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Abstract. A complete description of the Alexander modules of knotted
n-manifolds in the sphere S

n+2, n ≥ 2, and of irreducible Hurwitz curves is
given. This description is applied to calculation of the first homology groups
of cyclic coverings of the sphere Sn+2 and of the projective complex plane
CP2 branched respectively alone knotted n-manifolds and along irreducible
Hurwitz (in particular, algebraic) curves.

Introduction

A class C of C-groups and its subclass H of Hurwitz C-groups (see definitions
below) play very important role in geometry of codimension two submanifolds.
For example, it is well known that the knot and link groups (given by Wirtinger
presentations) are C-groups and any C-group G can be realized as the group of
a linked n-manifold if n ≥ 2, that is, as the fundamental group π1(S

n+2 \V ) of
the complement of a closed oriented manifold V without boundary, dimR V =
n, in the (n + 2)-dimensional sphere Sn+2 (see [8]) and viceversa. Note also
that a C-group G is isomorphic to π1(S

n+2 \ Sn), n ≥ 3, for some linked n-
dimensional spheres Sn if and only if H2G = 0 ([5]). Some other results related
to description of groups π1(S

n+2 \ Sn) can be found in [15] and [4].
If H ⊂ CP2 is an algebraic or, more generally, Hurwitz1 (resp., pseudo-

holomorphic) curve of degree m, then the Zariski – van Kampen presentation
of π1 = π1(CP2 \ (H ∪ L)) defines on π1 a structure of a Hurwitz C-group
of degree m, where L is a line at ”infinity” (that is, L is a fiber of linear
projection pr : CP2 → CP1 and it is in general position with respect to H;
if H is a pseudo-holomorphic curve, then pr is given by a pencil of pseudo-
holomorphic lines). In [9], it was proved that any Hurwitz C-group G of degree
m can be realized as the fundamental group π1(CP2\(H∪L)) for some Hurwitz
(resp. pseudo-holomorphic) curve H, deg H = 2nm, with singularities of the
form wm − zm = 0, where n depends on the Hurwitz C-presentation of G. So
the class H coincides with the class { π1(CP2 \ (H ∪ L)) } of the fundamental
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1The definition of Hurwitz curves can be found in [6] or in [2].
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groups of the complements of ”affine” Hurwitz (resp., of ”affine” pseudo-
holomorphic) curves and it contains the subclass of the fundamental groups of
complements of affine plane algebraic curves.

By definition, a C-group is a group together with a finite presentation

GW = 〈x1, . . . , xm | xi = w−1
i,j,kxjwi,j,k, wi,j,k ∈ W 〉, (1)

where W = {wi,j,k ∈ Fm | 1 ≤ i, j ≤ m, 1 ≤ k ≤ h(i, j)} is a collec-
tion consisting of elements of the free group Fm generated by free generators
x1, . . . , xm (it is possible that wi1,j1,k1

= wi2,j2,k2
for (i1, j1, k1) 6= (i2, j2, k2)),

and h : {1, . . . , m}2 → Z is some function. Such a presentation is called a C-
presentation (C, since all relations are conjugations). Let ϕW : Fm → GW be
the canonical epimorphism. The elements ϕW (xi) ∈ G, 1 ≤ i ≤ m, and the el-
ements conjugated to them are called the C-generators of G. Let f : G1 → G2

be a homomorphism of C-groups. It is called a C-homomorphism if the im-
ages of the C-generators of G1 under f are C-generators of the C-group G2.
C-groups are considered up to C-isomorphisms. Properties of C-groups were
investigated in [7], [9], [12],[11].

A C-presentation (1) is called a Hurwitz C-presentation of degree m if for
each i = 1, . . . , m the word wi,i,1 coincides with the product x1 . . . xm, and
a C-group G is called a Hurwitz C-group (of degree m) if for some m ∈ N

it possesses a Hurwitz C-presentation of degree m. In other words, a C-
group G is a Hurwitz C-group of degree m if there are C-generators x1, . . . , xm

generating G such that the product x1 . . . xm belongs to the center of G. Note
that the degree of a Hurwitz C-group G is not defined canonically and depends
on the Hurwitz C-presentation of G. Denote by H the class of all Hurwitz
C-groups.

It is easy to show that G/G′ is a finitely generated free abelian group for
any C-group G, where G′ = [G, G] is the commutator subgroup of G. A C-
group G is called irreducible if G/G′ ' Z and we say that G consists of k
irreducible components if G/G′ ' Zk. If a Hurwitz C-group G is realized as
the fundamental group π1(CP2 \ (H ∪L)) of the complement of some Hurwitz
curve H, then the number of irreducible components of G is equal to the
number of irreducible components of H. Similarly, if a C-group G consisting
of k irreducible components is realized as the group of a linked n-manifold V ,
G = π1(S

n+2 \ V ), then the number of connected components of V is equal to
k.

A free group Fn with fixed free generators is a C-group and for any C-group
G the canonical C-epimorphism ν : G → F1, sending the C-generators of G
to the C-generator of F1, is well defined. Denote by N its kernel. Note that
if G is an irreducible C-group, then N coincides with G′. In what follows we
consider only the irreducible case.



ALEXANDER MODULES 3

Let G be an irreducible C-group. The C-epimorphism ν induces the follow-
ing exact sequence of groups

1 → G′/G′′ → G/G′′ ν∗−→ F1 → 1,

where G′′ = [G′, G′]. The C-generator of F1 acts on G′/G′′ by conjugation
x̃−1gx̃, where g ∈ G′ and x̃ is one of the C-generators of G. Denote by t
this action. The group A0(G) = G′/G′′ is an abelian group and the action t
defines on A0(G) a structure of Λ-module, where Λ = Z[t, t−1] is the ring of
Laurent polynomials with integer coefficients. The Λ-module A0(G) is called
the Alexander module of the C-group G. The action t induces an action hC

on AC = A0(G) ⊗ C and it is easy to see that its characteristic polynomial
hC ∈ Q[t]. The polynomial ∆(t) = a det(hC − tId), where a ∈ N is the
smallest number such that a det(hC − tId) ∈ Z[t], is called the Alexander
polynomial of the C-group G. If H is either an algebraic, or Hurwitz, or
pseudo-holomorphic irreducible curve in CP2 (resp., V ⊂ Sn+2 is a knotted
(that is, connected smooth oriented without boundary) n-manifold, n ≥ 1)
and G = π1(CP2 \ (H ∪ L)) (resp., G = π1(S

n+2 \ V )), then the Alexander
module A0(G) of the group G and its Alexander polynomial ∆(t) are called
the Alexander module and Alexander polynomial of the curve H (resp., of
the knotted manifold V ). Note that the Alexander module A0(H) and the
Alexander polynomial ∆(t) of a curve H do not depend on the choice of the
generic (pseudo)-line L. Results related to the Alexander modules of knotted
spheres are stated in [16], [17].

In [2] and [10], properties of the Alexander polynomials of Hurwitz curves
were investigated. In particular, it was proved that if H is an irreducible Hur-
witz curve of degree d, then its Alexander polynomial ∆(t) has the following
properties

(i) ∆(t) ∈ Z[t], deg ∆(t) is an even number;
(ii) ∆(0) = ∆(1) = 1;

(iii) ∆(t) is a divisor of the polynomial (td − 1)d−2,

and, moreover, a polynomial P (t) ∈ Z[t] is the Alexander polynomial of an
irreducible Hurwitz curve if and only if the roots of P (t) are roots of unity
and P (1) = 1.

Let G = π1(CP2 \ (H ∪ L)) be the fundamental group of the complement
of an irreducible affine Hurwitz curve (resp., G = π1(S

n+2 \ V ) is the group
of a knotted n-manifold, n ≥ 1). The homomorphism ν : G → F1 defines an
infinite unramified cyclic covering f∞ : X∞ → CP2\(H∪L) (resp., f∞ : X∞ →
Sn+2 \ V ). We have H1(X∞, Z) = G′/G′′ and the action of t on H1(X∞, Z)
coincides with the action of a generator h of the covering transformation group
of the covering f∞.
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For any k ∈ N denote by modk : F1 → µk = F1/{t
k} the natural epimor-

phism to the cyclic group µk of degree k. The covering f∞ can be factorized
through the cyclic covering f ′

k : X ′
k → CP2\(H∪L) (resp., f ′

k : X ′
k → Sn+2\V )

associated with the epimorphism modk◦ν, f∞ = f ′
k◦gk. Since a Hurwitz curve

H has only analytic singularities, the covering f ′
k can be extended (see [2]) to a

map f̃k : X̃k → X branched along H and, maybe, along L. Here X̃k is a closed
four dimensional variety locally isomorphic over a singular point of H to a com-
plex analytic singularity given by an equation wk = F (u, v), where F (u, v) is a

local equation of H at its singular point. In addition, X̃k is locally isomorphic
over a neighbourhood of an intersection point of H and L to the singularity lo-
cally given by wk = vud, where d is the smallest non-negative integer for which

m+d is divisible by k. The variety X̃k, if f̃−1
k (L) ⊂ Sing X̃k, can be normalized

(as in the algebraic case) and we obtain a covering f̃k,norm : X̃k,norm → CP2

in which X̃k,norm is a singular analytic variety at its finitely many singular

points. The map f̃k,norm is branched along H and, maybe, along the line ”at

infinity” L (if k is not a divisor of deg H, then f̃k,norm is branched along L).

One can resolve the singularities of X̃k,norm and obtain a smooth manifold

Xk, dimR Xk = 4. Let σ : Xk → X̃k,norm be a resolution of the singularities,

E = σ−1(Sing X̃k,norm) the preimage of the set of singular points of X̃k,norm,

and f k = f̃k,norm ◦ σ. The action h induces an action hk on Xk and an action

t on H1(Xk, Z).
Similarly, the covering f ′

k : X ′
k → Sn+2\V can be extended to a smooth map

fk : Xk → Sn+2 branched along V , where Xk is a smooth compact (n + 2)-
manifold, and the action t induces actions hk on Xk and hk∗ on H1(Xk, Z).
The action hk∗ defines on H1(Xk, Z) a structure of Λ-module.

In [2], it was shown that for any Hurwitz curve H, a covering space Xk can
be embedded as a symplectic submanifold to a complex projective rational 3-
fold on which the symplectic structure is given by an integer Kähler form, and
it was proved that the first Betti number b1(Xk) = dimC H1(Xk, C) of Xk is
equal to rk,6=1, where rk,6=1 is the number of roots of the Alexander polynomial
∆(t) of the curve H̄ which are k-th roots of unity not equal to 1.

Let M be a Noetherian Λ-module. We say that M is (t − 1)-invertible
if the multiplication by t − 1 is an automorphism of M . A Λ-module M is
called t-unipotent if for some n ∈ N the multiplication by tn is the identity
automorphism of M . The smallest k ∈ N such that

tk − 1 ∈ Ann(M) = {f(t) ∈ Λ | f(t)v = 0 for ∀v ∈ M}

is called the unipotence index of t-unipotent module M .
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Let M be a Noetherian (t−1)-invertible Λ-module. A t-invertible Λ-modules
An(M) = M/(tk−1)M is called the k-th derived Alexander module of M and if
M is the Alexander module of a C-group G (resp., of a knotted n-manifold V ,
resp., of a Hurwitz curve H), then Ak(M) is called the k-th derived Alexander
module of G (resp., of V , resp., of H) and it will be denoted by Ak(G) (resp.,
Ak(V ), resp., Ak(H))

The main results of the article are the following statements.

Theorem 0.1. A Λ-module M is the Alexander module of a knotted n-manifold,
n ≥ 2, if and only if it is a Noetherian (t − 1)-invertible Λ-module.

Theorem 0.2. Let V be a knotted n-manifold, n ≥ 1, and fk : Xk → Sn+2 the
cyclic covering branched along V . Then H1(Xk, Z) is isomorphic to the k-th
Alexander module Ak(V ) of V as a Λ-module.

Similar statements hold in the case of algebraic and, more generally, of
Hurwitz (resp., pseudo-holomorphic) curves.

Theorem 0.3. A Λ-module M is the Alexander module of an irreducible Hur-
witz (resp., pseudo-holomorphic) curve if and only if it is a Noetherian (t−1)-
invertible t-unipotent Λ-module. In particular, the Alexander module of an
irreducible algebraic plane curve is a Noetherian (t − 1)-invertible t-unipotent
Λ-module.

The unipotence index of the Alexander module A0(H) of an irreducible plane
algebraic (resp., Hurwitz or pseudo-holomorphic) curve H is a divisor of deg H.

Corollary 0.4. The Alexander module A0(H) of an irreducible plane algebraic
(resp., Hurwitz or pseudo-holomorphic) curve H is finitely generated over Z,
that is, A0(H) is a finitely generated abelian group.

A finitely generated abelian group G is the Alexander module A0(H) of some
irreducible Hurwitz or pseudo-holomorphic curve H if and only if there are an
integer m and an automorphism h ∈ Aut(G) such that hm = Id and h − Id is
also an automorphism of G.

Theorem 0.5. Let H be an algebraic (resp., Hurwitz or pseudo-holomorphic)
irreducible curve in CP2, deg H = m, and f k : Xk → CP2 be a resolution of
singularities of the cyclic covering of degree deg f k = k branched along H and,
maybe, alone the line ”at infinity” L. Then

H1(Xk \ E, Z) ' Ak(H),
H1(Xk, Q) ' Ak(H) ⊗ Q,

where Ak(H) is the k-th Alexander module of H and E = σ−1(Sing X̃k,norm).

It should be noticed that in general case the homomorphism H1(Xk\E, Z) '
Ak(H) → H1(Xk, Z), induced by the embedding Xk \E ↪→ Xk, is an epimor-
phism and it is not necessary to be an isomorphism (see Example 4.6).
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Corollary 0.6. Let H be an algebraic (resp, Hurwitz or pseudo-holomorphic)
irreducible curve in CP2, deg H = m, and f k : Xk → CP2 be a resolution of

singularities of the cyclic covering of degree deg fk = k branched along H and,

maybe, alone the line ”at infinity”. Then

(i) the first Betti number b1(Xk) of Xk is an even number;
(ii) if k = pr, where p is prime, then H1(Xk, Q) = 0;

(iii) if k and m are coprime, then H1(Xk, Z) = 0;
(iv) H1(X2, Z) is a finite abelian group of odd order.

Note also that any C-group G can be realized (see [9]) as π1(∆
2 \ (C ∩∆2)),

where ∆2 = {|z| < 1} × {|w| < 1} ⊂ C2 is a bi-disc and C ⊂ C2 is a non-

singular algebraic curve such that the restriction of pr1 : ∆2 → {|z| < 1} to

C ∩∆2 is a proper map. Therefore the analogue of Theorems 0.1 and 0.2 and

corollaries of them hold also in this case.

The proof of Theorems 0.1 and 0.3 is given in section 3. In section 1, prop-

erties of Noetherian (t − 1)-invertible Λ-modules are described and section 2

is devoted to Noetherian t-unipotent Λ-modules. In section 4, Theorems 0.2

and 0.5 are proved and some other corollaries of them are stated.

1. (t − 1)-invertible Λ-modules

1.1. Criteria of (t−1)-invertibility. Before to describe (t−1)-invertible Λ-

modules, let us recall that the ring Λ = Z[t, t−1] is Noetherian. Each element

f ∈ Λ can be written in the form

f =
∑

n−≤i≤n+

ait
i ∈ Z[t, t−1],

where n−, n+, i, ai ∈ Z. If n− ≥ 0 for f ∈ Λ, then f ∈ Z[t] and it will be called

a polynomial.

For any n ∈ Z, n 6= 0, a Z-homomorphism

f(t) =
∑

ait
i 7→ f(n) =

∑
ain

i

is well defined. The image f(n) of f(t) is called the value of f(t) at n. If f(t)

is a polynomial, then its value f(0) = a0 is also well defined.

We begin with the following lemma.

Lemma 1.1. A Noetherian Λ-module M is (t−1)-invertible if and only if the

multiplication by t − 1 is a surjective endomorphism of M .
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Proof. Lemma follows from some more general statement. Namely, any sur-
jective Λ-endomorphism f : M → M of a Noetherian Λ-module M is an
isomorphism. Indeed, if ker f 6= 0, then the chain of submodules

ker f ⊂ ker f 2 ⊂ · · · ⊂ ker fn ⊂ . . .

is strictly increasing, since f is an epimorphism. This contradicts the Noe-
therian property of the module M . �

Let M be a Noetherian (t − 1)-invertible Λ-module. Consider an element
v ∈ M and denote by Mv =< v > a principal submodule of M generated by
v. Since M is Noetherian, any principle submodule of M is contained in a
maximal principle submodule of M .

Lemma 1.2. Any maximal principal submodule Mv of (t−1)-invertible module
M is (t − 1)-invertible.

Proof. Since M is (t − 1)-invertible module, there is an element v1 ∈ M such
that v = (t−1)v1. Therefore Mv ⊂ Mv1

. Since Mv is a maximal principle sub-
module of M , we have Mv = Mv1

. Therefore v1 ∈ Mv and the multiplication
by t − 1 defines a surjective endomorphism of Mv. To complete the proof we
apply Lemma 1.1. �

A principal submodule Mv ⊂ M is isomorphic to Λ/Annv, where Annv =
{f ∈ Λ|fv = 0} is the annihilator of v. The annihilator Annv of an element
v ∈ M is an ideal of Λ. Denote by

Ann(M) =
⋂

v∈M

Annv = {g(t) ∈ Λ | g(t)v = 0 for ∀v ∈ M}

the annihilator of M .

Lemma 1.3. A principal Λ-module M = Λ/I is a (t − 1)-invertible if and
only if the ideal I contains a polynomial f(t) such that f(1) = 1.

Proof. Let M is generated by an element v ∈ M .
If a polynomial f(t) such that f(1) = 1 is contained in I = Annv, then f(t)

can be expressed in the form

f(t) = (t − 1)g(t) + 1 (2)

for some polynomial g(t). Therefore v = (t − 1)v1, where v1 = −g(t)v. Thus,
the multiplication by t − 1 is a surjective automorphism of M and hence, by
Lemma 1.1, the multiplication by t − 1 is an isomorphism of M .

Conversely, if M is (t − 1)-invertible, then there is an element v1 ∈ M
such that v = (t − 1)v1. Let v1 = h(t)v for some h(t) ∈ Λ. We have
(1 − (t − 1)h(t))v = 0. Therefore 1 − (t − 1)h(t) ∈ Annv = I. There is
an integer k such that f(t) = tk(1 − (t − 1)h(t)) ∈ I ∩ Z[t]. It is easy to see
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that f(1) = 1. �

As a consequence of Lemma 1.3 we obtain the following Lemma.

Lemma 1.4. Any principal submodule of a principal (t− 1)-invertible module
M is (t − 1)-invertible.

Proof. Indeed, let M be generated by an element v ∈ M and its submodule
M1 be generated by v1 = h(t)v. Then Annv ⊂ Annv1

.
Since M is (t − 1)-invertible, by Lemma 1.3, there is a polynomial f(t) ∈

Annv such that f(1) = 1. Applying again Lemma 1.3, we have that M1 is
(t − 1)-invertible, since f(t) ∈ Annv1

. �

Proposition 1.5. Any submodule of a Noetherian (t− 1)-invertible Λ-module
M is (t − 1)-invertible.

Proof. Let N is a submodule of M . Since M is a Noetherian Λ-module, the
submodule N is generated by a finite set of elements, say v1, . . . , vn. By Lemma
1.4, each principal submodule Mvi

⊂ N ⊂ M is (t − 1)-invertible. Therefore
the multiplication by t − 1 is a surjective endomorphism of N , since it is
surjective on each Mvi

⊂ N and the elements v1, . . . , vn generate the module
N . To complete the proof, we apply Lemma 1.1. �

Proposition 1.6. Any factor module of a Noetherian (t − 1)-invertible Λ-
module M is (t − 1)-invertible.

Proof. It follows from Lemma 1.1. �

Lemma 1.7. Let M1, . . . , Mk be Noetherian (t−1)-invertible Λ-modules. Then

the direct sum M =
⊕k

i=1 Mi is a Noetherian (t − 1)-invertible Λ-module.

Proof. Obvious.

Corollary 1.8. Any Noetherian (t− 1)-invertible Λ-module M is a the factor
module of a direct sum

⊕n

j=1 Λ/Ij of principle (t − 1)-invertible Λ-modules

Λ/Ij.

Proof. Since M is a Noetherian Λ-module, it is generated by a finite set of
elements, say v1, . . . , vn. By Proposition 1.5, each principal submodule Mvi

⊂
M is (t − 1)-invertible and, obviously, there is an epimorphism

⊕n

j=1 Mvi
7→

M . �

Remark 1.9. An abelian group G admits a structure of (t − 1)-invertible Λ-
module if and only if it has an automorphism t such that t − 1 is also an
automorphism. If G is finitely generated and t ∈ AutG is chosen, then G is a
Noetherian Λ-module.
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Note that in general case an abelian group admits many structures of (t−1)-

invertible Λ-modules. For example, the group Z/9Z admits 3 such structures:
either tv = 2v, or tv = 5v, or tv = 8v, where v is a generator of Z/9Z.

Theorem 1.10. A Noetherian Λ-module M is (t− 1)-invertible if and only if

there is a polynomial f(t) ∈ Ann(M) such that f(1) = 1.

Proof. If M is (t − 1)-invertible, then, by Proposition 1.5, its each principal

submodule Mv is also (t − 1)-invertible. Therefore, by Lemma 1.3, the anni-
hilator Annv of v ∈ M contains a polynomial fv(t) such that fv(1) = 1. If

M is generated by v1, . . . , vn, then the polynomial f(t) = fv1
(t) . . . fvn

(t) is a

desired one.
Let us show that if there is a polynomial f(t) ∈ Ann(M) such that f(1) = 1,

then M is a (t−1)-invertible module. Indeed, in this case by Lemma 1.3, each

principle submodule Mv of M is (t−1)-invertible. Therefore the multiplication
by t − 1 is an isomorphism of M , since it is an isomorphism of each principle

submodule Mv of M . �

As a consequence of Theorem 1.10 we obtain that any Noetherian (t − 1)-

invertible module M is a torsion Λ-module and, consequently,

dimQ M ⊗ Q < ∞.

The following proposition will be used in the proof of Theorems 0.1 and 0.3.

Proposition 1.11. Any Noetherian (t− 1)-invertible Λ-module M is isomor-

phic to a factor module Λn/M1 of a free Λ-module Λn, where the submodule
M1 is generated by elements w1, . . . , wn, . . . , wn+k of Λn such that

(i) for i = 1, . . . , n the vector wi = (0, . . . , 0, fi(t), 0, . . . , 0), where a poly-
nomial fi(t) stands on the i-th place and it is such that fi(1) = 1,

(ii) wn+j = (t− 1)wn+j = ((t− 1)gj,1(t), . . . , (t− 1)gj,n(t)) for j = 1, . . . , k,

where gj,l(t) are polynomials,
(iii) if for some m ∈ N the polynomial tm − 1 ∈ Ann(M), then for i =

1, . . . , n the vector wn+i = (0, . . . , 0, tm − 1, 0, . . . , 0), where the polyno-

mial tm − 1 stands on the i-th place.

Proof. Let us choose generators v1, . . . , vn of the Noetherian Λ-module M .

Then, by Theorem 1.10, there are polynomials fi(t) ∈ Annvi
such that fi(1) =

1. Obviously, there is an epimorphism

h1 :

n⊕

i=1

Λ/(fi(t)) → M
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of Λ-modules such that h(ui) = vi for ui = (0, . . . , 0, 1, 0 . . . , 0) where 1 stands
on the i-th place. The kernel N = ker h is a Noetherian Λ-module. Let it be
generated by

un+1 = (g1,1(t), . . . , g1,n(t)), . . . , un+k = (gk,1(t), . . . , gk,n(t)).

Without loss of generality, we can assume that all gi,j(t) are polynomials.
By Theorem 1.10, the Λ-module

⊕n

i=1 Λ/(fi(t)) is (t − 1)-invertible and by
Proposition 1.5, N is also (t− 1)-invertible Λ-module. Therefore the elements
(t − 1)un+1, . . . , (t − 1)un+k are also generate N .

If for some m ∈ N the polynomial tm − 1 ∈ Ann(M), then the elements
(0, . . . , 0, tm − 1, 0, . . . , 0) ∈ N , where the polynomial tm − 1 stands on the
i-th place. Therefore we can add the elements (0, . . . , 0, tm − 1, 0, . . . , 0) to
the set (t− 1)un+1, . . . , (t− 1)un+k and renumber the elements un+1, . . . , un+k

(here we put k := n + k) of the obtained set generating N so that un+j =
(0, . . . , 0, tn − 1, 0, . . . , 0) ∈ N for j = 1, . . . , n, where the polynomial tm − 1 is
stands on the j-th place.

Now, to complete the proof, notice that the kernel M1 of the composite map
h ◦ ν : Λn → M of h and the natural epimorphism ν : Λn →

⊕n

i=1 Λ/(fi(t)) is
generated by the elements

wi = (0, . . . , 0, fi(t), 0, . . . , 0), i = 1, . . . , n,

where the polynomial fi(t) stands on the i-th place, and the elements

wn+i = (fi,1(t), . . . , fi,n(t)) ∈ Λn, i = 1, . . . , k,

where the coordinates fi,j(t) of each wn+i coincide with the coordinates gi,j(t)
of un+i = (gi,j(t), . . . , gi,j(t)). �

1.2. Z-torsion submodules of (t− 1)-invertible Λ-modules. An element
v of a Λ-module M is said to be of a finite order if there is m ∈ Z \ {0} such
that mv = 0. A Λ-module M is called Z-torsion if all its elements are of finite
order. For any Λ-module M denote by Mfin a subset of M consisting of all
elements of finite order. It is easy to see that Mfin is a Z-torsion Λ-module. If
M is a Noetherian (t− 1)-invertible Λ-module, then Mfin is also a Noetherian
(t − 1)-invertible Λ-module, and it follows from Propositions 1.5 and 1.6 that
there is an exact sequence of Λ-modules

0 → Mfin → M → M1 → 0

in which M1 is a Noetherian (t− 1)-invertible Λ-module free from elements of
finite order.

Let M = Mfin be a Noetherian (t − 1)-invertible Λ-module. Since M is
finitely generated over Λ, there is an integer d ∈ N such that dv = 0 for all
v ∈ M (such d will be called an exponent for M). Let d = pr1

1 . . . prn
n be

its prime factorization. Denote by M(pi) the subset of M consisting of all
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elements v ∈ M such that pr
i v = 0 for some r ∈ N. It is easy to see that M(p)

is a Λ-submodule of M and we call it the p-submodule of M .

Theorem 1.12. Let M = Mfin be a Noetherian (t − 1)-invertible Λ-module
and d = pr1

1 . . . prn
n its exponent. Then M is the direct sum

M =

n⊕

i=1

M(pi)

of its p-submodules.

Proof. It coincides with the proof of similar Theorem for abelian groups (see,
for example, Theorem 8.1 in [14]). �

Since the ring Λ = Z[t, t−1] is Noetherian, any its ideal I is finitely generated.
Denote by Ipol = I ∩ Z[t] the ideal of the ring Z[t]. It is well known that
I = ΛIpol, that is, any ideal I of Λ is generated by polynomials.

Recall that Z[t] is a factorial ring. Its units are precisely the units of Z,
and its prime elements are either primes of Z or polynomials q(t) =

∑
ait

i

which are irreducible in Q[t] and have content 1 (that is, the greatest common
divisors of the coefficients ai of q(t) are equal to 1). It follows from Euclidean
algorithm that for any two polynomials q1(t), q2(t) ∈ Z[t] there are polynomials
h1(t), h2(t), r(t) ∈ Z[t] and a constant d ∈ Z, d 6= 0, such that

h1(t)q1(t) + h2(t)q2(t) = dr(t), (3)

where r(t) is the greatest common divisor of the polynomials q1(t) and q2(t).

Lemma 1.13. Let M be a Noetherian (t − 1)-invertible Λ-module and let
tn − 1 ∈ Ann(M) for some n = pr, where p is prime. Then M is Z-torsion.

Proof. If tn − 1 = (t − 1)(tn−1 + · · · + t + 1) belongs to Ann(M), then the
polynomial gn(t) = tn−1 + · · ·+ t + 1 ∈ Ann(M), since M is (t− 1)-invertible.
For n = pr in the factorization

gpr(t) =
r∏

i=1

Φpi(t) =
r∏

i=1

p−1∑

j=0

tjp
i−1

each factor is an irreducible element of Λ.
By Theorem 1.10, there is a polynomial f(t) ∈ Ann(M) such that f(1) = 1

and if n = pr for some prime p, then f(t) and gpr(t) have not common ir-
reducible divisors. Indeed, if g(t) is a divisor of f(t), then we should have
g(1) = ±1, since f(1) = 1, but Φpi(1) = p for each i. Therefore, there are poly-
nomials h1(t), h2(t), and a constant d ∈ N such that h1(t)f(t)+h2(t)gpr(t) = d
and hence if gpr(t) ∈ Ann(M), then d ∈ Ann(M), that is, M is Z-torsion. �
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1.3. Principle (t − 1)-invertible Λ-modules. Let I be a non-zero ideal of
the ring Λ. Denote by Im the subset of Ipol consisting of all polynomials
f(t) having the smallest degree (let m be this smallest degree). Note that if
f(t) ∈ Im \ {0}, then f(0) 6= 0.

Consider any two polynomials f1(t), f2(t) ∈ Im and write them in the form
fi(t) = diqi(t), where di ∈ Z and the polynomials qi(t) have content 1. We
have q1(t) = q2(t). Indeed, for their common greatest divisor r(t) we have
deg r(t) ≤ m and, moreover, deg r(t) = m if and only if q1(t) = q2(t). On the
other hand, it follows from (3) that d2h1(t)f1(t) + d1h2(t)f2(t) = d1d2dr(t) for
some polynomials h1(t), h2(t). Therefore d1d2dr(t) ∈ Ipol and we should have
deg r(t) = m.

Applying again Euclidean algorithm for integers, we obtain that if two poly-
nomials fi(t) = diq(t) belong to Im, then d0q(t) belongs also to Im, where d0

is the greatest common divisor of d1 and d2. Thus there is a polynomial
fm(t) = dmq(t) ∈ Im such that any polynomial f(t) ∈ Im is divided by fm(t).
The polynomial fm(t) is defined uniquely up to multiplication by ±1 and it
will be called a leading generator of I.

Let I be a non-zero ideal of Λ and f(t) = dmq(t) be its leading generator.
Then any polynomial h(t) ∈ I should be divisible by q(t). Indeed, as above
it is easy to show that if r(t) is the greatest common divisor of f(t) and h(t),
then there is a constant d such that dr(t) ∈ I and since deg q(t) is minimal for
polynomials belonging to I, we should have the equality r(t) = q(t).

The above considerations give rise to the following proposition.

Proposition 1.14. Let M = Mv be a principle (t − 1)-invertible Λ-module
generated by an element v. Then the annihilator Annv is generated by a finite
set of polynomials f1(t), . . . , fk(t), where fi(t) = diqi(t), di ∈ Z, di 6= 0, and
qi(t) have content 1 for all i, such that f1(t), . . . , fk(t) satisfy the following
properties:

(i) deg f1 < deg f2 ≤ · · · ≤ deg fk,
(ii) fi(0) 6= 0 for all i,

(iii) q1(1) = 1,
(iv) q1(t) | qi(t) for i = 2, . . . , k,
(v) |di| > 1 for i = 1, . . . , k − 1, dk = 1, and qk(1) = 1.

A set of generators of Annv is said to be good if it satisfies properties (i) –
(v) from Proposition 1.14. We will distinguish the principal (t − 1)-invertible
Λ-modules M = Mv as follows. We say that Mv is of finite type if in a good
system f1(t), . . . , fk(t) of generators of Annv the leading generator f1(t) ≡ d1

is a constant (that is, q1(t) ≡ 1). A principle Λ-module Mv is said to be of
mixed type if in a good system f1(t), . . . , fk(t) of generators of Annv the degree
of the leading generator f1 = d1q1(t) is greater than one and | d1 |≥ 2. It
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follows from the above considerations that if a principle (t − 1)-invertible Λ-
module M = Mv is not of finite or mixed types, then for the leading generator
f1(t) = q1(t) of a good system of generators of Annv we should have q1(1) = 1
and therefore Annv is a principle ideal generated by q1(t), since any polynomial
h(t) ∈ Annv is divisible by q1(t). Such principle (t − 1)-invertible Λ-modules
will be called bi-principle.

It is easy to see that if M = Mv is a principle Λ-module of finite type and
d1 ∈ Z is the leading generator of Annv, then all elements of M have order d1,
that is, a principle Λ-module Mv is of finite type if and only if it is Z-torsion.

If M = Mv is a bi-principle Λ-module, then M has not non-zero elements of
finite order. Indeed, let q(t) be a generator of Annv. If an element v1 = h(t)v
has order m, then mh(t) ∈ Annv, that is, mh(t) is divisible by q(t). Since t is
a unite of Λ, we can assume that h(t) is a polynomial, and since q(1) = 1, the
polynomial h(t) should be divisible by q(t), that is, v1 = 0.

If M = Mv is a Λ-module of mixed type, then there is an exact sequence of
Λ-modules

0 → M1 → M → M2 → 0

in which M1 is a principle Λ-module of finite type and M2 is a bi-principle Λ-
module. Indeed, let d1q1(t) be the leading generator of Annv. Put v1 = q1(t)v.
Then it is easy to see that the Λ-module M1 = Mv1

⊂ M , generated by v1, is
of finite type and the Λ-module M2 = M/M1 ' Λ/(q1) is bi-principle.

1.4. Finitely Z-generated (t − 1)-invertible Λ-modules. Each Λ-module
M can be considered as a Z-module, that is as an abelian group.

Proposition 1.15. A Noetherian (t − 1)-invertible Λ-module M is finitely
generated over Z if and only if there is a polynomial

q(t) =
n∑

i=0

ait
i ∈ Ann(M)

such that an = a0 = 1.

Proof. In the beginning, we prove Proposition 1.15 in the case when M = Mv

is a principal Λ-module.
It is easy to see that if there is a polynomial q(t) =

∑n

i=0 ait
i ∈ Annv such

that an = a0 = 1, then M is generated over Z by the elements v, tv, . . . , tn−1v.
Let a Λ-module M = Mv be finitely generated over Z and h1(t)v,. . . , hm(t)v

its generators. Since the multiplication by t is an isomorphism of M , we can
assume that hi(t), i = 1, . . . , m, are polynomials such that hi(0) = 0. Put
n − 1 = max(deg h1(t), . . . , deg hm(t)). Since h1(t)v, . . . , hm(t)v generate M
over Z, there are integers b1, . . . , bm and c1, . . . , cm such that

v =
∑

bihi(t)v and tnv =
∑

cihi(t)v.
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Therefore the polynomials 1 −
∑

bihi(t) and tn −
∑

cihi(t) belong to Annv.
Then the polynomial tn + 1 −

∑
(bi + ci)hi(t) is a desired one.

In general case, a Noetherian (t− 1)-invertible Λ-module M is generated by
a finite set of elements v1, . . . , vm, and M is finitely generated over Z if and
only if for all vi the principal submodules Mvi

⊂ M are finitely generated over
Z.

If g(t) ∈ Ann(M), then g(t) ∈ Annvi
for i = 1, . . . , m. In particular, if

there is q(t) =
∑n

i=0 ait
i ∈ Ann(M) such that an = a0 = 1, then all Mvi

(and
consequently, M) are finitely generated over Z.

If for all i the principal submodules Mvi
⊂ M are finitely generated over Z,

then there are polynomials qi(t) =
∑ni

j=0 ai,jt
j ∈ Annvi

such that ai,ni
= ai,0 =

1. Put n =
∑

ni. Then the polynomial

q(t) = q1(t) . . . qn(t) = tn + 1 +
n−1∑

j=1

ajt
j ∈ Ann(M),

since q(t) ∈ Annvi
for all vi. �

It follows from Proposition 1.15 that there are a lot of (t − 1)-invertible
bi-principle modules M = Λ/I which are not finitely generated over Z. More
precisely, it is easy to see that a bi-principle (t−1)-invertible module M = Λ/I
is finitely generated over Z if and only if the ideal I = 〈q(t)〉 is generated by a
polynomial q(t) =

∑n

i=0 ait
i such that q(1) = 1 and its coefficients a0 and an

are equal to ±1.
For example, for each m ∈ N a (t − 1)-invertible bi-principle module

Mm = Λ/〈(m + 1)t − m〉

is not finitely generated over Z.

Theorem 1.16. Let M be a Noetherian Z-torsion (t − 1)-invertible module.
Then M is finitely generated over Z.

Proof. By Theorem 1.12, M is isomorphic the direct sum
⊕

M(pi) of a finite
number of its p-submodules. Therefore it suffices to prove Theorem in the case
when M has exponent pr, where p is a prime number. Next, by Corollary 1.8,
M is a factor module of the direct sum

⊕n

j=1 Λ/Ij of principle (t−1)-invertible

Λ-modules Λ/Ij and in our case we can assume without loss of generality that
each ideal Ij contains prj for some rj. Thus it suffices to prove Theorem in
the case when M = Mv is a principle (t − 1)-invertible Λ-module of exponent
pr, that is, I = Annv contains a number pr and a polynomial g(t) such that
g(1) = 1.

Let r = 1 and g(t) =
∑

ait
i. Denote by g1(t) =

∑
p|ai

ait
i and put g(t) =

g(t) − g1(t). Then g(t) ∈ Annv, since g(t), g1(t) ∈ Annv. It is easy to see
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that g1(1) and p are coprime, since g(1) = 1 and g1(1) ≡ 0 mod p. Moreover,
by construction, each coefficient of the polynomial g(t) and p are coprime.
Multiplying by t−k, we can assume that g(0) 6= 0. Let g(t) =

∑m

i=0 ait
i. Since

am and p are coprime, one can find integers b1 and c1 such that b1am +c1p = 1.
Similarly, there are integers b2 and c2 such that b2a0 + c2p = 1. Therefore
the polynomial (b1t + b2)g(t) + p(c1t

m+1 + c2) ∈ I and it is equal to h(t) =
tm+1 +1+

∑m

i=1(b1ai−1 + b2ai)t
i. Therefore, by Proposition 1.15, Mv is finitely

generated over Z.
Now consider general case of a principle (t − 1)-invertible Λ-module of ex-

ponent pr. Assume that for any principle (t − 1)-invertible Λ-module M ′ of
exponent pr1 , where r1 < r, M ′ is finitely generated over Z. Let M = Mv is a
principle (t − 1)-invertible Λ-module M of exponent pr. Then the submodule
Mv1

of M generated by v1 = pr−1v is of exponent p and the factor module
Mv = Mv/Mv1

is of exponent pr−1. Now, the proof follows from the exact
sequence

0 → Mv1
→ M → M/Mv1 → 0. �

Corollary 1.17. Any Noetherian Z-torsion (t− 1)-invertible module is finite,
that is, it is a finite abelian group.

Lemma 1.18. A group G =
⊕n

i=1(Z/2riZ)mi does not admit a structure of
(t − 1)-invertible Λ-module if ri 6= rj for i 6= j and one of mi = 1.

Proof. Assume that G has a structure of (t − 1)-invertible Λ-module. Then
for any r the subgroup 2rG of G is its Λ-submodule and, by Propositions 1.5
and 1.6, 2rG and G/2rG are (t − 1)-invertible Λ-modules. Therefore, without
loss of generality, we can assume that

G = (Z/2Z) ⊕ (
n⊕

i=1

(Z/2riZ)mi),

where all ri ≥ 2 and mi ≥ 2. Let us choose generators v1, . . . , vm+1 of G,
m =

∑n

i=1 mi, so that

G ' (Z/2Z)v1 ⊕ (

m+1⊕

i=2

(Z/2riZ))vi,

where all ri ≥ 2. Consider the Z-submodule G of G consisting of all elements
v ∈ G of order ≤ 4. Obviously G is a Λ-submodule of G and it is generated
over Z (and therefore over Λ) by v1 = v1 and vi = 2ri−2vi, i = 2 . . . , m + 1. It
is easy to see that as an abelian group G is isomorphic to

G ' (Z/2Z)v1 ⊕ (

m+1⊕

i=2

(Z/4Z))vi.
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By Proposition 1.5, G is (t− 1)-invertible Λ-module. The multiplication by
t is an automorphism of G. Let

tv1 = a1v1 + 2

m+1∑

i=2

bivi,

tvj = ajv1 +

m+1∑

i=2

cj,ivi, j = 2, . . . , m + 1,

(4)

where each aj = 0 or 1.
Let us show that a1 = 1. Indeed, assume that a1 = 0. Since the multiplica-

tion by t is an automorphism and v1, . . . , vm+1 generate G, we should have an
equality v1 =

∑
ditvi, where one of di is odd for some i ≥ 2 if a1 = 0. Next,

the element v1 is of second order, therefore 2
∑m+1

i=2 ditvi = 0. On the other
hand, tv2, . . . , tvm+1 are linear independent over Z/4Z, since v2, . . . , vm+1 are
linear independent over Z/4Z and the multiplication by t is an isomorphism.
Therefore the equality 2

∑m+1
i=2 ditvi = 0 is impossible if some of di is odd, and

hence a1 in (4) should be equal to 1.
Let us show that G can not be (t − 1)-invertible. Indeed, we have

tv1 = v1 + 2

m+1∑

i=2

bivi.

Therefore

(t − 1)v1 = 2

m+1∑

i=2

bivi

and the above arguments show that the multiplication by t − 1 is not an
automorphism of G, since (t − 1)v1 is a linear combination of the elements
v2, . . . , vm+1. �

Theorem 1.19. An abelian group

G = G1 ⊕ (
n⊕

i=1

(Z/2riZ)mi),

where ri 6= rj for i 6= j and G1 is a group of odd order, admits a structure of
(t − 1)-invertible Λ-module if and only if all mi ≥ 2.

Proof. By Theorem 1.12, if M = Mfin is a Noetherian (t − 1)-invertible Λ-
module and d = pr1

1 . . . prn
n its exponent, then M is the direct sum

M =
n⊕

i=1

M(pi)

of its p-submodules which are (t− 1)-invertible by Proposition 1.5. Now, each
its submodule M(pi) with odd pi is of odd order and, by Lemma 1.18, its
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2-submodule M(2) is isomorphic (as an abelian group) to
⊕k

i=1(Z/2riZ)mi ,
where all mi ≥ 2.

To prove the inverse statement, note, first, that the finite direct sum of
(t − 1)-invertible Λ-modules is also a (t − 1)-invertible Λ-module. Next, for
any prime p > 2, a (t−1)-invertible Λ-module M = Λ/I, where I is generated
by the number pr and polynomial 2t− 1, is isomorphic to Z/prZ as an abelian
group. Finally, for n ≥ 2 the (t − 1)-invertible Λ-module M = Λ/I, where
I is generated by 2r and tn − t + 1, is isomorphic to (Z/2rZ)n as an abelian
group. �

2. t-Unipotent Z[t, t−1]-modules

2.1. Properties of t-unipotent Λ-modules. The following proposition is a
simple consequence of Propositions 1.5 and 1.6.

Proposition 2.1. Any Λ-submodule M1 and any factor module M/M1 of a
Noetherian (t − 1)-invertible t-unipotent Λ-module M is a (t − 1)-invertible
t-unipotent Λ-module.

Lemma 2.2. Let M1, . . . , Mn be Noetherian (t − 1)-invertible t-unipotent Λ-
modules. Then the direct sum M =

⊕n

i=1 Mi is a Noetherian (t− 1)-invertible
t-unipotent Λ-module.

Proof. By Lemma 1.7, M is a Noetherian (t − 1)-invertible Λ-module.
Since Mi is a (t − 1)-invertible t-unipotent Λ-module, there is ki ∈ N such

that tki − 1 ∈ Ann(Mi). It is easy to see that tk − 1 ∈ Ann(M), where
k = k1 . . . kn, since each polynomial tki − 1, i = 1, . . . , n, divides the polyno-
mial tk − 1. �

Proposition 2.1 and Lemma 2.2 imply the following proposition.

Proposition 2.3. A Noetherian Λ-module M1 is (t−1)-invertible t-unipotent
if and only if each its principle submodule Mv is (t− 1)-invertible t-unipotent.

Theorem 2.4. Any Noetherian Z-torsion (t−1)-invertible Λ-module is t-uni-
potent.

Proof. let M be a Noetherian Z-torsion (t−1)-invertible Λ-module. By Corol-
lary 1.17, M consists of finite number of elements. Therefore the automor-
phism of M , defined by the multiplication by t, has a finite order, say k, that
is, tkv = v for all v ∈ M , in other words, tk − 1 ∈ Ann(M). �

The following Propositions 2.5, 2.6 describe bi-principle (t − 1)-invertible
t-unipotent modules and principle (t − 1)-invertible t-unipotent modules of
mixed type.
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Proposition 2.5. Let M = Λ/I be a bi-principle (t−1)-invertible t-unipotent
Λ-module, and let the ideal I =< g(t) > is generated by a polynomial g(t).
Then

(i) all roots of g(t) are roots of unity,
(ii) g(t) has not multiple roots,

(iii) if ξ is a k-th root of unity (that is, ξk = 1), were k = pr for some prime
p, then ξ is not a root of g(t),

(iv) g(1) = ±1,
(v) deg g(t) is even.

Proof. To prove (i) and (ii), notice that there is k such that tk − 1 ∈ I, since
M is t-unipotent. Therefore tk − 1 is divisible by g(t).

To prove (iii) – (v), we use Theorem 1.10. By Theorem 1.10, there is a
polynomial f(t) ∈ I such that f(1) = 1. We have f(t) = h(t)g(t) for some
polynomial h(t) ∈ Z[t], since I is a principle ideal generated by g(t). Therefore
g(1) = ±1 (and we can assume that g(1) = 1), since we have

1 = f(1) = h(1)g(1),

where h(1), g(1) ∈ Z.
On the other hand, if for some prime p, a primitive pr-th root of unity ξ

is a root of g(t), then g(t) should be divided by the pr-th cyclotomic poly-
nomial Φpr(t), that is, there is a polynomial h(t) ∈ Z[t] such that g(t) =
Φpr(t)h(t). Therefore, 1 = g(1) = Φpr(1)h(1) and we obtain a contradiction,
since Φpr(1) = p.

To complete the proof, notice that, by (iii) and (iv), ξ = ±1 are not roots
of g(t) and hence all roots of g(t) are not real. Thus if ξ is a root of g(t), then
the number ξ complex conjugated to ξ is also a root of g(t), since g(t) ∈ Z[t].
Therefore deg g(t) is even, since ξ 6= ξ for all roots of unity 6= ±1. �

Proposition 2.6. Let M = Λ/I be a principle (t − 1)-invertible t-unipotent
Λ-module of mixed type, and let f(t) = dg(t) be the leading generator of the
ideal I, where d ∈ N and the polynomial g(t) has content 1. Then g(t) satisfies
properties (i) – (v) from Proposition 2.5.

Proof. Let v be a generator of M . Denote by M1 a Λ-submodule of M gener-
ated by v1 = g(t)v. We have the exact sequence of Λ-modules

0 → M1 → M → M/M1 → 0,

where M1 is a principle module of finite type and M2 = M/M1 is a bi-
principle Λ-module isomorphic to Λ/ < g(t) >. By Proposition 2.1, M2 is
(t−1)−invertible t-unipotent. Now, we apply Proposition 2.5 to complete the
proof. �
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Let M be a Noetherian (t−1)-invertible t-unipotent Λ-module. The smallest
k ∈ N such that tk − 1 ∈ Ann(M) is called the unipotence index of M .

Lemma 2.7. If M is a Noetherian (t − 1)-invertible t-unipotent Λ-module of

unipotence index k, then the polynomial
∑k−1

i=0 ti ∈ Ann(M).

Proof. We have tk−1 = (t−1)(
∑k−1

i=0 ti) ∈ Ann(M). Therefore (
∑k−1

i=0 ti)v = 0
for all v ∈ M , since M is a (t − 1)-invertible Λ-module. �

Lemma 2.8. A Noetherian (t−1)-invertible Λ-module M of unipotence index
2 is a finite Z-module of odd order.

Proof. It follows from Lemma 1.13 and Corollary 1.17 that M is finite. By
Lemma 2.7, the polynomial (t + 1) ∈ Ann(M). Therefore tv = −v for all
v ∈ M . In particular, if v is of order 2, then tv = v. This is impossible, since
M is (t − 1)-invertible. Therefore M has not elements of even order. �

Proposition 2.9. A cyclic group G of order n = pr1

1 . . . prm
m , where p1, . . . , pm

are primes, possesses a structure of (t − 1)-invertible Λ-module of unipotence

index k if and only if for each i = 1, . . . , m the polynomial
∑k−1

i=0 ti has a root
ai 6= 1 in the field Z/piZ.

Proof. By Theorem 1.12, it suffices to consider only the case when i = 1, that
is n = pm for some prime p.

Let a cyclic group G of order n = pm has a structure of (t − 1)-invertible
Λ-module of unipotence index k, then its subgroup Gp = pm−1G consisting of
the elements of order p is also a (t−1)-invertible Λ-module of unipotence index

k. Therefore the polynomial
∑k−1

i=0 ti ∈ Ann(Gp). Let v ∈ Gp be a generator
of Gp, then tv = av for some a 6≡ 1 mod p since Gp is a (t − 1)-invertible

module. We have
∑k−1

i=0 aiv = 0. Therefore
∑k−1

i=0 ai ≡ 0 mod p, that is, the

polynomial
∑k−1

i=0 ti has a root in the field Z/pZ not equal to 0 or 1.

Conversely, let a 6≡ 1 mod p be a root of the polynomial
∑k−1

i=0 ti in the field
Z/piZ, and let v be a generator of a cyclic group G of order pr. If we define
the action of t on the Z-module G putting t(v) = av, we obtain a structure of
(t − 1)-invertible Λ-module on G, since a 6≡ 1 mod p. It is easy to see that
tk − 1 ∈ Ann(G). �

Theorem 2.10. Any Noetherian (t− 1)-invertible t-unipotent Λ-module M is
finitely generated over Z.

Proof. Theorem follows from Proposition 1.15, since for some k ∈ Z the poly-
nomial tk − 1 ∈ Ann(M). �
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It follows from Theorem 2.4 and Structure Theorem for finitely generated
Z-modules that a Noetherian (t − 1)-invertible t-unipotent Λ-module M as a
Z-module is isomorphic to

M ' Mfin ⊕ Zk, (5)

where Mfin is the submodule of M consisting of the elements of finite order.
The rank k of the free part of M in decomposition (5) is called Betti number
of Noetherian (t − 1)-invertible t-unipotent Λ-module M .

Theorem 2.11. The Betti number of a Noetherian (t−1)-invertible t-unipotent
Λ-module M is an even number.

Proof. By definition, the Betti number of M coincides with Betti number of
the Noetherian (t − 1)-invertible t-unipotent Λ-module Mfree = M/Mfin.

The module Mfree has not non-zero elements of finite order. Therefore the
annihilator Annv of each its element v is a principle ideal, it is generated by
polynomial gv(t) satisfying properties (i) – (v) from Proposition 2.5.

Let Mfree is generated by elements v1, . . . , vm over Λ. Then there is a
surjective Λ-homomorphism

f : Λ/ < gv1
(t) > ⊕ · · · ⊕ Λ/ < gvm

(t) >−→ Mfree.

Consider the modules M̃ =
⊕

Λ/ < gvi
(t) > and Mfree as free Z-modules

and denote by hfM and hMfree
the automorphisms respectively of M̃ and Mfree

defined by the multiplication by t. Then it is easy to see that the characteristic

polynomial ∆̃(t) = det(hfM − tId) coincides up to the sign with the product
gv1

(t) . . . gvm
(t). Next, the characteristic polynomial ∆(t) = det(hMfree

− tId)

is a divisor of the polynomial ∆̃(t), since the homomorphism f is surjective
and t-equivariant. Therefore all roots of ∆(t) are roots of unity 6= ±1 and
hence deg ∆(t) is an even number. To complete the proof, notice that the
Betti number of Mfree coincides with deg ∆(t). �

2.2. Derived Alexander modules. To a Noetherian (t − 1)-invertible Λ-
module M we associate an infinite sequence of Noetherian (t − 1)-invertible
t-unipotent Λ-modules

An(M) = M/(tn − 1)M, n ∈ N. (6)

The module An(M) is called the n-th derived Alexander module of Λ-module
M .

Note that A1(M) = 0, since M is (t − 1)-invertible. It is also evident that
An(An(M)) = An(M).

It is obvious, that if f : M1 → M2 is a Λ-homomorphism of (t−1)-invertible
modules, then the sequence of Λ-homomorphisms

fn∗ : An(M1) → An(M2),
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n ∈ N, is well defined, that is, the map M 7→ {An(M)} is a functor from the
category of Noetherian (t− 1)-invertible Λ-modules to the category of infinite
sequences of Noetherian (t − 1)-invertible t-unipotent Λ-modules.

Proposition 2.12. If

0 → M1
f

−→ M
g

−→ M2 → 0

is an exact sequence of Noetherian (t − 1)-invertible Λ-modules, then

An(M2) ' An(M)/im fn∗(An(M1)).

If M =
⊕k

i=1 Mi is the direct sum of Noetherian (t−1)-invertible Λ-modules
Mi, then

An(M) '
k⊕

i=1

An(Mi).

Proof. Obvious. �

Proposition 2.13. Let p be a prime number and r ∈ N, then for a Noetherian
(t − 1)-invertible Λ-module M its derived Alexander module Apr(M) is finite.

Proof. It follows from Lemma 1.13 and Corollary 1.17. �

Example 2.14. For Mm = Λ/〈(m + 1)t − m〉, where m ∈ N, its n-th derived
Alexander module

An(Mm) ' Z/((m + 1)n − mn)Z

is a cyclic group of order (m+1)n −mn and the multiplication by t is given by

tv = (−1)n+1m(

n−1∑

i=1

(−1)i

(
n

i

)
(m + 1)n−i−1)v

for all v ∈ An(Mm).

Proof. The module Mm = Λ/〈(m + 1)t − m〉 is isomorphic to a Λ-submodule
Z[ m

m+1
, m+1

m
] ⊂ Q if we put t = m

m+1
and tv = m

m+1
v for v ∈ Q. Therefore we

have

An(Mm) ' Mm/(tn − 1)Mm ' Z[m+1
m

, m
m+1

]/〈( m
m+1

)n − 1〉

and consequently,

An(Mm) ' Z[ m
m+1

, m+1
m

]/〈(m + 1)n − mn〉.

It is easy to see that the module Z[ m
m+1

, m+1
m

] coincides with the sum of

submodules Z[ 1
m+1

] and Z[ 1
m

] ⊂ Q,

Z[ m
m+1

, m+1
m

] = Z[ 1
m+1

] + Z[ 1
m

].

Indeed, it is obvious, that
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Z[ m
m+1

, m+1
m

] ⊂ Z[ 1
m+1

] + Z[ 1
m

].

Next, we have

(m+1
m

)n =
Pn

i=0 (n

i)mn−i

mn

and therefore

1
mn = (m+1

m
)n −

∑n−1
i=0

(
n

i

)
1

mi .

Similarly, we have

1
(m+1)n =

∑n−1
i=0 (−1)n+1+i

(
n

i

)
1

(m+1)i + (−1)n( m
m+1

)n

In particular, 1
m

= m+1
m

− 1 and 1
m+1

= 1 − m
m+1

. Therefore, by induction, we

obtain that 1
mn , 1

(m+1)n ∈ Z[ m
m+1

, m+1
m

] for all n and hence

Z[ 1
m+1

] + Z[ 1
m

] ⊂ Z[ m
m+1

, m+1
m

].

Let us show now that each element v ∈ Z[ m
m+1

, m+1
m

] is equivalent to some

vin ∈ Z ⊂ Z[ m
m+1

, m+1
m

] modulo the ideal I = 〈(m + 1)n − mn〉. For this, it
suffices to show that for each k there are vin,k, uin,k ∈ Z such that

1
mk ≡ vin,k mod I and 1

(m+1)k ≡ uin,k mod I.

We prove the existence of such elements only for 1
mk and the case 1

(m+1)k will

be left to the reader, since it is similar. We have

(m+1)n−mn

mk =
∑n

i=1

(
n

i

)
mn−i−k ≡ 0 mod I

and therefore

1
mk ≡ −

∑k−1
j=k+1−n

(
n

n+j−k

)
1

mj mod I.

In particular,

1
m

≡ −
∑n−2

j=0

(
n

n−j−1

)
mj mod I.

Now the existence of desired vin,k is proved by induction on k.
It follows from the above consideration that

An(Mm) ' Z[ m
m+1

, m+1
m

]/〈(m + 1)n − mn〉

is a cyclic group generated by the image 1 of 1 ∈ Z[ m
m+1

, m+1
m

]. We have

((m + 1)n − mn)1 = 0

and hence the order of An(Mm) is a divisor of (m + 1)n − mn.
Let us show that the order of An(Mm) is equal to (m+1)n −mn. Let k ∈ Z

be such that k1 = 0. Then

k = (
∑

i1≤i≤i2
ai

1
(m+1)i +

∑
j1≤j≤j2

bj
1

mj )((m + 1)n − mn),
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where ai, bj ∈ Z. Multiplying by (m + 1)i2 and mj2 if i2 > 0 or j2 > 0, we
obtain an equality

(m + 1)i2mj2k = C((m + 1)n − mn)

with some C ∈ Z which shows that (m + 1)n − mn is a divisor of k, since m,
m + 1, and (m + 1)n − mn are coprime.

To calculate the action of t on the cyclic group

An(Mm) ' Z/((m + 1)n − mn)Z,

notice that

t1 = m
m+1

= (−1)n+1m(
∑n−1

i=1 (−1)i
(

n

i

)
(m + 1)n−i−1)1,

since similar (as above) calculation gives

1
m+1

≡ (−1)n+1
∑n−1

i=1 (−1)i
(

n

i

)
(m + 1)n−i−1 mod I. �

Proposition 2.15. An abelian group G is isomorphic (as a Z-module) to
the derived Alexander module A2(M) of some Noetherian (t − 1)-invertible
Λ-module M if and only if G is a finite group of odd order.

Proof. By Lemma 2.8, we need only to prove that for any finite group G
of odd order there is a Noetherian (t − 1)-invertible Λ-module M for which
A2(M) ' G.

Represent G as a direct sum of cyclic groups:

G =
k⊕

i=1

Gi,

and let ni = 2mi + 1 be the order of Gi.
For each i, consider the Λ-module Mmi

from Example 2.14. We have
A2(Mmi

) is a cyclic group of order (mi +1)2−m2
i = 2mi +1. Now, proposition

follows from Proposition 2.12 if we put M =
⊕k

i=1 Mmi
. �

Theorem 2.16. Let M be a Noetherian (t−1)-invertible t-unipotent Λ-module
of unipotence index k. Then the sequence of its derived Alexander modules

A1(M), . . . , An(M), . . .

has period k, that is, An(M) ' An+k(M) for all n.
If n and k are coprime, then An(M) = 0.

Proof. Note that if k is the unipotence index of M , then, by Lemma 2.7,

the polynomial fk(t) =
k−1∑

i=0

ti ∈ Ann(M). Besides, to get An(M) from M ,

it suffices to factorize M by the relations fn(t)v = 0 for all v ∈ M , where
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fn(t) =
n−1∑

i=0

ti. Now, to prove the periodicity of sequence (6), it suffices to

notice that

fn+k(t) = tnfk(t) + fn(t).

Let n and k be coprime and let polynomials fk(t) and fn(t) belong to
Ann(M). Applying Euclidian algorithm to fk(t) and fn(t), it is easy to see
that there are polynomials gk(t) and gn(t) such that

fk(t)gk(t) + fn(t)gn(t) = 1,

since n and k are coprime. Therefore Ann(M) = Λ and hence An(M) = 0. �

Example 2.17. The Λ-module M = Λ/ < t2 − t + 1 > has the following
derived Alexander modules:

A6k±1(M) = 0, A6k±2(M) ' Z/3Z, A6k+3(M) ' (Z/2Z)2,

where the multiplication by t on Z/3Z coincides with the multiplication by 2
and the multiplication by t on (Z/2Z)2 coincides with cyclic permutation of
the non-zero elements of A6k+3(M).

Proof. The module M has the unipotency index 6, since t2 − t + 1 is a divisor
of the polynomial t6 − 1. Therefore A6k±1(M) = 0.

To compute A6k+2(M), it suffices to compute A2(M). We have A2(M) =
Λ/ < t2 − t + 1, t + 1 > and since

t2 − t + 1 = (t − 2)(t + 1) + 3,

then Λ/ < t2 − t + 1, t + 1 >= Λ/ < t + 1, 3 >' Z/3Z.
To compute A6k+3(M), it suffices to compute A3(M). We have A3(M) =

Λ/ < t2 − t + 1, t2 + t + 1 > and since

t2 + t + 1 = t2 − t + 1 + 2t,

then Λ/ < t2 − t + 1, t2 + t + 1 >= Λ/ < t2 + t + 1, 2 >' (Z/2Z)2.
To compute A6k+4(M), it suffices to compute A4(M). We have A4(M) =

Λ/ < t2 − t + 1, t3 + t2 + t + 1 > and since

t3 + t2 + t + 1 = (t + 2)(t2 − t + 1) + 2t − 1,

then Λ/ < t2− t+1, t3 + t2 + t+1 >= Λ/ < t2− t+1, 2t−1 > is isomorphic to
the quotient module M/(2t−1)M . Let v be a generator of bi-principle module
M . It is easy to check that in the basis v1 = v, v2 = tv of M over Z, the module
(2t − 1)M is generated by the elements 2v2 − v1 and t(2v2 − v1) = v2 − 2v1,
since tv2 = v2 − v1. In the new basis e1 = v1, e2 = v2 − 2v1, the element
2v2 − v1 = 2e2 + 3e1, that is, (2t − 1)M is generated over Z by 3e1 and e2.
Therefore A4(M) ' Z/3Z. �
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3. Alexander modules of irreducible C-groups

3.1. Proof of Theorems 0.1 and 0.3. Recall that the class of irreducible C-
groups coincides with the class of fundamental groups of knotted n-manifolds V
if n ≥ 2 and the knot groups are also C-groups if they are gvien by Wirtinger
presentation. Similarly, the class of irreducible Hurwitz C-groups coincides
with the class of the fundamental groups of the complements of irreducible
”affine” Hurwitz (resp., pseudo-holomorphic) curves and it contains the sub-
class of the fundamental groups of the complements of algebraic irreducible
affine plane curves. Therefore to speak about the Alexander modules of knot-
ted n-manifolds and, respectively, about the Alexander modules of irreducible
Hurwitz (resp., pseudo-holomorphic) curves is the same as to speak about the
Alexander modules of irreducible C-groups and, respectively, of irreducible
Hurwitz C-groups. Hence Theorems 0.1 and 0.3 are equivalent to the follow-
ing two theorems.

Theorem 3.1. A Λ-module M is the Alexander module of an irreducible C-
group if and only if it is Noetherian (t − 1)-invertible.

Theorem 3.2. A Λ-module M is the Alexander module of an irreducible Hur-
witz C-group if and only if it is Noetherian (t − 1)-invertible t-unipotent Λ-
module.

The unipotence index of the Alexander module A0(G) of an irreducible C-
group G of degree m is a divisor of m.

Proof. Let

G =< x1, . . . , xm | r1, . . . , rn > (7)

be a C-presentation of a C-group G and Fm be the free group freely generated
by the C-generators x1, . . . , xm. Denote by ∂

∂xi
the Fox derivative ([3]), that

is, an endomorphism of the group ring Z[Fm] over Z of the free group Fm into
itself, such that ∂

∂xi
: Z[Fm] → Z[Fm] is a Z-linear map defined by the following

properties
∂xj

∂xi

= δi,j

∂uv

∂xi

=
∂u

∂xi

+ u
∂v

∂xi

(8)

for any u, v ∈ Z[Fm]. The matrix

A(G) = ν∗
(

∂ri

∂xj

)
∈ Matn×m(Z[t, t−1])

is called the Alexander matrix of the C-group G given by presentation (7),
where ri, i = 1, . . . , n, are the defining relations of G and ν∗ : Z[Fm] →
Z[F1] ' Z[t, t−1] is induced by the canonical C-epimorphism ν : Fm → F1.
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Lemma 3.3. The sum of the columns of the Alexander matrix A(G) of a

C-group G, given by presentation (7), is equal to zero.

Proof. Each relation ri has the form

r = wxjw
−1x−1

l ,

where w is a word in letters x±1
1 , . . . , x±1

m , and xj, xl are some two letters.

By induction on the length l(w) of the word w, let us show that

m∑

k=1

ν∗(
∂r

∂xk

) = 0.

If l(w) = 0, that is, r := xjx
−1
l , we have

ν∗(
∂r

∂xk

) =





1 if k = j,
−1 if k = l,
0 if k 6= j and k 6= l

and in this case we obtain
∑m

k=1 ν∗(
∂r
∂xk

) = 0.

Assume that for all words r = wxjw
−1x−1

l we have
∑m

k=1 ν∗(
∂r
∂xk

) = 0 if

l(w) ≤ n. Consider a word r = wxjw
−1x−1

l , such that l(w) = n + 1. Put
r1 = w1xjw

−1
1 x−1

l , where w = xε
iw1, ε = ±1, and l(w1) = n. We consider only

the case when i 6= j, i 6= l, j 6= l, and ε = 1. All other cases are similar and

the proof that
∑m

k=1 ν∗(
∂r
∂xk

) = 0 in these cases will be left to the reader.

It follows from (8) that

ν∗(
∂r

∂xk

) =





tν∗(
∂r1

∂xk

) if k 6= i, k 6= j, k 6= l,

1 + tν∗(
∂r1

∂xk

) − t if k = i,

1 + tν∗(
∂r1

∂xk

) if k = j,

t(ν∗(
∂r1

∂xk

) + 1) − 1 if k = l

and it is easy to see that
∑m

k=1 ν∗(
∂r
∂xk

) = 0. �

To each monomial ait
i ∈ Z[t] let us associate a word

waiti(x1, x2) = (xi
2x1x

−(i+1)
2 )ai

if ai > 0 and

waiti(x1, x2) = (xi+1
2 x−1

1 x−i
2 )−ai
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if ai < 0, and for g(t) =
∑k

i=0 ait
i ∈ Z we put

wg(t)(x1, x2) =

k∏

i=0

waiti(x1, x2).

Next, to a polynomial f(t) = (1 − t)g(t) + 1 we associate a word

rf(t)(x1, x2) = wg(t)(x1, x2)x1w
−1
g(t)(x1, x2)x

−1
2 , (9)

and to a vector u = (1 − t)u = ((1 − t)g1(t), . . . , (1 − t)gm(t)), we associate a

word

ru(x1, . . . , xm+1) = wu(x1, . . . , xm+1)xm+1w
−1
u (x1, . . . , xm+1)x

−1
m+1, (10)

where

wu(x1, . . . , xm+1) =
m∏

i=1

wgi(t)(xi, xm+1).

Lemma 3.4. For a polynomial f(t) = (1 − t)g(t) + 1 and a vector

u = ((1 − t)g1(t), . . . , (1 − t)gm(t))

we have

ν∗(
∂rf(t)

∂x1

) = f(t),

ν∗(
∂ru

∂xi

) = (1 − t)gi(t), i = 1, . . . , m.

Proof. Let f(t) = (1 − t)g(t) + 1. It follows from (8) that

ν∗(
∂wg(t)(x1, x2)

∂x1
) = −ν∗(

∂w−1
g(t)(x1, x2)

∂x1
) = g(t)

since wg(t)(x1, x2)w
−1
g(t)(x1, x2) = 1,

ν∗(wg(t)(x1, x2)) = ν∗(waiti(x1, x2)) = 1,

and

ν∗(
∂waiti(x1, x2)

∂x1
) = ait

i.

Therefore we have

ν∗(
∂rf(t)

∂x1
) = ν∗(

∂(wg(t)(x1, x2)x1w
−1
g(t)(x1, x2)x

−1
2 )

∂x1
) =

g(t) + 1 − tg(t) = f(t).

The proof in the second case is similar and it will be left to the reader. �
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Proposition 3.5. The Alexander module A0(G) of a C-group G, given by

presentation (7), is isomorphic to a factor module Λm−1/M(G), where the
submodule M(G) of Λm−1 is generated by the rows of the matrix A formed by

the first m − 1 columns of the Alexander matrix A(G).

Proof. To describe the Alexander module of a C-group G, we follow [18] (see

also [7]). To a C-group G given by C-presentation (7) we associate a two-

dimensional complex K with a single vertex x0 whose one dimensional skele-

ton is a bouquet of oriented circles si, 1 ≤ i ≤ m, corresponding to the

C-generators of G in presentation (7). Furthermore, K \ (∪si) =
⊔n

i=1

◦

Di

is a disjoint union of open discs. Each disc Di corresponds to the relation
ri = x

εi,1

ji,1
. . . x

εi,ki

ji,ki
from presentation (7), where εi,j = ±1, and it is glued to the

bouquet
∨

si along the path s
εi,1

ji,1
. . . s

εi,ki

ji,ki
. It is clear that π1(K, x0) ' G.

The C-homomorphism ν : G → F1 defines an infinite cyclic covering f :

K̃ → K such that π1(K̃) = N and H1(K̃, Z) = N/N ′, where N = ker ν. The

group F1 acts on K̃.

Let K̃0 = f−1(x0), and let K̃1 be the one-dimensional skeleton of the complex

K̃. Consider the following exact sequences of homomorphisms of homology

groups with coefficients in Z:

0y
H1(K̃)y

−−−→ H2(K̃, K̃1)
α

−−−→ H1(K̃1, K̃0)
β

−−−→ H1(K̃, K̃0) −−−→ 0y∂

H0(K̃0)y
0

(11)

The action of F1 on K̃ turns the groups in these sequences into Λ-modules.

We fix a vertex p0 ∈ K̃0. Let pi = tip0 be the result of action of the element

ti ∈ F1 on the point p0. Then H1(K̃1, K̃0) is a free Λ-module whose generators

s̄i are edges joining p0 with p1 which are mapped onto the loops si. The result

of action of ti on the generator s̄j is an edge beginning at the vertex pi which

is mapped onto the loop sj.
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The free Λ-module H2(K̃, K̃1) is generated by the discs Di, i = 1, . . . , n,
corresponding to the relations ri = x

εi,1

ji,1
. . . x

εi,ki

ji,ki
, where each disc Di is glued

to the one-dimensional skeleton along the product of paths

tδ(εi,1)s̄
εi,1

ji,1
, tδ(εi,2)+εi,1 s̄

εi,2

ji,2
, . . . , tδ(εi,ki

)+
Pki−1

l=1
εi,l s̄

εi,ki

ji,ki
,

where δ(1) = 0 and δ(−1) = −1. It is easy to verify that the coordinates of

elements α(Di) ∈ H1(K̃1, K̃0) in the basis s̄1, . . . , s̄m coincide with the rows
Ai of the Alexander matrix A(G) of C-group G given by presentation (7).

It follows from the vertical exact sequence in (11) that ∂(β(s̄i)) = (t − 1)p0

for each generator s̄i of the module H1(K̃1, K̃0). Let us choose a new basis

ei = s̄i − s̄m, i = 1, . . . , m− 1, em = s̄m in H1(K̃1, K̃0). Then β(ei) ∈ ker ∂ for
i = 1, . . . , m − 1, and ker ∂ is generated by β(e1), . . . , β(em−1). Hence we may

identify H1(K̃) with β(H ′
1(K̃1, K̃0)), where H ′

1(K̃1, K̃0) is a free submodule of

the free Λ-module H1(K̃1, K̃0) generated by the elements e1, . . . , em−1.
In the basis e1, . . . , em the matrix formed by the coordinates of α(Di) coin-

cides with the matrix Ã(G) obtained from A(G) by replacing the last column

by the column of zeros. Hence H1(K̃) is isomorphic to the quotient of the free

Λ-module H ′
1(K̃1, K̃0) '

⊕m−1
i=1 Λei by the submodule M(G) generated by the

rows of the matrix A(G), where A(G) is the matrix formed by the first m− 1
columns of the matrix A(G). �

To prove that a Noetherian (t− 1)-invertible (resp., t-unipotent) Λ-module
M is the Alexander module of an irreducible (resp., Hurwitz) C-group, we
use Proposition 1.11. By Proposition 1.11, a Noetherian (t − 1)-invertible Λ-
module M is isomorphic to a factor module Λm/M1 of a free Λ-module Λm,
where the submodule M1 is generated by elements u1, . . . , um, . . . , um+k of Λm

such that

(i) for i = 1, . . . , m the vector ui = (0, . . . , 0, fi(t), 0, . . . , 0), where a poly-
nomial fi(t) is such that fi(1) = 1 and it stands on the i-th place,

(ii) um+j = (1− t)um+j = ((1− t)gj,1(t), . . . , (1− t)gj,m(t)) for j = 1, . . . , k,
where gj,l(t) are polynomials,

and if M is a t-unipotent Λ-module of unipotence index n, then we can assume
that

(iii) the vector um+k+i = (0, . . . , 0, tn − 1, 0, . . . , 0) ∈ M1 for i = 1, . . . , m,
where the polynomial tn − 1 stands on the i-th place.

Express each polynomial fi(t) in the form fi(t) = (1−t)gi(t)+1 and consider
a C-group

G = 〈x1, . . . , xm+1 | r1, . . . , rm+k〉,
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where ri := rfi(t)(xi, xm+1) for i = 1, . . . , m and rm+j := ru(x1, . . . , xm+1) for

j = 1, . . . , k, where the words rf(t) and ru were defined by formulas (9) and

(10). Denote by rm+k+i := xn
m+1xix

−n
m+1x

−1
i if

um+k+i = (0, . . . , 0, tn − 1, 0, . . . , 0) ∈ M1

for i = 1, . . . , m and denote by

G = 〈x1, . . . , xm+1 | r1, . . . , r2m+k〉.

It follows from Lemma 3.4 that the matrix Ã(G) (resp., Ã(G)) formed by the

first m columns of the Alexander matrix A(G) (resp., A(G)) coincides with the
matrix U (resp., U) formed by the rows u1, . . . , um+k (resp., by u1, . . . , u2m+k).
Therefore, by Proposition 3.5, the Alexander module A0(G) (resp., A0(G))

coincides with M = Λm/M1, where M1 is generated by the rows u1, . . . , um+k

(resp., by u1, . . . , u2m+k).
Notice that G (resp., G) is an irreducible C-group, since all C-generators

x1, . . . , xm are conjugated to xm+1. Moreover, G is a Hurwitz C-group. Indeed,

it follows from relations rm+k+j, j = 1, . . . , m, that xn
m+1 belongs to the center

of G. Since all xi are conjugated to xm+1, we have xn
i = xn

m+1 for all i =

1, . . . , m. Therefore the product xn
1 . . . xn

m+1 also belongs to the center of G

and G possesses a Hurwitz presentation

G = 〈x1, . . . , xn(m+1) | r1, . . . , r2m+k,
xix

−1
i+m+1, i = 1, . . . , (n − 1)(m + 1),

[xi, (x1 . . . xn(m+1)], i = 1, . . . , n(m + 1)〉.

The following two lemmas complete the proof of Theorems 0.1 and 0.3.

Lemma 3.6. ([13]) The Alexander module A0(G) = G′/G′′ of an irreducible

C-group G is a Noetherian (t − 1)-invertible Λ-module.

Proof. For an irreducible C group G its commutator subgroup G′ coincides

with the kernel of the C-epimorphism ν : G → F1. By the Reidemeister –

Schreier method, if C-generators x1, . . . , xm generate G, then the elements

ai,n = xn
mxix

−(n+1)
m , i = 1, . . . , m − 1, n ∈ Z, generate G′. Therefore A0(G) =

G′/G′′ is generated by the images ai,n of the elements ai,n under the natural

epimorphism G′ → G′/G′′. The action of t on A0(G) is defined by conjugation

a 7→ xmax−1
m for a ∈ G′. Therefore tai,n = ai,n+1. Thus A0(G) is generated

over Λ by a1,0 . . . , am−1,0 and hence it is a Noetherian Λ-module.

To show that A0(G) is a (t − 1)-invertible Λ-module, notice, first, that any

element g ∈ G can be written in the form g = xk
ma, where a ∈ G′ and

k = ν(g). Therefore G′ is generated by the elements of the form [xn
ma, xk

mb],
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where a, b ∈ G′, and hence A0(G) is generated by their images [xn
ma, xk

mb]. It
is easily to check that

[xn
ma, xk

mb] = [xn
m, a](axn+k

m [b, a−1]x
−(n+k)
m a−1)[a, xn+k

m ]·

·(xn+k
m [b, x−n

m ]x
−(n+k)
m ).

(12)

It follows from (12) that

[xn
ma, xk

mb] = (tn − 1)a + (1 − tn+k)a + tn+k(1 − t−n)b =
tn(1 − tk)a + tk(tn − 1)b =

(t − 1)(

n−1∑

i=0

ti+kb −

k−1∑

i=0

ti+na),

(13)

since axn+k
m [b, a−1]x

−(n+k)
m a−1 ∈ G′′. Now, it is easy to see that the multipli-

cation by t − 1 is an epimorphism of A0(G), since the elements of the form

[xn
ma, xk

mb] generate A0(G) over Z. To complete the proof, we apply Lemma
1.1. �

Lemma 3.7. ([10]) The Alexander module of a Hurwitz C-group of degree m
is a Noetherian (t − 1)-invertible t-unipotent Λ-module of unipotence index d,
where d is a divisor of m.

Proof. If G is a Hurwitz group of degree m, then it is generated by C-generators
x1, . . . , xm such that the product x1 . . . xm belongs to the center of G. By
Lemma 3.6, the Alexander module A0(G) = G′/G′′ in a Noetherian (t − 1)-
invertible Λ-module. The multiplication by t on A0(G) is induced by conjuga-
tion a 7→ xmax−1

m for a ∈ G′. Since ν(xm
m) = ν(x1 . . . xm), there is an element

a0 ∈ G′ such that xm
m = a0 · x1 . . . xm and hence the conjugation by xm

m is an
inner automorphism of G′. Therefore the induced automorphism tm of G′/G′′

is the identity. �

3.2. Alexander modules of C-products of C-groups. Let G1 and G2 be
two irreducible C-groups and let x ∈ G1 (resp., y ∈ G2) be one of C-generators
of G1 (resp., of G2). Consider the amalgamated product G1 ∗{x=y} G2. If

G1 = 〈x1, . . . , xn | R1〉,
G2 = 〈y1, . . . , ym | R2〉

(14)

are C-presentations of G1 and G2, where x = xn and y = ym, then G1∗{x=y}G2

is given by C-presentation

〈x1, . . . , xn−1, y1, . . . , ym−1, z | R̃1 ∪ R2〉 (15)

in which each relation r̃i ∈ R̃1 (resp., ri ∈ R2) is obtained from the relation
ri ∈ R1 (resp., from ri ∈ R2) by substitution of z instead of xn (resp., instead
of ym).
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If x′ ∈ G1 and y′ ∈ G2 are two another C-generators of these groups,
then there are inner C-isomorphisms fi : Gi → Gi such that f1(x

′) = x and
f2(y

′) = y, since all C-generators of an irreducible C-group are conjugated to
each other. Therefore there is an isomorphism

f1 ∗ f2 : G1 ∗{x′=y′} G2 → G1 ∗{x=y} G2,

that is, the group G1 ∗{x=y} G2, up to a C-isomorphism, does not depend on
the choice of C-generators x and y, so we denote it by G1 ∗C G2 and call the
C-product of irreducible C-groups G1 and G2.

Proposition 3.8. If a C-group G = G1 ∗C G2 is the C-product of irreducible
C-groups G1 and G2, then its Alexander module A0(G) is isomorphic to the
direct sum of the Alexander modules of G1 and G2,

A0(G) = A0(G1) ⊕ A0(G2).

Proof. This proposition is a simple consequence of Proposition 3.5. Indeed,
if G1 and G2 are given by presentation (14), then, by Proposition 3.5, the
Alexander module A0(G) of the C-group G = G1 ∗C G2, given by presentation
(15), is isomorphic to a factor module Λn+m−1/M(G), where the submodule
M(G) of Λn+m−1 is generated by the rows of the matrix

A =

(
A1 0
0 A2

)
,

where A1 (resp., A2) is the matrix formed by the first n − 1 (resp., m − 1)
columns of the matrix A(G1) (resp., A(G2)). Now, it is easy to see that
A0(G) = A0(G1) ⊕ A0(G2). �

Let

G =< x1, . . . , xm | r1, . . . , rn > (16)

be a C-presentation of a C-group G. The number dP = m − n is called the
C-deficiency of presentation (16) and dG = min dP , where the minimum is
taken over all C-presentation of a C-group G, is called the C-deficiency of the
group G. Obviously, for a C-group consisting of k connected component, its
C-deficiency dG ≤ k and, in particular, if G is an irreducible C-group, then
dG ≤ 1.

Lemma 3.9. Let G = G1 ∗C G2 be the C-product of irreducible C-groups G1

and G2. Then

dG ≥ dG1
+ dG2

− 1.

In particular, if dG1
= dG2

= 1, then dG = 1.

Proof. It follows from formula (15).
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3.3. Presentation graphs of C-groups. Let us associate a presentation

graph ΓP to each C-presentation (16) as follows. The vertices of the graph
ΓP are labeled by the generators from presentation (16) (and, in particular,
they are in one to one correspondence with the generators from presentation

(16)), and its edges are in one to to one correspondence with the relations rj of
the presentation (16) and if rj := w−1

j (x1, . . . , xm)xi1wj(x1, . . . , xm)x−1
i2

, then

the corresponding edge connects the vertices xi1 and xi2 .
Obviously, the C-deficiency

dP = dim H0(ΓP , R) − dim H1(ΓP , R).

Therefore for an irreducible C-group G its C-deficiency dG = 1 if and only if
G possesses a C-presentation whose presentation graph ΓP is a tree.

A C-presentation

G =< x1, . . . , xm | r1, . . . , rn > (17)

is said to be simple if each relation rj in (17) is of the form:

rj := x−1
i3

xi1xi3x
−1
i2

,

for some i1, i2, i3 ∈ {1, . . . , m} (that is, xi2 = x−1
i3

xi1xi3).

Remark 3.10. If presentations (14) of irreducible C-groups G1 and G2 are

simple, then presentation (15) of G = G1 ∗C G2 is also simple and the pre-
sentation graph ΓP of presentation (15) is the bouquet ΓP = ΓP1

∨
z=xn=ym

ΓP2

of the presentation graphs ΓP1
and ΓP2

of presentations (14). In particular, if

ΓP1
and ΓP2

are trees, then the presentation graph ΓP is also a tree.

Lemma 3.11. Any C-group possesses a simple C-presentation with C-de-
ficiency dP = dG.

Proof. Let G be given by C-presentation of C-deficiency dP = dG and r :=

w−1xiwx−1
j is one of its relations (that is, w−1xiw = xj), where w = xε1

i1
. . . xεk

ik

is a word in Fm and εl = ±1, then we can add k − 1 new generators xm+1,. . . ,

xm+k−1 and replace the relation r by k relations:

xm+1 = x−ε1

i1
xix

ε1

i1
,

xm+2 = x−ε2

i2
xm+1x

ε2

i2
,

. . . . . . . . . . . . . . . . . . . . .

xm+k−1 = x
−εk−1

ik−1
xm+k−2x

εk−1

ik−1
,

xj = x−εk

ik
xm+k−1x

εk

ik
.

Obviously, we obtain a new C-presentation of the same C-deficiency which

defines the same C-group G. �
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3.4. The Alexander modules of C-groups possessing C-presentations

whose presentation graphs are trees. By Lemma 3.11, an irreducible C-
group G possesses a simple C-presentation whose presentation graph is a tree
if and only if its C-deficiency dG = 1.

Proposition 3.12. If M =
⊕m

i=1 Mi is the direct sum of bi-principle (t − 1)-
invertible Λ-modules Mi = Λ/〈fi(t)〉, then there is an irreducible C-group G
such that A0(G) ' M and such that its C-deficiency dG = 1.

Proof. Note that the C-deficiency of a C-group given by presentation

G = 〈x1, x2 | wx1w
−1x−1

2 〉, (18)

where w = w(x1, x2) is a word in letters x1, x2 and their inverses, is equal
to 1. Applying Proposition 3.5, we see that the Alexander module A0(G) of
a C-group G, given by presentation (18), is a bi-principle (t − 1)-invertible
Λ-module.

Conversely, it was shown in the proof of Theorem 3.1 that any bi-principle
(t − 1)-invertible Λ-module M = Λ/〈f(t)〉 is the Alexander module of some
irreducible C-group given by presentation (18). To complete the proof we
apply Proposition 3.8 and Remark 3.10. �

Corollary 3.13. Let M =
⊕m

i=1 Mi is a direct sum of bi-principle (t − 1)-
invertible Λ-modules Mi = Λ/〈fi(t)〉. Then for each n ≥ 2 there is a knotted
sphere Sn ⊂ Sn+2 such that the Alexander module

A0(π1(S
n+2 \ Sn)) ' M.

In particular, a polynomial f(t) ∈ Z[t] is the Alexander polynomial ∆(t) of
some knotted sphere Sn ⊂ Sn+2 if and only if f(1) = ±1 and, moreover, the
Jordan blocks of the Jordan canonical form of the matrix of the automorphism
hC acting on A0(S

n) ⊗ C can be of arbitrary size.

Proof. In [8], it was shown that if an irreducible C-group is given by a simple
C-presentation which presentation graph is a tree, then for each n ≥ 2 there
is a knotted sphere Sn ⊂ Sn+2 such that π1(S

n+2 \ Sn) ' G. �

Proposition 3.14. Let G be an irreducible C-group of C-deficiency dG = 1.
Then its Alexander module A0(G) has not non-zero Z-torsion elements.

Proof. Let
G =< x1, . . . , xm | r1, . . . , rm−1 > (19)

be a C-presentation of G. By Proposition 3.5, its Alexander module A0(G)
is isomorphic to a factor module Λm−1/M(G), where the submodule M(G)
of Λm−1 is generated by the rows of the matrix A formed by the first m − 1
columns of the Alexander matrix A(G) of the group G given by presentation
(19). The size of the matrix A is (m − 1) × (m − 1).
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Lemma 3.15. The determinant ∆(t) = detA satisfies the following property:

∆(1) = ±1.

Proof. It coincides with the similar statement for knot groups (see the proof,

for example, in [3]). �

Denote by Aj the rows of the matrix A, j = 1, . . . , m − 1. The module

A0(G) has a non-zero Z-torsion element if and only if there is a vector u =

(f1(t), . . . , fm−1(t)) such that u 6∈ M(G) and ku ∈ M(G) for some k ∈ N.

Assume that there is a such vector u. Then there are gj(t) ∈ Λ such that

ku =
∑

gj(t)Aj, where for some gj(t) one of its coefficients is not divisible by

k.

Without loss of generality, we can assume that all fi(t) and gj(t) belong to

Z[t]. By Cramer’s theorem,

gj(t) =
∆j(t)

∆(t)
,

where ∆j(t) is the determinant of the matrix obtained from A by substitution

ku instead of the row Aj. Therefore the coefficients of all polynomials
∆j(t)

∆(t)

are divisible by k. A contradiction. �

Remark 3.16. If G is an irreducible C-group given by presentation of C-

deficiency dP = dG = 1, then the determinant ∆(t) = detA of the matrix A,

obtained from the Alexander matrix A after deleting its last column, coincides

with the Alexander polynomial ∆G(t) of the group G.

3.5. Finitely Z-generated Alexander modules of irreducible C-groups.

Theorem 3.17. Let G be an irreducible C-group. The Alexander module

A0(G) is finitely generated over Z if and only if the leading coefficient an and

the constant coefficient a0 of the Alexander polynomial ∆G(t) =
∑n

i=0 ait
i of

G are equal to ±1.

Proof. By Theorem 3.1, A0(G) is a Noetherian (t − 1)-invertibele Λ-module.

Let A0(G)fin be the Z-torsion submodule of the Alexander module A0(G). By

Theorem 1.16, A0(G)fin is finitely generated over Z.

Consider the quotient module M = A0(G)/A0(G)fin. It is free from Z-

torsion. Therefore there is a natural embedding M ↪→ MQ = M ⊗Q. We have

dimQ MQ < ∞, since M is a Noetherian Λ-torsion module.

Denote by hQ an automorphism of MQ induced by the multiplication by t.

Then, by definition, ∆G(t) = a det(hQ − tId), where a ∈ N is the smallest

number such that a det(hQ − tId) ∈ Z[t].
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If the Alexander module A0(G) is finitely generated over Z, then M is a free
finitely generated Z-module. Denote by h an automorphism of M induced by
multiplication by t. We have det h = ±1 and

det(h − tId) = det(hQ − tId) ∈ Z[t].

Therefore ∆G(t) = det(h − tId) and its leading coefficient an = (−1)n, where
n = rk M , and a0 = det h = ±1.

Let the leading coefficient an and the constant coefficient a0 of the Alexan-
der polynomial ∆G(t) of G be equal to ±1. By Cayley-Hamilton’s Theorem,
∆G(t) ∈ Ann(MQ). Therefore ∆G(t) ∈ Ann(M) and M is finitely generated
over Z by Proposition 1.15. �

Remark 3.18. Let an irreducible C-group G is given by C-presentation G =
〈x1, . . . , xm | r1, . . . , rn〉 and A(G) its Alexander matrix. Then the Alexander
polynomial ∆G(t) coincides (up to multiplication by ±tk) with the greatest
common divisor of the determinants of all (m − 1) × (m − 1) submatrices
Am−1 of the matrix A(G).

3.6. Alexander modules of some irreducible C-groups. In the end of
this section, we compute the Alexander modules for some irreducible C-groups.

Example 3.19. The Alexander module A0(Brm+1) of the braid group Brm+1

is trivial if m ≥ 4 (or m = 1) and isomorphic to Λ/〈t2 − t + 1〉 for m = 2 and
3.

This statement is well known, but for completeness, we give a proof.

Proof. The braid group Brm+1 is given by presentation

Brm+1 = 〈x1, . . . , xm | [xi, xj] for |i − j| ≥ 2,
xixi+1xix

−1
i+1x

−1
i x−1

i+1 for i = 1, . . . , m − 1〉.

Notice that it is a C-presentation of an irreducible C-group.
By Proposition 3.5, to calculate A0(Brm+1) we should calculate the matrix

A(Brm+1).
The relations [xm, xi], i = 1, . . . , m − 2, give the rows

(0, . . . , 0, (t − 1), 0 . . . , 0), (20)

where t − 1 stands on the i-th place for i = 1, . . . , m − 2, and if m ≥ 4, then
the relation [xm−1, x1] gives the row

(t − 1, 0, . . . , 0, 1 − t). (21)

If m ≥ 4, then the rows from (20) and row (21) generate submodule (t−1)Λm−1

of the module Λm−1. On the other hand, these rows belong to the module
M(Brm+1). Therefore A0(Brm+1) = 0, since A0(Brm+1) ' Λm−1/M(Brm+1) is
a (t − 1)-invertible Λ-module and (t − 1)Λm−1 ⊂ M(Brm+1).
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If m = 2, then we have the only one relation in the presentation of Br3,

namely,

r := x1x2x1x
−1
2 x−1

1 x−1
2

We have ν∗(
∂r
∂x1

) = 1 + t2 − t and therefore A0(Br3) ' Λ/〈t2 − t + 1〉.
If m = 3, then we have the only three relations in the presentation of Br4,

namely,

r1 := x1x2x1x
−1
2 x−1

1 x−1
2 ,

r2 := x2x3x2x
−1
3 x−1

2 x−1
3 ,

r3 := x1x3x
−1
1 x−1

3 .

We have

ν∗(
∂r1

∂x1
) = −ν∗(

∂r1

∂x2
) = ν∗(

∂r2

∂x2
) = t2 − t + 1

ν∗(
∂r3

∂x1
) = 1 − t,

Therefore M(Br3) ⊂ Λ2 is generated by vectors

v1 = (t2 − t + 1,−(t2 − t + 1)), v2 = (0, t2 − t + 1), v3 = (1 − t, 0),

and hence A0(Br3) ' Λ/〈t2 − t + 1〉. �

Example 3.20. The Alexander module of a C-group

Gm = 〈x1, x2 | (x−1
1 x2)

mx1(x
−1
1 x2)

−mx−1
2 〉,

m ∈ N, is isomorphic to A0(G) ' Λ/〈(m + 1)t − m〉.

These irreducible C-groups are interesting, since they are non-Hopfian if

m ≥ 2 and therefore they are not residually finite. (The group Gm is isomor-
phic to Baumslag – Solitar group (see [1]) 〈a, x1 | x−1

1 amx1a
−(m+1)〉 if we put

x2 = x1a.) Note also that each of these groups can be realized as π1(S
4 \ S2)

for some knotted sphere S2 ⊂ S4.

Proof. Straightforward calculation gives

ν∗(
∂r

∂x1
) = −mt−1 + m + 1,

where r := (x−1
1 x2)

mx1(x
−1
1 x2)

−mx−1
2 . Therefore the Alexander module

A0(G) ' Λ/〈(m + 1)t − m〉. �
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4. First homology groups of cyclic coverings

4.1. Proof of Theorems 0.2 and 0.5. Theorems 0.2 and 0.5 will be proved

simultaneously.

In the notations from Introduction, we denote by X either the sphere Sn+2

(Case I) or CP2 (Case II), and by X ′ respectively either the complement of a

knotted n-manifold V in Sn+2 or the complement of the union of an irreducible

Hurwitz curve H and a line ”at infinity” L in CP2. Recall that the fundamental

group G = π1(X
′) is an irreducible C-group.

Consider the infinite cyclic covering f = f∞ : X∞ → X ′ corresponding to

the C-epimorphism ν : G → F1 with ker ν = G′. Let h ∈ Deck(X∞/X ′) ' F1

be a covering transformation corresponding to the C-generator x ∈ F1. We

say that h is the monodromy respectively of the knotted manifold V and of

the Hurwitz curve H. The space X ′ will be considered as the quotient space

X ′ = X∞/F1. In such a situation Milnor [19] considered an exact sequence of

chain complexes

0 → C·(X∞)
h−id
−→ C·(X∞)

f∗
−→ C·(X

′) → 0

which gives an exact sequence of homology groups with integer coefficients:

. . . → H1(X∞)
t−id
−→ H1(X∞)

f∗
−→ H1(X

′)
∂

−→ H0(X∞) → 0, (22)

where t = h∗.

The action h∗ (resp., hk∗) defines on H1(X∞) ' G′/G′′ a structure of Λ-

module such that sequence (22) is an exact sequence of Λ-modules (so that

H1(X∞) is the Alexander module of the C-group G). The action of t ∈ Λ on

H0(X∞) ' Z is trivial, that is, t is the identity automorphism of H0(X∞).

If 〈hk〉 ⊂ F1 is an infinite cyclic group generated by hk, then X ′
k = X∞/〈hk〉

and X ′ = X ′
k/µk, where µk = F1/〈h

k〉 is the cyclic group of order k. Denote

by hk an automorphism of X ′
k induced by the monodromy h. Then hk is a

generator of the covering transformation group Deck(X ′
k/X

′) = µk acting on

X ′
k.

It is easy to see that in Case I the manifold X ′
k can be embedded to the

compact smooth manifold Xk satisfying the following properties:

(i) the action of hk on X ′
k and the map f ′

k : X ′
k → X ′ are continued to an

action (denote it again by hk) on Xk and to a smooth map

fk : Xk → X ' Xk/{hk},

(ii) the set of fixed points of hk coincides with f−1
k (V ) = V and the restric-

tion fk|V : V → V of fk to V is a smooth isomorphism.
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In Case II (in the notations of the proof of Theorem 4.1 in [2]), the covering

f ′
k can be extended to a map f̃k norm : X̃k norm → X branched along H and,

maybe, along L. Let σ : Xk → X̃k,norm be a resolution of the singularities,

E = σ−1(Sing X̃k,norm), and fk = f̃k,norm ◦ σ. Denote by R = f̃−1
k,norm(H)

and R∞ = f̃−1
k,norm(L). Note that the restriction of f̃k,norm to R is one-to-

one and the restriction of f̃k,norm to R∞ is a k0-sheeted cyclic covering, where

k0 = GCD(k, d) and the ramification index of f̃k,norm along R∞ is equal to
k∞ = k

k0
. As in the algebraic case, it is easy to show that R∞ is irreducible.

Denote by R = σ−1(R) the proper transform of R. Note that k0 is a divisor

of m. Put m0 = m
k0

, we have m0 ∈ N.

Denote by Xk = Xk \ E. We have two embeddings ik : X ′
k ↪→ Xk and

jk : Xk ↪→ Xk.

In both cases , the action of hk on Xk induces on H1(Xk, Z) (resp., on

H1(X
′
k, Z)) a structure of Λ-module such that the homomorphism

ik∗ : H1(X
′
k, Z) → H1(Xk, Z),

induced by the embedding i : X ′
k ↪→ Xk, is a Λ-homomorphism. Obviously,

the homomorphism ik∗ is an epimorphism.

In Case I, let S ⊂ Xk be a germ of a smooth surface meeting transversally

V at p ∈ V and let γ̄ ⊂ S be a circle of small radius with center at p. Then

ker ik∗ is generated by the homology class [γ̄] ∈ H1(X
′
k, Z) containing the cycle

γ̄, since V is a smooth connected codimension two submanifold of Xk.

It is obvious, that t([γ̄]) = [γ̄], where t = hk∗, and

fk∗([γ̄]) = ±k[γ] ∈ H1(X
′, Z) ' Z,

where [γ] is a generator of H1(X
′, Z) represented by a simple loop γ around

V .

In Case II, let S ⊂ Xk be a germ of a smooth surface meeting transversally

R at p ∈ R and let γ̄ ⊂ S be a circle of small radius with center at p. Evidently,

the homology class [γ̄] ∈ H1(X
′
k, Z) is invariant under the multiplication by t

and fk∗([γ̄]) = k[γ], where [γ] is a generator of H1(CP2 \ (H ∪ L), Z) ' Z.

Similarly, let a complex line L1 ⊂ CP2 meet L transversely at q ∈ L\H and
γ∞ be a simple small loop around L lying in L1. Then f−1

k (γ∞) splits into the

disjoint union of k0 simple loops γ̄∞,i, i = 1, . . . , k0. Since R∞ is irreducible,

each two loops γ̄∞,i and γ̄∞,j belong to the same homology class of H1(X
′
k, Z)

(denote it by [γ̄∞]). It is easy to see that t(γ̄∞,i) = γ̄∞,i+1. Therefore the

homology class [γ̄∞] ∈ H1(X
′
nZ) is invariant under the multiplication by t.

Note also that fk∗([γ̄∞]) = k∞m[γ] = km0[γ], since [γ∞] = m[γ].
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Lemma 4.1. The Λ-module H1(X
′
k, Z) is isomorphic to

Ak(G) ⊕ H1(X
′
k)1 ' Ak(G) ⊕ Z,

where Ak(G) is the k-th derived Alexander module of C-group G and

H1(X
′
k)1 = {h ∈ H1(X

′
k, Z) | (t − 1)h = 0}.

Proof. We apply the sequence

. . . → H1(X∞, Z)
tk−id
−→ H1(X∞, Z)

gk,∗

−→ H1(X
′
k, Z)

∂
−→ H0(X∞, Z) → 0 (23)

constructed in the same way as (22) to the infinite cyclic covering gk = g∞,k :
X∞ → X ′

k, to analyze the group H1(X
′
k, Z).

By (23), we have the short exact sequence

0 → H1(X∞)/(tk − 1)H1(X∞)
gk,∗

−→ H1(X
′
k)

∂
−→ H0(X∞) → 0 (24)

which is a sequence of Λ-homomorphisms.
Denote by M1 = ker ∂ = imgk,∗ ' H1(X∞)/(tk − 1)H1(X∞) and by M2 =

H1(X
′
k)1.

We have H0(X∞, Z) ' Z. Let us choose a generator u ∈ H0(X∞, Z) and let
v1 ∈ H1(X

′
k, Z) be an element such that ∂(v1) = u. Then (t − 1)v1 ∈ ker ∂,

since H0(X∞, Z) is a trivial Λ-module and ∂ is a Λ-homomorphism. We fix a
such v1.

By Theorems 0.1 and 0.3, H1(X∞, Z) = A0(G) is a Noetherian (t − 1)-
invertible Λ-module. Therefore, by Proposition 1.6,

M1 ' H1(X∞)/(tk − 1)H1(X∞) = Ak(G)

is also a Noetherian (t−1)-invertible Λ-module and, by Theorem 1.10, there is
a polynomial g1(t) ∈ Ann(M1) such that g1(1) = 1. We fix a such polynomial
g1(t).

Consider the element v1 = g1(t)v1. We have ∂(v1) = g1(1)u = u and hence

(t − 1)v1 = (t − 1)g1(t)v1 = g1(t)(t − 1)v1 = 0,

since (t − 1)v1 ∈ M1. Therefore v1 ∈ M2.
Note that M1∩M2 = 0, since M1 is (t−1)-invertible. Therefore ∂ maps M2

isomorphically onto H0(X∞, Z), that is, exact sequence (24) splits and hence
H1(X

′
k, Z) ' M1 ⊕ M2. �

Lemma 4.2. For fk∗ : H1(X
′
k, Z) −→ H0(X

′, Z) we have

(i) ker fk,∗ = Ak(G) ⊂ H1(X
′
k, Z),

(ii) im fk,∗ = kZ ⊂ Z ' H1(X
′, Z) and the restriction of fk∗ to H1(X

′
k)1 is

an isomorphism of H1(X
′
k)1 with its image.
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Proof. The group H1(X
′, Z) is isomorphic to G/G′ ' Z. Similarly, the group

H1(X
′
k, Z) is isomorphic to Gk/G

′
k, where Gk = ker νk,

νk = mod k ◦ ν : G → µk = Z/〈hk〉,

and fk∗ : H1(X
′
k, Z) → H1(X

′, Z) coincides with the homomorphism

ik∗ : Gk/G
′
k → G/G′

induced by the embedding ik : Gk ↪→ G.
Let the C-group G be given by C-presentation (7). To describe ker ik∗

and im ik∗, let us consider again the two-dimensional complex K described
in section 3.1. The complex K has a single vertex x0, its one dimensional
skeleton is a bouquet of oriented circles sj, 1 ≤ j ≤ m, corresponding to the

C-generators of G from presentation (7), and K \(∪si) =
⊔l

j=1

◦

Dj is a disjoint
union of open discs, where each disc Dj corresponds to the relation ri from
presentation (7) (we denote here by l the number of relations ri in presentation
(7)).

The embedding ik : Gk ↪→ G defines an un-ramified covering fk : Kk → K,
where Kk is a two-dimensional complex consisting of k vertices p1, . . . , pk,
fk(pj) = x0; the preimage f−1(sj) =

⊔k

s=1 sj,s is the disjoint union of k edges

sj,s, 1 ≤ s ≤ k; and the preimage f−1(
◦

Dj) =
⊔k

s=1

◦

Dj,s is also the disjoint

union of k open discs
◦

Dj,s, 1 ≤ s ≤ k.
Let hk be a generator of the covering transformation group Deck(Kk/K) =

µk acting on Kk. The homeomorphism hk induces an action hk∗ on the chain
complex C·(Kk) and an action t on Hi(Kk, Z) so that this action defines
on Hi(Kk, Z) a structure of Λ-module. It is easy to see that this structure
on H1(Kk, Z) coincides with one on H1(X

′
k, Z) defined above if we identify

H1(Kk, Z) and H1(X
′
k, Z) by means of isomorphisms H1(Kk, Z) ' Gk/G

′
k and

H1(X
′
k, Z) ' Gk/G

′
k.

Consider the sequence of chain complexes

C·(Kk)
hk∗−id
−→ C·(Kk)

fk∗−→ C·(K) → 0.

It is easy to see that im (hk∗ − id) = ker fk∗ and

ker(hk∗ − id) = (

k−1∑

j=0

hj
k∗)C·(Kk).

Now the proof of Lemma 4.2 follows from the exact sequence

. . . → H1(C·(Kk/ ker(hk∗ − id))
tk−1
−→ H1(Kk)

fk∗−→ H1(K)
∂

−→
∂

−→ H0(C·(Kk/ ker(hk∗ − id))
tk−1
−→ H0(Kk)

fk∗−→ H0(K) → 0,
(25)
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since

im[H1(C·(Kk/ ker(hk∗ − id))
tk−1
−→ H1(Kk)] = Ak(G),

H1(K) ' Z,
H0(C·(Kk/ ker(hk∗ − id)) ' Z/kZ,

H0(Kk)
fk∗

' H0(K) ' Z,

are Λ-modules with trivial action of t and exact sequence (25) is a sequence of

Λ-homomorphisms of Λ-modules. �

Now Theorem 0.2 follows from Lemmas 4.1 and 4.2, since ker ik∗ is generated

by [γ̄] ∈ H1(X
′)1 and fk∗([γ̄]) = k[γ].

Similarly, in Case II, we have ker ik∗ = H1(X
′
k)1. Indeed, ker ik∗ is generated

by γ̄ and γ̄∞ ∈ H1(X
′
k)1 ' Z and fk∗([γ̄]) = k[γ]. Therefore H1(X

′
k)1 is

generated by [γ̄].

As a consequence, we obtain that the restriction of ik∗ to the submodule

Ak(G) of H1(X
′
k, Z) is an isomorphism of Ak(G) with H1(Xk, Z). Therefore

the following lemma implies Theorem 0.5.

Lemma 4.3. ([2]) The homomorphism jk∗ : H1(Xk, Q) → H1(Xk, Q) is an

isomorphism.

4.2. Corollaries of Theorems 0.2 and 0.5.

Corollary 4.4. Let V be a knotted n-manifold, n ≥ 1, and fk : Xk → Sn+2

the cyclic covering branched along V , deg fk = k. Then

(i) the first Betti number b1(Xk) of Xk is an even number;

(ii) if k = pr, where p is prime, then H1(Xk, Z) is finite;

(iii) a finitely generated abelian group G can be realized as H1(Xk, Z) for

some knotted n-manifold V , n ≥ 2, if and only if there is an automor-

phism h ∈ Aut(G) such that hk = Id and h−Id is also an automorphism

of G; in particular, H1(X2, Z) is a finite abelian group of odd order and

any finite abelian group G of odd order can be realized as H1(X2, Z) for

some knotted n-sphere, n ≥ 2.

Proof. It follows from Theorems 0.1, 0.2, 2.11, Propositions 2.13, Corollary

3.13, and Examples 2.14, 3.20. �

Corollary 0.4 follows from Theorems 0.3 and 2.10.

Corollary 0.6 is a simple consequence of Lemma 4.3 and the following corol-

lary, since the homomorphism jk∗ : H1(Xk, Z) → H1(Xk, Z) is an epimorphism
and H1(Xk, Q) ' Ak(H) ⊗ Q.
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Corollary 4.5. Let H be an algebraic (resp, Hurwitz or pseudo-holomorphic)
irreducible curve in CP2, deg H = m, and f k : Xk → CP2 be a resolution of
singularities of the cyclic covering of degree k branched along H and, maybe,
alone a line ”at infinity” L, and let Xk = Xk \ E. Then

(i) the sequence of groups

H1(X1, Z), . . . , H1(Xk, Z), . . .

has period m, that is, H1(Xk, Z) ' H1(Xk+m, Z);
(ii) the first Betti number b1(Xk) of Xk is an even number;

(iii) if k = pr, where p is prime, then H1(Xk, Z) and H1(Xk, Z) are finite
groups;

(iv) if k and m are coprime, then H1(Xk, Z) = 0;
(v) a finitely generated abelian group G can be realized as H1(Xk, Z) for

some Hurwitz (resp., pseudo-holomorphic) curve H if and only if there
is an automorphism h ∈ Aut(G) such that hd = Id and h − Id is also
an automorphism of G, where d is a divisor of k, and, moreover, if G
is realized as H1(Xk, Z) for a curve H, then d is a divisor of deg H;
in particular, H1(X2, Z) is a finite abelian group of odd order and any
finite abelian group G of odd order can be realized as H1(X2, Z) for
some Hurwitz (resp., pseudo-holomorphic) curve H of even degree.

Proof. It follows from Theorems 0.3, 0.5, 2.11, 2.16 and Propositions 2.13,
2.15. �

Note that there are plane algebraic curves H for which the homomorphisms
jk∗ : H1(Xk, Z) → H1(Xk, Z) are not isomorphisms.

Example 4.6. Let H ⊂ CP2 be a curve of degree 6 given by equation

Q3(z0, z1, z2)C
2(z0, z1, z2) = 0,

where Q and C are homogeneous forms of deg Q = 2, deg C = 3 and the conic
and cubic, given by equations Q = 0 and C = 0, meet transversally at 6 points.
Then A2(H) ' Z/3Z, but H1(X2, Z) = 0.

Proof. It is known (see [20]) that π1(CP2 \ (H ∪ L)) ' Br3 as a C-group.
Therefore A2(H) ' Z/3Z (see Examples 2.17 and 3.19).

It is also well known that the minimal resolution of singularities of two-
sheeted covering of CP2 branched along H is a K3-surface which is simply
connected. �

Note also that in the case of knotted n-manifold V ⊂ Sn+2 the sequence
of homology groups H1(Xk, Z), k ∈ N, is not necessary to be periodic. For
example, if S2 ⊂ S4 is a knotted sphere for which π1(S

4 \ S2) ' Gm, where
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Gm is a group considered in Example 3.20 (by Corollary 3.13, this group can
be realized as a group of knotted sphere), then H1(Xk, Z) is the cyclic group
of order (m + 1)k − mk (see Example 2.14).
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