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NOTATIONS

V,W,..V;=V® W, ,=WC°.., ¢c=n-d algebraic
subvarieties C P (C) of dimension d and codimension ¢ in P (€)

P, =P(E,.;), E s(n + 1) dimensional complex vector space
(1 (2) (h)
o:v xV x ... xW Cartesian product
§:V— I =Vh djagon?.l)map, (O.S)h)
1
¥ diagonal manifold CP, x..xP

T =P{(x®n)|xeE,;—0,ne -0}

A diagonal space P(E®(1,1,..,1))CEC lP:,” X ... X [P;h)

(1) (h)
A3, 3VxW), IV " x..x V™) join of shown varieties
Abstract DEF. 1.1

F Prejoin
J = Tp = U P,., Full join (2.3)
IPn' 16}
e(Ve) = {P,.,CP,|P,, + V¢ ¢}, DEF. 0.1, (0.13)

S, Y, N the SEVERI CHOW or WEIL-SIEGEL associated
formtoa Vy=VeCP,

S = S(xy,Xg, .. Xc) , Y = Y(uy,uy, ... ,ugeq)

N = N(uy, - Juge2; X)%; € E u; € E formulas (0.10), (0.11), (0.12)
S(xy,Xg, .. ;X)) = S(x; A ... A x,)

x, A..Ax,e KE (6.1)

Y(ug,uy, ... yugey) = Y(ug Ao Augyy)

4 A hugy A E (6.2)

N(uy,uy, - ugegsx)=N(< uyx >, ... ;< U449,x >) = 0 (6.6)
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ABSTRACT

The first time a mathematician hears about "multiplicity” m (e Zl+) refers to an

m, — ple root t of a polynomial f(x) or binary form ¢(x,,x,) :

(0.0) f(x) =ag T [ (x~- r)mr mel |m 20
reC

m,

X X
Ip Iy

¢$(ox) = TT
relP,(C)

X X

x -1 (or 1,

) is the trivial associate form (a.f) cf DEF. 4.6 of the point
t (with affine (or projective ) coordinates in the complez affine (or projective ) line . It is

natural to ask whether or not this azfanend is also the natural dntorscclion MW of

an irreducible component I in the proper intersection VN W (VW irreducible a.v in

P,(C) = P(E). An offirmative answer is found in [vAW1] andy fot doa cedicille filanc
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cauecs. This idea of the ezponent intersection multiplicity is developed in this paper dn e
gonoral case by showing that the Form |

m
Fo = [ ] F, ! (I proper irreducible component of V N W)

can be computed by eesthicdion of e F, (associated to the Join

J(VxW)CP(E®E) ,c¢f GAETA, [G.1]) & & &ayaaa/aaé/iaa: ACP(E®E) .
The method eztends naturally to  h(2 2) V(j) CP, provided c=X¢;<n

(j)
(cj =codim V' in P, . The geometric interpretation of F, in terms of the complez
C(Ve) = {P., CP,|P., NV ¥}

leads naturally to an equivelence of the exponent multiplicity with VAN DER
WAERDENs theory (cf. § 10), [v.d W 1], {v.d.W, ZAG].

Since c=codJ in P(E®.. ®E) a natural discussion arises also in the case
¢>n . Then the old climinalian Yeaty (too much discredited because of its heavy
dependence on coordinates) can be replaced by intrinsic constructions, cf § 13, 14 pages
67—76. Natural applications are made to BEZOUT s theorem § 8, 11 as well to possible
future relations with the "length multiplicity” (cf VOGEL’s report here), [vdiW-ZAG],
[Gr5 1, 2].



0. INTRODUCTION

Most of the algebraic varieties needed in this paper will be embedded in a fixed
complex projective space P (C)=P(E ,.,,) =E—(0)/€* (with E=E_,,
(n + 1) — dimensional € — vector space. The projection P : E —(0) — P (C) will be
denoted also by P althoug for a given v € E — 0 we write simply P(v) = (v) .

Let V, W be two irreducible algebraic varieties of P (C) meeting properly.

Let

i(V,W;C)
(0.1) Fyw= 2 F.
C=C,CVNW

be the assaciat gorm (a.F.), cf. DEF. 4.6; of the intersection cycle

(0.2) V-W= ) i(V,W;C)C 4
C=C,CVNW

where F, is the (irreducible) a.F to the irreducible component C ; of VNW . Gk
dnlrsection mulliplicitics \(V,W;C) are uniguely delnomined as Ye expranants in Yic fime
faclar decomprasilian of F,,  ; this remark is useless if there is no way of computing
y.y intermsof V and W (& F, and F.). This paper shows that
aclually ¥\, . & aniguely and inbinsically delovmined in @ nalnal way Ly reshiclion
be dizgonal spacc  ACP(E®E) of dhe F, amaciatd la Yo goin
J=J(VxW)CP(E®E) af V and W,§ 1, DEF. L1, page 19.

intringically F

More precisely we have:



(0.3) F, =0 (F/|8) cf§5
where § : P, —— P(E® E) is defined by
(0.4) 6(x) = ((x,x))

for any xeE-{0} , (x)=P(x)eP(E), ((xx))eP(E®E), is the olizgana/
ingclion and A =6(P)) is the aéqyzma/d,ﬁaa: (cf. § 3). 94 a.F F, of J(V x W)
& aclually intinsically delvmined by slondard melhods (cf. § 6).

The construction can be extended in several ways:

3 VAW s improper (0.3) is meaningless since V - W is not defined as a
cycle, 9 F, . is not defined. However the right hand side of (0.1) is always defined

and we have
(0.3)" 5(F18)=0  T=3(VxW)

4 VNW & inprasior. Notice that

VN W improper & J(V x W) N A improper

b) )

.
The construction is valid also for finitely many irreducible varieties V !

denoted sometimes also by

[od
(0.5) Vdj=VjCan di+c=n,j=12.. .}



where we use a double notation V=V = V¢ for an irreducible V CP, if there is no
ambiguity where the subscript d indicates the dimension and the superscript ¢ the
codimension: (d + ¢c=mn),of V in P .

The join

h
(0.6) J=JVixVv2x . x V) CPE®...0E)

h
cf. § 1, DEF.1.1. is also irreducible of codimension ¢ in P(E® ... ® E) . This ambient

space of J can be identified with [P(E® C?) where the j—th direct summand
j J

N~ N

(0, .. ,E,..) is identified with E®e;e;=(0,...,1,.. ,0) . The set—theoretic

intersection

h G
nv
i=1
do always exists provided
(0.7) c=c¢ +C+ ..+ c <.

We shall assume (0.7) in the first part (cf. TABLE OF CONTENTS). Then we have

b
(0.8) cod N V' <n
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and this dubrseclion & pagir (ScodN=c) iff INA & feasor sn P(E ® CP)
because if C runs through the set of irreducible components of N1, §(C) runs through
the set of all irreducible components of JNA and dim C = dim §(C) . Then (0.3),
(0.3)’ can be extended to an arbitrary h > 2 as indicated by the following:

- C:
THEOREM 1 6 (F,|A)=0 of lhe scd-lhcorclic intorscclion Ny 4
j=1

inprafior. Obhomsise Ye ntorseclion oycle 1=V - V2 .« Vb 4 well dofined in
P, and e bave

(0.9) F =6 (F,|A) 8=06P,).

C C C
The assacials Fawm ¥, cande dibminad by N N ..., "
(‘:’Fv(j) ¢, §=12, .. ,h) M%Wm/aaf (cf. § 6) ot any h, as well as in

Hecase h=2.
There are several versions of the associate forms attached to a given pure cycle
V¢ C P, (and for each one the restriction symbol F|A appearing in (0.9)) has a natural

meaning); on the other hand all of them lead to the same intersection— multiplicities.

But we shall use only the following three versions of the a.F :
(0.10) (x1:Xgy «v 1Xg) ¥ S(x4,Xg, ... ,x;) (CAYLEY-SEVERI), cf. [C], [P], [S]

(0.11) (Uglig, -ov U gay) — Y(uyuy, ... ;1 44)) (VAN DER WAERDEN-CHOW)
[Ch — vdW]

(0.12) (ug,ug, .. U gugix) = N(ug,ug, ... ,u gu9;x) (WEIL-SIEGEL), [W], [Si].
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where the x's e E |, the use E= Hom (E,C) . Cf. § 4 and they are defined up to a
proportionality factor A € €™ . It suffices to define them first for an irreducible V¢ and
then to extend to the general I'® by "prime factor decomposition". All of them can be
defined in terms of the € (V®) introduced by the following:

DEFINITION 0.1

The Gampler € (V°) of (c—1) — dimomsional prajpctive subspaces ablacked to an

(0.13) E(VE) = {Pery CPy [P NVEE ) (L §3)

(cf. §4). In fact € (V) & sepcsonted £y an ivredicidle subvaricly af cadimenséon onc n
e Yrassmann manifald G (c —1in) . Fulhovmare N, & rccovored am € (V€) as
Y lacus of singulan frainds of € (V) . Cf. § 4. The proof of our Theorem is a
consequence of the following fact:

1

C:
A NV s inprapor lhe sesthiction af bhe comple € (3) allackedlo. 1,
j=

c@v'"” x..x V™)) = (P CPE®C|P,., NI # g}
to the diagonal space A :

(0.14) C(3)|8 = {Pey CA|Pey € €(2))
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is the full Grasmannian ¥(c + 1,8) because if ce (¢’ <c) is an excendentary

h ()

irreducible component of N V """ then every subspace P, of A meets the diagonal
j=1

image 6(C¢).

Hf Yo proviaus |\ & profor Ye restiction € (J)|A & a prafir compler af
Flc—1,8) and § (C()|A) & a posdve divcsar C(I) of Yo § :
Flc—14P,) abackadls 1=V . V2, .V ine natinal way:

¢ Z' C z 3 A Cj.0¢C C
(= Li € (C)—1I= i(N ve,ceCe.

cec fvee i |
jet

h
The intersection multiplicities i, =i (N V%5C) equal the exponents of the

j=1
corresponding F’s . In fact we recall in § 4 that all the F, (0,10,11,12) are defined in

terms of € (V) by means of conjugation conditions (¢f. DEF. 4.1). It suffices to assume
first V irreducible. Namely: S, the CAYLEY-SEVERI form of V¢(=V ;) is the
congugalian candilion wilh respecl o € (V) aof ¢ Padnds (x3) j=12,..,c. Y (the
original gageatdnets Farm, (now usually called CHOW faem af V4), (cf. § 5 and [8])
is the conjugation condition of d + 1 hyperplanes and the WEIL-SIEGEL form N (cf.
[SI]). (SIEGEL's Satmalplichung af V) is the conjugation condition of d + 2
hyperplanes (u;) e P(E) j=0,1,..,d + 1, and one point (x) with respect to € (V).

In terms of the exterior algebra:

S,Y,N vanish if (cf. [BOU]) x, AxA .. Ax,;=00r uyA.Augy=0or

x Jug A ... Augy,, vanish. If this is not the case any non zero product



C d d+

A x i\lu x J Alu
A x Ay j
=1 =1

represents (in the well-known way) a projective subspace P_,CP, . Then S=0
(resp. Y=0, N =0) iff such P, € €(V).Cf. § 5, 6 for further details.

m,
If V=) m I>0|F, isdefinedby F,=T [F, (F=SY,N).Inany

lirr. dim 1=d
case the F is well defined up to a factor A € .

In any case the restrictions 5 |AY |AN |A are well defined taking in (0.9)
(XJ)EAI UjIA, j= 1,2, e s

The condition ¢ <n of (0.7) —essential to define the previous restrictions to the

(n (h)
x..xV ) of

(j
h irreducible varieties V 7 P(E), j=1,2,..,h cf. DEF. 1.1, page 19. In the case

diagonal space is not necessary in order to define the join J = J(V

c>n the given varieties — in general position — do not meet but when
C; = Cy = ... =, = 1 the existence and discussion of a non empty intersection
h
(0.15) NV#e
i=1

is precisely the goal of the old elimination theory! Accordingly we devote § 12 to such a

problem also with arbitrary c;’s — 4z ¢ > 0. Under this hypothesis the compatibility

condition (0.14) — equivalent to JN A # ¢ can be expressed by the following condition:
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THEOREM II. e b given ecducitll earistics vy

n

c= b o> 1 el ifflhe disgonad space B s singaden for b camploe € (3) adlached

j=1
(1) (h)

b 3=V % xV V) (8 ooy Py sdlisfpng ACP,, delongs bo €(3)).

In particular for c=n + 1 we have:

The h wanicdics V(j) M(%!&WW A Lolongs bo Yo camplox
(1) )

C() adlachedlo bhe join I=I(V' " x .. xV V),
5&&%W¢WW@%W% F, reducing to

R=0 where R=R(f,f,..,f.) is the resultant of the n+ 1 hypersurfaces

CP,, j=12, ..,h e

n?

H13H2) wee )Hn“l lf C‘ = 02 = .. = Cn...l =1.

Jn the case ¢>1n+1 %Wmnaﬁécma/ A méaz/iwam’g;%a
idonlical wanishing of a cavariant in  agromend wih GRAM'S Zcatom of imuarian!
Yicary, . [WE].

The distribution of matters is sufficiently indicated in the TABLE OF
CONTENTS , page 2.

In the last part of the paper I review some results of the Author (¢f. [G2.] [G3])
regarding a replacement of the usual KRONECKER elimination procedure by the
explicit computation of the CAYLEY-SEVERI forms S (x,,xy, ... X;) attached to an—
irreducible component I =I¢ of codimension ¢ of the ZARISKI—losed set represented

by an arbitrary system
(0.16) f,=0 f,=0 ..... f=0

of homogeneous polynomial equations in the homogeneous coordinates xg,x;, ... ,x, in

P, . The method rests on the fact that the "elimination of the variables" x;,x,, ... ,x;

represents geometrically the projection of a variety from a certain space of the projective
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coordinate frame to the opposite face. If we replace these — indeed very particular
projections — (essentially attached to the coordinate frame) by appropriate generic
projections we obtain the indicated algorithm. But &WWI, fam e S8 lalhe
N ﬁw;«m dack %z ald’ KRONECKER elimination theory esd tesfed fo a goniotic
frame "®" dudlin" in bie fovmutas, (instead of mentioning it but never written as
before). I believe that this shows that the WEIL-SIEGEL forms are the best
ones—although the CHOW forms seem to be the most famous. This inclusion of & is
actually accomplished by means of an arbitrary basis ug,uy, ... ,u, of E acting as

coordinate forms for points in
n+1
P(E); x+— (< ug,x >, < uy,x>, ... ,<uy,x>) e P(C )
for a fixed projective frame with current coordinates functions (&, ... ,,) .

In order to see that it suffices to represent the projection center P, defined in
S by xaAxgA...Ax, (with (x,) =(x) acting as a current variable point of the
projecting cone of a V° from P.,) with hyperplane coordinates ug,uy, ... ,uq.; in
such a way that x, A... Ax, and x J uy A ... Auy, aredual, ie. they represent the
same P, .

We try to use standard notations as much as possible. Some non-standard ones are

listed in the Notation sheet in page 0.

ACKNOWLEDGMENTS. The 4uéd jain or jain was introduced by the Author in

[G.1] trying to compare F,, F_ with F, . (or F, . when the intersection cycle

does exist) with the name Aradadls 4:pada , but actually similar ideas were frequent in
the Italian School also in symmetric squares; for instance the symmetric square of a

smooth curve was represented frequently by the variety of chords containing the
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tangential surface as representative of the diagonal. But it was necessary also to recover
lost properties of the " geaciloch firaphlive Racume" Py, remarking that the "point"
(v,w) - (Av,pw) of Pg,n is essentially the same as the line A (v,0) + 1 (0,w) but
certain natural subspaces, such as A do not appear in Py, . Cf. § 1.2 for more details.
This constructions was also used by FULTON [F], [F-L] to illustrate his intersection
theory and in the study of the topology of algebraic subvarieties of P, . A few years ago
VOGEL [V.1], [V.2], [F-V] tried successfully to recover the "length multiplicity" —
rejected previously for well-known reasons with & sort of reduction to the diagonal using
the double projective space [Pn,n . KLEIMANN - in a letter to VOGEL [K]
tecammended fim o da puccisely whal J did in e goin canstuction. As a consequence I
am coming back to this old technique. I hope to establish a link of the exponent
multiplicity (previously used by VAN DER WAERDEN’s elementary cases of
BEZOUT’s theorem by means of resultants) with the length multiplicity. The pleasant
atmosphere and the kind invitation of the BANACH Center of the Polish Academy of
Sciences is certainly a good encouragement in this direction.

The last part (of page 68) is just sketched — although the methods are very similar
to those of [G.2], [G.3]. We shall come back to this with full details in [G.3] with an
application to the SCHOTTKY problem (where the SIEGEL form appears in [SI]).

I am indebted to the wonderful facilities of the Max—Planck—Institute in Bonn —in
particular to the extreme patience of the typist Frau Wolf—~Gazo who made & beautiful

job with them.
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I. GENERALITIES ONJOINS

The reduction to the diagonal (cf. formula (1.1) below) introduced by C. SEGRE
and SEVERI (fixed points of correspondences) and widely used later in Topology was
applied by WEIL {W] and others to local intersection multiplicity theories. The global
extension to varieties in a projective space has some difficuities due to the fact that the

diagonal ¥ is not anymore a linear space. £ is a SEGRE variety:
T=P{x®n|xeE-{0},neC"-{0}},

cf. § 1, 3. We show [G.1], § 1, 2, 3 ‘that a naturally chosen generator
AC?C[P(EGEII).

(1.0) A=P{x®(L1,..,1)]xe E=-T0}} =P{(x)x, ... x)|x € E~{0}}

plays the same role as in the affine case, although it is essential to introduce the space
P(E ® C) wnabad af the"b— fack frrajhlive Raum™ of [vdW1], [vdW-ZAG], [H-P].
The affine formulas (1.4) lead naturally to the (1.4)’ suggesting the definition of the

A2 (cf. DEF. 1.1) and the sprapclive seduction lo e dizganal, cf. formula (1.10) in
page 20.

1. THE "REDUCTION TO THE DIAGONAL" . A PROJECTIVE VERSION.

Let A;#¢, j=12,..,h be h non empty subsets of an ambient set E . Let
h
M=ExEx.”. xE bethe h*® Cartesian power of E . We have:
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h
(1.1) S(N A=A xAx..xANA

j=1
h
where 6:E < 11 is the zgonal inpclion §(x) = (x.x, J.x), YxeE and
A = §(E) is the alzganalof I .

This simple remark has many applications in algebraic Geometry and it is regarded
as a "reduction" (in spite of the fact that II seems more complicated than E) because
of the following reasons:

) Y B i an alptraic sarisly and e N, are all suboanislis, T & alia an
WWW Ay x . x Ay and A wwmma/ O wf A
indbpondnd afthe A; .

) The sustvarictizs of N are graphs of alppraic h—correspondinces on B , in
frarkiculan oy might £e grafits of mapis and B i Ue graph of e idondity. 1 we can
"move" II in an algebraic system, it is possible to move the Aj to generic positions

A; j=12,..)h in such a way that we can predict geometric statements on the
original Ay’s by a subsequent specialization.
c) In particular: & E & en effine sfiace, 11 &4 analhor anc and N & a binear
subspaccaf 1 widh dmE =dim A . Jo His case 6(1) &8 an ovreducidle companont of
h
Ax .. xA NA o 1 & an snedacile companend af 'ﬂ Aj. Accordingly INA &
j=1

h
/bzaﬁozz% N Aj & fuagior. Since the definition of the intersection multiplicities looks
j=1
easier if one of the intersecting varieties is a linear space the diagonal provides a way to

define

(1.2) i (Age o cAg ) =i (11 - A;6(D))
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le.. Jsugices o hnawn haws lo define i gor 11 - A (h=2) and b e dncar spzce. Cf.
[W], [F]. The affine case is sufficient for all the local theories.

If E is a projective space P, , I and’A ate nal prajolive sfiaces, duf SEGRE
variclies, of. [SE], [H-P). Howewor b cxpilicd desoriplion af b in e affine case
lads natmally la Ue" jain constuclian” (cf. Introduction) as follows: Let us assume

h=2.Then A is characterized by the system of linear equations
(1.3) ;= % = 0 j=12,..n

if (@y,...,2,) and (4,%, -, #,) are current affine coordinates in the two copies of
E.If f(x)=0;and gi(x) =0 are two systems of equations defining A;, A, the

System
(1.4) [(x)=0  gyy)=0
defines A, x A, . (1.4) and (1.3) lagethor dofine TN A

In the projective case the x , y can be regarded as absolute coordinates in the
C—vector space E =E_,; or as homogeneous coordinates in [P, =[P(E) and (1.3) is

replaced by

&y &y ... Tn
(1.5) rank =13

zi @;j

% ¥ =0 0<i<j<n
1 J

o g g

Then the (1.4) can be replaced by
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(L4) OX=0 g (ky)=0

where all the f; and g, are homogeneous and A, p are two independent non zero
proportionality factors. Moreover the equations (1.5) define the SEGRE variety
representing P(E) x P(C') (¢ locusof x® (A\,u) e P (E®E) = P(E® (?) . Cf. § 3 for

further details.
REMARKS

1) %&WW%&WW fi(x)=0 g (y)=0 anymatc &
esbadlisk (1.1).
) A, Ay con b ardibary non omply sudsch of P(E) .
3 Hsugfioes o dlgfne s boa inpoctions iy : iy P(E) ——s P(EOE) dy
(1.6) iy(x) = (x,0)  ixx) = (0,x)
i;,i; have the following properties:
i,(P(E)) = P(E ©0) = P(E ® (1,0)
(1.7 i5(P(E)) = P(0 ® E) = P(E &(0,1))

(1.8) 1,(P(E)) Niy(P(E)) = ¢

(1.9) A =P(E®(1,1)
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In other words & 4o cospiics of P(E) in P(E@E) =P(E® (?) &b nal meet;
accordingly any atasad paie  (P,Q) € P(E) x P(E) cun de teppesonted Ly Y dine
Fadning i\(P) with 1,(Q) and conversely eny dinc jrining anc fiaind af P(E @ 0) ik
anathot anc af P(0 ® B) ecpecsonts a uniguely defined ardored fiace (P Q) .

More generally we have the following formal definition of the join (used already
before).

DEFINITION 1.1

1) The join of A,, Ay, denoted by J(A, x Ay) , & L dacus af all(atirays well
dofinod\) lincs gadning foinds of i\(Ay) wdh padnts af iy(A;) . In particular;

J(P(E) x P(E)) & e sudvarity of P(E®E)) cansisling of lines Jaining fiaints of
P(E ©0)) and P(E®0)).

5) The following natural generalizations are possible
(¢ #) A, CP(E)| (¢ ) A, CP(F) 3 J(A, x A;) CP(E ® F)
because i, : P(E) =—— P(E®F) i, : P(F) —— P(E®F) are still valid.
6) We can consider any finite number h of non—emty subsets
AjCP(E;)i=12, .. h.

We shall consider this general set up in § 2 in order to clarify the relationship

between the diagonal subspace A and the diagonal variety ¥ in § 3.

The" reduction lo e dizganal " in V(E) Aas finally e follaesing avfrcssion:

(1.10) 8(A % Ag) = J(A, x A;)N A



- 21 -

where A,, A, are arbitrary non empty subsets of P(E), A is the diagonal space (cf.
(1.9), and 6 :P(E) —— P(E®E) is defined by (0.4), :

(1.11) §(x) = ((x,x) = (x® (1,1)) Vx€ E-{0}.

REMARK

We see that in the formula (1.10) one needs the points of P(E @ E) , for instance
those ((x,x)) € A, not just the lines A (x,0) + pu(0,y) . Ths jusdifies aur profronce for
e poin cansbhuction rallior Yial Y wse of Y boa-way frapolive space Puyn ;in Puyn
the previous line is the "point” (x,y) ~» (Ax,uy), A#0, p#0.

2.  RECALL OF THE JOIN OF h VARIETIES. RELATION WITH THE SEGRE

(n (2) (h)
MODEL OF THE PRODUCT V. xV  x .. xV

¢
Let P(E;) = E; — {0}/C x| j=12,..,h be h(>2) complex projective spaces
generated by the corresponding vector spaces E; . Let [P(S) be the quotient projective

space of the direct sum
(2.1) S=FE,©E®.. 0F.
Let us call §;=(0,...,E;...,0) j=12,..h. [P(S) is the ambient projective

space containing copies P(S;) =ij(P(E;) , j=1,2,..,h of the given spaces P(E;)
satisfying the following properties (already checked for h = 2) :
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h
%) For oty ardored b—lipls (%%, ... xy) € TTP(E) 4 coecspanding
j=1
dnages 1i(x;) (j= 12, ... \h) ate dincardy inatpondond

) The Sy = SpslxiXay - Xy) Show gamned Ly Y X, med V() precisely
dn Yhe fraind X;

Sh-1 n P(Sj) = Xj j = 1,2, . ,h .

As a consequence we have:

h

) koo ts @ Ligpction of TTV(E;) with o sudscd
i=1
HAP(E) x ... xP(E)) C §(h—LP(E,® ... OF,)) aflhe showom of

(h—l)—@éaazé/)wa/é;z

(2.2) F= AP(E) x ... x P(E)) = {Pp,-, CP(E, @ ... ® Ep) Py, Ni(P(Ey) =x;
j=12, .. b}

for j=1,2,...,h. _# isclosely related to J by
DEFINITION 2.1 J =1J (P(E) x ... x P(E,)) is defined in terms of _# (cf. (2.2)) by
(23)  J=IP(E,) % ... x P(Ey) = {Pyy CP(E,® ... 0 E,)|Pyy € 5}

is called the tuld jodn (O just jadn) of the given spaces P(E,), P(E,),... P(Ey).
DEF. 2.1 is the extension of DEF. 1.1 page 19 forany h > 2.
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A vector of S is regarded as an ordered h—tuple (vy,vy, ...,vy) with v;e E;,

j=12,..,h.Let i;: E; =S be the natural injection defined by

J
A4

(2.4) i;(v)= (0,0, ...,v,...0)  veE;

where i;(P(E;)) = P(S;) =P(0 ... ,E;, ... 0) . We shall use the same symbol i; for the

corresponding maps between projective spaces.

It is easy to check both conditions a), b) for the h copies P(S;), P(S,), ... ,P(Sy)
of given projective spaces P(E;) . In fact any ordered h—tuple

h
(xp, XXy X .. X xp) € '!_]'P(Ej) ((E;—{0}) defines an h—tuple of linearly
j=1

h

independent vectors ij(x;)eS; j=12,..,h (& Aij(x;)#0) . They define a
i=1

subspace S(x;,xy, ... ,x) of dimension h—1 in IP(S)— the projection in [P(S) of the

h—dimensional vector space locus of points of the type:

(26) (/\1("1,0, vee ,0) + /\2(0,V2, e ,0) + ...+ /\h(0,0, ves ’Vh))

in such a way that
(27)  S(xy .. xp) NP(S)) =(x;) j=12,...h

and conversely.
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h
Another (y;) x .. x(yp) e T TP(E;) (E;—{0}) defines the same h—tuple of
j=1
points in P(S) x ... x P(S,) and also the same S, iff y;=Ax; AjeC”

i=12,..h, (leiff (x,Xg ... Xy)~(yy - ,¥y) 88 points of the "h—way Aratfclive
space af P (cf. Introduction, [H-P], [vdW1], [vdW-=ZAG]); in other

n,n’ s ,n

words:
S(xy, - Xp) = S(yy, - ¥R) P Y; =A% j=1,2, .0

This construction leads to two modifications of DEF. 2.1 obtained taking into

account rather than the Py, of ¥ some set of pointsin P(E; ®... ®E,)

DEF.2.1' The jitr— jasiin
3, = J(P(E,) % ... x P(Ey)) = {((xp, - xy)) € P(E; @ .. @By |x, #0 j=1,2, ... ,}h)} .

DEF.2.2' The M_;‘M" J is the ZARISKI closure of Iy

(2.3) J=1,= UP,,
Py-1€ F

However, in spite of the differences between 5, Jp , J the context will indicate

without confusion which one we need, and we prefer the simplest notation J .

REMARK

The name ¢uld jadn (" feadalla tigata) is clear since an  h—tuple of
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P(E,) x ... x P(Ey) is not represented by a point of another space but by a Py, ,i.e. 4y
adincfae h =2 (cf. Introduction).

Fhe praducd P(Ey) x ... x P(By) & scpcsonted alsa Ly e quotient set
h
@27) I ~=3, /0 % x = 1j—|'(1;:J - {0}/ x ... x C*
-1

usually called the r—way Arajalec sfiace IPnl B, ... 0 where n; = dim P(E;) by

[vdW], [vdW-ZAG]; s. also [H-P].

h

REMARKS:

1 . . ce . .
) Since there is a bijection between "points" (v, ...,v,) of Pnl,nm oy and

(h — 1)—dimensional subspaces of type S(v,vs, ...,v,) the relation between I
Jy/~v=P

Dy,M, . 0y and J is very close (cf. DEF. 2,1). The reason of our preference

of J over P is due to the fact that in the interpretation of the taduclan o

1,,Ny, ... 1hh
e deaganal (cf. § 1) we need J (rather than J, or #) and the subset
ACP(E® ... ®E).(which do not belong to IPnD ’nh) . In other words 4z equivatonc

telation defining |Pn1, Dy lacses Yz paints of P(E® ... O ) neeatd essontially in Y
Mﬂé&&dfdﬂd

EXAMPLE. The product P, x P, = P(E) (dim E = 2) is represented by the set (e
cangtuonce) J of lines joining pairs of points of P(S,) = P(E ®0) and
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P(S;) = P(0 ® E,) . The two lines P(S,), P(S;) do not meet and conversely any &neaf
His congruonce debovmines uniguely Y fack of painds (A,B) .

/
A P(S,) = P(E® 0)

7 . P(S;)=P(0®E)
Fig. 1

The relation of the ruled model J(P(E,) x ... x P(E,)) with the usual SEGRE

model ¥ n n, is very simple. It suffices to show it for h=2:
1

Let J(m,n) = J(P, x P,) be the join and let Emn CP(E,@E,)) be the SEGRE
model; let us recall that Emm is the image of the set of (# 0) monomial elements
x®y(x e B,y € E;) in the tensor product E,®E, by the canonical projection
E,®E, — P(E, ® E,;) in such a way that the pair
(x) % (y) € P(E,) x P(E;) is represented by (x®y)e P(E,®E,) . The Grassmann

coordinates of the line joining (x,0) with (0,y) are the two—minors of the matrix

20zl ... av 0 0 .. 0

(2.8) ) )
0 0 .0 ;;0 }11 . 0

where we choose a couple of basis in E,, E, labelling the coordinates with the indices

0,1, ...,m0,0’, ... n'; we have pi =pii =0 but

(2.9) pii’ = @' ¢l = coordinates of x®y .
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In other words: Jhe frredicls &'yl cpucionding Yz coordinats af x®y ina
(i(x)) e (in(y)) -

Intrinsically: e can ddontyly x®y e iy(x) Aiy(y) inside E, @ E, ; similarly

we have forany h > 2

(2.10) Xy @ Xq ®..9 xh ® ii(xl) A iz(Xz) A oo A ih(xh) in
E,®E,®..0F, - CL. [SG], [B] . [E-P]

The poin of ©  oweducibll sudvaridies V' CP(E) & natunally dfincd by
resbriclian as fallowss:

(j)
DEF. 2.2 Let i(V : ) CP(S;) be the corresponding copies of the h given

(1) {(h) (1) (2) (h)
subvarieties. Tk jade IV % .. xV ") of VOV VY i e eeshiclion

af J=J(P(E) x ... xP(By.,) &bl Py, sudipaccsaf I joining poinks of the

i(v'7"), j=12,.. b,

(1) (h)
(V X .. X V ) = {[Ph'l E J([P(El) X .. X% [P(Eh)) |[Ph'1 n S..| =
v =12, 1),

(0 (h)
We shall use the following propertiesof J(V ~ x..xV ~):

) ) (h)

(2 (i)
x V' x . xV ) & aeedicille of N i oweducible (for
j=12, ... ,h). Moreover:

1) J(V“

(1) ( (hl
211)  dmI(V D xV D % xV )= d 4yt dy+h—1
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where dj = dim V"’ , J=1,2,...,h.

2) J(Vm . xv(h)) _

h : ’
= 0 JP(Ey) % ... xP(Bjg) x V' x P(Eja) % ... x P(Ew)) .
j=1 .

(n w
3) The codimension ¢ of J(V  x..xV ) inP(E;®.. ®Ey) is equal to

the sum of the codimensions ¢ =n- dj , j=12,...,h

(2.12) c=C +C+ ... +¢p .
3. CASE n; =n,=..=n, =n. THE DIAGONALS X, A
The case E;=E;=..=E, =E, S=E®E®..®E, dmE=n+1 is

particularly important in the intersection problems, because then we need to consider
the representation of the abstract diagonal
D={P xPyx..xPoelP(E)xP(E)x..xP(E)|Py=P,=..=P,} inthe

abstract product D is represented by the SEGRE model X o n, is a
. 142y === >

VERONESE variety V(D) (cf. [B])

(3.1) V(D) = {Mx,®x,®..®x,) e T n[x1=x2= .. =x, ¥ 0}

nyny *++

In the join the image of (Ax) % (Ax) X ... x (Ax) A;#0 j=12,.. is the

subspace S(x,x, ... ,x), thus theimageof D is

(3.2) ED = U{S(XI,X2, aee ,Xh) | X =Xg == Xh}
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T =3 &< SEGRE exady model of P(E) x IP(Ch) . In order to see that it is

convenient to introduce the following identifications:

h
(3.3) S=E®C" S, =E®u, S=® 5

3
where u; = (0,0,...,1,...0), j=12,..,h.

(3.4) (x; Xz, ..., x,) CJ 2 (%, ®uy, x,@uy ... xp ®uy)
(3.4) implies in the diagonal case x; =x,=..=x, =x¥0.
(35) (/\lx,/\zx, as ,AhX) ‘=’ X ® (AI,AQ, ,/\h) .

The generating spaces P(E) ® (A, Az, - ,Ap) ((Ay - ,Ay) € P((€P)) and
(x) ® P(C®) are represented by

P{x® (A, ..., Ay)|x €EE} and P(x® (A, ... ,Ap) | (Ay, .. Ay) € €F)
respectively. The latter is the image of the abstract diagonal point
(x) x (x) x ... x (x) , i.e. by the span of the h copies of (x) in P(S;) j=12,..,h.
TFhe garmor s  cafry af P(E) , the copy maps being

(x) = (x) ® (Ay, .o ,Ay) -

In particular we have the following distinguished copies
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P(S;) =P(E®u))CE, j=12,..,h
A=PE®(L],..,1)) =P{(xx, .. x)|xe E} CZ, CT(E®CY

A is the diagonal space (cf. Introduction) not to be confused with X .

The eoduction bo Yo dizgonal for b ardihary man omply ssdscls AyAg , ... A,
of W(E) Aas the final foom:

h
(3-6) 6(jﬂ1 Aj) = J(Al x A2 x .. X Ab) n A
where J is the full join: J(A; X ... X Ay) = {Ppoy|Ppoy € J(A; X Ay % ... x A,)} .

Let us come back to our interesting case A;= V(j) irreducible algebraic
subvariety of P(E) of dimension d; and codimension ¢;. We know (cf. formula (2.12))
that cod J in P(E ® C") is equal to ¢ =c; + ¢ + ... + ¢;, . Then our discussions lead
naturally to the two cases c2n and ¢>n.

If ¢ <n isalways nv”’ =I=¢1=)J(Vm x...xV(h))ﬂA#cp.

If c>nnV(1) = ¢ for the V(j) m;mouc/maéan e éﬂ:aﬁqcma/d/&aae A

h
(3.7) vV x xv)na=ga v oy,
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4. JOINS AND h—COLLINEATIONS.

h h
. . x ~ b
The h—way projective space E’nhnm oy | l| (E;—-{0})/C" x.7.x¢C
J-

where dimE; =n;+1 was introduced by VAN DER WAERDEN [Ch—vdW] to

study the correspondences in IP11

X [P112 X .. x ﬂ’nh (cf. also [H-P], Vol. I, Chapter V,

§ 10 and specifically Vol. II, Ch XI). An irreducible correspondence in

is an irreducible subvariety of this product. The natural way to study them is to

introduce the systems of homogeneous polynomial equations; a polynomial

(1) (2) (h) () &3

P
feC[x x ;..;x ] (where x =(xq Xy - xn_), j=12, ... ,h) is
i

called homogeneous of degree (m,,m,, ... ,m;) iff

(1) (2) (h) m; mg my  (n (h)

(A1) TOX AX e AX Y =A A, Ay fx e ).

In the interpretation of the points of P non as (h —1) —subspaces of

1289y .o ,nh
J(iP]11 X ... X [Pnh) any subvariety of [Pnb ,nhmight be regarded as a Grasmannian
subvariety:
&C }(EPnl X .. X% IPnh) C #(h—1LP(E;®..OE,)).

The transition of #to J originates < 4wl vatity

(4.2) S= U Py

IPh-IG.GV
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We shall omit the easy transition of the language developed in [H-P] for
[Pnl, Ny, ... Dy to our " adn" — interpretation with the exception of the h—cddincations

among h copies of P(E) =P, : ey faoe same spiecial fuafiordics clasely velated la Lic
sudsfiaces af P(E ® 1) wbich wild onadle ws in § 10 ézd/faaﬁcwdémza/%e
avpranond mulliplicily swik VAN DER WAERDEN's.

Let us recall the following ones:

Y Let P= (vi,¥g, -+ ,vy) € P(E® CP)  be one point of PJ,) (&v$0,
j=1,...,) . Then there is one and only one [P, e HP(E)x..xP(E))
containing P .

Let UCP(J,) be a J—wndisecand earily 3 U does not contain two different

h
points belonging to the same Py_j € P, x.7. xP)) . Fham U scprcsonts in a natmal

ma;t%admc h—maa/aﬂa(ma M&me@ R Ma/
Pp-1 € AP(E) % ... x P(E)) macding U:

R= UPy-, .
Py-1€J(P(E) x ... x P(E))|Py-,U U4

Let @ be the collineation group of IP(EOCh) in itself represented by

n+1 n+1 (n+1)
s 7 ot

homogeneous diagonal matrices: diag (A;....... A;; Ageoii Agey Ap il Ay)

with h non zero scalars .\j , J=12,...n.
Then U and 7 U represent the same correspondence for any

T=Dy, .0, €7
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EXAMPLE

The diagonal space A has the two properties we want: A e P(J)) and A does
not contain two different points of the same P,_; of J(P(E) x ... x P(E)) . In this case
Ry=X. A and X represent both the alzgamal (&= "ddamdily") in the abstract
product P(E) x ... x P(E) .

However there are other linear spaces P(E ® C") having this property, for
instance those (replacing A) obtained "moving" the h identifications)

i; : P(E) — P(8;) . Let us replace them by h arbitrary non—degenerate collineations
7 P(E)—P(5;) , j=1,2,... ,)h . Then we have: The correspondence v , locus of
(1(P) , 72(P), . 1,(P)) P CP(E) will be called a non— abgmorals h—callincation. Tt
is represented by a SEGRE variety }37 (reducing to ¥ for 7= i, J=12, .. ,h)
whose vertical (h —1)—spaces belong to J(IP(E) x ... x P(E)) . Any horizontal one
H#P(S,),P(Sy), ... P(Sp) represents v,i.e. HC(J,): H has no two different points
in the same [P,_; of the join and R, = 27 .

In the case h =2 7,7,7Y(7,7,7%) represent a collineation P(S,) — P(S,) (or its
inverse P(S;) — P(S,)) .

Let us see this properties more closely using basis:

Let Bj(uold? ,u, 9%, .00, 1), j=1,2,...,h bea basis of
E(& ii\oui(j’ #0 j=1,2,..,h=). Then we have:

Suck b dases dofine @ non-degonorale h—callincalion Where (X%, ... Xp)

correspond if X; has the same homogeneous coordinates in Bj for j=1,2,..,h . But

the h vectors

(0, u @, ) el =
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are linearly independent and they definea S, C P(E ® C?). The h bases
(AB,, AB,, ... ,AB,) define the same S forany A#0.Let A, A, ..,A, be h
different non zero scalars. Then (A;B;, A;By, ... ,A;B,) define a different S! =D S,

where D=D .But S_ and S’ define the same h—collineation.
’\1:’\2 )‘h o o :

EXAMPLE. For h =2 we have:

If (A #(0,0) (AB,, uB,) define a subspace S,., representing the non
degenerate collineation (B,,B,). (A’) defines the same S _, iff (X,p") =v (A p).

(B;,B;) and (Bj},B3) define the same collineation if B}=B, T Bj}=B,T
where T isa (n+ 1) x (n+ 1) matrix with det T#0.

Then we can see that Rs = Rs’ is a SEGRE variety.

Let us introduce back coordinate systems (ag,y,...,2,) in E as well as
(a-o(j) zn(j)) in S; interpreted as homogeneous coordinates when needed. Then
for 7,7, ... y7, non degenerate we can assign to any set of h non singular matrices
G,,Gy, ... ,G, the n—subspaces S, of P(E® (") generated by the n+ 1 rows of
GG, ... G, . The non singularity condition det G; #0 is equivalent to the fact that

S, N (S;) = ¢ where

Thus S, CP(J,) & det G;#0 for j=12,..,n.

(G,G, ... Gy) and (G,T G,T ... G,T)
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are two different bases of S, if det T # 0, and we can assume either one Gy =P, . I

A] # 0 fOl.' j = 1,2, ,11 (A1G13A2G2I aes ’AhGh) deﬁnes DAIAQ . Ahsn With

Dyn ¢

Let us forget now the condition det G;#0 for some (or all j) but keeping the
fact that rank (G.,G; ... Gy) =n+ 1. Then the condition S, CP(J;) fails & S,
meets some [P(S;) . However we can assign to S, a correspondence I'(S;) where
(x4,Xg, .. ,xy) € I iff the Py, space {Ax;+ ppxo+ ... + pxp} meets S, (we

cannot insure anymore that it meets in a single point.

EXAMPLE. Let S a’sﬁ be two subspaces of P, . Then J(S - Sﬁ) is a subspace of
dimension a + 8+ 1 of P(E®E), but J(S x Sﬂ) NP(S,) =1i,(S,)

J(5,, Sﬁ) NP(S,) = iz(Sﬁ) if (x)eS, (y)e Sﬁ the whole line A(x,0) + p{0,y) is
contained in J(S x Sﬁ) :

II. GENERALITIES ON THE COMPLEX ¢(V)
ATTACHED TO A VCP,.

We shall complete with appropriate references some of the information already
given in the Introduction. It is wellknown that not every complex in ¥(c—1;n) is
attached to a V . Such particular complexes are indeed very special; they will be called
nucleatd’ with nucleus V¢ . The characteristic nuclearity conditions for a
€C ¢ (c—1;n) can be expressed by a system of homogeneous polynomial equations —
the so called CHOW equations (cf. [Ch—vdW]) they are use; to prove that the set of
positive cycles of codimension ¢ in P, is ZARISKI closed.
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5. THE COMPLEX €(V€) OF P.,. RECALL ON ZUGEORDNETE FORMEN.

The word cumyide of sudspiaces Py in P,(0<d<n) is used here in the XIX'™

century sense-namely as a synonimous of Yeadsmamn dénisar (in  F(d;P,)) . We

identify € with its image in the Grassmann embedding
dt1
(5°1) f= 7(d;n) — IP( A En*l) [Pn = [P(En"l) .

A P4(CP,) can be determined uniquely by d + 1 linearly independent points in
P, orby n—d Li. hyperplanes meeting at Py . Accordingly we define the conipation
candilians With respect to a complex € of d—spaces in P, as follows:

DEF. 5.1 d+ 1 dnarly indbpondnt pioins Py, Py, ..., Pysy of P, are callsd
conpugal wilh respeolle € yff of the umigue Sy Py (1=12, ..., d+ 1) delangsle €

DEF. 52 n—d Jdmarly indspondont hgypinplanes B, , Hy, ... Hy 4(CP,) a2
called confugate witk wcspecl la & o e ancgue Sq=H,NH, N .. NH, ; Lbongs
&L €.

The conjugation condition of d+ 1 points with respect to an irreducible

€ (C ¥(d;n)) (cf. DEF. 5.1) can be determined by a single irreducible equation
(5.2) F(xy,xg, - 1Xg41) =0
where F is a polynomial homogeneous of the same degree g with respect to each one of

the d + 1 variable vectors x; € E,,, representing the points P;, j=1,2,..,h.

Similarly we have another plurihomogeneous form G (with the same g for the
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n—d variables ui € E (dual of E_4,) , such that
(5.3) G(ul,u?, ... u*9) =0

characterizes the conjugation condition of the H; (=P(i)), j=12,..0—d; of
DEF. 4.2. F and G can be written uniquely a8 € —linear combination of standard
monomials p(S), q(EX) of degree g (cf. [H—P] vol. II, Ch. XIV, page 377) in the

Grassmann coordinates of IPd(IP':l') pili'*‘ idﬂ, (@;; )
, ‘ Jiha -+ Jn-d

(5.4) F=)Ap(S) G=)uya(®)
z

Fand G aw uniguely dlovmined by € (aploa € — factor). Accordingly
(ApAg, -} or (s, ..) are well defined homogeneous coordinates representing € .
The procedure is extended to arbitrary positive Grassmann divisors by prime factor

decomposition F=IF;', G=1G;’

. Both expressions (4.4) are not essentially

different because of the well known identities between the p and q.

When €=¢C€(V) (d=c—-1) (cf Introduction, page 6 and Abstract, page 4)
these conjugation conditions (5.2), (5.4) define the CAYLEY-SEVERI e (or the
CHOW g respectively) of V = V¢ =V, . We emphasize that the number of vectors
(& belonging to E) in (5.2) is equal to the codimension ¢ of V¢, Hus & goves dack
He equation af @ V' (ie. of a hypersurface), for ¢=1. The CHOW forms of V

contain a number of covectors (belonging to IV'J) equal to dim V + 1. Then (5.2), resp.
(5.3) M&WM@W@ @ S famal V (where S_, is uniquely
determined by ¢ points, resp. as intersection of d + 1 hyperplanes).
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In order to introduce the formal definition for nucleated complexes (DEF. 5.5) we
shall need to consider certain exceptional behaviour of points and S—spaces (m > d)

with respect to a complex of d—spaces .

DEF. 5.3. Let P bea point of P, . P is called aingulzt wilf respiecdle € 4f
oty Sy P delangsls €.

DEF. 54. The subspace S, (m >d) of P, & calld singular wilf sespicclla €
Howery S4C S, delongsla €. Cf. [8].

We shall introduce now formally e compdar € (VS) abzched lo an tvredicitle
sudoarity V° of codimonsian ¢ in P, . It is necessary to check first the following

property:

ke sel
(5.5) € (VE) = {Pgy CPL Py NVE# ) C F(c—1P,)

& an dneducille complerr in F(c—1; PL) . The waniely N© & Ye lacus of singulan
Sainks of V) (cf. [S], [H-P], vol. I, IT); i.e. € (V) & mucteatrd ssih locus V° .

DEF. 5.5. The set € (V) defined by (5.6) is called e complar albacked la V© .

EXAMPLES.

1) For c=1 &(VY) is just Lo sl af frainds of Yhe omedicidle Lypnswnface
vVicPe,.

2) For ¢ =2 €(V?) & e sl of lines mecling V? . For instanceif V2 =T, is an
irreducible curve of Py, €(T) & e complor of lines af Py meeling T .
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DEF. 5.6 Ik cunpugalion condibians af fiaints (ot Ayfionplancd) eailh acsfiec! 4o
€ (V) ate callad fe CAYLEY-SEVERI goom (at CHOW — form) af V©.

(5.6) S(xy, .. X)) =0
(5.7) Y(ul,u?, ... ,ud*) =0

Actually Y =0 is the first systematic " gugearatet: Faead' (cf. [vdW-ZAG]) or
asdaciated faron . In the case of an irreducible plane curve T' the left hand side of (5.7) is

the resultant R(f;u,v) where f =0 represents I' and u, v are linear forms.

In the introduction we mentioned also the claracbrisdic formn (WEIL) (or
Aarmalpleichung) (SIEGEL) (valid also for a non nucleated € ) containing dim V + 2

covectors and a single vector; in the general case we have this "mixed" equation:
(58) N(UI,UQ, aee ,Ud..,z;X) == 0 .

REMARK

SEVERI pointed out in [S] that S =0 is the real generalization of the equation
of an irreducible hypersurface V!, since the number of vector variables equals the
codimension. But S =0 was described by CAYLEY (as early as 1860) for conics in P4
of [C,], [Cy]. If we keep fixed c—1 linearly independent variables a,..a.; in

S =0 in such a way that (a; A ... Aa_;) does not meet V¢ then

(5.9) S(ay, .. y8c-1; X) =0
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represents the projecting cone of V° from P, ; accordingly V© is recovered from

S = 0 as the intersection of all the projecting cones of V¢ from the P (N V¢ =¢).If

c-1 d+2 ~
we replace a;A...Aa_; € A E by the corresponding u; A ... Augsp € A E we have

the WEIL-SIEGEL equation (5.8)
(5.10) N(uy,ug, ... Jugeg;x) =0

representing V¢ =V, as the intersection of all the projecting cones from generic spaces

(uy A ... A uysp) non meeting VC.
EXAMPLES (for an irreducible curve T' in Pg)
S(x,x) =0  Y(u,v) =0  N(ug,u;uyx)=0

teppesond U wia Uhe complerr € (T) (cf. Fig. 2), where a line £ € €(T') is defined by a

couple of points {(or of planes (c=2, d=1). T appears as intersection of all its
projecting cones from outside points P = (a) = (uy A u; A u,) given by a single ae E

or as intersection of three linearly independent planes (uy), (u,), (up)
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/ (x)) (x2)

<ux>=0 '
<vx>=10

P =(a) = (5, Ay A uy)
Fig. 2

6. REVIEW ON ASSOCIATE FORMS. We shall recall here the main properties
of the a.f. needed subsequently refering — for further details to the original papers
[vdW—Ch], the Einfihrung [vdW 1] (with the 9 historical appendix), the ZAG
book, H-P II, CH X, § 6, 7, 8 and SEVERI'S comments in his paper on Grassmannians

[S]. First of all there are uniquely defined linear combinations of the standard power

idg ... i
products of Grassmann coordinates p rae (or Piy jy .- jcl) of x, Axg A ... Ax, (or
. ¢ d+1 -
yAu A..Auy) in AE (or A E) such that
(6.1) S(xy,Xg, - Xg) = S(x; A ... Ax,)
(6.2) Y(ug,uy, .. yu)) =Y (ug Auy Ao Auy)

and the transition between the right hand sides of (6.1), (6.2) is given by the

well-known formulas of type

Sp(X1Xa) - Xgoi) = S(XyyXg, oo Kooy De-gas - be)
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where Sb is the CAYLEY-SEVERI form of the projecting cone of V from the
Sy-1 — subspace represented by (b, A...ADb) with S, NV =¢ . The identical
vanishing takes placeiff S,_;, NV #4¢.

In particular for k=c—-1 we obtain back the original CAYLEY'S idea of
representing Va4 dndrdcclion of all i prajcling concs of N gham S, fragcling
Mum/maéoy V.

The fact that V is the locus of singular points of the complex € (V) gives raise to

a canonical system of equations of V expressing the fact that for a point (2) e V Z&
W#&Wmﬂa(&) vanishes idondically & () 4 a singular faint
af T (V). '

In order to get the properties of the WEIL-SIEGEL form (cbaeacbrisdc

form= /amWay ) it is convenient to represent the projection center

Sc-2 (NV = ¢) as a complete intersection of d + 2 hyperplanes
(u) (W) w (uger) (¢ P(E)).

This will give us an identity of type:

(6.4) S(x;xg, ... 1X;) = N(ug,uy, ... ,uqep;X) .

We shall give a more explicit expression of (6.4) using the fact that we can write:
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(6.5) VOAVIA...AVd=x_|u0Au1A-..Aud...l.
(cf. [BOU]) if we normalize conveniently x , where the point (x) belongs to the

intersection of the d+2 linearly independent hyperplanes <u;x>=0 ,
j= 0,1, ...,d + 1, namely

(64)’ S(x;xm axc) = N(uO)uh )udﬂ;x) = m(fo:clx xfdﬂ)
n

(66) £j =< ul,x > = 2 ujlxl j= 0,1, vee ,d +1.
1=0

The form N contains coefficients depending on ug,u,, ... ,uys; that can be

determined explicitly. (6.5) has & fadlawsing tomarkadle geamebeic intorfurclabion :

Let P (E/E.;) be the quotient projective space of E with respect to the

c-2
subspace E., represented by x, A..Ax,e A E (which is also represented by

ds2 -

(Vo A . Avger)) (€A E)).

(6.7) dmE/E,,=d+2& dmP(E/E,_) =d+1.

The d + 2 forms uy linearly independent of E can be regarded also as forms in
E/E.., because E., is defined by <u;x>=0 for, j=0,..,d+1:

<uj,x>=<uj,x+y>VyeEc.1.

As a consequence: J4z d + 2 M fj (j=01,..d+1) ae /famww
coardinales in e gualiond fragclive space Py, =P(E[E ) and .
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Ths equalion:
(68) N (£0:£2! :£d+l) =0

cf. (6.4) ecpresonts a hyporsurfoce madel of V4 bung dn Py =P(E[E ) ehose
flainds are natwally mapped lo Y gmoralors af Ye frapoling cone of N gram

P(E,.,)

Since E,-; can be any vector subspace of E such that P(E.,) NV = ¢ we have
a refinement of CAYLEY'S idea in the sense that given amc af Hase CAYLEY'S

pragclion contrs  P(E )NV =9) (68) obfins an ardinary equalion of a
WHEC_I mé/a/V,fuwoﬂydfa(aa/M y(i=01,..,d+1)

W By

The points of this hypersurface correspond bijectively with the P, generators of
the CAYLEY cone of center P(E_;) . For a generic choice of P(E.,) the generic
generator of this projecting cone contains just one point of V , the exceptional ones

correspond bijectively with the singular points of Hp L In particular if
-

d=dim V=n—-1 the n+ 1 linearly independent forms u,,uy, ... ,u;, in E define a

coordinate system in E = a projective system in P, ; thus in this case

(6.9) N(<upx><u,x>,..,<u,x>)=0

n

with < u;,x > = 2 ujkx“ defines the equation of the hypersurface V in this
k=0
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coordinate system, or in the language of invariants:

(6.9) ¢cppresonts all Ue prassible equations of Yhe Ayprorsingace N for all Ye chadces
wdf ugh..Au,$0.

EXAMPLES

In the case of Fig. 2, page 41, any triple of linearly independent linear forms u, ,
u;, u, define a projective coordinate system with (u;) (j = 0,1,2) as coordinate planes
and (uy+ u; + u;) as the unit "line" in the abstract plane P(E,/E,) , where
P =P(E,) is any point of P3;=[P(E,) outside V intersection of the three planes

<upx> = 0 . The equations
N (£0i€1€2) =0 N(<upx >,<uy,x >,<upx >) =0
represent a model of V in P(E,/E,) or the projecting cone of V with vertex P .

REMARK
The explicit computation of N in terms of § can be achieved expressing (6.5) in

coordinates; replacing pi°il g by

..

(6.15) plols - ig — zxi qﬁoi1 oy

where qj°-ix ++ Ja*1 are the coordinates of x | ug Auy AL Auy,, leading to

< ug,x> Upg .. Ugg

o 1 d
Igly ... 1
(6.10) polid=|<u, x> Upg, gy C Uy

<U4sy, X > Udetsiy Udenip -+« Udeniy
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Im. APPLICATIONS

(1) (h) (j)
The construction of J=J(V' © x..xV "), V' CP,, j=1.2 .. b, has

two natural applications depending on the codimension of J in P (E ® C?) . Cf. (2.12),
page 27;if ¢ < n the h given varieties V(j) always meetin P, (& A always meet
J in P(E®CP)).If ¢ > n the given varieties do not meet (& A NJ = ¢) if they are
in generic position, but the discussion of their meeting gives a new form to the old
"elimination theory" which can be made intrinsic. We shall divide the paper in two parts
according to both possibilities:

In part I, page 46, § 7, 8, 9, 10 we deal with the case c¢<n .If Se€(J),
J=3v'7 x . x V™) since dmS=c—1<n, & mabes sonic bo inhaduer Yhe
reshicdion bo Y diagonal space A dn P(E @ CM) (cf. § 3, page 27). Such a restriction is

h
trivial (& C€(I)|A= P(c—1;8) iff the intersection N V' is dmpraser .
jo1
Otherwise, Hote & @ wel dbfined complor: € (I)|A  whose fult-dack & P(E) by &1
(2) (h)
gives Yo nadinal dfinilion of €(1) , wdoe 1=V'" NN 4 lhy intrscction
gxé. The prime factor decomposition gives the intersection multiplicity as the

exponent of either one of SC » Y

component C of I . See our main definition DEF. 7.1, page 51. In particular we can

or N, (any two of them agree) for any irreducible

b
(p
prove BEZOUT’S theorem since degJ =T [ deg V P can be proved with a rigorous

i=1
degeneration method using the characteristic transversality condition for multiplicity

ane of VAN DER WAERDEN follouas casily fram Ui indorfnctation of s S,
sudspaces af P(E @ (7)) ad ecpesontabives af h— callineations (cf § 4).
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FIRST PART

THE EXPONENT INTERSECTION MULTIPLICITY

(1) (2) {(h)
7. RESTRICTION TO THE DIAGONALOF €(J(V xV ~x..xV ), c<n.

)]

(1 (h)
Let us come back to the constructions of § 0,1. Let J=J(V ~ x..xV ) be

the join of the h shown irreducible varieties of codimensions ¢; in P, satisfying (0.7).
Let us consider the complex € (J) of (¢ — 1) — dimensional subspaces of P(E @ Ct) =

=P attached to J:
h¢(n +1)-1

(7.1) ¢J)={P,CPE®C)|P,_,NI#¢}C F(c—Lh(n+1)-1)
then, awinae ¢ <n L rashrickion o lie n—MM/@anddﬁw A:
(7.2) C@)| glc-14)

makzs sense. We shall distinguish two cases:

D o AVY simpapn @ bt s of leasd ane cradndarsy dneducill
=1
wm/anm/XﬁcodX<n hen

§X)NP.,#¢, VP, CA.
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h (
2) On the contrary: J/ nV'1 & prafor we can canshacd some sudspace

J=1
[PC'1 c A W

snvyne.  =¢.

h (P
It suffices to take the diagonal image of a P, of P, not meeting N V v

i=1
In other words, we have proved the following:

LEMMA. Ik dizganal space A of ﬂ’h(n*l)_l (cf. § 3) & 2 angulat space af €
O f OV b imppapr. Olhorsisc e eeshiclion of €Q) b b dbfines b
j=1

compler (1.4) delosn which will de allached b e intorseclion oycle 1 Ly Yie gormula

(7.4) c() =4 (C(2)|4)

{1) (2) (h)
where I =V -V v .. 2V

MAIN DEFINITION 1:

DEF. .1 Jhe complot of S, audspaces of P dofinod £y(1.4) & callod Yhe compler

allachod b Yo (well—defined) dnborscclion opets 1=V'" V>0 oV orge n

REMARK

The effective restriction € (J) = 6-1(¢ (J)|4) can be achieved by means of either

one of the associated forms discussed in § 6, namely:
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We know that the SEVERI form SJ attached to J contains ¢ covariant vector
variables x;,x,, ... x. . It suffices to take x;ed for j=1,2,..,c to get the desired
restriction. For Y; there are d + 1 hyperplane variables representing a P, € €(J)
where d = h(n + 1) —1—c . The corresponding number fora P, C4 is n—c+1.
The difference (n + 1) (h —1) equals the number of equations of type

(7.5) x; —-x; =0r=2,..,h; j=0]1,...n

defining A . Thus, we shall definea P, C A with forms containing the (7.4). The rest

define the same [P, as a subspace of A .

Similarly the WEIL-SIEGEL form suffices to restrict the generic projection center

of dimension ¢ —2 —in the ambient space of J — to the diagonal subspace A .

In the three cases we have prime factor decompositions of S{A, Y{A, N|A with

prime factors SC YC , N0 attached bijectively to all the proper irreducible

h ()
components C of N V " and equal exponents iy
i=t

i, ig i,
(7.6) s, =TTs,° Y,=TTYS N=TTNS.

Such equality is indeed a consequence of the transformation formulas between S,

YI , NI studied in § 6.

MAIN DEFINITION 2

o Well defined by either one of the (7.5) in an

intrinsic way is called the azfanmnd inbtscclion muldiplicityaf C an 1 (cf. (7.4)).

DEF. 7.2. The positive integer i
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8. COMPUTATION OF FJ . BEZOUT'S THEOREM. The computation of the
CHOW form Y, on any irreducible V CP, is based on the theory of the u-resultant
(cf. [H-P], I). It can be applied to J = J(V x W) when we give any two systems of
equations in (x), (y) to represent V and W . From Y, we can construct S, and

Nv . A direct computation of any Sv with cod V = ¢ can be obtained by
(8.1) Sv(xl,X2, cer ,xc) = h.c.d ( Y ’Rk’ ...)

where the R, are resultant forms with respect to A,, ... ,A, in the equations

c

c
j=1

[+
obtained by the specialization x+~—— E ,\jxj in the equations .. f (x)=10 ...
j=1
representing V.

REMARK JY 4 tomarbakls, vory simple and cusonbially" nows" (sinoz Yhe N—farrm

n
(8.2) N( z ujk xk) =0 j= 0,1, vee y d + 1
k=0

(V) of V segualle d+ 1. Accordingly: The d + 2 ecsthicdians
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(2 upx)] T(V)

k=D

j=0,..,d+1 WWW

For instance, let V be an irreducible algebraic curve in [P, . Then we write

immediately an irreducible equation
(8.3) F(<u,x>,<u3,x>,<u3,x>)=0

representing V a8 intersection of all the projecting cones from [P, _g — subspaces,

complete intersections of the three hyperplanes.

(8.4) <yx>=0, j=1.23

n
where < u;x > = 2 ez, =0.
k=0
In particular if V is a canonical curve — non hyperelliptic — of genus g in Pe-s

we can take three generic holomorphic differentials to define the WEIL-SIEGEL form.
We shall apply elsewhere this remark to the SCHOTTKY problem, cf. [G.4].

REMARK

The following natural question arises; let F; be associate forms (of the same kind
S, Y, N) corresponding to h algebraic irreducible V(j) CP,. Can we compute F,
in terms of the F; 7 (where J=J(Vm X ... xv(h)) CHthe VY oare al
hypersurfaces: ¢; =1 and ¢=h <n, the answer is positive because FJ = Resultant

form with respect to A,, A,, ... ,Ag of the ¢ equations
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(8.5) Fj(/\1xl + /\2X2 + ...+ /\cxc) =0 j = 1,2, e ,C

If h=c=2 agood improvement can be made remarking that then the resultant
of the two binary forms in (A,A;) has the explicit well-known SYLVESTER form.
Since the § and N a.f represent a given irreducible V a8 complete intersection of
projecting cones we can try to reduce the computation of F; with J=J(V x W) in
terms of Fv and F to the previous case as follows: Let [P ~2 and P ¢y2 be two

c c
generic projection centers for V 1, W’ lying in P(E,0) and P(0,E) respectively.

Let S, = J(Scl—l x Sc2_1) be their join with dimS_;,=¢c-1, c=c¢,+ ¢, with

Se1IPy ;o SeidPy_p and S DS, 5 xS =20_3. Then we can

61—2 02—2)

compute the equation of the projecting cone of J(V x W) from any P__, joining 2 -3
with any point (x) by means of a SYLVESTER determinant D :

dg 84 af
0 ap. as
(86) D= 8 . ... af
By by . ... .. by
bo by .. ... b
bo . bl . I.Jg.

where f=degV |, g=degW , and FAx+py) = Ea,\l g
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g

GAx+py)= 2 by M ufl where F(x)=0, G(x)=0 are the equations of the
j=0

projecting cones of V(W) from P, (Pcz—2) respectively. An immediate consequence

of this property is the following:

.%feé;wd/J(V x W) & equal lo He praduct of Yhe degrecs af J(V) , J(W)
(8.7) deg J(Vx W) =deg V.deg W.
The intersection J N A has the same degree; accordingly we have:

BEZOUT’S THEOREM. & V - M & Y intrscclion oycle of bea sneducille

WMW Vv, ch WW Ve Aave:
(8.8) degV - W=degV.degW

8 @ condeguonee af (8.7).

9. ON THE PROOF OF THE THEOREMS. In the expository part of the introduction
and in the exposition of the adaptation of the reduction to the diagonal in the projective
case (§ 1,2,3) we gave already all the necessary ingredients to prove Th. I but — since,
there we lacked same technical tools, for instance the relation between the diagonal
space A and the diagonal I , (cf. (9.1), below) the more precise recall on associate

forms, etc.:

(9.1) ) = SEGRE variety = P{x ® (A, ... Ay)[x € E, (A ... \p) € €'}
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with A=P(E®(1,1,..,1)) —itis convenient for the reader to have now a complete
version of the proof. On the other hand with the same procedure we shall prove also Th. ~

IT, although we shall come back to it in § 12.

h
h .

Proof of Th. I: If the set—theoretic intersection NV % with ¢ = 2 ¢ <n is
i=1 j=1

improper there is at least one excedentary irreducible component X of codimension less

than c; as a consequence every P.., CP, meets I; thisis equivalent to the fact that

every P..; C A meets 6(I) ie. A < asdnpulan spiace for €(J(C)) , where
HAC)< g(c-1;P (E®CY)) .

of. DEF. 5.4 page 37.

h .
On the other hand iff NV % is proper it is always possible to find a P, CP,
i=1

L ()
such that P_._; nenv ] ) = ¢ . This implies there exists some P_, C A which do
i=1
)

not meet J (V(1 X ..x V(h)) ; in other words e faec @ prafior resthiclion o A of
Ye complerr € (J) allackedle J 4 N is proper ; such restriction can be effectively
computed by restriction to A of either one of the equivalent form S ;0 Y. , N‘I . The
prime factor decompositions determine uniquely the exponents of the irreducible factors
C (cf. § 5,6); each irreducible factor has the form Sd » Yo on N, appearing with the
same well defined exponent

(1) (2) (h)
=iV O,V L V).
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10. EQUIVALENCE OF THE EXPONENT MULTIPLICITY WITH VAN DER
WAERDEN’S THEORY.

The exponent multiplicity theory enables an easy transition (in both directions)
between the so—alled 4%4s and the cgmames multiplicity theories, (cf. [F]) roughly
speaking it is equivalent & maec Yo inbrsccling sarilics N , W at Lo mave e
dizgonal spazce A . But A belong to %(n; 2n + 1) and such sadan is quite well
understood. On the other hand a generic S, CP(E®E) represents a non singular

collineation 4 in P, (where S, , S]

» represent the same collineations iff they are

equivalent under the group &) of collineations of P(E ® E) in itself (cf. § 4).

The original VAN DER WAERDEN’S multiplicity theory (cf. ZAG—papers, the
historical survey [vdW2] and [H-P] (vol. II)) relies precisely in a motion of the pair
(V,W) of irreducible subvarieties in P, to (7,V,7,W) by means of generic
collineations 7,7, +P GL(E) .  (7,V,7,W) gives essentially the same as
(Y71 VY1, W) where e GL(E) , thus we can consider also (V,7!7, W) or
(73 75, V,W) (with the inconvenience of a subsequent proof of the symmetry of
i(I;V.W) when we permute V and W . Anyway the intersection multiplicity i(I;V.W)
(for I irreducible component of V W) is defined in vdW 8’ theory by spezialization
when (7,7') — Identity.

The equivalence of the exponent multiplicity with van der WAERDEN’S appears
naturally when we replace the motion of 7 with the (equivalent) "motion of A" . We

shall make explicit this equivalence:

We recall that a non singular collineation «:P, — P_ (P, = P(E)) is uniquely
defined by a pair of bases B, B’ where y=P(L), Le GL(E) and L is uniquely
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defined by B’ = LB . Let us construct the n + 1 vectors
(10.1) (b,b) cE®E j=0,,..,0.

They form a basis of the subspace E@® E . The bases (A, B,A; B;), A, A, € C

define another subspace D, A L representing the same colliration y=P(L) as L.
1

Dy p L =L ff A=,
Two points P = (x), P’ = (x’) correspond in 7 iff
n n

with (Ag,Ay, - ,A,) £(0,0, ... ,0); (xx)el.

Conversely any point ( #0) . (x,x’) €L defines a pair of corresponding points
(x), (x*) in P .

The set—theoretic intersection L N J(V x W) can be interpreted as the set of pairs
(x) x (x) €EVxW with (x’) =1(x). The specialization y——id , will give back
A N J(V x W) leading to the natural definition of the intersection cycle V - W .

The precise nature of the equivalence between the exponent multiplicity and the
original VdW’s can be retraced quoting the following paragraph of the historical survey

[vdW] or the Einfihrung [vdW] (page 276) :" Spsdung a frajclive bansformation":
..... " Hhorcfare J prapased in 1928 & buing N and W dnta a genoric aclative
frasdlion Ly afifilying la anc af bhom a prapclise bansformalion T ik indelovminat;
cogficients . The hansformed vanicly T inborsects W in a finde numdor of fains. Jf
T & sficcialiyed ba Ue idondily, Yic frainks of intnseclian af TV and W spoyialiye Lo
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fainks o indnscclisnaf N and W . Y V and W el in a finits numdbon of painks,
cack of Yese appoaes wilh a onlain mullplicly, whik may de dbfined b b Uis
brsecion muliiplicdy ..

In order to adapt VdW’s words to our procedure with the joinin P (E®E) let us
assume now dim V.W =0 c =n . Then to the projective T let us associate the

S, CP (E®E) defined by the n + 1 points of the (n + 1) x 2(n + 1) matrix:
(10.3) (1ges T)

where 1 ,, is the (n + 1) x (n + 1) unit matrix. The spezialization T — Identity
spezializes (10.3) to (1 ,4; 1 ,.,) defining the diagonal space.

In the general case for any ¢ < n, the intersection of J(V x W) - S_ reduces the
problem to J(V.S,x W.§ ) CS, where V.S, CS,, W.S.CS, and we have again the

previous case; dim VW =10.

In the discussion with the complex € (J) , we need to consider a variable S_, .
The same reduction to V.S, xWS._,CP(E.®E) (S, =P(E,) leads to a case
discussed in PART II of this paper, because now for the varieties in generic position
VS, NWS._;=¢ and codJ(VS.yxWS,.) in P(E,®E) is equal to
c=dimS,.; +1.
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11. BEZOUT'S THEOREM WITH A NEW DEGENERATION METHOD
The original discovery of the property.
(11.1) digF.G=1{g f=degF, g=deg G

of the intersection cycle F.G of two irreducible algebraic curves in P, was obtained in
a pure heuristic — non rigorous way — by degeneration of F, G in generic sets of f
(resp. g) different lines—intersecting together in fg simple points. I don’t believe that
anybody thought of this remark as a proof, but it has been always interesting whether
this can be transformed indeed in a proof. We shall show here that by means of a certain
degeneration (not of F, G, but of a secant space of complementary dimension) we can

prove that
(11.2) deg J(Vx W)=deg V.deg W

where V, W are again two irreducible varieties V CP(E,), W CP(E,) . In fact at is
well known that we can chose subspaces L CP(E;) , MCP(E,) such that the

intersection cycles consists of different simple points:
(11.3) VL = Pl + P2 + vee + Pf WM = Ql + Qz + see + Qg
f=degV, g=deg W Pi#PjaQi#Qj itj.

On the other hand the join J(L x M) is a subspace of P(E,® E,) of dimension
equal to cod V +cod W+ 1 . The set theoretic intersection consists of fg lines
J(Py*x Q) . |
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(11.4) J(V x W) N J(L x N) = U J(P; x Q)
i=12..0 j=12...8.

The transversality criterion for multiplicity one in each P; or Qj implies the

transversality condition for the line J(P, x Qj) . As a consequence we have:

(11.5) J(VxW).J(LxN)= ZJ(Pi x Qj)

In the same way we can see that we can choose a hyperplane Xuixi + 2 viyy = 0

in P(E; ® E,) transversal to each fixed J(P; x Qj) because the opposite implies
: (D (
(11.6) AEuwly )+u(Zvm )=0

where i=1,2,...,degV, j=12,..,degW.

SECOND PART: c¢>n

Let us consider now the case ¢ > n . Then if the given irreducible V¢’ CP, are

generically located the intersection is empty, i.e. we have

h .
(11.7) AV —gaav® x . xv™)na=g.
j=1
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The complex € (J) consists then of spaces of dimension ¢—1 2> n and our task is

just to express the exceptional behaviour:

b ()
(11.8) nv FoINA$P
i=1
in terms of associate forms.
The extreme case ¢ =n + 1 appears in our treatment because thena P, isa
P, and in particular the alternative .(11.7) or (11.8) is equivalent to e sleganal stz
A aéaaa/&éuyéz c(J) %&Mwaw or AeC(J) 4
h
Avy e,
j=1 |
For ¢>n+1 the property ANJ#¢ implies that every P, containing A

meets J:
P:J3P_NJI%¢
but the converse property is true:

Jfowory Py B mecls I Yon B mecl J (equivalently ¢ ANJ=¢ &4
Sradsidle bo fond'a P, J A such that P, NJ =¢ . This property leads naturally £
arpucas Ye condilion JN A # ¢ @%quam,asindjcated

in the introduction.
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12. A GEOMETRICAL THEORY FOR RESULTANT SYSTEMS.

In the particular case ¢;=cy=..=c¢c, =1, h=c>n e came dack lo e

compalifilily condilians of @ systm of W= ¢ > 1 homagmeaus palymamial sgiations

(120) F‘ = 0 Fz = 0 ee Fh =0

a/@w m,,mg, ... ,my .

It is well-known that in the extreme case c¢=n+1=h the compatibility

conditions are characterized by the vanishing on a single equation
(12.1) - R=0

where R is a ploynomial homogeneous of degree m/m; in the [n ;'1' mj]

indeterminate coefficients of a generic form of degree m; where
(12.2) m=m; my.. Mg,
R =0 isequivalentto ANJ#¢ where

J=J(H, x .. xHg,)

as before and F; = 0 defines the irreducible hypersurface Hy, j=12,.. n+1.

Thus in the general case c¢=n+ 1 , the characteristic condition JNA# ¢
& € €(J) is a generalitzation of the equation R =10. -

In the case ¢ > n + 1 we checked already in the introduction that ANJ# ¢ is

equivalent to the identical vanishing of the CAYLEY-SEVERI form §, (S.
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DEF. 5.6 page 39) for Uy, Uy, ..., U, X;, X, ... , X;-5-1 where
h
U; = (u;,u, . u)€A4, j=01,..,n and the x; are arbitrary vectors of E® ct;

1=1,2,..,c-n-1,i.e

(12.3) S, (Uo,Ug, - Uy s Xy Xg, v Xpopet) 20

b
it AvYteeaav?

j=1
In particular in the "elimination case" again ¢;=¢;=..=¢c;=lLh=c>n+1

VP nate.

the condition (12.2) is a covariant in the coefficients of the forms F; of degree m;
containing ¢—n—1 arbitrary series of variables X;,X,, ... ,X.,.; . The coefficients of
the power products in these X's gives a system of resultant forms. We hope to study in
the near future the relation between this invariant—theoretic approach and the classical

ones.
AN INTRINSIC ELIMINATION THEORY

13. HISTORICAL APPROACH. The elimination theory has been completely
"eliminated" from algebraic Geometry! I believe that the main reason is that it was not
intrinsic enough; as a matter of fact it was always presented in relation with a
coordinate system. For instance the HENZELT-NOETHER sophistication of the
KRONECKER elimination method was presented as follows: ([H —N]).

"Let¢ mCK[zy,..,z;,] be a polynomial ideal. We can associate to m a

"resultant form"

(

)
(131) R_=R' (&y..,z;) R

Py oz R (2,) =0 ()
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in such a way that R vanishes for all the solutions of m and only for them. If nJm

and Rm=Rn then m=n."

We can appreciate that the &; are explicitly used in the statement and in a given

order.

(i) (1
The geometrical meaning of the R is clear. R represents the irreducible

components of V = V(m) of dimension equal to one precisely if

(1 my
(13.2) R = ‘[_|'Frk

the hypersurface F;, =0 is an irreducible hypersurface contained in the solution

variety V = V(m) and conversely any such hypersurface appears as a prime factor of
(n (2)

R , R (&g, ... ,@,) = 0 r1epresents the projection in the hyperplane x, =0 of
the locus of irreducible components of codimension two, ...... and
(1)
R (zy&pg - ,20) =0

appears as the projection in the coordinate space =0, 2,=0,..,2;,=0 of the
locus of irreducible components of V = V(m) of codimension equal to i:i=1,2,... n.
More precisely if we want to deal again with projective varieties in [P, we need to

introduce the homogeneous coordinates «y,zy, ... ,#n and to assume that m is

homogeneous. Besides & & nearssary o assume Hal Y prapdlive fame of veporonce &
MWWW& V . If this is not the case damm}cézw
W&WWW&M&M We emphasize that:
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WMWMMWWWWMM&MMM, as a
consequence they did not appear in the formulas; accordingly the results are wrongly
applied when the reference frame is badly located with respect to the variety defined by
(12.0) again the results are misleading.

\

The fact that the homogeneous R( b R(zy, ... ,@n) appear as a projection
from the coordinate space joining the vertices P,, Py, ... ,P;; (assumed previously as
"well-located") suggests naturally the idea of projecting the locus I‘( b of irreducible
components of V of codimension equal to i from a generic [P;_, . But this is
CAYLEY’S idea. As a consequence the Author in the two papers [Gg] , [Gj] replace

the original problem of "elimination" by the following one:

K24

(13.3) Fj=c j=12..»

CAYLEY-SEVERI fotons S af TV 5 i=12, ... .

(1) (i)
(13.4) S (x)=0 S¥x;,x)=0,.., S (x,...,%)=0...
follanadng Yic same slefis as Ye badilional KRONECKER climinalion method.
The first step is obvious; S;=h-c-d (F,F, .. ,F) ie the hypersurface
component appears in the same way as in the KRONECKER method. The elimination

of one variable (which one?) depends on the choice of a well-Hocated (& not belonging

(2)
to I' ) vertex of the projective frame. If we choose a generic projection center (y)
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we are reduced to the first step again because such a cone has codimension one. This can
(1)

be achieved in an elementary way writing F; =8 ' Gy, then G; = G; (Ax + uy) and

a resultant system in () :

(13.5) ng(x,y) =0 k= 1,2, eee yIg .

Then

(2)
S =hed (GG Gy )

In such a way — by induction we construct associate systems of equations.
Fo(xy,Xg, ... X)) =0 k=12, ..,
where Fy, =F, ry=r.Then S, =h.cd(Fy..).

With this procedure we can attach to any system (13.3) the associate forms to the
(i
r i =12, ..,n .The prime factor decomposition of S.(x,, ... ,x;) gives all the

CAYLEY-SEVERI forms of the irreducible components of codimension ¢ of V w4 <

WMWW%mm

We refer to [G2] [G3] for more details. There is a curious paradoxon in this
procedure pointed out already in [G2]: instead of decreasing the number of coordinates
by successive "elimination" of x, , xy,..,x, we increase by n+ 1 homogeneous
coordinates of (x;, xg,...,X....) in every step. However, let us recall that there exists

an expression
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idg ... iq
Se = S - \Ds )

unique if we assume that all the power products of the p'*~ are standard. Let us
specialize the projection points—coming back to the elimination theory, assuming them
to be the vertices of the projective reference frame P, , P,... (assuming again that
they are welldocated to avoid identical vanishing ... ). Then we have the coordinate

matrix

1 00..0 0..0
0 10..0 0..0
00 ..1 0..0
Zy &y » &gl &c.. &n

and we remark that ﬁeaaéu:a/jm Jrassmann coordinales ate X, Xgups o Xp - The
Xo ) Xy oo Xy " iminalea again.

Since the three types of associate forms can be transformed among them it is not
difficult to compute the CHOW or the WEIL-SIEGEL forms. We are definitely
interested in the latter because we shall prove in [G4] (cf. § 14 for a short Introduction)
that Lo cmpulobion of Yese forms & equivalond &o wse te KRONECKER  cdmination

means of basis uy, u,,...,u, of the dual vector space E.

The generic coordinates

n
E] =< uj,x > = 2 ujk.xk j= 0,1, ... ,a
k=0
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of any vector x € E (can be interpreted as the projective coordinates of the point (x))
(whenever x #0) . The elimination of the generic variables £, , £, ...,6;-; leads

naturally to forms of type.

N(fllfl"ll sen)

and we know that the £; , represent actually homogeneous coordinates in the more
sophisticated projective space P(E/E,_,) where E_ ., is defined by < u,x > =10 for
j=01,...,i—1 cf. §6. Actually the projection on the coordinate space opposite to
E,-; is not needed. The genericity insures that

) (2) -1)
PE, )N V(m)-T = -1 2 -1 =y,

14. INTRINSIC ELIMINATION THEORY USING WEIL-SIEGEL FORMS.

Let us replace the CAYLEY-SEVERI forms by the corresponding WEIL-SIEGEL

ones using formulas of type:
(14.1) S (x,%g, .-+ 1Xg-2) = N(upuy, ... ugeyix) = W (< up,X), .0 ,< Ugay, X >)

where x € E— {0} is regarded as variable in the cone S(x,xg, ... ,x,-g) =0 of vertex
P, spanned by (x4), (xy);...;(x.-2) (& intersection of the d + 2 hyperplanes
(y) , j=0,1, .., d+1 . The variables ¢ = <u;x> are again the homogeneous
coordinates in the abstract (d + 1) — dimensional space P(E/E.;)  where
P(Ec-1) = Pe-g
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If we take the n+ 1 forms u,, uy, ... ,unelé dualto xo, X, ... X, € E xj:#O
U # 0 we have the following sequence of WEIL-SIEGEL forms:

sl(x) = N(x;uO)uh ’un) = N(&O)ﬁl: 1€n)
Sa(x,%q) = N(x;uy,uy, ... ,u,) = N(éy, ... ,£,)

(14'2) SS(X!XO!XI) = N(X;nm sun) = m(fz, )fn)

....................................................

sc(x;xmxls )xc-Q) = N(x;uc—huc: )un) = m(gc-la )fn)

oooooooooooooooooooooooooooooooooooooooooooooooooooo

We remark that formally, when we read the (14.2) from top to bottom we have:
(143) N(uO)ul’ 1un;x) = IN(EO)ED xfn) = 0

38 e oqualion of He Ayporsunface (o better, of te dindson allacked o T ') written
in the projective coordinate system ((ug) , .(u,), ... ,(uy); (uo + uy + ... + u;)) which

can be regarded as "indeterminate": more precisely ¢fsac exect

n

< Uj,XJ > = 2 ujk Xy
k=0

we fave Yz (n+ 1) x (n+ 1) mabiz () sepncsonting Yo froventive coardinats
" systom" of Inbraduclian Lud weilen in Yie farmmala instad of deing ignared.
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If we write the system (13.3) in this "invariant way"
F; = Fi(xjup,uy, ... ug) =Fy(< upx > ... <upyx >)

we can perform equally the first step of KRONECKER'S elimination method:

N1(X;uo:“1s lun) = ml(&Osell )en) .

The next step is to divide each F; by N;, F;=MN,G;. Then we can "eliminate
€o" (but within the generic projective frame (u,) , (uy), ... ,(u;); (4o + ... + uy) . The

new system

Gy(x;ug,uy, ... yu5) = G;(os€1s - +€p)

(0

represents the variety V-T of codimension two which is not contained in ¢, =0.
(1

Let us cut V-T with this hyperplane; we shall have only the useful "generic"

variables &;, £,, ... ,£,,1.e. we have a system of type:

Gi(xuyuz, .. 1) = Gy(€sbay - 1En)
representing the projecting cone of V-T ‘v from the intersection point of the n
hyperplanes <u;x>=0 j=12,..,n (of vertex P, in the corresponding generic
projective frame). Then h.cd. of the Gj({;...,§,) will give us back the
WEIL-SIEGEL form attached to T ‘o , 1.e. to the cycle of codimension 2 represented
by m.

In other words we can prove the announced result:
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Fhe systomalic compulabion of YUe WEIL-SIEGEL forams Wy(€ o1 e, - o£n) fot
c=12,..,0 & eguivalntwih Ye ald KRONECKER clininalion metiad dul wilk Ye

REMARKS

1) We emphasize the use of the quotient projective spaces [P(E/E_.,)
corresponding to coordinate spaces P(E_,) instead of the projection or the face

opposite to P(E,.) .

9 order to check all the necessary cautions we follow [vdW1] IV Kap. § 31,
page 116; as well as the second Edition of vdW’s Algebra.

The first steps are possible because we know, that the coefficient of the highest
power of each x; is #0 (because the corresponding projection space never met the

projecting variety. The resultant systems of relative prime forms cannot be identically

zero). The coefficient of xE for a WEIL-SIEGEL form is equal to
£ Y(ug, o By oo yUja1) 0

for (i=1,2.., etc.).
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