ALEXANDER MODULES OF IRREDUCIBLE C-GROUPS

VIK. S. KULIKOV

Abstract

A complete description of the Alexander modules of knotted n-manifolds in the sphere $S^{n+2}, n \geq 2$, and of irreducible Hurwitz curves is given. This description is applied to calculation of the first homology groups of cyclic coverings of the sphere S^{n+2} and of the projective complex plane $\mathbb{C P}^{2}$ branched respectively alone knotted n-manifolds and along irreducible Hurwitz (in particular, algebraic) curves.

Introduction

A class \mathcal{C} of C-groups and its subclass \mathcal{H} of Hurwitz C-groups (see definitions below) play very important role in geometry of codimension two submanifolds. For example, it is well known that the knot and link groups (given by Wirtinger presentations) are C-groups and any C-group G can be realized as the group of a linked n-manifold if $n \geq 2$, that is, as the fundamental group $\pi_{1}\left(S^{n+2} \backslash V\right)$ of the complement of a closed oriented manifold V without boundary, $\operatorname{dim}_{\mathbb{R}} V=$ n, in the $(n+2)$-dimensional sphere S^{n+2} (see [8]) and viceversa. Note also that a C-group G is isomorphic to $\pi_{1}\left(S^{n+2} \backslash S^{n}\right), n \geq 3$, for some linked n dimensional spheres S^{n} if and only if $H_{2} G=0([5])$. Some other results related to description of groups $\pi_{1}\left(S^{n+2} \backslash S^{n}\right)$ can be found in [15] and [4].

If $H \subset \mathbb{C P}^{2}$ is an algebraic or, more generally, Hurwitz ${ }^{1}$ (resp., pseudoholomorphic) curve of degree m, then the Zariski - van Kampen presentation of $\pi_{1}=\pi_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L)\right)$ defines on π_{1} a structure of a Hurwitz C-group of degree m, where L is a line at "infinity" (that is, L is a fiber of linear projection pr: $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{1}$ and it is in general position with respect to H; if H is a pseudo-holomorphic curve, then pr is given by a pencil of pseudoholomorphic lines). In [9], it was proved that any Hurwitz C-group G of degree m can be realized as the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L)\right)$ for some Hurwitz (resp. pseudo-holomorphic) curve H, $\operatorname{deg} H=2^{n} m$, with singularities of the form $w^{m}-z^{m}=0$, where n depends on the Hurwitz C-presentation of G. So the class \mathcal{H} coincides with the class $\left\{\pi_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L)\right)\right\}$ of the fundamental

[^0]groups of the complements of "affine" Hurwitz (resp., of "affine" pseudoholomorphic) curves and it contains the subclass of the fundamental groups of complements of affine plane algebraic curves.

By definition, a C-group is a group together with a finite presentation

$$
\begin{equation*}
G_{W}=\left\langle x_{1}, \ldots, x_{m} \mid x_{i}=w_{i, j, k}^{-1} x_{j} w_{i, j, k}, w_{i, j, k} \in W\right\rangle \tag{1}
\end{equation*}
$$

where $W=\left\{w_{i, j, k} \in \mathbb{F}_{m} \mid 1 \leq i, j \leq m, 1 \leq k \leq h(i, j)\right\}$ is a collection consisting of elements of the free group \mathbb{F}_{m} generated by free generators x_{1}, \ldots, x_{m} (it is possible that $w_{i_{1}, j_{1}, k_{1}}=w_{i_{2}, j_{2}, k_{2}}$ for $\left(i_{1}, j_{1}, k_{1}\right) \neq\left(i_{2}, j_{2}, k_{2}\right)$), and $h:\{1, \ldots, m\}^{2} \rightarrow \mathbb{Z}$ is some function. Such a presentation is called a C presentation (C, since all relations are conjugations). Let $\varphi_{W}: \mathbb{F}_{m} \rightarrow G_{W}$ be the canonical epimorphism. The elements $\varphi_{W}\left(x_{i}\right) \in G, 1 \leq i \leq m$, and the elements conjugated to them are called the C-generators of G. Let $f: G_{1} \rightarrow G_{2}$ be a homomorphism of C-groups. It is called a C-homomorphism if the images of the C-generators of G_{1} under f are C-generators of the C-group G_{2}. C-groups are considered up to C-isomorphisms. Properties of C-groups were investigated in [7], [9], [12],[11].

A C-presentation (1) is called a Hurwitz C-presentation of degree m if for each $i=1, \ldots, m$ the word $w_{i, i, 1}$ coincides with the product $x_{1} \ldots x_{m}$, and a C-group G is called a Hurwitz C-group (of degree m) if for some $m \in \mathbb{N}$ it possesses a Hurwitz C-presentation of degree m. In other words, a C group G is a Hurwitz C-group of degree m if there are C-generators x_{1}, \ldots, x_{m} generating G such that the product $x_{1} \ldots x_{m}$ belongs to the center of G. Note that the degree of a Hurwitz C-group G is not defined canonically and depends on the Hurwitz C-presentation of G. Denote by \mathcal{H} the class of all Hurwitz C-groups.

It is easy to show that G / G^{\prime} is a finitely generated free abelian group for any C-group G, where $G^{\prime}=[G, G]$ is the commutator subgroup of G. A C group G is called irreducible if $G / G^{\prime} \simeq \mathbb{Z}$ and we say that G consists of k irreducible components if $G / G^{\prime} \simeq \mathbb{Z}^{k}$. If a Hurwitz C-group G is realized as the fundamental group $\pi_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L)\right)$ of the complement of some Hurwitz curve H, then the number of irreducible components of G is equal to the number of irreducible components of H. Similarly, if a C-group G consisting of k irreducible components is realized as the group of a linked n-manifold V, $G=\pi_{1}\left(S^{n+2} \backslash V\right)$, then the number of connected components of V is equal to k.

A free group \mathbb{F}_{n} with fixed free generators is a C-group and for any C-group G the canonical C-epimorphism $\nu: G \rightarrow \mathbb{F}_{1}$, sending the C-generators of G to the C-generator of \mathbb{F}_{1}, is well defined. Denote by N its kernel. Note that if G is an irreducible C-group, then N coincides with G^{\prime}. In what follows we consider only the irreducible case.

Let G be an irreducible C-group. The C-epimorphism ν induces the following exact sequence of groups

$$
1 \rightarrow G^{\prime} / G^{\prime \prime} \rightarrow G / G^{\prime \prime} \xrightarrow{\nu_{*}} \mathbb{F}_{1} \rightarrow 1
$$

where $G^{\prime \prime}=\left[G^{\prime}, G^{\prime}\right]$. The C-generator of \mathbb{F}_{1} acts on $G^{\prime} / G^{\prime \prime}$ by conjugation $\widetilde{x}^{-1} g \widetilde{x}$, where $g \in G^{\prime}$ and \widetilde{x} is one of the C-generators of G. Denote by t this action. The group $A_{0}(G)=G^{\prime} / G^{\prime \prime}$ is an abelian group and the action t defines on $A_{0}(G)$ a structure of Λ-module, where $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$ is the ring of Laurent polynomials with integer coefficients. The Λ-module $A_{0}(G)$ is called the Alexander module of the C-group G. The action t induces an action $h_{\mathbb{C}}$ on $A_{\mathbb{C}}=A_{0}(G) \otimes \mathbb{C}$ and it is easy to see that its characteristic polynomial $h_{\mathbb{C}} \in \mathbb{Q}[t]$. The polynomial $\Delta(t)=a \operatorname{det}\left(h_{\mathbb{C}}-t \mathrm{Id}\right)$, where $a \in \mathbb{N}$ is the smallest number such that $a \operatorname{det}\left(h_{\mathbb{C}}-t \mathrm{Id}\right) \in \mathbb{Z}[t]$, is called the Alexander polynomial of the C-group G. If H is either an algebraic, or Hurwitz, or pseudo-holomorphic irreducible curve in $\mathbb{C P}^{2}$ (resp., $V \subset S^{n+2}$ is a knotted (that is, connected smooth oriented without boundary) n-manifold, $n \geq 1$) and $G=\pi_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L)\right)$ (resp., $G=\pi_{1}\left(S^{n+2} \backslash V\right)$), then the Alexander module $A_{0}(G)$ of the group G and its Alexander polynomial $\Delta(t)$ are called the Alexander module and Alexander polynomial of the curve H (resp., of the knotted manifold V). Note that the Alexander module $A_{0}(H)$ and the Alexander polynomial $\Delta(t)$ of a curve H do not depend on the choice of the generic (pseudo)-line L. Results related to the Alexander modules of knotted spheres are stated in [16], [17].

In [2] and [10], properties of the Alexander polynomials of Hurwitz curves were investigated. In particular, it was proved that if H is an irreducible Hurwitz curve of degree d, then its Alexander polynomial $\Delta(t)$ has the following properties
(i) $\Delta(t) \in \mathbb{Z}[t], \operatorname{deg} \Delta(t)$ is an even number;
(ii) $\Delta(0)=\Delta(1)=1$;
(iii) $\Delta(t)$ is a divisor of the polynomial $\left(t^{d}-1\right)^{d-2}$,
and, moreover, a polynomial $P(t) \in \mathbb{Z}[t]$ is the Alexander polynomial of an irreducible Hurwitz curve if and only if the roots of $P(t)$ are roots of unity and $P(1)=1$.

Let $G=\pi_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L)\right)$ be the fundamental group of the complement of an irreducible affine Hurwitz curve (resp., $G=\pi_{1}\left(S^{n+2} \backslash V\right)$ is the group of a knotted n-manifold, $n \geq 1$). The homomorphism $\nu: G \rightarrow \mathbb{F}_{1}$ defines an infinite unramified cyclic covering $f_{\infty}: X_{\infty} \rightarrow \mathbb{C P}^{2} \backslash(H \cup L)$ (resp., $f_{\infty}: X_{\infty} \rightarrow$ $\left.S^{n+2} \backslash V\right)$. We have $H_{1}\left(X_{\infty}, \mathbb{Z}\right)=G^{\prime} / G^{\prime \prime}$ and the action of t on $H_{1}\left(X_{\infty}, \mathbb{Z}\right)$ coincides with the action of a generator h of the covering transformation group of the covering f_{∞}.

For any $k \in \mathbb{N}$ denote by $\bmod _{k}: \mathbb{F}_{1} \rightarrow \mu_{k}=\mathbb{F}_{1} /\left\{t^{k}\right\}$ the natural epimorphism to the cyclic group μ_{k} of degree k. The covering f_{∞} can be factorized through the cyclic covering $f_{k}^{\prime}: X_{k}^{\prime} \rightarrow \mathbb{C P}^{2} \backslash(H \cup L)$ (resp., $f_{k}^{\prime}: X_{k}^{\prime} \rightarrow S^{n+2} \backslash V$) associated with the epimorphism $\bmod _{k} \circ \nu, f_{\infty}=f_{k}^{\prime} \circ g_{k}$. Since a Hurwitz curve H has only analytic singularities, the covering f_{k}^{\prime} can be extended (see [2]) to a map $\widetilde{f}_{k}: \widetilde{X}_{k} \rightarrow X$ branched along H and, maybe, along L. Here \widetilde{X}_{k} is a closed four dimensional variety locally isomorphic over a singular point of H to a complex analytic singularity given by an equation $w^{k}=F(u, v)$, where $F(u, v)$ is a local equation of H at its singular point. In addition, \widetilde{X}_{k} is locally isomorphic over a neighbourhood of an intersection point of H and L to the singularity locally given by $w^{k}=v u^{d}$, where d is the smallest non-negative integer for which $m+d$ is divisible by k. The variety \widetilde{X}_{k}, if $\widetilde{f}_{k}^{-1}(L) \subset \operatorname{Sing} \widetilde{X}_{k}$, can be normalized (as in the algebraic case) and we obtain a covering $\widetilde{f}_{k \text {, norm }}: \widetilde{X}_{k, \text { norm }} \rightarrow \mathbb{C P}^{2}$ in which $\widetilde{X}_{k \text {, norm }}$ is a singular analytic variety at its finitely many singular points. The map $\widetilde{f}_{k \text {, norm }}$ is branched along H and, maybe, along the line "at infinity" L (if k is not a divisor of $\operatorname{deg} H$, then $\widetilde{f}_{k, \text { norm }}$ is branched along L). One can resolve the singularities of $\widetilde{X}_{k, \text { norm }}$ and obtain a smooth manifold $\bar{X}_{k}, \operatorname{dim}_{\mathbb{R}} \bar{X}_{k}=4$. Let $\sigma: \bar{X}_{k} \rightarrow \widetilde{X}_{k, \text { norm }}$ be a resolution of the singularities, $E=\sigma^{-1}\left(\operatorname{Sing} \widetilde{X}_{k, \text { norm }}\right)$ the preimage of the set of singular points of $\widetilde{X}_{k, \text { norm }}$, and $\bar{f}_{k}=\widetilde{f}_{k \text {, norm }} \circ \sigma$. The action h induces an action \bar{h}_{k} on \bar{X}_{k} and an action t on $H_{1}\left(\bar{X}_{k}, \mathbb{Z}\right)$.

Similarly, the covering $f_{k}^{\prime}: X_{k}^{\prime} \rightarrow S^{n+2} \backslash V$ can be extended to a smooth map $f_{k}: X_{k} \rightarrow S^{n+2}$ branched along V, where X_{k} is a smooth compact $(n+2)$ manifold, and the action t induces actions h_{k} on X_{k} and $h_{k *}$ on $H_{1}\left(X_{k}, \mathbb{Z}\right)$. The action $h_{k *}$ defines on $H_{1}\left(X_{k}, \mathbb{Z}\right)$ a structure of Λ-module.

In [2], it was shown that for any Hurwitz curve H, a covering space \bar{X}_{k} can be embedded as a symplectic submanifold to a complex projective rational 3fold on which the symplectic structure is given by an integer Kähler form, and it was proved that the first Betti number $b_{1}\left(\bar{X}_{k}\right)=\operatorname{dim}_{\mathbb{C}} H_{1}\left(\bar{X}_{k}, \mathbb{C}\right)$ of \bar{X}_{k} is equal to $r_{k, \neq 1}$, where $r_{k, \neq 1}$ is the number of roots of the Alexander polynomial $\Delta(t)$ of the curve \bar{H} which are k-th roots of unity not equal to 1 .

Let M be a Noetherian Λ-module. We say that M is $(t-1)$-invertible if the multiplication by $t-1$ is an automorphism of M. A Λ-module M is called t-unipotent if for some $n \in \mathbb{N}$ the multiplication by t^{n} is the identity automorphism of M. The smallest $k \in \mathbb{N}$ such that

$$
t^{k}-1 \in \operatorname{Ann}(M)=\{f(t) \in \Lambda \mid f(t) v=0 \text { for } \forall v \in M\}
$$

is called the unipotence index of t-unipotent module M.

Let M be a Noetherian $(t-1)$-invertible Λ-module. A t-invertible Λ-modules $A_{n}(M)=M /\left(t^{k}-1\right) M$ is called the k-th derived Alexander module of M and if M is the Alexander module of a C-group G (resp., of a knotted n-manifold V, resp., of a Hurwitz curve H), then $A_{k}(M)$ is called the k-th derived Alexander module of G (resp., of V, resp., of H) and it will be denoted by $A_{k}(G)$ (resp., $A_{k}(V)$, resp., $\left.A_{k}(H)\right)$

The main results of the article are the following statements.
Theorem 0.1. A Λ-module M is the Alexander module of a knotted n-manifold, $n \geq 2$, if and only if it is a Noetherian ($t-1$)-invertible Λ-module.
Theorem 0.2. Let V be a knotted n-manifold, $n \geq 1$, and $f_{k}: X_{k} \rightarrow S^{n+2}$ the cyclic covering branched along V. Then $H_{1}\left(X_{k}, \mathbb{Z}\right)$ is isomorphic to the k-th Alexander module $A_{k}(V)$ of V as a Λ-module.

Similar statements hold in the case of algebraic and, more generally, of Hurwitz (resp., pseudo-holomorphic) curves.
Theorem 0.3. A Λ-module M is the Alexander module of an irreducible Hurwitz (resp., pseudo-holomorphic) curve if and only if it is a Noetherian ($t-1$)invertible t-unipotent Λ-module. In particular, the Alexander module of an irreducible algebraic plane curve is a Noetherian $(t-1)$-invertible t-unipotent Λ-module.

The unipotence index of the Alexander module $A_{0}(H)$ of an irreducible plane algebraic (resp., Hurwitz or pseudo-holomorphic) curve H is a divisor of $\operatorname{deg} H$.
Corollary 0.4. The Alexander module $A_{0}(H)$ of an irreducible plane algebraic (resp., Hurwitz or pseudo-holomorphic) curve H is finitely generated over \mathbb{Z}, that is, $A_{0}(H)$ is a finitely generated abelian group.

A finitely generated abelian group G is the Alexander module $A_{0}(H)$ of some irreducible Hurwitz or pseudo-holomorphic curve H if and only if there are an integer m and an automorphism $h \in \operatorname{Aut}(G)$ such that $h^{m}=I d$ and $h-I d$ is also an automorphism of G.
Theorem 0.5. Let H be an algebraic (resp., Hurwitz or pseudo-holomorphic) irreducible curve in $\mathbb{C P}^{2}$, $\operatorname{deg} H=m$, and $\bar{f}_{k}: \bar{X}_{k} \rightarrow \mathbb{C P}^{2}$ be a resolution of singularities of the cyclic covering of degree $\operatorname{deg} \bar{f}_{k}=k$ branched along H and, maybe, alone the line "at infinity" L. Then

$$
\begin{aligned}
& H_{1}\left(\bar{X}_{k} \backslash E, \mathbb{Z}\right) \simeq A_{k}(H), \\
& H_{1}\left(\bar{X}_{k}, \mathbb{Q}\right) \simeq A_{k}(H) \otimes \mathbb{Q},
\end{aligned}
$$

where $A_{k}(H)$ is the k-th Alexander module of H and $E=\sigma^{-1}\left(\operatorname{Sing} \widetilde{X}_{k \text { norm }}\right)$.
It should be noticed that in general case the homomorphism $H_{1}\left(\bar{X}_{k} \backslash E, \mathbb{Z}\right) \simeq$ $A_{k}(H) \rightarrow H_{1}\left(\bar{X}_{k}, \mathbb{Z}\right)$, induced by the embedding $\bar{X}_{k} \backslash E \hookrightarrow \bar{X}_{k}$, is an epimorphism and it is not necessary to be an isomorphism (see Example 4.6).

Corollary 0.6. Let H be an algebraic (resp, Hurwitz or pseudo-holomorphic) irreducible curve in $\mathbb{C P}^{2}$, $\operatorname{deg} H=m$, and $\bar{f}_{k}: \bar{X}_{k} \rightarrow \mathbb{C P}^{2}$ be a resolution of singularities of the cyclic covering of degree $\operatorname{deg} f_{k}=k$ branched along H and, maybe, alone the line "at infinity". Then
(i) the first Betti number $b_{1}\left(\bar{X}_{k}\right)$ of \bar{X}_{k} is an even number;
(ii) if $k=p^{r}$, where p is prime, then $H_{1}\left(\bar{X}_{k}, \mathbb{Q}\right)=0$;
(iii) if k and m are coprime, then $H_{1}\left(\bar{X}_{k}, \mathbb{Z}\right)=0$;
(iv) $H_{1}\left(\bar{X}_{2}, \mathbb{Z}\right)$ is a finite abelian group of odd order.

Note also that any C-group G can be realized (see [9]) as $\pi_{1}\left(\Delta^{2} \backslash\left(C \cap \Delta^{2}\right)\right)$, where $\Delta^{2}=\{|z|<1\} \times\{|w|<1\} \subset \mathbb{C}^{2}$ is a bi-disc and $C \subset \mathbb{C}^{2}$ is a nonsingular algebraic curve such that the restriction of $\operatorname{pr}_{1}: \Delta^{2} \rightarrow\{|z|<1\}$ to $C \cap \Delta^{2}$ is a proper map. Therefore the analogue of Theorems 0.1 and 0.2 and corollaries of them hold also in this case.

The proof of Theorems 0.1 and 0.3 is given in section 3. In section 1, properties of Noetherian $(t-1)$-invertible Λ-modules are described and section 2 is devoted to Noetherian t-unipotent Λ-modules. In section 4, Theorems 0.2 and 0.5 are proved and some other corollaries of them are stated.

1. $(t-1)$-INVERTIBLE Λ-MODULES

1.1. Criteria of $(t-1)$-invertibility. Before to describe $(t-1)$-invertible Λ modules, let us recall that the ring $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$ is Noetherian. Each element $f \in \Lambda$ can be written in the form

$$
f=\sum_{n_{-} \leq i \leq n_{+}} a_{i} t^{i} \in \mathbb{Z}\left[t, t^{-1}\right],
$$

where $n_{-}, n_{+}, i, a_{i} \in \mathbb{Z}$. If $n_{-} \geq 0$ for $f \in \Lambda$, then $f \in \mathbb{Z}[t]$ and it will be called a polynomial.

For any $n \in \mathbb{Z}, n \neq 0$, a \mathbb{Z}-homomorphism

$$
f(t)=\sum a_{i} t^{i} \mapsto f(n)=\sum a_{i} n^{i}
$$

is well defined. The image $f(n)$ of $f(t)$ is called the value of $f(t)$ at n. If $f(t)$ is a polynomial, then its value $f(0)=a_{0}$ is also well defined.

We begin with the following lemma.
Lemma 1.1. A Noetherian Λ-module M is $(t-1)$-invertible if and only if the multiplication by $t-1$ is a surjective endomorphism of M.

Proof. Lemma follows from some more general statement. Namely, any surjective Λ-endomorphism $f: M \rightarrow M$ of a Noetherian Λ-module M is an isomorphism. Indeed, if ker $f \neq 0$, then the chain of submodules

$$
\operatorname{ker} f \subset \operatorname{ker} f^{2} \subset \cdots \subset \operatorname{ker} f^{n} \subset \ldots
$$

is strictly increasing, since f is an epimorphism. This contradicts the Noetherian property of the module M.

Let M be a Noetherian $(t-1)$-invertible Λ-module. Consider an element $v \in M$ and denote by $M_{v}=<v>$ a principal submodule of M generated by v. Since M is Noetherian, any principle submodule of M is contained in a maximal principle submodule of M.
Lemma 1.2. Any maximal principal submodule M_{v} of $(t-1)$-invertible module M is $(t-1)$-invertible.

Proof. Since M is $(t-1)$-invertible module, there is an element $v_{1} \in M$ such that $v=(t-1) v_{1}$. Therefore $M_{v} \subset M_{v_{1}}$. Since M_{v} is a maximal principle submodule of M, we have $M_{v}=M_{v_{1}}$. Therefore $v_{1} \in M_{v}$ and the multiplication by $t-1$ defines a surjective endomorphism of M_{v}. To complete the proof we apply Lemma 1.1.

A principal submodule $M_{v} \subset M$ is isomorphic to $\Lambda / \mathrm{Ann}_{v}$, where $\mathrm{Ann}_{v}=$ $\{f \in \Lambda \mid f v=0\}$ is the annihilator of v. The annihilator Ann_{v} of an element $v \in M$ is an ideal of Λ. Denote by

$$
\operatorname{Ann}(M)=\bigcap_{v \in M} \operatorname{Ann}_{v}=\{g(t) \in \Lambda \mid g(t) v=0 \text { for } \forall v \in M\}
$$

the annihilator of M.
Lemma 1.3. A principal Λ-module $M=\Lambda / I$ is a $(t-1)$-invertible if and only if the ideal I contains a polynomial $f(t)$ such that $f(1)=1$.

Proof. Let M is generated by an element $v \in M$.
If a polynomial $f(t)$ such that $f(1)=1$ is contained in $I=\mathrm{Ann}_{v}$, then $f(t)$ can be expressed in the form

$$
\begin{equation*}
f(t)=(t-1) g(t)+1 \tag{2}
\end{equation*}
$$

for some polynomial $g(t)$. Therefore $v=(t-1) v_{1}$, where $v_{1}=-g(t) v$. Thus, the multiplication by $t-1$ is a surjective automorphism of M and hence, by Lemma 1.1, the multiplication by $t-1$ is an isomorphism of M.

Conversely, if M is $(t-1)$-invertible, then there is an element $v_{1} \in M$ such that $v=(t-1) v_{1}$. Let $v_{1}=h(t) v$ for some $h(t) \in \Lambda$. We have $(1-(t-1) h(t)) v=0$. Therefore $1-(t-1) h(t) \in \mathrm{Ann}_{v}=I$. There is an integer k such that $f(t)=t^{k}(1-(t-1) h(t)) \in I \cap \mathbb{Z}[t]$. It is easy to see
that $f(1)=1$.
As a consequence of Lemma 1.3 we obtain the following Lemma.
Lemma 1.4. Any principal submodule of a principal $(t-1)$-invertible module M is $(t-1)$-invertible.

Proof. Indeed, let M be generated by an element $v \in M$ and its submodule M_{1} be generated by $v_{1}=h(t) v$. Then $\mathrm{Ann}_{v} \subset \mathrm{Ann}_{v_{1}}$.

Since M is $(t-1)$-invertible, by Lemma 1.3, there is a polynomial $f(t) \in$ Ann_{v} such that $f(1)=1$. Applying again Lemma 1.3, we have that M_{1} is $(t-1)$-invertible, since $f(t) \in \mathrm{Ann}_{v_{1}}$.

Proposition 1.5. Any submodule of a Noetherian $(t-1)$-invertible Λ-module M is $(t-1)$-invertible.

Proof. Let N is a submodule of M. Since M is a Noetherian Λ-module, the submodule N is generated by a finite set of elements, say v_{1}, \ldots, v_{n}. By Lemma 1.4, each principal submodule $M_{v_{i}} \subset N \subset M$ is $(t-1)$-invertible. Therefore the multiplication by $t-1$ is a surjective endomorphism of N, since it is surjective on each $M_{v_{i}} \subset N$ and the elements v_{1}, \ldots, v_{n} generate the module N. To complete the proof, we apply Lemma 1.1.

Proposition 1.6. Any factor module of a Noetherian $(t-1)$-invertible Λ module M is $(t-1)$-invertible.

Proof. It follows from Lemma 1.1.

Lemma 1.7. Let M_{1}, \ldots, M_{k} be Noetherian ($t-1$)-invertible Λ-modules. Then the direct sum $M=\bigoplus_{i=1}^{k} M_{i}$ is a Noetherian $(t-1)$-invertible Λ-module.

Proof. Obvious.
Corollary 1.8. Any Noetherian $(t-1)$-invertible Λ-module M is a the factor module of a direct sum $\bigoplus_{j=1}^{n} \Lambda / I_{j}$ of principle $(t-1)$-invertible Λ-modules Λ / I_{j}.

Proof. Since M is a Noetherian Λ-module, it is generated by a finite set of elements, say v_{1}, \ldots, v_{n}. By Proposition 1.5, each principal submodule $M_{v_{i}} \subset$ M is $(t-1)$-invertible and, obviously, there is an epimorphism $\bigoplus_{j=1}^{n} M_{v_{i}} \mapsto$ M.

Remark 1.9. An abelian group G admits a structure of $(t-1)$-invertible Λ module if and only if it has an automorphism t such that $t-1$ is also an automorphism. If G is finitely generated and $t \in A u t G$ is chosen, then G is a Noetherian Λ-module.

Note that in general case an abelian group admits many structures of $(t-1)$ invertible Λ-modules. For example, the group $\mathbb{Z} / 9 \mathbb{Z}$ admits 3 such structures: either $t v=2 v$, or $t v=5 v$, or $t v=8 v$, where v is a generator of $\mathbb{Z} / 9 \mathbb{Z}$.

Theorem 1.10. A Noetherian Λ-module M is $(t-1)$-invertible if and only if there is a polynomial $f(t) \in \operatorname{Ann}(M)$ such that $f(1)=1$.

Proof. If M is $(t-1)$-invertible, then, by Proposition 1.5, its each principal submodule M_{v} is also $(t-1)$-invertible. Therefore, by Lemma 1.3, the annihilator Ann_{v} of $v \in M$ contains a polynomial $f_{v}(t)$ such that $f_{v}(1)=1$. If M is generated by v_{1}, \ldots, v_{n}, then the polynomial $f(t)=f_{v_{1}}(t) \ldots f_{v_{n}}(t)$ is a desired one.

Let us show that if there is a polynomial $f(t) \in \operatorname{Ann}(M)$ such that $f(1)=1$, then M is a $(t-1)$-invertible module. Indeed, in this case by Lemma 1.3, each principle submodule M_{v} of M is $(t-1)$-invertible. Therefore the multiplication by $t-1$ is an isomorphism of M, since it is an isomorphism of each principle submodule M_{v} of M.

As a consequence of Theorem 1.10 we obtain that any Noetherian $(t-1)$ invertible module M is a torsion Λ-module and, consequently,

$$
\operatorname{dim}_{\mathbb{Q}} M \otimes \mathbb{Q}<\infty
$$

The following proposition will be used in the proof of Theorems 0.1 and 0.3.
Proposition 1.11. Any Noetherian $(t-1)$-invertible Λ-module M is isomorphic to a factor module Λ^{n} / M_{1} of a free Λ-module Λ^{n}, where the submodule M_{1} is generated by elements $w_{1}, \ldots, w_{n}, \ldots, w_{n+k}$ of Λ^{n} such that
(i) for $i=1, \ldots, n$ the vector $w_{i}=\left(0, \ldots, 0, f_{i}(t), 0, \ldots, 0\right)$, where a polynomial $f_{i}(t)$ stands on the i-th place and it is such that $f_{i}(1)=1$,
(ii) $w_{n+j}=(t-1) \bar{w}_{n+j}=\left((t-1) g_{j, 1}(t), \ldots,(t-1) g_{j, n}(t)\right)$ for $j=1, \ldots, k$, where $g_{j, l}(t)$ are polynomials,
(iii) if for some $m \in \mathbb{N}$ the polynomial $t^{m}-1 \in \operatorname{Ann}(M)$, then for $i=$ $1, \ldots, n$ the vector $w_{n+i}=\left(0, \ldots, 0, t^{m}-1,0, \ldots, 0\right)$, where the polynomial $t^{m}-1$ stands on the i-th place.

Proof. Let us choose generators v_{1}, \ldots, v_{n} of the Noetherian Λ-module M. Then, by Theorem 1.10, there are polynomials $f_{i}(t) \in \operatorname{Ann}_{v_{i}}$ such that $f_{i}(1)=$ 1. Obviously, there is an epimorphism

$$
h_{1}: \bigoplus_{i=1}^{n} \Lambda /\left(f_{i}(t)\right) \rightarrow M
$$

of Λ-modules such that $h\left(u_{i}\right)=v_{i}$ for $u_{i}=(0, \ldots, 0,1,0 \ldots, 0)$ where 1 stands on the i-th place. The kernel $N=\operatorname{ker} h$ is a Noetherian Λ-module. Let it be generated by

$$
u_{n+1}=\left(g_{1,1}(t), \ldots, g_{1, n}(t)\right), \ldots, u_{n+k}=\left(g_{k, 1}(t), \ldots, g_{k, n}(t)\right)
$$

Without loss of generality, we can assume that all $g_{i, j}(t)$ are polynomials.
By Theorem 1.10, the Λ-module $\bigoplus_{i=1}^{n} \Lambda /\left(f_{i}(t)\right)$ is $(t-1)$-invertible and by Proposition 1.5, N is also $(t-1)$-invertible Λ-module. Therefore the elements $(t-1) u_{n+1}, \ldots,(t-1) u_{n+k}$ are also generate N.

If for some $m \in \mathbb{N}$ the polynomial $t^{m}-1 \in \operatorname{Ann}(M)$, then the elements $\left(0, \ldots, 0, t^{m}-1,0, \ldots, 0\right) \in N$, where the polynomial $t^{m}-1$ stands on the i-th place. Therefore we can add the elements $\left(0, \ldots, 0, t^{m}-1,0, \ldots, 0\right)$ to the set $(t-1) u_{n+1}, \ldots,(t-1) u_{n+k}$ and renumber the elements $\bar{u}_{n+1}, \ldots, \bar{u}_{n+k}$ (here we put $k:=n+k$) of the obtained set generating N so that $\bar{u}_{n+j}=$ $\left(0, \ldots, 0, t^{n}-1,0, \ldots, 0\right) \in N$ for $j=1, \ldots, n$, where the polynomial $t^{m}-1$ is stands on the j-th place.

Now, to complete the proof, notice that the kernel M_{1} of the composite map $h \circ \nu: \Lambda^{n} \rightarrow M$ of h and the natural epimorphism $\nu: \Lambda^{n} \rightarrow \bigoplus_{i=1}^{n} \Lambda /\left(f_{i}(t)\right)$ is generated by the elements

$$
w_{i}=\left(0, \ldots, 0, f_{i}(t), 0, \ldots, 0\right), \quad i=1, \ldots, n
$$

where the polynomial $f_{i}(t)$ stands on the i-th place, and the elements

$$
w_{n+i}=\left(f_{i, 1}(t), \ldots, f_{i, n}(t)\right) \in \Lambda^{n}, \quad i=1, \ldots, k
$$

where the coordinates $f_{i, j}(t)$ of each w_{n+i} coincide with the coordinates $\bar{g}_{i, j}(t)$ of $\bar{u}_{n+i}=\left(\bar{g}_{i, j}(t), \ldots, \bar{g}_{i, j}(t)\right)$.
1.2. \mathbb{Z}-torsion submodules of $(t-1)$-invertible Λ-modules. An element v of a Λ-module M is said to be of a finite order if there is $m \in \mathbb{Z} \backslash\{0\}$ such that $m v=0$. A Λ-module M is called \mathbb{Z}-torsion if all its elements are of finite order. For any Λ-module M denote by $M_{\text {fin }}$ a subset of M consisting of all elements of finite order. It is easy to see that $M_{\text {fin }}$ is a \mathbb{Z}-torsion Λ-module. If M is a Noetherian $(t-1)$-invertible Λ-module, then $M_{\text {fin }}$ is also a Noetherian $(t-1)$-invertible Λ-module, and it follows from Propositions 1.5 and 1.6 that there is an exact sequence of Λ-modules

$$
0 \rightarrow M_{f i n} \rightarrow M \rightarrow M_{1} \rightarrow 0
$$

in which M_{1} is a Noetherian $(t-1)$-invertible Λ-module free from elements of finite order.

Let $M=M_{f i n}$ be a Noetherian $(t-1)$-invertible Λ-module. Since M is finitely generated over Λ, there is an integer $d \in \mathbb{N}$ such that $d v=0$ for all $v \in M$ (such d will be called an exponent for M). Let $d=p_{1}^{r_{1}} \ldots p_{n}^{r_{n}}$ be its prime factorization. Denote by $M\left(p_{i}\right)$ the subset of M consisting of all
elements $v \in M$ such that $p_{i}^{r} v=0$ for some $r \in \mathbb{N}$. It is easy to see that $M(p)$ is a Λ-submodule of M and we call it the p-submodule of M.

Theorem 1.12. Let $M=M_{\text {fin }}$ be a Noetherian $(t-1)$-invertible Λ-module and $d=p_{1}^{r_{1}} \ldots p_{n}^{r_{n}}$ its exponent. Then M is the direct sum

$$
M=\bigoplus_{i=1}^{n} M\left(p_{i}\right)
$$

of its p-submodules.
Proof. It coincides with the proof of similar Theorem for abelian groups (see, for example, Theorem 8.1 in [14]).

Since the ring $\Lambda=\mathbb{Z}\left[t, t^{-1}\right]$ is Noetherian, any its ideal I is finitely generated. Denote by $I_{\mathrm{pol}}=I \cap \mathbb{Z}[t]$ the ideal of the ring $\mathbb{Z}[t]$. It is well known that $I=\Lambda I_{\mathrm{pol}}$, that is, any ideal I of Λ is generated by polynomials.

Recall that $\mathbb{Z}[t]$ is a factorial ring. Its units are precisely the units of \mathbb{Z}, and its prime elements are either primes of \mathbb{Z} or polynomials $q(t)=\sum a_{i} t^{i}$ which are irreducible in $\mathbb{Q}[t]$ and have content 1 (that is, the greatest common divisors of the coefficients a_{i} of $q(t)$ are equal to 1). It follows from Euclidean algorithm that for any two polynomials $q_{1}(t), q_{2}(t) \in \mathbb{Z}[t]$ there are polynomials $h_{1}(t), h_{2}(t), r(t) \in \mathbb{Z}[t]$ and a constant $d \in \mathbb{Z}, d \neq 0$, such that

$$
\begin{equation*}
h_{1}(t) q_{1}(t)+h_{2}(t) q_{2}(t)=d r(t) \tag{3}
\end{equation*}
$$

where $r(t)$ is the greatest common divisor of the polynomials $q_{1}(t)$ and $q_{2}(t)$.
Lemma 1.13. Let M be a Noetherian $(t-1)$-invertible Λ-module and let $t^{n}-1 \in \operatorname{Ann}(M)$ for some $n=p^{r}$, where p is prime. Then M is \mathbb{Z}-torsion.

Proof. If $t^{n}-1=(t-1)\left(t^{n-1}+\cdots+t+1\right)$ belongs to $\operatorname{Ann}(M)$, then the polynomial $g_{n}(t)=t^{n-1}+\cdots+t+1 \in \operatorname{Ann}(M)$, since M is $(t-1)$-invertible. For $n=p^{r}$ in the factorization

$$
g_{p^{r}}(t)=\prod_{i=1}^{r} \Phi_{p^{i}}(t)=\prod_{i=1}^{r} \sum_{j=0}^{p-1} t^{j p^{i-1}}
$$

each factor is an irreducible element of Λ.
By Theorem 1.10, there is a polynomial $f(t) \in \operatorname{Ann}(M)$ such that $f(1)=1$ and if $n=p^{r}$ for some prime p, then $f(t)$ and $g_{p^{r}}(t)$ have not common irreducible divisors. Indeed, if $g(t)$ is a divisor of $f(t)$, then we should have $g(1)= \pm 1$, since $f(1)=1$, but $\Phi_{p^{i}}(1)=p$ for each i. Therefore, there are polynomials $h_{1}(t), h_{2}(t)$, and a constant $d \in \mathbb{N}$ such that $h_{1}(t) f(t)+h_{2}(t) g_{p^{r}}(t)=d$ and hence if $g_{p^{r}}(t) \in \operatorname{Ann}(M)$, then $d \in \operatorname{Ann}(M)$, that is, M is \mathbb{Z}-torsion.
1.3. Principle $(t-1)$-invertible Λ-modules. Let I be a non-zero ideal of the ring Λ. Denote by I_{m} the subset of I_{pol} consisting of all polynomials $f(t)$ having the smallest degree (let m be this smallest degree). Note that if $f(t) \in I_{m} \backslash\{0\}$, then $f(0) \neq 0$.

Consider any two polynomials $f_{1}(t), f_{2}(t) \in I_{m}$ and write them in the form $f_{i}(t)=d_{i} q_{i}(t)$, where $d_{i} \in \mathbb{Z}$ and the polynomials $q_{i}(t)$ have content 1 . We have $q_{1}(t)=q_{2}(t)$. Indeed, for their common greatest divisor $r(t)$ we have $\operatorname{deg} r(t) \leq m$ and, moreover, $\operatorname{deg} r(t)=m$ if and only if $q_{1}(t)=q_{2}(t)$. On the other hand, it follows from (3) that $d_{2} h_{1}(t) f_{1}(t)+d_{1} h_{2}(t) f_{2}(t)=d_{1} d_{2} d r(t)$ for some polynomials $h_{1}(t), h_{2}(t)$. Therefore $d_{1} d_{2} d r(t) \in I_{\mathrm{pol}}$ and we should have $\operatorname{deg} r(t)=m$.

Applying again Euclidean algorithm for integers, we obtain that if two polynomials $f_{i}(t)=d_{i} q(t)$ belong to I_{m}, then $d_{0} q(t)$ belongs also to I_{m}, where d_{0} is the greatest common divisor of d_{1} and d_{2}. Thus there is a polynomial $f_{m}(t)=d_{m} q(t) \in I_{m}$ such that any polynomial $f(t) \in I_{m}$ is divided by $f_{m}(t)$. The polynomial $f_{m}(t)$ is defined uniquely up to multiplication by ± 1 and it will be called a leading generator of I.

Let I be a non-zero ideal of Λ and $f(t)=d_{m} q(t)$ be its leading generator. Then any polynomial $h(t) \in I$ should be divisible by $q(t)$. Indeed, as above it is easy to show that if $r(t)$ is the greatest common divisor of $f(t)$ and $h(t)$, then there is a constant d such that $d r(t) \in I$ and since $\operatorname{deg} q(t)$ is minimal for polynomials belonging to I, we should have the equality $r(t)=q(t)$.

The above considerations give rise to the following proposition.
Proposition 1.14. Let $M=M_{v}$ be a principle $(t-1)$-invertible Λ-module generated by an element v. Then the annihilator $A n n_{v}$ is generated by a finite set of polynomials $f_{1}(t), \ldots, f_{k}(t)$, where $f_{i}(t)=d_{i} q_{i}(t), d_{i} \in \mathbb{Z}, d_{i} \neq 0$, and $q_{i}(t)$ have content 1 for all i, such that $f_{1}(t), \ldots, f_{k}(t)$ satisfy the following properties:
(i) $\operatorname{deg} f_{1}<\operatorname{deg} f_{2} \leq \cdots \leq \operatorname{deg} f_{k}$,
(ii) $f_{i}(0) \neq 0$ for all i,
(iii) $q_{1}(1)=1$,
(iv) $q_{1}(t) \mid q_{i}(t)$ for $i=2, \ldots, k$,
(v) $\left|d_{i}\right|>1$ for $i=1, \ldots, k-1, d_{k}=1$, and $q_{k}(1)=1$.

A set of generators of Ann_{v} is said to be good if it satisfies properties (i) (v) from Proposition 1.14. We will distinguish the principal $(t-1)$-invertible Λ-modules $M=M_{v}$ as follows. We say that M_{v} is of finite type if in a good system $f_{1}(t), \ldots, f_{k}(t)$ of generators of Ann_{v} the leading generator $f_{1}(t) \equiv d_{1}$ is a constant (that is, $q_{1}(t) \equiv 1$). A principle Λ-module M_{v} is said to be of mixed type if in a good system $f_{1}(t), \ldots, f_{k}(t)$ of generators of Ann_{v} the degree of the leading generator $f_{1}=d_{1} q_{1}(t)$ is greater than one and $\left|d_{1}\right| \geq 2$. It
follows from the above considerations that if a principle $(t-1)$-invertible Λ module $M=M_{v}$ is not of finite or mixed types, then for the leading generator $f_{1}(t)=q_{1}(t)$ of a good system of generators of Ann_{v} we should have $q_{1}(1)=1$ and therefore Ann_{v} is a principle ideal generated by $q_{1}(t)$, since any polynomial $h(t) \in \mathrm{Ann}_{v}$ is divisible by $q_{1}(t)$. Such principle $(t-1)$-invertible Λ-modules will be called bi-principle.

It is easy to see that if $M=M_{v}$ is a principle Λ-module of finite type and $d_{1} \in \mathbb{Z}$ is the leading generator of Ann_{v}, then all elements of M have order d_{1}, that is, a principle Λ-module M_{v} is of finite type if and only if it is \mathbb{Z}-torsion.

If $M=M_{v}$ is a bi-principle Λ-module, then M has not non-zero elements of finite order. Indeed, let $q(t)$ be a generator of Ann_{v}. If an element $v_{1}=h(t) v$ has order m, then $m h(t) \in \mathrm{Ann}_{v}$, that is, $m h(t)$ is divisible by $q(t)$. Since t is a unite of Λ, we can assume that $h(t)$ is a polynomial, and since $q(1)=1$, the polynomial $h(t)$ should be divisible by $q(t)$, that is, $v_{1}=0$.

If $M=M_{v}$ is a Λ-module of mixed type, then there is an exact sequence of Λ-modules

$$
0 \rightarrow M_{1} \rightarrow M \rightarrow M_{2} \rightarrow 0
$$

in which M_{1} is a principle Λ-module of finite type and M_{2} is a bi-principle Λ module. Indeed, let $d_{1} q_{1}(t)$ be the leading generator of Ann_{v}. Put $v_{1}=q_{1}(t) v$. Then it is easy to see that the Λ-module $M_{1}=M_{v_{1}} \subset M$, generated by v_{1}, is of finite type and the Λ-module $M_{2}=M / M_{1} \simeq \Lambda /\left(q_{1}\right)$ is bi-principle.
1.4. Finitely \mathbb{Z}-generated $(t-1)$-invertible Λ-modules. Each Λ-module M can be considered as a \mathbb{Z}-module, that is as an abelian group.

Proposition 1.15. A Noetherian $(t-1)$-invertible Λ-module M is finitely generated over \mathbb{Z} if and only if there is a polynomial

$$
q(t)=\sum_{i=0}^{n} a_{i} t^{i} \in \operatorname{Ann}(M)
$$

such that $a_{n}=a_{0}=1$.
Proof. In the beginning, we prove Proposition 1.15 in the case when $M=M_{v}$ is a principal Λ-module.

It is easy to see that if there is a polynomial $q(t)=\sum_{i=0}^{n} a_{i} t^{i} \in \mathrm{Ann}_{v}$ such that $a_{n}=a_{0}=1$, then M is generated over \mathbb{Z} by the elements $v, t v, \ldots, t^{n-1} v$.

Let a Λ-module $M=M_{v}$ be finitely generated over \mathbb{Z} and $h_{1}(t) v, \ldots, h_{m}(t) v$ its generators. Since the multiplication by t is an isomorphism of M, we can assume that $h_{i}(t), i=1, \ldots, m$, are polynomials such that $h_{i}(0)=0$. Put $n-1=\max \left(\operatorname{deg} h_{1}(t), \ldots, \operatorname{deg} h_{m}(t)\right)$. Since $h_{1}(t) v, \ldots, h_{m}(t) v$ generate M over \mathbb{Z}, there are integers b_{1}, \ldots, b_{m} and c_{1}, \ldots, c_{m} such that

$$
v=\sum b_{i} h_{i}(t) v \quad \text { and } \quad t^{n} v=\sum c_{i} h_{i}(t) v
$$

Therefore the polynomials $1-\sum b_{i} h_{i}(t)$ and $t^{n}-\sum c_{i} h_{i}(t)$ belong to Ann_{v}. Then the polynomial $t^{n}+1-\sum\left(b_{i}+c_{i}\right) h_{i}(t)$ is a desired one.

In general case, a Noetherian $(t-1)$-invertible Λ-module M is generated by a finite set of elements v_{1}, \ldots, v_{m}, and M is finitely generated over \mathbb{Z} if and only if for all v_{i} the principal submodules $M_{v_{i}} \subset M$ are finitely generated over \mathbb{Z}.

If $g(t) \in \operatorname{Ann}(M)$, then $g(t) \in \operatorname{Ann}_{v_{i}}$ for $i=1, \ldots, m$. In particular, if there is $q(t)=\sum_{i=0}^{n} a_{i} t^{i} \in \operatorname{Ann}(M)$ such that $a_{n}=a_{0}=1$, then all $M_{v_{i}}$ (and consequently, M) are finitely generated over \mathbb{Z}.

If for all i the principal submodules $M_{v_{i}} \subset M$ are finitely generated over \mathbb{Z}, then there are polynomials $q_{i}(t)=\sum_{j=0}^{n_{i}} a_{i, j} t^{j} \in \mathrm{Ann}_{v_{i}}$ such that $a_{i, n_{i}}=a_{i, 0}=$ 1. Put $n=\sum n_{i}$. Then the polynomial

$$
q(t)=q_{1}(t) \ldots q_{n}(t)=t^{n}+1+\sum_{j=1}^{n-1} a_{j} t^{j} \in \operatorname{Ann}(M)
$$

since $q(t) \in \mathrm{Ann}_{v_{i}}$ for all v_{i}.
It follows from Proposition 1.15 that there are a lot of $(t-1)$-invertible bi-principle modules $M=\Lambda / I$ which are not finitely generated over \mathbb{Z}. More precisely, it is easy to see that a bi-principle $(t-1)$-invertible module $M=\Lambda / I$ is finitely generated over \mathbb{Z} if and only if the ideal $I=\langle q(t)\rangle$ is generated by a polynomial $q(t)=\sum_{i=0}^{n} a_{i} t^{i}$ such that $q(1)=1$ and its coefficients a_{0} and a_{n} are equal to ± 1.

For example, for each $m \in \mathbb{N}$ a $(t-1)$-invertible bi-principle module

$$
M_{m}=\Lambda /\langle(m+1) t-m\rangle
$$

is not finitely generated over \mathbb{Z}.
Theorem 1.16. Let M be a Noetherian \mathbb{Z}-torsion $(t-1)$-invertible module. Then M is finitely generated over \mathbb{Z}.

Proof. By Theorem 1.12, M is isomorphic the direct sum $\bigoplus M\left(p_{i}\right)$ of a finite number of its p-submodules. Therefore it suffices to prove Theorem in the case when M has exponent p^{r}, where p is a prime number. Next, by Corollary 1.8, M is a factor module of the direct sum $\bigoplus_{j=1}^{n} \Lambda / I_{j}$ of principle ($t-1$)-invertible Λ-modules Λ / I_{j} and in our case we can assume without loss of generality that each ideal I_{j} contains $p^{r_{j}}$ for some r_{j}. Thus it suffices to prove Theorem in the case when $M=M_{v}$ is a principle $(t-1)$-invertible Λ-module of exponent p^{r}, that is, $I=\mathrm{Ann}_{v}$ contains a number p^{r} and a polynomial $g(t)$ such that $g(1)=1$.

Let $r=1$ and $g(t)=\sum a_{i} t^{i}$. Denote by $g_{1}(t)=\sum_{p \mid a_{i}} a_{i} t^{i}$ and put $\bar{g}(t)=$ $g(t)-g_{1}(t)$. Then $\bar{g}(t) \in \mathrm{Ann}_{v}$, since $g(t), g_{1}(t) \in \mathrm{Ann}_{v}$. It is easy to see
that $\bar{g}_{1}(1)$ and p are coprime, since $g(1)=1$ and $g_{1}(1) \equiv 0 \bmod p$. Moreover, by construction, each coefficient of the polynomial $\bar{g}(t)$ and p are coprime. Multiplying by t^{-k}, we can assume that $\bar{g}(0) \neq 0$. Let $\bar{g}(t)=\sum_{i=0}^{m} \bar{a}_{i} t^{i}$. Since \bar{a}_{m} and p are coprime, one can find integers b_{1} and c_{1} such that $b_{1} \bar{a}_{m}+c_{1} p=1$. Similarly, there are integers b_{2} and c_{2} such that $b_{2} \bar{a}_{0}+c_{2} p=1$. Therefore the polynomial $\left(b_{1} t+b_{2}\right) \bar{g}(t)+p\left(c_{1} t^{m+1}+c_{2}\right) \in I$ and it is equal to $h(t)=$ $t^{m+1}+1+\sum_{i=1}^{m}\left(b_{1} \bar{a}_{i-1}+b_{2} \bar{a}_{i}\right) t^{i}$. Therefore, by Proposition 1.15, M_{v} is finitely generated over \mathbb{Z}.

Now consider general case of a principle $(t-1)$-invertible Λ-module of exponent p^{r}. Assume that for any principle $(t-1)$-invertible Λ-module M^{\prime} of exponent $p^{r_{1}}$, where $r_{1}<r, M^{\prime}$ is finitely generated over \mathbb{Z}. Let $M=M_{v}$ is a principle $(t-1)$-invertible Λ-module M of exponent p^{r}. Then the submodule $M_{v_{1}}$ of M generated by $v_{1}=p^{r-1} v$ is of exponent p and the factor module $M_{\bar{v}}=M_{v} / M_{v_{1}}$ is of exponent p^{r-1}. Now, the proof follows from the exact sequence

$$
0 \rightarrow M_{v_{1}} \rightarrow M \rightarrow M / M v_{1} \rightarrow 0
$$

Corollary 1.17. Any Noetherian \mathbb{Z}-torsion $(t-1)$-invertible module is finite, that is, it is a finite abelian group.

Lemma 1.18. A group $G=\bigoplus_{i=1}^{n}\left(\mathbb{Z} / 2^{r_{i}} \mathbb{Z}\right)^{m_{i}}$ does not admit a structure of $(t-1)$-invertible Λ-module if $r_{i} \neq r_{j}$ for $i \neq j$ and one of $m_{i}=1$.

Proof. Assume that G has a structure of $(t-1)$-invertible Λ-module. Then for any r the subgroup $2^{r} G$ of G is its Λ-submodule and, by Propositions 1.5 and 1.6, $2^{r} G$ and $G / 2^{r} G$ are $(t-1)$-invertible Λ-modules. Therefore, without loss of generality, we can assume that

$$
G=(\mathbb{Z} / 2 \mathbb{Z}) \oplus\left(\bigoplus_{i=1}^{n}\left(\mathbb{Z} / 2^{r_{i}} \mathbb{Z}\right)^{m_{i}}\right)
$$

where all $r_{i} \geq 2$ and $m_{i} \geq 2$. Let us choose generators v_{1}, \ldots, v_{m+1} of G, $m=\sum_{i=1}^{n} m_{i}$, so that

$$
G \simeq(\mathbb{Z} / 2 \mathbb{Z}) v_{1} \oplus\left(\bigoplus_{i=2}^{m+1}\left(\mathbb{Z} / 2^{\bar{T}_{i}} \mathbb{Z}\right)\right) v_{i}
$$

where all $\bar{r}_{i} \geq 2$. Consider the \mathbb{Z}-submodule \bar{G} of G consisting of all elements $v \in G$ of order ≤ 4. Obviously \bar{G} is a Λ-submodule of G and it is generated over \mathbb{Z} (and therefore over Λ) by $\bar{v}_{1}=v_{1}$ and $\bar{v}_{i}=2^{\bar{T}_{i}-2} v_{i}, i=2 \ldots, m+1$. It is easy to see that as an abelian group \bar{G} is isomorphic to

$$
\bar{G} \simeq(\mathbb{Z} / 2 \mathbb{Z}) \bar{v}_{1} \oplus\left(\bigoplus_{i=2}^{m+1}(\mathbb{Z} / 4 \mathbb{Z})\right) \bar{v}_{i}
$$

By Proposition 1.5, \bar{G} is $(t-1)$-invertible Λ-module. The multiplication by t is an automorphism of \bar{G}. Let

$$
\begin{align*}
& t \bar{v}_{1}=a_{1} \bar{v}_{1}+2 \sum_{i=2}^{m+1} b_{i} \bar{v}_{i} \tag{4}\\
& t \bar{v}_{j}=a_{j} \bar{v}_{1}+\sum_{i=2}^{m+1} c_{j, i} \bar{v}_{i}, \quad j=2, \ldots, m+1,
\end{align*}
$$

where each $a_{j}=0$ or 1 .
Let us show that $a_{1}=1$. Indeed, assume that $a_{1}=0$. Since the multiplication by t is an automorphism and $\bar{v}_{1}, \ldots, \bar{v}_{m+1}$ generate \bar{G}, we should have an equality $\bar{v}_{1}=\sum d_{i} t \bar{v}_{i}$, where one of d_{i} is odd for some $i \geq 2$ if $a_{1}=0$. Next, the element \bar{v}_{1} is of second order, therefore $2 \sum_{i=2}^{m+1} d_{i} t \bar{v}_{i}=0$. On the other hand, $t \bar{v}_{2}, \ldots, t \bar{v}_{m+1}$ are linear independent over $\mathbb{Z} / 4 \mathbb{Z}$, since $\bar{v}_{2}, \ldots, \bar{v}_{m+1}$ are linear independent over $\mathbb{Z} / 4 \mathbb{Z}$ and the multiplication by t is an isomorphism. Therefore the equality $2 \sum_{i=2}^{m+1} d_{i} t \bar{v}_{i}=0$ is impossible if some of d_{i} is odd, and hence a_{1} in (4) should be equal to 1 .

Let us show that \bar{G} can not be $(t-1)$-invertible. Indeed, we have

$$
t \bar{v}_{1}=\bar{v}_{1}+2 \sum_{i=2}^{m+1} b_{i} \bar{v}_{i} .
$$

Therefore

$$
(t-1) \bar{v}_{1}=2 \sum_{i=2}^{m+1} b_{i} \bar{v}_{i}
$$

and the above arguments show that the multiplication by $t-1$ is not an automorphism of \bar{G}, since $(t-1) \bar{v}_{1}$ is a linear combination of the elements $\bar{v}_{2}, \ldots, \bar{v}_{m+1}$.

Theorem 1.19. An abelian group

$$
G=G_{1} \oplus\left(\bigoplus_{i=1}^{n}\left(\mathbb{Z} / 2^{r_{i}} \mathbb{Z}\right)^{m_{i}}\right),
$$

where $r_{i} \neq r_{j}$ for $i \neq j$ and G_{1} is a group of odd order, admits a structure of ($t-1$)-invertible Λ-module if and only if all $m_{i} \geq 2$.
Proof. By Theorem 1.12, if $M=M_{\text {fin }}$ is a Noetherian $(t-1)$-invertible Λ module and $d=p_{1}^{r_{1}} \ldots p_{n}^{r_{n}}$ its exponent, then M is the direct sum

$$
M=\bigoplus_{i=1}^{n} M\left(p_{i}\right)
$$

of its p-submodules which are $(t-1)$-invertible by Proposition 1.5. Now, each its submodule $M\left(p_{i}\right)$ with odd p_{i} is of odd order and, by Lemma 1.18, its

2-submodule $M(2)$ is isomorphic (as an abelian group) to $\bigoplus_{i=1}^{k}\left(\mathbb{Z} / 2^{r_{i}} \mathbb{Z}\right)^{m_{i}}$, where all $m_{i} \geq 2$.

To prove the inverse statement, note, first, that the finite direct sum of $(t-1)$-invertible Λ-modules is also a $(t-1)$-invertible Λ-module. Next, for any prime $p>2$, a $(t-1)$-invertible Λ-module $M=\Lambda / I$, where I is generated by the number p^{r} and polynomial $2 t-1$, is isomorphic to $\mathbb{Z} / p^{r} \mathbb{Z}$ as an abelian group. Finally, for $n \geq 2$ the $(t-1)$-invertible Λ-module $M=\Lambda / I$, where I is generated by 2^{r} and $t^{n}-t+1$, is isomorphic to $\left(\mathbb{Z} / 2^{r} \mathbb{Z}\right)^{n}$ as an abelian group.

2. t-Unipotent $\mathbb{Z}\left[t, t^{-1}\right]$-MODULES

2.1. Properties of t-unipotent Λ-modules. The following proposition is a simple consequence of Propositions 1.5 and 1.6.

Proposition 2.1. Any Λ-submodule M_{1} and any factor module M / M_{1} of a Noetherian $(t-1)$-invertible t-unipotent Λ-module M is a $(t-1)$-invertible t-unipotent Λ-module.

Lemma 2.2. Let M_{1}, \ldots, M_{n} be Noetherian $(t-1)$-invertible t-unipotent Λ modules. Then the direct sum $M=\bigoplus_{i=1}^{n} M_{i}$ is a Noetherian $(t-1)$-invertible t-unipotent Λ-module.

Proof. By Lemma 1.7, M is a Noetherian $(t-1)$-invertible Λ-module.
Since M_{i} is a $(t-1)$-invertible t-unipotent Λ-module, there is $k_{i} \in \mathbb{N}$ such that $t^{k_{i}}-1 \in \operatorname{Ann}\left(M_{i}\right)$. It is easy to see that $t^{k}-1 \in \operatorname{Ann}(M)$, where $k=k_{1} \ldots k_{n}$, since each polynomial $t^{k_{i}}-1, i=1, \ldots, n$, divides the polynomial $t^{k}-1$.

Proposition 2.1 and Lemma 2.2 imply the following proposition.
Proposition 2.3. A Noetherian Λ-module M_{1} is $(t-1)$-invertible t-unipotent if and only if each its principle submodule M_{v} is $(t-1)$-invertible t-unipotent.
Theorem 2.4. Any Noetherian \mathbb{Z}-torsion $(t-1)$-invertible Λ-module is t-unipotent.

Proof. let M be a Noetherian \mathbb{Z}-torsion $(t-1)$-invertible Λ-module. By Corollary $1.17, M$ consists of finite number of elements. Therefore the automorphism of M, defined by the multiplication by t, has a finite order, say k, that is, $t^{k} v=v$ for all $v \in M$, in other words, $t^{k}-1 \in \operatorname{Ann}(M)$.

The following Propositions 2.5, 2.6 describe bi-principle $(t-1)$-invertible t-unipotent modules and principle $(t-1)$-invertible t-unipotent modules of mixed type.

Proposition 2.5. Let $M=\Lambda / I$ be a bi-principle $(t-1)$-invertible t-unipotent Λ-module, and let the ideal $I=<g(t)>$ is generated by a polynomial $g(t)$. Then
(i) all roots of $g(t)$ are roots of unity,
(ii) $g(t)$ has not multiple roots,
(iii) if ξ is a k-th root of unity (that is, $\xi^{k}=1$), were $k=p^{r}$ for some prime p, then ξ is not a root of $g(t)$,
(iv) $g(1)= \pm 1$,
(v) $\operatorname{deg} g(t)$ is even.

Proof. To prove (i) and (ii), notice that there is k such that $t^{k}-1 \in I$, since M is t-unipotent. Therefore $t^{k}-1$ is divisible by $g(t)$.

To prove $(i i i)-(v)$, we use Theorem 1.10. By Theorem 1.10, there is a polynomial $f(t) \in I$ such that $f(1)=1$. We have $f(t)=h(t) g(t)$ for some polynomial $h(t) \in \mathbb{Z}[t]$, since I is a principle ideal generated by $g(t)$. Therefore $g(1)= \pm 1$ (and we can assume that $g(1)=1$), since we have

$$
1=f(1)=h(1) g(1),
$$

where $h(1), g(1) \in \mathbb{Z}$.
On the other hand, if for some prime p, a primitive p^{r}-th root of unity ξ is a root of $g(t)$, then $g(t)$ should be divided by the p^{r}-th cyclotomic polynomial $\Phi_{p^{r}}(t)$, that is, there is a polynomial $h(t) \in \mathbb{Z}[t]$ such that $g(t)=$ $\Phi_{p^{r}}(t) h(t)$. Therefore, $1=g(1)=\Phi_{p^{r}}(1) h(1)$ and we obtain a contradiction, since $\Phi_{p^{r}}(1)=p$.

To complete the proof, notice that, by (iii) and (iv), $\xi= \pm 1$ are not roots of $g(t)$ and hence all roots of $g(t)$ are not real. Thus if ξ is a root of $g(t)$, then the number $\bar{\xi}$ complex conjugated to ξ is also a root of $g(t)$, since $g(t) \in \mathbb{Z}[t]$. Therefore $\operatorname{deg} g(t)$ is even, since $\bar{\xi} \neq \xi$ for all roots of unity $\neq \pm 1$.

Proposition 2.6. Let $M=\Lambda / I$ be a principle $(t-1)$-invertible t-unipotent Λ-module of mixed type, and let $f(t)=d g(t)$ be the leading generator of the ideal I, where $d \in \mathbb{N}$ and the polynomial $g(t)$ has content 1 . Then $g(t)$ satisfies properties $(i)-(v)$ from Proposition 2.5.

Proof. Let v be a generator of M. Denote by M_{1} a Λ-submodule of M generated by $v_{1}=g(t) v$. We have the exact sequence of Λ-modules

$$
0 \rightarrow M_{1} \rightarrow M \rightarrow M / M_{1} \rightarrow 0
$$

where M_{1} is a principle module of finite type and $M_{2}=M / M_{1}$ is a biprinciple Λ-module isomorphic to $\Lambda /<g(t)>$. By Proposition 2.1, M_{2} is $(t-1)$-invertible t-unipotent. Now, we apply Proposition 2.5 to complete the proof.

Let M be a Noetherian $(t-1)$-invertible t-unipotent Λ-module. The smallest $k \in \mathbb{N}$ such that $t^{k}-1 \in \operatorname{Ann}(M)$ is called the unipotence index of M.

Lemma 2.7. If M is a Noetherian $(t-1)$-invertible t-unipotent Λ-module of unipotence index k, then the polynomial $\sum_{i=0}^{k-1} t^{i} \in \operatorname{Ann}(M)$.
Proof. We have $t^{k}-1=(t-1)\left(\sum_{i=0}^{k-1} t^{i}\right) \in \operatorname{Ann}(M)$. Therefore $\left(\sum_{i=0}^{k-1} t^{i}\right) v=0$ for all $v \in M$, since M is a $(t-1)$-invertible Λ-module.

Lemma 2.8. A Noetherian ($t-1$)-invertible Λ-module M of unipotence index 2 is a finite \mathbb{Z}-module of odd order.

Proof. It follows from Lemma 1.13 and Corollary 1.17 that M is finite. By Lemma 2.7, the polynomial $(t+1) \in \operatorname{Ann}(M)$. Therefore $t v=-v$ for all $v \in M$. In particular, if v is of order 2 , then $t v=v$. This is impossible, since M is $(t-1)$-invertible. Therefore M has not elements of even order.

Proposition 2.9. A cyclic group G of order $n=p_{1}^{r_{1}} \ldots p_{m}^{r_{m}}$, where p_{1}, \ldots, p_{m} are primes, possesses a structure of $(t-1)$-invertible Λ-module of unipotence index k if and only if for each $i=1, \ldots, m$ the polynomial $\sum_{i=0}^{k-1} t^{i}$ has a root $a_{i} \neq 1$ in the field $\mathbb{Z} / p_{i} \mathbb{Z}$.

Proof. By Theorem 1.12, it suffices to consider only the case when $i=1$, that is $n=p^{m}$ for some prime p.

Let a cyclic group G of order $n=p^{m}$ has a structure of $(t-1)$-invertible Λ-module of unipotence index k, then its subgroup $G_{p}=p^{m-1} G$ consisting of the elements of order p is also a $(t-1)$-invertible Λ-module of unipotence index k. Therefore the polynomial $\sum_{i=0}^{k-1} t^{i} \in \operatorname{Ann}\left(G_{p}\right)$. Let $v \in G_{p}$ be a generator of G_{p}, then $t v=a v$ for some $a \not \equiv 1 \bmod p$ since G_{p} is a $(t-1)$-invertible module. We have $\sum_{i=0}^{k-1} a^{i} v=0$. Therefore $\sum_{i=0}^{k-1} a^{i} \equiv 0 \bmod p$, that is, the polynomial $\sum_{i=0}^{k-1} t^{i}$ has a root in the field $\mathbb{Z} / p \mathbb{Z}$ not equal to 0 or 1 .

Conversely, let $a \not \equiv 1 \bmod p$ be a root of the polynomial $\sum_{i=0}^{k-1} t^{i}$ in the field $\mathbb{Z} / p_{i} \mathbb{Z}$, and let v be a generator of a cyclic group G of order p^{r}. If we define the action of t on the \mathbb{Z}-module G putting $t(v)=a v$, we obtain a structure of $(t-1)$-invertible Λ-module on G, since $a \not \equiv 1 \bmod p$. It is easy to see that $t^{k}-1 \in \operatorname{Ann}(G)$.

Theorem 2.10. Any Noetherian $(t-1)$-invertible t-unipotent Λ-module M is finitely generated over \mathbb{Z}.

Proof. Theorem follows from Proposition 1.15, since for some $k \in \mathbb{Z}$ the polynomial $t^{k}-1 \in \operatorname{Ann}(M)$.

It follows from Theorem 2.4 and Structure Theorem for finitely generated \mathbb{Z}-modules that a Noetherian $(t-1)$-invertible t-unipotent Λ-module M as a \mathbb{Z}-module is isomorphic to

$$
\begin{equation*}
M \simeq M_{f i n} \oplus \mathbb{Z}^{k} \tag{5}
\end{equation*}
$$

where $M_{\text {fin }}$ is the submodule of M consisting of the elements of finite order. The rank k of the free part of M in decomposition (5) is called Betti number of Noetherian $(t-1)$-invertible t-unipotent Λ-module M.

Theorem 2.11. The Betti number of a Noetherian ($t-1$)-invertible t-unipotent Λ-module M is an even number.

Proof. By definition, the Betti number of M coincides with Betti number of the Noetherian $(t-1)$-invertible t-unipotent Λ-module $M_{\text {free }}=M / M_{\text {fin }}$.

The module $M_{\text {free }}$ has not non-zero elements of finite order. Therefore the annihilator Ann_{v} of each its element v is a principle ideal, it is generated by polynomial $g_{v}(t)$ satisfying properties $(i)-(v)$ from Proposition 2.5.

Let $M_{\text {free }}$ is generated by elements v_{1}, \ldots, v_{m} over Λ. Then there is a surjective Λ-homomorphism

$$
f: \Lambda /<g_{v_{1}}(t)>\oplus \cdots \oplus \Lambda /<g_{v_{m}}(t)>\longrightarrow M_{\text {free }}
$$

Consider the modules $\widetilde{M}=\bigoplus \Lambda /<g_{v_{i}}(t)>$ and $M_{\text {free }}$ as free \mathbb{Z}-modules and denote by $h_{\widetilde{M}}$ and $h_{M_{\text {free }}}$ the automorphisms respectively of \widetilde{M} and $M_{\text {free }}$ defined by the multiplication by t. Then it is easy to see that the characteristic polynomial $\widetilde{\Delta}(t)=\operatorname{det}\left(h_{\widetilde{M}}-t \mathrm{Id}\right)$ coincides up to the sign with the product $g_{v_{1}}(t) \ldots g_{v_{m}}(t)$. Next, the characteristic polynomial $\Delta(t)=\operatorname{det}\left(h_{M_{\text {free }}}-t \mathrm{Id}\right)$ is a divisor of the polynomial $\widetilde{\Delta}(t)$, since the homomorphism f is surjective and t-equivariant. Therefore all roots of $\Delta(t)$ are roots of unity $\neq \pm 1$ and hence $\operatorname{deg} \Delta(t)$ is an even number. To complete the proof, notice that the Betti number of $M_{\text {free }}$ coincides with deg $\Delta(t)$.
2.2. Derived Alexander modules. To a Noetherian $(t-1)$-invertible Λ module M we associate an infinite sequence of Noetherian $(t-1)$-invertible t-unipotent Λ-modules

$$
\begin{equation*}
A_{n}(M)=M /\left(t^{n}-1\right) M, \quad n \in \mathbb{N} \tag{6}
\end{equation*}
$$

The module $A_{n}(M)$ is called the n-th derived Alexander module of Λ-module M.

Note that $A_{1}(M)=0$, since M is $(t-1)$-invertible. It is also evident that $A_{n}\left(A_{n}(M)\right)=A_{n}(M)$.

It is obvious, that if $f: M_{1} \rightarrow M_{2}$ is a Λ-homomorphism of $(t-1)$-invertible modules, then the sequence of Λ-homomorphisms

$$
f_{n *}: A_{n}\left(M_{1}\right) \rightarrow A_{n}\left(M_{2}\right),
$$

$n \in \mathbb{N}$, is well defined, that is, the map $M \mapsto\left\{A_{n}(M)\right\}$ is a functor from the category of Noetherian $(t-1)$-invertible Λ-modules to the category of infinite sequences of Noetherian $(t-1)$-invertible t-unipotent Λ-modules.
Proposition 2.12. If

$$
0 \rightarrow M_{1} \xrightarrow{f} M \xrightarrow{g} M_{2} \rightarrow 0
$$

is an exact sequence of Noetherian $(t-1)$-invertible Λ-modules, then

$$
A_{n}\left(M_{2}\right) \simeq A_{n}(M) / i m f_{n *}\left(A_{n}\left(M_{1}\right)\right)
$$

If $M=\bigoplus_{i=1}^{k} M_{i}$ is the direct sum of Noetherian $(t-1)$-invertible Λ-modules M_{i}, then

$$
A_{n}(M) \simeq \bigoplus_{i=1}^{k} A_{n}\left(M_{i}\right)
$$

Proof. Obvious.
Proposition 2.13. Let p be a prime number and $r \in \mathbb{N}$, then for a Noetherian $(t-1)$-invertible Λ-module M its derived Alexander module $A_{p^{r}}(M)$ is finite.

Proof. It follows from Lemma 1.13 and Corollary 1.17.
Example 2.14. For $M_{m}=\Lambda /\langle(m+1) t-m\rangle$, where $m \in \mathbb{N}$, its n-th derived Alexander module

$$
A_{n}\left(M_{m}\right) \simeq \mathbb{Z} /\left((m+1)^{n}-m^{n}\right) \mathbb{Z}
$$

is a cyclic group of order $(m+1)^{n}-m^{n}$ and the multiplication by t is given by

$$
t v=(-1)^{n+1} m\left(\sum_{i=1}^{n-1}(-1)^{i}\binom{n}{i}(m+1)^{n-i-1}\right) v
$$

for all $v \in A_{n}\left(M_{m}\right)$.
Proof. The module $M_{m}=\Lambda /\langle(m+1) t-m\rangle$ is isomorphic to a Λ-submodule $\mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right] \subset \mathbb{Q}$ if we put $t=\frac{m}{m+1}$ and $t v=\frac{m}{m+1} v$ for $v \in \mathbb{Q}$. Therefore we have

$$
A_{n}\left(M_{m}\right) \simeq M_{m} /\left(t^{n}-1\right) M_{m} \simeq \mathbb{Z}\left[\frac{m+1}{m}, \frac{m}{m+1}\right] /\left\langle\left(\frac{m}{m+1}\right)^{n}-1\right\rangle
$$

and consequently,

$$
A_{n}\left(M_{m}\right) \simeq \mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right] /\left\langle(m+1)^{n}-m^{n}\right\rangle .
$$

It is easy to see that the module $\mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right]$ coincides with the sum of submodules $\mathbb{Z}\left[\frac{1}{m+1}\right]$ and $\mathbb{Z}\left[\frac{1}{m}\right] \subset \mathbb{Q}$,

$$
\mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right]=\mathbb{Z}\left[\frac{1}{m+1}\right]+\mathbb{Z}\left[\frac{1}{m}\right] .
$$

Indeed, it is obvious, that

$$
\mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right] \subset \mathbb{Z}\left[\frac{1}{m+1}\right]+\mathbb{Z}\left[\frac{1}{m}\right] .
$$

Next, we have

$$
\left(\frac{m+1}{m}\right)^{n}=\frac{\sum_{i=0}^{n}\binom{n}{i} m^{n-i}}{m^{n}}
$$

and therefore

$$
\frac{1}{m^{n}}=\left(\frac{m+1}{m}\right)^{n}-\sum_{i=0}^{n-1}\binom{n}{i} \frac{1}{m^{i}} .
$$

Similarly, we have

$$
\frac{1}{(m+1)^{n}}=\sum_{i=0}^{n-1}(-1)^{n+1+i}\binom{n}{i} \frac{1}{(m+1)^{2}}+(-1)^{n}\left(\frac{m}{m+1}\right)^{n}
$$

In particular, $\frac{1}{m}=\frac{m+1}{m}-1$ and $\frac{1}{m+1}=1-\frac{m}{m+1}$. Therefore, by induction, we obtain that $\frac{1}{m^{n}}, \frac{1}{(m+1)^{n}} \in \mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right]$ for all n and hence

$$
\mathbb{Z}\left[\frac{1}{m+1}\right]+\mathbb{Z}\left[\frac{1}{m}\right] \subset \mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right] .
$$

Let us show now that each element $v \in \mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right]$ is equivalent to some $v_{i n} \in \mathbb{Z} \subset \mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right]$ modulo the ideal $I=\left\langle(m+1)^{n}-m^{n}\right\rangle$. For this, it suffices to show that for each k there are $v_{i n, k}, u_{i n, k} \in \mathbb{Z}$ such that

$$
\frac{1}{m^{k}} \equiv v_{i n, k} \bmod I \quad \text { and } \quad \frac{1}{(m+1)^{k}} \equiv u_{i n, k} \bmod I
$$

We prove the existence of such elements only for $\frac{1}{m^{k}}$ and the case $\frac{1}{(m+1)^{k}}$ will be left to the reader, since it is similar. We have

$$
\frac{(m+1)^{n}-m^{n}}{m^{k}}=\sum_{i=1}^{n}\binom{n}{i} m^{n-i-k} \equiv 0 \bmod I
$$

and therefore

$$
\frac{1}{m^{k}} \equiv-\sum_{j=k+1-n}^{k-1}\binom{n}{n+j-k} \frac{1}{m^{j}} \quad \bmod I .
$$

In particular,

$$
\frac{1}{m} \equiv-\sum_{j=0}^{n-2}\binom{n}{n-j-1} m^{j} \quad \bmod I .
$$

Now the existence of desired $v_{i n, k}$ is proved by induction on k.
It follows from the above consideration that

$$
A_{n}\left(M_{m}\right) \simeq \mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right] /\left\langle(m+1)^{n}-m^{n}\right\rangle
$$

is a cyclic group generated by the image $\overline{1}$ of $1 \in \mathbb{Z}\left[\frac{m}{m+1}, \frac{m+1}{m}\right]$. We have

$$
\left((m+1)^{n}-m^{n}\right) \overline{1}=0
$$

and hence the order of $A_{n}\left(M_{m}\right)$ is a divisor of $(m+1)^{n}-m^{n}$.
Let us show that the order of $A_{n}\left(M_{m}\right)$ is equal to $(m+1)^{n}-m^{n}$. Let $k \in \mathbb{Z}$ be such that $k \overline{1}=0$. Then

$$
k=\left(\sum_{i_{1} \leq i \leq i_{2}} a_{i} \frac{1}{(m+1)^{i}}+\sum_{j_{1} \leq j \leq j_{2}} b_{j} \frac{1}{m^{j}}\right)\left((m+1)^{n}-m^{n}\right)
$$

where $a_{i}, b_{j} \in \mathbb{Z}$. Multiplying by $(m+1)^{i_{2}}$ and $m^{j_{2}}$ if $i_{2}>0$ or $j_{2}>0$, we obtain an equality

$$
(m+1)^{i_{2}} m^{j_{2}} k=C\left((m+1)^{n}-m^{n}\right)
$$

with some $C \in \mathbb{Z}$ which shows that $(m+1)^{n}-m^{n}$ is a divisor of k, since m, $m+1$, and $(m+1)^{n}-m^{n}$ are coprime.

To calculate the action of t on the cyclic group

$$
A_{n}\left(M_{m}\right) \simeq \mathbb{Z} /\left((m+1)^{n}-m^{n}\right) \mathbb{Z}
$$

notice that

$$
t \overline{1}=\overline{\frac{m}{m+1}}=(-1)^{n+1} m\left(\sum_{i=1}^{n-1}(-1)^{i}\binom{n}{i}(m+1)^{n-i-1}\right) \overline{1},
$$

since similar (as above) calculation gives

$$
\frac{1}{m+1} \equiv(-1)^{n+1} \sum_{i=1}^{n-1}(-1)^{i}\binom{n}{i}(m+1)^{n-i-1} \bmod I .
$$

Proposition 2.15. An abelian group G is isomorphic (as a \mathbb{Z}-module) to the derived Alexander module $A_{2}(M)$ of some Noetherian $(t-1)$-invertible Λ-module M if and only if G is a finite group of odd order.

Proof. By Lemma 2.8, we need only to prove that for any finite group G of odd order there is a Noetherian $(t-1)$-invertible Λ-module M for which $A_{2}(M) \simeq G$.

Represent G as a direct sum of cyclic groups:

$$
G=\bigoplus_{i=1}^{k} G_{i}
$$

and let $n_{i}=2 m_{i}+1$ be the order of G_{i}.
For each i, consider the Λ-module $M_{m_{i}}$ from Example 2.14. We have $A_{2}\left(M_{m_{i}}\right)$ is a cyclic group of order $\left(m_{i}+1\right)^{2}-m_{i}^{2}=2 m_{i}+1$. Now, proposition follows from Proposition 2.12 if we put $M=\bigoplus_{i=1}^{k} M_{m_{i}}$.

Theorem 2.16. Let M be a Noetherian ($t-1$)-invertible t-unipotent Λ-module of unipotence index k. Then the sequence of its derived Alexander modules

$$
A_{1}(M), \ldots, A_{n}(M), \ldots
$$

has period k, that is, $A_{n}(M) \simeq A_{n+k}(M)$ for all n.
If n and k are coprime, then $A_{n}(M)=0$.
Proof. Note that if k is the unipotence index of M, then, by Lemma 2.7, the polynomial $f_{k}(t)=\sum_{i=0}^{k-1} t^{i} \in \operatorname{Ann}(M)$. Besides, to get $A_{n}(M)$ from M, it suffices to factorize M by the relations $f_{n}(t) v=0$ for all $v \in M$, where
$f_{n}(t)=\sum_{i=0}^{n-1} t^{i}$. Now, to prove the periodicity of sequence (6), it suffices to notice that

$$
f_{n+k}(t)=t^{n} f_{k}(t)+f_{n}(t) .
$$

Let n and k be coprime and let polynomials $f_{k}(t)$ and $f_{n}(t)$ belong to Ann (M). Applying Euclidian algorithm to $f_{k}(t)$ and $f_{n}(t)$, it is easy to see that there are polynomials $g_{k}(t)$ and $g_{n}(t)$ such that

$$
f_{k}(t) g_{k}(t)+f_{n}(t) g_{n}(t)=1,
$$

since n and k are coprime. Therefore $\operatorname{Ann}(M)=\Lambda$ and hence $A_{n}(M)=0$.
Example 2.17. The Λ-module $M=\Lambda /<t^{2}-t+1>$ has the following derived Alexander modules:

$$
A_{6 k \pm 1}(M)=0, \quad A_{6 k \pm 2}(M) \simeq \mathbb{Z} / 3 \mathbb{Z}, \quad A_{6 k+3}(M) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{2}
$$

where the multiplication by t on $\mathbb{Z} / 3 \mathbb{Z}$ coincides with the multiplication by 2 and the multiplication by t on $(\mathbb{Z} / 2 \mathbb{Z})^{2}$ coincides with cyclic permutation of the non-zero elements of $A_{6 k+3}(M)$.

Proof. The module M has the unipotency index 6 , since $t^{2}-t+1$ is a divisor of the polynomial $t^{6}-1$. Therefore $A_{6 k \pm 1}(M)=0$.

To compute $A_{6 k+2}(M)$, it suffices to compute $A_{2}(M)$. We have $A_{2}(M)=$ $\Lambda /<t^{2}-t+1, t+1>$ and since

$$
t^{2}-t+1=(t-2)(t+1)+3
$$

then $\Lambda /<t^{2}-t+1, t+1>=\Lambda /<t+1,3>\simeq \mathbb{Z} / 3 \mathbb{Z}$.
To compute $A_{6 k+3}(M)$, it suffices to compute $A_{3}(M)$. We have $A_{3}(M)=$ $\Lambda /<t^{2}-t+1, t^{2}+t+1>$ and since

$$
t^{2}+t+1=t^{2}-t+1+2 t
$$

then $\Lambda /<t^{2}-t+1, t^{2}+t+1>=\Lambda /<t^{2}+t+1,2>\simeq(Z / 2 \mathbb{Z})^{2}$.
To compute $A_{6 k+4}(M)$, it suffices to compute $A_{4}(M)$. We have $A_{4}(M)=$ $\Lambda /<t^{2}-t+1, t^{3}+t^{2}+t+1>$ and since

$$
t^{3}+t^{2}+t+1=(t+2)\left(t^{2}-t+1\right)+2 t-1
$$

then $\Lambda /<t^{2}-t+1, t^{3}+t^{2}+t+1>=\Lambda /<t^{2}-t+1,2 t-1>$ is isomorphic to the quotient module $M /(2 t-1) M$. Let v be a generator of bi-principle module M. It is easy to check that in the basis $v_{1}=v, v_{2}=t v$ of M over \mathbb{Z}, the module $(2 t-1) M$ is generated by the elements $2 v_{2}-v_{1}$ and $t\left(2 v_{2}-v_{1}\right)=v_{2}-2 v_{1}$, since $t v_{2}=v_{2}-v_{1}$. In the new basis $e_{1}=v_{1}, e_{2}=v_{2}-2 v_{1}$, the element $2 v_{2}-v_{1}=2 e_{2}+3 e_{1}$, that is, $(2 t-1) M$ is generated over \mathbb{Z} by $3 e_{1}$ and e_{2}. Therefore $A_{4}(M) \simeq \mathbb{Z} / 3 \mathbb{Z}$.

3. Alexander modules of irreducible C-Groups

3.1. Proof of Theorems $\mathbf{0 . 1}$ and $\mathbf{0 . 3}$. Recall that the class of irreducible C groups coincides with the class of fundamental groups of knotted n-manifolds V if $n \geq 2$ and the knot groups are also C-groups if they are gvien by Wirtinger presentation. Similarly, the class of irreducible Hurwitz C-groups coincides with the class of the fundamental groups of the complements of irreducible "affine" Hurwitz (resp., pseudo-holomorphic) curves and it contains the subclass of the fundamental groups of the complements of algebraic irreducible affine plane curves. Therefore to speak about the Alexander modules of knotted n-manifolds and, respectively, about the Alexander modules of irreducible Hurwitz (resp., pseudo-holomorphic) curves is the same as to speak about the Alexander modules of irreducible C-groups and, respectively, of irreducible Hurwitz C-groups. Hence Theorems 0.1 and 0.3 are equivalent to the following two theorems.

Theorem 3.1. A Λ-module M is the Alexander module of an irreducible C group if and only if it is Noetherian $(t-1)$-invertible.

Theorem 3.2. $A \Lambda$-module M is the Alexander module of an irreducible Hurwitz C-group if and only if it is Noetherian $(t-1)$-invertible t-unipotent Λ module.

The unipotence index of the Alexander module $A_{0}(G)$ of an irreducible C group G of degree m is a divisor of m.

Proof. Let

$$
\begin{equation*}
G=<x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{n}> \tag{7}
\end{equation*}
$$

be a C-presentation of a C-group G and \mathbb{F}_{m} be the free group freely generated by the C-generators x_{1}, \ldots, x_{m}. Denote by $\frac{\partial}{\partial x_{i}}$ the Fox derivative ([3]), that is, an endomorphism of the group ring $\mathbb{Z}\left[\mathbb{F}_{m}\right]$ over \mathbb{Z} of the free group \mathbb{F}_{m} into itself, such that $\frac{\partial}{\partial x_{i}}: \mathbb{Z}\left[\mathbb{F}_{m}\right] \rightarrow \mathbb{Z}\left[\mathbb{F}_{m}\right]$ is a \mathbb{Z}-linear map defined by the following properties

$$
\begin{align*}
\frac{\partial x_{j}}{\partial x_{i}} & =\delta_{i, j} \tag{8}\\
\frac{\partial u v}{\partial x_{i}} & =\frac{\partial u}{\partial x_{i}}+u \frac{\partial v}{\partial x_{i}}
\end{align*}
$$

for any $u, v \in \mathbb{Z}\left[\mathbb{F}_{m}\right]$. The matrix

$$
\mathcal{A}(G)=\nu_{*}\left(\frac{\partial r_{i}}{\partial x_{j}}\right) \in \operatorname{Mat}_{n \times m}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)
$$

is called the Alexander matrix of the C-group G given by presentation (7), where $r_{i}, i=1, \ldots, n$, are the defining relations of G and $\nu_{*}: \mathbb{Z}\left[\mathbb{F}_{m}\right] \rightarrow$ $\mathbb{Z}\left[\mathbb{F}_{1}\right] \simeq \mathbb{Z}\left[t, t^{-1}\right]$ is induced by the canonical C-epimorphism $\nu: \mathbb{F}_{m} \rightarrow \mathbb{F}_{1}$.

Lemma 3.3. The sum of the columns of the Alexander matrix $\mathcal{A}(G)$ of a C-group G, given by presentation (7), is equal to zero.

Proof. Each relation r_{i} has the form

$$
r=w x_{j} w^{-1} x_{l}^{-1}
$$

where w is a word in letters $x_{1}^{ \pm 1}, \ldots, x_{m}^{ \pm 1}$, and x_{j}, x_{l} are some two letters.
By induction on the length $l(w)$ of the word w, let us show that

$$
\sum_{k=1}^{m} \nu_{*}\left(\frac{\partial r}{\partial x_{k}}\right)=0
$$

If $l(w)=0$, that is, $r:=x_{j} x_{l}^{-1}$, we have

$$
\nu_{*}\left(\frac{\partial r}{\partial x_{k}}\right)=\left\{\begin{array}{cl}
1 & \text { if } k=j, \\
-1 & \text { if } k=l, \\
0 & \text { if } k \neq j \text { and } k \neq l
\end{array}\right.
$$

and in this case we obtain $\sum_{k=1}^{m} \nu_{*}\left(\frac{\partial r}{\partial x_{k}}\right)=0$.
Assume that for all words $r=w x_{j} w^{-1} x_{l}^{-1}$ we have $\sum_{k=1}^{m} \nu_{*}\left(\frac{\partial r}{\partial x_{k}}\right)=0$ if $l(w) \leq n$. Consider a word $r=w x_{j} w^{-1} x_{l}^{-1}$, such that $l(w)=n+1$. Put $r_{1}=w_{1} x_{j} w_{1}^{-1} x_{l}^{-1}$, where $w=x_{i}^{\varepsilon} w_{1}, \varepsilon= \pm 1$, and $l\left(w_{1}\right)=n$. We consider only the case when $i \neq j, i \neq l, j \neq l$, and $\varepsilon=1$. All other cases are similar and the proof that $\sum_{k=1}^{m} \nu_{*}\left(\frac{\partial r}{\partial x_{k}}\right)=0$ in these cases will be left to the reader.

It follows from (8) that

$$
\nu_{*}\left(\frac{\partial r}{\partial x_{k}}\right)= \begin{cases}t \nu_{*}\left(\frac{\partial r_{1}}{\partial x_{k}}\right) & \text { if } k \neq i, k \neq j, k \neq l, \\ 1+t \nu_{*}\left(\frac{\partial r_{1}}{\partial x_{k}}\right)-t & \text { if } k=i, \\ 1+t \nu_{*}\left(\frac{\partial r_{1}}{\partial x_{k}}\right) & \text { if } k=j, \\ t\left(\nu_{*}\left(\frac{\partial r_{1}}{\partial x_{k}}\right)+1\right)-1 & \text { if } k=l\end{cases}
$$

and it is easy to see that $\sum_{k=1}^{m} \nu_{*}\left(\frac{\partial r}{\partial x_{k}}\right)=0$.
To each monomial $a_{i} t^{i} \in \mathbb{Z}[t]$ let us associate a word

$$
w_{a_{i} t^{i}}\left(x_{1}, x_{2}\right)=\left(x_{2}^{i} x_{1} x_{2}^{-(i+1)}\right)^{a_{i}}
$$

if $a_{i}>0$ and

$$
w_{a_{i} t^{i}}\left(x_{1}, x_{2}\right)=\left(x_{2}^{i+1} x_{1}^{-1} x_{2}^{-i}\right)^{-a_{i}}
$$

if $a_{i}<0$, and for $g(t)=\sum_{i=0}^{k} a_{i} t^{i} \in \mathbb{Z}$ we put

$$
w_{g(t)}\left(x_{1}, x_{2}\right)=\prod_{i=0}^{k} w_{a_{i} t^{i}}\left(x_{1}, x_{2}\right)
$$

Next, to a polynomial $f(t)=(1-t) g(t)+1$ we associate a word

$$
\begin{equation*}
r_{f(t)}\left(x_{1}, x_{2}\right)=w_{g(t)}\left(x_{1}, x_{2}\right) x_{1} w_{g(t)}^{-1}\left(x_{1}, x_{2}\right) x_{2}^{-1} \tag{9}
\end{equation*}
$$

and to a vector $u=(1-t) \bar{u}=\left((1-t) g_{1}(t), \ldots,(1-t) g_{m}(t)\right)$, we associate a word

$$
\begin{equation*}
r_{u}\left(x_{1}, \ldots, x_{m+1}\right)=w_{u}\left(x_{1}, \ldots, x_{m+1}\right) x_{m+1} w_{u}^{-1}\left(x_{1}, \ldots, x_{m+1}\right) x_{m+1}^{-1} \tag{10}
\end{equation*}
$$

where

$$
w_{u}\left(x_{1}, \ldots, x_{m+1}\right)=\prod_{i=1}^{m} w_{g_{i}(t)}\left(x_{i}, x_{m+1}\right)
$$

Lemma 3.4. For a polynomial $f(t)=(1-t) g(t)+1$ and a vector

$$
u=\left((1-t) g_{1}(t), \ldots,(1-t) g_{m}(t)\right)
$$

we have

$$
\begin{aligned}
& \nu_{*}\left(\frac{\partial r_{f(t)}}{\partial x_{1}}\right)=f(t) \\
& \nu_{*}\left(\frac{\partial r_{u}}{\partial x_{i}}\right)=(1-t) g_{i}(t), \quad i=1, \ldots, m
\end{aligned}
$$

Proof. Let $f(t)=(1-t) g(t)+1$. It follows from (8) that

$$
\nu_{*}\left(\frac{\partial w_{g(t)}\left(x_{1}, x_{2}\right)}{\partial x_{1}}\right)=-\nu_{*}\left(\frac{\partial w_{g(t)}^{-1}\left(x_{1}, x_{2}\right)}{\partial x_{1}}\right)=g(t)
$$

since $w_{g(t)}\left(x_{1}, x_{2}\right) w_{g(t)}^{-1}\left(x_{1}, x_{2}\right)=1$,

$$
\nu_{*}\left(w_{g(t)}\left(x_{1}, x_{2}\right)\right)=\nu_{*}\left(w_{a_{i} t^{i}}\left(x_{1}, x_{2}\right)\right)=1,
$$

and

$$
\nu_{*}\left(\frac{\partial w_{a_{i} t^{i}}\left(x_{1}, x_{2}\right)}{\partial x_{1}}\right)=a_{i} t^{i} .
$$

Therefore we have

$$
\begin{aligned}
\nu_{*}\left(\frac{\partial r_{f(t)}}{\partial x_{1}}\right)= & \nu_{*}\left(\frac{\partial\left(w_{g(t)}\left(x_{1}, x_{2}\right) x_{1} w_{g(t)}^{-1}\left(x_{1}, x_{2}\right) x_{2}^{-1}\right)}{\partial x_{1}}\right)= \\
& g(t)+1-t g(t)=f(t)
\end{aligned}
$$

The proof in the second case is similar and it will be left to the reader.

Proposition 3.5. The Alexander module $A_{0}(G)$ of a C-group G, given by presentation (7), is isomorphic to a factor module $\Lambda^{m-1} / M(G)$, where the submodule $M(G)$ of Λ^{m-1} is generated by the rows of the matrix $\overline{\mathcal{A}}$ formed by the first $m-1$ columns of the Alexander matrix $\mathcal{A}(G)$.

Proof. To describe the Alexander module of a C-group G, we follow [18] (see also [7]). To a C-group G given by C-presentation (7) we associate a twodimensional complex K with a single vertex x_{0} whose one dimensional skeleton is a bouquet of oriented circles $s_{i}, 1 \leq i \leq m$, corresponding to the C-generators of G in presentation (7). Furthermore, $K \backslash\left(\cup s_{i}\right)=\bigsqcup_{i=1}^{n} \stackrel{\circ}{D}_{i}$ is a disjoint union of open discs. Each disc D_{i} corresponds to the relation $r_{i}=x_{j_{i, 1}}^{\varepsilon_{i, 1}} \ldots x_{j_{i, k}}^{\varepsilon_{i, k_{i}}}$ from presentation (7), where $\varepsilon_{i, j}= \pm 1$, and it is glued to the bouquet $\bigvee s_{i}$ along the path $s_{j_{i, 1}}^{\varepsilon_{i, 1}} \ldots s_{j_{i, k_{i}}}^{\varepsilon_{i, k_{i}}}$. It is clear that $\pi_{1}\left(K, x_{0}\right) \simeq G$.

The C-homomorphism $\nu: G \rightarrow \mathbb{F}_{1}$ defines an infinite cyclic covering f : $\widetilde{K} \rightarrow K$ such that $\pi_{1}(\widetilde{K})=N$ and $H_{1}(\widetilde{K}, \mathbb{Z})=N / N^{\prime}$, where $N=\operatorname{ker} \nu$. The group \mathbb{F}_{1} acts on \widetilde{K}.

Let $\widetilde{K}_{0}=f^{-1}\left(x_{0}\right)$, and let \widetilde{K}_{1} be the one-dimensional skeleton of the complex \widetilde{K}. Consider the following exact sequences of homomorphisms of homology groups with coefficients in \mathbb{Z} :

The action of \mathbb{F}_{1} on \widetilde{K} turns the groups in these sequences into Λ-modules. We fix a vertex $p_{0} \in \widetilde{K}_{0}$. Let $p_{i}=t^{i} p_{0}$ be the result of action of the element $t^{i} \in \mathbb{F}_{1}$ on the point p_{0}. Then $H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$ is a free Λ-module whose generators \bar{s}_{i} are edges joining p_{0} with p_{1} which are mapped onto the loops s_{i}. The result of action of t^{i} on the generator \bar{s}_{j} is an edge beginning at the vertex p_{i} which is mapped onto the loop s_{j}.

The free Λ-module $H_{2}\left(\widetilde{K}, \widetilde{K}_{1}\right)$ is generated by the discs $\bar{D}_{i}, i=1, \ldots, n$, corresponding to the relations $r_{i}=x_{j_{i, 1}}^{\varepsilon_{i, 1}} \ldots x_{j_{i, k_{i}}}^{\varepsilon_{i, k}}$, where each disc \bar{D}_{i} is glued to the one-dimensional skeleton along the product of paths

$$
t^{\delta\left(\varepsilon_{i, 1}\right)} \bar{s}_{j_{i, 1}}^{\varepsilon_{i, 1}}, t^{\delta\left(\varepsilon_{i, 2}\right)+\varepsilon_{i, 1}} \bar{s}_{j_{i, 2}}^{\varepsilon_{i, 2}}, \ldots, t^{\delta\left(\varepsilon_{i, k_{i}}\right)+\sum_{l=1}^{k_{i}-1} \varepsilon_{i, l}} \bar{s}_{j_{i, k}, k_{i}}^{\varepsilon_{i, k_{i}}},
$$

where $\delta(1)=0$ and $\delta(-1)=-1$. It is easy to verify that the coordinates of elements $\alpha\left(\bar{D}_{i}\right) \in H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$ in the basis $\bar{s}_{1}, \ldots, \bar{s}_{m}$ coincide with the rows \mathcal{A}_{i} of the Alexander matrix $\mathcal{A}(G)$ of C-group G given by presentation (7).

It follows from the vertical exact sequence in (11) that $\partial\left(\beta\left(\bar{s}_{i}\right)\right)=(t-1) p_{0}$ for each generator \bar{s}_{i} of the module $H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$. Let us choose a new basis $e_{i}=\bar{s}_{i}-\bar{s}_{m}, i=1, \ldots, m-1, e_{m}=\bar{s}_{m}$ in $H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$. Then $\beta\left(e_{i}\right) \in \operatorname{ker} \partial$ for $i=1, \ldots, m-1$, and $\operatorname{ker} \partial$ is generated by $\beta\left(e_{1}\right), \ldots, \beta\left(e_{m-1}\right)$. Hence we may identify $H_{1}(\widetilde{K})$ with $\beta\left(H_{1}^{\prime}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)\right)$, where $H_{1}^{\prime}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$ is a free submodule of the free Λ-module $H_{1}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right)$ generated by the elements e_{1}, \ldots, e_{m-1}.

In the basis e_{1}, \ldots, e_{m} the matrix formed by the coordinates of $\alpha\left(\bar{D}_{i}\right)$ coincides with the matrix $\widetilde{\mathcal{A}}(G)$ obtained from $\mathcal{A}(G)$ by replacing the last column by the column of zeros. Hence $H_{1}(\widetilde{K})$ is isomorphic to the quotient of the free Λ-module $H_{1}^{\prime}\left(\widetilde{K}_{1}, \widetilde{K}_{0}\right) \simeq \bigoplus_{i=1}^{m-1} \Lambda e_{i}$ by the submodule $M(G)$ generated by the rows of the matrix $\overline{\mathcal{A}}(G)$, where $\overline{\mathcal{A}}(G)$ is the matrix formed by the first $m-1$ columns of the matrix $\mathcal{A}(G)$.

To prove that a Noetherian $(t-1)$-invertible (resp., t-unipotent) Λ-module M is the Alexander module of an irreducible (resp., Hurwitz) C-group, we use Proposition 1.11. By Proposition 1.11, a Noetherian $(t-1)$-invertible Λ module M is isomorphic to a factor module Λ^{m} / M_{1} of a free Λ-module Λ^{m}, where the submodule M_{1} is generated by elements $u_{1}, \ldots, u_{m}, \ldots, u_{m+k}$ of Λ^{m} such that
(i) for $i=1, \ldots, m$ the vector $u_{i}=\left(0, \ldots, 0, f_{i}(t), 0, \ldots, 0\right)$, where a polynomial $f_{i}(t)$ is such that $f_{i}(1)=1$ and it stands on the i-th place,
(ii) $u_{m+j}=(1-t) \bar{u}_{m+j}=\left((1-t) g_{j, 1}(t), \ldots,(1-t) g_{j, m}(t)\right)$ for $j=1, \ldots, k$, where $g_{j, l}(t)$ are polynomials,
and if M is a t-unipotent Λ-module of unipotence index n, then we can assume that
(iii) the vector $u_{m+k+i}=\left(0, \ldots, 0, t^{n}-1,0, \ldots, 0\right) \in M_{1}$ for $i=1, \ldots, m$, where the polynomial $t^{n}-1$ stands on the i-th place.
Express each polynomial $f_{i}(t)$ in the form $f_{i}(t)=(1-t) g_{i}(t)+1$ and consider a C-group

$$
G=\left\langle x_{1}, \ldots, x_{m+1} \mid r_{1}, \ldots, r_{m+k}\right\rangle,
$$

where $r_{i}:=r_{f_{i}(t)}\left(x_{i}, x_{m+1}\right)$ for $i=1, \ldots, m$ and $r_{m+j}:=r_{u}\left(x_{1}, \ldots, x_{m+1}\right)$ for $j=1, \ldots, k$, where the words $r_{f(t)}$ and r_{u} were defined by formulas (9) and (10). Denote by $r_{m+k+i}:=x_{m+1}^{n} x_{i} x_{m+1}^{-n} x_{i}^{-1}$ if

$$
u_{m+k+i}=\left(0, \ldots, 0, t^{n}-1,0, \ldots, 0\right) \in M_{1}
$$

for $i=1, \ldots, m$ and denote by

$$
\bar{G}=\left\langle x_{1}, \ldots, x_{m+1} \mid r_{1}, \ldots, r_{2 m+k}\right\rangle .
$$

It follows from Lemma 3.4 that the matrix $\widetilde{\mathcal{A}}(G)$ (resp., $\widetilde{\mathcal{A}}(G)$) formed by the first m columns of the Alexander matrix $\mathcal{A}(G)$ (resp., $\mathcal{A}(G)$) coincides with the matrix \mathcal{U} (resp., $\overline{\mathcal{U}}$) formed by the rows u_{1}, \ldots, u_{m+k} (resp., by $u_{1}, \ldots, u_{2 m+k}$). Therefore, by Proposition 3.5, the Alexander module $A_{0}(G)$ (resp., $A_{0}(\bar{G})$) coincides with $M=\Lambda^{m} / M_{1}$, where M_{1} is generated by the rows u_{1}, \ldots, u_{m+k} (resp., by $u_{1}, \ldots, u_{2 m+k}$).

Notice that G (resp., \bar{G}) is an irreducible C-group, since all C-generators x_{1}, \ldots, x_{m} are conjugated to x_{m+1}. Moreover, \bar{G} is a Hurwitz C-group. Indeed, it follows from relations $r_{m+k+j}, j=1, \ldots, m$, that x_{m+1}^{n} belongs to the center of \bar{G}. Since all x_{i} are conjugated to x_{m+1}, we have $x_{i}^{n}=x_{m+1}^{n}$ for all $i=$ $1, \ldots, m$. Therefore the product $x_{1}^{n} \ldots x_{m+1}^{n}$ also belongs to the center of \bar{G} and \bar{G} possesses a Hurwitz presentation

$$
\begin{aligned}
\bar{G}=\left\langle x_{1}, \ldots, x_{n(m+1)}\right| & r_{1}, \ldots, r_{2 m+k}, \\
& x_{i} x_{i+m+1}^{-1}, i=1, \ldots,(n-1)(m+1), \\
& {\left.\left[x_{i},\left(x_{1} \ldots x_{n(m+1)}\right)\right], i=1, \ldots, n(m+1)\right\rangle . }
\end{aligned}
$$

The following two lemmas complete the proof of Theorems 0.1 and 0.3.
Lemma 3.6. ([13]) The Alexander module $A_{0}(G)=G^{\prime} / G^{\prime \prime}$ of an irreducible C-group G is a Noetherian $(t-1)$-invertible Λ-module.

Proof. For an irreducible C group G its commutator subgroup G^{\prime} coincides with the kernel of the C-epimorphism $\nu: G \rightarrow \mathbb{F}_{1}$. By the Reidemeister Schreier method, if C-generators x_{1}, \ldots, x_{m} generate G, then the elements $a_{i, n}=x_{m}^{n} x_{i} x_{m}^{-(n+1)}, i=1, \ldots, m-1, n \in \mathbb{Z}$, generate G^{\prime}. Therefore $A_{0}(G)=$ $G^{\prime} / G^{\prime \prime}$ is generated by the images $\bar{a}_{i, n}$ of the elements $a_{i, n}$ under the natural epimorphism $G^{\prime} \rightarrow G^{\prime} / G^{\prime \prime}$. The action of t on $A_{0}(G)$ is defined by conjugation $a \mapsto x_{m} a x_{m}^{-1}$ for $a \in G^{\prime}$. Therefore $t \bar{a}_{i, n}=\bar{a}_{i, n+1}$. Thus $A_{0}(G)$ is generated over Λ by $\bar{a}_{1,0} \ldots, \bar{a}_{m-1,0}$ and hence it is a Noetherian Λ-module.

To show that $A_{0}(G)$ is a $(t-1)$-invertible Λ-module, notice, first, that any element $g \in G$ can be written in the form $g=x_{m}^{k} a$, where $a \in G^{\prime}$ and $k=\nu(g)$. Therefore G^{\prime} is generated by the elements of the form $\left[x_{m}^{n} a, x_{m}^{k} b\right]$,
where $a, b \in G^{\prime}$, and hence $A_{0}(G)$ is generated by their images $\overline{\left[x_{m}^{n} a, x_{m}^{k} b\right]}$. It is easily to check that

$$
\begin{align*}
{\left[x_{m}^{n} a, x_{m}^{k} b\right]=} & {\left[x_{m}^{n}, a\right]\left(a x_{m}^{n+k}\left[b, a^{-1}\right] x_{m}^{-(n+k)} a^{-1}\right)\left[a, x_{m}^{n+k}\right] . } \\
& \cdot\left(x_{m}^{n+k}\left[b, x_{m}^{-n}\right] x_{m}^{-(n+k)}\right) . \tag{12}
\end{align*}
$$

It follows from (12) that

$$
\begin{align*}
\overline{\left[x_{m}^{n} a, x_{m}^{k} b\right]}= & \left(t^{n}-1\right) \bar{a}+\left(1-t^{n+k}\right) \bar{a}+t^{n+k}\left(1-t^{-n}\right) \bar{b}= \\
& t^{n}\left(1-t^{k}\right) \bar{a}+t^{k}\left(t^{n}-1\right) \bar{b}= \\
& (t-1)\left(\sum_{i=0}^{n-1} t^{i+k} \bar{b}-\sum_{i=0}^{k-1} t^{i+n} \bar{a}\right), \tag{13}
\end{align*}
$$

since $a x_{m}^{n+k}\left[b, a^{-1}\right] x_{m}^{-(n+k)} a^{-1} \in G^{\prime \prime}$. Now, it is easy to see that the multiplication by $t-1$ is an epimorphism of $A_{0}(G)$, since the elements of the form $\overline{\left[x_{m}^{n} a, x_{m}^{k} b\right]}$ generate $A_{0}(G)$ over \mathbb{Z}. To complete the proof, we apply Lemma 1.1.

Lemma 3.7. ([10]) The Alexander module of a Hurwitz C-group of degree m is a Noetherian ($t-1$)-invertible t-unipotent Λ-module of unipotence index d, where d is a divisor of m.

Proof. If G is a Hurwitz group of degree m, then it is generated by C-generators x_{1}, \ldots, x_{m} such that the product $x_{1} \ldots x_{m}$ belongs to the center of G. By Lemma 3.6, the Alexander module $A_{0}(G)=G^{\prime} / G^{\prime \prime}$ in a Noetherian $(t-1)$ invertible Λ-module. The multiplication by t on $A_{0}(G)$ is induced by conjugation $a \mapsto x_{m} a x_{m}^{-1}$ for $a \in G^{\prime}$. Since $\nu\left(x_{m}^{m}\right)=\nu\left(x_{1} \ldots x_{m}\right)$, there is an element $a_{0} \in G^{\prime}$ such that $x_{m}^{m}=a_{0} \cdot x_{1} \ldots x_{m}$ and hence the conjugation by x_{m}^{m} is an inner automorphism of G^{\prime}. Therefore the induced automorphism t^{m} of $G^{\prime} / G^{\prime \prime}$ is the identity.
3.2. Alexander modules of C-products of C-groups. Let G_{1} and G_{2} be two irreducible C-groups and let $x \in G_{1}$ (resp., $y \in G_{2}$) be one of C-generators of G_{1} (resp., of G_{2}). Consider the amalgamated product $G_{1} *_{\{x=y\}} G_{2}$. If

$$
\begin{align*}
& G_{1}=\left\langle x_{1}, \ldots, x_{n} \mid \mathcal{R}_{1}\right\rangle, \\
& G_{2}=\left\langle y_{1}, \ldots, y_{m} \mid \mathcal{R}_{2}\right\rangle \tag{14}
\end{align*}
$$

are C-presentations of G_{1} and G_{2}, where $x=x_{n}$ and $y=y_{m}$, then $G_{1} *_{\{x=y\}} G_{2}$ is given by C-presentation

$$
\begin{equation*}
\left\langle x_{1}, \ldots, x_{n-1}, y_{1}, \ldots, y_{m-1}, z \mid \widetilde{\mathcal{R}}_{1} \cup \overline{\mathcal{R}}_{2}\right\rangle \tag{15}
\end{equation*}
$$

in which each relation $\widetilde{r}_{i} \in \widetilde{\mathcal{R}}_{1}$ (resp., $\bar{r}_{i} \in \overline{\mathcal{R}}_{2}$) is obtained from the relation $r_{i} \in \mathcal{R}_{1}$ (resp., from $r_{i} \in \mathcal{R}_{2}$) by substitution of z instead of x_{n} (resp., instead of y_{m}).

If $x^{\prime} \in G_{1}$ and $y^{\prime} \in G_{2}$ are two another C-generators of these groups, then there are inner C-isomorphisms $f_{i}: G_{i} \rightarrow G_{i}$ such that $f_{1}\left(x^{\prime}\right)=x$ and $f_{2}\left(y^{\prime}\right)=y$, since all C-generators of an irreducible C-group are conjugated to each other. Therefore there is an isomorphism

$$
f_{1} * f_{2}: G_{1} *_{\left\{x^{\prime}=y^{\prime}\right\}} G_{2} \rightarrow G_{1} *_{\{x=y\}} G_{2},
$$

that is, the group $G_{1} *_{\{x=y\}} G_{2}$, up to a C-isomorphism, does not depend on the choice of C-generators x and y, so we denote it by $G_{1} *_{C} G_{2}$ and call the C-product of irreducible C-groups G_{1} and G_{2}.

Proposition 3.8. If a C-group $G=G_{1} *_{C} G_{2}$ is the C-product of irreducible C-groups G_{1} and G_{2}, then its Alexander module $A_{0}(G)$ is isomorphic to the direct sum of the Alexander modules of G_{1} and G_{2},

$$
A_{0}(G)=A_{0}\left(G_{1}\right) \oplus A_{0}\left(G_{2}\right) .
$$

Proof. This proposition is a simple consequence of Proposition 3.5. Indeed, if G_{1} and G_{2} are given by presentation (14), then, by Proposition 3.5, the Alexander module $A_{0}(G)$ of the C-group $G=G_{1} *_{C} G_{2}$, given by presentation (15), is isomorphic to a factor module $\Lambda^{n+m-1} / M(G)$, where the submodule $M(G)$ of Λ^{n+m-1} is generated by the rows of the matrix

$$
\overline{\mathcal{A}}=\left(\begin{array}{cc}
\overline{\mathcal{A}}_{1} & 0 \\
0 & \overline{\mathcal{A}}_{2}
\end{array}\right),
$$

where $\overline{\mathcal{A}}_{1}$ (resp., $\overline{\mathcal{A}}_{2}$) is the matrix formed by the first $n-1$ (resp., $m-1$) columns of the matrix $\mathcal{A}\left(G_{1}\right)$ (resp., $\mathcal{A}\left(G_{2}\right)$). Now, it is easy to see that $A_{0}(G)=A_{0}\left(G_{1}\right) \oplus A_{0}\left(G_{2}\right)$.

Let

$$
\begin{equation*}
G=<x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{n}> \tag{16}
\end{equation*}
$$

be a C-presentation of a C-group G. The number $d_{P}=m-n$ is called the C-deficiency of presentation (16) and $d_{G}=\min d_{P}$, where the minimum is taken over all C-presentation of a C-group G, is called the C-deficiency of the group G. Obviously, for a C-group consisting of k connected component, its C-deficiency $d_{G} \leq k$ and, in particular, if G is an irreducible C-group, then $d_{G} \leq 1$.

Lemma 3.9. Let $G=G_{1} *_{C} G_{2}$ be the C-product of irreducible C-groups G_{1} and G_{2}. Then

$$
d_{G} \geq d_{G_{1}}+d_{G_{2}}-1
$$

In particular, if $d_{G_{1}}=d_{G_{2}}=1$, then $d_{G}=1$.
Proof. It follows from formula (15).
3.3. Presentation graphs of C-groups. Let us associate a presentation graph Γ_{P} to each C-presentation (16) as follows. The vertices of the graph Γ_{P} are labeled by the generators from presentation (16) (and, in particular, they are in one to one correspondence with the generators from presentation (16)), and its edges are in one to to one correspondence with the relations r_{j} of the presentation (16) and if $r_{j}:=w_{j}^{-1}\left(x_{1}, \ldots, x_{m}\right) x_{i_{1}} w_{j}\left(x_{1}, \ldots, x_{m}\right) x_{i_{2}}^{-1}$, then the corresponding edge connects the vertices $x_{i_{1}}$ and $x_{i_{2}}$.

Obviously, the C-deficiency

$$
d_{P}=\operatorname{dim} H_{0}\left(\Gamma_{P}, \mathbb{R}\right)-\operatorname{dim} H_{1}\left(\Gamma_{P}, \mathbb{R}\right) .
$$

Therefore for an irreducible C-group G its C-deficiency $d_{G}=1$ if and only if G possesses a C-presentation whose presentation graph Γ_{P} is a tree.

A C-presentation

$$
\begin{equation*}
G=<x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{n}> \tag{17}
\end{equation*}
$$

is said to be simple if each relation r_{j} in (17) is of the form:

$$
r_{j}:=x_{i_{3}}^{-1} x_{i_{1}} x_{i_{3}} x_{i_{2}}^{-1},
$$

for some $i_{1}, i_{2}, i_{3} \in\{1, \ldots, m\}$ (that is, $x_{i_{2}}=x_{i_{3}}^{-1} x_{i_{1}} x_{i_{3}}$).
Remark 3.10. If presentations (14) of irreducible C-groups G_{1} and G_{2} are simple, then presentation (15) of $G=G_{1} *_{C} G_{2}$ is also simple and the presentation graph Γ_{P} of presentation (15) is the bouquet $\Gamma_{P}=\Gamma_{P_{1}} \bigvee_{z=x_{n}=y_{m}} \Gamma_{P_{2}}$ of the presentation graphs $\Gamma_{P_{1}}$ and $\Gamma_{P_{2}}$ of presentations (14). In particular, if $\Gamma_{P_{1}}$ and $\Gamma_{P_{2}}$ are trees, then the presentation graph Γ_{P} is also a tree.

Lemma 3.11. Any C-group possesses a simple C-presentation with C-deficiency $d_{P}=d_{G}$.

Proof. Let G be given by C-presentation of C-deficiency $d_{P}=d_{G}$ and $r:=$ $w^{-1} x_{i} w x_{j}^{-1}$ is one of its relations (that is, $w^{-1} x_{i} w=x_{j}$), where $w=x_{i_{1}}^{\varepsilon_{1}} \ldots x_{i_{k}}^{\varepsilon_{k}}$ is a word in \mathbb{F}_{m} and $\varepsilon_{l}= \pm 1$, then we can add $k-1$ new generators x_{m+1}, \ldots, x_{m+k-1} and replace the relation r by k relations:

$$
\begin{aligned}
x_{m+1} & =x_{i_{1}}^{-\varepsilon_{1}} x_{i} x_{i_{1}}^{\varepsilon_{1}}, \\
x_{m+2} & =x_{i_{2}}^{-\varepsilon_{2}} x_{m+1} x_{i_{2}}^{\varepsilon_{2}}, \\
\ldots \ldots \ldots & \cdots \cdots \cdots \cdots \\
x_{m+k-1} & =x_{i_{i_{k-1}}^{-\varepsilon_{k-1}} x_{m+k-2} x_{i_{k-1}}^{\varepsilon_{k-1}},}^{x_{j}}, \\
x_{j} & =x_{i_{k}}^{\varepsilon_{k}} x_{m+k-1} x_{i_{k}}^{\varepsilon_{k}} .
\end{aligned}
$$

Obviously, we obtain a new C-presentation of the same C-deficiency which defines the same C-group G.
3.4. The Alexander modules of C-groups possessing C-presentations whose presentation graphs are trees. By Lemma 3.11, an irreducible C group G possesses a simple C-presentation whose presentation graph is a tree if and only if its C-deficiency $d_{G}=1$.

Proposition 3.12. If $M=\bigoplus_{i=1}^{m} M_{i}$ is the direct sum of bi-principle $(t-1)$ invertible Λ-modules $M_{i}=\Lambda /\left\langle f_{i}(t)\right\rangle$, then there is an irreducible C-group G such that $A_{0}(G) \simeq M$ and such that its C-deficiency $d_{G}=1$.

Proof. Note that the C-deficiency of a C-group given by presentation

$$
\begin{equation*}
G=\left\langle x_{1}, x_{2} \mid w x_{1} w^{-1} x_{2}^{-1}\right\rangle \tag{18}
\end{equation*}
$$

where $w=w\left(x_{1}, x_{2}\right)$ is a word in letters x_{1}, x_{2} and their inverses, is equal to 1. Applying Proposition 3.5, we see that the Alexander module $A_{0}(G)$ of a C-group G, given by presentation (18), is a bi-principle $(t-1)$-invertible Λ-module.

Conversely, it was shown in the proof of Theorem 3.1 that any bi-principle $(t-1)$-invertible Λ-module $M=\Lambda /\langle f(t)\rangle$ is the Alexander module of some irreducible C-group given by presentation (18). To complete the proof we apply Proposition 3.8 and Remark 3.10.

Corollary 3.13. Let $M=\bigoplus_{i=1}^{m} M_{i}$ is a direct sum of bi-principle $(t-1)$ invertible Λ-modules $M_{i}=\Lambda /\left\langle f_{i}(t)\right\rangle$. Then for each $n \geq 2$ there is a knotted sphere $S^{n} \subset S^{n+2}$ such that the Alexander module

$$
A_{0}\left(\pi_{1}\left(S^{n+2} \backslash S^{n}\right)\right) \simeq M
$$

In particular, a polynomial $f(t) \in \mathbb{Z}[t]$ is the Alexander polynomial $\Delta(t)$ of some knotted sphere $S^{n} \subset S^{n+2}$ if and only if $f(1)= \pm 1$ and, moreover, the Jordan blocks of the Jordan canonical form of the matrix of the automorphism $h_{\mathbb{C}}$ acting on $A_{0}\left(S^{n}\right) \otimes \mathbb{C}$ can be of arbitrary size.

Proof. In [8], it was shown that if an irreducible C-group is given by a simple C-presentation which presentation graph is a tree, then for each $n \geq 2$ there is a knotted sphere $S^{n} \subset S^{n+2}$ such that $\pi_{1}\left(S^{n+2} \backslash S^{n}\right) \simeq G$.

Proposition 3.14. Let G be an irreducible C-group of C-deficiency $d_{G}=1$. Then its Alexander module $A_{0}(G)$ has not non-zero \mathbb{Z}-torsion elements.

Proof. Let

$$
\begin{equation*}
G=<x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{m-1}> \tag{19}
\end{equation*}
$$

be a C-presentation of G. By Proposition 3.5, its Alexander module $A_{0}(G)$ is isomorphic to a factor module $\Lambda^{m-1} / M(G)$, where the submodule $M(G)$ of Λ^{m-1} is generated by the rows of the matrix $\overline{\mathcal{A}}$ formed by the first $m-1$ columns of the Alexander matrix $\mathcal{A}(G)$ of the group G given by presentation (19). The size of the matrix $\overline{\mathcal{A}}$ is $(m-1) \times(m-1)$.

Lemma 3.15. The determinant $\Delta(t)=\operatorname{det} \overline{\mathcal{A}}$ satisfies the following property: $\Delta(1)= \pm 1$.

Proof. It coincides with the similar statement for knot groups (see the proof, for example, in [3]).

Denote by \mathcal{A}_{j} the rows of the matrix $\overline{\mathcal{A}}, j=1, \ldots, m-1$. The module $A_{0}(G)$ has a non-zero \mathbb{Z}-torsion element if and only if there is a vector $u=$ $\left(f_{1}(t), \ldots, f_{m-1}(t)\right)$ such that $u \notin M(G)$ and $k u \in M(G)$ for some $k \in \mathbb{N}$. Assume that there is a such vector u. Then there are $g_{j}(t) \in \Lambda$ such that $k u=\sum g_{j}(t) \mathcal{A}_{j}$, where for some $g_{j}(t)$ one of its coefficients is not divisible by k.

Without loss of generality, we can assume that all $f_{i}(t)$ and $g_{j}(t)$ belong to $\mathbb{Z}[t]$. By Cramer's theorem,

$$
g_{j}(t)=\frac{\Delta_{j}(t)}{\Delta(t)}
$$

where $\Delta_{j}(t)$ is the determinant of the matrix obtained from $\overline{\mathcal{A}}$ by substitution $k u$ instead of the row \mathcal{A}_{j}. Therefore the coefficients of all polynomials $\frac{\Delta_{j}(t)}{\Delta(t)}$ are divisible by k. A contradiction.

Remark 3.16. If G is an irreducible C-group given by presentation of C deficiency $d_{P}=d_{G}=1$, then the determinant $\Delta(t)=\operatorname{det} \overline{\mathcal{A}}$ of the matrix $\overline{\mathcal{A}}$, obtained from the Alexander matrix \mathcal{A} after deleting its last column, coincides with the Alexander polynomial $\Delta_{G}(t)$ of the group G.

3.5. Finitely \mathbb{Z}-generated Alexander modules of irreducible C-groups.

Theorem 3.17. Let G be an irreducible C-group. The Alexander module $A_{0}(G)$ is finitely generated over \mathbb{Z} if and only if the leading coefficient a_{n} and the constant coefficient a_{0} of the Alexander polynomial $\Delta_{G}(t)=\sum_{i=0}^{n} a_{i} t^{i}$ of G are equal to ± 1.

Proof. By Theorem 3.1, $A_{0}(G)$ is a Noetherian $(t-1)$-invertibele Λ-module. Let $A_{0}(G)_{\text {fin }}$ be the Z-torsion submodule of the Alexander module $A_{0}(G)$. By Theorem 1.16, $A_{0}(G)_{\text {fin }}$ is finitely generated over \mathbb{Z}.

Consider the quotient module $M=A_{0}(G) / A_{0}(G)_{\text {fin }}$. It is free from $\mathbb{Z}_{\text {- }}$ torsion. Therefore there is a natural embedding $M \hookrightarrow M_{\mathbb{Q}}=M \otimes \mathbb{Q}$. We have $\operatorname{dim}_{\mathbb{Q}} M_{\mathbb{Q}}<\infty$, since M is a Noetherian Λ-torsion module.

Denote by $h_{\mathbb{Q}}$ an automorphism of $M_{\mathbb{Q}}$ induced by the multiplication by t. Then, by definition, $\Delta_{G}(t)=a \operatorname{det}\left(h_{\mathbb{Q}}-t \mathrm{Id}\right)$, where $a \in \mathbb{N}$ is the smallest number such that $a \operatorname{det}\left(h_{\mathbb{Q}}-t \mathrm{Id}\right) \in \mathbb{Z}[t]$.

If the Alexander module $A_{0}(G)$ is finitely generated over \mathbb{Z}, then M is a free finitely generated \mathbb{Z}-module. Denote by h an automorphism of M induced by multiplication by t. We have $\operatorname{det} h= \pm 1$ and

$$
\operatorname{det}(h-t \mathrm{Id})=\operatorname{det}\left(h_{\mathbb{Q}}-t \mathrm{Id}\right) \in \mathbb{Z}[t]
$$

Therefore $\Delta_{G}(t)=\operatorname{det}(h-t \mathrm{Id})$ and its leading coefficient $a_{n}=(-1)^{n}$, where $n=\operatorname{rk} M$, and $a_{0}=\operatorname{det} h= \pm 1$.

Let the leading coefficient a_{n} and the constant coefficient a_{0} of the Alexander polynomial $\Delta_{G}(t)$ of G be equal to ± 1. By Cayley-Hamilton's Theorem, $\Delta_{G}(t) \in \operatorname{Ann}\left(M_{\mathbb{Q}}\right)$. Therefore $\Delta_{G}(t) \in \operatorname{Ann}(M)$ and M is finitely generated over \mathbb{Z} by Proposition 1.15.

Remark 3.18. Let an irreducible C-group G is given by C-presentation $G=$ $\left\langle x_{1}, \ldots, x_{m} \mid r_{1}, \ldots, r_{n}\right\rangle$ and $\mathcal{A}(G)$ its Alexander matrix. Then the Alexander polynomial $\Delta_{G}(t)$ coincides (up to multiplication by $\pm t^{k}$) with the greatest common divisor of the determinants of all $(m-1) \times(m-1)$ submatrices \mathcal{A}_{m-1} of the matrix $\mathcal{A}(G)$.
3.6. Alexander modules of some irreducible C-groups. In the end of this section, we compute the Alexander modules for some irreducible C-groups.

Example 3.19. The Alexander module $A_{0}\left(B r_{m+1}\right)$ of the braid group $B r_{m+1}$ is trivial if $m \geq 4($ or $m=1)$ and isomorphic to $\Lambda /\left\langle t^{2}-t+1\right\rangle$ for $m=2$ and 3.

This statement is well known, but for completeness, we give a proof.
Proof. The braid group Br_{m+1} is given by presentation

$$
\left.\mathrm{Br}_{m+1}=\left\langle x_{1}, \ldots, x_{m}\right| \begin{array}{cl}
{\left[x_{i}, x_{j}\right]} & \text { for }|i-j| \geq 2, \\
& x_{i} x_{i+1} x_{i} x_{i+1}^{-1} x_{i}^{-1} x_{i+1}^{-1}
\end{array} \text { for } i=1, \ldots, m-1\right\rangle .
$$

Notice that it is a C-presentation of an irreducible C-group.
By Proposition 3.5, to calculate $A_{0}\left(\mathrm{Br}_{m+1}\right)$ we should calculate the matrix $\overline{\mathcal{A}}\left(\mathrm{Br}_{m+1}\right)$.

The relations $\left[x_{m}, x_{i}\right], i=1, \ldots, m-2$, give the rows

$$
\begin{equation*}
(0, \ldots, 0,(t-1), 0 \ldots, 0) \tag{20}
\end{equation*}
$$

where $t-1$ stands on the i-th place for $i=1, \ldots, m-2$, and if $m \geq 4$, then the relation $\left[x_{m-1}, x_{1}\right]$ gives the row

$$
\begin{equation*}
(t-1,0, \ldots, 0,1-t) \tag{21}
\end{equation*}
$$

If $m \geq 4$, then the rows from (20) and row (21) generate submodule $(t-1) \Lambda^{m-1}$ of the module Λ^{m-1}. On the other hand, these rows belong to the module $M\left(\mathrm{Br}_{m+1}\right)$. Therefore $A_{0}\left(\mathrm{Br}_{m+1}\right)=0$, since $A_{0}\left(\mathrm{Br}_{m+1}\right) \simeq \Lambda^{m-1} / M\left(\mathrm{Br}_{m+1}\right)$ is a $(t-1)$-invertible Λ-module and $(t-1) \Lambda^{m-1} \subset M\left(\operatorname{Br}_{m+1}\right)$.

If $m=2$, then we have the only one relation in the presentation of Br_{3}, namely,

$$
r:=x_{1} x_{2} x_{1} x_{2}^{-1} x_{1}^{-1} x_{2}^{-1}
$$

We have $\nu_{*}\left(\frac{\partial r}{\partial x_{1}}\right)=1+t^{2}-t$ and therefore $A_{0}\left(\mathrm{Br}_{3}\right) \simeq \Lambda /\left\langle t^{2}-t+1\right\rangle$.
If $m=3$, then we have the only three relations in the presentation of Br_{4}, namely,

$$
\begin{aligned}
& r_{1}:=x_{1} x_{2} x_{1} x_{2}^{-1} x_{1}^{-1} x_{2}^{-1}, \\
& r_{2}:=x_{2} x_{3} x_{2} x_{3}^{-1} x_{2}^{-1} x_{3}^{-1}, \\
& r_{3}:=x_{1} x_{3} x_{1}^{-1} x_{3}^{-1}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \nu_{*}\left(\frac{\partial r_{1}}{\partial x_{1}}\right)=-\nu_{*}\left(\frac{\partial r_{1}}{\partial x_{2}}\right)=\nu_{*}\left(\frac{\partial r_{2}}{\partial x_{2}}\right)=t^{2}-t+1 \\
& \nu_{*}\left(\frac{\partial r_{3}}{\partial x_{1}}\right)=1-t,
\end{aligned}
$$

Therefore $M\left(\mathrm{Br}_{3}\right) \subset \Lambda^{2}$ is generated by vectors

$$
v_{1}=\left(t^{2}-t+1,-\left(t^{2}-t+1\right)\right), \quad v_{2}=\left(0, t^{2}-t+1\right), \quad v_{3}=(1-t, 0)
$$

and hence $A_{0}\left(\operatorname{Br}_{3}\right) \simeq \Lambda /\left\langle t^{2}-t+1\right\rangle$.
Example 3.20. The Alexander module of a C-group

$$
G_{m}=\left\langle x_{1}, x_{2} \mid\left(x_{1}^{-1} x_{2}\right)^{m} x_{1}\left(x_{1}^{-1} x_{2}\right)^{-m} x_{2}^{-1}\right\rangle,
$$

$m \in \mathbb{N}$, is isomorphic to $A_{0}(G) \simeq \Lambda /\langle(m+1) t-m\rangle$.
These irreducible C-groups are interesting, since they are non-Hopfian if $m \geq 2$ and therefore they are not residually finite. (The group G_{m} is isomorphic to Baumslag - Solitar group (see [1]) $\left\langle a, x_{1} \mid x_{1}^{-1} a^{m} x_{1} a^{-(m+1)}\right\rangle$ if we put $x_{2}=x_{1} a$.) Note also that each of these groups can be realized as $\pi_{1}\left(S^{4} \backslash S^{2}\right)$ for some knotted sphere $S^{2} \subset S^{4}$.

Proof. Straightforward calculation gives

$$
\nu_{*}\left(\frac{\partial r}{\partial x_{1}}\right)=-m t^{-1}+m+1
$$

where $r:=\left(x_{1}^{-1} x_{2}\right)^{m} x_{1}\left(x_{1}^{-1} x_{2}\right)^{-m} x_{2}^{-1}$. Therefore the Alexander module

$$
A_{0}(G) \simeq \Lambda /\langle(m+1) t-m\rangle
$$

4. First homology groups of cyclic coverings

4.1. Proof of Theorems $\mathbf{0 . 2}$ and $\mathbf{0 . 5}$. Theorems 0.2 and 0.5 will be proved simultaneously.

In the notations from Introduction, we denote by X either the sphere S^{n+2} (Case I) or $\mathbb{C P}^{2}$ (Case II), and by X^{\prime} respectively either the complement of a knotted n-manifold V in S^{n+2} or the complement of the union of an irreducible Hurwitz curve H and a line "at infinity" L in $\mathbb{C P}^{2}$. Recall that the fundamental group $G=\pi_{1}\left(X^{\prime}\right)$ is an irreducible C-group.

Consider the infinite cyclic covering $f=f_{\infty}: X_{\infty} \rightarrow X^{\prime}$ corresponding to the C-epimorphism $\nu: G \rightarrow \mathbb{F}_{1}$ with $\operatorname{ker} \nu=G^{\prime}$. Let $h \in \operatorname{Deck}\left(X_{\infty} / X^{\prime}\right) \simeq \mathbb{F}_{1}$ be a covering transformation corresponding to the C-generator $x \in \mathbb{F}_{1}$. We say that h is the monodromy respectively of the knotted manifold V and of the Hurwitz curve H. The space X^{\prime} will be considered as the quotient space $X^{\prime}=X_{\infty} / \mathbb{F}_{1}$. In such a situation Milnor [19] considered an exact sequence of chain complexes

$$
0 \rightarrow C .\left(X_{\infty}\right) \xrightarrow{h-i d} C .\left(X_{\infty}\right) \xrightarrow{f_{*}} C .\left(X^{\prime}\right) \rightarrow 0
$$

which gives an exact sequence of homology groups with integer coefficients:

$$
\begin{equation*}
\ldots \rightarrow H_{1}\left(X_{\infty}\right) \xrightarrow{t-i d} H_{1}\left(X_{\infty}\right) \xrightarrow{f_{*}} H_{1}\left(X^{\prime}\right) \xrightarrow{\partial} H_{0}\left(X_{\infty}\right) \rightarrow 0, \tag{22}
\end{equation*}
$$

where $t=h_{*}$.
The action h_{*} (resp., $h_{k *}$) defines on $H_{1}\left(X_{\infty}\right) \simeq G^{\prime} / G^{\prime \prime}$ a structure of Λ module such that sequence (22) is an exact sequence of Λ-modules (so that $H_{1}\left(X_{\infty}\right)$ is the Alexander module of the C-group $\left.G\right)$. The action of $t \in \Lambda$ on $H_{0}\left(X_{\infty}\right) \simeq \mathbb{Z}$ is trivial, that is, t is the identity automorphism of $H_{0}\left(X_{\infty}\right)$.

If $\left\langle h^{k}\right\rangle \subset \mathbb{F}_{1}$ is an infinite cyclic group generated by h^{k}, then $X_{k}^{\prime}=X_{\infty} /\left\langle h^{k}\right\rangle$ and $X^{\prime}=X_{k}^{\prime} / \mu_{k}$, where $\mu_{k}=\mathbb{F}_{1} /\left\langle h^{k}\right\rangle$ is the cyclic group of order k. Denote by h_{k} an automorphism of X_{k}^{\prime} induced by the monodromy h. Then h_{k} is a generator of the covering transformation $\operatorname{group} \operatorname{Deck}\left(X_{k}^{\prime} / X^{\prime}\right)=\mu_{k}$ acting on X_{k}^{\prime}.

It is easy to see that in Case I the manifold X_{k}^{\prime} can be embedded to the compact smooth manifold X_{k} satisfying the following properties:
(i) the action of h_{k} on X_{k}^{\prime} and the map $f_{k}^{\prime}: X_{k}^{\prime} \rightarrow X^{\prime}$ are continued to an action (denote it again by h_{k}) on X_{k} and to a smooth map

$$
f_{k}: X_{k} \rightarrow X \simeq X_{k} /\left\{h_{k}\right\}
$$

(ii) the set of fixed points of h_{k} coincides with $f_{k}^{-1}(V)=\bar{V}$ and the restriction $f_{k \mid \bar{V}}: \bar{V} \rightarrow V$ of f_{k} to \bar{V} is a smooth isomorphism.

In Case II (in the notations of the proof of Theorem 4.1 in [2]), the covering f_{k}^{\prime} can be extended to a map $\widetilde{f}_{k \text { norm }}: \widetilde{X}_{k \text { norm }} \rightarrow X$ branched along H and, maybe, along L. Let $\sigma: \bar{X}_{k} \rightarrow \widetilde{X}_{k, \text { norm }}$ be a resolution of the singularities, $E=\sigma^{-1}\left(\operatorname{Sing} \widetilde{X}_{k, \text { norm }}\right)$, and $\bar{f}_{k}=\widetilde{f}_{k, \text { norm }} \circ \sigma$. Denote by $R=\widetilde{f}_{k, \text { norm }}^{-1}(H)$ and $R_{\infty}=\widetilde{f}_{k, \text { norm }}^{-1}(L)$. Note that the restriction of $\widetilde{f}_{k, \text { norm }}$ to R is one-toone and the restriction of $\widetilde{f}_{k, \text { norm }}$ to R_{∞} is a k_{0}-sheeted cyclic covering, where $k_{0}=\operatorname{GCD}(k, d)$ and the ramification index of $\widetilde{f}_{k, \text { norm }}$ along R_{∞} is equal to $k_{\infty}=\frac{k}{k_{0}}$. As in the algebraic case, it is easy to show that R_{∞} is irreducible. Denote by $\bar{R}=\sigma^{-1}(R)$ the proper transform of R. Note that k_{0} is a divisor of m. Put $m_{0}=\frac{m}{k_{0}}$, we have $m_{0} \in \mathbb{N}$.

Denote by $X_{k}=\bar{X}_{k} \backslash E$. We have two embeddings $i_{k}: X_{k}^{\prime} \hookrightarrow X_{k}$ and $j_{k}: X_{k} \hookrightarrow \bar{X}_{k}$.

In both cases, the action of h_{k} on X_{k} induces on $H_{1}\left(X_{k}, \mathbb{Z}\right)$ (resp., on $\left.H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)\right)$ a structure of Λ-module such that the homomorphism

$$
i_{k *}: H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right) \rightarrow H_{1}\left(X_{k}, \mathbb{Z}\right)
$$

induced by the embedding $i: X_{k}^{\prime} \hookrightarrow X_{k}$, is a Λ-homomorphism. Obviously, the homomorphism $i_{k *}$ is an epimorphism.

In Case I, let $S \subset X_{k}$ be a germ of a smooth surface meeting transversally \bar{V} at $p \in \bar{V}$ and let $\bar{\gamma} \subset S$ be a circle of small radius with center at p. Then ker $i_{k *}$ is generated by the homology class $[\bar{\gamma}] \in H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ containing the cycle $\bar{\gamma}$, since \bar{V} is a smooth connected codimension two submanifold of X_{k}.

It is obvious, that $t([\bar{\gamma}])=[\bar{\gamma}]$, where $t=h_{k *}$, and

$$
f_{k *}([\bar{\gamma}])= \pm k[\gamma] \in H_{1}\left(X^{\prime}, \mathbb{Z}\right) \simeq \mathbb{Z}
$$

where $[\gamma]$ is a generator of $H_{1}\left(X^{\prime}, \mathbb{Z}\right)$ represented by a simple loop γ around V.

In Case II, let $S \subset X_{k}$ be a germ of a smooth surface meeting transversally R at $p \in R$ and let $\bar{\gamma} \subset S$ be a circle of small radius with center at p. Evidently, the homology class $[\bar{\gamma}] \in H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ is invariant under the multiplication by t and $f_{k *}([\bar{\gamma}])=k[\gamma]$, where $[\gamma]$ is a generator of $H_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L), \mathbb{Z}\right) \simeq \mathbb{Z}$.

Similarly, let a complex line $L_{1} \subset \mathbb{C P}^{2}$ meet L transversely at $q \in L \backslash H$ and γ_{∞} be a simple small loop around L lying in L_{1}. Then $f_{k}^{-1}\left(\gamma_{\infty}\right)$ splits into the disjoint union of k_{0} simple loops $\bar{\gamma}_{\infty, i}, i=1, \ldots, k_{0}$. Since R_{∞} is irreducible, each two loops $\bar{\gamma}_{\infty, i}$ and $\bar{\gamma}_{\infty, j}$ belong to the same homology class of $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ (denote it by $\left.\left[\bar{\gamma}_{\infty}\right]\right)$. It is easy to see that $t\left(\bar{\gamma}_{\infty, i}\right)=\bar{\gamma}_{\infty, i+1}$. Therefore the homology class $\left[\bar{\gamma}_{\infty}\right] \in H_{1}\left(X_{n}^{\prime} \mathbb{Z}\right)$ is invariant under the multiplication by t. Note also that $f_{k *}\left(\left[\bar{\gamma}_{\infty}\right]\right)=k_{\infty} m[\gamma]=k m_{0}[\gamma]$, since $\left[\gamma_{\infty}\right]=m[\gamma]$.

Lemma 4.1. The Λ-module $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ is isomorphic to

$$
A_{k}(G) \oplus H_{1}\left(X_{k}^{\prime}\right)_{1} \simeq A_{k}(G) \oplus \mathbb{Z}
$$

where $A_{k}(G)$ is the k-th derived Alexander module of C-group G and

$$
H_{1}\left(X_{k}^{\prime}\right)_{1}=\left\{h \in H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right) \mid(t-1) h=0\right\}
$$

Proof. We apply the sequence

$$
\begin{equation*}
\cdots \rightarrow H_{1}\left(X_{\infty}, \mathbb{Z}\right) \xrightarrow{t^{k}-i d} H_{1}\left(X_{\infty}, \mathbb{Z}\right) \xrightarrow{g_{k, *}} H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right) \xrightarrow{\partial} H_{0}\left(X_{\infty}, \mathbb{Z}\right) \rightarrow 0 \tag{23}
\end{equation*}
$$

constructed in the same way as (22) to the infinite cyclic covering $g_{k}=g_{\infty, k}$: $X_{\infty} \rightarrow X_{k}^{\prime}$, to analyze the group $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$.

By (23), we have the short exact sequence

$$
\begin{equation*}
0 \rightarrow H_{1}\left(X_{\infty}\right) /\left(t^{k}-1\right) H_{1}\left(X_{\infty}\right) \xrightarrow{g_{k, *}} H_{1}\left(X_{k}^{\prime}\right) \xrightarrow{\partial} H_{0}\left(X_{\infty}\right) \rightarrow 0 \tag{24}
\end{equation*}
$$

which is a sequence of Λ-homomorphisms.
Denote by $M_{1}=\operatorname{ker} \partial=\operatorname{im} g_{k, *} \simeq H_{1}\left(X_{\infty}\right) /\left(t^{k}-1\right) H_{1}\left(X_{\infty}\right)$ and by $M_{2}=$ $H_{1}\left(X_{k}^{\prime}\right)_{1}$.

We have $H_{0}\left(X_{\infty}, \mathbb{Z}\right) \simeq \mathbb{Z}$. Let us choose a generator $u \in H_{0}\left(X_{\infty}, \mathbb{Z}\right)$ and let $v_{1} \in H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ be an element such that $\partial\left(v_{1}\right)=u$. Then $(t-1) v_{1} \in \operatorname{ker} \partial$, since $H_{0}\left(X_{\infty}, \mathbb{Z}\right)$ is a trivial Λ-module and ∂ is a Λ-homomorphism. We fix a such v_{1}.

By Theorems 0.1 and $0.3, H_{1}\left(X_{\infty}, \mathbb{Z}\right)=A_{0}(G)$ is a Noetherian $(t-1)$ invertible Λ-module. Therefore, by Proposition 1.6,

$$
M_{1} \simeq H_{1}\left(X_{\infty}\right) /\left(t^{k}-1\right) H_{1}\left(X_{\infty}\right)=A_{k}(G)
$$

is also a Noetherian $(t-1)$-invertible Λ-module and, by Theorem 1.10, there is a polynomial $g_{1}(t) \in \operatorname{Ann}\left(M_{1}\right)$ such that $g_{1}(1)=1$. We fix a such polynomial $g_{1}(t)$.

Consider the element $\bar{v}_{1}=g_{1}(t) v_{1}$. We have $\partial\left(\bar{v}_{1}\right)=g_{1}(1) u=u$ and hence

$$
(t-1) \bar{v}_{1}=(t-1) g_{1}(t) v_{1}=g_{1}(t)(t-1) v_{1}=0
$$

since $(t-1) v_{1} \in M_{1}$. Therefore $\bar{v}_{1} \in M_{2}$.
Note that $M_{1} \cap M_{2}=0$, since M_{1} is $(t-1)$-invertible. Therefore ∂ maps M_{2} isomorphically onto $H_{0}\left(X_{\infty}, \mathbb{Z}\right)$, that is, exact sequence (24) splits and hence $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right) \simeq M_{1} \oplus M_{2}$.

Lemma 4.2. For $f_{k *}: H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right) \longrightarrow H_{0}\left(X^{\prime}, \mathbb{Z}\right)$ we have
(i) $\operatorname{ker} f_{k, *}=A_{k}(G) \subset H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$,
(ii) im $f_{k, *}=k \mathbb{Z} \subset \mathbb{Z} \simeq H_{1}\left(X^{\prime}, \mathbb{Z}\right)$ and the restriction of $f_{k *}$ to $H_{1}\left(X_{k}^{\prime}\right)_{1}$ is an isomorphism of $H_{1}\left(X_{k}^{\prime}\right)_{1}$ with its image.

Proof. The group $H_{1}\left(X^{\prime}, \mathbb{Z}\right)$ is isomorphic to $G / G^{\prime} \simeq \mathbb{Z}$. Similarly, the group $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ is isomorphic to G_{k} / G_{k}^{\prime}, where $G_{k}=\operatorname{ker} \nu_{k}$,

$$
\nu_{k}=\bmod _{k} \circ \nu: G \rightarrow \mu_{k}=\mathbb{Z} /\left\langle h^{k}\right\rangle,
$$

and $f_{k *}: H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right) \rightarrow H_{1}\left(X^{\prime}, \mathbb{Z}\right)$ coincides with the homomorphism

$$
i_{k *}: G_{k} / G_{k}^{\prime} \rightarrow G / G^{\prime}
$$

induced by the embedding $i_{k}: G_{k} \hookrightarrow G$.
Let the C-group G be given by C-presentation (7). To describe $\operatorname{ker} i_{k *}$ and $\operatorname{im} i_{k *}$, let us consider again the two-dimensional complex K described in section 3.1. The complex K has a single vertex x_{0}, its one dimensional skeleton is a bouquet of oriented circles $s_{j}, 1 \leq j \leq m$, corresponding to the C-generators of G from presentation (7), and $K \backslash\left(\cup s_{i}\right)=\bigsqcup_{j=1}^{l} \stackrel{\circ}{D}_{j}$ is a disjoint union of open discs, where each disc D_{j} corresponds to the relation r_{i} from presentation (7) (we denote here by l the number of relations r_{i} in presentation (7)).

The embedding $i_{k}: G_{k} \hookrightarrow G$ defines an un-ramified covering $f_{k}: K_{k} \rightarrow K$, where K_{k} is a two-dimensional complex consisting of k vertices p_{1}, \ldots, p_{k}, $f_{k}\left(p_{j}\right)=x_{0}$; the preimage $f^{-1}\left(s_{j}\right)=\bigsqcup_{s=1}^{k} \bar{s}_{j, s}$ is the disjoint union of k edges $\bar{s}_{j, s}, 1 \leq s \leq k$; and the preimage $f^{-1}\left(\stackrel{\circ}{D}_{j}\right)=\bigsqcup_{s=1}^{k} \stackrel{\circ}{D}_{j, s}$ is also the disjoint union of k open discs $\stackrel{\circ}{D}_{j, s}, 1 \leq s \leq k$.

Let h_{k} be a generator of the covering transformation group $\operatorname{Deck}\left(K_{k} / K\right)=$ μ_{k} acting on K_{k}. The homeomorphism h_{k} induces an action $h_{k *}$ on the chain complex $C .\left(K_{k}\right)$ and an action t on $H_{i}\left(K_{k}, \mathbb{Z}\right)$ so that this action defines on $H_{i}\left(K_{k}, \mathbb{Z}\right)$ a structure of Λ-module. It is easy to see that this structure on $H_{1}\left(K_{k}, \mathbb{Z}\right)$ coincides with one on $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ defined above if we identify $H_{1}\left(K_{k}, \mathbb{Z}\right)$ and $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ by means of isomorphisms $H_{1}\left(K_{k}, \mathbb{Z}\right) \simeq G_{k} / G_{k}^{\prime}$ and $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right) \simeq G_{k} / G_{k}^{\prime}$.

Consider the sequence of chain complexes

$$
C .\left(K_{k}\right) \xrightarrow{h_{k * *}-i d} C .\left(K_{k}\right) \xrightarrow{f_{k *}} C .(K) \rightarrow 0 .
$$

It is easy to see that $\operatorname{im}\left(h_{k *}-i d\right)=\operatorname{ker} f_{k *}$ and

$$
\operatorname{ker}\left(h_{k *}-i d\right)=\left(\sum_{j=0}^{k-1} h_{k *}^{j}\right) C \cdot\left(K_{k}\right) .
$$

Now the proof of Lemma 4.2 follows from the exact sequence

$$
\begin{align*}
& \ldots \rightarrow H_{1}\left(C .\left(K_{k} / \operatorname{ker}\left(h_{k *}-i d\right)\right) \xrightarrow{t^{k}-1} H_{1}\left(K_{k}\right) \xrightarrow{f_{k *}} H_{1}(K) \xrightarrow{\partial}\right. \tag{25}\\
& \xrightarrow{\partial} H_{0}\left(C .\left(K_{k} / \operatorname{ker}\left(h_{k *}-i d\right)\right) \xrightarrow{t^{k}-1} H_{0}\left(K_{k}\right) \xrightarrow{f_{k *}} H_{0}(K) \rightarrow 0,\right.
\end{align*}
$$

since

$$
\begin{aligned}
& i m\left[H_{1}\left(C \cdot\left(K_{k} / \operatorname{ker}\left(h_{k *}-i d\right)\right) \stackrel{t^{k}-1}{\longrightarrow} H_{1}\left(K_{k}\right)\right]=A_{k}(G),\right. \\
& H_{1}(K) \simeq \mathbb{Z} \\
& H_{0}\left(C \cdot\left(K_{k} / \operatorname{ker}\left(h_{k *}-i d\right)\right) \simeq \mathbb{Z} / k \mathbb{Z},\right. \\
& H_{0}\left(K_{k}\right) \stackrel{f_{k *}}{=} H_{0}(K) \simeq \mathbb{Z},
\end{aligned}
$$

are Λ-modules with trivial action of t and exact sequence (25) is a sequence of Λ-homomorphisms of Λ-modules.

Now Theorem 0.2 follows from Lemmas 4.1 and 4.2, since ker $i_{k *}$ is generated by $[\bar{\gamma}] \in H_{1}\left(X^{\prime}\right)_{1}$ and $f_{k *}([\bar{\gamma}])=k[\gamma]$.

Similarly, in Case II, we have ker $i_{k *}=H_{1}\left(X_{k}^{\prime}\right)_{1}$. Indeed, $\operatorname{ker} i_{k *}$ is generated by $\bar{\gamma}$ and $\bar{\gamma}_{\infty} \in H_{1}\left(X_{k}^{\prime}\right)_{1} \simeq \mathbb{Z}$ and $f_{k *}([\bar{\gamma}])=k[\gamma]$. Therefore $H_{1}\left(X_{k}^{\prime}\right)_{1}$ is generated by $[\bar{\gamma}]$.

As a consequence, we obtain that the restriction of $i_{k *}$ to the submodule $A_{k}(G)$ of $H_{1}\left(X_{k}^{\prime}, \mathbb{Z}\right)$ is an isomorphism of $A_{k}(G)$ with $H_{1}\left(X_{k}, \mathbb{Z}\right)$. Therefore the following lemma implies Theorem 0.5.

Lemma 4.3. ([2]) The homomorphism $j_{k *}: H_{1}\left(X_{k}, \mathbb{Q}\right) \rightarrow H_{1}\left(\bar{X}_{k}, \mathbb{Q}\right)$ is an isomorphism.

4.2. Corollaries of Theorems $\mathbf{0 . 2}$ and $\mathbf{0 . 5}$.

Corollary 4.4. Let V be a knotted n-manifold, $n \geq 1$, and $f_{k}: X_{k} \rightarrow S^{n+2}$ the cyclic covering branched along V, $\operatorname{deg} f_{k}=k$. Then
(i) the first Betti number $b_{1}\left(X_{k}\right)$ of X_{k} is an even number;
(ii) if $k=p^{r}$, where p is prime, then $H_{1}\left(X_{k}, \mathbb{Z}\right)$ is finite;
(iii) a finitely generated abelian group G can be realized as $H_{1}\left(X_{k}, \mathbb{Z}\right)$ for some knotted n-manifold $V, n \geq 2$, if and only if there is an automorphism $h \in \operatorname{Aut}(G)$ such that $h^{k}=I d$ and $h-I d$ is also an automorphism of G; in particular, $H_{1}\left(X_{2}, \mathbb{Z}\right)$ is a finite abelian group of odd order and any finite abelian group G of odd order can be realized as $H_{1}\left(X_{2}, \mathbb{Z}\right)$ for some knotted n-sphere, $n \geq 2$.

Proof. It follows from Theorems 0.1, 0.2, 2.11, Propositions 2.13, Corollary 3.13, and Examples 2.14, 3.20.

Corollary 0.4 follows from Theorems 0.3 and 2.10.
Corollary 0.6 is a simple consequence of Lemma 4.3 and the following corollary, since the homomorphism $j_{k *}: H_{1}\left(X_{k}, \mathbb{Z}\right) \rightarrow H_{1}\left(\bar{X}_{k}, \mathbb{Z}\right)$ is an epimorphism and $H_{1}\left(\bar{X}_{k}, \mathbb{Q}\right) \simeq A_{k}(H) \otimes \mathbb{Q}$.

Corollary 4.5. Let H be an algebraic (resp, Hurwitz or pseudo-holomorphic) irreducible curve in $\mathbb{C P}^{2}$, deg $H=m$, and $\bar{f}_{k}: \bar{X}_{k} \rightarrow \mathbb{C P}^{2}$ be a resolution of singularities of the cyclic covering of degree k branched along H and, maybe, alone a line "at infinity" L, and let $X_{k}=\bar{X}_{k} \backslash E$. Then
(i) the sequence of groups

$$
H_{1}\left(X_{1}, \mathbb{Z}\right), \ldots, H_{1}\left(X_{k}, \mathbb{Z}\right), \ldots
$$

has period m, that is, $H_{1}\left(X_{k}, \mathbb{Z}\right) \simeq H_{1}\left(X_{k+m}, \mathbb{Z}\right)$;
(ii) the first Betti number $b_{1}\left(\bar{X}_{k}\right)$ of \bar{X}_{k} is an even number;
(iii) if $k=p^{r}$, where p is prime, then $H_{1}\left(X_{k}, \mathbb{Z}\right)$ and $H_{1}\left(\bar{X}_{k}, \mathbb{Z}\right)$ are finite groups;
(iv) if k and m are coprime, then $H_{1}\left(\bar{X}_{k}, \mathbb{Z}\right)=0$;
(v) a finitely generated abelian group G can be realized as $H_{1}\left(X_{k}, \mathbb{Z}\right)$ for some Hurwitz (resp., pseudo-holomorphic) curve H if and only if there is an automorphism $h \in \operatorname{Aut}(G)$ such that $h^{d}=I d$ and $h-I d$ is also an automorphism of G, where d is a divisor of k, and, moreover, if G is realized as $H_{1}\left(X_{k}, \mathbb{Z}\right)$ for a curve H, then d is a divisor of $\operatorname{deg} H$; in particular, $H_{1}\left(\bar{X}_{2}, \mathbb{Z}\right)$ is a finite abelian group of odd order and any finite abelian group G of odd order can be realized as $H_{1}\left(X_{2}, \mathbb{Z}\right)$ for some Hurwitz (resp., pseudo-holomorphic) curve H of even degree.

Proof. It follows from Theorems 0.3, 0.5, 2.11, 2.16 and Propositions 2.13, 2.15.

Note that there are plane algebraic curves H for which the homomorphisms $j_{k *}: H_{1}\left(X_{k}, \mathbb{Z}\right) \rightarrow H_{1}\left(\bar{X}_{k}, \mathbb{Z}\right)$ are not isomorphisms.
Example 4.6. Let $H \subset \mathbb{C P}^{2}$ be a curve of degree 6 given by equation

$$
Q^{3}\left(z_{0}, z_{1}, z_{2}\right) C^{2}\left(z_{0}, z_{1}, z_{2}\right)=0
$$

where Q and C are homogeneous forms of $\operatorname{deg} Q=2$, $\operatorname{deg} C=3$ and the conic and cubic, given by equations $Q=0$ and $C=0$, meet transversally at 6 points. Then $A_{2}(H) \simeq \mathbb{Z} / 3 \mathbb{Z}$, but $H_{1}\left(\bar{X}_{2}, \mathbb{Z}\right)=0$.

Proof. It is known (see [20]) that $\pi_{1}\left(\mathbb{C P}^{2} \backslash(H \cup L)\right) \simeq \mathrm{Br}_{3}$ as a C-group. Therefore $A_{2}(H) \simeq \mathbb{Z} / 3 \mathbb{Z}$ (see Examples 2.17 and 3.19).

It is also well known that the minimal resolution of singularities of twosheeted covering of $\mathbb{C P}^{2}$ branched along H is a $K 3$-surface which is simply connected.

Note also that in the case of knotted n-manifold $V \subset S^{n+2}$ the sequence of homology groups $H_{1}\left(X_{k}, \mathbb{Z}\right), k \in \mathbb{N}$, is not necessary to be periodic. For example, if $S^{2} \subset S^{4}$ is a knotted sphere for which $\pi_{1}\left(S^{4} \backslash S^{2}\right) \simeq G_{m}$, where
G_{m} is a group considered in Example 3.20 (by Corollary 3.13, this group can be realized as a group of knotted sphere), then $H_{1}\left(X_{k}, \mathbb{Z}\right)$ is the cyclic group of order $(m+1)^{k}-m^{k}$ (see Example 2.14).

References

[1] G. Baumslag and D. Solitar, Some two-generator ine-relator non-Hopfian groups. Bull. Amer. Math. Soc., 68 (1962), 199-201.
[2] G.-M. Greuel and Vik.S. Kulikov, On symplectic coverings of the projective plane. Izv. Math., 69:4 (2005).
[3] R. Crowell and R. Fox, Knot Theory. Ginn, Boston, 1963.
[4] M. Kervaire and Cl. Weber, A survey of multidimensional knots in Lect. Notes in Math., vol. 685, (1978), 61-134, Springer-Verlag, Berlin - Heidelberg - New York.
[5] M. Kervaire, On higher dimensional knots. Differencial and combinatorial topology. Princeton Univ. Press, Princeton, NJ (1965), 105-120.
[6] V. Kharlamov and Vik.S. Kulikov, On braid monodromy factorizations. Izv. Math. 67:3 (2003), 499-534.
[7] Vik.S. Kulikov, Alexander polynomials of plane algebraic curves. Izv. Math. 42:1 (1994), 67-90.
[8] Vik.S. Kulikov, A geometric realization of C-groups. Izv. Math. 45:1 (1995), 197-206.
[9] Vik.S. Kulikov, A factorization formula of the full twist for double the number of strings. Izv. Math., 68:1 (2004), 125-158.
[10] Vik.S. Kulikov, On the Alexander polynomials of Hurwitz curves. Izv. Math. 70:1 (2006).
[11] O.V. Kulikova, On the fundamental groups of the complements of Hurwitz curves. Izv. Math., 69:1 (2005).
[12] Yu.V. Kuzmin, On a method of constructing C-groups. Izv. Math., 59:4 (1995), 765-783.
[13] Yu.V. Kuz'min, The groups of knotted compact surfaces, and central extensions. Sbornik: Math., 187:2 (1996), 237-257.
[14] S. Lange, Algebra. Addison-Wesley Publishing Company, 1965.
[15] J. Levin, Some results on hiegher dimensional knot groups in Lect. Notes in Math., vol. 685, (1978), 243-269, Springer-Verlag, Berlin - Heidelberg - New York.
[16] J. Levin, Algebraic structure of knot modules. Lect. Notes in Math., vol. 772, (1980), Springer-Verlag, Berlin - Heidelberg - New York.
[17] J. Levin, Knot modules: I. Trans. AMS, 229, (1977), 1-50.
[18] J. Milnor, Singular points of complex hypersurfaces. Annals of Math., vol. 61, Princeton Univ. Press, Princeton, NJ, 1968.
[19] J. Milnor, Infinite cyclic covers. Conference on the Topology of Manifolds, 1968, 115-133, Prindle, Weber \& Schmidt, Boston, Mass.
[20] O. Zariski, On the problem of existence of algebraic functions of two variebles possessing a given branch curve. Amer. J. Math., 51 (1929), 305-328.

Steklov Mathematical Institute, Gubkina str., 8, 119991 Moscow, Russia
E-mail address: kulikov@mi.ras.ru

[^0]: The work was partially supported by the RFBR (05-01-00455), NWO-RFBR 047.011.2004.026 (RFBR 05-02-89000-NWO O_{a}), and by RUM1-2692-MO-05.

 The research was done during the visit of the author at the Max Planck Institute of Mathematics at Bonn. The author thanks MPIM for their hospitality and support.
 ${ }^{1}$ The definition of Hurwitz curves can be found in [6] or in [2].

