ALEXANDER MODULES OF IRREDUCIBLE C-GROUPS
VIK. S. KULIKOV

ABSTRACT. A complete description of the Alexander modules of knotted
n-manifolds in the sphere S"*2, n > 2, and of irreducible Hurwitz curves is
given. This description is applied to calculation of the first homology groups
of cyclic coverings of the sphere S"*2 and of the projective complex plane
CP? branched respectively alone knotted n-manifolds and along irreducible
Hurwitz (in particular, algebraic) curves.

INTRODUCTION

A class C of C-groups and its subclass H of Hurwitz C-groups (see definitions
below) play very important role in geometry of codimension two submanifolds.
For example, it is well known that the knot and link groups (given by Wirtinger
presentations) are C-groups and any C-group G can be realized as the group of
a linked n-manifold if n > 2, that is, as the fundamental group 71 (S"™2\ V) of
the complement of a closed oriented manifold V' without boundary, dimg V' =
n, in the (n + 2)-dimensional sphere S™™ (see [8]) and viceversa. Note also
that a C-group G is isomorphic to 7 (S™*2\ S™), n > 3, for some linked n-
dimensional spheres S™ if and only if HoG = 0 ([5]). Some other results related
to description of groups (5™ \ S™) can be found in [15] and [4].

If H C CP? is an algebraic or, more generally, Hurwitz' (resp., pseudo-
holomorphic) curve of degree m, then the Zariski — van Kampen presentation
of 1 = m(CP?\ (H U L)) defines on m a structure of a Hurwitz C-group
of degree m, where L is a line at ”infinity” (that is, L is a fiber of linear
projection pr : CP?2 — CP! and it is in general position with respect to H;
if H is a pseudo-holomorphic curve, then pr is given by a pencil of pseudo-
holomorphic lines). In [9], it was proved that any Hurwitz C-group G of degree
m can be realized as the fundamental group 7, (CP?\ (HUL)) for some Hurwitz
(resp. pseudo-holomorphic) curve H, deg H = 2"m, with singularities of the
form w™ — 2™ = 0, where n depends on the Hurwitz C-presentation of GG. So
the class H coincides with the class { 71 (CP? \ (H U L)) } of the fundamental
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groups of the complements of ”affine” Hurwitz (resp., of "affine” pseudo-
holomorphic) curves and it contains the subclass of the fundamental groups of
complements of affine plane algebraic curves.

By definition, a C'-group is a group together with a finite presentation

Gw = (r1,...,Tm | 2; = w;j'l,kxjwi,j,ka wi ik € W), (1)

where W = {w;;r € Fp, | 1 < 4,7 < m, 1 <k < h(i,j)} is a collec-
tion consisting of elements of the free group F,, generated by free generators
T1y.v.y Ty (lt is possible that Wiy g1,k = Wiy, ja.ka for (ilajlakl) 7é (ig,jg,kz)),
and h: {1,...,m}? — Z is some function. Such a presentation is called a C-
presentation (C, since all relations are conjugations). Let oy : F,, — Gw be
the canonical epimorphism. The elements gy (z;) € G, 1 < i < m, and the el-
ements conjugated to them are called the C-generators of G. Let f : G1 — Go
be a homomorphism of C-groups. It is called a C'-homomorphism if the im-
ages of the C-generators of Gy under f are C-generators of the C-group Gs.
C-groups are considered up to C-isomorphisms. Properties of C-groups were
investigated in [7], [9], [12],[11].

A C-presentation (1) is called a Hurwitz C-presentation of degree m if for
each i« = 1,...,m the word w;;; coincides with the product z;...x,,, and
a C-group G is called a Hurwitz C-group (of degree m) if for some m € N
it possesses a Hurwitz C-presentation of degree m. In other words, a C-
group G is a Hurwitz C-group of degree m if there are C-generators x1,...,x,,
generating G such that the product z; ...z, belongs to the center of G. Note
that the degree of a Hurwitz C-group G is not defined canonically and depends
on the Hurwitz C-presentation of G. Denote by H the class of all Hurwitz
C-groups.

It is easy to show that G/G’ is a finitely generated free abelian group for
any C-group G, where G’ = [G, G] is the commutator subgroup of G. A C-
group G is called irreducible if G/G' ~ Z and we say that G consists of k
irreducible components if G/G' ~ ZF. If a Hurwitz C-group G is realized as
the fundamental group m; (CP?\ (H U L)) of the complement of some Hurwitz
curve H, then the number of irreducible components of G is equal to the
number of irreducible components of H. Similarly, if a C-group G consisting
of k irreducible components is realized as the group of a linked n-manifold V,
G = m (S™?\ V), then the number of connected components of V' is equal to
k.

A free group F,, with fixed free generators is a C-group and for any C-group
G the canonical C-epimorphism v : G — [Fy, sending the C-generators of GG
to the C-generator of Fy, is well defined. Denote by N its kernel. Note that
if G is an irreducible C-group, then N coincides with G’. In what follows we
consider only the irreducible case.
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Let G be an irreducible C-group. The C-epimorphism v induces the follow-
ing exact sequence of groups

1-G/G" - G/G" LT, — 1,

where G" = [G',G']. The C-generator of F; acts on G'/G” by conjugation
27197, where g € G’ and 7 is one of the C-generators of G. Denote by ¢
this action. The group Ay(G) = G'/G” is an abelian group and the action ¢
defines on Ay(G) a structure of A-module, where A = Z[t,t7'] is the ring of
Laurent polynomials with integer coefficients. The A-module Ay(G) is called
the Alezander module of the C-group GG. The action ¢ induces an action h¢
on Ac = Ap(G) ® C and it is easy to see that its characteristic polynomial
hc € Q[t]. The polynomial A(t) = adet(he — tId), where a € N is the
smallest number such that adet(hc — tId) € Z[t], is called the Alexander
polynomial of the C-group G. If H is either an algebraic, or Hurwitz, or
pseudo-holomorphic irreducible curve in CP? (resp., V' C S™*? is a knotted
(that is, connected smooth oriented without boundary) n-manifold, n > 1)
and G = m(CP?\ (H U L)) (resp., G = m(S™2\ V)), then the Alexander
module Ay(G) of the group G and its Alexander polynomial A(t) are called
the Alexander module and Alexander polynomial of the curve H (resp., of
the knotted manifold V). Note that the Alexander module Ay(H) and the
Alexander polynomial A(t) of a curve H do not depend on the choice of the
generic (pseudo)-line L. Results related to the Alexander modules of knotted
spheres are stated in [16], [17].

In [2] and [10], properties of the Alexander polynomials of Hurwitz curves
were investigated. In particular, it was proved that if H is an irreducible Hur-
witz curve of degree d, then its Alexander polynomial A(¢) has the following
properties

(i) A(t) € Z[t], deg A( ) is an even number;
(i1) A(0) = A(1) =

(ii1) A(t) is d1v1sor of the polynomial (¢ — 1)472,
and, moreover, a polynomial P(t) € Z[t] is the Alexander polynomial of an
irreducible Hurwitz curve if and only if the roots of P(t) are roots of unity
and P(1) =1.

Let G = m;(CP?\ (H U L)) be the fundamental group of the complement
of an irreducible affine Hurwitz curve (resp., G = 71(S"™2 \ V) is the group
of a knotted n-manifold, n > 1). The homomorphism v : G — F; defines an
infinite unramified cyclic covering fu, : Xoo — CP?\(HUL) (resp., foo : Xoo —
S™T2\ V). We have Hy(Xo,Z) = G'/G" and the action of t on H;(X.,Z)
coincides with the action of a generator h of the covering transformation group
of the covering f..
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For any k € N denote by mody, : F; — py, = F;/{t*} the natural epimor-
phism to the cyclic group u, of degree k. The covering f., can be factorized
through the cyclic covering f; : X, — CP*\(HUL) (resp., fi : X}, — S"T2\V)
associated with the epimorphism modov, foo = f]ogk. Since a Hurwitz curve
H has only analytic singularities, the covering f; can be extended (see [2]) to a
map fk X, — X branched along H and, maybe, along L. Here X, is a closed
four dimensional variety locally isomorphic over a singular point of H to a com-
plex analytic singularity given by an equation w* = F(u,v), where F(u,v) is a
local equation of H at its singular point. In addition, X % 1s locally isomorphic
over a neighbourhood of an intersection point of H and L to the singularity lo-
cally given by w* = vu?, where d is the smallest non-negative integer for which
m+d is divisible by k. The variety Xp, if fk (L) C Sing X}, can be normalized
(as in the algebraic case) and we obtain a covering ﬁmorm : )N(kmorm — CP?
in which )Z'k,norm is a singular analytic variety at its finitely many singular
points. The map ﬁ,norm is branched along H and, maybe, along the line "at
infinity” L (if £ is not a divisor of deg H, then ﬁ,norm is branched along L).
One can resolve the singularities of )Z'k,norm and obtain a smooth manifold
Xp, dimgp X, = 4. Let 0 : X}, — )Z'k,norm be a resolution of the singularities,
E = a‘l(Sing X norm) the preimage of the set of singular points of )N(k norm
and f = fk worm © 0. The action h induces an action hx on X and an action
t on Hi(Xy,7Z).

Similarly, the covering f} : X; — S™™\V can be extended to a smooth map
fr : X — S™2 branched along V, where X} is a smooth compact (n + 2)-
manifold, and the action ¢ induces actions hy on Xy and hy. on Hi(Xy,Z).
The action hy, defines on Hq (X, Z) a structure of A-module.

In [2], it was shown that for any Hurwitz curve H, a covering space X ; can
be embedded as a symplectic submanifold to a complex projective rational 3-
fold on which the symplectic structure is given by an integer Kéahler form, and
it was proved that the first Betti number b;(X}) = dime H; (X}, C) of X, is
equal to ry 1, where 7y »; is the number of roots of the Alexander polynomial
A(t) of the curve H which are k-th roots of unity not equal to 1.

Let M be a Noetherian A-module. We say that M is (¢t — 1)-invertible
if the multiplication by ¢t — 1 is an automorphism of M. A A-module M is
called t-unipotent if for some n € N the multiplication by t" is the identity
automorphism of M. The smallest £ € N such that

t* —1 € Ann(M) = {f(t) € A| f(t)v =0 for Yo € M}

is called the unipotence index of t-unipotent module M.
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Let M be a Noetherian (t—1)-invertible A-module. A t-invertible A-modules
A, (M) = M/(t* —1)M is called the k-th derived Alexander module of M and if
M is the Alexander module of a C-group G (resp., of a knotted n-manifold V,
resp., of a Hurwitz curve H), then A,(M) is called the k-th derived Alexander
module of G (resp., of V', resp., of H) and it will be denoted by Ay(G) (resp.,
A(V'), resp., Ap(H))

The main results of the article are the following statements.

Theorem 0.1. A A-module M is the Alezander module of a knotted n-manifold,
n > 2, if and only if it is a Noetherian (t — 1)-invertible A-module.

Theorem 0.2. Let V be a knotted n-manifold, n > 1, and fi, : X, — S™*2 the
cyclic covering branched along V. Then Hy(Xy,Z) is isomorphic to the k-th
Alezander module Ax(V') of V' as a A-module.

Similar statements hold in the case of algebraic and, more generally, of
Hurwitz (resp., pseudo-holomorphic) curves.

Theorem 0.3. A A-module M 1is the Alezander module of an irreducible Hur-
witz (resp., pseudo-holomorphic) curve if and only if it is a Noetherian (t—1)-
invertible t-unipotent A-module. In particular, the Alexander module of an
irreducible algebraic plane curve is a Noetherian (t — 1)-invertible t-unipotent
A-module.

The unipotence index of the Alexander module Ao(H) of an irreducible plane
algebraic (resp., Hurwitz or pseudo-holomorphic) curve H is a divisor of deg H.

Corollary 0.4. The Alexander module Ao(H) of an irreducible plane algebraic
(resp., Hurwitz or pseudo-holomorphic) curve H is finitely generated over 7,
that is, Ag(H) is a finitely generated abelian group.

A finitely generated abelian group G is the Alexander module Aq(H) of some
wrreducible Hurwitz or pseudo-holomorphic curve H if and only if there are an
integer m and an automorphism h € Aut(G) such that k™ = Id and h — Id is
also an automorphism of G.

Theorem 0.5. Let H be an algebraic (resp., Hurwitz or pseudo-holomorphic)
irreducible curve in CP?, deg H = m, and f, : X — CP? be a resolution of
singularities of the cyclic covering of degree deg f, = k branched along H and,
maybe, alone the line at infinity” L. Then

Hy (X3, Q) ~ Ax(H) ® Q,
where Ax(H) is the k-th Alexzander module of H and E = o~ '(Sing )kaorm).
It should be noticed that in general case the homomorphism H, (Xi\E,Z) ~

Ap(H) — Hy(X},7Z), induced by the embedding X, \ £ — X}, is an epimor-
phism and it is not necessary to be an isomorphism (see Example 4.6).
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Corollary 0.6. Let H be an algebraic (resp, Hurwitz or pseudo-holomorphic)
irreducible curve in CP?, deg H = m, and f, : X — CP? be a resolution of
singularities of the cyclic covering of degree deg fi. = k branched along H and,
maybe, alone the line ”at infinity”. Then

(1) the first Betti number by(X}) of X is an even number;
(ii) if k = p", where p is prime, then H (X}, Q) = 0;
(#ii) if k and m are coprime, then Hy(Xy,Z) = 0;
(iv) Hy(Xo,Z) is a finite abelian group of odd order.

Note also that any C-group G can be realized (see [9]) as w1 (A%\ (C'NA?2)),
where A% = {|z] < 1} x {|Jw| < 1} € C? is a bi-disc and C' C C? is a non-
singular algebraic curve such that the restriction of pr; : A? — {|z| < 1} to
C' N A? is a proper map. Therefore the analogue of Theorems 0.1 and 0.2 and
corollaries of them hold also in this case.

The proof of Theorems 0.1 and 0.3 is given in section 3. In section 1, prop-
erties of Noetherian (¢t — 1)-invertible A-modules are described and section 2
is devoted to Noetherian t-unipotent A-modules. In section 4, Theorems 0.2
and 0.5 are proved and some other corollaries of them are stated.

1. (t —1)-INVERTIBLE A-MODULES

1.1. Criteria of (¢t —1)-invertibility. Before to describe (¢ —1)-invertible A-
modules, let us recall that the ring A = Z[t,¢7'] is Noetherian. Each element
f € A can be written in the form

f= Y ateztt!]

n_<i<ny

where n_,n,,i,a; € Z. if n_ >0 for f € A, then f € Z[t] and it will be called
a polynomial.
For any n € Z, n # 0, a Z-homomorphism

f(t) = Zaiti — f(n) = Zami

is well defined. The image f(n) of f(t) is called the value of f(t) at n. If f(t)
is a polynomial, then its value f(0) = ao is also well defined.
We begin with the following lemma.

Lemma 1.1. A Noetherian A-module M is (t — 1)-invertible if and only if the
multiplication by t — 1 is a surjective endomorphism of M.
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Proof. Lemma follows from some more general statement. Namely, any sur-
jective A-endomorphism f : M — M of a Noetherian A-module M is an
isomorphism. Indeed, if ker f # 0, then the chain of submodules

ker f Cker f>C --- Cker f" C ...

is strictly increasing, since f is an epimorphism. This contradicts the Noe-
therian property of the module M. O

Let M be a Noetherian (¢ — 1)-invertible A-module. Consider an element
v € M and denote by M, =< v > a principal submodule of M generated by
v. Since M is Noetherian, any principle submodule of M is contained in a
maximal principle submodule of M.

Lemma 1.2. Any mazimal principal submodule M, of (t—1)-invertible module
M is (t — 1)-invertible.

Proof. Since M is (t — 1)-invertible module, there is an element v; € M such
that v = (¢t —1)vy. Therefore M, C M,,. Since M, is a maximal principle sub-
module of M, we have M, = M,,. Therefore v; € M, and the multiplication
by t — 1 defines a surjective endomorphism of M,. To complete the proof we
apply Lemma 1.1. O

A principal submodule M, C M is isomorphic to A/Ann,, where Ann, =
{f € A|fv = 0} is the annihilator of v. The annihilator Ann, of an element
v € M is an ideal of A. Denote by

Ann(M) = m Ann, = {g(t) e A | g(t)v =0 for Vv € M}
veM
the annihilator of M.

Lemma 1.3. A principal A-module M = A/I is a (t — 1)-invertible if and
only if the ideal I contains a polynomial f(t) such that f(1) = 1.

Proof. Let M is generated by an element v € M.
If a polynomial f(¢) such that f(1) =1 is contained in I = Ann,, then f(t)
can be expressed in the form

ft) =t —=1)g(t)+1 (2)
for some polynomial g(¢). Therefore v = (t — 1)vy, where v; = —g(t)v. Thus,
the multiplication by ¢ — 1 is a surjective automorphism of M and hence, by
Lemma 1.1, the multiplication by ¢ — 1 is an isomorphism of M.

Conversely, if M is (¢t — 1)-invertible, then there is an element v; € M
such that v = (¢t — 1)v;. Let v; = h(t)v for some h(t) € A. We have
(1 — (t — 1)A(t))v = 0. Therefore 1 — (¢t — 1)h(t) € Ann, = I. There is
an integer k such that f(t) = t*(1 — (t — 1)h(t)) € I NZ[t]. Tt is easy to see
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that f(1) = 1. O

As a consequence of Lemma 1.3 we obtain the following Lemma.

Lemma 1.4. Any principal submodule of a principal (t — 1)-invertible module
M is (t — 1)-invertible.
Proof. Indeed, let M be generated by an element v € M and its submodule
M, be generated by vy = h(t)v. Then Ann, C Ann,,.

Since M is (t — 1)-invertible, by Lemma 1.3, there is a polynomial f(t) €
Ann, such that f(1) = 1. Applying again Lemma 1.3, we have that M; is
(t — 1)-invertible, since f(¢) € Ann,,. O

Proposition 1.5. Any submodule of a Noetherian (t — 1)-invertible A-module
M s (t — 1)-invertible.

Proof. Let N is a submodule of M. Since M is a Noetherian A-module, the
submodule N is generated by a finite set of elements, say vy, ..., v,. By Lemma
1.4, each principal submodule M,, C N C M is (t — 1)-invertible. Therefore
the multiplication by ¢ — 1 is a surjective endomorphism of N, since it is
surjective on each M, C N and the elements vy, ..., v, generate the module
N. To complete the proof, we apply Lemma 1.1. U

Proposition 1.6. Any factor module of a Noetherian (t — 1)-invertible A-
module M is (t — 1)-invertible.

Proof. 1t follows from Lemma 1.1. O

Lemma 1.7. Let My, ..., My, be Noetherian (t—1)-invertible A-modules. Then
the direct sum M = @le M; is a Noetherian (t — 1)-invertible A-module.

Proof. Obvious.

Corollary 1.8. Any Noetherian (t — 1)-invertible A-module M is a the factor
module of a direct sum @_, A/I; of principle (t — 1)-invertible A-modules
A/

Proof. Since M is a Noetherian A-module, it is generated by a finite set of

elements, say vy, ...,v,. By Proposition 1.5, each principal submodule M,, C
M is (t — 1)-invertible and, obviously, there is an epimorphism @7_, M,, —
M. ]

Remark 1.9. An abelian group G admits a structure of (t — 1)-invertible A-
module if and only if it has an automorphism t such that t — 1 is also an
automorphism. If G is finitely generated and t € AutG is chosen, then G is a
Noetherian A-module.
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Note that in general case an abelian group admits many structures of (t—1)-
invertible A-modules. For example, the group Z/9Z admits 3 such structures:
either tv = 2v, or tv = bv, or tv = 8v, where v is a generator of Z/9Z.

Theorem 1.10. A Noetherian A-module M is (t — 1)-invertible if and only if
there is a polynomial f(t) € Ann(M) such that f(1) = 1.

Proof. It M is (t — 1)-invertible, then, by Proposition 1.5, its each principal
submodule M, is also (¢t — 1)-invertible. Therefore, by Lemma 1.3, the anni-
hilator Ann, of v € M contains a polynomial f,(t) such that f,(1) = 1. If
M is generated by vy, ..., v,, then the polynomial f(t) = f,,(¢)... f,, (t) is a
desired one.

Let us show that if there is a polynomial f(¢) € Ann(M) such that f(1) =1,
then M is a (t —1)-invertible module. Indeed, in this case by Lemma 1.3, each
principle submodule M, of M is (t—1)-invertible. Therefore the multiplication
by t — 1 is an isomorphism of M, since it is an isomorphism of each principle
submodule M, of M. O

As a consequence of Theorem 1.10 we obtain that any Noetherian (t — 1)-
invertible module M is a torsion A-module and, consequently,

dimg M ® Q < oo.
The following proposition will be used in the proof of Theorems 0.1 and 0.3.

Proposition 1.11. Any Noetherian (t — 1)-invertible A-module M is isomor-
phic to a factor module A™/M, of a free A-module A™, where the submodule
My is generated by elements wy, ..., Wy, ..., Wyax of A such that
(1) fori=1,...,n the vector w; = (0,...,0, fi(t),0,...,0), where a poly-
nomial f;(t) stands on the i-th place and it is such that f;(1) =1,
(1) Wipj = (E = DWniy = ((E—=1)gja(t), ..., (t =1)g;a(t)) forj =1,....k,
where g;,(t) are polynomials,
(1ii) if for some m € N the polynomial t™ — 1 € Ann(M), then for i =
1,...,n the vector w,y; = (0,...,0,t™—1,0,...,0), where the polyno-
mial t"" — 1 stands on the i-th place.

Proof. Let us choose generators vq,...,v, of the Noetherian A-module M.
Then, by Theorem 1.10, there are polynomials f;(¢) € Ann,, such that f;(1) =
1. Obviously, there is an epimorphism

hy @A/(fi(t)) — M
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of A-modules such that h(u;) = v; for u; = (0,...,0,1,0...,0) where 1 stands
on the i-th place. The kernel N = ker h is a Noetherian A-module. Let it be
generated by

Up+1 = (gl,l(t)a cee >gl,n(t))a vy Uptk = (gk,l(t)a cee >gk,n(t))
Without loss of generality, we can assume that all g; ;(¢) are polynomials.

By Theorem 1.10, the A-module @7}, A/(fi(t)) is (t — 1)-invertible and by
Proposition 1.5, N is also (¢ — 1)-invertible A-module. Therefore the elements
(t — Dtpya, -« -, (t — D)uyqp are also generate N.

If for some m € N the polynomial ™ — 1 € Ann(M), then the elements
0,...,0,t™ —1,0,...,0) € N, where the polynomial t"™ — 1 stands on the
i-th place. Therefore we can add the elements (0,...,0,t™ — 1,0,...,0) to
the set (t — 1)upy1, ..., (t — 1)Uupyx and renumber the elements Uy 1, . .., Uik
(here we put k := n + k) of the obtained set generating N so that @,; =
0,...,0,t"—1,0,...,0) € N for j = 1,...,n, where the polynomial ™ — 1 is
stands on the j-th place.

Now, to complete the proof, notice that the kernel M; of the composite map
hov:A™ — M of h and the natural epimorphism v : A" — @, A/(fi(t)) is
generated by the elements

w; = (0,...,0, fi(?),0,...,0), i=1,...,n,
where the polynomial f;(t) stands on the i-th place, and the elements

S
Wnp4i = (fz71(t),,f2’n(t)) S An, 1= ]_,...,]{Z,
where the coordinates f; j(t) of each wy,; coincide with the coordinates g, ;(t)
of Unyi = (G; (1), .-, G ;(1))- U

1.2. Z-torsion submodules of (¢t — 1)-invertible A-modules. An element
v of a A-module M is said to be of a finite order if there is m € Z \ {0} such
that mv = 0. A A-module M is called Z-torsion if all its elements are of finite
order. For any A-module M denote by My, a subset of M consisting of all
elements of finite order. It is easy to see that My, is a Z-torsion A-module. If
M is a Noetherian (¢ — 1)-invertible A-module, then My;, is also a Noetherian
(t — 1)-invertible A-module, and it follows from Propositions 1.5 and 1.6 that
there is an exact sequence of A-modules

0— My, =M — My — 0

in which M; is a Noetherian (¢ — 1)-invertible A-module free from elements of
finite order.

Let M = My, be a Noetherian (¢ — 1)-invertible A-module. Since M is
finitely generated over A, there is an integer d € N such that dv = 0 for all
v € M (such d will be called an ezponent for M). Let d = pi*...p" be
its prime factorization. Denote by M (p;) the subset of M consisting of all
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elements v € M such that pfv = 0 for some r € N. It is easy to see that M (p)
is a A-submodule of M and we call it the p-submodule of M.

Theorem 1.12. Let M = My, be a Noetherian (t — 1)-invertible A-module
and d = pi'...plm its exponent. Then M is the direct sum

M:@M(pi)

of its p-submodules.

Proof. It coincides with the proof of similar Theorem for abelian groups (see,
for example, Theorem 8.1 in [14]). O

Since the ring A = Z[t, t7!] is Noetherian, any its ideal I is finitely generated.
Denote by I,o = I NZ[t] the ideal of the ring Z[t]. It is well known that
I = A, that is, any ideal I of A is generated by polynomials.

Recall that Z[t] is a factorial ring. Its units are precisely the units of Z,
and its prime elements are either primes of Z or polynomials ¢(t) = Y a;t’
which are irreducible in Q[t] and have content 1 (that is, the greatest common
divisors of the coefficients a; of ¢(t) are equal to 1). It follows from Euclidean
algorithm that for any two polynomials ¢, (¢), g2(t) € Z[t] there are polynomials
hi(t), ha(t),r(t) € Z[t] and a constant d € Z, d # 0, such that

hi(t)q1(t) + ha(t)ga(t) = dr(t), (3)
where r(t) is the greatest common divisor of the polynomials ¢ (¢) and go(t).

Lemma 1.13. Let M be a Noetherian (t — 1)-invertible A-module and let
t" —1¢€ Ann(M) for some n = p", where p is prime. Then M is Z-torsion.

Proof. It t" — 1 = (t — 1)(t" '+ --- +t + 1) belongs to Ann(M), then the
polynomial g, (t) ="' +---+t+1 € Ann(M), since M is (¢ — 1)-invertible.
For n = p” in the factorization

r r p—1 A
a0 )= T[2p0 = T[S
i=1 i=1 j=0

each factor is an irreducible element of A.

By Theorem 1.10, there is a polynomial f(¢) € Ann(M) such that f(1) =1
and if n = p” for some prime p, then f(¢) and g,-(¢f) have not common ir-
reducible divisors. Indeed, if g(t) is a divisor of f(t), then we should have
g(1) = £1, since f(1) =1, but ®,:(1) = p for each i. Therefore, there are poly-
nomials hy(t), ho(t), and a constant d € N such that hy(¢) f(t)+ha(t)g,r(t) = d
and hence if g,-(t) € Ann(M), then d € Ann(M), that is, M is Z-torsion. [
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1.3. Principle (¢t — 1)-invertible A-modules. Let I be a non-zero ideal of
the ring A. Denote by I, the subset of I,y consisting of all polynomials
f(t) having the smallest degree (let m be this smallest degree). Note that if
7(8) € L, \ {0}, then £(0) £0.

Consider any two polynomials f(t), fo(t) € I,,, and write them in the form
fi(t) = d;qi(t), where d; € Z and the polynomials ¢;(¢) have content 1. We
have ¢1(t) = ¢2(t). Indeed, for their common greatest divisor r(t) we have
degr(t) < m and, moreover, degr(t) = m if and only if ¢;(t) = ¢2(¢). On the
other hand, it follows from (3) that dohy (t) f1(t) + diha(t) f2(t) = didadr(t) for
some polynomials hy(t), ha(t). Therefore dydadr(t) € Iy, and we should have
degr(t) = m.

Applying again Euclidean algorithm for integers, we obtain that if two poly-
nomials f;(t) = d;q(t) belong to I,,, then dyq(t) belongs also to I, where dy
is the greatest common divisor of d; and dy. Thus there is a polynomial
fm(t) = dmq(t) € I, such that any polynomial f(¢) € I,, is divided by f,,(¢).
The polynomial f,,(t) is defined uniquely up to multiplication by 41 and it
will be called a leading generator of I.

Let I be a non-zero ideal of A and f(t) = d,,q(t) be its leading generator.
Then any polynomial h(t) € I should be divisible by ¢(¢). Indeed, as above
it is easy to show that if r(¢) is the greatest common divisor of f(t) and h(t),
then there is a constant d such that dr(t) € I and since deg ¢(t) is minimal for
polynomials belonging to I, we should have the equality r(t) = q(t).

The above considerations give rise to the following proposition.

Proposition 1.14. Let M = M, be a principle (t — 1)-invertible A-module
generated by an element v. Then the annihilator Ann, is generated by a finite
set of polynomials fi(t),..., fx(t), where f;i(t) = d;qi(t), d; € Z, d; # 0, and
¢;(t) have content 1 for all i, such that fi(t),..., fx(t) satisfy the following
properties:

(i) deg fi < deg fo < --- < deg f,
(i3) fi(0) # 0 for all i,
(iid) (1) =1,
(ZU) ql(t) | qz(t> fOT’Z' - 27‘ : ‘7k7
(v) |di| >1 fori=1,....k—1,dr =1, and q(1) = 1.

A set of generators of Ann, is said to be good if it satisfies properties (i) —
(v) from Proposition 1.14. We will distinguish the principal (¢ — 1)-invertible
A-modules M = M, as follows. We say that M, is of finite type if in a good
system f1(t),..., fr(t) of generators of Ann, the leading generator f(t) = d,
is a constant (that is, ¢1(t) = 1). A principle A-module M, is said to be of
mized type if in a good system fi(t), ..., fx(t) of generators of Ann, the degree
of the leading generator f; = dyq;(t) is greater than one and | d; [> 2. It
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follows from the above considerations that if a principle (¢ — 1)-invertible A-
module M = M, is not of finite or mixed types, then for the leading generator
f1(t) = q1(t) of a good system of generators of Ann, we should have ¢;(1) =1
and therefore Ann, is a principle ideal generated by ¢ (t), since any polynomial
h(t) € Ann, is divisible by ¢;(¢). Such principle (¢ — 1)-invertible A-modules
will be called bi-principle.

It is easy to see that if M = M, is a principle A-module of finite type and
dy € Z is the leading generator of Ann,, then all elements of M have order d,
that is, a principle A-module M, is of finite type if and only if it is Z-torsion.

If M = M, is a bi-principle A-module, then M has not non-zero elements of
finite order. Indeed, let ¢(t) be a generator of Ann,. If an element v; = h(t)v
has order m, then mh(t) € Ann,, that is, mh(t) is divisible by ¢(¢). Since t is
a unite of A, we can assume that h(¢) is a polynomial, and since ¢(1) = 1, the
polynomial h(t) should be divisible by ¢(¢), that is, v; = 0.

If M = M, is a A-module of mixed type, then there is an exact sequence of
A-modules

0—-M —M— My —20

in which M; is a principle A-module of finite type and M5 is a bi-principle A-
module. Indeed, let d;q(t) be the leading generator of Ann,. Put v; = ¢y (¢)v.
Then it is easy to see that the A-module M; = M,, C M, generated by vy, is
of finite type and the A-module My = M/M; ~ A/(q1) is bi-principle.

1.4. Finitely Z-generated (¢ — 1)-invertible A-modules. Each A-module
M can be considered as a Z-module, that is as an abelian group.

Proposition 1.15. A Noetherian (t — 1)-invertible A-module M is finitely
generated over Z if and only if there is a polynomial

q(t) = Zaiti € Ann(M)

such that a,, = ag = 1.

Proof. In the beginning, we prove Proposition 1.15 in the case when M = M,
is a principal A-module.

It is easy to see that if there is a polynomial ¢(t) = Y i, a;t" € Ann, such
that a, = ag = 1, then M is generated over Z by the elements v, tv, ..., t" ‘.

Let a A-module M = M, be finitely generated over Z and hy(t)v,. .., hy(t)v
its generators. Since the multiplication by ¢ is an isomorphism of M, we can
assume that h;(t), ¢ = 1,...,m, are polynomials such that h;(0) = 0. Put
n — 1 = max(deghy(t),...,deghy,(t)). Since hi(t)v, ..., hy(t)v generate M
over Z, there are integers by, ...,b,, and ¢, ..., ¢, such that

v = Z bihi;(t)v and t"v = ch-hl-(t)’u.
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Therefore the polynomials 1 — Y b;h;(t) and t" — " ¢;h;(t) belong to Ann,,.
Then the polynomial ¢" + 1 — > (b; + ¢;)h;(t) is a desired one.

In general case, a Noetherian (¢ — 1)-invertible A-module M is generated by
a finite set of elements vy, ..., v,,, and M is finitely generated over Z if and
only if for all v; the principal submodules M,, C M are finitely generated over
7.

If g(t) € Ann(M), then ¢(t) € Ann,, for i« = 1,...,m. In particular, if
there is ¢(t) = >, a;t" € Ann(M) such that a, = ap = 1, then all M,, (and
consequently, M) are finitely generated over Z.

If for all ¢ the principal submodules M,, C M are finitely generated over Z,
then there are polynomials ¢;(t) = Z?;o a; jt € Ann,, such that a;,, = a;o =
1. Put n = > n;. Then the polynomial

n—1
qt) =q(t)...qu(t) =t"+1+ Zajtj € Ann(M),
j=1
since ¢(t) € Ann,, for all v;. O

It follows from Proposition 1.15 that there are a lot of (¢ — 1)-invertible
bi-principle modules M = A/I which are not finitely generated over Z. More
precisely, it is easy to see that a bi-principle (t —1)-invertible module M = A/
is finitely generated over Z if and only if the ideal I = (q(t)) is generated by a
polynomial q(t) = Y1, a;t" such that (1) = 1 and its coefficients ag and a,
are equal to £1.

For example, for each m € N a (¢t — 1)-invertible bi-principle module

M, = A/{(m+ 1)t —m)
is not finitely generated over Z.

Theorem 1.16. Let M be a Noetherian Z-torsion (t — 1)-invertible module.
Then M is finitely generated over Z.

Proof. By Theorem 1.12, M is isomorphic the direct sum @ M (p;) of a finite
number of its p-submodules. Therefore it suffices to prove Theorem in the case
when M has exponent p”, where p is a prime number. Next, by Corollary 1.8,
M is a factor module of the direct sum @;_, A/I; of principle (¢ —1)-invertible
A-modules A/I; and in our case we can assume without loss of generality that
each ideal [; contains p™i for some r;. Thus it suffices to prove Theorem in
the case when M = M, is a principle (¢ — 1)-invertible A-module of exponent
p", that is, I = Ann, contains a number p” and a polynomial g(¢) such that
g(1)=1. ' '

Let r = 1 and g(t) = >_a;t'. Denote by gi(t) = >_,, ait’ and put g(t) =
g(t) — g1(t). Then g(t) € Ann,, since g(t),¢:(t) € Ann,. It is easy to see
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that g, (1) and p are coprime, since g(1) = 1 and ¢;(1) =0 mod p. Moreover,
by construction, each coefficient of the polynomial §(¢) and p are coprime.
Multiplying by ¢7", we can assume that g(0) # 0. Let g(t) = Y-, @t". Since
@,, and p are coprime, one can find integers b; and ¢; such that bya,, +c1p = 1.
Similarly, there are integers by and ¢y such that byag + cop = 1. Therefore
the polynomial (bt + by)g(t) + p(cit™ + ¢3) € I and it is equal to h(t) =
t" 143" (bi@i—g + boa; )t Therefore, by Proposition 1.15, M, is finitely
generated over Z.

Now consider general case of a principle (¢t — 1)-invertible A-module of ex-
ponent p". Assume that for any principle (¢ — 1)-invertible A-module M’ of
exponent p"', where r; < r, M’ is finitely generated over Z. Let M = M, is a
principle (¢t — 1)-invertible A-module M of exponent p". Then the submodule
M,, of M generated by v; = p" v is of exponent p and the factor module
My = M,/M,, is of exponent p"~!'. Now, the proof follows from the exact
sequence

0— M, - M— M/Mv,—0. O

Corollary 1.17. Any Noetherian Z-torsion (t — 1)-invertible module is finite,
that is, it is a finite abelian group.

Lemma 1.18. A group G = @;_,(Z/2"Z)™ does not admit a structure of
(t — 1)-invertible A-module if r; # r; for i # j and one of m; = 1.

Proof. Assume that G has a structure of (¢ — 1)-invertible A-module. Then
for any r the subgroup 2"G of G is its A-submodule and, by Propositions 1.5
and 1.6, 2"G and G/2"G are (t — 1)-invertible A-modules. Therefore, without
loss of generality, we can assume that

n

G =(z/22) & (P(z/27z)™),

=1

where all ; > 2 and m; > 2. Let us choose generators vq,...,v,,41 of G,
m =Y m; so that
m+1
G~ (Z/2Z)v; ® (EP(Z/27 Z))v;,
i=2

where all 7; > 2. Consider the Z—_submodule G of G consisting of all elements
v € G of order < 4. Obviously G is a A-submodule of G and it is generated
over Z (and therefore over A) by 77 = vr and v; = i 2y, i=2...,m+1. It
is easy to see that as an abelian group G is isomorphic to
m—+1
G ~ (2/22)5, ® (P (Z/4Z))v;.

1=2
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By Proposition 1.5, G is (t — 1)-invertible A-module. The multiplication by
t is an automorphism of G. Let
m+1
t@l = aU + 2 Z biﬁi,
ﬁj: aﬁl—i-chﬁi, j:2,...,m+1,
i=2

where each a; = 0 or 1.

Let us show that a; = 1. Indeed, assume that a; = 0. Since the multiplica-
tion by t is an automorphism and 7y, . .., 7,41 generate G, we should have an
equality ©; = ) d;1v;, where one of d; is odd for some i > 2 if a; = 0. Next,
the element 7 is of second order, therefore 2 Z::gl d;tv; = 0. On the other
hand, Vs, ..., tU, 41 are linear independent over Z/4Z, since Us, ..., Ty are
linear independent over Z/47 and the multiplication by ¢ is an isomorphism.
Therefore the equality 2 Zf:gl d;tv; = 0 is impossible if some of d; is odd, and
hence a; in (4) should be equal to 1.

Let us show that G can not be (t — 1)-invertible. Indeed, we have

m—+1
0, =71 +2) b
i=2

Therefore
m—+1

1=2

and the above arguments show that the multiplication by ¢ — 1 is not an
automorphism of G, since (t — 1)v; is a linear combination of the elements
Vo e U1 n
Theorem 1.19. An abelian group

n

G =G o (@Pz/2z)m™),

i=1
where r; # r; for i # j and Gy is a group of odd order, admits a structure of
(t — 1)-invertible A-module if and only if all m; > 2.

Proof. By Theorem 1.12, if M = My, is a Noetherian (¢ — 1)-invertible A-
module and d = pi' ... pl" its exponent, then M is the direct sum

M:@M(pi)

of its p-submodules which are (¢ — 1)-invertible by Proposition 1.5. Now, each
its submodule M (p;) with odd p; is of odd order and, by Lemma 1.18, its
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2-submodule M(2) is isomorphic (as an abelian group) to @le(Z/TiZ)mi,
where all m; > 2.

To prove the inverse statement, note, first, that the finite direct sum of
(t — 1)-invertible A-modules is also a (¢ — 1)-invertible A-module. Next, for
any prime p > 2, a (t — 1)-invertible A-module M = A/I, where I is generated
by the number p" and polynomial 2¢ — 1, is isomorphic to Z/p"Z as an abelian
group. Finally, for n > 2 the (¢ — 1)-invertible A-module M = A/I, where
I is generated by 2" and " — ¢t + 1, is isomorphic to (Z/2"7Z)" as an abelian
group. 0

2. t-UNIPOTENT Z[t, ¢ !]-MODULES

2.1. Properties of t-unipotent A-modules. The following proposition is a
simple consequence of Propositions 1.5 and 1.6.

Proposition 2.1. Any A-submodule M, and any factor module M /M, of a
Noetherian (t — 1)-invertible t-unipotent A-module M is a (t — 1)-invertible
t-unipotent A-module.

Lemma 2.2. Let My, ..., M, be Noetherian (t — 1)-invertible t-unipotent A-
modules. Then the direct sum M = @;_, M; is a Noetherian (t — 1)-invertible
t-unipotent A-module.

Proof. By Lemma 1.7, M is a Noetherian (¢ — 1)-invertible A-module.

Since M; is a (t — 1)-invertible t-unipotent A-module, there is k; € N such
that t* — 1 € Ann(M;). It is easy to see that t* — 1 € Ann(M), where
k =k ...k,, since each polynomial t* — 1, i = 1,...,n, divides the polyno-
mial tF — 1. O

Proposition 2.1 and Lemma 2.2 imply the following proposition.

Proposition 2.3. A Noetherian A-module My is (t — 1)-invertible t-unipotent
if and only if each its principle submodule M, is (t — 1)-invertible t-unipotent.

Theorem 2.4. Any Noetherian Z-torsion (t — 1)-invertible A-module is t-uni-
potent.

Proof. let M be a Noetherian Z-torsion (¢t — 1)-invertible A-module. By Corol-
lary 1.17, M consists of finite number of elements. Therefore the automor-
phism of M, defined by the multiplication by ¢, has a finite order, say k, that
is, t*v = v for all v € M, in other words, t* —1 € Ann(M). O

The following Propositions 2.5, 2.6 describe bi-principle (¢ — 1)-invertible
t-unipotent modules and principle (¢ — 1)-invertible t-unipotent modules of
mixed type.



18 VIK.S. KULIKOV

Proposition 2.5. Let M = A/I be a bi-principle (t — 1)-invertible t-unipotent
A-module, and let the ideal I =< g(t) > is generated by a polynomial g(t).
Then

(1) all roots of g(t) are roots of unity,
(1) g(t) has not multiple roots,
(ii1) if € is a k-th root of unity (that is, €¥ = 1), were k = p" for some prime
p, then & is not a root of g(t),
(iv) 9(1) = =1,
(v) degg(t) is even.

Proof. To prove (i) and (i7), notice that there is k such that t* — 1 € I, since
M is t-unipotent. Therefore t* — 1 is divisible by g(t).

To prove (iii) — (v), we use Theorem 1.10. By Theorem 1.10, there is a
polynomial f(t) € I such that f(1) = 1. We have f(t) = h(t)g(t) for some
polynomial h(t) € Z][t], since I is a principle ideal generated by g(t). Therefore
g(1) = £1 (and we can assume that g(1) = 1), since we have

1= f(1) = h(1)g(1),
where h(1),9(1) € Z.

On the other hand, if for some prime p, a primitive p"-th root of unity &
is a root of g(t), then g(t) should be divided by the p"-th cyclotomic poly-
nomial ®,(t), that is, there is a polynomial h(t) € Z[t] such that g(t) =
P, (t)h(t). Therefore, 1 = g(1) = ®,-(1)h(1) and we obtain a contradiction,
since ®,-(1) = p.

To complete the proof, notice that, by (iiz) and (iv), £ = £1 are not roots
of g(t) and hence all roots of ¢(t) are not real. Thus if £ is a root of g(t), then
the number ¢ complex conjugated to ¢ is also a root of g(t), since g(t) € Z][t].
Therefore deg g(t) is even, since & # ¢ for all roots of unity # 1. O

Proposition 2.6. Let M = A/I be a principle (t — 1)-invertible t-unipotent
A-module of mixed type, and let f(t) = dg(t) be the leading generator of the
ideal I, where d € N and the polynomial g(t) has content 1. Then g(t) satisfies
properties (i) — (v) from Proposition 2.5.

Proof. Let v be a generator of M. Denote by M; a A-submodule of M gener-
ated by v; = g(t)v. We have the exact sequence of A-modules

0— M — M— M/M;, — 0,
where M is a principle module of finite type and My = M/M; is a bi-
principle A-module isomorphic to A/ < ¢(t) >. By Proposition 2.1, M is
(t — 1)—invertible ¢-unipotent. Now, we apply Proposition 2.5 to complete the
proof. O
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Let M be a Noetherian (t—1)-invertible t-unipotent A-module. The smallest
k € N such that t* — 1 € Ann(M) is called the unipotence index of M.

Lemma 2.7. If M is a Noetherian (t — 1)-invertible t-unipotent A-module of
unipotence index k, then the polynomial Zf:_ol t' € Ann(M).

Proof. We have t* —1 = (t—1)(321-) t) € Ann(M). Therefore (32F 1 t1)v =0

for all v € M, since M is a (¢t — 1)-invertible A-module. O

Lemma 2.8. A Noetherian (t —1)-invertible A-module M of unipotence index
2 18 a finite Z-module of odd order.

Proof. Tt follows from Lemma 1.13 and Corollary 1.17 that M is finite. By
Lemma 2.7, the polynomial (¢t + 1) € Ann(M). Therefore tv = —v for all
v € M. In particular, if v is of order 2, then tv = v. This is impossible, since
M is (t — 1)-invertible. Therefore M has not elements of even order. O

Proposition 2.9. A cyclic group G of order n = pi* ...pI'™, where py, ..., Pm
are primes, possesses a structure of (t — 1)-invertible A-module of unipotence
index k if and only if for each i = 1,...,m the polynomial Zf:_ol t' has a root
a; # 1 in the field Z/p;Z.

Proof. By Theorem 1.12, it suffices to consider only the case when ¢ = 1, that
is n = p™ for some prime p.

Let a cyclic group G of order n = p™ has a structure of (¢ — 1)-invertible
A-module of unipotence index k, then its subgroup G, = p"™ 'G consisting of
the elements of order p is also a (¢ —1)-invertible A-module of unipotence index
k. Therefore the polynomial Zf:_ol t' € Ann(G,). Let v € G, be a generator
of Gp, then tv = av for some a # 1 mod p since G, is a (¢t — 1)-invertible
module. We have Zf:_ol a'v = 0. Therefore Zf:_ol a®* = 0 mod p, that is, the
polynomial Zf:_ol t" has a root in the field Z/pZ not equal to 0 or 1.

Conversely, let a 2 1 mod p be a root of the polynomial Zf:ol t* in the field
Z/p;Z, and let v be a generator of a cyclic group G of order p". If we define
the action of ¢ on the Z-module G putting ¢(v) = av, we obtain a structure of
(t — 1)-invertible A-module on G, since a # 1 mod p. It is easy to see that
th —1 € Ann(G). O

Theorem 2.10. Any Noetherian (t — 1)-invertible t-unipotent A-module M is
finitely generated over 7.

Proof. Theorem follows from Proposition 1.15, since for some k € Z the poly-
nomial t* — 1 € Ann(M). O
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It follows from Theorem 2.4 and Structure Theorem for finitely generated
Z-modules that a Noetherian (¢ — 1)-invertible t-unipotent A-module M as a
Z-module is isomorphic to

where My, is the submodule of M consisting of the elements of finite order.
The rank & of the free part of M in decomposition (5) is called Betti number
of Noetherian (¢t — 1)-invertible t-unipotent A-module M.

Theorem 2.11. The Betti number of a Noetherian (t—1)-invertible t-unipotent
A-module M is an even number.

Proof. By definition, the Betti number of M coincides with Betti number of
the Noetherian (¢ — 1)-invertible t-unipotent A-module My,ce = M/Mg;y,.
The module My,.. has not non-zero elements of finite order. Therefore the
annihilator Ann, of each its element v is a principle ideal, it is generated by
polynomial g,(t) satisfying properties (i) — (v) from Proposition 2.5.
Let My, is generated by elements vy,...,v, over A. Then there is a
surjective A-homomorphism

fiAN <g,t)>®--- DA <gp,(t) >— Miree.

Consider the modules M = @A/ < g, (t) > and M free as free Z-modules

and denote by hy; and h Mo the automorphisms respectively of M and M free
defined by the multiplication by ¢. Then it is easy to see that the characteristic
polynomial A(t) = det(hz; — tId) coincides up to the sign with the product
9o, (t) - - - Gu,, (t). Next, the characteristic polynomial A(t) = det(hyy,,,., — t1d)
is a divisor of the polynomial ﬁ(t), since the homomorphism f is surjective
and t-equivariant. Therefore all roots of A(t) are roots of unity # +1 and

hence deg A(t) is an even number. To complete the proof, notice that the
Betti number of Mj,.. coincides with deg A(%). O

2.2. Derived Alexander modules. To a Noetherian (¢ — 1)-invertible A-
module M we associate an infinite sequence of Noetherian (¢ — 1)-invertible
t-unipotent A-modules

A (M) = M/(t" —1)M, neN. (6)

The module A, (M) is called the n-th derived Alezander module of A-module
M.

Note that A;(M) = 0, since M is (¢t — 1)-invertible. It is also evident that
A (An(M)) = A (M).

It is obvious, that if f : M; — My is a A-homomorphism of (¢ — 1)-invertible
modules, then the sequence of A-homomorphisms

fn* . An(Ml) - An(M2)a
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n € N, is well defined, that is, the map M — {A, (M)} is a functor from the
category of Noetherian (¢ — 1)-invertible A-modules to the category of infinite
sequences of Noetherian (¢ — 1)-invertible ¢-unipotent A-modules.

Proposition 2.12. If
0— M L M - My — 0
is an exact sequence of Noetherian (t — 1)-invertible A-modules, then
A (M) 2= Ay (M) [ im fre(An(My)).

IfM = @le M; is the direct sum of Noetherian (t—1)-invertible A-modules
M;, then

Proof. Obvious. O

Proposition 2.13. Let p be a prime number and r € N, then for a Noetherian
(t — 1)-invertible A-module M its derived Alexander module A, (M) is finite.

Proof. Tt follows from Lemma 1.13 and Corollary 1.17. U

Example 2.14. For M,, = A/((m + 1)t —m), where m € N, its n-th derived
Alexander module

Au(My) = Z)((m +1)" = m™)2
is a cyclic group of order (m+1)" —m" and the multiplication by t is given by

n—1

to = (1 (o0 () 1

i=1

for allv € A,(M,,).
Proof. The module M, = A/((m + 1)t —m) is isomorphic to a A-submodule

[ mr—rtl] C Qif we put t = =5 and tv = 25v for v € Q. Therefore we
have

An(Mm) = Mm/(tn - 1)Mm = Z[m,:la mnil]/«mriﬂn - 1)

and consequently,
An(My) = Z[2, 2252 [ ((m+ 1) — m™).

m+1’ m

It is easy to see that the module Z[-2- mT“] coincides with the sum of

m+1)
submodules Z[—1-] and Z[m] C Q,
Z[ m m-l—l] — Z[

m+1’ m

m+1

] + 21

Indeed, it is obvious, that
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Zlm, = 7

m+1’ m m+1]+Z[%]

Next, we have

(m—l—l)n _ 2o (?)mnfi
and therefore
e = (- T ()
Similarly, we have

<minn“§3 (= >”*“”()<mini%-(—1ngﬁj>"

In particular, % = 2= —1and — = 1— 5. Therefore, by induction, we

=g
obtain that .=, e € L[5 m;l‘l] for all n and hence
Lma) + 2L © 2k, )
Let us show now that each element v € Z[;.75, mT“] is equivalent to some
Vin € Z C Z[7%, "] modulo the ideal I = ((m + 1)" —m"). For this, it

suffices to show that for each k there are vy, x, win 1 € Z such that

Lk = Vipx mod [ and e = Ui mod 1.

(m+1)

We prove the existence of such elements only for — and the case —z will

be left to the reader, since it is similar. We have

(md DPom® — S ()ym =0 mod 1

(m +1)

and therefore

1 — k-1 1
o == 2 tr1n (upyp) pr mod 1.
In particular,
_ -2 j
i P (n_?_l)mj mod I.

Now the existence of desired vy, is proved by induction on k.
It follows from the above consideration that

An (M) ~ Z[25 22 /{((m + 1) = m”)

m+1’ m
mtl] - We have

is a cyclic group generated by the image 1 of 1 € Z[-"- R

(m+1)" —mMI=0

and hence the order of A, (M,,) is a divisor of (m + 1)" — m™.
Let us show that the order of A, (M,,) is equal to (m+1)" —m™. Let k € Z
be such that k1 = 0. Then

k= (Z’Ll<l<7,2 i g1y (m+1 + Z]1<]<]2 b] mJ )((m + 1) n)?
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where a;,b; € Z. Multiplying by (m + 1)2 and m? if iy > 0 or j, > 0, we
obtain an equality
(m+1)2m”2k = C((m + 1)" —m™)

with some C' € Z which shows that (m 4 1)" — m” is a divisor of k, since m,
m+ 1, and (m + 1)" —m™ are coprime.
To calculate the action of ¢ on the cyclic group
An(My) = 2 ((m + 1) = m")Z,

notice that

=28 = (=)™ m(T (D) () m + )" T,

since similar (as above) calculation gives

L= (—1)" S (=D (M) (m+ 1) mod . 0

m+1

Proposition 2.15. An abelian group G is isomorphic (as a Z-module) to
the derived Alezander module As(M) of some Noetherian (t — 1)-invertible
N-module M if and only if G is a finite group of odd order.

Proof. By Lemma 2.8, we need only to prove that for any finite group G
of odd order there is a Noetherian (¢ — 1)-invertible A-module M for which

Represent G as a direct sum of cyclic groups:

k
¢=a,
i=1

and let n; = 2m; + 1 be the order of G;.

For each i, consider the A-module M,, from Example 2.14. We have
Ay(M,,.) is a cyclic group of order (m; +1)*>—m? = 2m; + 1. Now, proposition
follows from Proposition 2.12 if we put M = @le M,,,. U

Theorem 2.16. Let M be a Noetherian (t—1)-invertible t-unipotent A-module
of unipotence index k. Then the sequence of its derived Alexander modules

AL(M), ... An(M), . ..

has period k, that is, A, (M) ~ A, (M) for all n.
If n and k are coprime, then A,(M) = 0.

Proof. Note that if k is the unipotence index of M, then, by Lemma 2.7,
k—1

the polynomial fi(t) = Zti € Ann(M). Besides, to get A, (M) from M,
=0

it suffices to factorize M _by the relations f,(t)v = 0 for all v € M, where
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n—1
fu(t) Ztl Now, to prove the periodicity of sequence (6), it suffices to

=0
notice that

fn+k(t> = tnfk(t) + fn(t)
Let n and k be coprime and let polynomials fi(¢) and f,(¢) belong to
Ann(M). Applying Euclidian algorithm to fi(¢) and f,(t), it is easy to see
that there are polynomials g, (t) and g, (¢ ) such that

since n and k are coprime. Therefore Ann(M ) A and hence A, (M) =0. O

Example 2.17. The A-module M = A/ < t> —t + 1 > has the following
derived Alexander modules:

Agr+1(M) =0, Agps2(M) ~ Z/3Z, Aeri3(M) ~ (2/27)?,

where the multiplication by t on Z/37 coincides with the multiplication by 2
and the multiplication by t on (Z/27)? coincides with cyclic permutation of
the non-zero elements of Agris3(M).

Proof. The module M has the unipotency index 6, since t? — ¢ 4 1 is a divisor
of the polynomial % — 1. Therefore Agg+1(M) = 0.

To compute Agri2(M), it suffices to compute Ay(M). We have Ay(M) =
A) <t*—t+1,t+ 1> and since

t—t+1=(t—-2)(t+1)+3,

then A/ <t* —t+1,t+1>=A/<t+1,3>~7Z/3L.
To compute Agy3(M), it suffices to compute As(M). We have As(M) =
A/ <t?—t+1,*+t+ 1> and since

Crt+1=1>—t+1+2t,

then A/ <> —t+ 1,2 +t+1>=A/ <t?+t+1,2 >~ (Z/27Z)>
To compute Agr4(M), it suffices to compute A4(M). We have Ay(M) =
A/ <t*—t+ 1,82+ +t+ 1> and since

Bt 1=+ —t+1)+2t -1,

then A/ < —t+ 1,3+ +t+1 >= A/ <t*—t+1,2t—1 > is isomorphic to
the quotient module M/(2t—1)M. Let v be a generator of bi-principle module
M. Tt is easy to check that in the basis v; = v, vy = tv of M over Z, the module
(2t — 1)M is generated by the elements 2vy — v and t(2vs — v1) = ve — 2uy,
since tvy, = v9 — v1. In the new basis e; = vy, e = vy — 2vq, the element
20y — v1 = 2e9 + 3ey, that is, (2t — 1)M is generated over Z by 3e; and es.
Therefore Ay(M) ~ Z/37Z. O
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3. ALEXANDER MODULES OF IRREDUCIBLE C-GROUPS

3.1. Proof of Theorems 0.1 and 0.3. Recall that the class of irreducible C-
groups coincides with the class of fundamental groups of knotted n-manifolds V/
if n > 2 and the knot groups are also C-groups if they are gvien by Wirtinger
presentation. Similarly, the class of irreducible Hurwitz C-groups coincides
with the class of the fundamental groups of the complements of irreducible
7affine” Hurwitz (resp., pseudo-holomorphic) curves and it contains the sub-
class of the fundamental groups of the complements of algebraic irreducible
affine plane curves. Therefore to speak about the Alexander modules of knot-
ted n-manifolds and, respectively, about the Alexander modules of irreducible
Hurwitz (resp., pseudo-holomorphic) curves is the same as to speak about the
Alexander modules of irreducible C-groups and, respectively, of irreducible
Hurwitz C-groups. Hence Theorems 0.1 and 0.3 are equivalent to the follow-
ing two theorems.

Theorem 3.1. A A-module M 1is the Alexander module of an irreducible C-
group if and only if it is Noetherian (t — 1)-invertible.

Theorem 3.2. A A-module M is the Alexander module of an irreducible Hur-
witz C-group if and only if it is Noetherian (t — 1)-invertible t-unipotent A-
module.

The unipotence index of the Alexander module Ao(G) of an irreducible C-
group G of degree m is a divisor of m.

Proof. Let

G=<2xy,....%, | r1,...,7% > (7)
be a C-presentation of a C-group G and F,, be the free group freely generated
by the C-generators x1,...,x,,. Denote by 8%1- the Fox derivative ([3]), that
is, an endomorphism of the group ring Z[F,,] over Z of the free group F,, into
itself, such that 8%1- : Z|F,,] — Z|F,,] is a Z-linear map defined by the following
properties

€y
ouv B ou n ov (8)

for any u,v € Z[F,,]. The matrix

A(G) = V*(ggj) € Mat,um(Z[t, 7))

is called the Alezander matriz of the C-group G given by presentation (7),
where r;, i = 1,...,n, are the defining relations of G and v, : Z[F,] —
Z[Fy] ~ Z[t,t '] is induced by the canonical C-epimorphism v : F,, — Fy.
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Lemma 3.3. The sum of the columns of the Alexander matriz A(G) of a
C-group G, given by presentation (7), is equal to zero.

Proof. Each relation r; has the form
r= w.rjw_lxl_l,

where w is a word in letters xil ...,z and xj,x; are some two letters.

Y m )

By induction on the length [(w) of the word w, let us show that

Z V* 8xk

If [(w) = 0, that is, r := z;2; ', we have

1 ifk=j,
ngf): 1 ifk=1,
Tk 0 ifk+#jandk#1

and in this case we obtain Y, V*(azk) =0.

Assume that for all words r = wz;w=tz; ! we have Y- 1’/*(855 ) = 0if
[(w) < n. Consider a word r = wz;w™ 'z, ", such that [(w) = n + 1. Put
r = wizjwy 'z ', where w = 25wy, € = &1, and I(w;) = n. We consider only
the case when i # j, i # 1, j # [, and ¢ = 1. All other cases are similar and
the proof that > ;" | 1/*(87’;) = 0 in these cases will be left to the reader.

R
It follows from (8) that
(
(5 i kA0 k£ Gk £
Tk
o L+tdg%)—t if k=i,
Vilm—) = 1
Oz, 4 (2T if k=,
a 8xk
1 .
t(ve(z=—)+1)—1 itk=1
ECESEEE
and it is easy to see that > ;" V*(%) =0. O

To each monomial a;t* € Z[t] let us associate a word

Weyi (T1, T2) = (x2x1x2 (ZH))
if a; > 0 and

Wayti (71, To) = (ab oy oy ')~
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if a; < 0, and for g(t) = S.F_, a;t’ € Z we put

Wy (t) $17x2 | |wa t $17x2

Next, to a polynomial f(t) = (1 —t)g(t) + 1 we associate a word
ey (@1, 2) = Wy (21, .Z'Q).leg_é) (w1, 20)25 ", 9)

and to a vector u = (1 —t)u = (1 = t)g1(t),..., (1 —t)gm(t)), we associate a
word

Tu(T1, oy Tg1) = Wo(T1, oy T 1) T w0y, (11, - ,xm“)x;lﬂ, (10)

where

wu(@1, s Tmg) = [ [ g (@i, 2ms)-

Lemma 3.4. For a polynomial f(t) = (1 —t)g(t) + 1 and a vector
= ((1 - t)gl(t)v SRR (1 - t)gm(t))

we have

or.,

V*(axi):(l—t)gi(t), i=1,...,m.

Proof. Let f(t) = (1 —1t)g(t) + 1. It follows from (8) that

Oyt (1, 72) Oty (o1, 72)

V*(T) = —Vx 8:171 :g(t)

since wgy () (21, T2)w ()(xl,xg) 1,

V*(wg(t) (‘Tl’ xQ)) = V*(waiti (.T]_, xQ)) - 17
and
OWg,4i (1, T2) 4
* : — Z’tz.
Vi( o, )=ua
Therefore we have

Oy, (a(wg( o (@1, mo)aw g (21, )75 )
Oy ' 0x;
o(t) +1— tg(t) = f(2).

The proof in the second case is similar and it will be left to the reader. [
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Proposition 3.5. The Alezander module Ao(G) of a C-group G, given by
presentation (7), is isomorphic to a factor module A™'/M(G), where the
submodule M (G) of A™~1 is generated by the rows of the matriz A formed by
the first m — 1 columns of the Alexander matriz A(G).

Proof. To describe the Alexander module of a C-group G, we follow [18] (see
also [7]). To a C-group G given by C-presentation (7) we associate a two-
dimensional complex K with a single vertex xy whose one dimensional skele-

ton is a bouquet of oriented circles s;, 1 < ¢ < m, corresponding to the
C-generators of G in presentation (7). Furthermore, K \ (Us;) = ||, D;
is a disjoint union of open discs. Each disc D; corresponds to the relation

ri = a5 ... 2" from presentation (7), where ; ; = £1, and it is glued to the

A B N
bouquet \/ s; along the path sji . s;: It is clear that m (K, zg) ~ G.

The C-homomorphism v : G — F; defines an infinite cyclic covering f :
K — K such that m(K) = N and Hy(K,Z) = N/N’, where N = kerv. The
group [F; acts on K.

Let Ko = f~(z0), and let K; be the one-dimensional skeleton of the complex
K. Consider the following exact sequences of homomorphisms of homology

groups with coefficients in Z:

_— HQ(IA(/,I?ﬁ L> Hl(f(/l,fé(ﬁ L Hl(f(/,f(/o) E— 0 (11)

The action of F; on K turns the groups in these sequences into A-modules.
We fix a vertex py € [?0. Let p; = tipy be the result of action of the element
t* € F; on the point pg. Then Hl(lN( 1, IN(O) is a free A-module whose generators
5; are edges joining py with p; which are mapped onto the loops s;. The result
of action of t* on the generator §; is an edge beginning at the vertex p; which
is mapped onto the loop s;.



ALEXANDER MODULES 29

The free A-module HQ(I?, I?l) is generated by the discs D;, i = 1,...,n,
Ei ks

. . £; , . - .
corresponding to the relations r; = x]i ...x; "t where each disc D; is glued

to the one-dimensional skeleton along the product of paths

k-1 .
19(Ei1) g8it 40(ei2)+ei1 g8i2 19201, e ook
e

. S.
2i,1° 24,27 Jik; )

where §(1) = 0 and 6(—1) = —1. It is easy to verify that the coordinates of
elements a(D;) € Hl([?l,f?o) in the basis 3,...,35,, coincide with the rows
A; of the Alexander matrix A(G) of C-group G given by presentation (7).

It follows from the vertical exact sequence in (11) that 9(5(s;)) = (t — 1)po
for each generator s; of the module Hl(IN(I,IN(O). Let us choose a new basis
¢ =8 —8m,i=1,....m—1,¢e, =35, Iin Hl(f?l, [?0). Then f(e;) € ker 0 for
i=1,...,m—1, and ker 0 is generated by (e1),...,3(em—-1). Hence we may
identify H,(K) with S8(H} (K1, Ko)), where H| (K, Ko) is a free submodule of
the free A-module Hl(IN(h IN(O) generated by the elements eq, ..., e,_1.

In the basis ey, ..., e, the matrix formed by the coordinates of a(D;) coin-
cides with the matrix A(G) obtained from A(G) by replacing the last column
by the column of zeros. Hence Hy(K) is isomorphic to the quotient of the free
A-module H}(Ky, Ko) ~ @7, Ae; by the submodule M (G) generated by the
rows of the matrix A(G), where A(G) is the matrix formed by the first m — 1
columns of the matrix A(G). O

To prove that a Noetherian (¢ — 1)-invertible (resp., t-unipotent) A-module
M is the Alexander module of an irreducible (resp., Hurwitz) C-group, we
use Proposition 1.11. By Proposition 1.11, a Noetherian (¢ — 1)-invertible A-
module M is isomorphic to a factor module A™/M; of a free A-module A™,
where the submodule M; is generated by elements uy, ..., Up, ..., Upir of A™
such that

(1) fori=1,...,m the vector u; = (0,...,0, f;(¢),0,...,0), where a poly-
nomial f;(t) is such that f;(1) =1 and it stands on the i-th place,
(ZZ) Um+j = (1 _t>ﬂm+j = ((1 _t)gj,l(t)> SRR (1 _t>g]7m(t)) fOI'j =1,..., ka
where g;,(t) are polynomials,
and if M is a t-unipotent A-module of unipotence index n, then we can assume
that

(i) the vector wyqpr; = (0,...,0,t" —1,0,...,0) € My fori =1,...,m,

where the polynomial ¢” — 1 stands on the i-th place.

Express each polynomial f;(¢) in the form f;(t) = (1—1t)g;(¢)+1 and consider
a C-group

G=(T1, , Tmi1 | 1,y Tintk)s
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where 1; == 74,4 (T, Tpgr) for @ = 1,...,m and rpyj = ry(@1, ..., Tpq) for
j =1,...,k, where the words rsq and r, were defined by formulas (9) and
(10). Denote by Tmipri i= 2w, x; - if

um+k+i:(O,...,O,tn—l,o,...,()) EMl
fort=1,...,m and denote by
@: <.T1,...,Im+1 ‘ 7“1,...,’/“2m+k>.

It follows from Lemma 3.4 that the matrix A(G) (resp., A(G)) formed by the
first m columns of the Alexander matrix A(G) (resp., A(G)) coincides with the
matrix U (resp., U) formed by the rows uy, ..., Upir (resp., by Ui, ..., Usmik)-
Therefore, by Proposition 3.5, the Alexander module Ay(G) (resp., Ao(G))
coincides with M = A™/M;, where M; is generated by the rows uy, ..., Up ik
(resp., by u1, ..., Uamik).

Notice that G (resp., GG) is an irreducible C-group, since all C-generators
T1,..., T, are conjugated to x4 1. Moreover, G is a Hurwitz C-group. Indeed,
it follows from relations r,,444;, 7 = 1,...,m, that z, ., belongs to the center
of G. Since all z; are conjugated to 41, we have z' = 2%, for all i =
1,...,m. Therefore the product 7 ...z%_, also belongs to the center of G
and G possesses a Hurwitz presentation

G={(T1, - Tapmin) | 715 otk
T, =1, (n—1)(m+1),
[z, (21 ... Tpmg1)], 0 =1,...,n(m+1)).

The following two lemmas complete the proof of Theorems 0.1 and 0.3.

Lemma 3.6. ([13]) The Alezander module Ao(G) = G'/G" of an irreducible
C-group G is a Noetherian (t — 1)-invertible A-module.

Proof. For an irreducible C group G its commutator subgroup G’ coincides
with the kernel of the C-epimorphism v : G — [F;. By the Reidemeister —
Schreier method, if C-generators x1,...,x,, generate GG, then the elements
Qip = 2t mam ™ i =1,...,m—1, n € Z, generate G'. Therefore Ay(G) =
G'/G" is generated by the images @;, of the elements a;, under the natural
epimorphism G' — G'/G". The action of t on Ay(G) is defined by conjugation
a — zypaz,t for a € G'. Therefore ta;,, = @; 1. Thus Ay(G) is generated
over A by @1¢...,@n-1,0 and hence it is a Noetherian A-module.

To show that Ay(G) is a (t — 1)-invertible A-module, notice, first, that any
element ¢ € G can be written in the form ¢ = 2% a, where a € G’ and
k = v(g). Therefore G’ is generated by the elements of the form [27a,x% b],
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where a,b € G, and hence Ay(G) is generated by their images [z7,a, xF b]. 1
is easily to check that

" a,zF bl = |27 al(ax™* b, a7t 2" 1), antk
A = I o e

It follows from (12) that

[ena, 28 b = (" — D+ (1 — t”+k)a+t B(1— )b =
(1 — t’“)a+t’“( >

t . 1 th-l-kb Z tz—i—n

(n+k) a1 cG".

(13)

since az™*[b, a )z, Now, it is easy to see that the multipli-
cation by t—11is an eplmorphlsm of Ay(G), since the elements of the form

[27 a, % b] generate Ag(G) over Z. To complete the proof, we apply Lemma
1.1. U

Lemma 3.7. ([10]) The Alexander module of a Hurwitz C-group of degree m
is a Noetherian (t — 1)-invertible t-unipotent A-module of unipotence index d,
where d is a divisor of m.

Proof. 1f G is a Hurwitz group of degree m, then it is generated by C-generators
x1,...,%, such that the product x;...z,, belongs to the center of G. By
Lemma 3.6, the Alexander module Ay(G) = G'/G” in a Noetherian (t — 1)-
invertible A-module. The multiplication by ¢ on Ay(G) is induced by conjuga-
tion a — zax,! for a € G'. Since v(z™) = v(zy ... 2,,), there is an element
ap € G’ such that ' = ag - x; ...z, and hence the conjugation by z!” is an
inner automorphism of G’. Therefore the induced automorphism ™ of G'/G”
is the identity. 0

3.2. Alexander modules of C-products of C-groups. Let G; and G5 be
two irreducible C-groups and let = € G (resp., y € G5) be one of C-generators
of Gy (resp., of G3). Consider the amalgamated product Gy *—yy G. If
G1 = <ZL’1,...,JIn ‘ R1>,
Gy = <y1,-~,ym ‘ R2>
are C-presentations of G; and Gy, where v = x,, and y = y,,,, then G *,—,; G
is given by C-presentation

(T1y ey 1, Y1y e oy Y1, 2 |7€1 UTRs) (15)

(14)

in which each relation 7; € ﬁl (resp., T; € ﬁ2) is obtained from the relation
r; € R1 (resp., from r; € Ry) by substitution of z instead of z,, (resp., instead

of Ym).
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If 7 € Gy and vy € G5 are two another C-generators of these groups,
then there are inner C-isomorphisms f; : G; — G; such that fi(z') = = and
f2(y") = vy, since all C-generators of an irreducible C-group are conjugated to
each other. Therefore there is an isomorphism

fl * f2 : G1 *{x’:y’} G2 — Gl *{m:y} G27

that is, the group G *;—,1 G2, up to a C-isomorphism, does not depend on
the choice of C-generators x and y, so we denote it by GG ¢ Go and call the
C-product of irreducible C-groups G and Gb.

Proposition 3.8. If a C-group G = G *¢c Gy is the C-product of irreducible
C-groups G1 and Gg, then its Alexander module Ay(G) is isomorphic to the
direct sum of the Alexander modules of G1 and Gs,

Ap(G) = Ap(Gh) ® Ao(Ga).

Proof. This proposition is a simple consequence of Proposition 3.5. Indeed,
if G; and Gy are given by presentation (14), then, by Proposition 3.5, the
Alexander module Ay(G) of the C-group G = G *¢ G, given by presentation
(15), is isomorphic to a factor module A"™™~1/M(G), where the submodule
M(G) of A"*™~1 is generated by the rows of the matrix

(A0
SN0 A )

where A; (resp., Ajp) is the matrix formed by the first n — 1 (resp., m — 1)
columns of the matrix A(G7) (resp., A(G2)). Now, it is easy to see that
Ag(G) = Ap(G1) @ Ao(Go). O

pN

Let

G=<2xy,...,%p | r1,...,7% > (16)
be a C-presentation of a C-group G. The number dp = m — n is called the
C-deficiency of presentation (16) and dg = mindp, where the minimum is
taken over all C-presentation of a C-group G, is called the C-deficiency of the
group G. Obviously, for a C-group consisting of £ connected component, its
C-deficiency dg < k and, in particular, if G is an irreducible C-group, then
dg < 1.

Lemma 3.9. Let G = G x¢ Gy be the C-product of irreducible C-groups G4
and Go. Then

dg > dG1 +dG2 — 1.
In particular, if dg, = dg, = 1, then dg = 1.

Proof. 1t follows from formula (15).
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3.3. Presentation graphs of (C-groups. Let us associate a presentation
graph T'p to each C-presentation (16) as follows. The vertices of the graph
['p are labeled by the generators from presentation (16) (and, in particular,
they are in one to one correspondence with the generators from presentation
(16)), and its edges are in one to to one correspondence with the relations r; of
the presentation (16) and if r; := wj_l(xl, e T T wi (T, Ty )Ty, then
the corresponding edge connects the vertices x;, and x,.
Obviously, the C-deficiency

dp = dlmHo(Fp,R) - dlmHl(Fp,R)

Therefore for an irreducible C'-group G its C-deficiency dg = 1 if and only if
G possesses a C-presentation whose presentation graph I'p is a tree.
A C-presentation

G=<m1,....%0 | T1,...,7 > (17)

is said to be simple if each relation r; in (17) is of the form:

1

[ -1 . . T
Ti = Ty Ty Tig Ty

L . —1
for some 41,149,453 € {1,...,m} (that is, s, = 2, 24 74,).

Remark 3.10. If presentations (14) of irreducible C-groups G1 and Gy are
simple, then presentation (15) of G = Gy *¢ Gy is also simple and the pre-
sentation graph I'p of presentation (15) is the bouquet 'p =T'p \/,_, _ Tp,
of the presentation graphs I'p, and T'p, of presentations (14). In particular, if
I'p, and I'p, are trees, then the presentation graph I'p is also a tree.

Lemma 3.11. Any C-group possesses a simple C-presentation with C-de-
ficiency dp = dg.

Proof. Let G be given by C-presentation of C-deficiency dp = dg and r :=
w™lz;wa; ! is one of its relations (that is, w™'z;w = x;), where w = &} ... 25"
is a word in ), and ¢, = £1, then we can add k — 1 new generators z,,,1,. ..,
Tmak—1 and replace the relation r by k relations:

— —€1 €1
— —€2 €2
LTm+2 = xiQ $m+1$i2 y
—E€k—1 Ek—1
Tm+k—1 ip_1 xm+k—2xik71 ;
— —€k Ek
Z; = l’ik $m+k_1$ik .

Obviously, we obtain a new C-presentation of the same C-deficiency which
defines the same C-group G. O
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3.4. The Alexander modules of C'-groups possessing C-presentations
whose presentation graphs are trees. By Lemma 3.11, an irreducible C-
group G possesses a simple C-presentation whose presentation graph is a tree
if and only if its C-deficiency dg = 1.

Proposition 3.12. If M = @.", M; is the direct sum of bi-principle (t — 1)-
invertible A-modules M; = A/{fi(t)), then there is an irreducible C-group G
such that Ao(G) ~ M and such that its C-deficiency dg = 1.

Proof. Note that the C-deficiency of a C-group given by presentation
G = (1,29 | wrw oy, (18)

where w = w(xy,x2) is a word in letters xq, xo and their inverses, is equal
to 1. Applying Proposition 3.5, we see that the Alexander module Ay(G) of
a C-group G, given by presentation (18), is a bi-principle (¢ — 1)-invertible
A-module.

Conversely, it was shown in the proof of Theorem 3.1 that any bi-principle
(t — 1)-invertible A-module M = A/(f(t)) is the Alexander module of some
irreducible C-group given by presentation (18). To complete the proof we
apply Proposition 3.8 and Remark 3.10. O

Corollary 3.13. Let M = @;", M; is a direct sum of bi-principle (t — 1)-
invertible A-modules M; = N/(f;(t)). Then for each n > 2 there is a knotted
sphere S™ C S™*2 such that the Alexander module

Ao(?Tl(Sn+2 \ Sn)) ~ M
In particular, a polynomial f(t) € Z[t] is the Alezander polynomial A(t) of
some knotted sphere S™ C S™2 if and only if f(1) = +1 and, moreover, the

Jordan blocks of the Jordan canonical form of the matriz of the automorphism
hc acting on Ag(S™) @ C can be of arbitrary size.

Proof. In [8], it was shown that if an irreducible C-group is given by a simple
C-presentation which presentation graph is a tree, then for each n > 2 there
is a knotted sphere S™ C S™*2 such that 7;(S"2\ S™) ~ G. O

Proposition 3.14. Let G be an irreducible C-group of C-deficiency dg = 1.
Then its Alexander module Ay(G) has not non-zero Z-torsion elements.

Proof. Let

G=<2X1,..c;Tm | 1,0y "1 > (19)
be a C-presentation of G. By Proposition 3.5, its Alexander module Ay(G)
is isomorphic to a factor module A" /M (G), where the submodule M(G)
of A™ ! is generated by the rows of the matrix A formed by the first m — 1
columns of the Alexander matrix A(G) of the group G given by presentation
(19). The size of the matrix A is (m — 1) x (m — 1).
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Lemma 3.15. The determinant A(t) = det A satisfies the following property:
A(l) = +1.

Proof. Tt coincides with the similar statement for knot groups (see the proof,
for example, in [3]). O

Denote by A; the rows of the matrix A j=1,...,m—1. The module
Ap(G) has a non-zero Z-torsion element if and only if there is a vector v =
(fi(t),..., fm-1(t)) such that v ¢ M(G) and ku € M(G) for some k € N.
Assume that there is a such vector u. Then there are g;(t) € A such that
ku =73 g;(t)A;, where for some g;(t) one of its coefficients is not divisible by
k.

Without loss of generality, we can assume that all f;(¢) and g;(¢) belong to
Z[t]. By Cramer’s theorem,

(0) = 305,

where A (t) is the determinant of the matrix obtained from A by substitution
NI
O
are divisible by k. A contradiction. O

ku instead of the row A;. Therefore the coefficients of all polynomials

Remark 3.16. If G is an irreducible C-group given by presentation of C-
deficiency dp = dg = 1, then the determinant A(t) = det A of the matriz A,
obtained from the Alexander matriz A after deleting its last column, coincides
with the Alezander polynomial Ag(t) of the group G.

3.5. Finitely Z-generated Alexander modules of irreducible C-groups.

Theorem 3.17. Let G be an irreducible C-group. The Alexander module
Ao(G) is finitely generated over Z if and only if the leading coefficient a,, and
the constant coefficient ag of the Alexzander polynomial Ag(t) = Y"1, ait" of
G are equal to £1.

Proof. By Theorem 3.1, Ay(G) is a Noetherian (¢t — 1)-invertibele A-module.
Let Ao(G) fin, be the Z-torsion submodule of the Alexander module Ay(G). By
Theorem 1.16, A¢(G) f:, is finitely generated over Z.

Consider the quotient module M = A(G)/Ao(G) fin. It is free from Z-
torsion. Therefore there is a natural embedding M — Mg = M ® Q. We have
dimg Mg < o0, since M is a Noetherian A-torsion module.

Denote by hg an automorphism of Mg induced by the multiplication by ¢.
Then, by definition, Ag(t) = adet(hg — tId), where a € N is the smallest
number such that a det(hg — tId) € Z]t].
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If the Alexander module Ay(G) is finitely generated over Z, then M is a free
finitely generated Z-module. Denote by h an automorphism of M induced by
multiplication by t. We have det h = £1 and

det(h — t1d) = det(hg — t1d) € Z]t).

Therefore Ag(t) = det(h — tId) and its leading coefficient a,, = (—1)", where
n =1k M, and ag = det h = £1.

Let the leading coefficient a,, and the constant coefficient ag of the Alexan-
der polynomial Ag(t) of G be equal to £1. By Cayley-Hamilton’s Theorem,
Aq(t) € Ann(Mg). Therefore Ag(t) € Ann(M) and M is finitely generated
over Z by Proposition 1.15. 0J

Remark 3.18. Let an irreducible C-group G is given by C-presentation G =
(T1, .oy | 71, .o ) and A(G) its Alexzander matriz. Then the Alezander
polynomial Ag(t) coincides (up to multiplication by +t*) with the greatest
common dwisor of the determinants of all (m — 1) x (m — 1) submatrices
Ap—1 of the matriz A(G).

3.6. Alexander modules of some irreducible C-groups. In the end of
this section, we compute the Alexander modules for some irreducible C-groups.

Example 3.19. The Alexander module Ay(Bry,+1) of the braid group Bry,1
is trivial if m > 4 (or m = 1) and isomorphic to A/{t> —t + 1) for m = 2 and
3.

This statement is well known, but for completeness, we give a proof.

Proof. The braid group Br,,,; is given by presentation

Brp,41 = <x17 s Im ‘ [in,l’j] for ‘Z _]| 22,

Ty ey fori=1,...,m—1).
Notice that it is a C-presentation of an irreducible C-group.
By Proposition 3.5, to calculate Ag(Br,,,1) we should calculate the matrix
Z(Brm—i-l)'
The relations [x,,,z;], i =1,...,m — 2, give the rows

(0,...,0,(t—1),0...,0), (20)
where t — 1 stands on the ¢-th place for i = 1,...,m — 2, and if m > 4, then
the relation [x,,_1,z1] gives the row

(t—1,0,...,0,1—1). (21)

If m > 4, then the rows from (20) and row (21) generate submodule (t—1)A™!
of the module A™~!. On the other hand, these rows belong to the module
M (Br,41). Therefore Ag(Br,,41) = 0, since Ag(Br,,11) =~ A™ 1 /M(Br,,,1) is
a (t — 1)-invertible A-module and (t — 1)A™ ' C M (Br,,41).
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If m = 2, then we have the only one relation in the presentation of Brs,

namely,
ri= a:lxgxlx;lxl_lxgl

We have 1/*(8‘9—:;) =1+ t?> — t and therefore Ag(Brs) ~ A/{t? —t + 1).

If m = 3, then we have the only three relations in the presentation of Bry,

namely,
— -1,.—-1_,-1
o -1,.—-1, -1
To i= XToX3T2Xxg5 Ty T3 ,
Ty 1= :Elxgxl_lxgl.
We have
71\ or1\ __ Ora\ __ 42

Therefore M(Brsz) C A? is generated by vectors
v = —t+1, -t —t+1), vo=(0,2~t+1), v3=(1-1¢0),
and hence Ag(Brs) ~ A/(t* —t + 1). O
Example 3.20. The Alexander module of a C-group
G = (1,2 | (27 w2) "1 (27 o) a3 ),
m € N, is isomorphic to Ag(G) ~ A/{(m + 1)t —m).

These irreducible C-groups are interesting, since they are non-Hopfian if
m > 2 and therefore they are not residually finite. (The group G,, is isomor-
phic to Baumslag — Solitar group (see [1]) (a,z; | 27 'a™z1a= ™) if we put
Ty = z1a.) Note also that each of these groups can be realized as m1(S*\ S?)
for some knotted sphere S? C S*.

Proof. Straightforward calculation gives

or

—)=—mtt+m+1,
8x1)

Vi(

where 7 = (27 29)™x; (27 ' 22)"™x5 ! Therefore the Alexander module

Ao(G) ~ Af{(m + 1)t — m). O
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4. FIRST HOMOLOGY GROUPS OF CYCLIC COVERINGS

4.1. Proof of Theorems 0.2 and 0.5. Theorems 0.2 and 0.5 will be proved
simultaneously.

In the notations from Introduction, we denote by X either the sphere S™*2
(Case I) or CP? (Case II), and by X’ respectively either the complement of a
knotted n-manifold V in S™*2 or the complement of the union of an irreducible
Hurwitz curve H and a line ”at infinity” L in CP2. Recall that the fundamental
group G = m;(X’) is an irreducible C-group.

Consider the infinite cyclic covering f = fo : Xoo — X’ corresponding to
the C-epimorphism v : G — F; with kerv = G'. Let h € Deck(X/X') ~ F,
be a covering transformation corresponding to the C-generator x € F;. We
say that h is the monodromy respectively of the knotted manifold V' and of
the Hurwitz curve H. The space X’ will be considered as the quotient space
X' = X« /F;. In such a situation Milnor [19] considered an exact sequence of
chain complexes

0— C(X) ™ 0(x) Lo 0(x) =0

which gives an exact sequence of homology groups with integer coefficients:

= H (X)) T8 H (X)) I Hy(X)) -S Hy(X) — 0, (22)
where t = h,.

The action h, (resp., hy.) defines on Hi(Xo) ~ G'/G" a structure of A-
module such that sequence (22) is an exact sequence of A-modules (so that
H,(X) is the Alexander module of the C-group G). The action of t € A on
Hy(Xs) ~ Z is trivial, that is, ¢ is the identity automorphism of Hy(X).

If (h*) C T, is an infinite cyclic group generated by h¥, then X = X /(h*)
and X' = X /ux, where yy, = Fy/(h¥) is the cyclic group of order k. Denote
by hj an automorphism of X} induced by the monodromy h. Then hj is a
generator of the covering transformation group Deck(X, /X') = ux acting on
X

It is easy to see that in Case I the manifold X} can be embedded to the
compact smooth manifold X, satisfying the following properties:

(1) the action of hy on X, and the map f; : X; — X' are continued to an
action (denote it again by hx) on X}, and to a smooth map

(¢4) the set of fixed points of hy, coincides with f,~ '(V) =V and the restric-
tion fyy: V. — Voof fi to V is a smooth isomorphism.
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In Case II (in the notations of the proof of Theorem 4.1 in [2]), the covering
fi. can be extended to a map ﬁnorm : )Z'knorm — X branched along H and,
maybe, along L. Let o : X} — )N(k,norm be a resolution of the singularities,
E = a‘l(Sing)N(kmorm), and f, = ﬁmorm oo. Denote by R = f;;ilorm(H)
and Ry = f,;%lorm(L). Note that the restriction of fy norm to R is one-to-
one and the restriction of ﬁ,norm to Ry is a kg-sheeted cyclic covering, where
ko = GCD(k,d) and the ramification index of fkmorm along R, is equal to
koo = k—'z As in the algebraic case, it is easy to show that R, is irreducible.
Denote by R = o~ !(R) the proper transform of R. Note that kg is a divisor
of m. Put mg = %, we have mgy € N.

Denote by X = X \ E. We have two embeddings iy : X, — X and
gk X — Xy

In both cases , the action of hy on X} induces on H;(Xy,Z) (resp., on
H,(X},Z)) a structure of A-module such that the homomorphism

ks s Hi(X}, Z) — Hi(Xy, Z),

induced by the embedding 7 : X; — X}, is a A-homomorphism. Obviously,
the homomorphism i, is an epimorphism.

In Case I, let S C Xj be a germ of a smooth surface meeting transversally
Vatp €V and let ¥ C S be a circle of small radius with center at p. Then
ker g, is generated by the homology class [¥] € Hy (X}, Z) containing the cycle
7, since V is a smooth connected codimension two submanifold of X,.

It is obvious, that t([]) = [7], where t = hy,, and

fes([V]) = £kY] € Hi(X', Z) ~ Z,

where [7] is a generator of H;(X',7Z) represented by a simple loop 7 around
V.

In Case II, let S C X}, be a germ of a smooth surface meeting transversally
Ratp € R andlet 4 C S be a circle of small radius with center at p. Evidently,
the homology class [y] € Hi(X},Z) is invariant under the multiplication by ¢
and f.([y]) = k[7y], where [7] is a generator of H,(CP*\ (HUL),Z) ~ Z.

Similarly, let a complex line L; C CP? meet L transversely at ¢ € L\ H and
Yso be a simple small loop around L lying in L;. Then f, '(7.) splits into the
disjoint union of kg simple loops ¥, ¢ = 1,..., k. Since R is irreducible,
each two loops ¥ ; and 7. ; belong to the same homology class of H; (X}, Z)
(denote it by [Ys|). It is easy to see that #(¥si) = ¥oci+1. Therefore the
homology class [Yoo] € H1(X]Z) is invariant under the multiplication by t.
Note also that fr([Yoo]) = kem[y] = kmo[7], since [yoo] = m[y].
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Lemma 4.1. The A-module H,(X},,7Z) is isomorphic to
Ap(G) & Hi(Xj)h = Ax(G) ® Z,
where Ax(G) is the k-th derived Alexander module of C-group G and
Hi(X})1 ={h € Hi(X},Z) | (t—1)h = 0}.

Proof. We apply the sequence

o Hi (X0, Z) 5 H (X, Z) 25 H(X),Z) -5 Hy(Xoo, Z) — 0 (23)
constructed in the same way as (22) to the infinite cyclic covering gy = ook :
Xoo — X}, to analyze the group Hy(X},Z).

By (23), we have the short exact sequence

9k, *

0— Hy(Xoo)/(tF — DH (X)) 25 Hy (X)) -S Hy(Xo) =0 (24)

which is a sequence of A-homomorphisms.

Denote by M; = ker @ = imgy. ~ Hy(X.)/(t* — 1)H(X) and by M, =
H1 (X];)l

We have Hy(X«,Z) ~ Z. Let us choose a generator u € Hy(Xo, Z) and let
vy € H1(X},Z) be an element such that d(vy) = u. Then (t — 1)v; € ker0,
since Ho(Xwo, Z) is a trivial A-module and 0 is a A-homomorphism. We fix a
such vy.

By Theorems 0.1 and 0.3, H(X«,Z) = A¢(G) is a Noetherian (¢t — 1)-
invertible A-module. Therefore, by Proposition 1.6,

My, ~ Hi(Xo)/(t* — 1)H (X)) = Ak(G)

is also a Noetherian (¢ — 1)-invertible A-module and, by Theorem 1.10, there is
a polynomial ¢;(t) € Ann(M;) such that g,(1) = 1. We fix a such polynomial

1(t).
Consider the element v; = g1(t)v;. We have 0(71) = ¢1(1)u = u and hence
(t =1)o1 = (t = Dgr(t)vr = ga(£)(t = 1)va = 0,

since (t — 1)vy € M;. Therefore 7, € M.
Note that M; N My = 0, since M; is (t — 1)-invertible. Therefore 0 maps Mo

isomorphically onto Hy(X,Z), that is, exact sequence (24) splits and hence
Hy(X1,Z) ~ M, & Ms. O

Lemma 4.2. For fy. : Hi(X,,Z) — Hy(X',Z) we have
(1) ker fr. = Ax(G) C Hi(X},Z),
(17) im fr. = kZ C Z ~ H(X',Z) and the restriction of fr. to Hi(X})1 is
an isomorphism of Hy(X}); with its image.
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Proof. The group Hi(X',Z) is isomorphic to G/G’ ~ Z. Similarly, the group
H,(X},Z) is isomorphic to Gy/G},, where Gy, = ker vy,

ve= mod pov:G — u, =7Z/(h¥),
and fy. : Hi(X},Z) — Hi(X',Z) coincides with the homomorphism
Vs - Gk/GZ; — G/G,

induced by the embedding i : G — G.

Let the C-group G be given by C-presentation (7). To describe ker iy,
and imi,, let us consider again the two-dimensional complex K described
in section 3.1. The complex K has a single vertex x, its one dimensional
skeleton is a bouquet of oriented circles s;, 1 < j < m, corresponding to the

C-generators of G from presentation (7), and K\ (Us;) = |_|§»:1 lo)j is a disjoint
union of open discs, where each disc D; corresponds to the relation r; from
presentation (7) (we denote here by [ the number of relations r; in presentation
(7)).

The embedding i, : G — G defines an un-ramified covering f; : K — K,
where K} is a two-dimensional complex consisting of k vertices pi,...,px,
fe(pj) = xo; the preimage f~!(s;) = |_|l§:1§j78 is the disjoint union of k& edges

56, 1 < 5 < k; and the preimage f~1(D;) = ||*_, D, is also the disjoint

union of k open discs Eﬁs, 1<s<k.

Let hy be a generator of the covering transformation group Deck(K}/K) =
i acting on Kj. The homeomorphism h; induces an action hy, on the chain
complex C.(Kj) and an action ¢ on H;(Kj,7Z) so that this action defines
on H;(Ky,Z) a structure of A-module. It is easy to see that this structure
on Hy(Kj,Z) coincides with one on H,(X),Z) defined above if we identify
H,(Ky,Z) and H,(X},,Z) by means of isomorphisms H;(Kj,7Z) ~ Gy /G, and
Hy(X[, Z) ~ G4/

Consider the sequence of chain complexes
C.(Ky) "= (K L 0 (K) — 0.
It is easy to see that im (hg, — id) = ker fi, and

ker (P, — id) Zh

Now the proof of Lemma 4.2 follows from the exact sequence

th—1 0

.. — Hy(C.(Ky/ ker(hy, — zd)) — Hy(K%) Je, H{(K)—

fk*

0 (25)
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since

im[H, (C (Kk/ ker(hg. — zd)) = H(Ky)] = Ax(G),

HI(K>

Hy(C (Kk/ ker(hk* —id)) ~ Z/KZ,
s

Ho(K}y) = Ho(K) ~ Z,
are A-modules with trivial action of ¢ and exact sequence (25) is a sequence of
A-homomorphisms of A-modules. O

Now Theorem 0.2 follows from Lemmas 4.1 and 4.2, since ker iy, is generated
by [7] € Hi(X")1 and fi.([7]) = k[y].

Similarly, in Case II, we have ker iy, = H;(X})1. Indeed, ker iy, is generated
by 7 and Y, € H1(X})1 ~ Z and fi.([y]) = k[y]. Therefore Hy(X}); is
generated by [¥].

As a consequence, we obtain that the restriction of i, to the submodule
Ai(G) of Hy(X},7Z) is an isomorphism of Ax(G) with Hy(Xg,Z). Therefore
the following lemma implies Theorem 0.5.

Lemma 4.3. ([2]) The homomorphism ji. : Hi(Xy, Q) — H (X, Q) is an
isomorphism.

4.2. Corollaries of Theorems 0.2 and 0.5.

Corollary 4.4. Let V be a knotted n-manifold, n > 1, and fi, : X — S"2
the cyclic covering branched along V', deg fi = k. Then

(1) the first Betti number by(Xy) of X is an even number;
(ii) if k = p", where p is prime, then Hi(Xy,Z) is finite;

(1ii) a finitely generated abelian group G can be realized as Hy(Xy,Z) for
some knotted n-manifold V, n > 2, if and only if there is an automor-
phism h € Aul(G) such that h* = Id and h—1d is also an automorphism
of G; in particular, H1(Xs,Z) is a finite abelian group of odd order and
any finite abelian group G of odd order can be realized as Hi(Xs,7Z) for
some knotted n-sphere, n > 2.

Proof. It follows from Theorems 0.1, 0.2, 2.11, Propositions 2.13, Corollary
3.13, and Examples 2.14, 3.20. 0

Corollary 0.4 follows from Theorems 0.3 and 2.10.

Corollary 0.6 is a simple consequence of Lemma 4.3 and the following corol-
lary, since the homomorphism jy. : Hy(Xy, Z) — H,(X},Z) is an epimorphism
and Hy (X, Q) ~ Ax(H) ® Q.
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Corollary 4.5. Let H be an algebraic (resp, Hurwitz or pseudo-holomorphic)
irreducible curve in CP?, deg H = m, and f, : X — CP? be a resolution of
singularities of the cyclic covering of degree k branched along H and, maybe,
alone a line “at infinity” L, and let Xy = X \ E. Then

(1) the sequence of groups
H\(X1,2),...,H(Xy,Z),...

has period m, that is, Hy(Xg,Z) ~ H1(Xkim,Z);

(ii) the first Betti number by(X}) of X} is an even number;

(iii) if k = p", where p is prime, then Hy(Xy,Z) and H\(Xy,Z) are finite
groups;

(iv) if k and m are coprime, then Hy(Xy,Z) = 0;

(v) a finitely generated abelian group G can be realized as Hy(Xy,Z) for
some Hurwitz (resp., pseudo-holomorphic) curve H if and only if there
is an automorphism h € Aut(G) such that h® = Id and h — Id is also
an automorphism of G, where d is a divisor of k, and, moreover, if G
is realized as Hy(Xg,Z) for a curve H, then d is a divisor of deg H;
in particular, H,(Xo,7) is a finite abelian group of odd order and any
finite abelian group G of odd order can be realized as Hq(Xs,Z) for
some Hurwitz (resp., pseudo-holomorphic) curve H of even degree.

Proof. 1t follows from Theorems 0.3, 0.5, 2.11, 2.16 and Propositions 2.13,
2.15. [

Note that there are plane algebraic curves H for which the homomorphisms
Jks » Hi(Xyg, Z) — H1(Xg,Z) are not isomorphisms.

Example 4.6. Let H C CP? be a curve of degree 6 given by equation

Q3(207 21, 22)02(207 21, Z2) = 07

where QQ and C' are homogeneous forms of deg Q) = 2, deg C' = 3 and the conic
and cubic, given by equations QQ = 0 and C' = 0, meet transversally at 6 points.

Then AQ(H) ~ Z/?)Z, but H1(7272> =0.

Proof. Tt is known (see [20]) that 7;(CP? \ (H U L)) ~ Brz as a C-group.
Therefore Ay(H) ~ 7Z/3Z (see Examples 2.17 and 3.19).

It is also well known that the minimal resolution of singularities of two-
sheeted covering of CP? branched along H is a K3-surface which is simply
connected. U

Note also that in the case of knotted n-manifold V' C S™*2 the sequence
of homology groups H;(Xy,Z), k € N, is not necessary to be periodic. For
example, if S C S* is a knotted sphere for which 71(S*\ S?) ~ G,,, where
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G, is a group considered in Example 3.20 (by Corollary 3.13, this group can
be realized as a group of knotted sphere), then H;(Xy,Z) is the cyclic group
of order (m + 1)¥ —m* (see Example 2.14).
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