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NOTATIONS

Y , w , ... Yd = y c , Wcl = WC
•••• , c = n - d algebraic

subvarieties C IPn(() of dimension d and codimension c in IPn(()

IPn = IP(En+1), En +1(n + 1) dimensional complex vector space
(1) (2) (h)

TI : Y )( Y )( ... )( W Canesian product

5 : Y ----t TI = y h diagonal map, (0.8)
(1) (h)

E diagonal manifold C IP n )(. .. )( IP n ,

E = IP{ (x ~ n) Ix e. En+1 - 0 , n e. (h - O}
(1) (h)

& diagonal space IP(E ~ (1,1, ... ,1)) C E C IP n )( ... )( IP n

(1) (h)

tI, J , J(Y)( W), J(Y )( ... )( Y ) join of shown varieties
Abstract bEF. 1.1

J Prejoin

J = J p = U IP 0-1 Full join (2.3)'

IP 0- 1 e. J

(! (YC) = {IPc-1 C IPn IIPc-1 • yc f cP} , DEF. 0.1, (0.13)

S, Y , N the SEYERI CHOW or WEIL-SIEGEL associated

form to a Yd = yc C IPn

S = S(XhX2, ... ,xc) , Y = Y(UhU2' ... ,ud+1)

...

N = N(Uh ... ,Ud+2 ; x)xj e. E uj e. E formulas (0.10), (0.11), (0.12)

c
xl A... AXc E. AE (6.1)

cl+1 ...
u 1 A ... Aud+2 e. A E (6.2)
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The first time a mathematician hears about "multiplicity" IDr ( e. 1Z+) refers to an

IDr - ple root r 0/ a polynomial f(x) or binary fonn t/J(xo,X t ) :

(0.0)
m r

f(x) = 3.0 n (x - r)

rE.(

Xo Xl
X - r (or ro r

l
) i.s the trivial associate lonn (a.f) cf DEF. 4.6 ofthe point

r (with affine (or projective ) coordinates in the complex affine (or projective ) line . It is

natural to ask whether or not this~ i.s also the natural~~ 0/

an irreducible component I in the proper intersection V nW (V,W irreducible a. v in

IPn(() = lP(E). An affirmative answer is fouM, in [vdWl] an{ffu~~~
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~. This idea 0/ the exponent intersection multiplicity is de1Jeloped in this paper m~

~azJe by showing that the Form

(1 proper irreducible component 01 V nW)

can be computed by~0/tu FJ (associated to the Join

J(V x W) ( IP(E '9 E) ,cf GAETA, [G.l]) Ia tu~~ !:a ( IP(E '9 E) .
( j)

The method extends naturally to h(~ 2) V C IPn provided C = :E cj ~ n
( .)

(Cj = codim V J in IPn • The geometrie interpretation 0/ Fv in teMTLS 0/ the complex

leads naturaUy to an equivalenee 0/ the exponent multiplieity with VAN DER

WAERDENs theory(cf. § 10), [v.d.W 1], [v.d.W, ZAG].

Since c = cod J in IP(E m... mE) a natural discussion arises also in the case

c > n . Then the old~~ (too much discredited because 0/ its \heavy

dependence on coordinates) can be replaced b1l intrinsic constructions, cf § 13, 14 pages

67-76. Natural applications are made to BEZOUT's theorem § 8, 11 as well to possible

future relations with the "length muUiplicity" (ef VOGEL's report here), [vdW-ZAG],

[Grö 1, 2] .
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O. I N T ROD U C T ION

Most of ihe algebraie varieties needed in ihis paper will be embedded in a fixed

complex projective spa.ce lPo«() = IP(E 0+1) = E - (O)/(x {with E = E 0+1

(n + 1) - dimensional 4: - vector space. The projection P: E - (0) ---+ IPo«() will be

denoted also by lP althoug for a given v E E - 0 we write simply lP(v) = (v) .

Let V , W be two irreducible algebraie varieties of IP0(4:) meeting properly.

Let

(0.1)

be the~~ (a.F.), cf. DEF. 4.6; of the intersection eyde

(0.2) V • W = l i(V,W;C)C d

c=cdcvnw

where Fe ia the (irreducible) a.F to the irreducible eomponent C d of V nW . 9'&

~~ i(V,W;C) au~~a6JU~m&~

faeia".~ aI Fy • w; this remark ia useless if there is no way of eomputing

intrinsieally FV•w in terms of V and W (~Fy and Fw) . This paper shows that

~ Fv.w~~and~~ma~~~~/o.

tu~~ !J. CIP(E$E) aI ~ FJ ~ Ia a:~
J = J(V x W) ( IP(E mE) <A/ V ond W 1 § 1, DEF. 1.1, page 19.

More precisely we have:
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(0.3)

where 5: IPn ------+ IP (E e E) is defined by

(0.4) 8(x) = ((x,x))

for any x E. E - {O}, (x) = lP(x) E. IP(E) , ((x,x)) E. IP(E e E) , is the~

~ anti tJ. = 8(IPn) is the~~ (cf. § 3). 9Je a.F FJ ~ J(V x W)

~~~~~dondoIId'~ (cf. § 6).

The construction can be extended in several ways:

a) If V nW is improper (0.3) is meaningless since V · W is not defined as a

cyde, ~ FV•w is not defined. However the right hand side of (0.1) is always defined

and we have

(0.3)'
-1

6 (FJ I~) = 0 J = J(V x W)

~ V nw ~~. Notice that

V nW improper {=:} J(V )( W) n~ improper

b) ( ')

The construction is valid also for finitely many irreducible varieties V J

denoted sometimes also by

(0.5)
Cj

V d. =V C IPn dj + cj = n, j = 1,2, ... ,h
J
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where we use a double notation Y = Yd = y c for an irreducible Y ( IPn if there is no

ambiguity where the subscript d indicates the dimension and the superscript c the

codimension: (d + c = n) ,of Y in IPn .

The join

(0.6)

h
v

J = J(yC
l x yC2 )( ... )( yCn) CIP(E EB ••• mE)

h

cf. § 1, DEF.1.1. is also irreducible of codimension C in IP(E E9 ... E9 E) . This ambient

space of J
j
v

(0, ... ,E, ... )

intersection

can be identified with IP(E e (h) where the j-th direct summand
j
v

ia identified with E ~ ej1ej = (0, ... ,1, ... ,0) . The set-theoretic

da always exists provided

(0.7)

We shall &Saume (0.7) in the first part (cf. TABLE OF CONTENTS). Then we have

(0.8)
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and this~~~ ({=>codn=c) Hf JnA <4~m IP(E~(h)

because if C runs through the set of irreducible components of n, ö(C) runs through

the set of all ineducible components of J n ä and dim C = dim ö(C) . Then (0.3),

(0.3)' can be extended to an arbitrary h ~ 2 aB indicated by the following:

-1 h cj
THEOREM 1. 6 (FJIA) = 0 ~ & Jd-~~ n V <4

j-l

~.O~ ae~~ I = yCl • yC2 •... • yCh L6 44d/#41d<in

lPn anti4IM~

(0.9)

Cl C2 Ch
9"&~~aMJt F

J
can&~~ y ,y , ... )

(~ F
V

( j) Cj ) j = 1)2, ... ,h) m tu~4IJ<Z;? (cf. § 6) fu 0Il;f h, aJ 44d/o.J Ü1.

&ca&e h = 2.

There are several versions of the associate forms attached to a given pure cyde

yc CU>n (and for each one the restriction symbol F Iä appearing in (0.9)) has a natural

meaning); on the other hand all of them lead to the same intersection- multiplicities.

But we shall use only the following three versions of the a.F:

(0.11) (U h U2) ... ,u d+l) .............-t Y(U1,U2J ••. ,u d+l) (VAN DER WAERDEN-eHOW)

[Ch -vdW]
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'"

where the x's E. E ,the u's E. E = Homc(E,() . Cf. § 4 and they are defined up to a

proportionality factor .,\ e. (x . It suffices to define them first for an irreducible y c and

then to extend to the general r c by "prime factor decomposition". All of them can be

defined in terms of the tt (YC
) introduced by the following:

DEFINITION 0.1

:YM 'if~ tt (YC) af (c - 1) -~j#ta~~ oIIackd'k on

~yc~~

(0.13)

(cf. § 4). In fact <!:(YC) M~~<Zn~~af~MMüz,

&~~~ ~(c-l;n).:Y~ YC,~~~ ~(YC) <Z6

IM laa.t6 aI~~~ tt (YC
) • Cf. § 4. The proof of our Theorem is a

consequence of the following fact:

h c·
JI n Y J M-t?n~ae~~&~ <!:(J) oIIackd'lo. Jc :

j-l

to the diagonal space !J. :

(0.14)
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,
ia the full Grasmannian '§(c + 1,~) because if CC (c' < c) ia an excendentary

h ( ')
irreducible component of n V J then every subspace IPc-l of f! meets the diagonal

j-t,
image 5(CC ) .

JI&~ n a~/&~ (!(J)I~ aa~~<1f
-1

~(c-1j~) om:I 5 ((!(J)I~) a a~~ (!(I) af&rp~

}1 (c - 1jIPn) aIIod.t:d/a I = VCl • V~ • ... . vCn m a naktd~:

I!: I = Lc I!: (CC) +---d = l i (~ YCjjCC) CC .
h '-1 <

CC( nVCc J

j-l

b
The intersection multiplicities ie = i (n VC;C) equal the exponents of the

j-t

corresponding Fe'S . In fact we recall in § 4 that al1 the Fv (0,10,11,12) are defined in

terms of (! (V) by means of conjugation conditions (cf. DEF. 4.1). It suffices to assume

first V irreducible. Namely: S, the CAYLEY-SEVERI form of VC
( = V d) ia the

~~~~~Io. (!(YC) aI C .9'aUz/6 (Xj) j = 1,2, ... ,co Y (the

originalp~~<1MlZ, (now usually called eHOW f:vwt af Vd)' (cf. § 5 and [S])

ia the conjugation condition 01 d + 1 hyperplanes and the WEIL-SIEGEL form N (cf.

[SI]). (SIEGEL's .A"~aI V) ia the conjugation condition of d + 2

hyperplanes (Uj) e. IP(EV
) j = 0,1, ... ,d + 1 , and one point (x) with respect to Q: (Y) .

In terms of the exterior algebra:

S,Y,N vanish if (cf. [BOU]) Xl AX A... AXc =°or Ul A... AU d+l = 0 or

x ..J Ul A ... Aud+2 vanish. If this is not the case any non zero product
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[
d +1 ]

X ..J ." Uj
J-O

represents (in the well-known way) a projective subspace IPc-l C,IPn . Then S = 0

(resp. Y = 0, N = 0) iff such IPc-l E ~ (V) . Cf. § 5, 6 for further details.

~
If V = l ID. I > OIFv is defined by F. = DF. (F = S,Y,N). In any

• irr. dim .=d

case the F is weH defined up to a factor A E ()( •

In any case the restrictions SJ It:t'Y
J

1& N
J

1A are well defined taking in (0.9)

(Xj) E & 1 Uj 16 , j = 1,2, ... .

The condition c ~ n of (0.7) - essential to define the previous restrictions to the
(1) eh)

diagonal space is not necessary in order to define the join J = J(V )( ... x V ) of
( .)

h irreducible varieties V J ( IP(E) I j = 1,2, ... ,h cf. DEF. 1.1, page 19. In the case

c > n the given varieties - in general position - do not meet but when

Cl = C2 = ... = Ch = 1 the existence and discussion of a non empty intersection

(0.15)

is precisely the goal of the old elimination theory! Accordingly we devote § 12 to such a

problem also with arbitrary c/s - k/ c > 0 . Under this hypothesis the compatibility

condition (0.14) - equivalent to J n& =F ifJ can be expressed by the following condition:
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THEOREM n. 9'& h ~~~
( j>

V C IPn 1 j = 1,2, ... ,h u..iIA

n

C = 1: Cj > n mal411~~Jj=:e A ~~ fuIM~ l!: (J) a&eAd
. 1
J- ( 1) ( h>

Ja J.=J(V Xoo.xV ) (~~ u>C-l~ tJ.CIPC- 1 ~1a.(!{J)).

In particular for c = n + 1 we have:
( ')

9'M h ~ V J mu,/41&~Jj=:e!J. ~Ia&~
(1) (h)

(! (J) a&eAd~ ae,;iaUt J = J(V x 00. x V ) .

9'~~~<z~~m&~af FJ reducingto

R = 0 where R = R (fh f2, ... ,fn +1) is the resultant of the n + 1 hypersurfaces

JnlAeazde c>n+l ae~~<1f !J. van4e~~&

~~~a~m ~u..iIA GRAM'S ~af~

~,cf. eWE].

The distribution of matters ia sufficiently indicated in the TABLE OF

CONTENTS , page 2.

In the last part of the paper I review some reaults of the Author (cf. [G2.J [G3])

regarcling a replacemen~ of the usua! KRONECKER elimination procedure by the

explicit computation af the CAYLEY-8EVERI farms SI(X1,X2'''' ~c) attached to an

irreducible component I = IC of codimension c of the ZARISKI-closed set represented

by an arbitrary system

(0.16) f2 = 0 ..... ~ = 0

of homogeneous polynomial equations in the homogeneous coordinates Xo,Xh ... ,xn in

IPn . The method rests on the fact that the Ilelimination of the variables" XO'Xh 00. ,xi

represents geometrically the projection of a variety from a certain space of the projective
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coordinate frame to the opposite face. If we replace these - indeed very particular

projections - (essentially attached to the coordinate frame) by appropriate generic

projections we obtain the indicated algorithm. But & ~~~ tle S J:J. &

N~r LacJ & da' KRONECKER elimination theory udl~J:J. a~

jtomte It~" kd/m 11 m &~, (instead of mentioning it but never written as

before). I believe that tbis shows that the WEIL-SIEGEL forms are the best

ones-although the CHOW forms seem to be the most famous. This inclusion of ~ is

actually accomplished by means of an arbitrary basis UO,Uh ... ,un of E acting as

coordinate forms for points in

n+l
lP(E) i x..........-. « tlo,x >,< ul,x>, ... ,< un,x » E. IP(G: )

for a fixed projective frame with current coordinates functions (a'O,a'h'" ,a'n) .

In order to see that it suffices to represent the projection center IPc-2 defined in

Sc by x2 Ax3 A... AXc (with (Xl) = (x) acting as a current variable point of the

projecting cone of a VC from g>c-2) with hyperplane coordinates UO,Uh'" ,ud+! in

such a way that X2 A... AXc and x J uo A... 1\ ud+l are dual, Le. they represent the

same IPc-2 .

We try to use standard notations as much as possible. Some non-standard ones are

listed in the Notation sheet in page O.

ACKNOWLEDGMENTS. The -taIetI~ or~ was introduced by the Author in

[G.!] trying to compare Fv ' Fw with F
V

)( w (or Fv•w when the interseetion cycle

does exist) with the name~~, but actually similar ideas were frequent in

the Italian School also in symmetrie squares; for instance the symmetrie square of a

smooth curve was represented frequently by the variety of chorda containing the
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tangential surface as representative of the diagonal. But it was necessary also to recover

lost properties of the"~~~Il [(>uhn remarking that the "point"

(v,w) _ (AV,I' w) of IPm,n is essentially the same as the line A (v,O) + I' (O,w) hut

certain natural subspaces, such as t:.. do not appear in IPm,n. Cf. § 1.2 for more details.

This constructions was also used by FULTON [F], [F-L] to illustrate his intersection

theory and in the study of the topology of algebraic subvarieties of IPn . A few years ago

VOGEL [V.I], [V.2], [F-V] tried successfully to recover the "1ength multiplicityll 

rejected previously for well-known reasons with a sort cf reduction to the diagonal using

the double projective space IPm,n. KLEIMANN - in a letter to VOGEL [KJ

~tUm Ia~~~J d&ImlM,;iaUz~.As a consequence I

am coming back to tbis old technique. I hope to establish a link of the exponent

multiplicity (previously used by VAN DER WAERDEN's elementary cases of

BEZOUT's theorem by means of resultants) with the length multiplicity. The pleasant

atmosphere and the kind invitation of the BANACH Center of the Polish Academy of

Sciences is certainly a good encouragement in tbis direction.

The last part (of page 68) is just sketched - although the methods are very similar

to those of [G.2] J [G.3]. We shall come back to tbis with full details in [G.3] with an

application to the SCHOTTKY problem (where the SIEGEL form appears in [SI]).

I am indebted to the wonderful facilities of the Max-Planck-Institute in Bann - in

particular to the extreme patience of the typist Frau Wolf-Gazo who made a beautiful

job with them.
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1. GENERALITIES ON JOINS

The reduction to the diagonal (cf. formula (1.1) below) introduced by C. SEGRE

and SEVERI (fixed JX>ints of eorrespondences) and widely used later in Topology was

applied by WEIL [W] and others to Ioeal intersection multiplicity theories. The global

extension to varieties in a projective space has some difficulties due to the fact that the

diagonal E is not anymore a linear space. E is a SEGRE variety:

E = lP{x 0 n Ix ~ E - {Ol,ß ~ (h - {Ol1,

cf. § 1, 3. We show [G.1], § 1, 2, 3 that a naturally chosen generator

!1 C E C IP(E 0 (h) .

t

(1.0) A= lP{x ~ (1,1, ... ,1) Ix E E -lO}} = 1P{(x,x, ... ,x) Ix E E - {O}}

plays the same role as in the affine ease, although it ia essential to introduce the spaee

IP(E~(h) Uz&kaaIaI&l1h-fad.~9tatvm" of [vdW1] , [vdW-ZAG) , [H-P].

The affine formulas (lA) lead naturally to the (lA)' suggesting the definition of the ..

/'Uiz (cf. DEF. 1.1) and the~~Ia&~,cf. fonnula (1.10) in

page 20.

1. THE "REDUCTION TO THE DIAGONAL" . A PROJECTIVE VERSION.

Let Aj t tP, j =1,2, ... ,h be h non empty subsets of an ambient set E. Let
h

II = E )( E )( .~. )( E be the hth Cartesian power of E . We have:
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h
O'( n Aj ) =Al )( A2 )( ••• x Ah n!J.

j-l

h

where 8: E Co-.-+ n is the~~ 6(x) = (x,x, ."":. ,x), VX E. E and

!J. = 5(E) ia the~oI n.

This simple remark has many applications in algebraie Geometry and it is regarded

as a "reduction ll (in spite oI the fact that n seems more eomplicated than E) because

oI the Iollowing reasons:

a~ ~ E ~on~~ond~ Aj oAeal/~, n ~o/.&o.<lIn

~~ 0IIld' Al )( ... )( Ah and fJ. oAe~~ 01 n ~ fJ.

~altu Aj .

b) !TM~aI n au~oI~h-~ßn E,bl

~~m1fUtIe~ aImof'6 und 4 ~ ~;na#afae~. If we ean

II move" II in an algebraie system, it is possible to move the Aj to generic positions

Aj j = 1,2, ... ,h in such a way that we can prediet geometrie statements on the,
original Aj'8 by a subsequent specialization.

e) In partieular: 4 E ~ Oll + d.jioa, n ~~ O#li: ond tJ. <4 a lineo4.

~~ TI ~ dimE=dimA. JntuA<:a&e 6(1) uan~~~

h
Al )( ••• X An nA .t/I I <4an~~af n Aj . Aeeordingly II nA <4

j-l
h

~ f{I n Aj <4~. Since the definition oI the interseetion multiplicities looks
j-l

easier if one oI the interseeting varieties is a linear space the diagonal provides a way to

define

(1.2) i (Al· ... •Ahi I) = i (II · 4;6(1))
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Le.: .//~ Ia ina.t.tt kt4 /a #ne i Pt n· tJ. (h = 2) <mtI 6. a~~. Cf.

[W], [F]. The affine case ia sufficient for all the Ioeal theories.

If E is a projective space IPn' II and tJ. <ZU naI~~, Jid SEGRE

~,cf. [SE], [H-PJ. eN~ IM~~ 01 tJ. m lAe + C<Ue

kadJ~ Ia. &n~~" (cf. Introduction) as folIows: Let us &Saume

h = 2 . Then tJ. ia characterized by the system of linear equations

(1.3) a'j - ?j = 0 j = 1,2, ... ,n

if (12'1'''' ,a'n) and (}Jl l }J2'''' ,,10) are current affine coordinates in the two copies of

E . H fi(x) = 0 ; and gj(x) = 0 are two systems of equations defining Al J A2 the

system

(1.4)

defines A1 )( A2 . (1.4) 041d' (1.3)~#ne Ir n tJ. .

In the projective case the x, y can be regarded as absolute coordinates in the

(-vector space E = En+1 or as homogeneous coordinates in IPn = IP(E) and (1.3) is

replaced by

(1.5)
[

IC IC tr ] tri a'j
rank 0 1'" n = 1 ~ = 0

,1O}'l .. ·}'n }'i }'j

Then the (1.4) can be replaced by



-19-

(1.4)'

where all the fj and gh are homogeneous and ;\, p. are two independent non zero

proportionality factors. Moreover the equations (1.5) define the SEGRE variety

representing IP(E) )( [P((l) ({=} locus of x ~ (;\,1') E. IP (E mE) = IP(E ~ (2) . Cf. § 3 for

further details.

REMARKS

1) 7eda naI#l«d'l&~~ f i (x) = 0 gj (y) = 0 ~Ia
I

~(1.1).

2) Al' A2 azn&~noJn,~~4f [P(E) .

3) j/~Ia~l&kJa~ ihi2:ihi2~[P(E) ~1P(EmE) ~

(1.6)

il,i2 have the following properties:

il(IP(E)) = IP(E m0) = [P(E ~ (1,0))

(1.7)

(1.8)

(1.9)

i 2(IP(E)) = IP(O Ei ~) = IP(E ~(0,1))

f! = IP(E ~ (1,1))
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In other words ae~~ 01 IP(E) in IP(E mE) = IP(E e (2) da. naI~;

accordingly 0Il;f~ jUuit (P,Q) ~ IP(E) )( IP(E) &an &~~ ae~
~il(P) with i2(Q) andconversely OIl;fIme~<J#Ie~<J/IP(E mO) ~

~Mk:aflP(OmE) ~a~~~jUuit (P,Q).

More generally we have the following fOQJlal definition of the join (used already

before).

DEFINITION 1.1

4) The join of Al' A2 , denoted by J(A1 )( A2) , Mae~ oIa11(~4IJdI

~!) ~~~ af i1(A1) ~~ 01 i2(A2)· In particular;

J(IP(E) )( IP(E)) a tu~ 01 IP(E ED E))~ oI lined~~ 01
IP(E ED 0)) aN! IP(E ED 0)) .

5) The following natural generalizations are possible

because i1 : IP(E) c..........+ IP(E mF) i2 : IP(F) c..........+ IP(E mF) are still valid.

6) We can consider any finite number h of non~mty subsets

Aj C IP(E(j») j = 1,2, ... ,h.

We shall consider this general set up in § 2 in order to clarify the relationship

between the diagonal subspace & and the diagonal variety E in § 3.

9k"~Ia/M~" m IP(E) ~~tk~~:

(1.10)
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where Al' A2 are arbitrary non empty aubseta of P(E) J !:a ia the diagonal space (cf.

(1.9), and 6: lP(E) C-.....+ IP(E e E) ia defined by (0.4), :

(1.11)

REMARK

6(x) = ((x,x) = (x ~ (1,1)) Vx E E - {O} .

We see that in the formula (1.10) one needs the points of IP(E ED E) , for instance

those ((x,x)) E. !:a , not just the lines .,\ (x,O) + ~ (O,y) . 9"M6~ <MJ.t~Pt
ae~~~ad&ade<iIM~48O;f~~~ IPm,n j in IPm,n

the previous line is the "point ll (x,y) N (Ax,~ y), .,\ *0, ~*0 .

2. RECALL OF THE JOIN OF h VARIETIES. RELATION WITH THE SEGRE
(l) (2) (h)

MODEL OF THE PROnUeT V x V x ... x V

fI

Let IP(Ej) = Ej - {O} /f. x, j = 1,2, ... ,h be h(~ 2) complex projective spaces

generated by the corresponding vector spaces Ej . Let IP(S) be the quotient projective

space of the direet Bum

(2.1)

Let us call Sj = (0, ... ,Ejl ... ,0) j = 1,2, ... ,h. IP(S) is the ambient projective

space containing copies IP(Sj) = ij(iP(Ej), j = 1,2, ... ,h of the given spaces IP(Ej)

satisfyjng the following properties (already checked for h = 2) :
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h

a) :Ya-e~~ h-~ (Xl~2' ... ,Xh) ~ n lP(Ej ) ae~
j -I

b) 9'Ae Sh-l = Sh-l(XttX2, ... ,Xh) ~~~ae Xj mu./lP(Sj)~

m~~Xj:

As a consequence we have:

h

c) 9'~~a~aI nIP(Ej ) .ualAedldJd
j-l

J(IP(E1) )( •.. )( IP(Ej )) ( j1(h -1;IP(E1 ED ... fB Eh)) allAe~ 1~aI

(h-l)-~~~:

(2.2) J= "(IP(E1) X ... x IP(Ej )) = {lPh- 1 CIP(E1 fB •.. mEh) IlPh- 1 ni j (IP(Ej ) = xj ,

j =1,2, ... ,h}

for j = 1,2, ... ,h. J is closely related to J by

DEFINITION 2.1 J = J (IP(E1) )( ... )( IP(Eh)) is defined in terms of tI (cf. (2.2)) by

is called the wkd~ (or just ~) of the given spaces IP(E1) , IP(E2), ••• ,IP(Eh) .

DEF. 2.1 is the extension of DEF. 1.1 page 19 for any h 2: 2 .
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A vector of S ia regarded as an ordered h-tuple (Vh V2' .•. ,Vh) with Vj E. Ej ,

j = 1,2, ... ,h . Let ij : Ej e..........,.. S be the natural injection defined by

(2.4) ij{v) = (O,O, ... ,v, ... 0) v E. Ej

where ij {IP{Ej )) = IP{Sj) = IP{O ... ,Ej , ... 0) . We shall use the same symbol ij for the

corresponding maps between projective spaces.

It is easy to check both conditions a), b) for the h copies IP{St) , IP{S2),'" ,lP{Sb)

of given projective spaces lP{Ej). In fact any ordered h-tuple

h

(xl' )( x2 )( ... )( xh) E. n IP{Ej) ({Ej - {O}) defines an h-tuple of linearly
j-1

h
independent vectora ij{xj) E. Sj j = 1,2, ... ,h {{=} Aij{xj) =F 0) . They define a

j-1

subspace S{Xh X2'''' ,xh) of dimension h - 1 in IP{S) - the projection in IP{S) of the

h-dimensional vector space locus of points of the type:

in such a way that.

and conversely.
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h

Another (Y1))("')( (Yh) E. n IP(Ej ) (Ej - {o}) defines the same h-tuple of
j -I

points in IP(S1))( ... )( lP(Sh) and also the same Sh-1 Hf Yj = AjXj Aj E. ( )(

j = 1,2, ... ,h, (i.e. Hf (Xh X2'''' ,xh) N (Y1' ... ,Yh) as points of the Ilh_~ ;na~

~ <J/ IP (cf. Introduction, [H-PJ, [vdW1], [vdW"":ZAG]); in other
n,n, ... ,n

words:

This construction leads to two modifications of DEF. 2.1 obtained taking into

account rather than the IPh- 1 of 1 some set of points in iP(E1 ED ... ED Eh)

DEF.2.1' The.;iM-,;om

Jp = Jp(IP(E1) )( ... )( IP(Eh)) = {((xh ... ,xh)) E. IP(E1 ED ... ED Eh IXj =f: 0 j = 1,2, ... ,h)} .

DEF.2.2' The fd/-,;om J is the ZARISKI cloaure of J p :

(2.3)' J = J p = U IPh- 1

IPh-1E.e!

However, in spite of the differences between e!, Jp , J the context will indicate

without confusion which one we need, and we prefer the simplest notation J .

REMARK

The name -taId,;om (11~~") ia clear since an h-tuple of
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IP(E1) )( ... )( IP(Eh) is not represented by a point of another space but by a IPh- 1 I Le. ~

a~fat h = 2 (cf. Introduction).

h)( )( n )( )((2.7) Jp IN = Jp I( )( ... )( (= (Ej - {O}/( )( ... )( (
j -1

UBually called the r-ua-u~~ IP where nJ, = dim IP(E
J
.) by

" nh n2, ..• ,nh

[vdW] , [vdW-ZAG] i s. also [H-P].

REMARKS:

1) Since there is a bijection between Itpoints ll (Vi' ... 'Vh) of IP andnh n2, •.. ,nh

(h - l)-dimensional subspaces of type S(VhV2' ... ,Vh) the relation between J p

Jp IN = IP and J ia very dose (cf. DEF. 2,1). The reason of our preference
n h n2J ... ,nh

of J over IP h is due to the fact that in the interpretation of the~ Ia
nh n2, ... , h

tk~ (cf. § 1) we need J (rather than J p or tf) and the subset

ä ( IP(E e ... ED E) ~ (which do not belong to IP ) . In other words IM~n1, ••• ,nh

EXAMPLE. The product IP 1 )( IP1 = IP(E) (dim E = 2) is represented by the set (kte

~) J of lines joining pairs of points of IP(Sl) = IP(E e 0) and
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lP(S2) = IP(O e E2) . The two lines lP(SI) J lP(S2) do not meet and conversely <NZ;f It:neaf
&:6~~~&;ttaa<J/~ (A,B).

A

Fig.l

The relation of the ruled model J(IP(EI))( ... )( IP(Eh)) with the usual SEGRE

model E ia very simple. It suffices to show it for h = 2 :
nh ... ,nb

Let J(m,n) = J(IPm )( ~0) be the join and let E ( IP(E1 mE2)) be the SEGRE
m,n

model; let us recall that E ia the image of the set of (t 0) monomial elements
m,n

x 0 y(x E. E1,y E. E2) in the tensor product EI e E2 by the canonical projection

EI e E2 -----+ IP(EI e E2) in such a way that the pair

(x) )( (y) e. IP(EI) )( IP(E2) is represented by (x ~ y) ~ f(EI ~ E2) . The Grassmann

coordinates of the line joining (x,O) with (O,y) are the two-minors of the matrix

(2.8)

where we choose a couple of basis in EI' E2 labelling the coordinates with the indices
.. .,.J

0,1, ... ,ID,O',I', ... ,n' ; we have plJ = pI J = °but

(2.9)
.. , ..

plJ = trIy = coordinates of xe y .
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In other words: 9'&~ /&i?j~ /Je~~ x ~ y m a

~~~atJa&~P~~~&Itne~

(i1(X)) 4IJd.{ (i2(y))·

Intrinsically: ~ am~ x ~ Y 4IJd.{ i1(x) Ai2(y) inside E1 Ei E2 j similarly

we have for any h ~ 2

(2.10) Xl ~ X2 ~ ..• ~ Xh ~ i1(Xl) A i2(X2) A... A ib(xh) in

E1 Ei E2 Ei ... Ei Eh· Cf. [SG] , [H] . [H-P]

9'&~ af h ~~ V(j) ( IP(Ej ) ~~ a!ejtJnd~

~a6~:

DEF. 2.2 Let ij (V ( j ) ) ( IP(Sj) be the corresponding copies of the h giyen
(1) (h) (1) (2) (h)

subvarieties. 9'A.e~ J(Y )( ... )( V ) of V ,V , ... ,V .idae~

<J/ J = J(IP(E1) )( ... x IP(Eh- 1) /a./k IPh- 1 ~aI J ~~<I&
( ')

ij(V J ), j = 1,2, ... ,h .
(1) (h)

(V )( ... )( V ) = {lPb- 1 E J(IP(E1) )( ... )( IP(Eh)) IlPh- 1 nSj =
( ')

= V J j = 1,2, ... ,h) .

( 1> ( b)
We shall use the following properties of J (V )( ... )( V ) :

1) J (y(1) x V(2) x ... )( V(h») .i&~~ V(j) .i&~ (for

j = 1,2, ... ,h ). Moreover:

(

(1) (2) (h)
(2.11) dim J V )( V )( ... )( V ) =d1 + d2 + ... + dh + h - 1
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where dj = dim V j , j = 1,2, ... ,h .

2) J{V (1) )( ... )( V( h) ) =

h (j)
= n J (IP{E.) )( ... )( IP{Ej_.) )( V )( IP{Ej +.) )( ... )( IP{Eh)) .

j-.

3) (l) (h)
The codimension c oI J (V )( ... )( V ) in IP(E. m... mEh) is equal to

the sum oI the codimensions Cj = n - dj , j = 1,2, ... ,h

(2.12)

3. CASE n1 = n2 = ... = nh = n. THE DIAGONALS ~ 1 tJ.

The case E1 = E2 = ... = Eh = E,S = E mE m... ED E, dim E = n + 1 is

particularly important in the intersection problems, because then we need to cansider

the representatian aI the abstract diagonal

0= {P1)( P2)("')( Pn e.IP(E)( IP(E)( ... )( IP(E)IP1 = P 2 = ... = Ph} in the

abstract product D is represented by the SEGRE model ~ is an1n21 ... ,nh

VERONESE variety V(D) (cf. [E])

(3.1)

In the join the image of (A1X)( (A2X) )( ... )( (Ahx) Aj f 0 j = 1,2,... is the

subspace S(x,x, ... ,x) , thus the image oI D is

(3.2)
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h
E = E

D
a a SEGRE ~ model of IP(E) )( IP(( ) . In order to see that it is

convenient to introduce the following identifications:

(3.3)
h

S = EI) S·
J

j-l

j...,
where Uj = (0,0, ... ,1, ... 0), j = 1,2, ... ,h .

(3.4)

(3.4) implies in the diagonal case Xl = X2 = ... = xh = x *0 .

(3.5)

The generating spaces IP(E) ~ (Ah A2 , ... ,Ah) ((A h ... )'h) e. 1P(((h)) and

(x) ~ 1P((h) are represented by

respectively. The latter is the image of the abstract diagonal point

(x) )( (x) )( ... )( (x) , Le. by the span of the h copies of (x) in IP(Sj) j = 1,2, ... ,h .

:7Je~ a a~ oIlP(E) , the copy maps being

In particular we have the following distinguished copies
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IP(Sj) = IP(E ~ Uj) ( E
D

j = 1,2, ... ,h

!J. = IP(E ~ (1,1, ... ,1)) = 1P{(x,x, ... ,x) Ix ~ E} ( E
D

( r(E ~ (h)

!J. ia the diagonal space (cf. Introduction) not to be confused with E
D

.

9"A.e~/a.&~pt h ~#lan~~ Al,A2J"'JAn

<I IP(E) M6&fmd~:

(3.6)

C)
Let UB corne back to our interesting case Aj = V J irreducible algebraic

subvariety of IP(E) of dimension d j and codimension cj . We know (cf. formula (2.12))

that cod J in IP(E ~ (h) is equal to c = Cl + c2 + ... + ch . Then our discussions lead

naturally to the two cases c ~ n and, c > n .

(0 (j)

If c>nnv =,p forthe V m~~ ~ &~&jtoa A

<Ioa ndm«Ia.e~:

(3.7)
(0 (h) h (j)

J(V x ... x V ) n!J. = ,p~ n V = ,p .
j-l
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4. JOINS AND h--eOLLINEATIONS.

h h

The h-way projective space IP =n (Ej - {o})/f. x
x .~. x (x

n h n2, ••• ,nb .
J-1

where dim Ej = nj + 1 was introduced by VAN DER WAERDEN [Ch-vdW] to

study the correspondences in IP x IP x ... x IP (cf. also [H-PJ, Vol. I, Chapter V,
nl n2 nh

§ 10 and specifically Vol. 11, eh XI). An irreducible correspondence in

is an irreducible subvariety of this product. The natural way to study them is to

introduce the systems of homogeneous polynomial equations; a polynomial
(1) (2) (h) (j) (j) Cj) (j)

f E. ( [x ,x ; ... ;x J (where x = (x0 ,x 1 , ••• x ) J j = 1,2J ... ,h) ianj

called homogeneous of degree (mlJm21 ••• ,mb) iff

(4.1)

In the interpretation of the points of lP as (h - 1) - 8ubspaces ofnl,n2J ... ,nb

J(IP x ... x IP ) any subvariety of IP might be regarded as ·a Grasmanniannl nh nh .•. ,nb

subvariety:

The transition of cl to J originates a~~

(4.2)
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We shall omit the easy transition of the language developed in [H-P] for

[p to our "~" - interpretation with the exception of the h-~nttn2, ... nh

among h copies of IP(E) = lPn: ~~ 6MJIe~~~ -tdoIaI1a ae
~~ IP(E S (h) ~.uIIma&: a6 m § 10 Ia dou. &~ oIlAe

~~.utl VAN DER WAERDEN's.

Let us recall the following ones:

4) Let P = (V ttV2' .;. 'Vh) E. IP(E ~ (h) be one point of IP(Jp) (~ Vj f 0 ,

j = 1, ... ,) . Then there is one and only one IPh- t e. J(IP(E) )( ... x IP(E))

containing P .

Let U C lP(Jp ) be a J-~~ ~ U does not contain two different

h

points belonging to the same IPh- t E. J(lPn x ."':. x IPn) . 9'Nn U ~ma~

~&Jodll.e h-~ ad&-to/u/~ R ~of

[Ph-t E. cf(IP(E) x ... x IP(E))~ U:

R = UIP h - t

IPh- tE.J(IP(E) x ... x IP(E)) jlPh-tU UftP

Let be the collineation group of IP(E s (h)
n+l n+l

v v

in itself represented by
(n +1>

v

homogeneous diagonal matrices: diag ("\1 ....... "\1; A2·······,,\2 ... , Ab······· Ab)

with h non zero scalars Aj , j = 1,2, ... ,n .

Then U and 1 U represent the same correspondence for any

,= D\ \ \ e.!iJ.
"e\2 ... Ah
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EXAMPLE

The diagonal space Il has the two properties we want: Il E. IP(Jp) and Il does

not contain two different points of the same IPh- 1 of J(lP(E) )( ... )( IP(E)) . In this case

Ril = E. Il and E represent both ihe~(~ 11~ ") in ihe abstract

product IP(E) )( ... )( IP(E) .

However there are other linear spaces IP(E '» (h) having tbis property, for

instance those (replacing Il) obtained "moving" the h identifications)

ij : IP(E) --+ IP(Sj) . Let us replace them by h arbitrary non-degenerate collineations

lj : IP(E) --+ IP(Sj), j = 1,2, ... ,h . Then we have: The correspondence 1, locus of

(,l(P), 12(P),,,, ,'h(P)) P (IP(E) will be called a non,-~h-~. It

is represented by a SEGRE variety E, (reducing to E for I = ij , j = 1,2, ... ,h)

whose vertical (h - 1)-spaces belong to J(IP(E) x ... )( IP(E)) . Any horizontal one

H*IP(Sl) , IP(S2)' ... ,1P(Sh) represents i, Le. H ( (Jp) : H has no two different points

in the same IPh- 1 of the join and RH = E, .

In the case h = 2 12,1-1(,112-2) represent a collineation IP(S1) --dP(S2) (or its

inverse IP(S2) ---i IP(Sl)) .

Let us see tbis properties more closely using basis:

Let Bj (Uo(j) , u1 ( j ) , ,un ( j ) ), j =1,2, ... ,h be a basis of

E(~ ." ui( j) *0 j = 1,2, ,h=) . Then we have:
1-0

c!/acA h ~~ a~~ h-~ where (Xh X2,'" ,xh)

correspond if xj has the same homogeneous coordinates in Bj for j = 1,2, ... ,h . Eut

the h vectors

(Uj ( 1) U (2) u· ( h) ) E. J 'j t ••• J J -
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are linearly independent and they define a Sn ( IP(E 9 (:h) . The h bases

(AB1 , AB2, ••• ,ABh) define the same S for any A'* 0 . Let Al' A21 ... IAh be h

different non zero scalars. Then (A1Bl' A2B2, ... ,AhBh) define a different S~ = D Sn

where D = D \ \ ... \ . Hut Sn and S~ define the same h~ollineation.1'\1,1'\2 I'\h

EXAMPLE. For h = 2 we have:

If (A,JL) '* (0,0) (AB1 , pB2) define a subspace Sn-l representing the non

degenerate collineation (B 1Iß 2). (A' ,jj') defines the same Sn-l iff (A' ,jj') = v (A,JL) .

(BiJB2) and (BI,B2) define the same collineation iff BI = BI T B2= B2 T

where T ia a (n + 1) )( (n + 1) matrix with det T '* 0 .

Then we can see that Rs = Rs' is a SEGRE variety.

Let us introduce back coordinate systems (a"o, a"iJ ... ,a"n) in E as weIl as
(j) (j) .

(a"o ... a"o ) in Sj interpreted as homogeneous coordinates when needed. Then

for 11,12' ... ,1n non degenerate we can assign to any set of h non singular matrices

GiJG21 ... ,Gh the n-ßubspaces Sn of IP(E 9 (h) generated by the n + 1 rows of

G1G2 ••• Gh . The non singu1arity condition det Gj '* 0 ia equivalent to the fact that

So n(Sj) = 4J where

j
v

Sj = E ... 0 ... E.

Thus Sn ( IP(Jp ) <==* det Gj '* 0 for j = 1,2, ... ,n .
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are two different bases of Sn if det T +0 , and we ca.n assume either one Gj = IPn . If

AJ. :f= 0 for j = 1,2, ... ,n (A1Gh A2G2 , ..• '.-'\bGh) defines D\ \ \ Sn with
Al"2 ... Ab

D\ \ €.~.
Al'" Ah

Let us forget now the condition det Gj :f= 0 for same (ar a1l j) hut keeping the

fa.ct that rank (G h G2 ~ .. Gh) = n + 1 . Then the condition Sn (IP(Jp) fails {:::} Sn

meets some IP(Sj)' Hawever we can assign to Sn a correspondence r(Sn) where

(X1,X2) ... ,xh) €. r iff the IPh-1 space {A1Xl +~2 + ... + J.'hxh} meets Sn (we

ca.nnat insure anymore that it meets in a single point.

EXAMPLE. Let So,Sß be two subspa.ces of IPn . Then J(Sa)( S~ ia a subspace af

dimension 0 + ß+ 1 of IP(E EB E) ,but J(Sa)( S~ nIP(Sl) = i1(So)

J(So )( Sr) nIP(S2) = i2(S,al if (x) €. So (y) €. Sß the whole line A(X,O) + jt(O,y) is

contained in J(So )( S~ .

11. GEN E R ALl T I E S 0 N T H E C 0 M P LEX \t (Y)

ATTACHED TO A VClPn •

We shall complete with appropriate references same of the information already

given in the Introduction. It ia wellknown that not every complex in rp (c -1 ; n) is

attached to a Y . Such particular complexes are indeed very specialj they will be called

~ with nucleus yc. The characteristic nuclearity conditions for a

l! ( , (c - 1 ; n) can be expressed by a system of homogeneous polynomial equations 

the 80 called CROW equationB (cf. [Ch-vdW]) they are use; to prove that the set of

positive cycles of codimension c in IPn ia ZARISKI closed.
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5. THE COMPLEX ~(VC) OF IPc- 1' RECALL ON ZUGEORDNETE FORMEN.

The word~01~ IPd in IPn (O ~ d ~ n) ia used here in the XIXth

century sense-namely as a synonimoua of 'P~~ (in l1(djlPn)) . We

identify 4!': with ita image in the Grassmann embedding

(5.1)

A IPd(C IPn) can be determined uniquely by d + 1 linearly independent points in

IPn or by n - d l.i. hyperplanes meeting at IPd . Accordingly we define the~

~ with respect to a complex ~ of d-spaces in IPn as follows:

DEF.5.1. d+1~~~ Pi' P2"",Pd+i aflPn oMazIkd'

~F44dl~J:;. ~ ~~&~ Sd3Pj (j=1,2, ... ,d+1) ~k ~

DEF.5.2 n-d~~~ H i , H2, ,Hn-d(ClPn ) au

azIkd'~F~~J:;. lt ~tu~ Sd = Hin H2 n n Hn- d ~

J:;. ~.

The conjugation condition of d + 1 points with respect to an irreducible

~ (C l1(d;n)) (cf. DEF. 5.1) can be determined by a single irreducible equation

(5.2)

where F is a polynomial homogeneoua of the same degree g with respect to each one of

the d + 1 variable vectors Xj E En+1 representing the points Pj J j = 1,2, ... ,h .

Similarly we have another plurihomogeneous form G (with the same g for the



-37-

...
n - d variables uj E E (dual of En+1) , such that

(5.3) G( 1 2 n-d) - 0u ,u, ... ,u -

characterizes the conjugation condition of the Hj (= lP(uj )), j = 1,2, ... ,n - d ; of

DEF. 4.2. F and G can be written uniquely aB (-linear combination of standard

monomials p(S), q(E) of degree g (cf. [H-P] vol. II, Ch. XIV, page 377) in the

Grassmann coordinates of IPd(lP~ pi1i2 ..• id+1 , (q.. . )
Jln ... Jn-d

(5.4) F = l ASp(S) G = l Ji E q(E)
E

F <md' G aIM~~~ <! (~kl a (x - facbu). Accordingly

(A.,A2' ... ) or (JLt,J.l2, ...) are we1l defined homogeneous coordinates representing l!.

The procedure ia extended to arbitrary positive Grassmann divisors by prime factor

m· m·
decomposition F = II F j J, G = II G j J . Both expressions (4.4) are not essentially

different because of the weIl known identities between the p and q.

When <! = <! (V) (d = c -1) (cf. Introduction, page 6 and Abstract, page 4)

these conjugation conditions (5.2), (5.4) define the CAYLEY-SEVERI f:u'm (ar the

CHOW f:u'm respectively) of V =vc =Vd . We emphasize that the number of vectors

(~ belonging to E) in (5.2) is equal to the codimension c of vc , ~ d~ tIaci

ae~ 01a VI (i.e. of a hypersurface), for c = 1 . The CHOW forms of V
...

contain a number of covectors (belanging to E) equal to dim V + 1 . Then (5.2), resp.

(5.3)~ae~~Fta S /amd V (where Sc-l ia uniquely

determined by c points, resp. as intersection of d + 1 hyperplanes).
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In order to introduce the formal definition for nucleated complexes (DEF. 5.5) we

shall need to consider cerlain exceptional behavioUI cf points and S-Spaces (m > d)

with respect to a complex of d-5pacea .

DEF. 5.3. Let P be a point of iPn. P ia called ~.ua~Ia l! <1/
~ Sd3P ~Ia (!.

DEF.5.4. The aubspace Sm (m > d) of IPm ~azIINI~~~1a Cl:

~«J«:f Sd CSm~ Ia (t. Cf. [S].

We shall introduce now formally &~ l! (YC
) aIIac.4edIa an~

~ y c aI~ c in IPn • It ia necessa.ry to check first the following

property:

(5.5)

i4an~~m ~(c-l; !Pn). 9"M~ yc i4~1tu:044~

~ <J./ l!(YC) (cf. [S], [H-P] , val. I, 11); i.c. ~ (YC) ~~.ua ltu:04 y c .

DEF.5.5. The set (! (YC
) defined by (5.6) ia called &~allac.4ed1a y c .

EXAMPLES.

1) For c= 1 (t(yI) ia just & deI<J/~ af&~~

yI C(Pn .

2) For c=2 C!(y2) ~~dd4~~ y2.Forinatanceif y2=r1 isan

irreduciblecurveof IPs , (t(r) ~aeauJZ~~Iuza~!ps~ r.
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DEF. 5.6 :TM~~oI~(M~ udl~1a

<t (YC) 4te azIIedae CAYLEY-SEYERI~ (" CHOW - fau;e) af VC .

(5.6)

(5.7)

S(Xl , ... ,xJ =0

Actually Y = 0 is the first systematic"F~~~l (cl. [vdW-ZAG]) or

~~. In the case of an irreducible plane curve r the left hand side of (5.7) is

the resu1tant R(fju,v) where f = 0 represents r and u, v are linear forms.

In the introduction we mentioned also the~~ (WEIL) (or

.A'"~) (SIEGEL) (valid also for a non nucleated <t) containing dim V + 2

covectors and a single vectorj in the general case we have this 11mixed11 equation:

(5.8)

REMARK

SEVERI pointed out in ES] that S = 0 is the real generallzation of the equation

of an irreducible hypersurface V·, since the number of vector variables equals the

codimension. Hut S = 0 was described by CAYLEY (as early as 1860) for conics in 1P3

of [Cl]' [C2]. If we keep fixed c - 1 linearly independent variables al ... ac- l In

S = 0 in such a way that (al" ... "ac-l) does not meet yc then

(5.9)
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represents the projecting cone of VC from IPc-2 ; accordingly yc is recovered from

S = 0 as the intersection of all the projecting cones of yc from the !Pc-2(n yc = fjJ) . If

C-l d+2 ...
we replace a1 A... Aac-1 E. A E by the corresponding U1 A... Aud+2 E. A E we have

the WEIL-SIEGEL equation (5.8)

(5.10)

representing yc = Yd as the intersection of all the projecting cones from generic spaces

(u1 A ... A ud +2) non meeting yc.

EXAMPLES (for an irreducible curve r in !Ps)

~ r ~ Ik~ <! (r) (cf. Fig. 2), where a line t E. <! (r) is defined by a

couple of points (or of planes (c = 2 J d = 1). rappears as intersection of all ita

projecting cones hom outside points P = (a) = (uo Au1 AU2) given by a single a E. E

or as interseetion of three linearly independent planes (uo) , (u1) , (U2)
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= (uo AUl AU2)

Fig.2

6. REVIEW ON ASSOCIATE FORMS. We shall recall here the main properties

of the a.f. needed subsequently refering - for further details to the original papers

[vdW-Ch], the Einführung [vdW 1] (with the 2nd historical appendix), the ZAG

book, H-P II, eH x. § 6, 7,8 and SEVERPS comments in his paper on Grassmannians

[S]. First of all there are uniquely defined linear combinations of the standard power

ili2 ••• ic
products of Grassmann coordinates p (or p.. . ) of Xl A X2 A ... A Xc (or

Ja Jl ... Jd

c d +1 '"
110 Au l A ... AUd) in AE (or A E) such that

(6.1)

(6.2)

and the transition between the right land sides of (6.1), (6.2) is given by the

well-known formulas of type
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where Sb is the CAYLEY-SEVERI form of the projecting cone of V from the

8k- 1- subspace represented by (bc- k+1 A... 1\ bJ with 8k- 1nV = rP • The identical

vanishing takes place iff 8k- 1nV 4= rP •

In particular for k = c -1 we abtain back the original CAYLEY'8 idea of

representing V 04~aIa$d6~~ 0/ V ~ 8c- 2~

am/t,unaI~ V .

The fact that V ia the locus of singular points of the complex \! (V) gives raise to

a canonical system of equations of V expressing the fact that for a point (a) €. V a:
~<J/&~Q)#Ief«;a(a) ~~~ (a) LJa~juuinI

~\! (V) .

In order to get the properties of the WEIL-SIEGEL form (~

p.un=f~ ) it ia convenient to represent the projection center

Sc-2 (n V = t/J) aB a complete intersection of d + 2 hyperplanes

...

(uo) (U1) ..... (ud+1) (E. IP(E)) .

This will give us an identity of type:

(6.4)

We shall give a more explicit expression of (6.4) using the fact that we can write:
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Va AV1 A... Avd = x J Uo AU1 A ... AUd +1 .

(cf. [BüU]) if we normalize conveniently x J where the point (x)' belongs to the

intersection of the d + 2 linearly independent hyperplanes < Uj'X > = 0 J

j = 0,1, ... ,d + 1 , namely

(6.6)

n

ej = < Uj'X > = 1: UjlXI j = 0,1, ... ,d + 1 .
1.0

The form IN contains coefficients depending on Uo,Uh '" ,ud+1 that can be

Let IP (E/Ec-1) be the quotient projective spa.ce of E with respect to the

c-2
subspace E C- 1 represented by X2 A... AXc E. A E (which is also represented by

d +2 ...
(vo A... AVd+1))(e. A E)).

(6.7) dim E/Ec- 1 = d + 2~ dim IP(E/Ec- 1) = d + 1 .

...
The d + 2 forms Uj linearly independent of E can be regarded also aB farms in

E/Ec- 1 because EC- 1 is defined by < Uj,x > = 0 for, j = 0, ... ,d + 1 :

< Uj ,x > = < Uj,x + Y > VY e. Ec-1 .

As a consequence: 9'Je d + 2 ~ ej (j = 0,1, ... ,d + 1) DM~

~mJU~~~ IPd+1 =IP(E/Ec- 1) and.
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(6.8)

cf. (6.4)'~ a~~~ Vd ~ m IPd+l = IP(E/Ec- 1) ~

~aMna~~Ia&~tJ/&~cane~ V fuvm

IP(Ec- 1) .

Since Ec-1 can be any vector subspace of E such that IP(Ec- 1) nV = q, we have

a refinement of CAYLEY'S idea in the sense that given ~ 01~ CAYLEY'S

~~ IP(Ec-1)(n V = r/J) (6.8) ~ an~~ <J/ a

~ HE m<UIdaf V , pt «Jbt;f~ <J/fawu uj (j = 0,1, ... ,d + 1)
c-l

~ Ec- 1 '

The points of this hypersurface correspond bijectively with the IPc-l generators of

the CAYLEY cone of center IP(Ec-1)' For a generic choice of IP(Ec-1) the generic

generator of this projecting cone contains just one point of V, the exceptional ones

correspond bijectively with the singular points of HE . In particular if
c-l

...

d = dim V = n -1 the n + 1 linearly independent fonns 1lo,uh ... ,Un in E define a

..
coordinate system in E ~ a projective system in IPD ; thus in this case

(6.9)

n

with < Uj'X > = LUj0k defines the equation of the hypersurface V in this
)(-0
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coordinate system) or in the language of invariants:

(6.9) ~o//tu~~<if&~ V f<udltu~

4d-i/".{ Uo A... Aun f 0 .

EXAMPLES

In the case of Fig. 2, page 41, any tripie of linearly independent linear forms uo,

Ut I U2 define a projective coordinate system with (Uj) (j = 0,1,2) aB coordinate planes

and (uo + Ut + U2) as the unH "line" in the abstract plane IP(E4/Et) I where

P = lP(Et) is any point of IPa =IP(E4) outside V intersection of the three planes

< Uj'X > = 0 . The equations

represent a model of V in IP(E4/E1) or the projecting cone of V with vertex P.

REMARK

The explicit computation of IN in terms of S can be achieved expressing (6.5) in

coordinates i replacing pioit ... id by

(6.15)'

where qjo.it ... jd+l are the coordinates of x J Uo A u1 A ... A Ud+l leading to

< uo,x> UO! uOi uOi
0 1 d

(6.10) pioi1 ... id = < u t , x> uti u 1 · u 1 ·
0 11 Id

< Ud+l J X > Ud+l,i Ud+hi Ud+ 1J i
d0 1
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rn. A P PLI C A T ION S

(1) (h) (j)
The construction of J = J(V )( ... )( V ), V ( IPn' j = 1,2, ... ,h , has

two natural applications depending on the codimension of J in IP (E e (h) . Cf. (2.12),

page 27j if c 5 n the h given varieties V (j) always meet in IPn (~f!" always meet

J in IP(E ~ (h)) . He> n the given varieties do not meet (~f!" nJ = <p) if they are

in generic position, but the discussion of their meeting gives a new form to the old

"elimination theory" which can be made intrinsie. We shall divide the paper in two parts

according to both possibilities:

In part I , page 46, § 7, 8, 9, 10 we deal with the case c ~ n . If S E. (t (J) I

(1) (h) .

J = J(V )( ... )( V ), since dim S = c - 1 < n , d~ 6IJn4e /a.~ ae
~ 10 ae~~ f!" m IP(E ~ eh) (cf. § 3, page 27). Such a restriction ia

h (j)
trivial (~ t! (J) 1&= 1(c -1 j &) iff the intersection n V ia ~.

j-l

Otherwise, IkMLd a 44dI~~ t! (J) If!" ...do&;wH-kci Ia. IP(E) by a 1

(1) (2) (h)

~tunaktd~oIt!(I) ,~ I=V • V · V Ld&~

~. The prime factor decomposition gives the intersection multiplicity as the

exponent of either one of Sc' Yc or Ne (any two of them agree) for any irreducible

component C of I . See our main definition DEF. 7.1, page 51. In particular we can

h

prove BEZOUT'S theorem Binee deg J = n deg V (j) can be proved with a rigorous
j-l

degeneration method using the characteristic transversality condition for multiplicity

one.

:7&~~afae~~~44dl&~

MleojVANDERWAERDEN ~~~&~af&Sn

~allP(E~(h) 04~afh-~ (cf§4).
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FIRST PART

THE EXPONENT INTERSECTION MULTIPLICITY

(1) (2) (h)
7. RESTRICTION TO THE DIAGONAL OF l! (J(V x V x ... x V ), c ~ n .

(1) (h)

Let us come back to the constructions of § 0,1. Let J = J(V x ... x Y ) be

the join of the h shown irreducible varleties of codimensions cj in IPn satisfying (0.7).

Let us consider the complex l! (J) of (c -1) - dimensional subspaces of IP(E ~ (h) =

= IP attached to J:
h(n+l)-l

(7.1) l! (J) = {lPc- 1 CIP(E ~ (h) IlPc- 1 nJ f q,} c ~(c -l;h(n + 1) -1)

(7.2)

mo&:& dI!1JZde. We shall distinguish two ca.ses:

1) ~ A y(j) ~~ W ~~~dluM/<MM~~
j-l

~XWcodX<n a.m

b'(X) nlPc-l f q, J VlPc-l Cä .
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2) On the contrary: ..71 h ( j )n V

(j)

6'(n V ) n f c-1 = tP •

h (j)
It suffices to take the diagonal image of a IPc-1 of IPD not meeting n V .

j-1

In other words, we have proved the following:

LEMMA. 9'A.e~~1!& oflP
h

(D+1)_1 (cf.§3)~a~~oIl!

h (j)
(J) ~ n V ~~' o~ae~oI (!(J) Ia I!& ~ae

j-l

<XJm~(7.4)&/au.~~&dIoddla&~~I ~ae~

(7.4)

(1) (2)

where I = V · V

MAIN DEFINITION 1:

-1
(! (1) = 6' (C(J) 16)

( b)
• V .

DEF. 7.1 9"&~~ Sc-1 ~oIlPn ~~(7.4) ~co&d&~
(1) (2) (h)

dIoddla~ (well-{fefined)~~ I = V · V· ... · V ~ae h

~~~~.

REMARK

-1
The effective restrietion t! (J) = 6' (t! (J) IL\) can be achieved by means of either

one of the associated forms discussed in § 6, namely:
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We know that the SEVERI form SJ attached to J contains c covariant vector

variables X1JX2, •.• ,xc . It suffices to take Xj E.! for j = 1,2, ... ,c to get the desired

restriction. For Yj there are d + 1 hyperplane variables representing a [pc-l E. \!; (J)

where d = h(n + 1) -1 - c . The corresponding number for a Pc-l C! is n - c + 1 .

The difference (n + 1) (h - I) equals the number of equations of type

(7.5)
(r) (1)

Xj - Xj = 0 r = 2, ... ,h; j == 0,1, ... ,n

defining 4 . Thus, we shall define a m>c-l (! with forms containing the (7.4). The rest

define the same IPc-l as a subspace of ! .

Similarly the WEIL-SIEGEL form anffices to restriet the generic projection center

of dimension c - 2 - iri the ambient space of J - to the diagonal subspace !J. .

In the three cases we have prime factor decompositions of SI! , Y I!J., NI! with

prime factors Se' Ye , Ne attached bijectively to all the proper irreducible

h ( ')
components C of n V J and equal exponents ie :

j-t

(7.6)

Such equality is indeed a consequence of the transformation formulas between SI'

Y
I

, NI studied in § 6.

MAIN DEFINITION 2

DEF. 7.2. The positive integer ie weIl defined by either one of the (7.5) in an

intrinsic way ia called the~~~<J/C m I (cf. (7.4)).
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8. COMPUTATION OF F
J

. BEZOUTtS THEOREM. The computation of the

CROW form. Yy on any irreducible V ( IPn is based on the theory of the u-resultant

(cf. [H-P] t I). It can be applied to J = J(V )( W) when we give any two systems of

equations in (x), (y) to represent V and W . From Yy we can construct Sy and

Ny . A direct computation of any Sy with cod V = c can be obtained by

(8.1)

where the Rk are resultant forms with respect to AtJ ... ,Ac in the equations

c

fk( 1: >'jXj ) = 0
j-1

c

obtained by the specialization x t----+ lAX in the equations .. fk (x) = 0 ...
. 1 j j
J-

representing V.

REMARK .7'M~, ~~ow.I~IINJI4.II (~& N-ptm.

~nd~a&dmlAe~)adae~

(8.2)

n

N( 1: Ujk Xk) = 0 j = 0,1, ... , d + 1
)[-0

con&~~~aaI&~~~&~~

r(V) ~ V ~~/0. d + 1 . Accordingly: 9'M d + 2 -te~
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n

(LUjk xk) I r(V)
k-o

j=O,oo.,d+lDM~~

For instance, let V be an irreducible algebraic curve in IPn . Then we write

immediately an irreducible equation

(8.3)

representing V as intersection of all the projecting cones from IPn-3 - 8ubspaces,

complete intersections of the three hyperplanes.

(8.4) < uj,x > = 0, j = 1,2,3

n

where < Uj.x > = LUjk4Z"k = O.
k-O

In particular if V is a canonical curve - non hyperelliptic - of genus g in IPg-1

wecan take three generic holomorphic differentials to define the WEIL-SIEGEL form.

We shall apply elsewhere this remark to the SCHOTTKY problem, cf. [GA].

REMARK

The following natural question arises; let Fj be associate forms {of the same kind
( .)

S, Y , N) corresponding to h algebraic irreducible V J (IPn' Can we compute FJ

(1) (h) (j)

in terms of the F j ? (where J = J(V )( ... )( V ). If the V are all

hypersurfaces: cj = 1 and c = h ~ n , the answer is positive because FJ = Resultant

form with respect to ;\1' ;\2' 00. ,Ao of the c equations
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(8.5)

If h = c = 2 a good improvement can be made remarking that then the resultant

of the two binary forms in (~1J>'2) has the explicit well-known SYLVESTER form.

Since the S and N a.f. represent a given irreducible V as complete intersection of

projecting cones we can try to reduce the computation of F
J

with J = J(V x W) in

terms of FV and Fw to the previouB case as follows: Let IPc
t
-2 and IPc

2
-2 be two

ct c2
generic projection centers for V ,W lying in IP(E,O) and IP(O,E) respectively.

Let Sc-t = J(SCt-l x S~_l) be their join with dim Sc-l = c - 1, c = ct + c2 with

8c- 1 ) 0'ce!' 8c- 1 ) 0'c
2
-2 and 8c- 1 ) J(8ce2 x 8~_2) = l c-3' Then we can

compute the equation of the projecting cone of J(V x W) from any IPc-2 joining l c-3

with any point (x) by mea.ns of a" SYLVESTER determinant D:

ao at . .. ar

(8.6) D= ao ar

bo bt bg

bo b t . . • . . bg

bo b t ... bg

where f= deg V g=degW and

r

F(.h + ~y) = l ai ~i ,I-i
j-o



-53-

g

G(A x + J1 y) = 1: bj Ai tl-i where F(x) = 0, G(x) = 0 are the equations of the
j-o

projecting cones of V(W) from IPc-2 (m>C
2
-2) respectively. An immediate consequence

of tbis property is the following:

(8.7) deg J(V )( W) = deg V . deg W .

The intersection J n~ has the same degreej accordingly we have:

BEZOUT'S THEOREM. .!/d V· M & a:~~ aI/rtu;.~

J7/~jiJ7~~~ V, W ~~. Ye~:-;r---- Co

(8.8) deg V • W = deg V . deg W

9. ON THE PROOF OF THE THEOREMS. In the expository part of the introduetion

and in the exposition of the adaptation of the reduction to the diagonal in the projeetive

case (§ 1,2,3) we gave already all the necessary ingredients to prove Th. L but - since,

there we lacked same technical tool8, for instance the relation between the diagonal

space 4 and the diagonal E, (cf. (9.1), below) the more precise recall on associate

forms, ete.:
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with ä = I'(E ~ (1,1, ... ,1)) - it ia convenient for the reader to have now a cornplete

version of the proof. On the other hand with the same procedure we shall prove also Th.

II, although we shall corne back to it in § 12.

h

h c' t
Proof of Th. I: If the set-theoretic intersection nV J with c = l cj 5 n is

j-l j-l

improper there is at least one excedentary irreducible component X of codimension less

than c; as a consequence every IPc-l ( IPD meets I j tbis is equivalent to the fact that

every [pC-l C & meets 6(1) Le. !J. ~a~~;.u (!(J(C)), where

cf. DEF. 5.4 page 37.

h c'
On the other hand iff nV J is proper it is always possible to find a IPc-l ( IPn

j-l

such that IPc-l n( ~ V (j) ) = fjJ • This implies there exists some Pc-l C & which do
. 1

(l) J- (h)

not meet J (V )( ... )( V ) j in other words ue M& a~~ Ia ä af
ae~ <t (J) aIbu:.Jd/a J ~n is proper ; such restriction can be effectively

computed by restriction to ä of either one of the equivalent form SJ' YJ , NJ . The

prime factor decompositions determine uniquely the exponents of the irreducible factors

C (cf. § 5,6); each irreducible factor has the form Se' Yc on Ne appearing with the

same weIl defined exponent

(l) (2) (h)

i
I
= i(V , V , .. . ,V jI) .
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10. EQUIVALENCE OF THE EXPONENT MULTIPLICITY WITH VAN DER

WAERDEN'S THEORY.

The exponent multiplicity theory enables an easy transition (in both directions)

between the so--ealled daIic and the~ multiplicity theories, (cf. [F]) roughly

speaking it is equivalent /0. 91UUJe ae~~ V, W a.t /0.~ &

~~ fJ.. But !J. belong to l(n; 2n + 1) and such~ is quite well

understood. On the other hand a generic Sn CIP(E mE) represents a non singular

collineation 1 in IPn (where Sn' S~ represent the same collineations iff they are

equivalent under the group IiJ) of collineations of IP(E Q!O E) in itself (cf. § 4).

The original VAN DER WAERDEN'S multiplicity theory (cf. ZAG-papers, the

historical survey [vdW2] and [H-PJ (vol. 11)) relles precisely in a motion of the pair

(V,W) of irreducible subvarieties in IPD to (/hV'/2'W) by means of generic

collineations "11,'"12 t-IP GL(E). (/hVJ;2'W) gives essentially the same as

(,/1 VJ1 12 W) where 1 €. GL(E) , thus we can consider also (V'/i1 12 W) or

(/21/hV,W) (with the inconvenience of a subsequent proof of the symmetry of

i(I;V.W) when we permute V and W . Anyway the intersection multiplicity i(I;V.W)

(for I irreducible component of V W) ia defined in vdW s' theory by spezialization

when (111') --t Identity.

The equivalence of the exponent multiplicity with van der WAERDEN'S appears

naturally when we replace the motion of ,., with the (equivalent) "motion of !J.1l . We

shall malte explicit this equivalence:

We recall that a non singular collineation "'1: IPn --t IPn (IPn = IP(E)) is uniquely

defined by a pair of bases B, B' where 1 = IP(L) , L €. GL(E) and L is uniquely
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defined by B' = LB . Let us construct the n + 1 vectors

(10.1)

They form a basis of the subspa.ce E e E . The ba.ses (Al B.,A2 B2), Al' ;\2 e. C
X

define another subspace D \ \ L representing the same collination i = lP(L) aB L.
At,A2

Two points P = (x), P' = (x') correspond in .i Hf

(10.2)

n n

X = ~ Ajbj x· = ~ Ajb;

with (Ao,Al, ... ,An) =/= (0,0, ... ,0); (x,x') e. L .

Conversely any point ( =/= 0). (x,x') EL defines a pair of corresponding points

(x), (x') in lPn .

The set-theoretic intersection L nJ(V )( W) can be interpreted as the set of pairs

(x)( (x') EV )( W with (x') = ,(x) . The specialization ,--+ id , will give back

& nJ(V )( W) leading to the natural definition of the intersection cycle V · W .

The precise nature of the equivalence between the exponent multiplicity and the

original VdW's can be retraced quoting the following paragraph of the historical survey

[vdW] ortheEinführung [vdWJ (page 276) :1Ic..4'~a~~":

..... II~J~m 1928 Ia Am" V und W mlaa~~

~~~laone<1~ajUa#N~ T .ua~

~.:7M~~ T~ W mafuuk~<1~. ~

T ~~a:lk&~, &~aI~aI TV ond W ~~Ia
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~<i~<J/v ana' w . 4' v aw.I w ~mafmde~af~,

t:acA <i~~ .di a aJtIam~, ~ #JUi;f <Ie~ /0. <Ie lAe

~~ ••• II

In order to adapt VdW's words to our procedure with the join in IP (E SE) let us

&Ssume now dim V.W = 0 <=t c =n . Then to the projective T let us associate the

Sn ( IP (E SE) defined by the n + 1 points of the (n + 1) )( 2(n + 1) matrix:

(10.3)

where 10+1 is the (n + 1) )( (n + 1) unH matrix. The spezialization T ----+ Identity

spezializes (10.3) to (1 0+1 1 0+1) defining the diagonal space.

In the general case for any c < n I the intersection of J(V)( W) · Sc reduces the

problem to J(V.Sc )( W,Sc) (Sc where V,Sc ( Sc I W.Sc (Sc and we have again the

previous case: dim V.W = 0 .

In the discussion with the complex (! (J) , we need to consider a variable Sc-1'

The same reduction to V.Sc-1 )( W,Se-1( IP(Ee e Ee) (Sc-1 =fP(Ee) leads to a case

discuased in PART 11 of thiB paper, because now for the varieties in generic position

V.Sc-1nW,Sc-1= t/J and cod J(V,Sc-1 )( W.Sc-1) in IP(Ee mEc) ia equal to

c = dim Sc-1 + 1 .
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11. BEZOUT'S THEOREM WITH A NEW DEGENERATION METHOD

The original discovery of the propeny.

(11.1) dig F.G = f g f = deg F t g = deg G

of the intersection cycle F.G of two irreducible algebraic curves in IP2 was obtained in

a pure heuristic - non rigorous way - by degeneration of F J G in generic sets of f

(resp. g) different lines-intersecting together in fg simple points. I don't believe that

anybody thought of this remark as a proof, but it has been always interesting whether

this can be transformed indeed in a proof. We shall show here ,that by means of a certain

degeneration (not of F, G, but of asecant space of complementary dimension) we ca.n

prove that

(11.2) deg J(V )( W) = deg V . deg W

where V, W are again two irreducible varieties V ( IP(E1) , W ( IP(E2) • In fact at is

well known that we can chose subspaces L (IP(E1), M (IP(E2) such that the

intersection cycles consists of different simple points:

(11.3)

f = deg V , g = deg W Pi 4= Pj , Qi 4= Qj i 4= j .

On the other hand the join J(L)( M) is a 8ubspace of g>(E1 e E2) of dimension

equal to cod V + cod W + 1 . The set theoretic intersection consists of . fg lines

J(lP i )( Qj) .
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J(V )( W) nJ(L )( N) = UJ(P i )( Qj)

i = 1,2, ... ,f j = 1,2, ... ,g .

The tr&nsversa1ity criterion for multiplicity one in each Pi or Qj implies the

tr&nsversality condition for the line J(P i )( Qj) . As a consequence we have:

(11.5) J(V x W) . J(L x N) = l J(P j x Qj)

i = 1,2, ... ,f j = 1,2, ... ,g .

In the same way we can see that we can choose a hyperplane l UjXj + l vjYj = 0

In IP(E1 E9 E2) transversal to each fixed J(P i )( Qj) because the opposite implies

(11.6)

where i = 1,2, ... ,deg V, j = 1,2, ... ,deg W .

SECOND PART: c>n

Let UB consider now the case c > n . Then if the given irreducible V( j) (IPn are

generically located the interseetion is empty, i.e. we have

(11.7)
h (j) (1) (h)n V = ,p {=} J(V )( ... )( V ) n&= ,p .

j-l
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The complex ft (J) consists then of Space8 of dimension c -1 ~ n and our task is

just to express the exceptional behaviour:

(11.8)

in terms of a.s80ciate forms.

~ yCj) ,4JMJnä#4J
j-l

•

The extreme case c = n + 1 appears in our treatment because then a IPc-l ia a

IPn and in particular the alternative .(11.7) or (11.8) ia equivalent to tie~~

ä ~ nd~ Ia ft (J) ~ tu~ L6~ or fJ. E <t (J) ~

nh (j).J.
V TfP.

For c > n + 1 the property tJ. nJ # 4J implies that every IPc-l containing tJ.

meets J:

but the converse property ia true:

"ItJtNJI:f IPc-l J tJ. ~ J a", A ~ J (equivalently ~ tJ. nJ = fP d ~

~ Ia fm"a IPc-l ) A such that IPc-l nJ = 4J . This property leads naturally Ia

~ ae candtkn J ntJ. # 4J ~&~~<J/a~, a.s indicated

in the introduction.
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12. A GEOMETRICAL THEORY FOR RESULTANT SYSTEMS.

In the partic-ular case Cl = c2 = ... = Ch = 1) h = c > n 4IIe <X»'IlIJ J'.acJ Ia &

(12.0)

It is well-known that in the extreme case c = n + 1 = h the compatibility

conditions are characterized by the vanishing on a single equation

(12.1) R=O

f / [n +n mj]where R is a ploynornial homogeneous 0 degree m mj in the

indeterminate coefficients of a generic form of degree IDj where

(12.2)

R = 0 is equivalent to A nJ f rjJ where

as before and Fj = 0 defines the irreducible hypersurlace Hj , j = 1,2, ... ,n + 1 .

Thus in the general ca.se c = n + 1 , the characteristic condition J nA*rjJ

~ E ~ (J) is a generalitzation of the equation R = 0 .

In the case c > n + 1 we checked alrea.dy in the introduction that !! nJ f rjJ is

equivalent to the identical vanishing of the CAYLEY-SEVERI form SJ (S.
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DEF. 5.6 page 39) for Uo , Uh .•• ,Un , Xl' X2, ••• ,Xc- n- l where

h

Uj = (Uj,Uj' ."":. ,Uj ) Eä, j = 0,1, ... ,n and the xl are arbitrary vectors of E ~ (h ;

1 = 1,2, ... ,c-n-1 , Le.

(12.3)

h (j) (1) (h)·

iff n V *rP ~ J(V )( ... V ) nä *rP .
j-l

In particular in the "elimination case" again Cl = ~ = ... = Ch = 1,h = c > n + 1

the condition (12.2) is a covariant in the coefficients of the forms Fj of degree mj

containing c - n - 1 arbitrary series cf variables X h X2, •.. ,Xc-n-l . The coefficients of

the power products in these X's gives a system of resultant farms. We hope to study in

the near future the relation between tbis invariant-theoretic approach and the classical

ones.

AN INTRINSIC ELIMINATION THEORY

13. HISTORICAL APPROACH. The elimination theory has been completely

"eliminated" from algebraic Geometry! I believe that the main leason is that it was not

intrinsic enough; as a matter of fact it was always presented in relation with a

coordinate system. For instance the HENZELT-NOETHER sopbistication of the

KRONECKER elimination method was presented as folIows: ([H - N]).

11 Let m C K [ttl , ... ,ttnJ be a polynomial ideal. We can associate to m a

Itresultant form 11

(13.1)
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in such a way that R vanishes for all the solutions of m and only for them. H n) m

and R = R then m = n ."m n

We can appreciate that the lCi are explicitly used in the statement and in a given

order.

(1) (1)

The geometrical meaning of the R is dear. R represents the irreducible

components of V = V(m) of dimension equal to one precisely if

(13.2)

the hypersurface Flk; = 0 is an irreducible hypersurface contained in the solution

variety V = V(m) and conversely any such hypersurface appears as a prime factor of
( 1) ( 2)

R , R (a"2' ... ,a:o) = 0 represents the projection in the hyperplane Xl = 0 of

the locus of irreducible components of codimension two, and

(0
R (a:i,lCi+2' ... ,a:o) = 0

appears as the projection in the coo~dinate space a:l = 0, a:2 = 0, ... ,a:i-l = 0 of the

locus of irreducible components of V = V(m) of codimension equal to i: i = 1,2, ... ,n .

More precisely if we want to deal again with projective varieties in IP 0 we need to

introduce the homogeneous coordinates a:o, a:h ... ,a:o and to assume that m is

homogeneous. Besides d ~~ Ia~ aalaej1ta~ ftamte aI~~

~~~~Ia V. Hthis is not the case d.i6~/a.~

j;t~aplIJUc~~ Ia~ &6pd. We emphasize that:
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dI~~pta~~~~ #I4IMt~ Öl. & ~; as a

consequence they did not appear in the formulas; accordingly the results are wrongly

applied when the reference frame is badly located with respect to the variety defined by

(12.0) again the results are misleading.

(f)
The fad that the homogenoous R = R( a"i-1J ... ,a"n) appear as a projection

from the coordinate space joining the vertices Po, P h ..• ,P1-2 (assumed previously as

"well-located") suggests naturally the idea of projecting the locus r (1> of irreducible

components of V of codimension equal to i from a generic IP i-2 . Hut this ia

CAYLEY'S idea. As a consequence the Author in the two papers [G2J , [G3] replace

the original problem of "elimination l1 by the following one:

(13.3) Fj = c j = 1,2, ... ,r

&an~~o/tu~«kI m

CAYLEY-SEVERI~ S(l) <J./ r (ll ; i = 1,2, ... .

(13.4)
(1) _ 2 _ <l) _

S (x) - 0 S (X1rX2) - 0, ... , S (xiJ ... ,xJ - 0 .....

~&6ODM#06IAe~KRONECKER~~

The first step is obviousj S1 = h· ~. d (F1,F2' •.. ,Fr) Le. the hypersurface

component appears in the same way as in the KRONECKER method. The elimination

of one variable (which one?) depends on the choice of a well-located (~ not belonging
( 2)

to r ) vertex of the projective frame. If we choose a generic projection center (y)
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we are reduced to the first step again because such a cone has codimension one. This can
(1)

be achieved in an elementary way writing FJ = S GJ J then GJ = GJ (AX + JlY) and

a resultant system in (A,I'):

(13.5)

Then

In Buch a way - by induction we construct associate systems of equations.

k = 1,2, ... ,rk

where Flk = Fk rl = r . Then Sc = h.c.d(Fck ...) .

With this procedure we can attach to any system (13.3) the associate forms to the
Ci)

r i = 1,2, ... ,n .The prime factor decomposition of Sc(xtJ ••• ,xc) gives all the

CAYLEY-SEVERI forms of the irreducible components of codimenaion c of V 4IJitl a

We refer to [G2] [G3] for more details. There ia a curious paradoxon in this

procedure pointed out already in [G2]: instead of decreasing the number of coordinates

by 8uccessive "elimination" of Xo, Xh ... ,xo we increase by n + 1 homogeneous

coordinates of (Xl' ~, ... ,Xc ... ) in every Btep. However, let UB recall that there exists

an expression
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unique if we assume that all the power products of the p'" are standard. Let us

specialize the projection points-coming back to the elimination theory, assuming them

to be the vertices of the projective reference frame Po, PI'" (a.ssuming again thai

they are well~ocated to avoid identical vanishing ... ). Then. we Mve the coordinate

matrix

1 0 0 · .0
0 1 0 · .0

0 0 · . 1
a:o a:1 • • a'C-1

o 0
o 0.
o 0
t&c •• a:n

and we remark that a:~ntUJ"'4~ aJ.04tUnab4 4te Xc J xc+1"" ~ • The

11 ~/~'-'- -~- ~I •::CO, Xli ••• ,xc-1 Olle ~. ~.

Since the three types of associate forms can be trans!ormed among them it is not

difficult to compute the CROW or the WEIL-SIEGEL forms. We are definitely

interested in the latter because we shall prove in [G4] (cf. § 14 for a short Introduction)

that a.e~.&.tw4f&se~ u ~aIm!Ia aJe ae KRONECKER~

~~~~_~~~~~ÜJ&~ by
...

means cf basis Uo J Uh ••• ,Uu of the dual vector spa.ce E.

The generic coordinates

D

~j = < Uj'X > = ~ Ujtxk j = 0,1, ... ,n
k-o
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of any vector x EE (can be interpreted as the projective coordinates of the point (x))

(whenever x f 0) . The elimination of the generic variables eo , el' ... ,ei-l leads

naturally to forms of type.

,
and we know that the ej , represent actually homogeneous coordinates in the more

sophisticated projective space ('(ElEn-i) where En-l is defined by < Uj,X > = 0 for

j = 0,1, ... , i - 1 cf. § 6. Actually the projection on the coordinate space opposite to

En- i is not needed. The genericity insures that

(1) (2) (i-1)
IP(En - i ) nV(m) - r - r - ... - r = rjJ •

14. INTRINSIC ELIMINATION THEORY USING WEIL-SIEGEL FORMS.

Let us repla.ce the CAYLEY-SEVERI forms by the corresponding WEIL-SIEGEL

ones using formulas of type:

where x E. E - {O} is regarded as variable in the cone S(x,Xo, ... ,xc- 2) = 0 of vertex

[pc-2 spanned by (Xo), (Xl); ... ;(Xc-2) (~ intersection of the d + 2 hyperplanes

(Uj) , j = 0,1, ... ,d + 1 . The variables ej = < Uj'X > are again the homogeneous

coordinates in the abstract (d + 1) - dimensional 8pa.ce J'(E/Ec- l ) where

IP(Ec-tJ = IPc-2 .
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..
If we take the n + 1 forms 110, Ut, ... ,un E. E dual to Xo, Xh ... ~ E. E Xj:f:. 0

Uj f 0 we have the following sequence of WEIL-SIEGEL forms:

We remark that {ormally, when we read the (14.2) !rom top to bottom we have:

(14.3)

(i>
as &~aI~~(or better, aI&~~1a r ) written

in the projective coordinate system ((Uo) , ,(Ut), ... ,(Uu); (uo + Ul + ... + Un» which

can be regarded as Itindeterminate": more precisely .i/4IJe u.UIe

n

< Uj,XJ > = l uJk xk
k-O

~imJe& (n+1)x(n+l) ~ (Ujk) ~&~~

II~" cfJ~~kI~m~~~aI~~
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If we write the system (13.3) in tbis "invariant wayll

we can perform equally the first step of KRONECKER'S elimination method:

The next step is to divide each Fj by tN 1 , Fj = INt Gj • Then we can "eliminate

eo" (but within the generic projective frame (uo) , (u t ), .•• ,(un) ; (110 + ... + un) . The

new system

(1)

represents the variety V - r of codimension two which is not contained in el = 0 .
(l)

Let UB cut V - r with tbis hYPerplanej we shall have only the useful "generic"

variables el' e2' ... ,en , i.e. we have a system of type:

-
Gj (XjUhU2, ... ,un) = Gj (ehe2, ... ,en)

(1)

representing the projecting cone of V - r from the intersection point of the n

hYPerplanes < Uj,X > = 0 j = 1,2, ... ,n (of vertex Po in the corresponding generic

projective frame). Then h.c.d. of the Gj(el ... ,en) will give us back the
( 2)

WEIL-SIEGEL form attached to r , i.e. to the cyde of codimension 2 represented

by m.

In other words we can prove the announced result:
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9'k~~01& WEIL-SIEGEL ~ 1N 1(ec-ltect ... ,en) Pt
c = 1,2, ... ,n ./d~.ua ae oU KRONECKER~~ciaI.ua tu:

~~~~~m&fo,.ula6.

REMARKS

1) We emphasize the use of the quotient projective spa.ces IP(E/Ec-l)

corresponding to coordinate spaces f(Ec-l) instead of the projection or the face

opposite to IP(Ec-1)'

2) In order to check all the necessary cautions we follow [vdW1] IV Kap. § 31,

page 116; aB weIl as the second Edition of vdW's Algebra.

The first steps are possible because we know, that the coefficient of the highest

power of each xi ia t 0 (because the corresponding projection space never met the

projecting variety. The resultant systems of relative prime forms cannot be identically

zero). The coefficient of x~ for a WEIL-SIEGEL form ia equal to

for (i == 1,2, ... , etc.).
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