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HECKE ALGEBRAS FOR p-ADIC LOOP GROUPS

v. Ginzburg, M. Kapranov

Let C be a split reductive algebraic group over Z. For every field F we have the group
C(F) of F-points of C, and the study of reprcsentations of such groups for various fields F
is a classical subject ofrepresentation theory. For example, when Fis locally compact (i.e.,
is a finite extension of R, F p((t)) or Qp ), thcn so is C(F); thus C(F) possesses a Haar
measure, whieh serves as a erueial ingredient for the decp and well-developed harmonie
analysis on groups of this type. An early but important result here is the determination of
the algebra of functions on G bi-invariant with respect to a Illaximal compact subgroup K.
For the case when Fis, non-Archimedean, this algebra is known as the unramified Hecke
algebra. It is comIllutative and in fact naturally identified with the Grothendieck ring
of finite-dimensional algebraic representations of thc Langlands dual group LC (Satake's
isomorphisIll) . .

The next in difficulty is the ease when F is a conlplete diserete valued field whose
residue field k is locally eOlnpact, for example F = C((t)) or Qp((t)) is the field of formal
Laurent series with complcx or p-adie coefficicnts. In this case the groups G(F) are called
(coluplex or p-adie) loop groups. They are not locally compact and hence do not possess
any invariant Ineasurc, although there exists a very interesting representation theory of
conlplcx loop groups [PS]. In particular, the standard definition of the Hecke algebra
cannot be applied here since it involves convolution with respect to the Haar measure.

Thc aim of the present paper is to show how to associate to a p-adic loop group
C(F) a natural Hecke algebra tl and to describe this algebra cOlupletely, generalizing thc
Satake isomorphisnl. As in the classical case, 1l consists of certain C(F)-invariant integral
operators on the honlogeneous spaee C(F)jK where K is an appropriate analog of thc
lllaximal COlllpact subgroup (sec below). For trus choiee of K the set G(F) / K is the set
of vertiees of a so-called double Bruhat-Tits building in the sense of A.N. Parshin [Pal
2], and the geometry of this building is our first rnain tool. Another ingreclient, needed
to avoid appcaling to the (non-existent) Haar measure on C(F), is the systematic use
of so-called Poisson Illeasures on the boundaries of Bruhat-Tits eorllplexes for ordinary
p-adie groups. The Poisson measure associated to a vertex can be interpreted in tenns
of the Brownian motion on the complex, as the probability that the Brownian particle
eventually exits irrto the given region of the boundary (so it is a particulaI' case of the
so-called exit nleasure on the Martin boundary known in the theory of Markov processes
[Do] [Dy] [FuJ). Even though our constructions are purely algebraic, the appearance of
eoncepts with such probabilistie interpretation is quite natural since we are dealing here
with (a certain algebraic version of) the integration over the loop spacc.
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Let us describe our results luore precisely. The residue field of F is denoted by k. It
is a locally eompaet non-archiluedean field, so it is, in its turn, a complete diserete valued
field whose residuc field is a finite field F q' Let 0 = OF and Ok be the rings of integers of
Fand k respectively, so that we have a surjeetion

1r : 0 ----t k.

Denote by 0' c 0 the preimage 1r-
1 (Ok), so we have surjections

P : 0' --+ F q, Pe: G(O') --+ G(Fq).

The subgroup G(0') will be denoted by K' and will serve as the analog of a maxirual
compact subgroup in a p-adic Lie group. It was proved by Parshin for the case G = PGLn

(see below for general case) that the double eoset space K'\9 /K' is discrete and does not
depend on the number of elements in the last resielue field F q' Dur Hecke algebra 1l will
consist of functions on K'\9 / /{' satisfying certain finiteness conditions.

In contrast with,..the classical case the~algebra 1l is not·comnultativc, but is relatcd to
the Heisenberg algebra. More precisely, let T c G bc a split lnaximal torus, X its lattice
of characters anel XV the lattice of I-paralllcter sllbgroups in T. Denote by T V the dual
torus to T, Le., the spectruIll of the group algebra of Xv. Denote, as usual, by W the
Weyl group of G and by 6. c X (resp. 6.+) the systenl of roots (resp. positive roots)
of G. Thcn there is a Z-valued bilinear fonll W on Xv defined entirely in ternlS of the
root systelll Denote by Ä the selllidircet product of two copies of the group algebra of Xv,
generated by monornials zu, wb, a, b E XV with the relations

Wc call A the Heisenberg algebra. The Hecke algebra 1l turns out to be very closely related
to Ä. More precisely, let X.+ c XV be the set of positive coweights. Let A c .A be the
subalgebra consisting of polynomials of the form L:aEXv fa(z)w a with each fa(z) being

+
invariant under the subgroup Wa C W preserving a. In particulaI', 10 is W-invariant. Now
our results are as folIows.

Theorem 1. The associated graded algebra oE an appropriate filtration oE1l is isomorphie
to tbe Heisenberg algebra A.

Theorem 2. Tbc algebra 1l ean be eInbeddcd into the eOlnpletion oE Aas tbc algebra oE

series L:aEX~ fa{z)w a where tbe sUlnnlation is over a finite subset o[ dominant coweights,

and each fa(z) is a Lallrent series in z invariant llnder W a .

These results open the way to the study of a new class of infinite-dimensional rep
resentations of loop groups which are analogs of principal series representations for real
or p-adic Lie groups. Rccall that for a p-adic group a reprcsentation fron1 thc unramified
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principal series can be realized as the space of functions on the vertices of the Bruhat-Tits
complex which are comlllon eigenfunctions of the unralllifiecl Hecke algebra (which is in
this case commutative). In the situation of a p-adic loop group the Hecke algebra 1i is nOll
COllullutative so the analogs of the principal series representations should be paralllctrized
by irreducible representations of 1i and be the Illultiplicity spaces of such representations in
the space of functions on the Parshin building. Note that the only representations of loop
groups which have been systenlatically studied are so-called integrable representations of
cOlllplex loop groups and they are analogs of algebraic finitc-diulensional representations
of algebraic groups over C. In particular, their construction cannot be Illoclifiecl to give
cOlnplex rcpresentations of p-adic loop groups. On the contrary, thc "principal series rep
resentations" arising fr0 111 hannonic analysis on the Parshin builcling are much larger in
size and can be defined for p--adic loop groups.

We would like to thank A.B. Goncharov and A.N. Parshin for useful discussions. The
second author would like to acknowledge finandal support from NSF grants and A.P.
Sloan Research Fellowship as weH as from the Max-Planck Institute für Mathelnatik in
Bann which provided excellent conditions for working on this paper.
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§1. PGL 2 over an ordinary Ioeal fleId: areminder.

In this anel the following section we work out in detail the case G = PGL2 , in order
to give the reader a good feeling of what is going on. The ahn of this section is to recall
some well known lnaterial on ordinary local fields. We refer to the books [FN] [Se] and to
Cartier's Bourbaki talk [Ca] for Hlore details.

(1.1) Bruhat-Tits trees. Let F be a cOlllplete discrete valued field with ring of integers
CJp and residue field k. We denote by x a uniformising element of F, so x E Op and
ord(x) = l.

It is weIl known that the lcft coscts of PGL 2 (F) by PGL 2 ( 0 F) form the set of vertices
of a certain tree, caIled the Bruhat-Tits tree and denoted by T. It has the following
properties:

(1.1.1) The group PGL2 (F) acts on I with the stabilizer of onc vertex being PGL2 ( Op).

(1.1.2) For every vertex v E I the set of edges incident with v is naturally a projective
line over the field k.

(1.1.3) The set fJ, of "ends" of I is naturaIly identified with Pl(F).

Recall that an end of I is an equivalence class of half-infinite edge paths without
returns, where two such paths are called equivalent if they eventually coincide.

In a nlore invariant fashion, oue Inay start with an arbitrary projective line P over F,
instead of the standard pI (for instance, P cau be the projectivization of a 2-diluensional
F-vector space V for which an identification with F 2 is not chosen). Then we have the
group PGL(P) of projective automorphisIllS of P. The Bruhat-Tits tree T(P) has as
vertices alllnaxiInal compact subgroups in PGL(P), alld its boundary is P itself.

(1.2) Distanee, apartments and horoeyeles. For auy two vertices v, v' of I there is a
urnque edge path A(v, v') without returns which joins v and v'. Its length (Le., number of
edges) is denoted by d(v, v'). This lnakes the set of vertices of T into a lnetric space which
is a non-Archimcdean analog of the Lobachevski plane, thc projective line 8T playing the
role of the absolute [Se]. For any v E T and T E Z+ we dcnote by 8r (v) the sphere with
center v and radins T. For instance, 8 I (v) is identified with thc set of edges issuing from
v, which is a projective line over k.

For any two ends p, p' E BI there is a unique cdge path A(p, p') (infinite in both
directions) which "joins" p and p'. Such paths are called apartnlents. They are in bijection
with split tori in PGL 2 (F): given such a torus T, the points p, p' are the directions of the
two common eigenvectors of T. Let D(p, p') be the set of vertices of A(p, p'). It has a
natural strncture of a Z-torsor (depending on the ordering of p, p'). More precisely, let To
be the (unique) maxiInal compact subgroup of T. Thc action of T preservcs D(p, p') with
To acting trivially in such a way that the action of T /To = Z is simply transitive.
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Let p be a point of 8r. Then for any vertex v there is a unique half-infinite edge
path A(p, v) joining v anel p. The "distance" between p and v, Le., thc length of A(P, v)
is of course infinite. Still, one can speak about thc difference betwcen such distances for
two vertices v, v'. Indeed, thc paths A(p, v) and A(p, v') eventually coincide. Suppose they
coincide after a vertex w. Define thc ('difference" to be

~p(v,v') = d(v ,w) - d(v', w) E Z.

It is cleal' that
~p(v,v') + Llp(v/,v") = ~p(v, v").

Thus we can define a natural Z-torsor D(p) which is generated by thc symbols d(p, v),
vEr subject to the relations

For each vEr the distance d(Pl v) is now a weH defined element of the torsol' D(p). Note
that D(p), being a Z-torsor, is equipped with a naturalorder.

eiven p E ßr = p I (F) anel rED(p), the horocycIe Sr (P) with center p and radius r
is the set Sr(P) = {v E T : d(p, v) = r}. Let Np C PGL2(K) be thc unipotent subgroup
fixing p. Then horocycles with center p are just orbits of Np" This implies the following
fact.

(1.2.1) Proposition. Take tlle line bundle O(-1) on er = Pl(F) and its fiber at p.

Tllis is al-dimensional F-vector space, denote it Lp . So Lp - {O} is a F*-torsor. The

Z-torsor D(p) is natrally identiHed with the tarsal' obtained [rom Lp - {O} by the base

change with respect to the valliatioll honlomorphisnl ord : F* --4- Z.

ProoE: Let G = PGL2 (F), K = PGL2 (OF), B the Borel subgroup and N C B thc
unipotent. Let T bc thc diagonal subgroup. We have a natural fibration 7r : GIN --4

G/ B = pl(F) with fibers principal homogcneous spaces over T ~ F*. FroIn the Iwasawa
decolnposition G = KTN it follows that D(p) is obtained fronl 7[-l(p) by factorizing by
K n T. But GIN is nothing but A2 - {O}, thc punctured affine plane which is thc sanlC
as the total space of the bundle O(-1) with zero seetion deletecl.

(1.3) Double cosets. Hecke algebra. The set of double cosets

PGL 2 ( 0 F ) \PGL 2 (F) IPGL 2 ( CJF )

is the set of all possible relative positions of two verticcs V , v' on T (i.c., equivalence classes
of pairs of verticcs Inodulo thc action of PGL2 (F)). Such relative position is uniquely
detenninecl by the distance d(v, v') E Z+. So we have the identification
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Here x E F is our unifornüser.

Assume that k is a finite field F q' Denotc by S the space of all functions on Vcrt(D.
The unramified Hecke algebra 'Ho = H(PGL 2(F), PGL2(CJ)) is, by definition, the algebra
of compactly supported doubly PGL2 (O)-invariant functions on PGL2 (F) with thc mul
tiplication given by the convolution. It can also be defined as the algebra of operators in
S generated by thc operators Tn , n ~ 1, where for r/J E S we set

r/J(v').
Vi: d(v,v')=n

It is straightforward that if m =I=- TL, then

(1.3.1)

+q(q - 1)Tm+n- 4 + ... + q~-2(q - 1)Tm+n-2~+2 + +q/~-ITm+n_2/~'

where J-L = Inin(m, 71,). When m = n, we have

(1.3.2) T~ = T 2m + (q -1)T2m- 2+q(q -1)T2m- 4 + ... + qm-2(q - 1)T2 +qm-l(q + 1) .1.

(1.4) Stabilization of the Hecke algebra. Satake isomorphism. The relations
(1.3.1) iInply that 11.0 is the polynomial algebra in one generator Tl' The regular action
of Tl in the basis of the Tn is particularly sinlple:

(1.4.1) T T. - {Tn +l + qTn - I ,
I n - T2 + (q + 1) . 1,

n~2

71,=1.

For later purposes it is convenient to extend the regular representation of 11.0 to a lnodule
M with basis tn for all n E Z anel the action of Tl given by the first case of (1.4.1), Le.:

(1.4.2)

oI', equivalently,

(1.4.3)

In other words, M is obtained by observing that the rule for multiplyi.ng Tm by Tn for m <
71, is translation invariant with respect to 71, and then extending this rule by translational
invariance to all 71, E Z. For this reason we call M the stabilization of 11.0. Thc translation
invariance of relations in M mcans that M is an (1/.0 , C[z, z-I])-biInodule, where z E

C[z, Z-l) acts by tnz = t n +l' Clearly, M is free of rank lover C[z, Z-l) and hence thc
bimodule structure gives a homolnorphism of algcbras

(1.4.4)
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Its explicit fonn is iInnlediately fonnd from (1.4.3) to be:

(1.4.5)

(1.4.6) Proposition. Thc lnap S identifies 11..0 with thc subaJgebra ofC[z, z-l] consisting
oE j(z) such that f(qz-l) = f(z).

This identification is the simplest instance of the Satake isornorphislll.

(1.5) Poisson measures on 8T. Assume that thc residue field k is a finite field F q' Then
every vertex v E T defines a natural rneasure Mv on the absolute 8r ~ Pl(F). Namely,
for every vertex w -# v consider the set

Mv(w) = {p E 8T: A(p, w) C A(p, v)}.

Such sets obviously form a basis of the topology on 8T. The rneasure Mv is uniquely
specified by setting

1
Mv(Mv(w)) = (q + l)qd(v ,w)-l'

Thus we have Mv(8T) = 1, so Mv is a probability rneasure. In plain words, a ehoice of v
represents DT as an inverse limit of thc spheres

with all the fibers of all maps having eardinality q. Dur measure is just associated with
this inverse systern.

The mcasure Mv has the following probabilistie meaning [Ca]. Considcr the (isotropie)
Brownian rnotion on T, i.e., the Markov chain whose states are vertices of T and such that
the probability of thc transition from a vertex v to any adjaeent vertex w has the same
value l/(q + 1). Then Mv(U) for U c DT is the probability that the Brownian particle,
having started from thc point v, will, as the time goes to infinity, converge ("exit") to a
boundary point from U. This eoneept of exit probability ean be defined for any Markov
chain 01' even eontinuous Markov process, the role of 8r heing played in general case hy
the so-called Martin boundary [Do] [Dy].

(1.5.1) Proposition. The measure Mv is thc unique, up to scalar, measure on 8r invari
ant under the compact subgroup in PGL2 (F) preserving v.

So Mv is analogous to the Fubini-Study rnetric (voillme form) on thc projective line
Rpl associated to a scalar product on R 2 . This volurne form can also be interpreted
as exit prohability, this tinlc for the Brownian n10tion in the Lobachevsky plane whose
(Martin) boundary is Rpl.

By construction, /i'v depends on v. For two vertices v, w the measures Mv, /-Lv are
absolutely continuous with respect to each other, so that their ratio (Radon-Nikodim
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derivative) is just a nonvanishing function b r-+ (ttv / tLw)(b) = I1(v, w, b) on 8r known as
the Poisson kernel. Explicitly, one has

(1.5.2) Il(v, w, b) = qd(v,b)-d(w,b).

Here the distances d(v, b) and d(w, b) in the exponent are elements of the Z-torsor D(b),
so their difference is a weil defined integer.

Given b E Pl(F), the fllnctions w -t Il(v,w,b) on Vert(T) for various v are scalar
rnultiples of each other, so we have a well-defined I-dimensional C-vector space I1b C S of
such functions. Taken together, these I-dimensional spaces form a PGL2 (F)-equivariant
complex line bundle 11 on pl(F).

(1.5.3) Proposition. (a) As a11 equivariant bundle, 11 is isomorphie to IO( -1)1, the
complex line bundle on pl(F) obtained Erom tbe F-line bundle O( -1) by the base change
witll respect to the norm homomorphism F* --+ C*, a r-+ lai.
(b) For any b E Pl(F), ant f E IIb is an eigenEunction oE tlle Hecke algebra 11.0 with

Tl! = (q + l)f·
(e) More generally, for any f E I1 b and SEC the complcx power f8 is an eigenEunction oE
11.0 with T I !8 = (q8 + ql-S)f8.

Part (a) follows from (1.2.1), while (b) and (c) are checked explicitly.

Thus the Poisson kernel establishes an isomorphisru between two rcalizations of the
unraulified principal series representations of PGL2 (F). The first realization is as the
space of sections VB = f(pl(F), IO(-1)1 8 ® IUCas-

I
), whcre 10(-1)1 8 is thc C-line bundlc

obtained froIU O( -1) by the base change F* --r C*, a H lal 8 = q~.ord(a) and Iueas
is the sheaf of mcasures (isomorphie to IO(-1)1 2 ). Thc second rcalization of thc salue
representation can be given as thc space of functions f on Vert(T) such that T(l)j =
(qB + ql-S)f.
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§2. PGL2 over a 2-dimensionallocal Held.

(2.1) The Parshin tree. We return to the setup of the introduction, so F is a 2
dimensionallocal field, 0 = CJp its ring of integers, mp C CJ the maximal ideal and k its
residue field. The field k is a locally compact non-archimedean field) with ring of integers
Ok, luaximal ideal mk anel finite rcsidue field F q. Wc also denote by 0' c 0 thc preinlage
of Ok under the natural projection.

Considering F a.s just a loeal field with residue field k, we associate to it the Bruhat
Tits tree Tp , whose vertiees correspond to left coset of PGL2(F) by PGL2 (O). For any
vertex v E TF thc set of edges incident to v is a projectivc line PJ over k, so it is of
"continuous" nature.

Let T1) be the Bruhat-Tits tree with boundary P1} (and thc valence of each vertex q+l).
Let us think of this tree as "microscopic" and insert this tree, together with its boundary,
instead of the neighborhood of the vertex v in Tp. Do this for all thc vertices. This way,
each edge ofTF will becoIne a "bridge" joining two boqndary points of two ncighboring
microscopic trees. The infinite trec thus obtained is ealled thc Parshin tree and denotcd
P. The reader can consult (Pal-2) for a more formal eonstruetion and a picture. Clearly,
the group PGL2 (K) aets on P by automorphisms.

Note that we have a eontinuous Inap

(2.1.1 ) 7r : P --+ TF

which eontracts each microscopic tree Tv with its boundary into oue vertex v E TF .

In thc sequel we will refer to vcrtices or edges of P which are aIuong vertices or edges
of some Inicroscopic tree (not of its boundary) as thin and call the points on thc boundary
of microscopic trces as wcH as edgcs ("bridges") joining thenl thick vertices or edges of P.
Thus thin vertices are isolated and thick vcrtices are limits of thin ones. A thick edge is
an edge joining two thick verticcs. Thick edges of P are in bijcction (induced by thc map
7r above) with edges of TF

(2.1.2) Proposition. Thc set oE 1eft cosets PGL 2 (F) / PGL 2 ( 0') is naturally identiEed

with the set oE thin vertices oE P.

As in the case of an ordinary local fielel, for any two vcrtices w, w' (thick or thin) of P
there is a unique edge path A(w, w') joining them. This path ean, however, have several
infinite fragments which are separatcd by thick edgcs

More precisely, we have thc following proposition.

(2.1.3) Proposition. Let v, v' be two vertices of Tp and T v , T v ' tlw corresponding Ini

croscopic trees inside P. Then all paths A(w, w') for w E Tv , w' E T1)' have the same set
of thick vertices. In particu1ar, tlw segments oE these paths bctween the first and tbe last

thick vertices are the salnc for a11 w, w' .
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(2.2) Distances, spheres and horocycles. We choose unifonnising elements x, y E
(J' such that ordp(y) l,ordp(x) = 0 and ordk(xnlodmp) = 1. Then we have thc
decomposition

We havc the analog of thc Cartan decomposition for the group PGL2 (F) found by Parshin
[Pal-2]:

(2.2.1)

Note that (2.2.1) is different frOIIl thc kind of Cartan decompositions for p-adic loop groups
found by Garland [Ga].

It follows that double cosets are labelIed by equivalencc classcs of the group Z ffi Z =
{xmytl} by the involution (ffi, n) f---7 (-m, -n). A set of I'espesentatives of monomials
lllOdulo this involution is provided by the senügl'oup

(2.2.2) A = {(m, n) E ZEll Z: m 2: 0 and if m = 0, then n ~ o}.
We order A lexicographically, i.e., (711, n) ::; (rn', n') if m < rn' or m = m' and n ::; n'.
We will also write an eleIuent (m, n) E A as moo + n, so that the ordering becomes more
intuitive. In terms of the tree P the above considerations can be sUIumarized as follows.

(2.2.3) Proposition. (a) For every two tllin vertices w, w' E P tllCre is a weH dcfined dis
tance d(w, w') E A, which satisfies the triangle inequality: d(w, WO) ::; d( w, w') +d(w', WO)
and is preserved by tbe action of the group PGL2 (K).
(b) Giyen two pairs of points (W 1 ,wD and (W2' w~) a nccessary and sufIicien t condi
tion for existence of 9 E PGL2(F) taking Wl f---7 w2 and w~ f---7 w~ is the equality

d(Wb wD = d(w2, w~).

(c) If d(w, w') = moo + n, then in tlw path A(w, w') tllere are exactly m thick edges.

For any). E A and a thin vertex w ofP we denote by S>..(w) the sphere ofradius A, i.e.,
the set of thin vertices w' such that d(w, w') = A. Let v be thc vertex of the "continuous"
Bruhat-Tits tree TF such that w lies in thc Inicroscopic tree Tv . Then clearly

u Tv '

where d,P is the Z+ -valucd distancc in the tree TF. If v' E TF is any vertex entering into
the above fonullla, denote by e(v, v') the last thick vertex on any path A(w, w') , w E Tu,

w' E Tu" This vertex lies on the boundary of Tu'·
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(2.2.4) Proposition. If w E 7 v and v' E Tp is such that dTF (v, v') = ffi, then for any

11, E Z tlle intersection Smoo+n (w) n 71)1 is a horocyc1e in 7 v ' with center e(v, v').

As we saw in §1, for any Bruhat-Tits tree T and any infinite point p E 8T the
"distances" paralnetrizing horocycles with center p are in fact elements of a certain Z
torsol' D(p) = Dy(p) (the second notation in introduced to eluphasize thc depenclence of
this torsol' on T). So the very possibility of attaching the A-valued distances from v to
horocycles in 7 v ' in (2.2.4) aIIlounts to a non-trivial extra structure on the Parshin tree P
which is not at all clear from the direct iterative construction of P described in (2.1). Let
HS describe this structure explieitly.

Recall that for any Abelian group A (written additively) the category of all A-torsors
has a natural syrnmetric monoidal structure ("tensor product"), denoted 0. Naluely, if
SI, 8 2 are two A-torsors then SI 0 S2 is generated by symbols S1 0 S2, Si E Si modulo the
relations (a + sd 0 S2 = SI 0 (a + 82)' We will use this structure for A = Z.

(2.2.5) Proposition. For any thick edge e oE P with ends p alld p' (which thus lie 011

the absolutes oE two adjacent microscopic trecs 71) and 71)') tllcre is an idcntification oE

Z-torsors Je :. DTv(p) 0 DT~' (p') -+ ·Z. This·system oE idcntifications is equivariqnt with
respect to thc action oE the group PGL2 (F) on P.

This identifieation comes about as follows. Given elements a E DTv (p) anel a' E
DTvl (p'), we represent them as distances: a = d(w, p), a' = d(w', p') for SOUle thin vertices
w E 71), W' E 7 v '. Then the distance in P between wand w' has thc fornl d(w, w') = oo+m
for sonle 111 E Z, and we set Je(a 0 a') = m. This is weIl defined by 2.2.4.

Notice.that unlike the case of ordinary Bruhat-Tits trees, neither the A-valued distance
d nor the system of identifications {,e} are preserved under the full group of automorphisulS
of P. Clearly, thc {,e} deternüne d and vice versa. Thus it is of sonle interest to give
a more geoluetric eonstruction of the ,e not appealing to Iuatrix ealculations. Such a
eonstruction can be obtained, by applying Proposition 1.2.1, fronl a statement coneerning
ordinanJ Bruhat-Tits trees.

Naulely, let F be any loeal field with residue field k (so k is not assumed to have any
extra structure) and T be the corresponding Bruhat-Tits tree, as in §1. For any vertices
v E T the set of edges incident to v is, as we saw, a projeetive line over k 01', Hlore precisely,
the set of k-points of an algebraic curve P v ovcr k isomorphie (not naturally) to p1. If
two vertices v, v' are adjaeent and joined by an edge e, then e represents a point (v / e) on
P 1) as weIl as a point (v' / e) on P v'. Now the statement wc mean is as follows.

(2.2.6) Proposition. For every v, v', e as beEore there is a natural nondegenerate pairing

oE tangent spaces

ße : T(v/e) P v (9 T(v'je)p Vi -T k,

and the system oE these pairings is equivariant under the action oE PGL2 (F) on T.

As we will sec froul the proof, the choice of these pairings will depend on thc choice
of a unifoI'nüsing parameter x E F.
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To construct the fe (and thus the distance function) out of the ße it is enough to
notice that the tangent bundle on pI is isonlorphic to 0(2), so by Proposition 1.2.1 we get
a pairing between DT11 (p)0 2 and DTvl (p')0 2 . But since the group Z has no torsion, such a
pairing gives rise to a unique pairing between DTv (p) and DTvl (p').

ProoEoE (2.2.6): We can represent a vertex v E T by a rank 2 vector bundle Von the fonnal
curve G = Spec(Vp). Let 0 E S be the unique closed point. We denote by Vo the fiber
of V at O. It is a 2-dimensional k-vector spaee. The set Pv is P(Vo), thc projeetivization
of (the set of lines in) Vo. Let l C Vo be the line eorresponding to the cdge e. As for
any projeetive spaee, the tangent spaee T(v/e)P v = TlP(Vo) is naturally identified with
l* ® (Vo/l). Further, thc bundle V' corresponding to v' (thc other end of e) is deseribed
(see [Se)) as the eoherent subsheaf of V eonsisting of those seetions s for which 8(0) E l.
Therefore we have an exaet sequence for the fiber of V' at 0:

o--+ (Vo/l) 0 TO'G --+ V~ --+ l --+ 0,

where TaG is the eotangent spaee to G at O. Moreover, the line in V~ eorresponding to
the salne edge e, is the subspace (Vo/ l) ® TaG. Therefore T(v l /e)pVi is naturally identified
with ((Vo)/l)* ®l ®ToG. But our choice of a uniformiser x E F identifies ToG ---+ k. Q.E.D.

(2.3) Measures on spheres. Let w be a thin vertex of P and A = rnoo + n E A. Our
aim is to introduce a natural measure J.Lw on the sphere S A(w ) .

To do trus, denote again by Tp the continuous Bruhat-Tits tree (eorresponding to
F considered as an ordinary loeal field) and v = 11"(w) E Vert(Tp) the vertex such that
w E 7 v • For m E Z+ let Sm,p(v) be the sphere of radius rIt in Tp. Then we have thc
following diagraln of projections:

(2.3.1) Smoo+n(w) ~ Sm,F(V) ~ Sm-l,F(V) --+ ,,,S2,P(V) ~ SI,P(V) ~ SO,F(V) = {v}.

As we saw, the fibers of 11" are horocycles, in particular, they are eountablc. The fiber of
PI is SI,F (v), i.e., a projective line over the I-dimensional loeal field k whieh is the salne
as 87v ' The fibers of cPi' 2: 2, are affine lines over k. We have seen in §1 that a ehoice of
W E Vert(7v ) defines a particular probability Ineasure on 87v , the Poisson lneasure.

Further, any fiber of P2 over a point b E 8rv is described as follows. Let 7 v ' be the
unique nlicroscopic tree adjacent to rv whieh has bon its absolute. Then P2 I

( b) = 87v' - { b}
We can identify this affine line with the set of all infinite edge paths A(b, b') joining e with
other points b' E 8rv "

The basis of topology on this affine line is given by the following
subsets:

(2.3.2) Mw ' = { A(b, b'): w' E A(b, b') }

where w' E 7 V l is a vertex. Now, the distance d(w, w') from our fixed w to w' (this distance
has fonn 00 + n, 11 E Z) gives us the canonical measure J.Lw,b on 87v l - {b}. Namely, we
set:

(2.3.3) J-Lw,b(Mw ') = q-(d(w,wl)-oo).

12



Here d(w, w') - 00 is an integer, so the formula makes sense. In other words, P'1J,b is a
Lebesgue nleasure on the affine line Brv t - {b}, and (2.3.3) serves to normalize it.

In a siInilar way, aue deflnes the measure on each fiber of Pi, by subtracting (i - 1)00
from the distances.

Finally, on the horocycles which are fibers of 1r we introduce the Dirac llleasure which
assigns to each element the value 1 (so the integration by this lneasure is just the sunlma
tion).

In this way we have constructed a canonical measure J.LW,A on the whole sphere S A (w),
A = moo + 11 as the (Fubini) product of measurcs on the fibers of projections in (2.3.1).

(2.3.4) Proposition. Thc measure J-Lw is the unique, up to scalar, measure invariant
under the sllbgroup K:V in PGL2 (F) preserving the vertex w.

Such a subgroup is of course conjugate to PGL2 (O').

(2.4) The Hecke algebra. We are now going to define a kind of Hecke algebra for the
subgroup K' = PGL2 (O') c PGL2 (F). To explain the construction, recall that for a
locally cOlnpact group G and its compact subgroup H the Heckc··algebra ll(G, H) can be
defined in oue of three equivalcnt ways:
(1) As the algebra of compactly supported doubly H-invariant continuous functions on G

with the operation given by convolution with rcspect to the chosen Haar measure.
(2) As the algebra of G-invariant integral operators in the space of all continuous functions

on G/H.
(3) As the abstract algebra fonned by kerneis of such operators.

Let us conlment on (3). If X is any topological space, we denote by Ox and Mx the
sheaves of continuous functions and measures on X. Consider thc sheaf MOl = pi 0 x (9

P2 M x on X x X. Its sections will be called (0,1 )-lneasurcs, i.e., functions in the first
variable and lneasures in the secolld variable. We write them as R(x, y)dy. Such a lneasure
is called properly supported in the projection of its support to thc first factor is a proper
map. Then kcrnels of G-invariant operators in (3) are just properly supported G-invariant
(O,l)-measures on (G/H) x (G/H). The product of such measurcs is the convolution

(R(x, y)dy)(S(x, y)dy) = U(x, y)dy, U(x, y) =1 R(x, z)S(z, y)dz.
zEX

We now return to the case of G = PGL2 (F), H = PGL2 (O'). As G has no Haar
lneasure, the description (1) does not make sense; we are going to see that onc can give
sense to (2) and (3) although they will no longer be equivalent.

We start with (3). Let V = PGL2 (F)/PGL 2 (eJ') be the set ofthin vertices ofP. Fix
A E A. The PGL 2 (F) w- invariant measures /-Lw, >. on the spheres S A(W ), w E V fit together
to form a PGL2 (F)-invariant (O,l)-measure TA on V x V. This Illeasure is not properly
supported, so the possibility of taking products of the T>. neecls a special analysis. Call a
subset S c A well-ordered if any subset S' c S has a maximal elcHwnt.
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(2.4.1) Proposition. Let 1l be the C-vector space oE Eormal series L:,\EA c,\T,\ whose
support (i.e., the set oE A with c,\ :j:. 0) is well-ordered. Then:
(a) Convolution oE (O,l)-measures on V x V Inakes 1l into an algebra.
(h) it has an algebra Eil tration F parametrized by A with F,\it consisting oEseries L:,\1:::;,\ C,\ I T,\ I •

" """ N
(c) 1i has an algebra gra.ding H = EBmE z+ H m where H m consis ts oEsums L:n=oo Cn Tmoo+n.

Part (a) basically follows frolll the triangle inequality for the distance. Part (b) is
obvious Property (c) llleans that 1lm1lm l C ilm+m,. Note that apriori possible sU111mands
in the expansion of T>..T~ include all T>..+~-v with v ~ Inin(A, J-L). Gcometrically, T~ is the
averaging over all points on distance J-L frolll the given one, so T>..T~ is obtained by first
going to distance J-L anel then to a distance A from there, whereby we can happen to first
retrace back any nUlnber v of steps of our path. The statement in (c) is that that unless v is
finite, the probability of such retracing is zero and thllS the corrcsponding T(A + J-L - IJ) will
not enter into the expansion. This is ineleed true, since the coefficient at thc corresponding
T(A + J-L - v) will be obtained as an integral, with respect to a product of Lebesgue anel
Poisson nleasures,~of~ a .function sllpportcd ·on a .veriety of positivecoelimension.

Note that the degree 0 part of it is just the Hecke algebra Ho for PGL 2 (k) froIn §l.

(2.5) The subalgebra H c it and its action on functions. The algebra il is of
"conlplete" nature. In particular, it is not finitcly generated. Let Heil be the subalgebra
generated by Tl anel Tao. We will now show how to lllake 1i act on an appropriate class
of functions on the set V = PGL2(F)/PGL 2(O'). This action does not seeln to extend to
thc whole it.

(2.5.1) Definition. A Eunctioll f : V ---7 C is called a Schwartz-Bruhat function, iE the
fallowing condition holds: For an.y W E V and any n E Z the restrictian oE f to thc sphere
Soo+n (w) (w1lich is a Z- tarsal' ovcr a p-adic projec ti vc linc or1r (w)) is a loc;Jlly cons tan t
function with compact support.

The space of Schwartz-Bruhat functions will be denoted S.

It may be not obvious that Schwartz-Bruhat functions exist at all. So let us give a
construction of a large dass of theIn. Nalllely, we will construct many Schwartz-Bruhat
functions f with the following property: in each nlicrotree Tv there is exactly one vertex
w(v) on which f :j:. 0, and whenever Tv,Tv' are adjacent, we have d(w(v),w(v')) = 00.

For this, start with SOHle Wo E TVa' The sphere S00 ( WO) is a Z- torSOl' ovcr OTVa ::::::: p 1 (k ).
Choose a continuous section O'vo : OTva ---7 Soo(Wo) of this torsor. In this way, we Inark,
for any adjacent lnicrotree TVI ' one point Wl = W(Vl) on distance 00 from Wo. Forther,
look at any such TV1 anel at the Z-torsor 8 00 (Wl) ---7 OTVI ' The point Wo is an element
of 8 00 (wd lying over the point Pvo ,VI E OTV1 nearest to Tvo ' Choose a continuous section
0'VI : OTV1 ---7 800 (Wl) such that O"WI (Pvo ,vJ = Wo· In this way we lnark, for any microtree
Tv'l with dYF(VO, V2) = 2, a point W2 = W(V2) E TV2 on distance 200 from wand on distance
00 from w(vd where VI lies between Vo anel V2. Continuing like this, we nlark, for each
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v E TF, a point w(v) E Tv .

Now we construct a function f. We take f(wo) to be arbitrary. To define f(W(VI)) for
VI adjacent to Va, choosc any continuous (i.c., locally constant) function cPvo : 8Tvo ----t C and
put f(a)vo (p)) = cPvo (p). Further, for any marked WI E T V1 with d(wo, wd = 00, choose
a locally constant function cPVI : 8TVI ----t C with t hc property cPVI (Pvo,VJ = f (wo) alld
put f(aVI (q)) = rPVI (q), q E 8Tv1 anel so on. In this way wc construct a Schwartz-Bruhat
function f.

(2.5.2) Proposition. Tbc (O,l)-nleasurcs Tl, Too alld, more gCllerally, Tmoo+n ,1n ::; 1,
give rise to well-deHned integral operators prescrving S. Explicitly,

(TAf)(w) = 1. f(w')dJ-Lw,A' A = moo + n, m ::; 1,00.
w'ES,\(w)

These operators commute with thc action oE PGL2 (F).

(2.6) Calculations in il and 1-1.. The Hecke algebra il is not commntative, as one cau
see from the next proposition.

(2.6.1) Proposition. We have thc Eollowing cqualities in 1l:

(2.6.2)

More generally,

TmToo+n = Too+m+n + (q - 1)Too+ m +n -2 +q(q - 1)Too+ m + n - 4 + ...

(2.6.3)

rp T mT + (rn-I m-2)T + (m-2 m-3)T +.Loo+n m = q oo+n+m q - q oo+n+m-2 q - q oo+n+m-4 ...

(2.6.4) ... + (q - 1)Too+n +m - 2(m-l) + 1 . Too+n - m .

Thc equality (2.6.3) is obtained in lunch thc sarne way as (1.4.1): the cOlllbinatorial
cOllnting is thc sarne.

Let HS prove (2.6.4). For this, we have to take into account the change of the Poisson
lneasure on the bonndary of a Inicroscopic tree when the vertex defining the measnre is
moved away to distance m. This change of given by formula (1.5.2). More precisely, start
with S01l1e thin vertex w E Tv. For every edge e incident to w let Me C 8Tv be the set of p

such that the shortest part A(w,p) contains e. Then for the Poisson mcasure corresponding
to w we have J.1.w(Me ) = l/(q + 1). If w' is another vertex, then {Lwl-n1easures of the sarne
sets are, in virtue of (1.5.2), as follows:

{

(q+I)q~(W,WI) , if e 1:. A('W, w'),
{Lw

l (Me) = I 'f A( ')1 - (q+I)qd(w,w')-l' 1 e E w, w
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Now let us calculate Too+nTm. Since this is an integral operator, its value on the o-function
at w is a rneasure on thc set of vertices of the neighboring microtrees 7V" In order to find
thie measllre and compare it with those given by thc Too+il choose in a continllous way,
for each such 7 V "

one vertex on the horocycle of points of elistance 00 + i fronl w. Let
M (i) be the set of such vertices and, for any edge e adjacent to w as before, let Me (i) be
the subset of M(i) consisting of points w' such that A(w, w') contains e. Then

r Too+i (ow) = 1J(q + 1),
JMe(i)

where the integral just Ineans the value of a Ineasure on a set. Therefore the coefficient at
Too+n+m - i in thc expansion of Too+nTm is the integral

r Too+nTm(ow).
JMe (oo+n+m-i)

Let us first find thc coefficient at Too+n+m' In order to get from w to a point at distance
00 + n + rn we should go first to distance m and then from there to distance 00 + n by a
path without repetitions. Let w ' be the intennediate vertex of such path, d(w, w ' ) = m.
Consider the set of those points p of 8Tv which are farther away from w than w ' , Le.,
w' E A(w, p). The tLwl-measure of this set is qJ(q + 1). Further, for a chosen e as above,
the set of such possible w' leading to points froln Me(oo + m + n) is qm-l. Thus the first
term of expansion is:

Too+nTm = qmToo+n+m + ...

Let us find the next tenn. It corresponds to paths with one repetition: wc first go to fronl
w a vertcx w' on distancc m and thcn from thcre to a vertcx w" E Me (00 + 771 + TI, - 2)
by retracing exactly one step of the path A(w, w' ), Thc number of all paths of length m
starting from w anel passing through e is qm-l. Ir we want to retrace exactly one step
of such path A(w, w ' ), then after this retracing we have exactly q - 1 possibilities for thc
next ralnification. For each such ranüfication the {Lw'-Iueasure of the set of all points from
Me(oo + m + n - 2) reachable by going further withollt repetitions is 1Jq(q + 1). This
implies that the coefficient at Too+m +n - 2 is qm-l(l - 1Jq) = qm-l _ qm-2.

The next coefficient corresponds to paths with exactly two repetitions. As before, the
set of w' reachable by going to distance m through e, has cardinality qm-l and thc set of
possible ramifications after retracing two last steps of the path A(w, w') has cardinality
q-l. Thc {Lwl-mcasure ofthe set ofpoints of M e(00+m+n-4) reachable by going further
after a choice of that ramification is 1Jq2(q + 1), so we get the coefficient at Too+n +m - 4 to
be qm-2 - qm-3 and so on.

At the end the pattern will be slightly different: in this case we havc to retracc thc
entire initial path A(w, w'), and in order that the cOInposite path reaches a point from
Me (00 + TL - m), the initial path should not pass through e. the number of paths with this
property is qm, W hile for the end w' of any such path we have {Lw l ( Me) = 1Jqm, so the last
coefficient will be 1. Proposition 2.6.1 is proved.

Fonnulas (2.6.2) irnply the following statcluent.
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(2.6.5) Theorem. The assoeiated gTaded algebra grF(il) is isomorphie to the Heisenberg
algebra generated by symbols al, aoo wllieh are subject to the relations

(2.7) The fuH multiplication table in 1f.. The multiplication in 1f. is cOInpletely
described by the foIlowing proposition.

(2.7.1) Proposition. IE a, b > 0, then
(2.7.2)

(
00)an (1-2a)i-l

q T(a+b)oo+(m+n) + (q - 1)~ q T(a+b}oo+m+n-2i .

IE b > 0, then
(2.7.3)

TmTboo+n = Tboo+m+n + (q - 1)Tboo+m+n-2 + (q2 - Q)Tboo+m+n-4 + ... + qmTboo+n_m.

JE a =j:. 0, tllen

(2.7.4)

(

n-l )
an (1-2a)i-l (l-a)n

Taoo+mTn = q Taoo+(m+n) + (q - 1)~ q Taoo+m+n-2i + q T aoo+m - n

~=l

Thc proof is silnilar to that of (2.6.1) and left to the reader: Olle has to take to account
the change in the Poisson lllcasures on the boundary of the microtrce as weIl as in the
normalized Lebesgue nleasures on the punctured boundaries of the adjacent microtrces.
It may be not iInInediately obvious that the 1l1ultiplication given by the proposition is
associative, and it is a good exercise to check it, for instance, to verify that (T00Tl )T00 =
T00 (Tl T00 ). A lit tlc later we will givc a rnore conceptnal explanation of this associativity.

Let 1f.rat c il be the subspace consisting of series L~;;:l L~-oo amiTmoo+i with thc
property that for each rn the series L amizi represents a rational function in z. Proposition
2.7.1 iInplies that:

Proposition 2.7.5. The subspace 1f.rat is a subalgebra.

Let us note another consequence of 2.7.1:

Proposition 2.7.6. Any Tmoo+i can be expressed a.s a non-commu tati ve rational Eunction
in Tt,Too .

ProoE: By Prop. 2.7.1, we have

(2 7 7) T T T. T T T rnrp + l-rnT.
.. I moo+i = moo+i+l + q moo+i-t, moo+i 1 = q .Lmoo+i+l q moo+i-l'
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Therefore

So it is cnough to express Tmoo as arational function in Tl, T00' Let us show how to do
this for m = 2, the arguluent in the general case being similar. By repeated application of
(2.7.1), we have:

(2.7.8)

+( -1 -2 -3 -4)rr +q - q + q - q .1. 200-5 ...

(2.7.9)

(2.7.10)

( -1 :l + -3 -4)rr ++ q - q q - q .1. 200-5 ...

This implies:

(2.7.11)

(2.7.12)
T;T00 - (1 +q-2)TooT1T00 +T1TJo = (q2 - q+1+q-1 )T200+1,+ (2q - 3+3q-1 +q-3)T200 _ 1'

Therefore there are nUlnbers Cl, C2, C3 such that

as weIl as numbers c~, c~, c~ such that

Now, since T1T200+i = T200+i+1 + qT200+i - b we cau find T2oo .

Proposition is proved.
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(2.8) Bimodules and correspondences (preliminaries). Before going further into
study oril, some preliminary discussion is in order. Givcn any (possibly non-collunutative)
graded algebra A = EBn>O An, each Am is an Ao-biInodule. So in order to describe
the structurc of A, it is cnough to describe eaeh Am as an Ao-bimodule together with
multiplication maps Am C9 Ao Ami ---7 Am+ml.

Suppose that Ao is COInmutative. Then an Ao-bimodule is just an Ao0c Ao-module
and it ean be visualized as a coherent sheaf on Spec(Ao) x Spec(Ao). Further, tensor
product of biInodules translates geometrically into "convolution" of sheaves on the product
similar to the composition of kerneis of integral operators, 01' of correspondences. More
precisely, let S be any affine scheIne over C and ;:,;:' be quasicoherent sheaves on S x S
and M, M' the corresponding C[S]-bimodules. Denote by PIZ, P13, P23 : S X S x S ---7 S X S
obvious projections. Then the eonvolution sheaf

corresponds to thc bimodule M C9c[s] M'.

(2.8.1) Example~ ·Let·A·be the standard- Heisenberg algebra of polynolnials in z, w with
wz = qzw, brraded by deg(z) = 0, deg(w) = 1. Then Ao = C[z], so Ao C9 Ao = e[z', Zll]

where z' stands for the left action of z and z" for the right action. So Spec(Ao ® Ao) is
the affine plane with coordinates z', Zll and Am, as coherent shcaf on this plane, is just
thc structurc shcaf of thc line z" = qm z'. This line is thc graph of thc 111ultiplication by
qm as a map froln C to itself, anel the tensor product of Am ®Ao Ami is the graph of the
composition of such 111apS, so it is naturally identified with Am+m,.

(2.9) Structure of the il as bimodule over 1-1..0. We now apply thc considerations of
(2.8) to H. Let H'm c ilm be thc direct sum of C . Tmoo+n for all n E Z. Equivalently,
1l~~ is the sub-1lo-bimodule in il generated by Tmoo . The graded conlponent ilm is just
thc completion of H'm, so we describe 1l'm as a binlodule. By (2.7.3) we have that as a left
1l0-1110dulc, each 1l'm, m > 0, is isolnorphic to M, the "stabilization of the Hecke algebra"
frOI11 §1. To describe both right and left Inodule structurcs, write t' = Tl 0 1, t" = 1 0 Tl
for the generators of Ho ® Ho. Denote for short Too+i by ei. Then the action of t', t" on
the basis vectors is found froln (2.7.7) to be

(2.9.1)

(2.9.2)

Let z be thc shift operator in H'm, nal11ely ZTmoo+i = Tmoo+i+l . Then 1-I..'m is a free
e[z, Z-l ]-module of rank 1, and the action of t', t" can be written as

{
t' = z + qz-l
t" = qmz + ql-mz-l

Now this equation can be seen as defining a paralnetrized curvc C(m) in the affine planc
with coordinates t', t" (so z is a parameter on the curve). Trus curve is the support of our

19



bituodule. It is a hyperbola with asynlptotas t" = q±tnt'. This fact for rn = 1 nIeans that
there are two ways of filtering the algebra generated by Tl, T00 so as to get the Heisenberg
algebra ba = qab. For instance, 0(1) has the equation

(2.9.3)

or, in thc dcvcloped form,

(t' - qt")(qt' - t") = _(q2 - 1)2

(2.9.4)

Sunmlarizing, we havc the thc following.

(2.9.5) P roposit ion. The coherent oherent slleaf on Spec C [t', t"] corresponding to the
Ho -bimodule H~n is the structure sheaf of the curve 0 (1n) . For instance, H1 is an Ho
bünodule with one generator T00 and one relation

(2.9.6)

This relation is quite remarkable: it looks like the Serre relation In the quantluD
enveloping algebra Uq (Sl3), but is inhonlogeneous (has right hand side).

Thc group-theoretical Ineaning of C(rn) is as follows. Let T V ::: C· be the Inaxinlal
torus in SL2 (C), the Langlands dual group of PGL2 , and let z be the coorclinate in
T V . Denoting by W = {I, a} the Weyl group of SL2 , we have thc Satake isoluorphism
Ho = C[TVjW] where a E W acts by a(z) = qz-l. This isoIuorphisln is just read off the
left Ho-action on HI. Let p : T V -7 T V /W be the natural projection. For any 711, E Z let
C(m) c T V x T V be the shifted diagonal consisting of (z, q-mz). Thcn

(2.9.7) C(rn) = (p x p)(C(m)) c (TV /W) x (TV jW).

(2.10) The Heisenberg algebra A. We now compare il with a sitnpler algebra A. Note

that there are natural isomorphisIllS

(2.10.1 )

siInilar to ExaIuple 2.8.1. The correspondillg algebra

Ä = E9 r((TV /W) x (TV)/W, 0Ö(m))
mEZ

is llothing but the Heisenberg algebra gellerated by Z±l, w±l with wz = qzw, anel deg(z) =
0, deg(w) = 1. Let

A = E9 r(TV x TV
, tJC(m))'

m;::O
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Then A is also an algebra, thc composition Inaps

K.m,m' : OC(m) * OC(m l ) ----t OC(m+m l )

being induccd by thc Km,m" More prccisely, for 'rn> 0 thc projcction (p x p) : C(m) ----t

C(m) is an isolnorphism, so Am = Äm, while Ao = Är1' = C[z, Z-l]W. Thus A is a
subalgebra in A.

Let )rat denote the extension of ) consisting of fiIlite sums EiEZ cjJi(Z)Wi where each
rPi is a rational fllnction in z, with the comInutation rule given by wcjJ(z) = q.,(qz)w. In )
each q.,i is a Laurent polynomial. Let Arat be the subalgebra of )rat consisting of sums
L:i~o <Pi(Z)W i in non-negative powers of w in which q.,o is actually a W-symmetric Laurent
polynomial.

(2.11) Theorem. Tbe algebra firat is isomorpl1ic to Arat.

ProoE: We identify 110 ~ Aüat = C[Z,Z-l]W, with Tl t---+ z + qz-l. Fllrther, we have an
isomorphisms of 1lo-biInodules 'l/Ja : 1l~ ~ Aa which jllSt takes Taoo+m t---+ zmwu. However,
these isomorphisms' do 'notagree with the prodllcts 1l~ ®1lo 1l~ ----t 1l~a;.b' Let us denote
by 0 the new product in Arat induced by thc product in 1lrut , via thc identifications 'l/Ja'
Fronl Proposition 2.7.1 we find that for a, b > 0 we have

00 2
R(z) = 1 + (q _ 1)" qi-l z-2i = Z - 1,

L...J z2 _ q
i=l

while for a = 0 or b = 0 we have

Define now an isomorphisIn X : Arat ----t Arat of graded vector spaces as follows. On Aüat
it is the identity. If 1n > 0, anel a E A~:t, then we dcfine x(a) = R(z)-la. It follows
that X(aß) = X(a) 0 X(ß). In other words, X gives an algebra isoillorphism Arat ----t 1lru,t.

Theorem is proved.
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§3. Bruhat-Tits buidings and Hecke algebras für arbitrary C.

(3.1) Notations. As in (1.1), we let F be a complete discretc valued field with ring
of integers (] = (]F and residue field k. We denote by x a uniformising element of F.
For an affine algebraic variety Z over K, a subset Y C Z(F) is called bounded if the set
{ord(f(z)), z E z(F)} is bounded froln below. When the residue field k is finite, being
bounded is the same as being C0l11pact.

Let G be a split semisimple algebraic group over F. Wc introduce the standard
paraphernalia related to C, see, e.g., [Sp]. Thus:

T C C is a split maximal torus, B ~ T a Borel subgroup, N = [B, B] the Inaximal
unipotent subgroup of B.

X = X (T), X v = X v(T) are the latticcs of characters of T (weights) and and I-parameter
subgroups of T (coweights) respectively. We dcnote hR = XV ® R. For a lattice L we
denote LV = HOln(L, Z).

~ C X is the root system of G. By ~8im C ~+ C ~ we dcnotc the systems of simple
roots, positive fOOtS. Positive roots are thc roots of the Lic algebra of B. We choose a
numcration of simple roots:~8im = {al, .", all.

~v C XV is the systCln of coroots. For a E ~ wc denote by a v the corresponding coroot,
and denotc ~+, ~~im the set of a V for positive (or simple) roots Ci.

y C X is the lattice generated by ~, and Z C Xv is thc lattice gcneratcd by ~v. We can
regard Yv as a lattice in h R . Thus X/Y is the character group of the center of G while
Xv /Z is thc fundamental group of e.
G is the universal cover of e and Cnd is the adjoint gioup of C, so wc have maps G --+
G --+ Cad . Ey T ad we denote the n1axiInai torus in ead which is thc in1age of T nnder the
last Inap. Note that the lattice of characterts of T ad is Y.

X+ c X, x.+ c )(V are the cones of dOlninant weights and coweights, Le., those weights or
coweights whose sealar product with each positive eoroot or root is non-negative. Similarly
for Y+, Y+, etc. We denote by Ei the fundamental coweights, characterized by the condition
that (Q'i, Ej) = Oij. They form a semigroup basis of Y+, .

For a snbset I C {I, ... ,l} we denote by pI the standard parabolic subgroup eorresponding
to I. Its Lie algebra is generatcd by the Chevalley generators corresponding to all thc
positive roots and thc negative roots (-ai), i E I. For i E {I, ... , l} we denotc the luaxin1al
parabolic subgroup p{l, ... ,l}-{i} simply by Pi' We denote prd the image of Pi in ead.

Not all Inaximal bounded subgroups of C are conjugate. More precisely, the group
Gad has ol1ly one eonjugaey dass of maximal boul1ded subgroups, whilc for G this number
equals fl(li + 1) where li are the ranks of quasi-simple faetors of G. We will denote by

K thc bounded subgroup G(O). Let leK be the standard Iwahori subgroup, i.e., the
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preiInage, under the natural surjeetion K = G(O) -+ G(k) of the Borel subgroup in G(k).
By an Iwahori subgroup we mean any subgroup conjugate to Ij a parahoric subgroup is, by
definition, a bounded subgroup containing an Iwahori subgroup. It is known that maxi~al
parahoric subgroups are the same as maxiInal bounded subgroups.

(3.2) The (affine) building. To every G as before there is associated a natural cell
cOlnplex B(G) = B(G, F) with G-action known as the (affine) Bruhat-Tits building of
C. It depellds on G, Fand the loeal field structure on F. Let us recall briefty its Inain
properties whieh Inay be used to eharaeterize it uniquely, see [BT] [Br] [Ro] for Inore
details.

(3.2.1) B(G) is a contractible i-dimensional cell eomplex with G(F)-action whose ertices
are in bijection with Inaximal bounded sllbgTOUpS in G(F) while cells of arbitrary dinlcnsion
are in bijection with parahoric subgroups. In particular, maximal (l-dinlensional) ceils
correspond to Iwahori subgroups. We denote by O'(P) the simplex eorresponding to a
subgroup P.

(3.2.2) If G is quasi-silnple (has no nonnal subgroups of positive dilnension), then B(G)
is a simplicial eomplex.

(3.2.3) For the product of two groups we have B(G1 x G2) = B(Gt} x B(G2) (the produet
of cell eOlllplexes).

(3.2.4) As cell cornplex, 8(0) = 8(cud) depends only on cu(l (this is beeause therc is a
bijection between parahoric subgroups in C(F) anel Gud(F)).

When G and F are fixed, we will denote the bulding B(C, F) just by B. Note that
the action of G(F) on the maximal cells of B is always transitive while the action on cells
of sInaller dimension, e.g., on vertices, Inay be not. However, the action of cad(F) is
transitive on vertices.

(3.3) Apartments. To any choice of a split F-torus H in G there corresponds an apart
ment A(H) c 8 This is a subcolnplex homeolnorphic to the Euclidean space R i

• More
precisely, A(H) has a natural structure of an affine space over hR with thc subdivision
given by the alcoves of the affine Weyl group of G. We will use the Killing fonn on hR to
make A(H) into a Euclidean affine space. It is known that for any two cells 0',0" of T(G)
thcrc always is an apartInent containing them, any any two apartments with this property
can be taken into each other by an elenlent of G preserving 0',0".

(3.4) Spherical buildings. Links and the boundary of the affine building. For
any field L (without any Ioeal field structure) wc denote by E(G, L) the spherical Bruhat
Tits building associated to G and L. It is defined in alInost t.he saUle way as thc affine
building, only instead of parahoric subgroups one considers parabolic (in the usual sense)
subgroups in G(L). With this modification, the analogs of the properties (3.2.1-4) are all
true with the exception that E(G, L) is not contractible but rather is homotopy equivalent
to a wedge of spheres.
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For any cell complex C and any cell a E C of dinlension d the link Lk(a / C) is the cell
cOlnplex whose i-dimensional cells are in bijection with (i + d + l)-dimensional cells of C
containing a, with the saIne closure relation. The links in the affine building are described
as follows.

(3.4.1) Proposition. IE P is a paralloric subgroup in G(F) and a = rY(P) is tlle corrc
spoding cell in the affine building ß, then Lk( (J / ß) is identified with the spherical building
~(P, k) where P is tbc semisinlplification oE the reduction of P modulo thc maximal ideal
of O. In particular, for the vertex associated to tbe standard InaxiInal bounded subgroup
K the link is isolnorphic to ~ (G, k).

This generalises property (1.1.2) that thc set of edges of a Bruhat-Tits tree incident
to a given vcrtex is a projective line over thc residuc field k. Note, in particulaI', that for
each vertex v the edges cOIning out of v are subdivided into l types, one for each conjugacy
class of a Inaximal parabolic subgroup in Cad(k). These conjugacy classes are labelIed by
sinIple roots, naInely to a root (Xi there corresponds the lllaximal parabolic subgroup Pi,
see (3.1). We will refer to edges (coIning out of x) corresponding to Pi as edges of type
i. Note that this concept depends not just on the edge itsclf but also on the choice of the
"beginning" x. More precisely, there is a well-defined involution i t-; zon {I, ... , l} such
that if (x, y) is of type i, then (y, x) is of type z. This involution is an automorphism of
the Dynkin diagranI. For exaInple, for the group PGLn thc situation is as follows. If we
nUInber the simple roots in the linear order with respect to the Dynkin diagraIn An-I,
thon z= n - 1 - i.

We now briefly recall how the boundary aß is defined, see [BI'] for fllore details. One
calls a ray in B a subset r C ß which lies in same apartment A and reprcsents a linearly
embedded half-line [0,00] with respect to the Euclidean structure of A. (In this case saDle
statement will hold for any apartment containing r. Two rays r, r' are called parallel if
they lie in a COlllInon apartment A and are parallel there (represent thc same point on
the sphere at the infinity of A). Being parallel is an equivalcnce relation, and equivalence
classes are called ideal points of ß. Their set is denotcd aB. An ideal simplex in aB is a set
obtained as follows. Take any apartment A c ß, any vertex v E A, any cell a containing
v and fonn the cone with apex v by drawing all straight (with respect to the Ellclidean
structllre on A) half-lincs starting froIn v and passing through points of a. Cones of this
type are called conical cells in ß. Thc set of points on the sphere at the infinity of A
represented by a conical cell is called an ideal cell of aß. Now the generalization of the
property (1.1.3) is as follows.

(3.4.2) Proposition. Tlle boundary aß(G, F) witlI tlIe decolnposition into ideal cel1s de
scribed above, is naturally identified with tbc spherical building ~(G, F). Tbe apartments
in ß(G, F) and aB(G, F) = ~(G, F) are in natural bijection.

Note the particular case when the residue field k is finite. Then the affine building ß
is a locally cOInpact CW-complex, with each link being a finite CW-complex. Stabilizers
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of vertices of Bare all the maximal compact subgroups in C(F). The set of cens (of an
dimensions) of the spherical building E(G, F) is just the disjoint union of G(F)/P(F) for
aH conjugacy classes of parabolic subgroups P C G. In particular, this set has a natural
topology induced by the valuation topology of F, with respect to which it is compact.
Further, the sphcrical building E(G, K) has a natural topology which mixcs thc standard
topology on ceHs anel the compact completely disconnected topology on the union of thc
G / P, see [Br]. With this topology E(G, K) is cOIllpact. There is a natural way to topologize
the union B = B UaB which is also compact, sec Borel [Bo].

(3.5) Distances. Silnilarly to the case of Bruhat-Tits trces, for any two vertices v, v' E
B there is a well-defined "distance" d(v, v') which is, however, not an integer but an
elelnent of yv /W. (RecaH that yv is the lattice of I-parameter subgroups in Tad, thc
InaxiInal torus of ead .) Namely, the set of vertices of B is Gad(F)/K, and we have the
Iwasawa deconlposition cad = KTadN, where N is the COlnmutant of the Borel subgroup.
Heuce K\Cad / K = XV (T') /W. The distance satisfies the invariance property d (gv, gv' ) =
d(v, v') for any 9 E Ad(C) anel the following analog of the triangle inequality:

d(V, v") C Conv ( W . (d(V, Vi) + d(Vi, VII))).

We can, if we want, identify yv /W with Y+" the cone of donünant integer coweights of
Cad . For every r E Yv we denotc r + E Y+, thc uniquc reprcsentativc of thc W -orbit W r

lying in Y+,.
Note thc case when v' is a vertex joined to v by an edge. In this case this edge has one

of l types, see above; if the type is i, then d(v, v') is the fundamental coweight Ei associated
to thc simple root ai.

For every r E Y+, /W and any vertex v E B we denote by Sr (v) thc "sphere" of radius
T anel center v, i.e.,

S,.(x) = {v' : d(v, v') = r}.

Given two vertices v, v' E ß, we clenote by A(v, v') thc intersection of all the apart
Inents containing v, v'. This is the analog of the shortest path bctween two vertices on a
tree. In our casc A(v, v') is a finite ccll subcomplex in ß which may havc any dimension
between 0 (when v = v') and l = rk(G).

(3.5.1) Proposition. Let d(v, v') = L~=l ffiiEi, mi 2:: O. Let A be any apartment con
tainillg v and v'. Then A(v, v') c Ais, witll respcct to the affine structurc on A', a
parallelotope, llamely a translation oE the Eollowing parallelotope in hR:

In particular,
(a) The dünension oE A(v, v') is equal to l Ininus the number oE sünple roots vanishing on

25



d(v, v').
(b) Consider a11 edge patlls in B joining x and y and l1aving Ininimal possible length. The
set of vertices oE A(v, v') is tlle union of tlle sets oE vertices of such minimal paths.

(c) Ifvo = x, VI, ... , vN = v' is any minimal edge path joining v and v', then

N-l

d(x, y) = L Em {Vi,v1+d'
i=O

wllere 1n(Vi, Vi+l) E {I, ... , l} is the type oE the edge [Vi, Vi+l]'
(d) If dim(A(v, v')) = d, then tl1erc exist exactly one d-dimcnsional cell of A(v, v') con
taining v (resp. v').

The reader Inay consnlt [Ko] for alllore thorough discussion of the example G = PGL3 .

Wc will denote the d-dimcnsional cell of A(v, v') containing v, by dir(v, v') alld call it
the direction to v' froln v. The d-dinlensional cell of A(v, v') containing v', will bc denoted
by codir(v,v') = dir(v', v) and called thc codirection froln v to v'.

(3.5.2) Proposition. Let v, v', v" bc. thre~ vertices oE B. Then the Eollowing conditions
are equivalent: ..

(i) d(v, v') + d(v', v") = d(v, v").
(ii) The cells oE the spherical building Lk(v' / B) corresponding to codir(v, v') and dir(v', v"),
are in generic position.
(iii) v,v',v" He in a COml1l0n apartment and A(v,v') nA(v',v") = {v'}.

Let ns cxplain the lIleaning of (ii). The set of cells of Lk(v' / B) of any given type is a
Hag variety G(k )/ pI (k) over thc residue field k. One says that two points a E G (k) IpI (k )
and b E G(k)/pJ(k) are in gencric position, if thcy He in the unique open orbit of G on
(G/ pI) X (GIpJ).

The parallelotope A(v, v') is the analog of the finite edge path joning two vertices of a
Bruhat-Tits tree. We will need the analogs of (scnü)infinite paths as weIl. Namcly, if 0", r

are cells of the spherical building aB, wc denote by A(O", r) C B thc intersection of all the
apartlnents containing 0", T at thc infinity. It is always an affine subspace in an apartment.
For exalnple, if 0", rare Inaximal cells in generic position, then A(O", r) is an apartment
(two c0l11pletc flags in generic position detenlline a uniquc maximal torus). If v is a vertex
of B anel 0" is a cell in aB, then we define A(v, 0") as thc interscction of all the apartlnents
containing x, 0". It is always a conical cell.

(3.5.3) Proposition. Let v, v' EBbe two vertices and Kv,v' C G(F) be tbe subgrol1p
fixing both v and v'. Tben the iInage oE KV,v' in Aut(Lk(v / B)) is tlw parabolic SUbgTOl1p

fixing the cell dir(v, v'). SiInilarly, the image in Allt(Lk(v'/B)) is tbc parabolic sl1bgroup

fixing codir(v, v').

(3.6) Horocycles and mixed horocycles. A sphere iu B cau be defined as an orbit
of a snbgroup in Gad(F) conjugate to Kad. SiInilarly, we call a horocycle an orbit of a
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subgroup conjugate to thc unipotent subgroup N. Thus to specify a horocycle, Olle has
first to specify a subgroup N' conjugate to N and second, an orbit of this subgroup. The
set of all subgroups conjugate to N is nothing but the full flag variety G(F)IB(F), and
wc think of the point of G(F)/B(F) corresponding to N' as the center of thc horocycle.
In terms of B the center of a horocycle is just a ulaximal cell of the spherical building aB.

Having fixed such a cell b (01', equivalently, asllbgroup N'), we will distinguish various
orbits of N' (i.e., horocycles with center b) by their "radii" which are elements of a certain
yV-torsol' D(b). This torsor is obtained frorn the fiber of the projection G/ N -t G/ B over
b (trus fiber is an Tad-torsor) by quotienting by the maximal compact subgroup in T ad .

In particular, for any bEG/ Band any two vertices v, v' E Vert(B) we have a weil
defined difference of the (infinite) distances from v and v' to b. This difference is an elelnent
of yv and denoted by d(v, b) - d(v, b), where d(v, b), d(v', b) are elelnents of D(b).

We will also need objects interpolating between spheres and horocycles (sec [Kar] for
the discussion of thc archimedean case). More precisely, let P C Gad be any parabolic
subgroup (not necessarily a standard one) and Np C P its unipotcnt radical. A 1nixed

horocycle of type P is by definition, .an-orbit of a subgroup of the fornl r-1(Kp ) where
K pCPIN is any rnaximal bounded SUbgrOllP and r : P -t P / N is thc natural projection.
Note that such K p gives rise to a lllaximal bounded subgroup in any Levi cOlnplelncnt
to Np . . Note also that we do not exclude here the case when P = ead in which case a
mixed horocycle is just a sphere.

Thus the "center" of a mixed horocycle is a pair (P, K p ). We prefer to encode this
data geometrically in tenns of the building. Namely, P corresponds just to a cell (j c aB
of arbitrary dimension (the case of an honest sphere is obtained when (j = 0). Further, a
choice of K pCP/ Np is just a choice of a vertex of the Euclidean bllilding B(P/ Np) asso
ciated to the semisilnple group P / Np over F. This Euclidean building has, as boundary,
the link Lk((jlaB). In tenns of Bitself, (j C aB is represented as an ideal cell, Le., the part
at infinity of a conical cell (sector) ij in an apartnlent in B. Two conical cells C, C' define
the salne ideal cell if they are parallel in thc obvious sense. There is a trivial possibility
to achieve this: take two conical cells in the sarne apartment which represent the same
region at the sphere at the infinity but whose apexes are different. In this case C n C' will
be nonempty. We will say that two parallel conical cells C, C' are essentially different if
C n C' = 0. A choice of a vertex in B(P/Np) is nothing but a choice of a conical cell C
in the given class of parallel conical cells, whereby we distinguish only essentially different
cells. Let us sumnlarize this discussion as follows.

(3.6.1) Proposition. Any conical cell C C B detcrmincs a center oE a Inixed 11orocyc1e.
Two conical cells C, C' detenlline the same center iE and only iE they lie in a conlnlon
apartment A and can be obtaincd [rom each otller byan affine translation (with respect

to the affine structure on A).

In particular 1 verticcs of Bare conical cells, and the corresponding mixed horocycles
are just spheres.
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Having described what is a center e of a Inixed horocycle, we go on to give a geornetric
interpretation of the radius as an element of some torsor. First, any parabolic subgroup
has a type I C {I, ... , l}, i.e., it is conjugate to the standard parabolic subgroup pI, see
(3.1). Let

Y/ = {1' E y v
: (1', ai) = 0, i rf:. I} = EB Z€i,

iEI

yV /I = EB Z€i ~ yV IY/.
i(j.I

Let also WI C W be the Weyl group of GI, the semisiInplification of pI, i.e., the subgroup
generated by the sinlple reflections corresponding to ai, i E I. It acts on Y/. Let also ae
be the cell in the spherical building aB represented by e. Wc can think of ae as an elernent
of the generalized fiag variety G(F)IpI (F). There is a principal fibration GIpI -r GINI

with structure group Cl. Pass to the induced fibration with structure group being the
torus G~b = Cl I[G I , Cl]. Note that the quotient of G~b(F) by the maximal bounded
subgroup is a lattice naturally identified with yv I I. So by taking a further associated
bundle, we get an yv I I-torsor over G(F)/pI (F) which we denote by Doo. Its fiber over
a point p will be denoted DOO(p) .. Now define, for.a conical cell e. of type 1 ,

(3.6.2)

where we regard ae as a point of G(F)lpI(F).

(3.6.3) Proposition. For a spherical cell C the set oE possible mixed horocycles with
center C is identified with D(C).

An element of D(C) will be written as l' = (1",7''') according to thc decomposition
(3.6.2). For l' E D(C) we write Sr (C) for the horocycle with center C and radius r. Given
C, any vertex x E B lies Oll a unique horocycle Sr (C). Thc corresponding value of l' will
be called the distance froln X to C and denoted d(x, C). We will write d'(x, C) E Y/IWI
and d"(x, C) E DOO(aC) for the componcnts of d(x, C).

(3.6.4) Proposition. Let e c ß be a conical cell such that a = ac c ~ is invariant
with respect to the standard torus Ho = T(F). Then every mixed horocyc1e witll center C
meets the standard apartment A(Ho). Moreover, if er is of type I C {I, ""l}, the there is
a unique intersection point of thc form xavo, wl1ere a E yV is I -dolninant, i.e., (ai, a) ~ 0

for i E I.

This follows [roln the Iwasawa decornposition.

(3.7) Hecke operators. Assume now that the residue field of F is finite, of q elements.
Then C(F) is locally conlpact and has the Haar measure normalized by the requirenlent
that K has measure 1. The Hecke algebra 'Ho (G) is defined to be the algebra of compactly
supported doubly K -invariant nlllctions on G with the operation given by the convolution.
Since K\GIK ~ XV IW ~ X.+, aC-basis of 1io(G) is [ornled by elements Tn r E X'+
which are just the charactcristic fUllctions of the corrcsponding double cosets.
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Let S be the space of all functions on Vert(ß) with finite support. The algebra 1lo(G)
can be realized as the algebra of operators in S with Tr being represented as the averaging
operator

(3.7.1) (Trf)(v) =
v':d(v,v')=r

f(v').

(3.7.2)

(3.8.2)

The operators Tr are known to comluute with each other and form a polynonlial algebra
H with l generators. Note that all possiblc distances bctween vertices of B arc given by
eleluents of V': => X+ so 1lo(G) is a subalgebra in 'Ho(Gad) with the basis of that bigger
algebra formed by Tr , r E V-:. In thc treatl11cnt of questions rclated to Hecke algebras it
is often convenient to treat thc case of an adjoint group first and then specialize to the
subalgebra 1io(G) C 1lo(Cad ).

For instance, a systenl of polynoluial generators of 1lo(Gad) is given by thc operators
T€m' m = 1, ... , l corresponding to thc fundaluental cowcights (3.1). Morcover, thc sphcre
S€m (x) with auy center x is thc set of F q-points of a generalized Grassnlannian variety
G/Pm . Thus the fannula for thc praduct T€mTr can be obtained froln thc decoluposition
of (G / Pm)(Fq) inta Schubert cells .., More precisely, let W m = Wpm C W be the Weyl group
of the Levi subgroup of Pm' It is nothing but the stabilizer of Em . The set of Schubert
cells in G/ Pm is identified with W /Wm' Let Itm be the correspouding length functian on
W/Wm (giving the dimension of the corresponding Schubert cell). Then

T€m Ta = TOT€m = L qlt m (w)T(a+llI(€m))+·

wEW/Wm

Here the subscript "+" lueans the dOluinant representative in the W-orbit of a vector.
Note that if a is donlinant enough, then r +W(Em ) is already dominant so nothing should
be done with it. The equaHties (3.7.2) COIUpletely describe 'Ho (Gad) . The subalgebra
Ho (G) for a non nccessarily adjoint G does not possess such a simple multiplication table
but can be analyzed using (3.7.2).

(3.8) Stabilizations of the Hecke algebra and the Satake isomorphism. Formula
(3.7.2) iIuplies the following.

(3.8.1) Proposition. Given G and any basis vector Tr E 1io(G), r E V':, thcre cxist
nUlnbers Cr,ß' ß E Xv, alInost a11 zero, such that wlWllevcr a is dominant enough (compared
to r), then

TrTo: = L CrßTr+ß·

ß

In other wards, the Iuultiplication by Tr eventually acts as a difference operator. We
now define the 1lo(G)-modnIe M (G) to be the C-vector space with basis i o for all a E X v
and the action of Tr given by

(3.8.3)
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The fact that 7-lo(G) is a module over itsclf together with (3.8.2) imply that (3.8.3) indeed
defines a 111odule. For example, if G = Gad, then the action of Tf;;m on t a is givcn by the
same fonnula as in (3.8.2) hut without ever passing to thc dOlninant representative.

We caU M(G) thc stabilization of 7-lo(G). It is also known as thc universal principal
series representation, see [Katl-2]. It is a free module of rank IWI.

Let T V be the torus dual to T, Le., the spectrum of the group algebra C[X V]. We
denote a typical point of T V by z so for r E XV wc dcnote zr the nlononüal function on
T V corresponding to r. Becausc the action of 11.0 (G) on M (G) is given by translation
invariant difference operators, M(G) is in fact an (11.o(G), C[X V

])- birnodule where XV
acts on the right hy translations: tazr = ta +r . Clearly as a C[XV]-module it is free of
rank 1 so the left module structure gives tlS an algebra homolnorphism

(3.8.3)

(3.8.4) Proposition (Satake isomorphism). The map S identifies 11.o(G) with the
invariant subalgebra C[XV]W = C[Tv/W] where tlle action of W on T V is dcfined by
w * z = q-Pw(qP z ).

There is another way to stabilize the algebra 1-I..o(G). Nalnely, take two basis vectors
Ta, Tß whcre both a and ß are dominant enough and look at their product. Obviously, it
has the fonn

TaTß = L c:ßTa+ß-'Y'
'YEX+

In other words, the lnaximal tenn in the product will be Ta +ß while a11 thc other sUllllllands
will correspond to coweights less dominant than a + ß. The stabilization we have in lnind
is obtained by noticing that thc thc coefficicnts c~ß actually dcpend only on " provided
, is weH inside the region fornlcd by a11 possible sumlnands in TaTß.

(3.8.5) Proposition. (a) There exist numbcrs eb )" E y~ with the following property:
for any finite subset S C y~ there exist an open cone C c X,+ ® R such that whenever
a,ß E C and, E S, we have c~ß = e(;).

(b) Explicitly, the c(,) can be found frOll] the expansion of thc following rational function

on T V
:

Proof: Macdonald [Mac] has found thc image of Ta under the Satake isomorphism S :
1-1..0 -t C[Tdd/W]. NalnelYl for a strictly dominant a we have

( p)a 1 -1 w(€)
S(T )(z) = q " z-w(a) TI - q Z

Q P(q-l) L 1 - zw(€)
wEW €Eß+
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(3.8.6)

where P(t) = L:WEW t1t(w). Now note that for the "stabilization" we have in nünd only
one summand in Macdonald's fornlula is relevant, nalnely that corresponding to 10 being
the unit element. In other words, the "stable" coefficients c~ß will be the salne as thc
coefficients obtained by multiplying these sumnlands alone. Dur statement follows fronl
this.

Stabilizations of the kind described above will appear in the study of infinite Hecke
operators in the next section. In fact we need a slight generalization of this construction
in which we allow coweights not nccessarily dOluinant but just lying far away in a cone
given by partial dominance conditioIlS. More precisely, for a set I C {I, ... ,l} we denote by
~+(I) the set of positive roots which are roots for the unipotent radical of the standard
parabolic subgroup pI, and let

1 - zct
RI(z) = TI 1 - qzC't

aED..+ (I)

(3.8. 7) Proposition. Let 11 , 12 C 1 be two subsets. Then tllC coefflcien ts oE the expansion

.Rh (z)RI'2(z) ~ " (/)(1 1) 'Y- L...J c 1, 2 Z
RI1 UI'2 (z) EYV

'Y +

bave tbc following interpretation. For any finite S C Y+, there exist open cones Cv C

Y~ nEBiEI
v

Z€i such that whenever a E Cl, ß E C2 and 1/ E S, we have c:ß = c(/)(I1 ,I2 ).

(3.9) Poisson measures. We continue to assulne that the residue field k is finite, k = F q.

(3.9.1) Proposition-definition. Let x EBbe any vertex. For any parabolic subgroup
p C G there is a unique probability measure J.l: on G(F)IP(F) invariant with respect to
K x C G, tlle cOlnpact subgroup preserving tbe point x. This 111casurc is called the Poisson
measure.

Thc 111eSUre J.l~ clepends in the choice of x. For two vertices x, y thc ratio {Li: I J.l~ is
a well defined function on GIP. This function, regarded as a function of x, y as weH is
known as the Poisson kemel and denoted

{L
P

IIp(x,y,b) = ~(b), x,y E Vert(B), bE GIP
J.Lx

(3.9.2) Proposition. Jf P is a parabolic subgroup thcn for any bEGIP we have

IIp(x, y, b) = qop(dl/(x,b)-d
ll

(y,b))

wlJere d"(x, b) E DOO(b) was defined in (3.6) and op is the sum of a11 roots entcring thc
root decolnposition oE np, tlJe nilpotent subalgebra oE P.

ProoE: Note that J.lx(U) = J.lg(x) (g(U)) for any x E Vert(B) and any U C GIP. Thus, if
g(b) = b then, taking for U an "infinitesimally slnall neighborhood" of b, we find:

~(b) = Idet db(g)I,
J.Lg(x)
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where db(g) : Tb(GIP) -+ Tb(GIP) is the differential of 9 at b acting on thc tangent space.
Further, by homogeneity it is enough to verify thc statelllent of the proposition at any
one point bEGIP. We take b to bc a point invariant with respect to the standard torus
H = T (F), so it represents a cell at the boundary of the standard apartluent A = A(H) .
Also we take x to be a vertex of A and y to be of the fonn h(x), h E H. Then h(b) = b
and by the above fIp(x, y, b) = )det(Tbh)l. It remains to notice that the characters of thc
torus action on the tangent space Tb (GIP) are precisely the roots of np. Q.E.D.

The measure /-LPm associated to the maximal parabolic subgroup Pm, m = 1, ... , l, has
the following probabilistie interpretation. We consider the random walk Wm on Vert(B)
in which a particle at a vertex x can movc, with equal probability to any neighboring
vertex y such that the eorresponding edge is on type m. The Martin boundary for Wm

is the Grassmannian G(F)IPm (lying inside the fuH boundary of B whieh is the spherieal
building). The measure /-LPm is the cxit llleasure corresponding to the Markov chain Wm .

Note that the Markov chains Wm are independent for different m, which is just a rephrasing
of the fact that the Hecke operators T€m COllllllute with each other. The reader can consult
[Fu] for a treatment of ArchiInedean symuletric spaces frOIU this point of view.

(3.10) Measures on big cells. We consider the following sutuation:

B = B(G, F) is the affine building of G over the loeal field F (with finite residue ficld F q).

~ = DB is the corresponding spherical building.

b E E is a O-elimensional cell, so it corresponcls to a rrlaximal parabolic subgrollp Pb C G(F).
We assume that Pb is of type i E {I, ... , l}, so Pb is conjugate to the standard subgroup pI
where I = {I, ... , l} - {i}. Let also Nb C Pb be thc unipotent radical.

The lattice yv /1 is naturally identified with Z. So the torsol' DOC>(b) paraluetrizing
radii of horocycles with center b, is a Z-torsor. Fix any type j E {I, ... , l} and let Gr j :::

G(F)IPj be the set of O-cells of E of type j. Let U(b, j) C Grj be the open subset consisting
of c E Grj which are in generic position with b (in the sallle sense as in Proposition 3.5.2
(ii)). Suppose that a maxhnal compact subgroup K b C PblNb is chosen. Let 7 : Pb -+
PblNb be the natural projection.

(3.10.1) Proposition. Thc space oE measures on U(b, j) invarütnt under tbe subgraup
7- 1 (Kb), is l-dimensional.

PraoE: The set U(b, j) is the set of F -points of a smooth quasiprojective variety over thc
p-adic field F, and the action of 7- 1(Kb) is by regular maps. Thus our statement follows
fr0 111 the next two facts: first, the action of 7- 1(Kb) on U(b, j) is transitive, anel second,
for any fixed point C of any transfonuation 9 E 7- 1 (Kb) thc Jacobian det(dcg) E F* has
nonn 1. Both these facts are verified straightforwardly.
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§4. Double Bruhat-Tits buildings and Hecke algebras for arbitrary G.

(4.1) The double building. We return to the situation of (2.1) anel the introduction,
so F is a 2-climensionalloeal field, k its locally C01l1pact residue field, F q the finite residue
field of k ete. We also keep all the notations of (3.1) related to our fixed rcductive group G.

Our first abn is to associate to G and F (as well as the 2-dinlensionallocal field structure
on F) a cell complcx B = B (G, F, k) called thc double Br/that- Tits building of G. For
thc case G = PGLn the eomplcx B is closely related to (although not identical with) thc
lügher building constructed by Parshin [Pa1-2].

We need some notation. Let P be any polyhedral ball (a CW-cornplex of dinlension d
whieh has one cell of dimension d and is homeomorphic to a d-ball). We associatc to it a
new polyhedral ball P which again has only one d-eell and whose boundary is a polyhedral
sphere obtained as follows. We first take the barycentric subdivision of 8P, getting a
siInplicial (d - 1)-sphere, and then take the CW-deeomposition of Sd-l dual to thc one
given by that barycentrie subdivisioll. Thus vertices of P are in bijection with proper eells
of P (of any dimension). If P is a eonvex polytope, then P can also be realized as a convex
polytope. Narnely, we first cut out, like with a knifc, all vertices of P (so the each vertex
will be replaeed by a slnall new face), then rnake cuts parallel to the edges of P, then rnake
cuts parallel to 2-faces etc. For exanlple, if P is a sbnplex, then P is a pernultohedron
(the convex hull of a generic orbit of the synlmetric group Sn in Rn).

We now describe the construction of B. Considering F as just a loeal field with residuc
field k, we associate to it (anel G) the "continuous" Bruhat-Tits building BF = B(G, F).
We will distinguish thc objects related to this building by thc subscript F, for instance,
we will write dF ( V 1 v') for thc Y.;' -valucd distance in HF, as well as AF (v, v') for the
interseetion of all thc apartments eontainillg v, v' etc.

The link Lk(a) of any eell (J E BF is thus a spherieal building ov~r the p-adic field k.
As we know, there is a canoniealloeally finite Bruhat-Tits building ßu whose boundary is
Lk(a). We will call it the microscopic building (ar just the rnicrobuilding) assoeiatcd to (J.

Let ßa = ßu II Lk((J) be the cornpaetifieation of ßa obtained by attaehing the boundary.
We now take the disjoint union of 0- x ßu for all cells (J E BF . Then, far any cells 0- C 0-' of
Hp we identify each face of 0- x 8ßa with the corresponding face of 0-' x ßu. The resulting
topological space (with the topology induced, via the gluings, frorn the eornpact topologies
on the a x ßa) is, by definition, the double bulldillg B. Let us summarize its properties
(obvious from the construetion) in the following proposition.

(4.1.1) Proposition. (a) Tlle huilding B has a natural G(F)-actioll. It extends to a
Gad(F)-action.

(b) There is a Cad(F)-cquivariant projection

(4.1.2) 1r: B -+ HF,
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whose fiber over any interior point oE any cell er E Bp is naturally identifled with ßa.

We will caU a vertex of B thin if it is alnong the vertices of the nlicroscopic buildings
ßv where visa vertex of Bp . The set of thin vertices will be denoted V. Clearly, C(F)
and cad(F) act on V. Recall that by construction, HF has a distinguished vertex Vo with
stabilizer C(OF)' Thus ßvo is canonically identified with the building ß(C, k), and in
particular it has a distinguished vertex Wo whose stabilizer in 9 (k) is C (CJk) .

(4.1.3) Proposition. (a) The stabilizer oE Wo in C(F) is C(V').
(b) The group cad(F) acts on the set V oE thin vertices oEB in a transitive way.

For a vertex v of HF we will denote Cv the stabilizer of v and by Cv the image of Cv

in the group of automorphisms of the spherical building Lk(v / BF)' Thus C v is a group
over k. In particular, C vo = G(k).

(4.2) Apartments in B. Let He G{F) be a split InaxiIllal torus. Denote by AF(H) C

HF the corresponding apartment in ß p. For every cell er C AF(H) thc link Lk (er / AF(H)) is
an apartillent in the spherical building Lk(er/ HF) = 8ßa and thus givcs an affine apartlnent
A{H)a in ßa. We will call it the 7nicroscopic apartment corresponding to er. Let A(H)a be
the union of A(H)a and its boundary Lk(o-jAp(H)). So topologically it is a ball. It follows
that the products Er x A(H)a fit together to form a cell subcomplex A(H) c 7f-l(AF (H))
which we call the double aparttnent corresponding to H. The fiber of the natural Inap
(restriction of 7f)

(4.2.1) 7fH : A(H) -1 AF(H)

over an interior point of a cell ais, by construction, A(H)a'

(4.2.2) Proposition. Any two cells oE Bare contained in a comlnon double apartlnent.

As in §3, we will use thc notation A(a, r) for the intersection of all the (double) apartrnents
containing two given ceIls er and T.

Thc following construction will be important for describing spheres in B.

(4.2.3) Proposition-definition. Let A = A(H) be a double apartment, A F = 7f(A) C

BF thc corresponding ordinary apartment and v, v' be vertices oE A F. Let dirF(v, v') C

Lk(v / BF) and codirF(v, v') C Lk(v' / Bp) be the extreme cells oE the parallelotope A F(v, v') c
A, see (3.5). Let C v' be the the group defined in (4.1). It acts on Lk(v'/ßp). Then each
vertex w E ßv naturally gives rise to a maximal compact subgroup ~w (v') in the parabolic
subgroup Stab(codirp (v, v')) C C v "

Construction: As we saw in (3.6), for any cell er C Lk(v' / ß F) = aßv' maxitnal coInpact
subgroups in Stab(a) correspond to conical cells in ßv' defining a. Now, let w be given
and let h = ydp(v,v') E H(F). Thc translation by h gives a point w' E ßv" Consider the
double parallelotope A(w, v'). Its part lying in ßv is a conical cell defining the boundary
cell dirF(v, v'). Translating it by h, we gct a conical cell defining h . dirF(v, v') which is
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just the cell opposite to codirp(v,v') in the spherical apartment Lk(v'/Ap ). Now, for the
stabilizers of two opposite cells in a spherical apartlnent one can naturally identify the
semisitnplifications and thus their luaxitnal cOlnpact subgroups.

(4.3) Cartan decomposition. Distances in B. Let r = F* /(0')* be the valuation
group of thc 2-dinlensionallocal fielel F. We denote by ord : F* -t r thc natural projection.
The group r is (non-canonieally) isomorphie to Z2 and included into a eanonical exact
sequence

o-+ Z -+ r -+ z -+ o.
Let us ehoose unifonnizers x, y E 0', as in (2.2). Such a choice defines an identifieation

We will use this identifieation in the sequel, in partieular, we will equip r with the lexico
graphicalorder and write (m, n) as moo + n to highlight trus order.

The quotient T(F)/T(O') is naturally identified with Xv ® r. We will write elelnents
of Xv ®r as A = ,00+( with,; ( E' Xv. Tlie Weyl group'W aets on Xv ®f and we denote
the quotient (XV ®f)/W by Ac. The quotient Acad = (yv ®f)/W will be elenoted simply
by A. We will ielentify Ac with the set of representatives of the fonn ,00 + ( where , is
dominant (i.e., (" (li) 2:: 0 for any simple root ad anel ( is such that ((, (Yi) 2: 0 whenever
('Y l O'i) = O. We introduce a partial order on yV by saying that , ::; " if " -, is elonlinant.
By using this order, we order A (and thus Ac) lexieographieally: ,00 +( ~ ,'00 + (' Hf

, < " or , = " and ( < ('.

(4.3.1) Proposition. We have the Eollowing Cartan decomposition:

G(F) = II G((?')(x(y')G(V').

Here x( is tbe value oE tbc l-parameter subgroup ( : Gm -+ T on x, and similarly for y'.

PrüoE: It is enough to consider the adjoint ease. As with the Cartan decolnposition for
ordinary loeal fields, it is useful to restate the problenl geometrically, in terms of the double
building B. let Wo E ßvo be the distinguished vertex of Band A o be the standard eloubla
apartment through wo. Geonletrically, our statement says that any other thin vertex
w E ßv can be brought by a transformation fro1n K' = Stab(wo) C G(F) to a uniquc point
of the form x(y' . Wo E A o such that ,00 + ( E A.

Prom the Cartan decolnposition for F cosidered as an ordinary Ioeal field, we eonelude
that there is g E K = Stab(vo) such that gv = y'vo for a unique '"Y E Y-':. Therefore Of
course, g(wo) may not equal Wo, we just know that it lies in ßvo' So let Kv,vo C G(F)
be the subgroup preserving v, Vo. By Proposition 3.5.3 the image of Kv,vo in Aut(ßvo) is
the parabolic subgroup in G(k) preserving the generalized Hag dir(vo, v). By the Iwasawa
deeoillposition for the loeal field k, the action of this parabolic subgroup on vertices of ßvo
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is transitivc, so by composing 9 with an appropriatc transfonnation from Kv,vQ' we get
h E K' = Q(O') such that h(wo) = Wo, h(w) E ßy"rVQ' Denote Y'vo sinlply by v' and the
cell codir(v, v') c Lk(v' / Bp) = 8ßv l by (j.

Further, let K~,VI = Kv,v1nK'; let Pu C Aut(ßv 1 ) be the parabolic subgroup preserving
(jj denote Na C Pu the unipotent radieal and 1Ta : Pa --+ Pa/Na the natural projection.
Then the itnage of K~,VI in Aut(ßv1 ) lies in Pa and eoincides with the preimagc 1T;1 (tl:WQ,v ' )
where tl:WQ,v l C Pu/Nu is the maximal compact subgroup described in (4.2.3). So its orbits
are mixed horocyclcs is ßv i whosc center is a boundary cell fixed by thc standard torus. So
by Proposition 3.6.4 this horocyclc meets the standard apartlncnt in a uniqlle ,-donünant
point.

We can restate this as follows.

(4.3.2) Proposition. T]lere is a G(F)-invariant distance Eunction d : V x V --+ A satis
fying the trianglc inequality witll respect to thc lexicographic order on A. Moreover:
(a) For Wl, W2, w~, w~ E V the existcnce of9 E Cad(F) such that g(Wi) = w~), is equivalent
to thc condition d(WI, W2) = d(W~, w~).

(b) Ifd(wI, W2) = ,oo+ß,-then in-the-continual building ßpuwe havedp (1T(wl),1T(W2)) = [-

Similarly to what we saw in (2.2), the existence of d Iueans that we have same natural
identifications of thc distance torsors parametrising horocycles in neighboring microbuild
ings. As in (2.2.6), these identifications can be deduccd {roln a statement about iden
tifications of tibers of natural line bundles for two neighboring vertiees in any ordinary
Bruhat-Tits building. We leave this as an exercise for an interested reader.

(4.4) Spheres in B and horocycles in the microbuildings. Let w E V be a thin
vertex of Band r E A. We denote by Sr (w) = {w' : d(w, w') = r} the sphere of radius r
with center w. let 7' = ,00 + ( and let v = 1T(W), so w lies in the microbuilding ßv- Then,
by Proposition 4.2.2 (b),

dF(V,V I )=,

We are going to describc each of the parts of this decolnposition.

(4.4.1) Proposition. For any v' E ß p such tlJat dp(v, v') = [ the intersection Sr (w)nßv l

is a mixed ]lorocyc1e in ßv l • Its center is given by the cell

codirp(v,v') C Lk(v'/ßp ) = 8ßv l

and by the Inaximal compact subgroup /'i,w (v') in the stabilizer oE this cello

This follows from thc proof of the Cartan dccomposition (4.3.1)

(4.5) Measures on spheres in B. Let W E ßv eBbe a thin vertcx and let r = ,00+( E

A. Denote by K:V c G(F) the subgroup preserving w. Thc sphere Sr(w) has a natural
strllcture of a locally compaet completely disconneeted topological space.
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(4.5.1) Proposition. The space oE Borel measures on S,.(w) invariant under the grouIJ

K:.v J is l-dimensional.

ProoE: Note first that we have a surjection

whose fibers are (nlixed) horocycles. In particular, they are countable and discretc. Fur
ther, the weight '"'I being dOlninant, let HS write it in the fonn '"'I = L~=o mjEj with mj 2: O.
Let ,0 = 0, '"'Il, ... , ,mt + ...+m/ = '"'I be the sequence of vertices obtained by first going ml
steps in the direction EI, then mz steps in the direction EZ and so on. We will say that '"'Ii is
the jth pivot of this sequence, if i = n~l + ... + mj, i.e., our sequence changes direction at
Ti. If '"'Ii goes after the jth pivot but before the (j + l)st pivot, then the edge ('"'li, Ti+l) has
the type j (see (3.4) for the discussion of edge types). We have a sequence of fibrations

(4.5.2)

Each fiber of each of the 111aps here is a big cell in same generalized Grassmannian. More
precisely, let Vi E ,S"'('j lF (V) and· let Vii fi' < i be its inlages. in thc previous spheres. If ,i is
not a pivot and lies after the jth pivot, then the edge (Vi, Vi-d has type J where the bar
Ineans the involution on {I, ... ,l} described in (3.4). This edge represents thus a O-cell bi

of type j in the spherical buildillg Lk(vifBF)' Thc fiber pi;l (Vi) is nothing but the big
cell U(b i1 j) in the generalized Grassmannian Grj, see (3.10). Shnilarly, if 'i is a jth pivot,
then (Vi, Vi- d represents a O-cell bi in Lk(vifBF) but of type j - 1 and pi;l (Vi) is U(bi 1 j)
in Grj. Note that at every step we havc a canonically defined maximal compact subgroup
K i in the stabilizer of bi in the p-adic grollp acting on Lk(vifBF)' Now our statement
follows by repcated application of Proposition 3.10.1.

(4.6) The Hecke algebra H. Let Wo be the distingllished thin vertex of B (whose
stabilizer is the subgroup K'). For r E Adenote the 1-diInensional space of K'-invariant
lueasures on Sr(WO) by 1I..(r). Let '"'I E X~ be a donünant coweight. Denote 11.."'( to be thc
space of formal series Lo:"'(oo+(EA 11,"'(00+( where each h"'(oo+( is an element of H( '"'100 + ()
such that the set

{( : 11,"'(00+( i= O}

is contained in sonle translation of (-X.+), the cone opposite to the cone of donünant

coweights. Finally, let 1l = EB"'(EX~ H"'(.
As in (2.4), we cao view elmnents of each 11..>. as G(F)-invariant (O,l)-Ineasures on

(G(F)/K') x (G(F)/K') so that fonnally thc convolution of such measures is defined.

(4.6.1) Proposition. The cOllvolution oE (O,l)-nleasures Inakes 11.. into an algebra so tllat
for '"'I, '"'I' E X+we 11ave ti"'(11."'(1 C 1l"'(+"'(I. In othcr words, tbe algebra. 1l i8 X+-graded.
Further, it has a filtration F paralnetrized by the ordered semigroup A with F>.ti consisting

oE sums 2::>,' <>. h>.,.

The proof is similar to (2.4.1).

37



We will call 11. the double Hecke algebra of the p-adic loop group G(F). Note that
Ho is the standard unranüfied Hecke algebra for G(k), Le., Ho :::: C[TV /W]. As in §2, we
denote H; C H, the subspace EB( 11.(,00 +() of finite sums. The following proposition is
dear.

(4.6.2) Proposition. Eacll H-y is an Ho-bimodllle and H; is a suh-bimodulc.

Let us introduce SOUle distinguished elements of H. First, we will retain the notations
Tco a E X~ for the finite Hecke operators from Ho. Second, if T = tmoo + a is such that
its infinite part is a fundamental coweight, then for any thin vertex w E ßv the sphere
8r (w) is a fibration over the p-adic generalized Grassnlannian 8€m,P(v) :::: (G/Pm)(k) with
countable discrete fibers (which are rnixed horocycles). So we define the Ineasure /-Lw,'

on this sphere to be the (Fubini) product of the Poisson probability uleasure /-Lw on the
Grasslnaunian anel the eliscretc Dirac measures on the horocycles. Therefore, for r of thc
described fornl we have specified certain elelnents Tr E H(r).

For arbitrary , E X+ it is diflicult to normalize geolnetrically thc IncasUTe on thc
8,00+< (w). However 1 let us note that, for a fixed r, a choiee of such a normalization for
one partieular value of ( produces a normalization for all other valucs of (. This is bccause
the spheres 8,00+< and 8,00+<' are fibered over the saUle continuous variety 8--y,F(V), each
with discrete fiber, and the nleasures we are talking about are products of the measures
on this S--y,p(v) with the corresponding Dirac llleasures on thc fibers. Thereforc we choose
once and for all SOIlle non-zero elemcnts T,oo E H( (00) and define T,,/oo+( to be the image
of T'"Yoo under the identification just described. For, = tm this is cOIllpatible with the
above convention.

(4.7) Structure of11.; as an Ho-bimodule. Let, E X.+, and let X~ C XV be thc cone
of elelnents ~ such that (~, a) 2:: 0 for each positive root a such that (" a) = O. Thus, for
a strietly dominant, we have X~ = XV while or , = 0 wc have X~ = X'+. Note that
X~ is the fundamental dornain for the action of the subgroup W, C W preserving ,. An
element ,00 + ( lies in A Hf ( E X~. For any ~ E Xv we dcnotc by ~, E X~ the unique
W--y-translation of ~ lying in X~. Thus for , = 0 ~'"Y = ~+ is the dominant representative.

As a left Ho-Inodule, each 1i~ has a vcry siInple structllre, nalnely

(4.7.1) T€m T--yoo+( = L qltm (w)Thoo+(+w(€m))"Y'
wEWjWm

similarly to (3.7.2). In particular, if , is strietly dominant, then the subscript , does not
change anything, so H; is isomorphie to M = Mcad l the stabilization of the Hecke algebra
from (3.8).

Now we describe the right Inodule structure of the siInplest infinite graded cOlnponents.

(4.7 .2) Proposition. We have the following equalities in H:

T T """ lt m (w)+8j(w(€m))T
€jOO+( 10 m = L...J q (€joo+(+w(€m))~j'

wEW/Wm
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Here Oj is the SUD] oE all the weights oE N j , the unipotent radical oE the maximal parabolic
subgroup Pj.

ProoE: It is clear that T~j 00+(T~m will have the saale IW/Wml SUInlllands as thc product
in (4.7.1) but with different coefficients appearing from measure changes. These changes
are fonnd froIn Proposition 3.9.2.

(4.8) The bilinear forms 'IJ and <P and the Heisenberg algebras. We introcluce a
Z-valued bilinear fornl 'IJ on yv by defining its values on pairs of basis vectors to be:

(4.8.1) 'IJ(fj, im) = Oj(fm) = L (o:,fm ).

o-E,ö,+
(o-'(j)#O

The form 'IJ is, in general, neither symInetric nor W -invariant. However, there is a related
form <P possessing both these properties. It is given by

(4.8.2) <P(ij, im) = L (0:, Ej) . (0, Em ),

aE6.+

so that for any a, b E yv we have

(4.8.3)
1

ep(a, b) = L (0:, a) . (0:, b) = 2 L (0:, a) . (0:, b).
aE6.+ oE6.

The last form of writing <P iInplies its W -invariance. In the case when each quasi-siInple
factor of G is of type An for same n (Le., is a cover of PGL(n + 1)), we have 'IJ = cI> since
( Cl', i j) is, in this case, always equal to either 0 01' 1. However, in general it is the form 'IJ
which will appeal' in our description of the Hecke algebra.

Using the form 'IJ we define the Heisenberg algebra Ä gcnerated by Inononüals za, wb

for a, b E yv with relations

(4.8.4)

Thus we can think of z, waspoints lying in Tdd ' the dual torus for ead . An element frolll
Ä can be written, uniquely, in thc normal fonn

where each <Pb is a Laurent polynolnial in z. Let also Ä(G) c Ä be the subalgebra generatecl
by thc zu, wb with a E XV C yv. Thus A = A(eud ). Let A(G) c Ä(G) be the subalgebra

consisting of polynomials of the form L:bEXv c/>b(Z)Wb, such that each c/>b is symnletric with
respect to the action of Wb, the subgroup in the Weyl group prescrving b. The algebra
A(Gud) will be clenoted simply by A.
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(4.9) Theorem. Thc associated graded algebra grF 1{(G) with respect to the filtration
F described in (4.6.1), is naturally isomorpllic to A(G).

ProoE: For the case G = Gad thc staternent follows frorn (4.7.2) and the fact that T)..T~ is
a constant rnultiple of T)..+~ plus lower order ternlS. The general case follows from this by
identifying grF1i(G) C grF1l(Gad) with thc corresponding subalgebra in A(Cad ).

(4.10) The rational subalgebra 1lrat . Let 1l (C);at be the subspace in 1i (C), consisting

of elements I:( a(T,oo+( such that the formal Laurent series L:( a( z( represents a rational
function on T V . Let 1i(G)rat = EB..." 'H(G);at.

(4.10.1) Proposition. Tlle subspace 1l(Gyat C 1l(G) is a subalgebra.

PrüoE: Our statelnent will follow froln the next lemma about the bigger space 1{t'at C

'H.. = 'H..(Cad ) which says that the product of any two generators T)..TJA, lies in 1l(G)rat but

describes the corresponcling rational function luore precisely. We will say that a coweight
, is strictly I-clolninant, where I C {1, ... , l} is a subset, if (ai, ,) > 0 for i E I while

(ai, ,) = 0 for I ~ I. It is dear that every dominant coweight is strictly I-dolninant for a
uniquely defined I.

(4.10.2) Lemma. Let rv E Y+" v = 1,2 bc two dominant coweights and ead] rv is strictly
Iv-dominant. Then for any (1, (2 E yv such that rvOO + (v E A we have

where the nUDlbcrs c()..) (lI, 12 ) are defined in Proposition 3.8.7.

ProoE: It is clear that the product will havc the same sunlIllancls as given in the state
ment of the lemlua, and we just nced to determine the coefficients. The coefficient at

Tb1 +1'2)00+{(1 +(1-)..) is the product gh of two factors. Thc first factor 9 can be definecl as
follows. Take two thin vertices Wl, W3 of B on distance (r1 + (2)00 + ((1 + (1 - .\). Then

u is the nUluber of W2 such that d(Wl' W2) = '100 + (1 and d(W2, W3) = r200 + (2. The
factor h is the change in the normalization of the 11leasure procluced by any such W2. We

claim that

(4.10.3)

To see the first of these equalities, note that the lnicroscopic builcling wherc such a W2

can lie, is uniquely clefined, so the number of possibilities for w2 is governed entirely
by the geolnetry of this builcling. More precisely1 the clouble apartnIents A (Wl, W2) and
A(W2, W3) can have SOIlle finite parts in COlllffiOn (cf. [Ko] for the discussion of PCL3).
But this geometry will be identical to what happens when we just multiply two finite Hecke

operators TC1 TC:l where each (v is far enough in the cone of structly Iv-dominant coweights
and see how many tinles T

C1
+(:l-A enters. This proves thc first equality in (4.10.3). The
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second equality follows by repeatedly applying Proposition 3.9.2 to edge paths in thc
building BF joining thc relevant vertices.

Leluma (4.10.2) implies that for any fixed ,b,2 the product of any T')'I OO+(1 with any
T')'2 oo+(:;J will have the coefficients at T(;l +')'2)00+(1 +(I-A) giving rise to a rational function
of the fonn qL(t) lLyl ,')'2 (z) where Rrl,')':;J depends only on the 'v but not on the (v and L is
a linear fornl clepencling on ,2. This iInplies that 1l(C);~t .1i(G);~t c 1l(G);~~')'2' proving
Proposition 4.10.1.

(4.11) The rational Heisenberg algebra A(cyat. For a E XV let \lJ(a) E X be
the image of a under \lJ considered as a map Xv ---t X Vv = X. Note that X serves as
the lattice of I-paralueter subgroups for the torus Xv. For ~ E X we will clenote qe the
value of the corresponding I-parameter subgroup on q E C. Consider the hOmOlTIOrphislu
Xv ---t T V taking a M qiJ1(a). Note that the Heisenberg algebra Ä(G) can be written as
thc cross-product of the algebra of Lallrent polynoluials on T V with thc group algebra of
Xv, i.e., as algebra of polynomials L:a ePa(z)w G where each ePa(z) is a Laurent polynomial,
with thc comnultation law w a4>(z) = 1>(qiJ1(a) z). Let Ä(G)rat be the extension of A(G)
obtained by allowing each cPa(z) to 'be an" arbitrary -rational fllnction. Let A(G)rat be

- rat
the subalgebra in A(Q) obtained by requiring eaeh 4>a(z) to be sYlumetric with respeet
to W a , the subgroup in the Weyl group preserving a. Here we use the W-aetion on T V

appearing in the Satake isomorphism. As before, we use the notations Arat for the special
ease G = Gad.

Now we ean formulate the second main rcsult of this paper.

(4.12) Theorem. The algebra 1irat (G) is isomorphie to A rat (G) .

Thc stateluent for a general G is deduccd frolll the case G = Gad. So we assuIne
that this is thc ease. The is based on the following fact dcscribing thc space Hf (G)')' as a
biInodule over the finite Hecke algebra 1i(G)o. Recall that Spee(H(G)o) = T V jW, so each
biInodule gives a coherent sheaf on (TV jW) x (TV jW). Let also p : T V ---t T V jW be thc
projection.

(4.12.1) P roposition. The cohcrent slleafon (TV j W) x (TV jW) corrcsponding to 1l f
( G) ')' ,

is tlle structure sheaf of the subvariety C(,) = (p x p)(6(,)) where 6(,) c T V x T V
lS

tlle sllifted diagonal {(z, q iJ1h) . z)}.

As in §2, there is a natural algebra strueture on EB')'EX'+ f((TV jW) x (TV jW), Oc(')'))

and this algebra is nothing hut A(G). But the multiplication in 7-l(G) differs fronl that in
A(G) because of the presense of lower order terms in T')'I OO+(IT')'-200+(2' However, these
lower order ternlS are explicitly controlled by LemIua 4.10.2. In particular, they follow a
pattern depending only on the sets I(,v) of siInple roots such that (ai, 'v) = O. Recalling
the rational functions R[(z) froln (3.8.6), we find that the linear bijection X : 1l(G)rat ---t

A(G)rat defined by
'Tl R- 1 ( ')'
.1.')'00+( ---t 'I(')')z W ,
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is an algebra isomorphism. ThcoreIll 4.12 is proved.
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