {Pi! (cf.

2.7(2».

~ As sublattiees eorrespond one-to-one to their ~-spans in ~ ,

they ean be handled like veetor spaees. E.g., together with P and Q ,

and P () Q are sublattiees; - n - rk P .

is of diseriminant

(iii); Every element of J{ has rank r . To see' this, take bases

{Pi} , (Pi,qj} , and (Pi,qj'~} -: 8 of P , pO , and Zn

[~
0

:)respeetively aeeording to (i). Then 8
t

J 8 has the form * and
K.

*
determinant 1 . Thus the lattiee spanned by (qj}

1 and anisotropie (beeause P was maximal totally isotropie), so it

must be definite (cf. [SeI] ,Ch.V, Tb.3), i.e. «qj}> anisotropie. From

<po> _ <P> ~ «qj» , it follows that <P> is maximal totally

isotropie, henee the asser~ion. - Note that this statement is generally

false if one admits a non-unimodular matrix (symmetrie of Witt index

r ) instead of J
K.

2.9 Theorem: Given a matrix ('basis') b such that b·zr
E J{ , one

ean find a 7 E rand a unique ~ E 0 such that b - 7.8 ·1
t..I n,r

Proof: Once a eompletion 8 - (b,c,d) E GL (Z)
n

satisfying

has been constructed,

and fits the theorem.

(1)

7 ;- 8.8- 1 is in r (beeause of (1) and 2.6(1»
w

To achieve this, we start with a completion like the one from 2.8(ii1),



so we have BtJ B - [g ~ =] and
,.., * * *

det(btJ d) - 1 - det(ctJ c),.., ,..,
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(2)

This basis will be modified step oy step to fu1ii11 the remaining

requirements of (1). First1y, assume by induction that d(i):- {djljSi}

already satisfies the fo11owing ones:

b u c U d(i) is primitive, (3)

t
(k-1 ... r, j:Si) , and (4)bkJ"dj - Ök,j

d~J d - 0 (j ,tItSi) (5)
" m

Then the Z-span 5(i) of (3) and {bjlj>i}o are two sub1attices both

of rank r+s+i (cf. 2.8(ii», the 1atter containing the former,

therefore they are equa1. Now change di+l to complement (3) to form a

basis of {bjlj>i+l}o (cf. 2.8(i,i1». Wlthout loslngany achievements

(always assume those ~ with k>1+1 adjustab1e to rastore the basis

property automatica11y), ~e may still alter d
i
+

1
by adding elements of

o ~ t
5(1) to it. Taking di+l - j:Si (bjJ"dj ) 'dJ as our new di +1 ' we have

t . t
bjJ"d i +l - 0 for j~i+l . In fact, abbreviating ~:-bi+1J"di+l ' the

matrix b~J d - [Ir_110 *] has determinant ±l by (2), thus ~ - 1 can
" ~ *0 0 *

tbe obtained by adjusting the sign of d i +l . Next we require di +1J,..,d
i
+

1

to be even. If s 1s a multiple of 8 , this must be the casB.a1ready,

by definition of J (which is hereby motivated). Otherwise cms is
"

d i f blRr ~ clRs - b~ , cf.anisotropic·an pos tive semide inite (since w

2.8(iii) and 1.2(1i», i.e. positive definite, also lts dlscriminant is

1 (cf. (2», therefore, by 2.4, c·Zn contains an element v with

vtJ v odd. In the same vein an above, we may still add elements of bO

"
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to d
i
+

1
' rep1acing the 1atter by di +1+v, if necessary, and then by

t L t
di +1 - 1/2 (di+1J~di+l)'bi+1 - j~i (djJ~di+1) This continues our

induction hypotheses, so WB end up with btJ b - 0, dtJ d - 0 , snd
~ K.

b d t d b elements of b·Zrcan e oc ore on y se

sndci. yieldsforc ­i

Now ehe

liberty: Taking

tconserves ciJ~bj - 0 for all i and j . As above one sees ehat the

matrix ctJ c defines a positive definite quadratic form Zn ~ Z which
IC

in the csse 81s assumes even va1ues only. By definition of Q , there

t tc J c - toloI toloI ehe only
"

must be a toloI out of it and a

The replacement c'm for c

m E GL (Z)
s

fulfills with

such ehat t t tm c J cm - w toloI •

"

remaining condition for (1). -

T h i i bo,_ b.Zr ~ ·c·Zro prove t e un queness assert on, assume w

r - r
b·Z ED c·Z to be two decompositions of the above kind, and ~b ' ~c

the projections induced by the first one. Then for - sv,w E c·Z we have

t' t t
(w (v)) J (w (w)) - (~b(v)+w (v)) J (~b(w)~ (w)) - v J w ; thus

c IC c C IC C "

~ I is a homoffiorphism of positive definite lattices, bijective by a
c c.r

symmetry argument. The corresponding matrices (versions of t
toloI toloI )

therefore are congruent; by definition of a they must be equal, whence

the claim.
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§ 3 Reduetion theoty tor r

l.Q The real group belonging to r 18 -1
& G& • However, it 1s more

eomfortable (in view of 1.2(i» and topologieally equivalent to let r

aet on the spaee

by mu1tip1ieation from the right, sinee K·<§·r - <§ holds. The

eorresponding homogeneous spaee 18
cg"

X :- K' .

In the sequel it is understood that most eonstruetions on ~ deseend to

x . - The following reduetion theory of that action is eentered about

the notion of ,N , using the results of § 2 :

3,1 Proposition: Given h E cg and a basis b of b'zr EH, one ean

find 'Y Er, uE K , and a un1que wen such that h:-uh.., E <ß has:

h _ [ 1

t
-.ix-.ip w

] -1w p ,B , and (1)
w

-t
1

..,·B·I - bw n,r (2)

+ +ean be required to be in ~ or to be in ~ ; the data 1 , x , and

p may now be regarded as funetions l(h) - l(h,w) ete. of hand w

satisfying

t t
x +!X - P P - 0

Let us define permanently one more funetion of that kind:

- -1 -i -t t -t
Y - y(h) - y(h,w) :-.i 1 - (1 ) (1 )

(3)



Tb i h b h tI,+ and the (D+en ons may sw tc etween t e -u ~

changing z , x , and p

option without
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Proof; Take 1 and w from 2.9 to satlsfy (2). Now h·1 E ~ , whence

- [I Jr -1
ealeulation with.2.3(1) and 2.6(1) yie1ds h·1· Bw· wIE G . For

this matrix we ean therefore find aufrom 1.2(1)' (su1tably adjusted

in ease of the ~+ option, whenee the last claim), so (1). and

(3) - 1.1(2) fol1ow. -

l.l Define the volume of a matrix m as

val m :- (det(mt m))1/2 ~ 0

We eo11ect some facts about this definition for re~erenee:

~ vo1(u·m) - vo1 m if u E O*(~)

(ii); vo1(m·a) - vol m Lf a E ±SL*(ffi) ; therefore

(a) we can define

val K.:- vo1 m' if m 1s a Z-basis of the lattice M - m·~

(this agrees with the netion ef ordinary volume of a fundamental

par~11e1otope. The reader may find geometr~e formu1ations for all

these remarks.)I

(b) vol (~ :) - vol (~~) by column operations, 1f a 1s regular.

(iii); vol(m'a) ~ vol m if a E M*(Z) n G~(ffi)

(iy); If m 18 a square matrix, vo1 m - Idet ml

~ vol
a 1/2 t t..
b - det (a a + b b + ... ) ,e.g.

a 0
~ vol 0 b - vol a . vol b

o
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[ac) ("empty" matrices allowed).(vii); val m
(viii): Given

1/2 t t-
~ det (a a+c c) - vol

two subgroups A and. B of Zn with bases a resp.

b , such that <A>rKB> - (o ) , and some g E GL (IR). Thenn

vol (g. ( <AUB> n Zn » :s vol (g'a) vol (g·b)

To prove this, (i) allows us to calcu1ate with respect to a ONB (basis

out of o (IR) ) whose co1umns span first g.<A> , then g' (<A>E><B»n

[Qooß..,]I.e., g'(a,b) tranaforms to with det a ~ 0 . Now

A+B c <AuB> () Zn ;

vol(g(<AuR>riZn» :s vo1(g(A+B»

- vol(g'(a,b» - vol a . vol ..,

S va1 a . v~1 [~)
- vol(g'a) . vol(g·b) q.e.d .. -

(by (iii»

(by (ii, b), (vi»

(by (vii»

product of the square roots of the j

(ix); Define such that Aj(m) denotes the

t
sma11~st eigenvalues of m m .

vol(m·b) ~ Aj(m).vol b .

(Written with respect to an appropriate ONB, this amounts to the known

"minimax principle").

Two auxiliary reduction concepts have to be recalled:

1.1 We shail encounter the following sets:

tu E Q •

They are in fact groups (lattices), and L
tu

s- IR . The "Dirichlet
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domains" (sometimes ca11ed "Voronoi ce11s ll
)

are compact recti1inear polyhedra with finitely many faces, and for any

sP E m there is a A E A with p + A E A
~ ~

~ Areal i-by-j matrix b of rank j shall be called M'-reduced

(cf. [Wa] , 2, §3), if [the form defined by] b~ is Minkowski-reduced

(M-reduced for short) in the more familiar sense (ibd. or [Bo], §2).

Thus for any basis b there i5 a q E GLj(Z) such that b·q ("change

of Z-basis") is M'-reduced. Together with b u·b (UEOi(m» 1s also

M'-reduced.

3,5 Lemma: For a number c and a matrix m E GLi(rn) , there are only

flnitely many subgroups B of Zi with vol(m·B) S C

Proofj For such a B of rank, say, p let b

t I iof m·B , and ~(m) :- min ~v v v E mZ - {Oll

inequality" (cf. {Wa] , 2, §7) yields

i 2 2
rr b~ s k'det(b~) S k·vol b S k·c

v-I v v

be a M'-reduced basis

o . The "Minkowski

where k depends but on p • This implies

b~ ~ kc2 ,(\IT b~\)-l S k.c2.~(m)1-i
v v A~V A A

As m is fixed and b E m,Zi , all band thus B must be from a
v v

finite set q.e.d ..

3,6 Corollary: In a nonempty family of subgroups of l~ , those



elements B with minimal vol(m·B)

finite nonempty subset.

for a fixed m E GL (m)
}J
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form a

l.I We are now ready to apply these results to the situation of 3.1.

For h E ~ define

1(h) :- ( N E H vol hN ~ vol hH V MEH)

Aeeording to 3~6, this is always a finite nonempty set. Note that <b.N>

(N integral) is maximal to~ally isotropie in (mn,J) iff N EX. ny

7 E r (whieh by left applieation eauses a permutation of K ) and

u E K gives

N E ~(h) ~ vol(uh1'1-~) - vol hN ~ vol(h'1H) - vo1 uh1M

for all H E H (cf. 3.2). This translates to

~(u.h'1) - 1-1~(h)

In particu1ar ~ descends to X. Iso, let

k(h) :- vol hN for a N E j(h)

then (1) implies

k(u·h·1) - k(h)

l.R Our prospective fundamental domain is the fo110wing set:

F :- U Fwen tu

where F consists of all h e ~ with- the fo11owing properties:
w

(1)

(2)

(a) h has ehe form h _ [ 1

3.1(2) ,

t-ip w
w -iX] -1

p ·B
w

-t
1

from 3.1(1), implying

(b) vol hN 2: vol hB I
w n,r - vol(I ·i) - det 1 ]n,r VMe.N ,



er equ1valently: rB I Z E ~(h) , er likew1se:
~ n,r

17

Idet 11 - k(h) ,

(c)
-t

1 1s M'-reduced, 1.e. y ls M-reduced ,

(d) 1 E f;f+ (say) ,

(e) If f - -1, IXijl ~ 1/2 for all 1 ~ i,j ~ r

(f) if f - 1 , we have

(fl ) Pi E ~w (cf. 3.3) for all 1 ~ 1 ~ r ,

(f2) PI is in a fundamental domain of the finite group .

Aut(~-tzs,I ) C 0 (~) ; this domain may be defined by
s s

demanding PI to have minimal euclidean distance in its

orbit from a chosen non-fixed-point in ~n ;

3.9 Tbeorem: Given any h E ~ and N E ~(h) , thera are ~ E 0 ,

or, slovenly,

~ E r and U E K such that

K·F·r - <9

~·N - B I Zr and -u·h·~ E F . Thusw n,r ~

\ (U· F). r _ X .
U

Proof:· Much like in 2.9, imagine that h is being changed to some

u·h·'Y until h E F . 3.1 yie1ds conditions (a) and (b) of 3.8 a1ready
~

(c -t
) -1(keep in mind 3.7(1». With a suitab1e B I B - E r

w s ~c

(~ c E GL (Z) by 2.6(1» , (c) is obtained. Achieve (d) as in 3.1,r

then we are still free to app1y any ~ E r of the form

B[Ir; =JB-1 . With 2.6 again, we see this to be equivalent to:
W S I tu

t t
-Q w w

I
s

-~l E SL (Z)
I~ n

with (1)



t t t
Z + eZ - Q bI wQ

The effeet of this applieation is .
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(2)

t
x rtx+Z+ptl./Q

Let us first eonsider the ease t - -1 . We ean find numbers

(3)

(4)

(5)

for

i ~ j such that IZij + xijl ~ 1/2 . This is true for i > j as weIl

if we set Zij:-Zji' as x is also symmetrie [3.1(3)]: This Z makes

a valid 7 with (2), and produces (e) by (5) (all ~, p , Q ete. are

n "h Qt•..t •.~ _ 0 )empty , t us w ~ ete .. -

Now let t - 1 . Find eolumns qi E L from 3.3 such that Pi + qi E ß ww

and put Qi :- w
-1

qi E zS ( I) Another integral matrix i8 then given

{ 0
i<j

by Zij
t t

i-j (this exp1ains the use of ) .:- 1/2 Q ~ tuQ L
t t i i w

Qibl tuQj i>j

These data satisfy (1) and (2), yielding (f1 ) by (4). - Nowa

7- B[Ir m JB- 1
E r (i.e. m E Aut(~,wtbl» ean be admitted; if (a)

• W I W

1s re8tored by means of u-

1. f 1. , x ,. x : asfact the effeet on h is

[
Ir -1 -1 Jwm w E K , nothing is lost: In

I

-1 -1 -t t t
P fwm w p-w mwp

-t t t
bI m w 1s an arbitrary element of ut(wzS.I ) • whieh group eonserves

r

Lw and ß~ , (f2) .ean be assumed additiona11y. -

At last, (1) ean still be activated wich Q - 0 . Choosing Zij for

i < j to satisfy IZij - 1/2 (xji-xij)1 s 1/2 , we find again that the

same holds for i > j i! we stick to (2). Let us rewrite (5) as
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~ - x + Z , so we have I~ij~~jil - IXij+Zij~Xji~Zjil

2· 11/2 (xij-Xji ) - Zji l s 1 , which settles (f3). -

3.10 Corol1atY: ~ If t - 1 and S
~

is the maximum of

for v E ß ("radius"; S :-0 if 8-0), one obtains:
~ ~

2o S xii S 1/2 &~ and

IXijl S 1/2 (ow + 1)

(ii); P and x are bounded on F (thus on F ).
~

(1)

(2)

t
froof: (i): From 3.1(3) we find xii - 1/2 PiPi ~ 0 , whence (1)~ and

IXij+Xjil - Ip~Pjl ~ o~ (Schwartz inequality), thus IXijl-

1/2 I(xij-Xji) + (xij+Xji») s 1/2 (o~+l) by 3.6(f3).

(ii) can be co11ected from 3.6(e,f1) and (i).

§ 4 Reduction sonstants and finiteness prOperties

~ In the ease t--1, s-O, the above amounts to the we11-known

Lagrange or Minkowski theory on 5L2(Z) . To extend some elassical

results about that to our general ease, we make usa of the traditiona1

notion of Siegel sets (cf. [Bo]",2.7). Also we sha1l deflne a fund of

constants ci' i.e. positive real numbers whieh depend on1y on r , S

and ! . All this, and the use of the letters x and y , is intended

as a reverence for C.L. Siegel, to whom the results of §§ 3 and 4 are

due in the ease !--1 ([51], cf. 9.1 below) in a different formulation.

The reader who prefers a "modern" language will not find it hard to

translate this. ~

From the proof of aur "main reduction theorem" we foreseall the



principal step for future reuse. Note that

h E F ~ k(h) - det 1 - det~1/2y
w
+ ·1/2

1 E ~ ~ 111 - Y11

and

20

(1)

(2)

4.1 Proposition: Let h be as in 3.1 with +1 E ~ . Assume that

vol(h·B·1 ) ~ vo1 h·E (1)t&.I n,r

for all those E E M (Z) such that E·r E J{ snd B·lE looks 1iken,r t&.I

1 but for the first column. Thenn,r

~ in case t - 1
2, .t11 ::s cl

(ii); if however t--1 ., 1 2 ::s (1. 2)-1/2 provided that lXIII 111 xII

Proof: We shall eoncoct a particular E of that kind. For an onset,

where ~ - ~(t&.I) is the eommon

~

e"tv 0z
. 0 1r-l

2~-lßv 0z .

-2~fJ2
0z

0

denominator of the components of -1
2·t&.I • Once ß E Z and ver' have

been chosen ar~itrarily, there 1s a z E m so that-the matrix remains

integral and becomes primitive. Computing the isotropy property as

usual1y, we find that E satisfies all our requirements.

Now let us choose ß ~ 0 and v for the ease s ~ 0 as foliows:

Abbreviating

denoting the volume of the s-dimensional unit sphere by d(s) and

fixing some 0 < e < 1 , we demand

>. ::s! ,and
JJ.

(2)
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(3)28 8/2
IßI :i _ .......JJ_~

d(s) e s / 2

This is not too immodest, because (2) and (3), read as conditions on

real ß and v , define a nskew cylinder" in ffis+1 of Lebesgue volume

2s+1 the Minkowski lattice point theorem gives us integral such data,

not both zero. In fact t eß ~ 0 , otherwise (2) would say v v S - < 1 .Jj

i.8. V - 0 ." Yith this E, let us compute (1):
..

*

o
.e 22 . 0

·1* rr

now by 3.2(iii)

by J!:-max{Jj("")}

Idet 11 - vol hB I :i vol hE - vol 2~zß(v-ßP1)
tt1 n,r

_21f...e- 1ß2
z 11

o
[the 1,1-entry may be deduced from (ffin,J)-isotropy;

this expression cannot get smaller if we rep1ace If..
z

0"

o

> 0 by (2) and' (3), or
1 - e

3.2(ii)(b) and 3.2(v) allow us to put 0 for * and,continue:]

~ Jj (.e1iA2 + 4ß2A + 4ß41ii)1/2·).e22·····1rrl

1 I
2 -2det 1 'Jj'(A + 2ß 111 )

2 -2J.'(A+2ß 111 ) ~ 1

also

Thus

The best choice of e would have been s
s+1 ' yielding

22s+1ys+l(s+1)s+1
c - -_........._~-""'"'"----

1 d(s)2s s

The case s-O 1s 1eft to be dealt with. Or rather assume on1y s~7

(whence wand Bare just
""

I* bz 2.4*i» to obtain alternative
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*

eonstants 1ateron~ Take E- . Then (1) reads:

,.
0

0

1
r-1

0 0
1 0
0

•
0

22· 0

·1
* rr

0

0

~

Idet 11 :S vol

(derived the same way as above) , whieh yields with 3.1(3):

2 -1 if ~ - 1 and Ixl1 1 1 (4)1
11

~ (l-xll )

in partieular

2 if 1 and s - 0111 :s 1 ~ -
and also part (ii) of the proposition. -

4.2 Theorem: For h E F
t&J

o holds.

Proof: The eonditions for proposition 4.1(i) are fu1fi11ed by

3.B(a,b,d), thus

Y11 ~ I/cl (remember (4.0(2» if ~-1 .

Furthermore, 3.B(a,b,e) and 4.1(i1) resu1t in

Y
11

~ (1-x
1
i)1/2 ~ (3/4)1/2 for E--1, q.e.d. -

To obtain the promised alternative eonstants in the eases 1 s s s 7 we

use the fact that 6
1

- max { 1 , s1/2/2 }
s

(proof by 1nduetion; LI
n

is known as "The D -Lattiee"). So 3.10(1), 4.0(2), and 4.1(4) combine Co
n

2
Y11 ~ 1-x11 ~ 1 - 1/2 61 - min {1/2, I-sIB} > 0

s

since s S 7 was presumed ("eoincidence").



4.3 Coro11ary; k(h) ~ c3 ho1ds for all h e ~ .

Proof: Because of 3.7(2), it suffices to consider h E F
w

23

for any ~ .

Tbus y 1s M-reduced, the "Hermite inequa1ity" runs as Y11 ~ c4 det y

(cf. [SeI], 2.2), whence by 4.0(2) and 4.2 :

-1/2 -1/2 1/2
k (h) - (de t y) :S ( c4y11) r :S ( c4/c 2) -: c 3

4,~ Corollary: There is a g E GL (Q)
w n

for each ~ E 0 , such that

F'g i5 contained in a Siegel domain for GL (m) .
~ ~ n

r ct< , : [. 1) E 0 ( • ..!. : - i I s J'and deHne

g ;- B [I. ~ -1 JE GL (ll}) . Then for any h E F we obtain
t&J W I n ~

[
I. .e , -I. lp t -" lX)

h' :- ,·h·g - I P E 0 (1R)·F·g n ~+
- W s -t n b,) W n

.!

We know a1ready from 3.8(c) and [Ba], 2.7, that

1-
t

-: diag(l~i, ... ,l~;).p lies in a fixed Siegel domain, i.e. p E~;

comes out of a fixed compact set and

r
-1 -1

o < 1ii ~ cSl i +l ,i+l V 1 s i

The ana1ogous decomposition of h' is

(1)

(2)

Like p ,

_,p.tpt _,p.tX)

I P .s
p

the last matrix is bounded owing to 3.10(ii). The analogon of

(1) ho1ds by (1) itse1f, plus (this i5 the cIUcia1 point) 4,2, 'which

contributes 111/1 - 1/1ii - Yii/2 ~ c;1/2 . Since Siegel domains are

invariant under left multiplication with o (~) , the pIoof i5 finished.
n
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("neighbours") is finite.

Proof: Let ~ be a Siegel domain comprising all those (fininely many)

Siegel domains mentioned in 4.3, so KF g C 0 (m)·~ - ~ ,
w w n

g E GL (Q) . If KF~ n KF ~ ~ , there are w,~ E 0 with
w n

-1 -1
KFw1 n KF~ ~ ~ , thus Egw 1 n E~ ~; . The "Siegel theorem" (cf.

[Bo], Th. 4.6) teIls us that this holds for only finitely many

1 E GL (Z) even.
n

4,6 Corollau: If h E F
w

~(h) it is taken out of a finite stock.

Proof: 3.9 applled to M E ~(h) gives us some U·h·1 E F~ , thus

h E Fw n KF~1 , which means t~at 1 is of the sort 4.5. In 3.9 we had

rM - 7B Z ,proving the claim.
w

4.7 CorollaIY: #i(h) is bounded on ~ (resp. on X) .

Proof: This i5 a direct consequence of 4.6, since by 3.7(1), it

suffices to consider h E F
w

4.8(1) Lemma: The conditions 3.8(b) fo11ow from finite1y many of them.

Proof: Sueh a eondition is indispensable with a partieular M E H iff

there is a h E ~ satisfying all 3.8, except that vol hM < vol hB I
W urr

violates 3.8(b). Then h(r) :- [r-11r 1
s

r1J·h (r~l) preserves

3.8(a), (c) through (f), and in fact 3.8(b) for N ~ M , sinee
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(2)

(3)

Now choose a basis m of M whose first i columns span the

suhlstt e M n B I I {of course. i < r ~ h m .,[ ~ I~ 1

with det a ~ 0 ~ det b by 1.3, hence (use 3.2(ii,b) etc.)

vol(h(r)M) ~ r-ildet al .rr-i(det cl 0 (4)

From (2), (4) and the fact that everything is continuous in r , one

deduces that there must be some ~ > 1 such that

vol(h(~)M) - vol(h(~)B I ), which means
~ n.r

4.6 shows that only a finite number of M ean oecur this way. -

1111 The reader who feels like some more exercise may convince himself

by these means that each is nonempty and in fact noncompact, and

(more important) that all hypersurfaces of ~ or X defined by,

vol M - vol N - 0 (M, N EH) are nonsingular.

4.9 Corollaty; Each F ,and thus F, 1s closed.
w

froof; All the 1nequalities of 3.8 describe closed sets. It remains to

show that finitely many of thern suffieB to define F. !his is known for

3.8(c) (cf. [Wal ,1,§8 for a proof analogous to the above one) , and 4.8

settles 3.8(b).
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~ In 4.6 one may have noticed that the "raason" for F to be

noneompaet is that k(h) can become arbitrarily small (see also 5.2

below). Indeed, ws have a

Corollaty: Given any. k > 0 I F(k)':- (h E FI k(h) ~ k) is compact.

Proof: This set is closed ~~ we have seen in 4.9, so we are done once

we know that each (F~nF(k».8w lies inside some compact set. In fact

it is contained in a Siegel set by 4.4, thus all that is left to do is

to find a positve lower bound for 1rr in 4.4(2) (which then supplies

1
rr

an upper bound for 1-1 free of charge). From 4.4(1) we compute:
rr

l~i" ... lr:i,r_1: det 1 ~ c;(r-1)(r-2)/21~ir-1)det 1

Csyi~-1)/2(det y)-1/2 ~ Cs~ir-1)/2(det y)-1/2 (by 4.21)

~ cSc2 ~ (by 4.0(1), 3.8(b) [third version], and hypothesis).

§ 5 Tbe retraction

2.Q To understand the deformation retraction (of ~ or X) defined

below, it might'be helpful to imagine the orbit space as a set of

"rotating lattices" nK·h·Z . Roughly speaking, the process then amounts

for such a latties to'finding the intersection of the "smallest totally

isotropie sub1attiees" and inflating its m-span w~ile compressing some

perpendieular ~-space, until a further such "smallest sublattiee"

exists. This procedure (the principle,of which is similar to the one

used in [So] snd· [As] and in fact dates back to Procrustes) 1s repeated
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as many times as passible '. - We start with same lemmas on :It (*) , of

which 5.4 is most important:

5.1 Lemma:

is finite.

For any (relatively) campaet set C C ~
u

the set hEC :l (h)

Praof: If h E C, N E ~(h) , 4.3 and 3.2(ix) yield: e3 ~ k(h) ­

val hN ~ A (h) val N ~ A(C) val N (with same A(C) > 0 ); 3.5 grants
r

the lemma.

5,2 CorollatY: k(*) is eontinuous on ~ (ar X).

Proof: Choose a relatively compact neighbourhood C of h E ~ •

Thereon k(h') is the minimum of vol h'Ni (Ni provided by 5.1),

i.e. of finite1y many continuous functions.

5.3 Lemma: Given MeH, H(M) :- {h E ~I M c ~(h)

Proof: Straightforward from the definition.

is closed.

5,4 Lemma: For h E ~ there is a neighbaurhood U such that

~(h') c ~(h) for all h' EU.

Proof: 'Take C and the Ni

u
U - C . (iINi~(h)} H«(Ni )

from 5.2, H(*) fram 5.3, then

fulfills the requirements,

~ Dur deformation will run along.geodesics of ~ . This nation

presumes a totally isotropie subspace S of

be obtained as indicated in 5.0.

n(m ,J) t which will later
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For any subspaee V C ~n (with ONB (vi})' let

(1)

denote the Eue1idean orthogonal projection onto V . Ye can now define

ps(t) E Hn(lR) for t 0

by postulating that the corresponding linear applieation be (remember

1.2(1»

w 'f t ·1fs·(w) + 111' (w) + t -1'1f (w)
(S~nS~) S~~

5.6 Remarks:

~ With aue K from 1.2(i), we have

"tI
d

Ir~d

(2)

henee PS(t) E G

.2.a.l Oefine:

()
R(h) :- N e:f (h) Ni (whieh iso a sub1attiee, possibly (O}) ,

i

~i :- (h E ~I rk R(h) ~ i}

Note that

~(h') C ~(h) ~ R(h') ~ R(h)

By 3.7(1), these and all the following constructions descend to X

(1)

(thus Xi makes sense), furthermore, r acts on ~i . As soon as we

have seen that each ~i deforms to its subspace ~i-1 ' we know that

<90 i5 adeformation retract of ~ - ~ . So let us regard same
r

~1 as
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fixed. For an R of rank i put

~R :- (h E ~I R(h) - R) c ~i·~i.l

These form a disjoint union

. u
~i - ~i.l u R ~R

The ~R are open .relative to ~i (5.4; thus ~i-l 1s closed), and in

fact the relative boundaries ~R ~R are all contained in ~i-l

R(h) ~ R for h E ~R - ~R (2)

(use 5.4 and (1». Thereiore it suffices to deform each ~R onto this

boundary. Assume from now on R fixed as weIl. Let" us abbreviate

h(~) :- p<h.R>(r).h E ~ (for h E ~ , r > 0)

hel) - h (5.6(ii» .

5.8 Lemma; her) i5 continuous in.h and r .

Proof; Show that the u in 5.6(1) for S -"<hR> can be chosen to

depend continuously on h

(3)

~ In order to study the behaviour of our volumes under this first

approach of adeformation, we define:

"_ vol h(r)M
rp(h , r IM). 1 (h E r.s , r > 0 I M EX) (1)

r ·k (h)

(recal1 that i - rk R i8 fixed). We know from 5.8 and 5.2 that this

function 1s continuous in h aod r I also by definition

rp(h,l,M) ~ 1 Y h", M

~(h,l,M) - 1 ~ M E ~(h)

(2)

(3)



30

The following lemma forms the most important cog wheel of this

machinery:

5.10 Lemma: Let h E ~, M EH.

(a) If ReM I ~(h,T,M) i8 constant in T .
I

(b) Otherwise ~(h,T,K) is strictly decreasing in T .

Proof: Yrite' P :- <b.R> I L:- <h.M>, m some basis of M. Choose

an u E 0 (ffi) that respects the Euc1idean-orthogona1 decomposition
n

Rn _ (L n P) ~ (L n P= n P~) ~ (L n P~~) ~ «L n P)~ n P)

~ «L n p~ n p~)L n p~ n P~) L «L n p=L) n p~L) (1)

with dimensions, say,

a , P, ~, i-a, w, and i-~. (2)

A~so choose some b E SL (ffi) such that the co1umns of h·m·b respect
r

.L - hmbffir - (L n P) L (L n P= n P~) ~ (L n p=L) L (L n QL)

D

D"

c
B

-1
T 1

1.~

Tl
i -a I

w

simp1y denoting the span .of the previous three spaces). Thus

TI A
a I

ß -1'
T I

~

P (T) - u·
~

( Q

.*
The D have 6 :- r-a-ß-~ co1umns. We compute, using 3.5(i) etc.:

-i -1 -1 -L
T vo1 h(T)M - T vol(u p~(T)U'U irumb)

T-ildet TAlldet Bildet T-lcl 'detl/2(T2otO+D,tO'+T-2D"tO")

- T- i +a-1+6Idet A d~t B det cl 'det1/2(DtD+T-2o,to'+T-4D"~"). (4)

Ad (a): Ye have

~ - 0 - 6 and

~

P c L c P by total istropy, (3) and (1) thus yield

i-a - 0 I hence (4) reads: t-ivol h(T)M - Idet A det BI
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which settle~ this ease.

Ad (b): The dimension formula contrlbutes ß~ - dim(LnP~) ~ n·(n-r+i) -

r·i ,or ·i+a-1+0 - -i+r-ß+21 ~ -1 ~ 0 , thus -i+a-1+0
r 1s

deereasing, even strietly so if 1 ~ 0 . Also, if one rewrites out of

t ·2 t ·4 t t -2(O')t(O') -4 -2 t(4): 0 D+~ 0' O'+~ on on - 0 D+r on on +(T -T )on on , one ean

see that making r smaller amounts to adding a positive semidefinite

matrix, whieh is definite if rk(~:) - 6 > 0 .. Therefore we are through

if we either show the latter eondition or 1 ~ 0 . Now P ~ L ~ ~ (L

being maximal totally isotropie); by (3) 0 - 0 implies 1 ~ 0 . Thus

only the ease 6 ~ 0 is left: Assume z E ~6 with (~:).z - 0 then

hmb· (~) lies in u· [~) .~6 c· (L n P).l n P (ef. (1», but also in

hmb~r - L , henee 1t 1s 0 and z - 0 sinee hmb is a basis. So the

5.9(3) and 5.10(b) yield

rank claim is proved as weIl. -

5.11 Corollary: For h E ~R and N E ~(h) ,

i
~(h,~,N) - 1 ,i.e. vol h(T)N - T k(h)

providing a more suggestive ve~sion of 5.9(1):

vol h(r)M
~(h,T,M) - 1 h N V Me N

vo (r)

V T > 0 , (1)

(2)

2.l2 The value of r at which the deformation will be stopped is

r '(h) :- inf{r ~ 113M
o

(admit ~ for the moment).

R ~ M , ~(h,r,M) - l} (h~)
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5,13 Lemmas:

~ From 5,7(2) and 5,9(3) deduee

To(h) - 1 if h E ~R - ~R

(ii); Nowassume h E ~R . 5.9 then says that ~(h,l,M) 1 if

H E ~(h) , in particu1ar if R g M, ~ being eontionuous, we see that

T (h) is actually the inftmum of all T~l such that
o

~(h,T,H) ~ 1 V R ~ H (or V M E ~(h) , using 5.10(a»,

or equiva1ent1y (by 5,11(2) and"s.10(a» such that

:f (h( T» ,. :f (h)

5.11(2) then offers

i
k(h(T» - T k(h) v 1 :s ., < T (h)

o

(1)

thus the hard-earned boundedness assertion 4.3 yie1ds

., (h) < Q:I

"0

and we ean write: '

ho :- h(., (h» E ~ for all h E ~ .
o

(iii); Furthermore, one can rep1ace "inf" by "min" . Indeed, for

h E <ßR (otherwise (i) hits the point),. ehe opposite" assumption

:f(ho) - :f(h) (cf. (1» wou1d imp1y j.(h(., (h)+'1» c :f(h)
o

(0 :s '1 :s some '1 >0) by 5.4 and continuity, nay even "-" using
o

5.10(a). That would meao ~(h,TO(h)+'1,H) > 1 V H e :f(h) , 0 ~ '1 :s '1
0

(cf. 5.11(2» contradicting the definition.
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5,14 Lemma: Let us point out:

i!l- h E ~R ~ h(r) E ~R V 1 Sr< ro(h)

.illl h E CßR ~ ho E CSR - CSR

Proof: (i) is immediate from 5.13(1). By continuity this and 5.13(i)

imp1y h E CSR . But an N E ~(h) responsib1a for (1) cannot have
,0 0

ReN (5.10(a)!), which maans. ho E ~R .

~ Now we can define our deformation

rR : ~R X (0,1] ~ CSR

(h,~) f h
(r (h)~)

o

We have seen that we are indeed moving inside ~R and ending up with

the untouched subspace CS
R

- ~R • The on1y (and most crucia1) assertion

1eft to prove 1s

'5.16 Lemma: r 0 (h) 18 continuous in h E CSR .

Proof; We sha11 find some re1ative1y open subset U of CS
R

with

hEU (h regarded as fixed), on which r
o

is cont1nuous. Denote

{Njl j E I (finite nonempty index set») ;- {N E ~(ho)1 R ~ N) .

Wa find ~(h,ro(h),Nj) - 1 (5.11(4) rasp. 5.9(3» and

~(h,ro(h)+1987,Nj) < 1 (5,10(b» for all j . By continuity there i9

some U' , re1ative1y open in ~R ,where ~(h' "o(h)+1987,Nj ) < I"

V h' E U' , j E I (I 15 finite). But WB had ~(h' ,1,N
j

) ~ 1 , so

strict monotony (s.10(b» gives us unique rj(h') E (1, 'o(h)+1987] ,
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~(h' ,rj(h'),Nj ) - 1 . Each of these is a bounded function

having a c10sed graph (by uniqueness and continuity, behold the pivot

point!), thus it is continuous. Therefore

continuous function U' -+ <ß • Now let

uj(h') ;- h'rj(h') i5 another

V be a neighbourhood of h in
o

~ where ~(hn) C ~(h) V. h" E V according to 5.4. ,Then
o

n ·1
U :- JEI uj (V)

is open with respect to U' , thus to ~R as weIl, and contains h ,

because U j (h) - h (r j (h» - h (r 0 (h» E V Vj

function is given by r'(h') ;- min{rj(h')lj

r (h') - r' (h' ) \J hEU
o

. A last continuous

E I) . The claim

would finish the proof. Now n~" ean be assemb1ed from the definitions.

The assumption ft<" on the other hand implies that there is some h'eU

and M' with ~(h',r (h'),M) -·1 and ~(h' ,r'(h'),M) < 1 , so noo

element of ~(ho) i9 in ~(~'(r'(h'») 9ince we had

~(h' ,r'(h),Nj ) ~ 1 Vj . (always use 5.10(b)). But fixing a j(h') E I

for h' E U such that ,.' (h') (h'), - r j (h') holds, yields

. h' (r'(h'» - aj(h,)(h~) ; also the definitions of U and V demand

~(aj(h,)(h'» C ~(ho) , whence the desired contradiction.

5,17 Theorem: has trivial

homotopy type, and r operates on it (discontinuously and properly).

Proof: X was seen in 1.2(iv) to be contractible, so the above homotopy

Xequivalenee, which also makes sense· on X (even on Ir)' transfers it

to Xo ' The other assertions are also inherited from X (weIl known)
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and will result once more from § 7. -

§ 6 Compactness

.2......Q We want to see by means of 4.10 that CS
o

n F

~, :- (h E ~I 3 ~JN2 E ~(h) ~n N2 - (o)0

~n ;- (h E C§o I Ni n Nj .. (o) 'V Ni,N
j

E ~(h)0

thus

i9 compact. Put

and

CS - CS' U ~"000 (1)

6.1 Theorem: h E ~O ~ k(h) ~ 1 .

h E F n~' and with some pair
~ 0

B~~Z -: [~] ·Zr •B I Zr - N
1W n,r

det C .. 0 , because 1.3 app1ies. Hence

Sy 3.7(2) and 3.9 we may assumeProof:

N1 , N2 from the definition:

[ : ] e M (Z). Actua11y,
C n,r

k(h) - vol hNZ - vol [l;t
C
]

~ Idet l-tcl - det- 1/ 2(l t l). Idet cl
as c1aimed .

.2..,.Z To show the corresponding property for <9' I we need an important
0

Lemma: There 1s a con9tant c6 > 0 such that for any he<ß snd any

totaly isotropic sub1attice T of (Zn,J ) there 19 a T' E J( with
I{;

T c T' and val hT' ::s c6 ·vo1 h

I"
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Proof: From 3.2(1,1i) we see that this claim only concerns the

"rotating lattice" Khr and therefore need only be proved for

representative8. Also put rk T -: T < r (otherwise the lemma i8

trivial). 3.6 guarantees a T' E K with T c T' and

vol hT' ~ vol hN for all N E N containing T (1)

Entering into 3.1 with an anterior comp1e~ion of some basis of T to

one of T' , we may assume besides 3.1(1) (with +
.eE~ ):

T' - B . I .Zr
t&.I n,r

Write .t-t - [~:) with

(2)

A E GL (~), p:- r-T . Now let us proceed
p ~

m
I

l'

similar1y aa in 3.9: Apply ..., :- B .
w

I
s

-t
m

-1·Bw
to make

I
T

M'-reduced, renew i- t
E ,+ , and in ease f--l achieve lXIII ~ 1/2

with

vo1 hT', :S vol hE

Now any E·Zr
E N

contains T by (2), so (1) implies

by means of some

B-
1

E - [* I~-11
t&.I * 0

* 0
for all such E. But these are precisely the conditions of 4.1, which

yields resp. If denotes the

familiar Hermite constant, WB also have
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~ l-P~-p/2det 1 ~ ~ det 1 - ~ vol hT' (some ~ > 0 )
11 p p p p

by (2). One may (or may not for tighter calculation) take the sma11est

to obtain the lemma.

6.3 Theorem; k(h) ~ CJ for all h E ~Ö .

Proof: Fix h E ~Ö and an arrangement ~(h) -: (~I j-l"",~(h)}

i
Si ;- n N

j-l j

and let a be the largest i with Si ~ {O} . The definition of ~Ö

teIls us 2 S a < #feh) . In order to show inductive1y the existence of

constant8 k
i

such that

vo1 hS
i

S ki·k(h) (1)

assume i < a fixed as weIl. Simi1ar1y to 6.2, take h' :-: uh~ from

3.1 of the form 3.1(1) with 1 +
( I ) and:- l(h') E ~

r·
~B I rz - Si 1~B I Z - Ni I (2)

'W n, r + w n,a +

As Si+1 - Si n Ni +1 (and -1 -1 18 totally isotropic'inB'W ~ Si

(mn,J ) ), 1.3 1s app11cab1e:
'W

( JJa *v)rk b - P . Writing 1-:

I
a *o

Si - ~B'W 0 * E Mn,a+p(Z) , where
o 0

b

( 11 E GLß(~) ), and'using ~* as in

6.2, we thus have (employ 3.2 as usua11y);

o

JJ
o-1

vol hS i - val h'~ Si - vol
*
* ~ det ~ detl/2(btll-111-~)---o

a v-~

~ vol h,~-1Si+l ~~/2' minß/2{(v-~z)t(v-~z)1 Z E ZP_{O}}

~ vol hS
i
+

1
. ~~/2 minP/ 2{(l-tz )t(i- t z)I Z E Zr-lO)}
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P/2 P/2
~ vol hS i +l . ~ß . c2

(to obtain the last assertion from 4.2 and 3.8(c), observe that the

(3)

respective minimum 1s not changed by the process of 3.9 if we start it

with h' and I Zr). This settles (1). In fact we can taken,r

(4)

-1s1nce for 1-1 (3) reads: k(h) - vol hSl ~ det ~ det v Idet el

2 -1 2 -1
~ det ~ det 1 ' 1 - vol hS2 (k(h)) ,Now, q being bounded (4.7),

(5)

holds. If we set

S .:- N1 n Na+l (,.. (Ol by definition of <BÖ ), and

T :- <S USa> n Zn c NI

,we have (from (1) and (4), renumerating the ~j )

vol hS s k2'k(h) - k(h) " (6)

S1nce we postulated S n Sq - Sa+l - (Ol I 3.2(viii) 1s tailored to

measure:

vol hT ~ vol hS val hS
a

(7)

At last let T' E K be obtained from 6.2 "for our T ,'then

2k(h) ~ vol .hT' ~ c6 val hT S c 6c
S

(k(h)) or

-1k(h) ~ (c6cS) -: c7

6.4 Remarks: i1l The reader may have noticed that some of those

estimates can be tightened by known methods. Here however just one

improvement will be given that proyides further insight as weIl:

Assume the order of the chosen such that q is minimal, which
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u
1inearly independent <Mj > n <i"jMi > C <MjnNj > - {Ol

nthey span a total1y isotropie subspace M of (m ,J )
IC

, and together

~ m
i

,m
j

E N
k

] , which means

2 < u < r

3 S u+l S dirn M S r or

- (1)

r - 3 (where we had u - 2 ~nd cs - 1) we.get 3 ~ dim M

- rk T~ 2+1 , thus TEH, and (2) specifies: k(h) s vo1 hT ~ k(hf

C7 - 1 (defined in 6.3) if r - 3

Dther intersection lattices may offer special advantages as weIl. -

i11l The bisection 6.0(1) is not comp1etely natural. Indeed, 6.1 (and

the part of 3.9 referred to therein) can be viewed as -limiting csse" of

6.3 (resp. 6.2). -

6.5 Theorem: Given any subgroup r s r of finite index,

X - cg ..Olr - K\ Olr 1s compact.

Proof: This space is the projection image of U
'Y (<90 n F)·'Y ( 'Y

representing laft cosets) , which is·compact by 4.10 and the above.
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6.6 Remark: Despisers of Siegel sets may use the results of this
.

section to show that ~O is contained in some "Stuhler-Grayson domain

·of semistability" as defined in [Grl], and take Grayson's compactness

result (ibd., Tb-. 7.18) instead of 4.10. (Notice that those domains have

the same dimension as ~ .)

§ 7 Triangulability

I.Q In this chapter we deviate from our general concept by providing a

kind of cross-country existence proof, which in return might be applied

to similar cases without much modification. Tbus substantial

simplifications can be anticipated in actual calculations. [By the way,

skilful modelling may start with taking 3.8a) and f) not too literally."]

Reca1l the following

7.1 Definition: A sub~et of ~ is called semlalgebrslc set ("sas"),

if it is a (finite!) Boolean combination of some (x E mnl P(x) : 0 } ,

P(*) polynomials. A function mk ~ ~ ~ whose gr~ph 1s a sas will

be refered to as semls1gebralc appllcsclon ("saa") (cf. [Co], 1.1, 2.9).

,7.2 Remarks and guotat1ons;

G , ~ , CL (m) ete. (but not r) are canonically sas's.
n

-1If f, g , and h are"saa's, so are f(g(*» snd h If (and

where) defined.
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(111) Any algebra1c. funct10n (e. g. division and square root) j.s a saa

on its domain of definition.

~ The c10sure of a sas and the image of a sas under a saa are again

sas's ([Co], 2.7, 2.10)

~ (Lojasiewicz, cf. [Co], Theorem 4.10): If a compact set S is the

disjoint union of finite1y many sas's Si' then there is a homeomorphic

saa f onte a simp1icial comp1ex C - U u i (ui affine simplices in

some real space).' such that aach Si is a union of some

-1
~ Such a f (u

j
) is a sas by (ii) and (iii).

L.l;. Now let us draw forth that old cf> from 1.1, regarded as a sas in

its real hull. It is homeomomorphic to X, and with the u(*) from 1.2

the projection writes

y,:<ß-+<Jl, h f u(h&-l) hJ1
-1

u(*) is a saa by 7.2(i11) ("orthogonalisation process"), thus 1/J as

weIl. The action of a "1 Erdescends to the saa

rp f qJ 0 "1 :- U(qJ&"1ä-
1

)'qJ 5. "1 5.-
1

(qJ E cf»

Writing F for the sas ~(F) , we have

. For-<Jl

~ Actually we need a sas F' C F of r-orbit representatives.

Firstly, a corresponding set for GL (Z)
n

:f-acting on ~ 'can (e.g.) be
n

constructed as foliows.: Switch to the equivalent model of positive

definite matrices (always check saa and sas properties) acted on

linesrly by t
g E GL (Z) : f f g fg . Voronoi' s reduction theory ([Vo])

n
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divides this space into convex polyhedral cones edged by some

semidefinite matrices. GL (Z) permutes the latter as weIl .(not just
n

projectivelyl), thus also their barycentres. A system of representatives

of the induced projective barycentric subdivision (freed from its

indefinite parts) consists of finitely many simplicial cones and serves

our purpose. - Now let M be the version of this set in a "tilted

~: n that contains ~,and 1 i be r-coset representatives of the

finite (by Siegel property) set (g E GL (Z)I F n Mg ~ ~ ) . The
n

u - .
somewhat brutal definition F' :- i (F n M1i ) has the desired features

(in practice a hand-made samp1e is to be.prefered). -

F ;- F' n ~(~O)
o .

is ~nother sas by 4.6, thus F as we11 (barring
0'

a1ways denotes c1osure).

(1)

such that eachF -:
o

and

We can fix a triangulation

F
o

~

U u
ii-1

ui,uj <·uk ' u i 0 1 n uj ~ ~] ~ 1 - In

Apply 7.2(v) to r- F u(r--F ) . As F i8 a set of
o 000 0 •

Lemma:

is a sas,

Proof:

7.5

r-representatives in ~(~O) (1) can be obtained from this

triangulation by barycentric subdivision wherever necessary (performed

affinely in the affine model first to conserve the sas features).

~ To force respect for the r-action (whose saa property will chiefly

provide the necessary authority), we refine one u
i

after the other

( 1 ~ ~ ). For the moment we content ourse1ves with a regular cel!
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a1ready carries ar-invariant such

structure (r )
m

with sas's for cells, all ( i:Sk-l) and

(j~) being unions of r 's . Now
m

c ~(!) ) can have nonempty

intersection with only· finitely many UAo 1 or r
m

by Siegel property 4.5. These induce a disjoint decomposition of uk

7.2(v) applies once more. Since all interfering rare contalned in
m

U
k

' they form a subcomplex that is being refined. Transport of that

triangulation to uko r makes 00 problem because of 7.5(4). The result

is a new complex Sk+l recovering all induction hypotheses, thus

. eventually Foo r - ~(~O) is made such a complex. Now it is easy to

refine this to a topological triangulation (e.g. of

centrally subdividing all closed ce11s (they are c10sed simplices with

their faces refinedl) in an order of increasing dimension, respecting

each time the triangulation of the boundary accomp1ished before.

7.7 Theorem: XO/~ is triangu1able for any subgroup r of r .

Proof: The structure of 7.6 obvious1y descends to

h hi XO/r- .omeomorp c to



44

§ 8 Dimension

.L.Q We shal1 see that out of the r steps in § 5 (af which but the

last achieved compactness relative to r ), only the first one reduces

the dimension by 1

Abbreviate U for I Zr , and :1{ for {U, J·U}
n,r 0

3 0 !nma: :t <Si consi es of chose hof wie h - (f sucha

(A,B) 1s an r-by-r permutation matrix. (Hence &M - M .)

Proof: As

NZr
E :f(~) N -', .

SL (Z) ,and vol(ti1 )

, c~b ) n,r
( means in case

- 1 , k(&)

l - 1 :

must be 1 . Thus

thus

t . t t · ta c + b ~ ~b +'c a - 0 , and

From (1) we deduce

( " )t( ) t b t t bete _ Nt~t~Na~c a-c - a a + ~ ~ + ~ ~

. -1
det(a-c) - ±1 , and replacing N by N'(a-c)

basis"), (3) reads

t t
N&&N-Ir

(1)

(2)

(3)

("change of

(5)

For l - -1
r

(NZ ,12r) 1s a lattice of discriminant 1 in

(Z2r,Izr) , henee it must respect the "irreducible deeomposition"

Zr
~ (Z,I) of the latter (cf. [MB], 1.3.1 snd 11.6.4), i.e., (5) holds

i-I

after change of basis. - From (5) and the isotropy condition, N7lr can
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easily be seen to be one of the MZn of the claim; on the other hand

these obviously are In ~(&) .

8.2 Lemma: In every neighbourhood V of & there is a h E ~O with

:f (h) - :f' .
o

Proof: If r - 1 ~ itself does the job. So let r ~ 2 . Define

i-j
E M (IR)

l"j r
and ~(~,r) E.+ such that

r
t

~ ~ - S

wherever S is positive definite. For a fixed e > 1 , one can see by

computation that ~(e,r)ii is strictly decreasing in r ~ 0 (unless

i-I where it is constant) as weIl as in i (ftcollapsing r-podft ).

Therafore a continuous function r(~) ~ 0 is defined by postulating

det ~(e,~(e» - 1

and for p :S r-l , e > 1 we have

9 :- det ~(e,~(e»I,jSP > 1
P

Let us take

h :_ [17(€.r<m-
t

IC )

~(e,~(e»

with sma!1 enough a e > 1 to have

(1)

(2)

E V

~(h) C ~(&) (it exists by

continuity, 5.4, and ~(1) - 0 ). Now consider some M with its A and

B from 8.1, such that 0" rk(B) -: ß " r . Observe

(B,A)-tSa(B,A)-l - Sa , (u - ±1) . Therefore

. val hM - vol ~-tA vol ~B - vol ~-t(IO ) ·vol ~I ß
r-ß r,

- (9~1/9ß1).9ß - 9~ > 1. (cf. (1) and (2».
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On the other hand vol hU - vol hJU - 1 by (1), which amounts to the

assertion.

8.3 Theorem: The dimension of Xo (as a cell complex, say,) i8 one

less than that of X.

Proof: The two dimensions are not equal: In ~, ~(~o) (even

~(~ 1) ) is recruited fram ehe smooth algebraic hypersurfaces definedr-

by vol ~~M - vol ~&N (M, N E ~(~&) , ~f. 4.8(ii», aetually from

10cally finite1y many of them, as 5.4 shows. - Conversly, if one·

- intersects the ~-image of a 5.4-neighbourhood of the h found in 8.2

with one of those manifolds, the result 1s contained in ~(~o) , proving

that the latter spaee cannot have a smaller dimension than cla1med.

x
~ Trying to make that finite (simplicial) cell eomplex O/r smaller

still by hand is a tempting idea. Namely, if a cell is a face of only

one other cell, both cella may be removed ("pressed in with the thumb").

However, remember that in order to eater for those important

torsion-free subgroups, we are availed only by manipulations that 11ft

to deformat1ons of Xo . We aha!l see that ehis can indeed be effected

whenever r ~ 2 .

~ Assume from now on r ~ 2 ,and ehae ~(*) 1s constant on aach

simplex of Xo (we can aehieve ehis by additionaly accommodating ehe

finite"number of interfering. sas's {~E ~ I ~(~~) - ~} in ehe

process of triangulating F
o

in 7.5). We know ehat ehere is a highese
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~(*) - ~ . Applyingo

some [M I~ JM] (M as in 8.1), which is in rand stabilizes ~,we

find'that thera is another such cell having {MZr , JMZr } for ~ . So

thera must be ~ l-codimensional simplex r near K·& which is face of

exactly one of those .simplices with ~ - ~ ; call the latter
o

q . On r

we must have ~ ~ ~ u {N} with some N E ~(&) • In lemma 8.6 we are
o

going to see that actua11y "-" ho1ds, so that near· r outside q ~(*)

must be either {U,N} or {JU,N} . But this means that we are 1eaving

Xo ; rand 0 (and their r-trans1ates) can indeed be removed from Xo
without changing the homotopy type.

8.6 Leuqna: In fact ~ - ~ u {N} on r .
o

Proof: Suppose ~ contains four 1attices U, 30, N, and L . Then at

least one of the fo110wing two cases app1ies:

a) Same canonica1 unit vector is in U n L n N , some other'in

U n L n JN , and a third one in U n JL.n JN , or the ro1es of U and

30 or those of Land N are interchanged.

b) Such a unit vector is found in U n L n JN and another one in

U n JL n N

Now regard the three dimensional submanyfold of ~ consisting of those

matrices that differ from I on1y in the corresponding entries, name1yn
a b a eaec

b -be
-1 (ease a» resp. (ease b)). Thea

·1 -1
b -1

a
b- 1e
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equations vol ~U - vo1 ~U - val ~L - vo1 ~N , transformed 1nto

po1ynomia1~, have no solutions in that subspace but I I even if
n

complex entries a b , c are admltted. This contradicts the fact that

the codimension in X of T is 2. (Note that arguments 1ike this one

can be used to prove 8.2 and 8.3 likewise.) -

~ Such procedures may obvious1y be performed as lang as boundary

cel1s like ~ are availab1e. The key lies in those sets ~ whose

members have a cammon intersection if any one ·of them is removed. This

imp1ies ~ ~ r (ef. 6.4), which gives an intuitive illustration of the

fact that the codimension of the final deformation retract in X cannot

exceed r

§ 9 Special eases

2.l Siege1's version of our §§ 3 and 4 in the case (- -1 ([Si])

trans1ates as fo1lows: His spaee H of symmetrie matrices z - x + 1y

E M (C) (x,y real, y positive definite) is our ~ via
r

[l -lX) 1,(l.e- t4- -t f x +
J.

(cf. [Si] I VI Lemma 6). Also, his left r-aetion

(~ B) A (Az+B) (Cz+D)-lD 0 z :-

1s anti-isomorphie to our right hand one by

-1 1\

4-(~o7) - 7 0 4-(~)

As r aets transitivelyon N (cf. 3.1(2», 3.8(b) can be wr1tten
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This is precisely Siegel's reduction condition that. det y-l (- det21)

be minimal in the r-orbit. Thus the two fundamental domains correspond

to one another except that he wants -1
Y to be M-reduced, not y.

2.l For the csse E - -1, r - 2 '. Gottschling computed the bounding

hypersurfaces of that fundamental domain ([Go]). His

[o
c

t

t
] ·Zr"Assoz1ationsklassen" of matrix pairs (C,D) are the elements

of H • Thus ~O n F corresponds to the union of those faces that

belong to a pair (C,D) such that [ct] ·Zr n I Zr - {Ol (cf. also
Dt n,r

[51], VI, 130). These are exactly the ones given in [Go],(10), name1y

(C,D) - (5,1) with
r

S E ([~ ~). [; ~) • [~ ~). [; ~). (~ _~) • [~ ~). [: ~). [~ :) I e-±i )

The 1nc1dence structure of these manifo1ds has not yet been computed.

2.1 If «(,r,s) 18 (-1,1,0), (1,1,1), or (1,1,2) , G acts on

the "upper half plane" resp. the "upper half space" in a well-known

manner, and in fact our deformation retract cou1d have been obtained by

tthe methods of [Se1] resp. [Me]" (making the obvious adjustments owing

to the fact that under the "Weil isomorphisms" r does not remain

integral).
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