ASSOCIATE FORMS, JOINS, MULTIPLICITIES AND AN INTRINSIC ELIMINATION THEORY

by
Federico Gaeta
Preprint - to appear in definitive form in TOPICS IN ALGEBRA
Banach Center Publications, volume 26
PWN - Polish Scientific Publishers, Warsaw.

Max-Planck-Institut	Universidad Complutense
für Mathematik	de Madrid
Gottfried-Claren-Str. 26	Spain
5300 Bonn 3	
Federal Republic of Germany	

NOTATIONS

Occurrence page
$\mathrm{V}, \mathrm{W}, \ldots \mathrm{V}_{\mathrm{d}}=\mathrm{V}^{\mathrm{c}}, \mathrm{W}_{\mathrm{d}}=\mathrm{W}^{\mathrm{c}} \ldots ., \mathrm{c}=\mathrm{n}-\mathrm{d}$ algebraic
subvarieties $\subset \mathbb{P}_{n}(\mathbb{C})$ of dimension d and codimension c in $\mathbb{P}_{\mathrm{n}}(\mathbb{C})$
$\mathbb{P}_{\mathrm{n}}=\mathbb{P}\left(\mathrm{E}_{\mathrm{n}+1}\right), \mathrm{E}_{\mathrm{n}+1}(\mathrm{n}+1)$ dimensional complex vector space
II: $\mathrm{V}^{(1)} \times \mathrm{V}^{(2)} \times \ldots \times \mathrm{W}^{(\mathrm{b})}$ Cartesian product
$\delta: \mathrm{V} \longrightarrow I I=\mathrm{V}^{\mathrm{h}}$ diagonal map, (0.8)
Σ diagonal manifold $C \mathbb{P}_{\mathrm{n}}^{(1)} \times \ldots \times \mathbb{P}_{\mathrm{n}}^{(\mathrm{h})}$,
$\Sigma=\mathbb{P}\left\{(x \otimes n) \mid x \in E_{n+1}-0, n \in \mathbb{C}^{h}-0\right\}$
Δ diagonal space $\mathbb{P}(E \otimes(1,1, \ldots, 1)) \subset \Sigma \subset \mathbb{P}_{n}^{(1)} \times \ldots \times \mathbb{P}_{\mathrm{n}}^{(\mathrm{h})}$
$\mathcal{H}^{\prime}, \mathrm{J}, \mathrm{J}(\mathrm{V} \times \mathrm{W}), \mathrm{J}\left(\mathrm{V}^{(1)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}\right)$ join of shown varieties Abstract DEF. 1.1
\neq Prejoin
$\mathrm{J}=\overline{\mathrm{J}}_{\mathrm{p}}=\underset{\substack{\mathbb{P}_{\mathrm{n}-1} \in \mathscr{Z}}}{\cup \mathbb{P}_{\mathrm{n}-1} \text { Full join (2.3)' }, ~(, ~}$
$\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)=\left\{\mathbb{P}_{\mathrm{c}^{-1}} \subset \mathbb{P}_{\mathrm{n}} \mid \mathbb{P}_{\mathrm{c}^{-1}} \cdot \mathrm{~V}^{\mathrm{c}} \neq \phi\right\}$, DEF. 0.1, (0.13)
$\mathrm{S}, \mathrm{Y}, \mathrm{N}$ the SEVERI CHOW or WEIL-SIEGEL associated
form to a $V_{d}=V^{c} \subset \mathbb{P}_{\mathrm{n}}$
$S=S\left(x_{1}, x_{2}, \ldots, x_{c}\right), Y=Y\left(u_{1}, u_{2}, \ldots, u_{d+1}\right)$
$N=N\left(u_{1}, \ldots, u_{d+2} ; x\right) x_{j} \in E u_{j} \in E$ formulas (0.10), (0.11), (0.12)
$S\left(x_{1}, x_{2}, \ldots, x_{c}\right)=S\left(x_{1} \wedge \ldots \wedge x_{c}\right)$
$x_{1} \wedge \ldots \wedge x_{c} \in \AA E(6.1)$
$Y\left(u_{1}, u_{2}, \ldots, u_{d+1}\right)=Y\left(u_{1} \wedge \ldots \wedge u_{d+1}\right)$
$u_{1} \wedge \ldots \wedge u_{d+2} \epsilon{ }^{\mathrm{d}} \grave{\Lambda}^{1} \check{E}(6.2)$
$\left.N\left(u_{1}, u_{2}, \ldots, u_{d+2} ; x\right)=\mathbb{N}\left(\left\langle u_{1}, x\right\rangle, \ldots,<u_{d+2}, x\right\rangle\right)=0(6.6)$

ASSOCLATE FORMS, JOINS, MULTIPLICITIES AND AN INTRINSIC ELIMINATION THEORY

by

FEDERICO GAETA

Universidad Complutense de Madrid, Spain

TABLE OF CONTENTS

Page
NOTATIONS 1
ABSTRACT 4
0. INTRODUCTION 6
I. GENERALITIESONJOINS 16

1. TEE "REDUCTION TO THE DIAGONAL". A PROJECTIVE 16 VERSION
2. RECALL OF THE JOIN OF h VARIETIES. RELATION WITH 21 SEGRE'S MODEL OF THE PRODUCT $\mathrm{V}^{(1)} \times \mathrm{V}^{(2)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}$
3. CASE $n_{1}=n_{2}=\ldots=n_{h}=n$. THE DIAGONALS Σ, Δ. 28
4. JOINS AND h-COLLINEATIONS 31

Page

$$
\begin{aligned}
& \text { II. GENERALITIESONTHECOMPLEX } \\
& \text { C(V) ATTACHEDTOA VCP } \mathbb{P}_{\mathrm{n}} \text {. }
\end{aligned}
$$

5. THE COMPLEX $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)=\left\{\mathbb{P}_{\mathrm{c}-1} \subset \mathrm{P}_{\mathrm{n}} \mid \mathbb{P}_{\mathrm{c}-1} \cap \mathrm{~V}^{\mathrm{c}} \neq \phi\right\}$ 36
6. REVIEW ON ASSOCIATE FORMS 41
III. A P P LICATIONS 46
FIRST PART: $c \leq n$ 47
THE EXPONENT INTERSECTION MULTIPLICITY 47
7. THE RESTRICTION TO THE DIAGONAL OF 47
$\mathfrak{C}\left(J\left(V^{(1)} \times \ldots \times V^{(h)}\right)\right), \quad c \leq n$
8. COMPUTATION OF F_{J}. BEZOUT'S THEOREM 50
9. ON THE PROOF OF THE THEOREMS 53
10. EQUIVALENCE OF THE EXPONENT MULTIPLICITY WITH 55 VAN DER WAERDEN'S THEORY
11. BEZOUT'S THEOREM WITH A NEW DEGENERATION METHOD 58
SECOND PART: $\mathrm{c}>\mathrm{n}$ 59
12. A GEOMETRICAL THEORY FOR RESULTANT SYSTEMS 61

Page

> AN INTRINSIC ELIMINATION THEORY
13. HISTORICAL APPROACH 62
$\begin{array}{lll}\text { 14. } & \text { INTRINSIC ELIMINATION THEORY USING } & 67 \\ \text { WEIL-SIEGEL FORMS } & \end{array}$

BIBLIOGRAPHY 71

ABSTRACT

The first time a mathematician hears about "multiplicity" $\mathrm{m}_{\mathrm{r}}\left(\in \mathbb{I}^{+}\right)$refers to an m_{r}-ple root r of a polynomial $\mathrm{f}(\mathrm{x})$ or binary form $\phi\left(\mathrm{x}_{0}, \mathrm{x}_{1}\right)$:

$$
\begin{equation*}
f(x)=a_{0} T T(x-r)^{m_{r}} \quad m_{r} \in \mathbb{I} \mid m_{r} \geq 0 \tag{0.0}
\end{equation*}
$$

$$
\phi\left(x_{0}, x_{1}\right)=\prod_{r \in \mathbb{P}_{1}(\mathbb{C})}\left|\begin{array}{ll}
x_{0} & x_{1} \\
r_{0} & r_{1}
\end{array}\right| m_{r}
$$

x - r (or $\left|\begin{array}{ll}\mathrm{x}_{0} & \mathrm{x}_{1} \\ \mathrm{r}_{0} & \mathrm{r}_{1}\end{array}\right|$) is the trivial associate form (a.f) cf. DEF. 4.6 of the point I (with affine (or projective) coordinates in the complex affine (or projective) line. It is natural to ask whether or not this axpanont is also the natural intorsection mulliplicity of an irreducible component I in the proper intersection $\mathrm{V} \cap \mathrm{W}(\mathrm{V}, \mathrm{W}$ irreducible a.v in $\mathbb{P}_{\mathbf{n}}(\mathbb{C})=\mathbb{P}(E)$. An affirmative answer is found in [vdW1] anty fat thas itraducible plane
curoces. This idea of the exponent intersection multiplicity is developed in this paper in the gonotal case by showing that the Form

$$
\left.F_{V . W}=\prod F_{I}{ }^{m_{1}} \quad \text { (I proper irreducible component of } V \cap W\right)
$$

can be computed by restrictian of the F_{J} (associated to the Join $\mathrm{J}(\mathrm{V} \times \mathrm{W}) \subset \mathbb{P}(\mathrm{E} \oplus \mathrm{E}), c f . \operatorname{GAETA},[\mathrm{G} .1])$ la the diaganal sudspace $\Delta \subset \mathbb{P}(\mathrm{E} \oplus \mathrm{E})$. The method extends naturally to $\mathrm{h}(\geq 2) \mathrm{V}^{(\mathrm{j})} \subset \mathbb{P}_{\mathrm{n}}$ provided $\mathrm{c}=\Sigma \mathrm{c}_{\mathrm{j}} \leq \mathrm{n}$ $\left(\mathrm{c}_{\mathrm{j}}=\operatorname{codim} \mathrm{V}^{(\mathrm{j})}\right.$ in \mathbb{P}_{n}. The geometric interpretation of F_{V} in terms of the complex

$$
\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)=\left\{\mathbb{P}_{\mathrm{c}^{-1}} \subset \mathbb{P}_{\mathrm{n}} \mid \mathbb{P}_{\mathrm{c}^{-1}} \cap \mathrm{Vc}_{\mathrm{c}} \neq \phi\right\}
$$

leads naturally to an equivalence of the exponent multiplicity with VAN DER WAERDEN's theory (cf. § 10), [v.d.W 1], [v.d.W, ZAG].

Since $\mathrm{c}=\operatorname{cod} \mathrm{J}$ in $\mathbb{P}(\mathrm{E} \oplus \ldots \oplus \mathrm{E})$ a natural discussion arises also in the case $\mathrm{c}>\mathrm{n}$. Then the old climination theary (too much discredited because of its heavy dependence on coordinates) can be replaced by intrinsic constructions, cf. § 13,14 pages 67-76. Natural applications are made to BEZOUT's theorem § 8, 11 as well to possible future relations with the "length multiplicity" (cf. VOGEL's report here), [vdW-ZAG], [Grõ 1, 2].

0. INTRODUCTION

Most of the algebraic varieties needed in this paper will be embedded in a fixed complex projective space $\mathbb{P}_{\mathrm{n}}(\mathbb{C})=\mathbb{P}\left(\mathrm{E}_{\mathrm{n}+1}\right)=\mathrm{E}-(0) / \mathbb{C}^{\mathbf{x}} \quad$ (with $\quad E=\mathrm{E}_{\mathrm{n}+1}$ $(\mathrm{n}+1)$ - dimensional \mathbb{C} - vector space. The projection $\mathrm{P}: \mathrm{E}-(0) \longrightarrow \mathbb{P}_{\mathrm{n}}(\mathbb{C})$ will be denoted also by \mathbb{P} althoug for a given $\mathbf{v} \in E-0$ we write simply $\mathbb{P}(v)=(v)$.

Let V, W be two irreducible algebraic varieties of $\mathbb{P}_{\mathrm{n}}(\mathbb{C})$ meeting properly.
Let

$$
\begin{equation*}
F_{V \cdot W}=\sum_{C=C_{d} C V \cap W} F_{c}^{i(v, w ; c)} \tag{0.1}
\end{equation*}
$$

be the assaciate farm (a.F.), cf. DEF. 4.6; of the intersection cycle

$$
\begin{equation*}
V \cdot W=\sum_{C=C_{d} C V \cap W} i(V, W ; C) C_{d} \tag{0.2}
\end{equation*}
$$

where F_{C} is the (irreducible) a.F to the irreducible component C_{d} of $\mathrm{V} \cap \mathrm{W}$. She intorsedian multiplicitics $\mathrm{i}(\mathrm{V}, \mathrm{W} ; \mathrm{C})$ are uniquely detorminod as the expanants in the prime factar decampasition of $\mathrm{F}_{\mathrm{V} . \mathrm{W}}$; this remark is useless if there is no way of computing intrinsically $F_{V . W}$ in terms of V and $W\left(\Leftrightarrow F_{V}\right.$ and $\left.F_{W}\right)$. This paper shows that actually $\mathrm{F}_{\mathrm{V} . \mathrm{W}}$ is uniquely and intrinsically detormined in a naturat roay by restriction to the diaganal space $\triangle C P(E \oplus E)$ of the F_{J} assaciated ta the jain $\mathrm{J}=\mathrm{J}(\mathrm{V} \times \mathrm{W}) \mathrm{C} \mathbb{P}(\mathrm{E} \oplus \mathrm{E})$ of V and $\mathrm{W}, \S 1$, DEF. 1.1, page 19.

More precisely we have:

$$
\begin{equation*}
\mathrm{F}_{\mathrm{v} . \mathrm{W}}=\delta^{-1}\left(\mathrm{~F}_{\mathrm{J}} \mid \Delta\right) \quad \mathrm{cf.} \S 5 \tag{0.3}
\end{equation*}
$$

where $\delta: \mathbb{P}_{\mathrm{n}} \longrightarrow \mathbb{P}(\mathrm{E} \oplus \mathrm{E})$ is defined by

$$
\begin{equation*}
\delta(x)=((x, x)) \tag{0.4}
\end{equation*}
$$

for any $\quad x \in E-\{0\}, \quad(x)=\mathbb{P}(x) \in \mathbb{P}(E), \quad((x, x)) \in \mathbb{P}(E \oplus E)$, is the diaganal ingection and $\Delta=\delta\left(\mathbb{P}_{n}\right)$ is the diaganal space (cf. § 3). The a.F F_{J} of $J(V \times W)$ is actually intrinsically detormined by standard methads (cf. §6).

The construction can be extended in several ways:
a) If $\mathrm{V} \cap \mathrm{W}$ is improper (0.3) is meaningless since $\mathrm{V} \cdot \mathrm{W}$ is not defined as a cycle, $\Rightarrow F_{V . W}$ is not defined. However the right hand side of (0.1) is always defined and we have

$$
\begin{equation*}
\delta^{-1}\left(\mathrm{~F}_{\mathrm{J}} \mid \Delta\right)=0 \quad \mathrm{~J}=\mathrm{J}(\mathrm{~V} \times \mathrm{W}) \tag{0.3}
\end{equation*}
$$

iff V ПW is imprapor. Notice that

$$
V \cap W \text { improper } \Leftrightarrow J(V \times W) \cap \Delta \text { improper }
$$

b) The construction is valid also for finitely many irreducible varieties $V^{(j)}$ denoted sometimes also by

$$
\begin{equation*}
\mathrm{V}_{\mathrm{d}_{\mathrm{j}}}=\mathrm{V}^{\mathrm{c}_{\mathrm{j}}} C \mathbb{P}_{\mathrm{n}} \quad \mathrm{~d}_{\mathrm{j}}+\mathrm{c}_{\mathrm{j}}=\mathrm{n}, \mathrm{j}=1,2, \ldots, \mathrm{~h} \tag{0.5}
\end{equation*}
$$

where we use a double notation $V=V_{d}=V^{c}$ for an irreducible $V C \mathbb{P}_{n}$ if there is no ambiguity where the subscript d indicates the dimension and the superscript c the codimension: $(d+c=n)$, of V in \mathbb{P}_{n}.

The join

$$
\begin{equation*}
J=J\left(V^{c_{1}} \times V^{c_{2}} \times \ldots \times V^{c_{n}}\right) \subset \mathbb{P}(E \oplus \ldots \oplus E) \tag{0.6}
\end{equation*}
$$

cf. § 1, DEF.1.1. is also irreducible of codimension c in $\mathbb{P}(E \oplus \ldots \oplus E)$. This ambient space of J can be identified with $\mathbb{P}\left(E \otimes \mathbb{C}^{\mathbf{h}}\right)$ where the j-th direct summand $(0, \ldots, \stackrel{\mathrm{~J}}{\mathrm{E}}, \ldots)^{\mathrm{j}}$ is identified with $\mathrm{E} \otimes \mathrm{e}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}=(0, \ldots, 1, \ldots, 0)$. The set-theoretic intersection

$$
\bigcap_{j=1}^{h} v^{c_{j}}
$$

do always exists provided

$$
\begin{equation*}
\mathrm{c}=\mathrm{c}_{1}+\mathrm{c}_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \leq \mathrm{n} . \tag{0.7}
\end{equation*}
$$

We shall assume (0.7) in the first part (cf. TABLE OF CONTENTS). Then we have

$$
\begin{equation*}
\operatorname{cod} \bigcap_{j=1}^{h} V^{c_{j}} \leq n \tag{0.8}
\end{equation*}
$$

and this intorsection is propor $(\Leftrightarrow \operatorname{cod} \cap=c)$ iff $J \cap \Delta$ is propor in $\mathbb{P}\left(E \otimes \mathbb{C}^{\mathrm{h}}\right)$ because if C runs through the set of irreducible components of $\cap, \delta(\mathrm{C})$ runs through the set of all irreducible components of $\mathrm{J} \cap \Delta$ and $\operatorname{dim} \mathrm{C}=\operatorname{dim} \delta(\mathrm{C})$. Then (0.3), (0.3)' can be extended to an arbitrary $\mathrm{h} \geq 2$ as indicated by the following:

THEOREM I. $\delta^{-1}\left(\mathrm{~F}_{\mathrm{J}} \mid \Delta\right)=0$ if the sat thearctic inlorsection $\mathrm{n}_{\mathrm{n}} \mathrm{V}^{\mathrm{c}_{\mathrm{j}}}$ is $\mathrm{j}=1$ impappor. Othousise the intosection ayde $\mathrm{I}=\mathrm{V}^{\mathrm{c}_{1}} \cdot \mathrm{~V}^{\mathrm{c}_{2}} . \ldots \cdot \mathrm{V}^{\mathrm{c}_{\mathrm{h}}}$ is saell defined in \mathbb{P}_{n} and wac have

$$
\begin{equation*}
\mathrm{F}_{\mathrm{I}}=\delta^{-1}\left(\mathrm{~F}_{\mathrm{J}} \mid \Delta\right) \quad \Delta=\delta\left(\mathbb{P}_{\mathrm{n}}\right) \tag{0.9}
\end{equation*}
$$

The assaciate Tam F_{J} can be detorminad by $\mathrm{V}^{\mathrm{C}_{1}}, \mathrm{~V}^{\mathrm{C}_{2}}, \ldots,{ }^{\mathrm{c}_{\mathrm{h}}}$ $\left(\Leftrightarrow F_{V(j)} \quad c_{j}, j=1,2, \ldots, h\right.$) in the standatd way ($c f . \S 6$) far any h, as well as in the case $\mathrm{h}=2$.

There are several versions of the associate forms attached to a given pure cycle $\mathrm{V}^{c} \subset \mathbb{P}_{\mathrm{n}}$ (and for each one the restriction symbol $\mathrm{F} \mid \Delta$ appearing in (0.9)) has a natural meaning); on the other hand all of them lead to the same intersection- multiplicities. But we shall use only the following three versions of the a.F :

$$
\begin{align*}
& \left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{c}}\right) \longmapsto \mathrm{S}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{c}}\right) \text { (CAYLEY-SEVERI), cf. [C], [P], [S] } \tag{0.10}\\
& \left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{d}+1}\right) \longmapsto \mathrm{Y}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{d}+1}\right) \text { (VAN DER WAERDEN-CHOW) } \tag{0.11}\\
& \text { [Ch - vdW] } \\
& \left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{d}+2} ; \mathrm{x}\right) \longmapsto \mathrm{N}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{d}+2} ; \mathrm{x}\right) \text { (WEIL-SIEGEL), [W], [Si]. } \tag{0.12}
\end{align*}
$$

where the $x ' s \in E$, the u 's $\in \dot{E}=\operatorname{Hom}_{c}(E, \mathbb{C})$. Cf. § 4 and they are defined up to a proportionality factor $\lambda \in \mathbb{C}^{X}$. It suffices to define them first for an irreducible V^{c} and then to extend to the general Γ^{c} by "prime factor decomposition". All of them can be defined in terms of the $\mathfrak{C}\left(\mathrm{V}^{c}\right)$ introduced by the following:

DEFINITION 0.1

She bamplax $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ of $(\mathrm{c}-1)$ - dimonsianal prajective sudspaces attlachod to an irreducible V^{c} defined by

$$
\begin{equation*}
\mathfrak{C}\left(V^{c}\right)=\left\{\mathbb{P}_{c^{-1}} \subset \mathbb{P}_{\mathrm{n}} \mid \mathbb{P}_{\mathrm{c}-1} \cap \mathrm{~V}^{\mathrm{c}} \neq \phi\right) \quad \text { (cf. §3) } \tag{0.13}
\end{equation*}
$$

(cf. § 4). In fact $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ is represonted by an inteducille suboaridy of cadionensian ane in the Yrassmann manifold $\mathscr{f}(\mathrm{c}-1 ; \mathrm{n})$. Furthormare V^{c}, is recouoted fram $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ as the lacus of singular paints of $\mathfrak{C}\left(\mathrm{V}^{c}\right)$. Cf. § 4. The proof of our Theorem is a consequence of the following fact:

If $\mathrm{n}^{\mathrm{h}} \mathrm{V}^{\mathrm{C}_{\mathrm{j}}}$ is improppor the restriction of the camplox $\mathfrak{C}(\mathrm{J})$ attached to J_{c} : $\mathrm{j}=1$

$$
\mathfrak{C}\left(J\left(V^{(1)} \times \ldots \times V^{(h)}\right)\right)=\left\{\mathbb{P}_{c-1} \subset \mathbb{P}\left(E \otimes \mathbb{C}^{h}\right) \mid \mathbb{P}_{c^{-1}} \cap J \neq \phi\right\}
$$

to the diagonal space Δ :

$$
\begin{equation*}
\mathfrak{C}(J) \mid \Delta=\left\{\mathbb{P}_{\mathrm{c}^{-1}} \subset \Delta \mid \mathbb{P}_{\mathrm{c}^{-1}} \in \mathbb{C}(\mathrm{~J})\right) \tag{0.14}
\end{equation*}
$$

is the full Grasmannian $\mathscr{F}(c+1, \Delta)$ because if $C^{c^{\prime}}\left(c^{\prime}<c\right)$ is an excendentary irreducible component of $\bigcap_{j=1}^{h} V^{(j)}$ then every subspace \mathbb{P}_{c-1} of Δ meets the diagonal image $\delta\left(\mathrm{C}^{\mathrm{C}}\right)$.

If the proviaus \cap is prapor the restriction $\mathfrak{C}(\mathrm{J}) \mid \Delta$ is a propot complex of $\mathscr{G}(\mathrm{c}-1 ; \Delta)$ and $\delta^{-1}(\mathbb{C}(\mathrm{~J}) \mid \Delta)$ is a prasitive divisar $\mathfrak{C}(\mathrm{I})$ of the \mathcal{Y} rammannian $\mathscr{G}\left(\mathrm{c}-1 ; \mathbb{P}_{\mathrm{n}}\right)$ attachod to $\mathrm{I}=\mathrm{V}^{\mathrm{c}_{1}} \cdot \mathrm{~V}^{\mathrm{C}_{2}} \ldots . . \mathrm{V}^{\mathrm{C}_{\mathrm{n}}}$ in a natural eacy:

$$
\mathfrak{C}_{I}=\sum_{i_{c}} \mathfrak{C}\left(C^{c}\right) \longmapsto I=\sum_{C^{c} C \bigcap^{h} V^{c_{c}}} i\left(\bigcap_{j=1}^{h} V^{c_{j}} ; C^{c}\right) C^{c}
$$

The intersection multiplicities $i_{c}=i\left(\bigcap_{j=1}^{h} V^{c} ; C\right)$ equal the exponents of the corresponding F_{C} 's. In fact we recall in § 4 that all the $F_{V}(0,10,11,12)$ are defined in terms of $\mathfrak{C}(V)$ by means of conjugation conditions (cf. DEF. 4.1). It suffices to assume first V irreducible. Namely: S, the CAYLEY-SEVERI form of $V^{c}\left(=V_{d}\right)$ is the con-jegation canditian wath respect ta $\mathbb{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ of c Paints $\left(\mathrm{x}_{\mathrm{j}}\right) \mathrm{j}=1,2, \ldots, \mathrm{c}$. Y (the original zugeardnele 3 atm, (now usually called CHOW farm of V_{d}), (cf. §5 and [S]) is the conjugation condition of $\mathrm{d}+1$ hyperplanes and the WEIL-SIEGEL form N (cf. [SI]). (SIEGEL's Namalgleichung of V) is the conjugation condition of $\mathrm{d}+2$ hyperplanes $\left(u_{j}\right) \in \mathbb{P}\left(E^{v}\right) j=0,1, \ldots, d+1$, and one point (x) with respect to $\mathfrak{C}(V)$. In terms of the exterior algebra:
S, Y, N vanish if (cf. [BOU]) $x_{1} \wedge x \wedge \ldots \wedge x_{c}=0$ or $u_{1} \wedge \ldots \wedge u_{d+1}=0$ or $x \perp u_{1} \wedge \ldots \wedge u_{d+2}$ vanish. If this is not the case any non zero product
$\left.\bigwedge_{j=1}^{c} x_{j} \quad{ }_{j=1}^{d+1} u_{j} \quad x\right\lrcorner\left[{ }_{j=0}^{d+1} u_{j}\right]$
represents (in the well-known way) a projective subspace $\mathbb{P}_{\mathbf{c}-1} \subset \mathbb{P}_{\mathrm{n}}$. Then $\mathrm{S}=0$ (resp. $\mathrm{Y}=0, \mathrm{~N}=0$) iff such $\mathbb{P}_{\mathrm{c}^{-1}} \in \mathfrak{C}(\mathrm{~V}) . \mathrm{Cf} . \S 5,6$ for further details.

If $V=\quad \sum m_{I} I>0 \mid F_{V}$ is defined by $F_{I}=\prod_{I} F_{I} \quad(F=S, Y, N)$. In any I irr. $\operatorname{dim} \mathrm{I}=\mathrm{d}$
case the F is well defined up to a factor $\lambda \in \mathbb{C}^{\times}$.

In any case the restrictions $S_{J}\left|\Delta, Y_{J}\right| \Delta N_{J} \mid \Delta$ are well defined taking in (0.9) $\left(\mathrm{x}_{\mathrm{j}}\right) \in \Delta\left|\mathrm{u}_{\mathrm{j}}\right| \Delta, \mathrm{j}=1,2, \ldots$.

The condition $\mathrm{c} \leq \mathrm{n}$ of (0.7) - essential to define the previous restrictions to the diagonal space is not necessary in order to define the join $J=J\left(V^{(1)} \times \ldots \times V^{(h)}\right)$ of h irreducible varieties $V^{(j)} \subset \mathbb{P}(E), j=1,2, \ldots, h$ cf. DEF. 1.1, page 19. In the case $\mathrm{c}>\mathrm{n}$ the given varieties - in general position - do not meet but when $\mathrm{c}_{1}=\mathrm{c}_{2}=\ldots=\mathrm{c}_{\mathrm{h}}=1$ the existence and discussion of a non empty intersection

$$
\begin{equation*}
\bigcap_{\mathrm{j}=1}^{\mathrm{h}} \mathrm{~V} \neq \phi \tag{0.15}
\end{equation*}
$$

is precisely the goal of the old elimination theory! Accordingly we devote § 12 to such a problem also with arbitrary c_{j} 's - dut $c>0$. Under this hypothesis the compatibility condition (0.14) - equivalent to $\mathrm{J} \cap \Delta \neq \phi$ can be expressed by the following condition:

THEOREM II. The h given inteduciale arctics $V^{(j)} \subset \mathbb{P}_{n}, j=1,2, \ldots, h$ with $c=\sum^{n} c_{j}>n$ meed tiff the diagonal space Δ is singular far the complex $\mathfrak{C}(J)$ attached $\mathrm{j}=1 \mathrm{~J}=\mathrm{J}\left(\mathrm{V}^{(1)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}\right)\left(\Leftrightarrow\right.$ a cory $\mathbb{P}_{\mathrm{c}-1}$ satisfying $\Delta C \mathbb{P}_{\mathrm{c}-1}$ belongs ta $\left.\mathfrak{C}(\mathrm{J})\right)$.
In particular for $\mathrm{c}=\mathrm{n}+1$ we have:
The h varieties $\mathrm{V}^{(\mathrm{j})}$ meet tiff the diagonal space Δ dangs ta the complex $\mathfrak{C}(\mathrm{J})$ attached to the join $\mathrm{J}=\mathrm{J}\left(\mathrm{V}^{(1)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}\right)$.

This condition implies a single equation in the coefficients of F_{J} reducing to $R=0$ where $R=R\left(f_{1}, f_{2}, \ldots, f_{n+1}\right)$ is the resultant of the $n+1$ hypersurfaces $H_{1}, H_{2}, \ldots, H_{n^{+1}}$ if $c_{1}=c_{2}=\ldots=c_{n^{+1}}=1$.

In the case $c>n+1$ the singularity condition of Δ can be expressed by the identical vanishing of a covariant in agtooment with GRAM'S theorem of invariant theory, cf. [WE].

The distribution of matters is sufficiently indicated in the TABLE OF CONTENTS, page 2.

In the last part of the paper I review some results of the Author (cf. [G2.] [G3]) regarding a replacement of the usual KRONECKER elimination procedure by the explicit computation of the CAYLEY-SEVERI forms $S_{1}\left(x_{1}, x_{2}, \ldots, x_{c}\right)$ attached to anirreducible component $\mathrm{I}=\mathrm{I}^{\mathrm{c}}$ of codimension c of the ZARISKI-closed set represented by an arbitrary system

$$
\begin{equation*}
\mathrm{f}_{1}=0 \quad \mathrm{f}_{2}=0 \quad \ldots \ldots \mathrm{f}_{\mathrm{r}}=0 \tag{0.16}
\end{equation*}
$$

of homogeneous polynomial equations in the homogeneous coordinates $x_{0}, x_{1}, \ldots, x_{n}$ in \mathbb{P}_{n}. The method rests on the fact that the "elimination of the variables" $\mathrm{x}_{0}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{i}}$ represents geometrically the projection of a variety from a certain space of the projective
coordinate frame to the opposite face. If we replace these - indeed very particular projections - (essentially attached to the coordinate frame) by appropriate generic projections we obtain the indicated algorithm. But the easy hansition forsx the S ta the N farms gioes bach the ald KRONECKER elimination theory raith resped ta a gonoric frame " Φ " swilt in" in the farmulas, (instead of mentioning it but never written as before). I believe that this shows that the WEIL-SIEGEL forms are the best ones-although the CHOW forms seem to be the most famous. This inclusion of Φ is actually accomplished by means of an arbitrary basis $u_{0}, u_{1}, \ldots, u_{n}$ of \dot{E} acting as coordinate forms for points in

$$
\left.\left.\mathbb{P}(E) ; x \longmapsto\left(<u_{0}, x\right\rangle,\left\langle u_{1}, x\right\rangle, \ldots,<u_{n}, x\right\rangle\right) \in \mathbb{P}\left(\mathbb{C}^{n+1}\right)
$$

for a fixed projective frame with current coordinates functions $\left(\alpha_{0}, x_{1}, \ldots, x_{\mathrm{n}}\right)$.

In order to see that it suffices to represent the projection center \mathbb{P}_{c-2} defined in S_{c} by $x_{2} \wedge x_{3} \wedge \ldots \wedge x_{c}$ (with $\left(x_{1}\right)=(x)$ acting as a current variable point of the projecting cone of a V^{c} from \mathbb{P}_{c-2}) with hyperplane coordinates $u_{0}, u_{1}, \ldots, u_{d+1}$ in such a way that $x_{2} \wedge \ldots \wedge x_{c}$ and $\left.x\right\lrcorner u_{0} \wedge \ldots \wedge u_{d+1}$ are dual, i.e. they represent the same $\mathbb{P}_{\mathrm{c}-2}$.

We try to use standard notations as much as possible. Some non-standard ones are listed in the Notation sheet in page 0.

ACKNOWLEDGMENTS. The zuled join or join was introduced by the Author in [G.1] trying to compare $\mathrm{F}_{\mathrm{V}}, \mathrm{F}_{\mathrm{w}}$ with $\mathrm{F}_{\mathrm{V} \times \mathrm{W}}$ (or $\mathrm{F}_{\mathrm{V} \cdot \mathrm{W}}$ when the intersection cycle does exist) with the name pradalta rigata, but actually similar ideas were frequent in the Italian School also in symmetric squares; for instance the symmetric square of a smooth curve was represented frequently by the variety of chords containing the
tangential surface as representative of the diagonal. But it was necessary also to recover lost properties of the "zracifach prajettioc Racume" $\mathbb{P}_{\mathrm{m}, \mathrm{n}}$ remarking that the "point" ($\mathrm{v}, \mathrm{w})-(\lambda \mathrm{v}, \mu \mathrm{w})$ of $\mathbb{P}_{\mathrm{m}, \mathrm{n}}$ is essentially the same as the line $\lambda(\mathrm{v}, 0)+\mu(0, w)$ but certain natural subspaces, such as Δ do not appear in $\mathbb{P}_{\mathrm{m}, \mathrm{n}}$. Cf. $\S 1.2$ for more details. This constructions was also used by FULTON [F], [F-L] to illustrate his intersection theory and in the study of the topology of algebraic subvarieties of $\mathbb{P}_{\mathbf{n}}$. A few years ago VOGEL [V.1], [V.2], [F-V] tried successfully to recover the "length multiplicity" rejected previously for well-known reasons with a sort of reduction to the diagonal using the double projective space $\mathbb{P}_{\mathrm{m}, \mathrm{n}}$. KLEIMANN - in a letter to VOGEL [K] recammonded him to do precisely eahat I did in the jiin construction. As a consequence I am coming back to this old technique. I hope to establish a link of the exponent multiplicity (previously used by VAN DER WAERDEN's elementary cases of BEZOUT's theorem by means of resultants) with the length multiplicity. The pleasant atmosphere and the kind invitation of the BANACH Center of the Polish Academy of Sciences is certainly a good encouragement in this direction.

The last part (of page 68) is just sketched - although the methods are very similar to those of [G.2], [G.3]. We shall come back to this with full details in [G.3] with an application to the SCHOTTKY problem (where the SIEGEL form appears in [SI]).

I am indebted to the wonderful facilities of the Max-Planck-Institute in Bonn - in particular to the extreme patience of the typist Frau Wolf-Gazo who made a beautiful job with them.

I. GENERALITIESON JOINS

The reduction to the diagonal (cf. formula (1.1) below) introduced by C. SEGRE and SEVERI (fixed points of correspondences) and widely used later in Topology was applied by WEIL [W] and others to local intersection multiplicity theories. The global extension to varieties in a projective space has some difficulties due to the fact that the diagonal Σ is not anymore a linear space. Σ is a SEGRE variety:

$$
\Sigma=\mathbb{P}\left\{x \otimes n \mid x \in E-\{0\}, n \in \mathbb{C}^{h}-\{0\}\right\}
$$

cf. § 1,3 . We show [G.1], § 1, 2, 3 that a naturally chosen generator $\Delta \subset \underset{\neq}{\mathbb{E}} \subset \mathbb{P}\left(\mathrm{E} \otimes \mathbb{C}^{\mathrm{h}}\right)$.

$$
\begin{equation*}
\Delta=\mathbb{P}\{x \otimes(1,1, \ldots, 1) \mid x \in E-\{0\}\}=\mathbb{P}\{(x, x, \ldots, x) \mid x \in E-\{0\}\} \tag{1.0}
\end{equation*}
$$

plays the same role as in the affine case, although it is essential to introduce the space $\mathbb{P}\left(\mathrm{E} \otimes \mathbb{C}^{\mathrm{h}}\right)$ instead of the" h -fach prajetiive Raum" of [vdW1], [vdW-ZAG], [H-P]. The affine formulas (1.4) lead naturally to the (1.4)' suggesting the definition of the join (cf. DEF. 1.1) and the prajective reduction to the diaganal, cf. formula (1.10) in page 20.

1. THE "REDUCTION TO THE DIAGONAL". A PROJECTIVE VERSION.

Let $A_{j} \neq \phi, j=1,2, \ldots, h$ be h non empty subsets of an ambient set E. Let $I I=E \times E \times \stackrel{h}{\ldots} \times E$ be the $h^{\text {th }}$ Cartesian power of E. We have:

$$
\begin{equation*}
\delta\left(\bigcap_{j=1}^{h} A_{j}\right)=A_{1} \times A_{2} \times \ldots \times A_{b} \cap \Delta \tag{1.1}
\end{equation*}
$$

where $\delta: E \longrightarrow \Pi$ is the diaganal injectian $\delta(x)=(x, x, \stackrel{\stackrel{h}{4}}{\ldots}, \mathrm{x}), \forall x \in E$ and $\Delta=\delta(\mathrm{E})$ is the diaganal of Π.

This simple remark has many applications in algebraic Geometry and it is regarded as a "reduction" (in spite of the fact that $I I$ seems more complicated than E) because of the following reasons:
a). If E is an algedraic waricty and the A_{j} are all suboaricties, II is also an algedraic varicty and $\mathrm{A}_{1} \times \ldots \times \mathrm{A}_{\mathrm{h}}$ and Δ are algedraic suboarictics of II with Δ indepandont of the A_{j}.
b) The sudvaricties of Π are graphs of algedraic h -correspandonces an E , in particulat they might be graphs of maps and Δ is the graph of the idontity. If we can "move" II in an algebraic system, it is possible to move the A_{j} to generic positions $\overline{\mathrm{A}}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{~h}$ in such a way that we can predict geometric statements on the original A_{j} 's by a subsequent specialization.
c) In particular: if E is an affine spax, II is anathot ane and Δ is a lineat subspace of II with $\operatorname{dim} \mathrm{E}=\operatorname{dim} \Delta$. In this case $\delta(\mathrm{I})$ is an irreduciole campronont of $A_{1} \times \ldots \times A_{n} \cap \Delta$ is an irroduciale campanont of $\bigcap_{j=1}^{h} A_{j}$. Accordingly II $\cap \Delta$ is prapor $\bigcap_{\mathrm{j}=1}^{\mathrm{h}} \mathrm{A}_{\mathrm{j}}$ is prophot. Since the definition of the intersection multiplicities looks easier if one of the intersecting varieties is a linear space the diagonal provides a way to define

$$
\begin{equation*}
\mathrm{i}\left(\mathrm{~A}_{1} \cdot \ldots \cdot \mathrm{~A}_{\mathrm{h}} ; \mathrm{I}\right)=\mathrm{i}(\mathrm{II} \cdot \Delta ; \delta(\mathrm{I})) \tag{1.2}
\end{equation*}
$$

i.e.: It suffices ta hnova how lo definc i fat III $\Delta(\mathrm{h}=2)$ and Δ a lineat space. Cf. [W], [F]. The affine case is sufficient for all the local theories.

If E is a projective space \mathbb{P}_{n}, II and Δ are not prajedioc spaces, but SEGRE varictics, of. [SE], [H-P]. Howoust the explicit desoription of Δ in the affine case leads naturally ta the" join construction" (cf. Introduction) as follows: Let us assume $h=2$. Then Δ is characterized by the system of linear equations

$$
\begin{equation*}
\alpha_{\mathrm{j}}-y_{\mathrm{j}}=0 \quad \mathrm{j}=1,2, \ldots, \mathrm{n} \tag{1.3}
\end{equation*}
$$

if $\left(x_{1}, \ldots, x_{\mathrm{n}}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{\mathrm{n}}\right)$ are current affine coordinates in the two copies of E. If $f_{i}(x)=0$; and $g_{j}(x)=0$ are two systems of equations defining A_{1}, A_{2} the system

$$
\begin{equation*}
f_{j}(x)=0 \quad g_{h}(y)=0 \tag{1.4}
\end{equation*}
$$

defines $\mathrm{A}_{1} \times \mathrm{A}_{2}$. (1.4) and (1.3) logethor define II $\cap \Delta$.

In the projective case the x, y can be regarded as absolute coordinates in the \mathbb{C}-vector space $E=E_{n+1}$ or as homogeneous coordinates in $\mathbb{P}_{\mathrm{n}}=\mathbb{P}(\mathrm{E})$ and (1.3) is replaced by

$$
\operatorname{rank}\left[\begin{array}{llll}
x_{0} & \alpha_{1} & \cdots & \alpha_{\mathrm{n}} \tag{1.5}\\
y_{0} & y_{1} & \cdots & y_{\mathrm{n}}
\end{array}\right]=1 \Rightarrow\left|\begin{array}{ll}
x_{\mathrm{i}} & \alpha_{\mathrm{j}} \\
y_{\mathrm{i}} & y_{\mathrm{j}}
\end{array}\right|=0 \quad 0 \leq \mathrm{i} \leq \mathrm{j} \leq \mathrm{n}
$$

Then the (1.4) can be replaced by

$$
\begin{equation*}
f_{j}(\lambda x)=0 \quad g_{\mathrm{h}}(\mu \mathrm{y})=0 \tag{1.4}
\end{equation*}
$$

where all the f_{j} and g_{h} are homogeneous and λ, μ are two independent non zero proportionality factors. Moreover the equations (1.5) define the SEGRE variety representing $\mathbb{P}(E) \times \mathbb{P}\left(\mathbb{C}^{1}\right)\left(\Leftrightarrow\right.$ locus of $x \otimes(\lambda, \mu) \in \mathbb{P}(E \oplus E)=\mathbb{P}\left(E \otimes \mathbb{C}^{2}\right)$. Cf. § 3 for further details.

REMARKS

1) We do nat noed the hamagoncous equations $\mathrm{f}_{\mathrm{i}}(\mathrm{x})=0 \quad \mathrm{~g}_{\mathrm{j}}(\mathrm{y})=0$ anymare to establish (1.1).
2) A_{1}, A_{2} can be ardithary nan omply sudsels of $\mathbb{P}(E)$.
3) It suffices la definc the tha injections $i_{1}, i_{2}: i_{1}, i_{2} \longrightarrow \mathbb{P}(E) \longrightarrow \mathbb{P}(E \oplus E)$ by

$$
\begin{equation*}
\mathrm{i}_{1}(\mathrm{x})=(\mathrm{x}, 0) \quad \mathrm{i}_{2}(\mathrm{x})=(0, \mathrm{x}) \tag{1.6}
\end{equation*}
$$

$\mathrm{i}_{1}, \mathrm{i}_{2}$ have the following properties:

$$
\mathrm{i}_{1}(\mathbb{P}(\mathrm{E}))=\mathbb{P}(\mathrm{E} \oplus 0)=\mathbb{P}(\mathrm{E} \otimes(1,0))
$$

$$
\begin{equation*}
\mathrm{i}_{2}(\mathbb{P}(\mathrm{E}))=\mathbb{P}(0 \oplus \mathrm{E})=\mathbb{P}(\mathrm{E} \otimes(0,1)) \tag{1.7}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{i}_{1}(\mathbb{P}(\mathrm{E})) \cap \mathrm{i}_{2}(\mathbb{P}(\mathrm{E}))=\phi \tag{1.8}
\end{equation*}
$$

$$
\begin{equation*}
\Delta=\mathbb{P}(\mathrm{E} \otimes(1,1)) \tag{1.9}
\end{equation*}
$$

In other words the tha oapies of $\mathbb{P}(\mathrm{E})$ in $\mathbb{P}(\mathrm{E} \oplus \mathrm{E})=\mathbb{P}\left(\mathrm{E} \otimes \mathbb{C}^{2}\right)$ da nat moet; accordingly any ardored pait $(P, Q) \in \mathbb{P}(\mathrm{E}) \times \mathbb{P}(\mathrm{E})$ can be represonted by the line jaining $i_{1}(P)$ with $i_{2}(Q)$ and conversely any line jaining ane paint of $\mathbb{P}(E \oplus 0)$ with anathot ane of $\mathbb{P}(0 \oplus E)$ represonts a uniquely definod ardored pait (P, Q).

More generally we have the following formal definition of the join (used already before).

DEFINITION 1.1

4) The join of A_{1}, A_{2}, denoted by $J\left(A_{1} \times A_{2}\right)$, is the lacus of all (ahayss eadl definod!! lines pioining points of $i_{1}\left(A_{1}\right)$ each points of $i_{2}\left(A_{2}\right)$. In particular; $J(\mathbb{P}(E) \times \mathbb{P}(E))$ is the subuaricty of $\mathbb{P}(E \oplus E)$) consisting of lines joining points of $\mathbb{P}(E \oplus 0))$ and $\mathbb{P}(E \oplus 0))$.
5) The following natural generalizations are possible

$$
(\phi \neq) \mathrm{A}_{1} \subset \mathbb{P}(\mathrm{E}) \mid(\phi \neq) \mathrm{A}_{2} \subset \mathbb{P}(\mathrm{~F}) \Rightarrow \mathrm{J}\left(\mathrm{~A}_{1} \times \mathrm{A}_{2}\right) \subset \mathbb{P}(\mathrm{E} \oplus \mathrm{~F})
$$

because $i_{1}: \mathbb{P}(E) \longleftrightarrow \mathbb{P}(E \oplus F) i_{2}: \mathbb{P}(F) \longleftrightarrow \mathbb{P}(E \oplus F)$ are still valid.
6) We can consider any finite number h of non-emty subsets $A_{j} \subset \mathbb{P}\left(E_{(j)}\right) j=1,2, \ldots, h$.

We shall consider this general set up in § 2 in order to clarify the relationship between the diagonal subspace Δ and the diagonal variety Σ in § 3 .

The" reduction ta the diaganal "in $\mathbb{P}(\mathrm{E})$ has finally the falloraing oxpression:

$$
\begin{equation*}
\delta\left(A_{1} \times A_{2}\right)=J\left(A_{1} \times A_{2}\right) \cap \Delta \tag{1.10}
\end{equation*}
$$

where A_{1}, A_{2} are arbitrary non empty subsets of $P(E), \Delta$ is the diagonal space (cf. (1.9), and $\delta: \mathbb{P}(E) \longrightarrow \mathbb{P}(E \oplus E)$ is defined by (0.4), :

$$
\begin{equation*}
\delta(x)=((x, x)=(x \otimes(1,1)) \quad \forall x \in E-\{0\} \tag{1.11}
\end{equation*}
$$

REMARK

We see that in the formula (1.10) one needs the points of $\mathbb{P}(E \oplus E)$, for instance those $((\mathrm{x}, \mathrm{x})) \in \Delta$, not just the lines $\lambda(\mathrm{x}, 0)+\mu(0, y)$. Shis jistifies aut preforonce for the jein construction eathor that the use of the hoo-raay prajective opace $\mathbb{P}_{\mathrm{m}, \mathrm{n}}$; in $\mathbb{P}_{\mathrm{m}, \mathrm{n}}$ the previous line is the "point" $(\mathrm{x}, \mathrm{y}) \sim(\lambda \mathrm{x}, \mu \mathrm{y}), \lambda \neq 0, \mu \neq 0$.

2. RECALL OF THE JOIN OF h VARIETIES. RELATION WITH THE SEGRE

 MODEL OF THE PRODUCT $\mathrm{V}^{(1)} \times \mathrm{V}^{(2)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}$.Let $\mathbb{P}\left(E_{j}\right)=E_{j}-\{0\} / \mathbb{C}^{x}, j=1,2, \ldots, h$ be $h(\geq 2)$ complex projective spaces generated by the corresponding vector spaces E_{j}. Let $\mathbb{P}(S)$ be the quotient projective space of the direct sum

$$
\begin{equation*}
\mathrm{S}=\mathrm{E}_{1} \oplus \mathrm{E}_{2} \oplus \ldots \oplus \mathrm{E}_{\mathrm{h}} \tag{2.1}
\end{equation*}
$$

Let us call $S_{j}=\left(0, \ldots, E_{j}, \ldots, 0\right) \quad j=1,2, \ldots, h . \mathbb{P}(S)$ is the ambient projective space containing copies $\mathbb{P}\left(S_{j}\right)=i_{j}\left(\mathbb{P}\left(\mathrm{E}_{\mathrm{j}}\right), \mathrm{j}=1,2, \ldots, \mathrm{~h}\right.$ of the given spaces $\mathbb{P}\left(\mathrm{E}_{\mathrm{j}}\right)$ satisfying the following properties (already checked for $h=2$) :
a) Fou ow or adored h-tuple $\left(x_{1}, x_{2}, \ldots, x_{h}\right) \in \prod_{j=1}^{h} \mathbb{P}\left(E_{j}\right)$ the courespanding images $\mathrm{i}_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}}\right)(\mathrm{j}=1,2, \ldots, \mathrm{~h})$ are linearly indepondont'
b) The $\mathrm{S}_{\mathrm{h}-1}=\mathrm{S}_{\mathrm{h}-1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{h}}\right)$ space spammed dy the x_{j} med $\mathbb{P}\left(\mathrm{S}_{\mathrm{j}}\right)$ precisely in the paint x_{j} :

$$
S_{h-1} \cap \mathbb{P}\left(S_{j}\right)=x_{j} \quad j=1,2, \ldots, h
$$

As a consequence we have:
c) Shove is a bijection of $\prod_{\mathrm{j}=1}^{\mathrm{h}} P\left(\mathrm{E}_{\mathrm{j}}\right)$ with the subset
$\mathscr{F}\left(\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{j}}\right)\right) \subset \mathscr{q}\left(\mathrm{h}-1 ; \mathbb{P}\left(\mathrm{E}_{1} \oplus \ldots \oplus \mathrm{E}_{\mathrm{h}}\right)\right)$ of the shown \mathcal{q} rassmannian of $(\mathrm{h}-1)$ - spaces defined dy:

$$
\begin{align*}
& \mathscr{J}=\mathscr{H}\left(\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{j}}\right)\right)=\left\{\mathbb{P}_{\mathrm{h}-1} \subset \mathbb{P}\left(\mathrm{E}_{1} \oplus \ldots \oplus \mathrm{E}_{\mathrm{h}}\right) \mid \mathbb{P}_{\mathrm{h}-1} \cap \mathrm{i}_{\mathrm{j}}\left(\mathbb{P}\left(\mathrm{E}_{\mathrm{j}}\right)=\mathrm{x}_{\mathrm{j}},\right.\right. \tag{2.2}\\
& \mathrm{j}=1,2, \ldots, \mathrm{~h}\}
\end{align*}
$$

DEFINITION 2.1 $\mathrm{J}=\mathrm{J}\left(\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{h}}\right)\right)$ is defined in terms of $\mathbb{J}(\mathrm{cf} .(2.2))$ by

$$
\begin{equation*}
\mathrm{J}=\mathrm{J}\left(\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{h}}\right)=\left\{\mathbb{P}_{\mathrm{h}-1} \subset \mathbb{P}\left(\mathrm{E}_{1} \oplus \ldots \oplus \mathrm{E}_{\mathrm{h}}\right) \mid \mathbb{P}_{\mathrm{h}-1} \in \mathcal{J}\right\}\right. \tag{2.3}
\end{equation*}
$$

is called the ruled join (or just join) of the given spaces $\mathbb{P}\left(E_{1}\right), \mathbb{P}\left(E_{2}\right), \ldots, \mathbb{P}\left(E_{h}\right)$. DEF. 2.1 is the extension of DEF. 1.1 page 19 for any $h \geq 2$.

A vector of S is regarded as an ordered h-tuple ($v_{1}, v_{2}, \ldots, v_{h}$) with $v_{j} \in E_{j}$, $j=1,2, \ldots, h$ Let $i_{j}: E_{j} \longrightarrow S$ be the natural injection defined by

$$
\begin{equation*}
i_{j}(v)=(0,0, \ldots, v, \ldots 0) \quad v \in E_{j} \tag{2.4}
\end{equation*}
$$

where $i_{j}\left(\mathbb{P}\left(E_{j}\right)\right)=\mathbb{P}\left(S_{j}\right)=\mathbb{P}\left(0 \ldots, E_{j}, \ldots 0\right)$. We shall use the same symbol i_{j} for the corresponding maps between projective spaces.

$$
\begin{equation*}
i_{j}: \mathbb{P}\left(E_{j}\right) \longleftrightarrow \mathbb{P}(S) \quad i_{j}\left(\mathbb{P}\left(E_{j}\right)\right)=\mathbb{P}\left(S_{j}\right) \quad j=1,2, \ldots, h . \tag{2.5}
\end{equation*}
$$

It is easy to check both conditions a), b) for the h copies $\mathbb{P}\left(S_{1}\right), \mathbb{P}\left(S_{2}\right), \ldots, \mathbb{P}\left(S_{h}\right)$ of given projective spaces $\mathbb{P}\left(E_{j}\right)$. In fact any ordered h-tuple $\left(x_{1}, \times x_{2} \times \ldots \times x_{h}\right) \in \prod_{j=1}^{h} \mathbb{P}\left(E_{j}\right) \quad\left(\left(E_{j}-\{0\}\right) \quad\right.$ defines an h-tuple of linearly independent vectors $i_{j}\left(x_{j}\right) \in S_{j} \quad j=1,2, \ldots, h \quad\left(\Leftrightarrow \underset{j=1}{h} i_{j}\left(x_{j}\right) \neq 0\right)$. They define a subspace $S\left(x_{1}, x_{2}, \ldots, x_{h}\right)$ of dimension $h-1$ in $\mathbb{P}(S)$ - the projection in $\mathbb{P}(S)$ of the h -dimensional vector space locus of points of the type:

$$
\begin{equation*}
\left(\lambda_{1}\left(\mathrm{v}_{1}, 0, \ldots, 0\right)+\lambda_{2}\left(0, \mathrm{v}_{2}, \ldots, 0\right)+\ldots+\lambda_{\mathrm{h}}\left(0,0, \ldots, \mathrm{v}_{\mathrm{h}}\right)\right) \tag{2.6}
\end{equation*}
$$

in such a way that

$$
\begin{equation*}
S\left(x_{1}, \ldots, x_{h}\right) \cap \mathbb{P}\left(S_{j}\right)=\left(x_{j}\right) \quad j=1,2, \ldots, h \tag{2.7}
\end{equation*}
$$

and conversely.

Another $\left(y_{1}\right) \times \ldots \times\left(y_{h}\right) \in \prod_{j=1}^{b} \mathbb{P}\left(E_{j}\right)\left(E_{j}-\{0\}\right)$ defines the same $h-t u p l e ~ o f ~$ points in $\mathbb{P}\left(S_{1}\right) \times \ldots \times \mathbb{P}\left(S_{h}\right)$ and also the same S_{h-1} iff $y_{j}=\lambda_{j} x_{j} \quad \lambda_{j} \in \mathbb{C}{ }^{\times}$ $j=1,2, \ldots, h$, (i.e. iff $\left(x_{1}, x_{2}, \ldots, x_{h}\right) \sim\left(y_{1}, \ldots, y_{h}\right)$ as points of the " h-raay prajective spase of $\mathbb{P}_{\mathrm{n}, \mathrm{n}, \ldots, \mathrm{n}}$ (cf. Introduction, $[\mathrm{H}-\mathrm{P}],[\mathrm{vdW} 1],[\mathrm{vdW}-\mathrm{ZAG}]$); in other words:

$$
S\left(x_{1}, \ldots, x_{h}\right)=S\left(y_{1}, \ldots, y_{h}\right) \Leftrightarrow y_{j}=\lambda_{j} x_{j} \quad j=1,2, \ldots, h
$$

This construction leads to two modifications of DEF. 2.1 obtained taking into account rather than the $\mathbb{P}_{\mathrm{h}-1}$ of \mathscr{G} some set of points in $\mathbb{P}\left(\mathrm{E}_{1} \oplus \ldots \oplus \mathrm{E}_{\mathrm{h}}\right)$

DEF.2.1' The pre- join
$J_{p}=J_{p}\left(\mathbb{P}\left(E_{1}\right) \times \ldots \times \mathbb{P}\left(E_{h}\right)\right)=\left\{\left(\left(x_{1}, \ldots, x_{h}\right)\right) \in \mathbb{P}\left(E_{1} \oplus \ldots \oplus E_{h} \mid x_{j} \neq 0 j=1,2, \ldots, h\right)\right\}$.

DEF.2.2' The full- join J is the ZARISKI closure of J_{p} :

$$
\begin{equation*}
\mathrm{J}=\overline{\mathrm{J}}_{\mathrm{p}}=\frac{\mathrm{U} \mathbb{P}_{\mathrm{h}-1}}{\mathbb{P}_{\mathrm{h}-1} \in \mathcal{J}} \tag{2.3}
\end{equation*}
$$

However, in spite of the differences between $\mathscr{J}, \mathrm{J}_{\mathrm{p}}, \mathrm{J}$ the context will indicate without confusion which one we need, and we prefer the simplest notation J .

REMARK

The name ruled join ("pradatto rigata") is clear since an h-tuple of
$\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{h}}\right)$ is not represented by a point of another space but by a $\mathbb{P}_{\mathrm{h}-1}$, i.e. dy a line foe $h=2$ (cf. Introduction).

She praduct $\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{h}}\right)$ is reprecontod alsa by the quotient set

$$
\begin{equation*}
J_{p} / \sim=J_{p} / \mathbb{C}^{\times} \times \ldots \times \mathbb{C}^{\times}=\prod_{j=1}^{h}\left(E_{j}-\{0\} / \mathbb{C}^{\times} \times \ldots \times \mathbb{C}^{\times}\right. \tag{2.7}
\end{equation*}
$$

usually called the r-way prajective space $\mathbb{P}_{n_{1}, n_{2}}, \ldots, n_{h}$ where $n_{j}=\operatorname{dim} \mathbb{P}\left(E_{j}\right)$ by [vdW], [vdW-ZAG]; s. also [H-P].

REMARKS:

1) Since there is a bijection between "points" $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{h}}\right)$ of $\mathbb{P}_{\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, n_{h}}$ and ($\mathrm{h}-1$)-dimensional subspaces of type $\mathrm{S}\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{h}}\right)$ the relation between J_{p} $\mathrm{J}_{\mathrm{p}} / \sim=\mathbb{P}_{\mathrm{n}_{1}, \mathrm{n}_{2}}, \ldots, \mathrm{n}_{\mathrm{h}}$ and J is very close (cf. DEF. 2,1). The reason of our preference of J over $\mathbb{P}_{n_{1}, n_{2}}, \ldots, h_{h}$ is due to the fact that in the interpretation of the reductian to the diaganal (cf. § 1) we need J (rather than J_{p} or \mathcal{F}) and the subset $\Delta \subset \mathbb{P}(E \oplus \ldots \oplus E)$. (which do not belong to $\mathbb{P}_{n_{1}, \ldots, n_{h}}$). In other words the equivalonce relatian definsing $\mathbb{P}_{n_{1}}, \ldots, n_{h}$ laases the points of $\mathbb{P}(E \oplus \ldots \oplus E)$ nocded essontially in the reductians to the diaganal.

EXAMPLE. The product $\mathbb{P}_{1} \times \mathbb{P}_{1}=\mathbb{P}(E)(\operatorname{dim} E=2)$ is represented by the set (line congruonce) J of lines joining pairs of points of $\mathbb{P}\left(S_{1}\right)=\mathbb{P}(E \oplus 0)$ and
$\mathbb{P}\left(\mathrm{S}_{2}\right)=\mathbb{P}\left(0 \oplus \mathrm{E}_{2}\right)$. The two lines $\mathbb{P}\left(\mathrm{S}_{1}\right), \mathbb{P}\left(\mathrm{S}_{2}\right)$ do not meet and conversely any line of this congruonce detormines uniquely the pait of paints (A, B).

Fig. 1

The relation of the ruled model $J\left(\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{h}}\right)\right)$ with the usual SEGRE model $\boldsymbol{\Sigma}_{\mathbf{n}_{1}, \ldots, \mathbf{n}_{\mathrm{h}}}$ is very simple. It suffices to show it for $\mathrm{h}=2$:

Let $J(m, n)=J\left(\mathbb{P}_{m} \times \mathbb{P}_{n}\right)$ be the join and let $\left.\Sigma_{m, n} C \mathbb{P}\left(E_{1} \oplus E_{2}\right)\right)$ be the SEGRE model; let us recall that $\Sigma_{m, n}$ is the image of the set of ($\neq 0$) monomial elements $x \otimes y\left(x \in E_{1}, y \in E_{2}\right) \quad$ in the tensor product $E_{1} \otimes E_{2}$ by the canonical projection $E_{1} \otimes E_{2} \longrightarrow P\left(E_{1} \otimes E_{2}\right)$ in such a way that the pair $(x) \times(y) \in \mathbb{P}\left(E_{1}\right) \times \mathbb{P}\left(E_{2}\right) \quad$ is represented by $(x \otimes y) \in \mathbb{P}\left(E_{1} \otimes E_{2}\right)$. The Grassmann coordinates of the line joining ($\mathrm{x}, 0$) with $(0, \mathrm{y})$ are the two-minors of the matrix

$$
\left[\begin{array}{llllllll}
a^{0} & a^{1} & \ldots & a^{\mathrm{m}} & 0 & 0 & \ldots & 0 \tag{2.8}\\
0 & 0 & \ldots & 0 & y^{0^{\prime}} & y^{\prime} & \ldots & y^{n^{\prime}}
\end{array}\right]
$$

where we choose a couple of basis in $\mathrm{E}_{1}, \mathrm{E}_{2}$ labelling the coordinates with the indices $0,1, \ldots, m, 0^{\prime}, 1^{\prime}, \ldots, n^{\prime} ;$ we have $p^{i j}=p^{i^{\prime} j^{\prime}}=0$ but

$$
\begin{equation*}
p^{i j^{\prime}}=\alpha^{i} y^{j}=\text { coordinates of } x \otimes y \tag{2.9}
\end{equation*}
$$

In other words: She praducts $x^{i} y^{j}$ represanting the coardinates of $\mathrm{x} \otimes \mathrm{y}$ in a cannanical Lasis represont also the essontial Grassmann coardinates of the line jivining ($\mathrm{i}_{1}(\mathrm{x})$) with $\left(\mathrm{i}_{2}(\mathrm{y})\right)$.

Intrinsically: we can idontify $x \otimes y$ waith $i_{1}(x) \wedge i_{2}(y)$ inside $E_{1} \oplus E_{2}$; similarly we have for any $h \geq 2$

$$
\begin{align*}
& x_{1} \otimes x_{2} \otimes \ldots \otimes x_{h} \otimes i_{1}\left(x_{1}\right) \wedge i_{2}\left(x_{2}\right) \wedge \ldots \wedge i_{h}\left(x_{h}\right) \text { in } \tag{2.10}\\
& E_{1} \oplus E_{2} \oplus \ldots \oplus E_{h} \cdot C f .[S G],[B] .[H-P]
\end{align*}
$$

The join of h irreducible suboaricties $V^{(j)} \subset \mathbb{P}\left(\mathrm{E}_{\mathrm{j}}\right)$ is naturally defined by restriction as falloras:

DEF. 2.2 Let $\mathrm{i}_{\mathrm{j}}\left(\mathrm{V}^{(\mathrm{j})}\right) \subset \mathbb{P}\left(\mathrm{S}_{\mathrm{j}}\right)$ be the corresponding copies of the h given subvarieties. The jioin $\mathrm{J}\left(\mathrm{V}^{(1)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}\right)$ of $\mathrm{V}^{(1)}, \mathrm{V}^{(2)}, \ldots, \mathrm{V}^{(\mathrm{h})}$ is the restrictian of $\mathrm{J}=\mathrm{J}\left(\mathbb{P}\left(\mathrm{E}_{1}\right) \times \ldots \times \mathbb{P}\left(\mathrm{E}_{\mathrm{h}-1}\right)\right.$ to the $\mathbb{P}_{\mathrm{h}-1}$ sudspaces of J pinning points of the $i_{j}\left(V^{(j)}\right), j=1,2, \ldots, h$.
$\left(V^{(1)} \times \ldots \times V^{(h)}\right)=\left\{\mathbb{P}_{h-1} \in J\left(\mathbb{P}\left(E_{1}\right) \times \ldots \times \mathbb{P}\left(E_{h}\right)\right) \mid \mathbb{P}_{h-1} \cap S_{j}=\right.$ $\left.=V^{(j)} j=1,2, \ldots, h\right)$.

We shall use the following properties of $J\left(V^{(1)} \times \ldots \times V^{(h)}\right)$:

1) $J\left(V^{(1)} \times V^{(2)} \times \ldots \times V^{(h)}\right)$ is itreduciale if $V^{(j)}$ is irreducible (for $\mathrm{j}=1,2, \ldots, \mathrm{~h})$. Moreover:

$$
\begin{equation*}
\operatorname{dim} J\left(V^{(1)} \times V^{(2)} \times \ldots \times V^{(h)}\right)=d_{1}+d_{2}+\ldots+d_{h}+h-1 \tag{2.11}
\end{equation*}
$$

where $\mathrm{d}_{\mathrm{j}}=\operatorname{dim} \mathrm{V}^{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{~h}$.
2) $J\left(V^{(1)} \times \ldots \times V^{(h)}\right)=$

$$
=\bigcap_{j=1}^{h} J\left(\mathbb{P}\left(E_{1}\right) \times \ldots \times \mathbb{P}\left(E_{j-1}\right) \times V^{(j)} \times \mathbb{P}\left(E_{j+1}\right) \times \ldots \times \mathbb{P}\left(E_{h}\right)\right)
$$

3) The codimension c of $J\left(V^{(1)} \times \ldots \times V^{(h)}\right)$ in $\mathbb{P}\left(E_{1} \oplus \ldots \oplus E_{h}\right)$ is equal to the sum of the codimensions $c_{j}=n-d_{j}, j=1,2, \ldots, h$

$$
\begin{equation*}
c=c_{1}+c_{2}+\ldots+c_{b} \tag{2.12}
\end{equation*}
$$

3. CASE $n_{1}=n_{2}=\ldots=n_{\mathrm{h}}=\mathbf{n}$. THE DIAGONALS Σ, Δ

The case $E_{1}=E_{2}=\ldots=E_{h}=E, \quad S=E \oplus E \oplus \ldots \oplus E, \quad \operatorname{dim} E=n+1$ is particularly important in the intersection problems, because then we need to consider the representation of the abstract diagonal
$D=\left\{P_{1} \times P_{2} \times \ldots \times P_{n} \in \mathbb{P}(E) \times \mathbb{P}(E) \times \ldots \times \mathbb{P}(E) \mid P_{1}=P_{2}=\ldots=P_{h}\right\}$ in the abstract product D is represented by the SEGRE model $\Sigma_{n_{1} n_{2}, \ldots, n_{h}}$ is a VERONESE variety $V(D)$ (cf. [B])

$$
\begin{equation*}
V(D)=\left\{\lambda\left(x_{1} \otimes x_{2} \otimes \ldots \otimes x_{h}\right) \in \Sigma_{n, n}, \ldots, n \mid x_{1}=x_{2}=\ldots=x_{n} \neq 0\right\} \tag{3.1}
\end{equation*}
$$

In the join the image of $\left(\lambda_{1} \mathrm{x}\right) \times\left(\lambda_{2} \mathrm{x}\right) \times \ldots \times\left(\lambda_{\mathrm{h}} \mathrm{x}\right) \quad \lambda_{\mathrm{j}} \neq 0 \quad \mathrm{j}=1,2, \ldots$ is the subspace $S(x, x, \ldots, x)$, thus the image of D is

$$
\begin{equation*}
\Sigma_{\mathrm{D}}=\mathrm{U}\left\{\mathrm{~S}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{b}}\right) \mid \mathrm{x}_{1}=\mathrm{x}_{2}=\ldots=\mathrm{x}_{\mathrm{h}}\right\} \tag{3.2}
\end{equation*}
$$

$\boldsymbol{\Sigma}=\boldsymbol{\Sigma}_{\mathrm{D}}$ is a SEGRE aricly model of $\mathbb{P}(\mathrm{E}) \times \mathbb{P}\left(\mathbb{C}^{\mathrm{h}}\right)$. In order to see that it is convenient to introduce the following identifications:

$$
\begin{equation*}
S=E \otimes \mathbb{C}^{h} \quad S_{j}=E \otimes u_{j} \quad S=\underset{j=1}{\oplus} S_{j} \tag{3.3}
\end{equation*}
$$

where $u_{j}=(0,0, \ldots, \underbrace{j}_{1}, \ldots 0), j=1,2, \ldots, h$.

$$
\begin{equation*}
\left(x_{1} x_{2}, \ldots, x_{h}\right) \subset J \Leftrightarrow\left(x_{1} \otimes u_{1}, x_{2} \otimes u_{2} \ldots x_{h} \otimes u_{b}\right) \tag{3.4}
\end{equation*}
$$

(3.4) implies in the diagonal case $\mathrm{x}_{1}=\mathrm{x}_{2}=\ldots=\mathrm{x}_{\mathrm{h}}=\mathrm{x} \neq 0$.

$$
\begin{equation*}
\left(\lambda_{1} x, \lambda_{2} x, \ldots, \lambda_{\mathrm{h}} \mathrm{x}\right) \Leftrightarrow \mathrm{x} \otimes\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{h}}\right) . \tag{3.5}
\end{equation*}
$$

The generating spaces $\mathbb{P}(E) \otimes\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}\right)\left(\left(\lambda_{1}, \ldots, \lambda_{h}\right) \in \mathbb{P}\left(\left(\mathbb{C}^{h}\right)\right)\right.$ and $(\mathrm{x}) \otimes \mathbb{P}\left(\mathbb{C}^{\mathrm{h}}\right)$ are represented by

$$
\mathbb{P}\left\{x \otimes\left(\lambda_{1}, \ldots, \lambda_{h}\right) \mid x \in E\right\} \text { and } \mathbb{P}\left(x \otimes\left(\lambda_{1}, \ldots, \lambda_{h}\right) \mid\left(\lambda_{1}, \ldots \lambda_{h}\right) \in \mathbb{C}^{h}\right)
$$

respectively. The latter is the image of the abstract diagonal point $(x) \times(x) \times \ldots \times(x)$, i.e. by the span of the h copies of (x) in $\mathbb{P}\left(S_{j}\right) j=1,2, \ldots, h$. She farmot is a oopy of $\mathbb{P}(\mathrm{E})$, the copy maps being

$$
(\mathrm{x}) \longmapsto(\mathrm{x}) \otimes\left(\lambda_{1}, \ldots, \lambda_{\mathrm{h}}\right) .
$$

In particular we have the following distinguished copies

$$
\begin{gathered}
\mathbb{P}\left(\mathrm{S}_{\mathrm{j}}\right)=\mathbb{P}\left(\mathrm{E} \otimes \mathrm{u}_{\mathrm{j}}\right) \subset \Sigma_{\mathrm{D}} \quad \mathrm{j}=1,2, \ldots, \mathrm{~h} \\
\Delta=\mathbb{P}(\mathrm{E} \otimes(1,1, \ldots, 1))=\mathbb{P}\{(\mathrm{x}, \mathrm{x}, \ldots, \mathrm{x}) \mid \mathrm{x} \in \mathrm{E}\} \subset \Sigma_{\mathrm{D}} \subset \Gamma\left(\mathrm{E} \otimes \mathbb{C}^{\mathrm{h}}\right)
\end{gathered}
$$

Δ is the diagonal space (cf. Introduction) not to be confused with Σ_{D}.

She roduction to the diaganal for h auditary nan omply sudects $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ of $\mathbb{P}(\mathrm{E})$ has the final fors:

$$
\begin{equation*}
\delta\left(\bigcap_{j=1}^{h} A_{j}\right)=J\left(A_{1} \times A_{2} \times \ldots \times A_{h}\right) \cap \Delta \tag{3.6}
\end{equation*}
$$

where J is the full join: $J\left(A_{1} \times \ldots \times A_{h}\right)=\left\{\mathbb{P}_{h-1} \mid \mathbb{P}_{h-1} \in J\left(A_{1} \times A_{2} \times \ldots \times A_{h}\right)\right\}$.

Let us come back to our interesting case $A_{j}=V^{(j)}$ irreducible algebraic subvariety of $\mathbb{P}(E)$ of dimension d_{j} and codimension c_{j}. We know (cf. formula (2.12)) that $\operatorname{cod} J$ in $\mathbb{P}\left(E \otimes \mathbb{C}^{b}\right)$ is equal to $c=c_{1}+c_{2}+\ldots+c_{h}$. Then our discussions lead naturally to the two cases $\mathrm{c} \geq \mathrm{n}$ and $\mathrm{c}>\mathrm{n}$.

If $c \leq n$ is always $\cap V^{(j)} \neq \phi \Leftrightarrow J\left(V^{(1)} \times \ldots \times V^{(h)}\right) \cap \Delta \neq \phi$.

If $\mathrm{c}>\mathrm{n} \cap \mathrm{V}^{(1)}=\phi$ for the $\mathrm{V}^{(\mathrm{j})}$ in gonotic pasition \Leftrightarrow the diaganal space Δ does nat moet the jain:

$$
\begin{equation*}
J\left(V^{(1)} \times \ldots \times V^{(h)}\right) \cap \Delta=\phi \Leftrightarrow \bigcap_{j=1}^{h} V^{(j)}=\phi \tag{3.7}
\end{equation*}
$$

4. JOINS AND h-COLLINEATIONS.

The h-way projective space $\mathbb{P}_{n_{1}, n_{2}}, \ldots, n_{h}=\prod_{j=1}^{h}\left(E_{j}-\{0\}\right) / \mathbb{C}^{\times} \times \stackrel{h}{h} \times \mathbb{C}^{x}$ where $\operatorname{dim} E_{j}=n_{j}+1$ was introduced by VAN DER WAERDEN [Ch-vdW] to study the correspondences in $\mathbb{P}_{\mathrm{n}_{1}} \times \mathbb{P}_{\mathrm{n}_{2}} \times \ldots \times \mathbb{P}_{\mathrm{n}_{\mathrm{h}}}$ (cf. also [H-P], Vol. I, Chapter V, § 10 and specifically Vol. II, Ch XI). An irreducible correspondence in

$$
T T_{n_{1}, n_{2}}, \ldots, n_{h}=\mathbb{P}_{n_{1}} \times \ldots \times \mathbb{P}_{n_{h}}
$$

is an irreducible subvariety of this product. The natural way to study them is to introduce the systems of homogeneous polynomial equations; a polynomial $\mathrm{f} \in \mathbb{C}\left[\mathrm{x}^{(1)}, \mathrm{x}^{(2)} ; \ldots ; \mathrm{x}^{(\mathrm{h})}\right]$ (where $\mathrm{x}^{(\mathrm{j})}=\left(\mathrm{x}_{0}^{(\mathrm{j})}, \mathrm{x}_{1}^{(\mathrm{j})}, \ldots \mathrm{x}_{\mathrm{n}_{\mathrm{j}}}^{(\mathrm{j})}\right), \mathrm{j}=1,2, \ldots, \mathrm{~h}$) is called homogeneous of degree ($\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots, \mathrm{~m}_{\mathrm{h}}$) iff

$$
\begin{equation*}
f\left(\lambda_{1} x^{(1)}, \lambda_{2} x^{(2)}, \ldots, \lambda_{h} x^{(h)}\right)=\lambda^{\mathrm{m}_{1}}, \lambda_{z}^{\mathrm{m}_{2}} \ldots \lambda_{h}^{\mathrm{m}_{h}} f\left(x^{(1)}, \ldots, x^{(h)}\right) \tag{4.1}
\end{equation*}
$$

In the interpretation of the points of $\mathbb{P}_{n_{1}, n_{2}}, \ldots, n_{b}$ as (h-1)-subspaces of $J\left(\mathbb{P}_{n_{1}} \times \ldots \times \mathbb{P}_{n_{h}}\right)$ any subvariety of $\mathbb{P}_{n_{1}, \ldots, n_{h}}$ might be regarded as a Grasmannian subvariety:

$$
\mathscr{O} C \mathscr{g}\left(\mathbb{P}_{\mathrm{n}_{1}} \times \ldots \times \mathbb{P}_{\mathrm{n}_{\mathrm{h}}}\right) \subset \mathscr{g}\left(\mathrm{h}-1 ; \mathbb{P}\left(\mathrm{E}_{1} \oplus \ldots \oplus \mathrm{E}_{\mathrm{h}}\right)\right) .
$$

The transition of \mathscr{y} to J originates a ruled varicly

$$
\begin{equation*}
S={\underset{P}{h-1}}^{U} \in \mathscr{\mathscr { G }} \mathbb{P}_{\mathrm{h}-1} \tag{4.2}
\end{equation*}
$$

We shall omit the easy transition of the language developed in [H-P] for $\mathbb{P}_{n_{1}, n_{2}}, \ldots n_{h}$ to our "join" - interpretation with the exception of the h -collineations among h copies of $\mathbb{P}(E)=\mathbb{P}_{n}$: they have sasse special praporties clasely eclated ta the sudspaces of $\mathbb{P}\left(E \otimes \mathbb{C}^{\mathrm{h}}\right)$ which will onable us in $\S 10$ ta shova the equioalonce of the axpanan' multiplicity with VAN DER WAERDEN's.

Let us recall the following ones:
4) Let $P=\left(\mathbf{v}_{1}, v_{2}, \ldots, v_{h}\right) \in \mathbb{P}\left(E \otimes \mathbb{C}^{h}\right)$ be one point of $\mathbb{P}\left(J_{p}\right) \quad\left(\Leftrightarrow v_{j} \neq 0\right.$, $\mathrm{j}=1, \ldots$,) . Then there is one and only one $\mathbb{P}_{\mathrm{h}-1} \in \mathscr{f}(\mathbb{P}(\mathrm{E}) \times \ldots \times \mathbb{P}(\mathrm{E}))$ containing P .

Let $\mathrm{UCP}\left(\mathrm{J}_{\mathrm{p}}\right)$ be a J -unisecant waricty $\Leftrightarrow \mathrm{U}$ does not contain two different points belonging to the same $\mathbb{P}_{h-1} \in \mathcal{H}\left(\mathbb{P}_{\mathrm{n}} \times \ldots \times \mathbb{P}_{\mathrm{n}}\right)$. Shan U represonts in a natural rayy the same h -carrespandence that the ruled acricty R lacus of $\mathbb{P}_{\mathrm{h}-1} \in \mathcal{J}(\mathbb{P}(\mathrm{E}) \times \ldots \times \mathbb{P}(\mathrm{E}))$ mocting $\mathrm{U}:$

$$
R=\mathbb{P}_{\mathrm{h}-1} \in \mathrm{~J}(\mathbb{P}(E) \times \ldots \times \mathbb{P}(E)) \mid \mathbb{P}_{\mathrm{h}-1} \mathrm{U} \mathrm{U} \neq \phi .
$$

Let \mathscr{D} be the collineation group of $\mathbb{P}\left(E \otimes \mathbb{C}^{\mathrm{h}}\right)$ in itself represented by $\stackrel{n+1}{n^{+1}} \quad(n+1)$ homogeneous diagonal matrices: $\operatorname{diag}\left(\lambda_{1} \ldots \ldots \lambda_{1} ; \lambda_{2} \ldots \ldots \lambda_{2} \ldots, \lambda_{\mathrm{h}} \ldots \ldots . \lambda_{\mathrm{h}}\right.$) with h non zero scalars $\lambda_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{n}$.

Then U and γU represent the same correspondence for any $\gamma=\mathrm{D}_{\lambda_{1} \lambda_{2} \ldots \lambda_{\mathrm{h}}} \in \mathscr{D}$.

EXAMPLE

The diagonal space Δ has the two properties we want: $\Delta \in \mathbb{P}\left(J_{p}\right)$ and Δ does not contain two different points of the same $\mathbb{P}_{\mathrm{h}-1}$ of $\mathrm{J}(\mathbb{P}(\mathrm{E}) \times \ldots \times \mathbb{P}(\mathrm{E}))$. In this case $R_{\Delta}=\Sigma . \Delta$ and Σ represent both the diaganal (\Leftrightarrow "idontity") in the abstract product $\mathbb{P}(E) \times \ldots \times \mathbb{P}(E)$.

However there are other linear spaces $\mathbb{P}\left(E \otimes \mathbb{C}^{h}\right)$ having this property, for instance those (replacing Δ) obtained "moving" the h identifications)
$\mathrm{i}_{\mathrm{j}}: \mathbb{P}(\mathrm{E}) \longrightarrow \mathbb{P}\left(\mathrm{S}_{\mathrm{j}}\right)$. Let us replace them by h arbitrary non-degenerate collineations $\boldsymbol{\gamma}_{\mathrm{j}}: \mathbb{P}(\mathrm{E}) \longrightarrow \mathbb{P}\left(\mathrm{S}_{\mathrm{j}}\right), \mathrm{j}=1,2, \ldots, \mathrm{~h}$. Then we have: The correspondence $\boldsymbol{\gamma}$, locus of $\left(\gamma_{1}(\mathrm{P}), \gamma_{2}(\mathrm{P}), \ldots, \gamma_{\mathrm{h}}(\mathrm{P})\right) \mathrm{P} \subset \mathbb{P}(\mathrm{E})$ will be called a nan-degonotate h -collineation. It is represented by a SEGRE variety Σ_{γ} (reducing to Σ for $\gamma=i_{j}, j=1,2, \ldots, h$) whose vertical $(h-1)$-spaces belong to $J(\mathbb{P}(E) \times \ldots \times \mathbb{P}(E))$. Any horizontal one $H \neq \mathbb{P}\left(\mathrm{S}_{1}\right), \mathbb{P}\left(\mathrm{S}_{2}\right), \ldots, \mathbb{P}\left(\mathrm{S}_{\mathrm{h}}\right)$ represents γ, i.e. $\mathrm{HC}\left(\mathrm{J}_{\mathrm{p}}\right): \mathrm{H}$ has no two different points in the same $\mathbb{P}_{h^{-1}}$ of the join and $\mathrm{R}_{\mathrm{H}}=\Sigma_{\gamma}$.

In the case $\mathrm{h}=2 \gamma_{2} \gamma_{1}{ }^{-1}\left(\gamma_{1} \gamma_{2}{ }^{-2}\right)$ represent a collineation $\mathbb{P}\left(\mathrm{S}_{1}\right) \longrightarrow \mathbb{P}\left(\mathrm{S}_{2}\right)$ (or its inverse $\left.\mathbb{P}\left(\mathrm{S}_{2}\right) \longrightarrow \mathbb{P}\left(\mathrm{S}_{1}\right)\right)$.

Let us see this properties more closely using basis:
Let $B_{j}\left(u_{0}{ }^{(j)}, u_{1}{ }^{(j)}, \ldots, u_{n}{ }^{(j)}\right), j=1,2, \ldots, h$ be a basis of $E\left(\Leftrightarrow \wedge_{i=0} u_{i}{ }^{(j)} \neq 0 \quad j=1,2, \ldots, h=\right)$. Then we have:
ofuch h bases define a nan-degonorate h -callineatian where $\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{h}}\right)$ correspond if x_{j} has the same homogeneous coordinates in B_{j} for $\mathrm{j}=1,2, \ldots, \mathrm{~h}$. But the h vectors

$$
\left(u_{j}^{(1)}, u_{j}^{(2)}, \ldots, u_{j}^{(b)}\right) \in J=
$$

are linearly independent and they define a $S_{n} \mathbb{C} \mathbb{P}\left(\mathbb{E} \mathbb{C}^{b}\right)$. The h bases $\left(\lambda B_{1}, \lambda B_{2}, \ldots, \lambda B_{h}\right)$ define the same S for any $\lambda \neq 0$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{h}$ be h different non zero scalars. Then $\left(\lambda_{1} B_{1}, \lambda_{2} B_{2}, \ldots, \lambda_{h} B_{h}\right)$ define a different $S_{n}^{\prime}=D S_{n}$ where $D=D_{\lambda_{1}, \lambda_{2}} \cdots \lambda_{h}$. But S_{n} and S_{n}^{\prime} define the same h-collineation.

EXAMPLE. For $h=2$ we have:

If $(\lambda, \mu) \neq(0,0) \quad\left(\lambda B_{1}, \mu B_{2}\right)$ define a subspace S_{n-1} representing the non degenerate collineation $\left(\mathrm{B}_{1}, \mathrm{~B}_{2}\right)$. $\left(\lambda^{\prime}, \mu^{\prime}\right)$ defines the same $\mathrm{S}_{\mathrm{n}-1}$ iff $\left(\lambda^{\prime}, \mu^{\prime}\right)=\nu(\lambda, \mu)$.
$\left(B_{1}, B_{2}\right)$ and ($B_{1}^{\prime}, B_{2}^{\prime}$) define the same collineation iff $\quad B_{1}^{\prime}=B_{1} T \quad B_{2}^{\prime}=B_{2} T$ where T is a $(n+1) \times(n+1)$ matrix with $\operatorname{det} T \neq 0$.

Then we can see that $R_{S}=R_{S}$, is a SEGRE variety.

Let us introduce back coordinate systems ($\alpha_{0}, \infty_{1}, \ldots, \infty_{\mathrm{n}}$) in E as well as $\left(\alpha_{0}{ }^{(\mathrm{j})} \ldots{\alpha_{\mathrm{n}}}^{(\mathrm{j})}\right.$) in S_{j} interpreted as homogeneous coordinates when needed. Then for $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}$ non degenerate we can assign to any set of h non singular matrices $G_{1}, G_{2}, \ldots, G_{h}$ the n-subspaces S_{n} of $\mathbb{P}\left(E \otimes \mathbb{C}^{h}\right)$ generated by the $n+1$ rows of $G_{1} G_{2} \ldots G_{h}$. The non singularity condition $\operatorname{det} G_{j} \neq 0$ is equivalent to the fact that $S_{n} \cap\left(S_{j}\right)=\phi$ where

$$
\mathrm{S}_{\mathrm{j}}=\mathrm{E} \ldots \stackrel{\mathrm{E}}{ }_{\mathrm{J}^{\mathrm{j}}}^{\ldots} \mathrm{E} .
$$

Thus $\mathrm{S}_{\mathrm{n}} \subset \mathbb{P}\left(\mathrm{J}_{\mathrm{p}}\right) \Leftrightarrow \operatorname{det} \mathrm{G}_{\mathrm{j}} \neq 0$ for $\mathrm{j}=1,2, \ldots, \mathrm{n}$.

$$
\left(\mathrm{G}_{1} \mathrm{G}_{2} \ldots \mathrm{G}_{\mathrm{h}}\right) \text { and }\left(\mathrm{G}_{1} \mathrm{~T} \mathrm{G}_{2} \mathrm{~T} \ldots \mathrm{G}_{\mathrm{h}} \mathrm{~T}\right)
$$

are two different bases of S_{n} if $\operatorname{det} T \neq 0$, and we can assume either one $G_{j}=\mathbb{P}_{n}$. If $\lambda_{j} \neq 0$ for $j=1,2, \ldots, n\left(\lambda_{1} G_{1}, \lambda_{2} G_{2}, \ldots, \lambda_{h} G_{h}\right)$ defines $D_{\lambda_{1} \lambda_{2} \ldots \lambda_{h}} S_{n}$ with $\mathrm{D}_{\lambda_{1} \ldots \lambda_{\mathrm{h}}} \in \mathscr{D}$.

Let us forget now the condition $\operatorname{det} \mathrm{G}_{\mathrm{j}} \neq 0$ for some (or all j) but keeping the fact that rank $\left(G_{1}, G_{2} \ldots G_{h}\right)=n+1$. Then the condition $S_{n} \subset \mathbb{P}\left(J_{p}\right)$ fails $\Leftrightarrow S_{n}$ meets some $\mathbb{P}\left(S_{j}\right)$. However we can assign to S_{n} a correspondence $\Gamma\left(S_{n}\right)$ where $\left(x_{1}, x_{2}, \ldots, x_{h}\right) \in \Gamma$ iff the \mathbb{P}_{h-1} space $\left\{\lambda_{1} x_{1}+\mu_{2} x_{2}+\ldots+\mu_{h} x_{h}\right\}$ meets S_{n} (we cannot insure anymore that it meets in a single point.

EXAMPLE. Let S_{α}, S_{β} be two subspaces of $\mathbb{P}_{\mathbf{n}}$. Then $\mathrm{J}\left(\mathrm{S}_{\boldsymbol{\alpha}} \times \mathrm{S}_{\beta}\right)$ is a subspace of dimension $\alpha+\beta+1$ of $\mathbb{P}(\mathrm{E} \oplus \mathrm{E})$, but $\mathrm{J}\left(\mathrm{S}_{\alpha} \times \mathrm{S}_{\beta}\right) \cap \mathbb{P}\left(\mathrm{S}_{1}\right)=\mathrm{i}_{1}\left(\mathrm{~S}_{\alpha}\right)$
$J\left(S_{\alpha} \times S_{\beta}\right) \cap \mathbb{P}\left(S_{2}\right)=i_{2}\left(S_{\beta}\right)$ if $(x) \in S_{\alpha}(y) \in S_{\beta}$ the whole line $\lambda(x, 0)+\mu(0, y)$ is contained in $\mathrm{J}\left(\mathrm{S}_{\alpha} \times \mathrm{S}_{\beta}\right)$.

II. GENERALITIESONTHECOMPLEX $\mathbb{C}(V)$

ATTACHEDTOA VCP \mathbf{n}_{n}.

We shall complete with appropriate references some of the information already given in the Introduction. It is wellknown that not every complex in $\mathscr{G}(\mathrm{c}-1 ; \mathrm{n})$ is attached to a V.Such particular complexes are indeed very special; they will be called nucleated with nucleus V^{c}. The characteristic nuclearity conditions for a $\mathfrak{C} \subset \mathscr{y}(\mathrm{c}-1 ; \mathrm{n})$ can be expressed by a system of homogeneous polynomial equations the so called CHOW equations (cf. [Ch-vdW]) they are use; to prove that the set of positive cycles of codimension c in $\mathbb{P}_{\mathbf{n}}$ is ZARISKI closed.

5. THE COMPLEX $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ OF $\mathbb{P}_{\mathrm{c}-1}$. RECALL ON ZUGEORDNETE FORMEN.

The word camploc of oudspaces \mathbb{P}_{d} in $\mathbb{P}_{n}(0 \leq d \leq n)$ is used here in the XIX ${ }^{\text {th }}$ century sense-namely as a synonimous of \mathscr{q} rassmann divisat (in $\mathscr{y}\left(\mathrm{d} ; \mathbb{P}_{\mathrm{n}}\right)$). We identify \mathfrak{C} with its image in the Grassmann embedding

$$
\begin{equation*}
\mathscr{G}=\mathscr{G}(\mathrm{d} ; \mathrm{n}) \longleftrightarrow \mathbb{P}\left({ }^{\mathrm{d}} \dot{\Lambda}^{1} \mathrm{E}_{\mathrm{n}+1}\right) \quad \mathbb{P}_{\mathrm{n}}=\mathbb{P}\left(\mathrm{E}_{\mathrm{n}+1}\right) . \tag{5.1}
\end{equation*}
$$

A $\mathbb{P}_{d}\left(\subset \mathbb{P}_{n}\right)$ can be determined uniquely by $d+1$ linearly independent points in \mathbb{P}_{n} or by $\mathrm{n}-\mathrm{d}$ l.i. hyperplanes meeting at \mathbb{P}_{d}. Accordingly we define the conzergation canditians with respect to a complex \mathfrak{C} of d-spaces in $\mathbb{P}_{\mathbf{n}}$ as follows:

DEF. 5.1. $d+1$ linearly indepandont paints $P_{1}, P_{2}, \ldots, P_{d+1}$ of \mathbb{P}_{n} are called conjegate with respect ta \mathfrak{C} iff if the unique $S_{d} \ni P_{j}(j=1,2, \ldots, d+1)$ belongs to \mathfrak{C}

DEF. $5.2 \mathrm{n}-\mathrm{d}$ linearly indepandont hyporplanes $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{\mathrm{n}-\mathrm{d}}\left(\mathrm{C} \mathbb{P}_{\mathrm{n}}\right)$ are called conjegate with respect to \mathbb{C} iff the unique $S_{d}=H_{1} \cap H_{2} \cap \ldots \cap H_{n-d}$ Sclangs ta \mathfrak{C}.

The conjugation condition of $d+1$ points with respect to an irreducible $\mathfrak{C}(C \mathscr{G}(\mathrm{~d} ; \mathrm{n}))$ (cf. DEF. 5.1) can be determined by a single irreducible equation

$$
\begin{equation*}
F\left(x_{1}, x_{2}, \ldots, x_{d+1}\right)=0 \tag{5.2}
\end{equation*}
$$

where F is a polynomial homogeneous of the same degree g with respect to each one of the $d+1$ variable vectors $x_{j} \in E_{n+1}$ representing the points $P_{j}, j=1,2, \ldots, h$.

Similarly we have another plurihomogeneous form G (with the same g for the
$n-d$ variables $u j \in \check{E}$ (dual of E_{n+1}), such that

$$
\begin{equation*}
G\left(\mathbf{u}^{1}, \mathbf{u}^{2}, \ldots, \mathbf{u}^{\mathrm{n}-\mathrm{d}}\right)=0 \tag{5.3}
\end{equation*}
$$

characterizes the conjugation condition of the $H_{j}\left(=\mathbb{P}\left(u^{j}\right)\right), j=1,2, \ldots, n-d$; of DEF. 4.2. F and G can be written uniquely as \mathbb{C}-linear combination of standard monomials $\mathrm{p}(\mathrm{S}), \mathrm{q}(\Sigma)$ of degree g (cf. [H-P] vol. II, Ch. XIV, page 377) in the Grassmann coordinates of $\mathbb{P}_{d}\left(\mathbb{P}_{d}^{\perp}\right) p^{i_{1} i_{2}} \ldots i_{d+1},\left(q_{j_{1} j_{2}} \ldots j_{n-d}\right)$

$$
\begin{equation*}
F=\sum \lambda_{\mathrm{S}} \mathrm{p}(\mathrm{~S}) \quad \mathrm{G}=\sum_{\Sigma} \mu_{\Sigma} \mathrm{q}(\Sigma) \tag{5.4}
\end{equation*}
$$

F and G are uniquely detomined ly \mathfrak{C} (uf to a \mathbb{C}^{x}-factar). Accordingly $\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ or $\left(\mu_{1}, \mu_{2}, \ldots\right)$ are well defined homogeneous coordinates representing \mathfrak{C}. The procedure is extended to arbitrary positive Grassmann divisors by prime factor decomposition $F=\Pi \mathrm{F}_{\mathrm{j}} \quad, \quad \mathrm{G}=\Pi \mathrm{G}_{\mathrm{j}} \mathrm{m}_{\mathrm{j}}$. Both expressions (4.4) are not essentially different because of the well known identities between the p and q.

When $\mathfrak{C}=\mathbb{C}(V) \quad(\mathrm{d}=\mathrm{c}-1) \quad$ (cf. Introduction, page 6 and Abstract, page 4) these conjugation conditions (5.2), (5.4) define the CAYLEY-SEVERI form (or the CHOW farm respectively) of $\mathrm{V}=\mathrm{V}^{\mathrm{c}}=\mathrm{V}_{\mathrm{d}}$. We emphasize that the number of vectors (A belonging to E) in (5.2) is equal to the codimension c of V^{c}, thus it gives back the equation of $a V^{1}$ (i.e. of a hypersurface), for $c=1$. The CHOW forms of V contain a number of covectors (belonging to \check{E}) equal to $\operatorname{dim} V+1$. Then (5.2), resp. (5.3) represant the charadoristic canditions for a S ta mod V (where S_{c-1} is uniquely determined by c points, resp. as intersection of $d+1$ hyperplanes).

In order to introduce the formal definition for nucleated complexes (DEF. 5.5) we shall need to consider certain exceptional behaviour of points and S-spaces ($m>d$) with respect to a complex of d -spaces .

DEF. 5.3. Let P be a point of \mathbb{P}_{n}. P is called singular with respect to \mathfrak{C} ovary $S_{d} \ni P$ delangs la \mathfrak{C}.

DEF. 5.4. The subspace $\mathrm{S}_{\mathrm{m}}(\mathrm{m}>\mathrm{d})$ of \mathbb{P}_{m} is called singular with respect ta \mathfrak{C} ifforevy $\mathrm{S}_{\mathrm{d}} \subset \mathrm{S}_{\mathrm{m}}$ belongs to \mathfrak{C}. Cf. [S].

We shall introduce now formally the complex $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ attached to an introducible sudoaricty V^{c} of codimonsion c in \mathbb{P}_{n}. It is necessary to check first the following property:

The set

$$
\begin{equation*}
\mathfrak{C}\left(V^{c}\right)=\left\{\mathbb{P}_{c-1} \subset \mathbb{P}_{\mathrm{n}} \mid \mathbb{P}_{\mathrm{c}-1} \cap V^{c} \neq \phi\right\} \subset \mathscr{F}\left(\mathrm{c}-1 ; \mathbb{P}_{\mathrm{n}}\right) \tag{5.5}
\end{equation*}
$$

is an irreducible complex in $\mathscr{G}\left(\mathrm{c}-1 ; \mathbb{P}_{\mathrm{n}}\right)$. The variety V^{c} is the locus af singular points of $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ (cf. [S], [H-P], vol. I, II); ie. $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ is mudeated rath locus V^{c}.

DEF. 5.5. The set $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ defined by (5.6) is called the complex attached to V^{c}. EXAMPLES.

1) For $\mathrm{c}=1 \mathfrak{C}\left(\mathrm{~V}^{1}\right)$ is just the set of paints of the irreducible hyphorsurface $V^{1} \subset \mathbb{P}_{\mathrm{n}}$.
2) For $c=2 \mathbb{C}\left(\mathrm{~V}^{2}\right)$ is the set of lines orating V^{2}. For instance if $\mathrm{V}^{2}=\Gamma_{1}$ is an irreducible curve of $\mathbb{P}_{3}, \mathfrak{C}(\Gamma)$ is the complex of lines of \mathbb{P}_{3} meeting Γ.

DEF. 5.6 The canjegation sonditions of points (at hyfrotplaned) raith respect to $\mathfrak{C}\left(\mathrm{V}^{\mathrm{c}}\right)$ are callod the CAYLEY-SEVERI faras (ar CHOW - farm) of V^{c}.

$$
\begin{gather*}
S\left(x_{1}, \ldots, x_{c}\right)=0 \tag{5.6}\\
Y\left(u^{1}, u^{2}, \ldots, u^{d+1}\right)=0 \tag{5.7}
\end{gather*}
$$

Actually $\mathrm{Y}=0$ is the first systematic "sugeatdrete Fawn" (cf. [vdW-ZAG]) or assaciated form. In the case of an irreducible plane curve Γ the left hand side of (5.7) is the resultant $R(f ; u, v)$ where $f=0$ represents Γ and u, v are linear forms.

In the introduction we mentioned also the charactotistic form (WEIL) (or Harmalglachung) (SIEGEL) (valid also for a non nucleated \mathfrak{C}) containing dim V + 2 covectors and a single vector; in the general case we have this "mixed" equation:

$$
\begin{equation*}
\mathrm{N}\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{d}+2} ; \mathrm{x}\right)=0 \tag{5.8}
\end{equation*}
$$

REMARK

SEVERI pointed out in [S] that $S=0$ is the real generalization of the equation of an irreducible hypersurface V^{1}, since the number of vector variables equals the codimension. But $S=0$ was described by CAYLEY (as early as 1860) for conics in \mathbb{P}_{3} of $\left[C_{1}\right],\left[C_{2}\right]$. If we keep fixed $c-1$ linearly independent variables $a_{1} \ldots a_{c-1}$ in $\mathrm{S}=0$ in such a way that $\left(\mathrm{a}_{1} \wedge \ldots \wedge \mathrm{a}_{\mathbf{c}^{-1}}\right)$ does not meet V^{c} then

$$
\begin{equation*}
S\left(a_{1}, \ldots, a_{c-1} ; x\right)=0 \tag{5.9}
\end{equation*}
$$

represents the projecting cone of $\mathrm{V}^{\mathbf{c}}$ from $\mathbb{P}_{\mathbf{c}-2}$; accordingly $\mathrm{V}^{\mathbf{c}}$ is recovered from $\mathrm{S}=0$ as the intersection of all the projecting cones of V^{c} from the $\mathbb{P}_{\mathrm{c}-2}\left(\cap \mathrm{~V}^{\mathrm{c}}=\phi\right)$. If we replace $a_{1} \wedge \ldots \wedge a_{c-1} \in{ }^{c-1} E$ by the corresponding $u_{1} \wedge \ldots \wedge u_{d+2} \in \stackrel{\wedge}{\wedge}^{2} \dot{E}$ we have the WEIL-SIEGEL equation (5.8)

$$
\begin{equation*}
N\left(u_{1}, u_{2}, \ldots, u_{d+2} ; x\right)=0 \tag{5.10}
\end{equation*}
$$

representing $V^{c}=V_{d}$ as the intersection of all the projecting cones from generic spaces $\left(u_{1} \wedge \ldots \wedge u_{d+2}\right)$ non meeting V^{c}.

EXAMPLES (for an irreducible curve Γ in \mathbb{P}_{3})

$$
S\left(x_{1}, x_{2}\right)=0 \quad Y(u, v)=0 \quad N\left(u_{0}, u_{1}, u_{2} ; x\right)=0
$$

represent Γ wia the complex $\mathfrak{C}(\Gamma)$ (cf. Fig. 2), where a line $\ell \in \mathbb{C}(\Gamma)$ is defined by a couple of points (or of planes ($\mathrm{c}=2, \mathrm{~d}=1$). Γ appears as intersection of all its projecting cones from outside points $P=(a)=\left(u_{0} \wedge u_{1} \wedge u_{2}\right)$ given by a single $a \in E$ or as intersection of three linearly independent planes $\left(u_{0}\right),\left(u_{1}\right),\left(u_{2}\right)$

6. REVIEW ON ASSOCIATE FORMS. We shall recall here the main properties of the a.f. needed subsequently refering - for further details to the original papers [vdW-Ch], the Einführung [vdW 1] (with the $2^{\text {nd }}$ historical appendix), the ZAG book, H-P II, CH X, § 6, 7, 8 and SEVERI'S comments in his paper on Grassmannians [S]. First of all there are uniquely defined linear combinations of the standard power products of Grassmann coordinates $p^{i_{1} i_{2} \ldots i_{c}}$ (or $p_{j_{0}} j_{1} \ldots j_{d}$) of $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{c}$ (or $\left.u_{0} \wedge u_{1} \Lambda \ldots \wedge u_{d}\right)$ in $\AA \mathrm{E}$ (or $\left.{ }^{\mathrm{d}} \AA^{1} \dot{\mathrm{E}}\right)$ such that

$$
\begin{gather*}
S\left(x_{1}, x_{2}, \ldots, x_{c}\right)=S\left(x_{1} \wedge \ldots \wedge x_{c}\right) \tag{6.1}\\
Y\left(u_{0}, u_{1}, \ldots, u_{j}\right)=Y\left(u_{0} \wedge u_{1} \wedge \ldots \wedge u_{d}\right) \tag{6.2}
\end{gather*}
$$

and the transition between the right hand sides of (6.1), (6.2) is given by the well-known formulas of type

$$
S_{b}\left(x_{1}, x_{2}, \ldots, x_{c-k}\right)=S\left(x_{1}, x_{2}, \ldots, x_{c-k} b_{c-k+1} \ldots b_{c}\right)
$$

where S_{b} is the CAYLEY-SEVERI form of the projecting cone of V from the $S_{\mathbf{k}-1}$ - subspace represented by ($b_{c_{-\mathbf{k}+1}} \wedge \ldots \wedge \mathrm{~b}_{\mathbf{c}}$) with $\mathrm{S}_{\mathbf{k}-1} \cap \mathrm{~V}=\phi$. The identical vanishing takes place iff $\mathrm{S}_{\mathrm{k}-1} \cap \mathrm{~V} \neq \phi$.

In particular for $\mathbf{k}=\mathrm{c}-1$ we obtain back the original CAYLEY'S idea of representing V as intorsectian of all its prajecting oanes of V frasn S_{c-2} prajecting conlous not mocting V .

The fact that V is the locus of singular points of the complex $\mathbb{C}(V)$ gives raise to a canonical system of equations of V expressing the fact that for a point (a) $\in V$ the equation of the projecting cane froon (a) axnished idontically \Leftrightarrow (a) is a singular point of $\mathbb{C}(V)$.

In order to get the properties of the WEIL-SIEGEL form (chatactoristic farm $=$ Narmalglichung) it is convenient to represent the projection center $\mathrm{S}_{\mathrm{c}-2}(\cap \mathrm{~V}=\phi)$ as a complete intersection of $\mathrm{d}+2$ hyperplanes

$$
\left(u_{0}\right) \quad\left(u_{1}\right) \ldots . .\left(u_{d+1}\right) \quad(\in \mathbb{P}(\check{E})) .
$$

This will give us an identity of type:

$$
\begin{equation*}
S\left(x ; x_{2}, \ldots, x_{c}\right)=N\left(u_{0}, u_{1}, \ldots, u_{d+1} ; x\right) . \tag{6.4}
\end{equation*}
$$

We shall give a more explicit expression of (6.4) using the fact that we can write:

$$
\begin{equation*}
v_{0} \wedge v_{1} \wedge \ldots \wedge v_{d}=x \perp u_{0} \wedge u_{1} \wedge \ldots \wedge u_{d+1} \tag{6.5}
\end{equation*}
$$

(cf. [BOU]) if we normalize conveniently x, where the point (x) belongs to the intersection of the $d+2$ linearly independent hyperplanes $\left\langle u_{j}, x\right\rangle=0$, $j=0,1, \ldots, d+1$, namely

$$
\begin{equation*}
S\left(x ; x_{2}, \ldots, x_{c}\right)=N\left(u_{0}, u_{1}, \ldots, u_{d+1} ; x\right)=\mathbb{N}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{d+1}\right) \tag{6.4}
\end{equation*}
$$

$$
\begin{equation*}
\xi_{j}=\left\langle u_{j}, x\right\rangle=\sum_{1=0}^{n} u_{j 1} x_{1} \quad j=0,1, \ldots, d+1 \tag{6.6}
\end{equation*}
$$

The form \mathbb{N} contains coefficients depending on $u_{0}, u_{1}, \ldots, u_{d+1}$ that can be determined explicitly. (6.5) has the fallonsing torsartable geametric intorpretations:

Let $\mathbb{P}\left(E / \mathrm{E}_{\mathbf{c}-1}\right)$ be the quotient projective space of E with respect to the subspace E_{c-1} represented by $x_{2} \Lambda \ldots \wedge x_{c} \in{ }^{c} \Lambda^{-2} E \quad$ (which is also represented by $\left.\left.\left(v_{0} \Lambda \ldots \Lambda v_{d+1}\right)\right)\left(\epsilon{ }^{d} \dot{\Lambda}^{2} \dot{E}\right)\right)$.

$$
\begin{equation*}
\operatorname{dim} E / E_{c-1}=d+2 \Leftrightarrow \operatorname{dim} \mathbb{P}\left(E / E_{c-1}\right)=d+1 \tag{6.7}
\end{equation*}
$$

The $d+2$ forms u_{j} linearly independent of \dot{E} can be regarded also as forms in $E / E_{c_{-1}}$ because $E_{c^{-1}}$ is defined by $\left\langle u_{j}, x\right\rangle=0$ for, $j=0, \ldots, d+1$: $\left\langle u_{j}, x\right\rangle=\left\langle u_{j}, x+y\right\rangle \forall y \in E_{c-1}$.

As a consequence: The $\mathrm{d}+2$ farms $\xi_{\mathrm{j}}(\mathrm{j}=0,1, \ldots, \mathrm{~d}+1)$ axe hamagoneaus cactinates in the quationt prajectiace space $\mathbb{P}_{\mathrm{d}+1}=\mathbb{P}\left(\mathrm{E} / \mathrm{E}_{\mathrm{c}-1}\right)$ and.

The equation:

$$
\begin{equation*}
\mathbb{N}\left(\xi_{0}, \xi_{2}, \ldots, \xi_{\mathrm{d}+1}\right)=0 \tag{6.8}
\end{equation*}
$$

cf. (6.4)' represonts a hyprosurface madel of V_{d} lying in $\mathbb{P}_{\mathrm{d}+1}=\mathbb{P}\left(\mathrm{E} / \mathrm{E}_{\mathrm{c}-1}\right)$ whase paints are naturally mapped to the genotatars of the prajecting cane of V fram $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}-1}\right)$.

Since E_{c-1} can be any vector subspace of E such that $\mathbb{P}\left(E_{c_{-1}}\right) \cap V=\phi$ we have a refinement of CAYLEY'S idea in the sense that given ane of thase CAYLEY'S prajection contors $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}-1}\right)(\cap \mathrm{V}=\phi)$ (6.8) defines an ardinary equation of a hyfrorsurface $\mathrm{H}_{\mathrm{E}_{\mathrm{c}-1}}$ model of V , for arory chaice of forms $\mathrm{u}_{\mathrm{j}}(\mathrm{j}=0,1, \ldots, \mathrm{~d}+1)$ defining $\mathrm{E}_{\mathrm{c}-1}$.

The points of this hypersurface correspond bijectively with the $\mathbb{P}_{\mathrm{c}-1}$ generators of the CAYLEY cone of center $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}-1}\right)$. For a generic choice of $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}-1}\right)$ the generic generator of this projecting cone contains just one point of V, the exceptional ones correspond bijectively with the singular points of $\mathrm{H}_{\mathrm{E}_{\mathrm{c}-1}}$. In particular if $d=\operatorname{dim} V=n-1$ the $n+1$ linearly independent forms $u_{0}, u_{1}, \ldots, u_{n}$ in \dot{E} define a coordinate system in $\check{\mathrm{E}} \Rightarrow$ a projective system in \mathbb{P}_{n}; thus in this case

$$
\begin{equation*}
\mathfrak{N}\left(\left\langle u_{0}, x\right\rangle\left\langle u_{1}, x\right\rangle, \ldots,\left\langle u_{n}, x\right\rangle\right)=0 \tag{6.9}
\end{equation*}
$$

with $\left\langle u_{j}, x\right\rangle=\sum_{k=0}^{n} u_{j k} x^{k}$ defines the equation of the hypersurface V in this
coordinate system, or in the language of invariants:
(6.9) represonts all the passille equations of the hypotsurfase V far all the chaices with $u_{0} \wedge \ldots \wedge u_{n} \neq 0$.

EXAMPLES

In the case of Fig. 2, page 41, any triple of linearly independent linear forms u_{0}, u_{1}, u_{2} define a projective coordinate system with $\left(u_{j}\right)(j=0,1,2)$ as coordinate planes and $\left(u_{0}+u_{1}+u_{2}\right)$ as the unit "line" in the abstract plane $\mathbb{P}\left(E_{4} / E_{1}\right)$, where $\mathrm{P}=\mathbb{P}\left(\mathrm{E}_{1}\right)$ is any point of $\mathbb{P}_{3}=\mathbb{P}\left(\mathrm{E}_{4}\right)$ outside V intersection of the three planes $\left\langle\mathrm{u}_{\mathrm{j}}, \mathrm{x}\right\rangle=0$. The equations

$$
\mathbb{N}\left(\xi_{0}, \xi_{1}, \xi_{2}\right)=0 \quad N\left(\left\langle u_{0}, x\right\rangle,\left\langle u_{1}, x\right\rangle,\left\langle u_{2}, x\right\rangle\right)=0
$$

represent a model of V in $\mathbb{P}\left(\mathrm{E}_{4} / \mathrm{E}_{1}\right)$ or the projecting cone of V with vertex P .

REMARK

The explicit computation of \mathbb{N} in terms of \mathbf{S} can be achieved expressing (6.5) in coordinates; replacing $p^{i_{0} i_{1} \ldots i_{d}}$ by

$$
\begin{equation*}
p^{i_{0} i_{1} \ldots i_{d}}=\sum x^{i_{1}} q^{i_{0} i_{1} \ldots i_{d}} \tag{6.15}
\end{equation*}
$$

where $q^{j_{0} j_{1} \ldots j_{d+1}}$ are the coordinates of $x \downharpoonleft u_{0} \wedge u_{1} \wedge \ldots \wedge u_{d+1}$ leading to

$$
p^{i_{0} i_{1} \ldots i_{d}}=\left|\begin{array}{ccccc}
\left\langle u_{0}, x\right\rangle & u_{0 i_{0}} & u_{0 i_{1}} & \ldots & u_{0 i_{d}} \tag{6.10}\\
\left\langle u_{1}, x>\right. & u_{1 i_{0}} & u_{1 i_{1}} & \ldots & u_{1 i_{d}} \\
\vdots & \vdots & \vdots & \vdots: & \vdots \\
<u_{d+1}, x> & u_{d+1, i_{0}} & u_{d+1, i_{1}} & \cdots & u_{d+1, i_{d}}
\end{array}\right|
$$

III. APPLICATIONS

The construction of $J=J\left(V^{(1)} \times \ldots \times V^{(h)}\right), V^{(j)} C \mathbb{P}_{n}, j=1,2, \ldots, h$, has two natural applications depending on the codimension of J in $\mathbb{P}\left(\mathrm{E} \otimes \mathbb{C}^{\mathrm{h}}\right)$. Cf. (2.12), page 27; if $\mathrm{c} \leq \mathrm{n}$ the h given varieties $\mathrm{V}^{(\mathrm{j})}$ always meet in $\mathbb{P}_{\mathrm{n}}(\Leftrightarrow \Delta$ always meet J in $\mathbb{P}\left(E \otimes \mathbb{C}^{h}\right)$). If $c>n$ the given varieties do not meet $(\Leftrightarrow \Delta \cap J=\phi)$ if they are in generic position, but the discussion of their meeting gives a new form to the old "elimination theory" which can be made intrinsic. We shall divide the paper in two parts according to both possibilities:

In part I , page $46, \S 7,8,9,10$ we deal with the case $c \leq n$. If $S \in \mathbb{C}(J)$, $\mathrm{J}=\mathrm{J}\left(\mathrm{V}^{(1)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}\right)$, since $\operatorname{dim} \mathrm{S}=\mathrm{c}-1<\mathrm{n}$, it mates sonse ho inhraduce the restrictian ta the diaganal space Δ in $\mathbb{P}\left(\mathrm{E} \otimes \mathrm{C}^{\mathrm{b}}\right)$ (cf. § 3, page 27). Such a restriction is trivial $\left(\Leftrightarrow \mathscr{C}(\mathrm{J}) \mid \Delta=\mathscr{G}(\mathrm{c}-1 ; \Delta) \quad\right.$ iff the intersection $\hat{\mathrm{h}}^{\mathrm{h}} \mathrm{V}^{(\mathrm{j})}$ is imprapor. Otherwise, thore is a eadl defined compleac $\mathfrak{C}(\mathrm{J}) \mid \Delta$ ahase pult-dact ta $\mathbb{P}(\mathrm{E})$ by δ^{-1} gives the natural definition of $\mathfrak{C}(\mathrm{I})$, whore $\mathrm{I}=\mathrm{V}^{(1)} \cdot \mathrm{V}^{(2)} \cdot \mathrm{V}^{(\mathrm{h})}$ is the intorsection gycle. The prime factor decomposition gives the intersection multiplicity as the exponent of either one of S_{C}, Y_{C} or N_{C} (any two of them agree) for any irreducible component C of I . See our main definition DEF. 7.1, page 51. In particular we can prove BEZOUT'S theorem since $\operatorname{deg} J=\prod_{j=1}^{b} \operatorname{deg} V^{(j)}$ can be proved with a rigorous degeneration method using the characteristic transversality condition for multiplicity one.

She anonunoed equivalonce of the oxpanont intorsection multiplicity with the ariginal ane of VAN DER WAERDEN fallowas casily fram the intorpretation of the S_{n} subspaces of $\mathbb{P}\left(E \otimes \mathbb{C}^{h}\right)$ as represontationes of h-collineations (cf § 4).

FIRST PART

THE EXPONENT INTERSECTION MULTIPLICITY
7. RESTRICTION TO THE DIAGONAL OF $\mathfrak{C}\left(\mathrm{J}^{(} \mathrm{V}^{(1)} \times \mathrm{V}^{(2)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}\right), \mathrm{c} \leq \mathrm{n}$.

Let us come back to the constructions of § 0,1. Let $J=J\left(V^{(1)} \times \ldots \times V^{(h)}\right)$ be the join of the h shown irreducible varieties of codimensions c_{j} in \mathbb{P}_{n} satisfying (0.7). Let us consider the complex $\mathfrak{C}(J)$ of $(c-1)$ - dimensional subspaces of $\mathbb{P}\left(E \otimes \mathbb{C}^{\mathrm{h}}\right)=$ $=\mathbb{P}_{\mathrm{h}(\mathrm{n}+1)-1}$ attached to J :

$$
\begin{equation*}
\mathfrak{C}(\mathrm{J})=\left\{\mathbb{P}_{\mathrm{c}^{-1}} \subset \mathbb{P}\left(\mathrm{E} \otimes \mathbb{C}^{\mathrm{h}}\right) \mid \mathbb{P}_{\mathrm{c}^{-1}} \cap \mathrm{~J} \neq \phi\right\} \subset \mathscr{g}(\mathrm{c}-1 ; \mathrm{h}(\mathrm{n}+1)-1) \tag{7.1}
\end{equation*}
$$

then, since $\mathrm{c} \leq \mathrm{n}$ the restriction ta the n -dimensional diagonal space Δ :

$$
\begin{equation*}
\mathfrak{C}(\mathrm{J}) \mid \mathscr{G}(\mathrm{c}-1, \Delta) \tag{7.2}
\end{equation*}
$$

makes sense. We shall distinguish two cases:

1) If $\bigcap_{\mathrm{j}=1}^{\mathrm{h}} \mathrm{V}^{(\mathrm{j})}$ is imprapot \Leftrightarrow if thor is at least ane accodontary itreducialle
sampanont $\mathrm{X} \Leftrightarrow \operatorname{cod} \mathrm{X}<\mathrm{n}$ then

$$
\delta(\mathrm{X}) \cap \mathbb{P}_{\mathrm{c}^{-1}} \neq \phi, \quad \forall \mathbb{P}_{\mathrm{c}^{-1}} \subset \Delta
$$

2) On the contrary: If $\mathrm{h}_{\mathrm{j}} \mathrm{V}^{(\mathrm{j})}$ is propr ane can canshuct some subspace $\mathbb{P}_{\mathrm{c}_{-1}} C \Delta$ satisfying

$$
\delta\left(\cap v^{(\mathrm{j})}\right) \cap \mathbb{P}_{\mathrm{c}-1}=\phi .
$$

It suffices to take the diagonal image of a $\mathbb{P}_{\mathbf{c}-1}$ of $\mathbb{P}_{\mathbf{n}}$ not meeting $\bigcap_{\mathrm{j}=1}^{\mathrm{h}} \mathrm{V}^{(\mathrm{j})}$. In other words, we have proved the following:

LEMMA. She diagonal space Δ of $\mathbb{P}_{\mathrm{h}(\mathrm{n}+1)-1}$ (cf. §3) is a singulat space of \mathbb{C} (J) inf $\bigcap_{\mathrm{j}=1}^{\mathrm{h}} \mathrm{V}^{(\mathrm{j})}$ is improper. Othouaise the restriction of $\mathfrak{C}(\mathrm{J})$ ta Δ defines the oamplox (7.4) below which will be attached ba the intersection syce I by the formula

$$
\begin{equation*}
\mathfrak{C}(\mathrm{I})=\delta^{-1}(\mathrm{C}(\mathrm{~J}) \mid \Delta) \tag{7.4}
\end{equation*}
$$

where $\mathrm{I}=\mathrm{V}^{(1)} \cdot \mathrm{V}^{(2)} \cdot \ldots \cdot \mathrm{V}^{(\mathrm{h})}$.

MAIN DEFINITION 1:

DEF. 7.1 The complex of S_{c-1} subspaces of P^{n} defined dy (7.4) is called the complex attached to the (well-defined) intersection goy ede $\mathrm{I}=\mathrm{V}^{(1)} \cdot \mathrm{V}^{(2)} \cdot \ldots \cdot \mathrm{V}^{(\mathrm{b})}$ of the h giaor-praporly inforsecting-a varieties.

REMARK

The effective restriction $\mathfrak{C}(J)=\delta^{-1}(\mathfrak{C}(J) \mid \Delta)$ can be achieved by means of either one of the associated forms discussed in § 6, namely:

We know that the SEVERI form S_{J} attached to J contains c covariant vector variables $x_{1}, x_{2}, \ldots, x_{c}$. It suffices to take $x_{j} \in \Delta$ for $j=1,2, \ldots, c$ to get the desired restriction. For Y_{j} there are $d+1$ hyperplane variables representing a $\mathbb{P}_{c_{-1}} \in \mathfrak{C}(J)$ where $d=h(n+1)-1-c$. The corresponding number for a $\boldsymbol{P}_{c_{-1}} C \Delta$ is $n-c+1$. The difference $(n+1)(h-1)$ equals the number of equations of type

$$
\begin{equation*}
x_{j}^{(r)}-x_{j}^{(1)}=0 r=2, \ldots, h ; j=0,1, \ldots, n \tag{7.5}
\end{equation*}
$$

defining Δ. Thus, we shall define a $\mathbb{P}_{\mathbf{c}^{-1}} \subset \Delta$ with forms containing the (7.4). The rest define the same \mathbb{P}_{c-1} as a subspace of Δ.

Similarly the WEIL-SIEGEL form suffices to restrict the generic projection center of dimension $c-2$ - in the ambient space of J - to the diagonal subspace Δ.

In the three cases we have prime factor decompositions of $S|\Delta, Y| \Delta, N \mid \Delta$ with prime factors S_{C}, Y_{C}, N_{C} attached bijectively to all the proper irreducible components C of $\bigcap^{h} V^{(j)}$ and equal exponents i_{C} :

$$
\mathrm{j}=1
$$

$$
\begin{equation*}
S_{I}=\prod S_{C}{ }^{i}{ }^{\mathrm{C}} \quad Y_{I}=\prod T Y_{C}{ }^{i}{ }^{\mathrm{C}} \quad N_{I}=\prod T N_{C}{ }^{i}{ }^{\mathrm{C}} \tag{7.6}
\end{equation*}
$$

Such equality is indeed a consequence of the transformation formulas between S_{I}, Y_{I}, N_{I} studied in § 6.

MAIN DEFINITION 2

DEF. 7.2. The positive integer i_{C} well defined by either one of the (7.5) in an intrinsic way is called the axpanant intorsection multiplicity of C in I (cf. (7.4)).
8. COMPUTATION OF F_{J}. BEZOUT'S THEOREM. The computation of the CHOW form Y_{V} on any irreducible $V C P_{n}$ is based on the theory of the u-resultant (cf. [H-P], I). It can be applied to $\mathrm{J}=\mathrm{J}(\mathrm{V} \times \mathrm{W})$ when we give any two systems of equations in $(x),(y)$ to represent V and W. From Y_{V} we can construct S_{Y} and N_{V}. A direct computation of any S_{V} with $\operatorname{cod} \mathrm{V}=\mathrm{c}$ can be obtained by

$$
\begin{equation*}
S_{V}\left(x_{1}, x_{2}, \ldots, x_{c}\right)=\text { h.c.d }\left(\ldots, R_{k}, \ldots\right) \tag{8.1}
\end{equation*}
$$

where the R_{k} are resultant forms with respect to $\lambda_{1}, \ldots, \lambda_{c}$ in the equations

$$
\mathrm{f}_{\mathrm{k}}\left(\sum_{\mathrm{j}=1}^{\mathbf{c}} \lambda_{\mathrm{j}} \mathrm{x}_{\mathrm{j}}\right)=0
$$

obtained by the specialization $x \longmapsto \sum_{j=1}^{c} \lambda_{j} x_{j}$ in the equations $\ldots f_{k}(x)=0 \ldots$ representing V.

REMARK It is momartable, wory simple and essontially" now" (since the N-form is not widely used in the litorature) that the equation

$$
\begin{equation*}
N\left(\sum_{k=0}^{n} u_{j k} x_{k}\right)=0 \quad j=0,1, \ldots, d+1 \tag{8.2}
\end{equation*}
$$

can be abkioned inmediately absotaing that the heansondonce degree of the prajecting canc $\Gamma(\mathrm{V})$ of V is equal to $\mathrm{d}+1$. Accordingly: The $\mathrm{d}+2$ eestictions

$$
\left(\sum_{\mathbf{k}=0}^{\mathrm{n}}{u_{j k}} x_{k}\right) \mid \Gamma(V)
$$

$\mathrm{j}=0, \ldots, \mathrm{~d}+1$ are algedraically depondont.
For instance, let V be an irreducible algebraic curve in $\mathbb{P}_{\mathbf{n}}$. Then we write immediately an irreducible equation

$$
\begin{equation*}
F\left(\left\langle u_{1}, x\right\rangle,\left\langle u_{2}, x\right\rangle,\left\langle u_{3}, x\right\rangle\right)=0 \tag{8.3}
\end{equation*}
$$

representing V as intersection of all the projecting cones from \mathbb{P}_{n-3} - subspaces, complete intersections of the three hyperplanes.

$$
\begin{equation*}
\left\langle u_{j}, x\right\rangle=0, j=1,2,3 \tag{8.4}
\end{equation*}
$$

where $\left\langle\mathrm{u}_{\mathrm{j}}, \mathrm{x}\right\rangle=\sum_{\mathbf{k}=0}^{\mathrm{n}} \mathrm{u}_{\mathrm{jk}} \kappa_{\mathrm{k}}=0$.
In particular if V is a canonical curve - non hyperelliptic - of genus g in $\mathbb{P}_{\mathrm{g}-1}$ we can take three generic holomorphic differentials to define the WEIL-SIEGEL form. We shall apply elsewhere this remark to the SCHOTTKY problem, cf. [G.4].

REMARK

The following natural question arises; let F_{j} be associate forms (of the same kind S, Y, N) corresponding to h algebraic irreducible $V^{(j)} C \mathbb{P}_{n}$. Can we compute F_{J} in terms of the F_{j} ? (where $J=J\left(V^{(1)} \times \ldots \times V^{(h)}\right.$). If the $V^{(j)}$ are all hypersurfaces: $\mathrm{c}_{\mathrm{j}}=1$ and $\mathrm{c}=\mathrm{h} \leq \mathrm{n}$, the answer is positive because $\mathrm{F}_{\mathrm{J}}=$ Resultant form with respect to $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{0}$ of the c equations

$$
\begin{equation*}
F_{j}\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}+\ldots+\lambda_{\mathrm{c}} x_{c}\right)=0 \quad j=1,2, \ldots, c . \tag{8.5}
\end{equation*}
$$

If $h=c=2$ a good improvement can be made remarking that then the resultant of the two binary forms in (λ_{1}, λ_{2}) has the explicit well-known SYLVESTER form. Since the S and N a.f. represent a given irreducible V as complete intersection of projecting cones we can try to reduce the computation of F_{J} with $\mathrm{J}=\mathrm{J}(\mathrm{V} \times \mathrm{W})$ in terms of F_{V} and F_{W} to the previous case as follows: Let $\mathbb{P}_{c_{1}-2}$ and $\mathbb{P}_{c_{2}-2}$ be two generic projection centers for $V^{C_{1}}, W^{C_{2}}$ lying in $\mathbb{P}(E, 0)$ and $\mathbb{P}(0, E)$ respectively. Let $\mathrm{S}_{\mathrm{c}_{-1}}=\mathrm{J}\left(\mathrm{S}_{\mathrm{c}_{1}-1} \times \mathrm{S}_{\mathrm{c}_{2}-1}\right)$ be their join with $\operatorname{dim} \mathrm{S}_{\mathrm{c}-1}=\mathrm{c}-1, \mathrm{c}=\mathrm{c}_{1}+\mathrm{c}_{2}$ with $S_{c_{-1}} \supset \mathbb{P}_{\mathrm{c}_{1}-1}, \quad \mathrm{~S}_{\mathrm{c}-1} \supset \mathbb{P}_{\mathrm{c}_{2}-2} \quad$ and $\quad \mathrm{S}_{\mathrm{c}_{-1}} \supset \mathrm{~J}\left(\mathrm{~S}_{\mathrm{c}_{1}-2} \times \mathrm{S}_{\mathrm{c}_{2}-2}\right)=\sum_{\mathrm{c}-3}$. Then we can compute the equation of the projecting cone of $J(V \times W)$ from any \mathbb{P}_{c-2} joining \sum_{c-3} with any point (x) by means of a SYLVESTER determinant D :
where $\quad f=\operatorname{deg} V, \quad g=\operatorname{deg} W \quad$ and $\quad F(\lambda x+\mu y)=\sum_{j=0}^{f} a_{j} \lambda^{j} \mu^{f-j}$,
$G(\lambda x+\mu y)=\sum_{j=0}^{g} b_{j} \lambda^{j} \mu^{f-j}$ where $F(x)=0, G(x)=0 \quad$ are the equations of the projecting cones of $\mathrm{V}(\mathrm{W})$ from $\mathbb{P}_{\mathbf{c}_{-2}}\left(\mathbf{P}_{\mathbf{c}_{\mathbf{2}}-2}\right)$ respectively. An immediate consequence of this property is the following:

The degree of $\mathrm{J}(\mathrm{V} \times \mathrm{W})$ is equal ta the praduct of the degroes of $\mathrm{J}(\mathrm{V}), \mathrm{J}(\mathrm{W})$

$$
\begin{equation*}
\operatorname{deg} J(V \times W)=\operatorname{deg} V \cdot \operatorname{deg} W \tag{8.7}
\end{equation*}
$$

The intersection $J \cap \Delta$ has the same degree; accordingly we have:

BEZOUT'S THEOREM. Let V. M se the intorsectian oyde of tha inroducialle algedraic varictics $\mathrm{V}, \mathrm{W}_{\mathrm{c}_{\mathrm{n}}}$ onceting praporly. We have:

$$
\begin{equation*}
\operatorname{deg} V \cdot W=\operatorname{deg} V \cdot \operatorname{deg} W \tag{8.8}
\end{equation*}
$$

as a consequonce of (8.7).
9. ON THE PROOF OF THE THEOREMS. In the expository part of the introduction and in the exposition of the adaptation of the reduction to the diagonal in the projective case ($(1,2,3$) we gave already all the necessary ingredients to prove Th. I. but - since, there we lacked same technical tools, for instance the relation between the diagonal space Δ and the diagonal Σ, (cf. (9.1), below) the more precise recall on associate forms, etc.:

$$
\begin{equation*}
\sum=\text { SEGRE variety }=\mathbb{P}\left\{x \otimes\left(\lambda_{1} \ldots \lambda_{h}\right) \mid x \in E,\left(\lambda_{1} \ldots \lambda_{\mathrm{h}}\right) \in \mathbb{C}^{\mathrm{h}}\right\} \tag{9.1}
\end{equation*}
$$

with $\Delta=\mathbb{P}(E \otimes(1,1, \ldots, 1))$ - it is convenient for the reader to have now a complete version of the proof. On the other hand with the same procedure we shall prove also Th . II, although we shall come back to it in § 12.

Proof of Th. I: If the set-theoretic intersection $\bigcap_{j=1}^{h} V c_{j}$ with $c=\sum_{j=1}^{h} c_{j} \leq n$ is improper there is at least one excedentary irreducible component \mathbf{X} of codimension less than c ; as a consequence every $\mathbb{P}_{\mathrm{c}^{-1}} \subset \mathbb{P}_{\mathrm{n}}$ meets I ; this is equivalent to the fact that every $\mathbb{P}_{\mathrm{c}_{-1}} C \Delta$ meets $\delta(\mathrm{I})$ i.e. Δ is a singulat spax fot $\mathfrak{G}(\mathrm{J}(\mathrm{C})$), where

$$
\mathscr{f}(\mathrm{C}) \leq \mathscr{y}\left(\mathrm{c}-1 ; \mathbb{P}\left(\mathrm{E} \otimes \mathbb{C}^{\mathrm{b}}\right)\right) .
$$

cf. DEF. 5.4 page 37.

On the other hand iff ${ }_{\mathrm{h}}^{\mathrm{h}} \mathrm{V}^{\mathrm{c}_{\mathrm{j}}}$ is proper it is always possible to find a $\mathbb{P}_{\mathrm{c}-1} \subset \mathbb{P}_{\mathrm{n}}$ $\mathrm{j}=1$
such that $\mathbb{P}_{\mathrm{c}-1} \cap\left(\mathrm{~h}_{\mathrm{h}} \mathrm{V}^{(\mathrm{j})}\right)=\phi$. This implies there exists some $\mathbb{P}_{\mathrm{c}-1} C \Delta$ which do not meet $J\left(V^{(1)} \times \ldots \times V^{(b)}\right)$; in other words eac have a preapot restriction ta Δ of the compleax $\mathfrak{C}(\mathrm{J})$ attached to J iff \cap is proper ; such restriction can be effectively computed by restriction to Δ of either one of the equivalent form S_{J}, Y_{J}, N_{J}. The prime factor decompositions determine uniquely the exponents of the irreducible factors C (cf. § 5,6); each irreducible factor has the form S_{C}, Y_{C} on N_{C} appearing with the same well defined exponent

$$
i_{I}=i\left(V^{(1)}, v^{(2)}, \ldots, V^{(h)} ; I\right) .
$$

10. EQUIVALENCE OF THE EXPONENT MULTIPLICITY WITH VAN DER WAERDEN'S THEORY.

The exponent multiplicity theory enables an easy transition (in both directions) between the so-called static and the dymaric multiplicity theories, (cf. [F]) roughly speaking it is equivalent ta smave the intorsecting sarictics V, W ar to mave the diaganal space Δ. But Δ belong to $\mathscr{f}(n ; 2 n+1)$ and such mation is quite well understood. On the other hand a generic $S_{n} \subset \mathbb{P}(E \oplus E)$ represents a non singular collineation γ in \mathbb{P}_{n} (where S_{n}, S_{n}^{\prime} represent the same collineations iff they are equivalent under the group \mathscr{D}) of collineations of $\mathbb{P}(\mathrm{E} \otimes \mathrm{E})$ in itself (cf. § 4).

The original VAN DER WAERDEN'S multiplicity theory (cf. ZAG-papers, the historical survey [vdW2] and [H-P] (vol. II)) relies precisely in a motion of the pair (V, W) of irreducible subvarieties in \mathbb{P}_{n} to $\left(\gamma_{1}, \mathrm{~V}, \gamma_{2}, \mathrm{~W}\right)$ by means of generic collineations $\gamma_{1}, \gamma_{2} \vdash \mathbb{P} G L(E) \quad\left(\gamma_{1}, V, \gamma_{2}, W\right)$ gives essentially the same as ($\gamma \gamma_{1} \mathrm{~V}, \gamma \gamma_{2} \mathrm{~W}$) where $\gamma \in \mathrm{GL}(\mathrm{E})$, thus we can consider also ($\mathrm{V}, \gamma_{1}^{-1} \gamma_{2} \mathrm{~W}$) or ($\gamma_{2}^{-1} \gamma_{1}, \mathrm{~V}, \mathrm{~W}$) (with the inconvenience of a subsequent proof of the symmetry of $\mathrm{i}(\mathrm{I} ; \mathrm{V} . \mathrm{W})$ when we permute V and W . Anyway the intersection multiplicity $\mathrm{i}(\mathrm{I} ; \mathrm{V} . \mathrm{W})$ (for I irreducible component of V W) is defined in vdW s' theory by spezialization when $\left(\gamma_{1} \boldsymbol{\gamma}^{\prime}\right) \longrightarrow$ Identity.

The equivalence of the exponent multiplicity with van der WAERDEN'S appears naturally when we replace the motion of γ with the (equivalent) "motion of Δ ". We shall make explicit this equivalence:

We recall that a non singular collineation $\boldsymbol{\gamma}: \mathbb{P}_{\mathrm{n}} \longrightarrow \mathbb{P}_{\mathrm{n}}\left(\mathbb{P}_{\mathrm{n}}=\mathbb{P}(\mathrm{E})\right)$ is uniquely defined by a pair of bases B, B^{\prime} where $\gamma=\mathbb{P}(L), L \in G L(E)$ and L is uniquely
defined by $B^{\prime}=L B$. Let us construct the $n+1$ vectors

$$
\begin{equation*}
\left(b_{j}, b_{j}^{\prime}\right) \in E \oplus E \quad j=0,1, \ldots, n \tag{10.1}
\end{equation*}
$$

They form a basis of the subspace $E \oplus E$. The bases $\left(\lambda_{1} B_{1}, \lambda_{2} B_{2}\right), \lambda_{1}, \lambda_{2} \in C^{\times}$ define another subspace $\mathrm{D}_{\lambda_{1}, \lambda_{2}} \mathbf{L}$ representing the same collination $\gamma=\mathbb{P}(\mathrm{L})$ as L . $\mathrm{D}_{\lambda_{1}, \lambda_{2}} \mathrm{~L}=\mathrm{L}$ iff $\lambda_{1}=\lambda_{2}$.

Two points $\mathrm{P}=(\mathrm{x}), \mathrm{P}^{\prime}=\left(\mathrm{x}^{\prime}\right)$ correspond in γ iff

$$
\begin{equation*}
x=\sum_{0}^{n} \lambda_{j} b_{j} \quad x^{\prime}=\sum_{0}^{n} \lambda_{j} b_{j}^{\prime} \tag{10.2}
\end{equation*}
$$

with $\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{n}\right) \neq(0,0, \ldots, 0) ;\left(x, x^{\prime}\right) \in \mathbb{L}$.
Conversely any point $(\neq 0) .\left(x, x^{\prime}\right) \in \mathbb{L}$ defines a pair of corresponding points $(x),\left(x^{\prime}\right)$ in \mathbb{P}_{n}.

The set-theoretic intersection $\mathbb{L} \cap \mathrm{J}(\mathrm{V} \times \mathrm{W})$ can be interpreted as the set of pairs $(\mathrm{x}) \times\left(\mathrm{x}^{\prime}\right) \in \mathrm{V} \times \mathrm{W}$ with $\left(\mathrm{x}^{\prime}\right)=\gamma(\mathrm{x})$. The specialization $\gamma \longrightarrow$ id, will give back $\Delta \cap \mathrm{J}(\mathrm{V} \times \mathrm{W})$ leading to the natural definition of the intersection cycle $\mathrm{V} \cdot \mathrm{W}$.

The precise nature of the equivalence between the exponent multiplicity and the original VdW's can be retraced quoting the following paragraph of the historical survey [vdW] or the Einführung [vdW] (page 276):" bphlying a prajectioc hansformation": "thorefare I prapased in 1928 la buing V and W inta a gonotic relative pasition by applying to ane of thon a prajectioc hansfarmation T with indetorminate caefficionts. The transfarmed raviely T inforsects W in a finite numbor of paints. If T is specialized to the identity, the points of intorsection of T V and W spayialize to
paints of intoscection of V and W . If V and W ancel in a finsic numbor of paints, cach of these appeass with a cortain muttiplicity, which may be definod bo be the intorsection mulliplicity ..."

In order to adapt VdW's words to our procedure with the join in $\mathbb{P}(E \oplus E)$ let us assume now $\operatorname{dim} V . W=0 \Leftrightarrow c=n$. Then to the projective T let us associate the $S_{n} \subset \mathbb{P}(E \oplus E)$ defined by the $n+1$ points of the $(n+1) \times 2(n+1)$ matrix:

$$
\begin{equation*}
\left(1_{n+1} T\right) \tag{10.3}
\end{equation*}
$$

where 1_{n+1} is the $(n+1) \times(n+1)$ unit matrix. The sperialization $T \longrightarrow$ Identity spezializes (10.3) to ($\mathbf{1}_{n+1} \mathbf{1}_{n^{+1}}$) defining the diagonal space.

In the general case for any $c<n$, the intersection of $J(V \times W) \cdot S_{c}$ reduces the problem to $J\left(V . S_{c} \times W . S_{c}\right) \subset S_{c}$ where $V . S_{c} \subset S_{c}, W . S_{c} \subset S_{c}$ and we have again the previous case: dim V.W $=0$.

In the discussion with the complex $\mathfrak{C}(J)$, we need to consider a variable $\mathrm{S}_{\mathrm{c}-1}$. The same reduction to V. $S_{c-1} \times W \cdot S_{c-1} C \mathbb{P}\left(E_{c} \oplus E_{c}\right)\left(S_{c^{-1}}=\mathbb{P}\left(E_{c}\right)\right.$ leads to a case discussed in PART II of this paper, because now for the varieties in generic position $\mathrm{V} \cdot \mathrm{S}_{\mathrm{c}-1} \cap \mathrm{~W} \cdot \mathrm{~S}_{\mathrm{c}-1}=\phi \quad$ and $\quad \operatorname{cod} \mathrm{J}\left(\mathrm{V} \cdot \mathrm{S}_{\mathrm{c}^{-1}} \times \mathrm{W} \cdot \mathrm{S}_{\mathrm{c}-1}\right)$ in $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}} \oplus \mathrm{E}_{\mathrm{c}}\right)$ is equal to $\mathrm{c}=\operatorname{dim} \mathrm{S}_{\mathrm{c}-1}+1$.

11. BEZOUT'S THEOREM WITH A NEW DEGENERATION METHOD

The original discovery of the property.

$$
\begin{equation*}
\operatorname{dig} F . G=\mathrm{f} \mathbf{g} \quad \mathbf{f}=\operatorname{deg} \mathbf{F}, \mathrm{g}=\operatorname{deg} \mathbf{G} \tag{11.1}
\end{equation*}
$$

of the intersection cycle F.G of two irreducible algebraic curves in \mathbb{P}_{2} was obtained in a pure heuristic - non rigorous way - by degeneration of F, G in generic sets of f (resp. g) different lines-intersecting together in fg simple points. I don't believe that anybody thought of this remark as a proof, but it has been always interesting whether this can be transformed indeed in a proof. We shall show here that by means of a certain degeneration (not of F, G, but of a secant space of complementary dimension) we can prove that

$$
\begin{equation*}
\operatorname{deg} J(V \times W)=\operatorname{deg} V . \operatorname{deg} W \tag{11.2}
\end{equation*}
$$

where V, W are again two irreducible varieties $V \subset \mathbb{P}\left(E_{1}\right), W \subset \mathbb{P}\left(E_{2}\right)$. In fact at is well known that we can chose subspaces $L \subset \mathbb{P}\left(E_{1}\right), \quad M \subset \mathbb{P}\left(E_{2}\right)$ such that the intersection cycles consists of different simple points:

$$
\begin{equation*}
\text { V.L }=P_{1}+P_{2}+\ldots+P_{f} \quad \text { W.M }=Q_{1}+Q_{2}+\ldots+Q_{g} \tag{11.3}
\end{equation*}
$$

$\mathrm{f}=\operatorname{deg} \mathrm{V}, \mathrm{g}=\operatorname{deg} \mathrm{W} \quad \mathrm{P}_{\mathrm{i}} \neq \mathrm{P}_{\mathrm{j}}, \mathrm{Q}_{\mathrm{i}} \neq \mathrm{Q}_{\mathrm{j}} \mathrm{i} \neq \mathrm{j}$.

On the other hand the join $J(L \times M)$ is a subspace of $\mathbb{P}\left(E_{1} \oplus E_{2}\right)$ of dimension equal to $\operatorname{cod} V+\operatorname{cod} W+1$. The set theoretic intersection consists of fg lines $J\left(\mathbb{P}_{i} \times Q_{j}\right)$.

$$
\begin{gather*}
J(V \times W) \cap J(L \times N)=U J\left(P_{i} \times Q_{j}\right) \tag{11.4}\\
i=1,2, \ldots, f \quad j=1,2, \ldots, g
\end{gather*}
$$

The transversality criterion for multiplicity one in each P_{i} or Q_{j} implies the transversality condition for the line $J\left(P_{i} \times Q_{j}\right)$. As a consequence we have:

$$
\begin{gather*}
J(V \times W) . J(L \times N)=\sum J\left(P_{i} \times Q_{j}\right) \tag{11.5}\\
i=1,2, \ldots, f \quad j=1,2, \ldots, g
\end{gather*}
$$

In the same way we can see that we can choose a hyperplane $\sum u_{i} x_{i}+\sum v_{j} y_{j}=0$ in $\mathbb{P}\left(E_{1} \oplus E_{2}\right)$ transversal to each fixed $J\left(P_{i} \times Q_{j}\right)$ because the opposite implies

$$
\begin{equation*}
\lambda\left(\Sigma u_{k} \xi_{k}^{(i)}\right)+\mu\left(\Sigma v_{i} \eta_{1}^{(j)}\right)=0 \tag{11.6}
\end{equation*}
$$

where $\mathrm{i}=1,2, \ldots, \operatorname{deg} \mathrm{~V}, \mathrm{j}=1,2, \ldots, \operatorname{deg} \mathrm{~W}$.

SECOND PART: c>n

Let us consider now the case $c>n$. Then if the given irreducible $V^{(j)} C \mathbb{P}_{n}$ are generically located the intersection is empty, i.e. we have

$$
\begin{equation*}
\bigcap_{j=1}^{\mathrm{h}} \mathrm{~V}^{(\mathrm{j})}=\phi \Leftrightarrow \mathrm{J}\left(\mathrm{~V}^{(1)} \times \ldots \times \mathrm{V}^{(\mathrm{h})}\right) \cap \Delta=\phi \tag{11.7}
\end{equation*}
$$

The complex $\mathfrak{C}(J)$ consists then of spaces of dimension $c-1 \geq n$ and our task is just to express the exceptional behaviour:

$$
\begin{equation*}
\bigcap_{\mathrm{j}=1}^{\mathrm{h}} \mathrm{~V}^{(\mathrm{j})} \neq \phi \Leftrightarrow \mathrm{J} \cap \Delta \neq \phi \tag{11.8}
\end{equation*}
$$

in terms of associate forms.
The extreme case $c=n+1$ appears in our treatment because then a $\mathbb{P}_{\mathbf{c}^{-1}}$ is a \mathbb{P}_{n} and in particular the alternative (11.7) or (11.8) is equivalent to the diaganal apax Δ does not belong ta $\mathfrak{C}(\mathrm{J})$ iff the inforsectian is amply or $\Delta \in \mathbb{C}(\mathrm{J})$ itf $\mathrm{h}^{\mathrm{h}} \mathrm{V}^{(\mathrm{j})} \neq \phi$.
$\mathrm{j}=1$
For $\mathrm{c}>\mathrm{n}+1$ the property $\Delta \cap \mathrm{J} \neq \phi$ implies that every $\mathbb{P}_{\mathrm{c}-1}$ containing Δ meets \mathbf{J} :

$$
\mathbb{P}_{\mathrm{c}_{-1}} \supset \nRightarrow \mathbb{P}_{\mathrm{c}_{-1}} \cap \mathrm{~J} \neq \phi
$$

but the converse property is true:

If owory $\mathbb{P}_{\mathrm{c}-1} \supset \Delta$ mocts J then Δ mocts J (equivalently if $\Delta \cap \mathrm{J}=\phi$ it is passidle ta find a $\mathbb{P}_{\mathrm{c}-1} \supset \Delta$ such that $\mathbb{P}_{\mathrm{c}-1} \cap \mathrm{~J}=\phi$. This property leads naturally ta express the candition $\mathrm{J} \cap \Delta \neq \phi$ by the idontical oanishing of a cocratiant, as indicated in the introduction.
12. A GEOMETRICAL THEORY FOR RESULTANT SYSTEMS.

In the particular case $\mathrm{c}_{1}=\mathrm{c}_{2}=\ldots=\mathrm{c}_{\mathrm{h}}=1, \mathrm{~h}=\mathrm{c}>\mathrm{n}$ came dact ta the compatitility conditions of a systors of $h=c>n$ hamagonesus prolynamial equations

$$
\begin{equation*}
F_{1}=0 \quad F_{2}=0 .: \therefore \quad F_{h}=0 \tag{12.0}
\end{equation*}
$$

af degroes $m_{1}, m_{2}, \ldots, m_{h}$.
It is well-known that in the extreme case $\mathrm{c}=\mathrm{n}+1=\mathrm{h}$ the compatibility conditions are characterized by the vanishing on a single equation

$$
\begin{equation*}
\mathbf{R}=0 \tag{12.1}
\end{equation*}
$$

where R is a ploynomial homogeneous of degree m / m_{j} in the $\left[\begin{array}{c}n+m_{j} \\ n\end{array}\right]$ indeterminate coefficients of a generic form of degree m_{j} where

$$
\begin{equation*}
m=m_{1} m_{2} \ldots m_{n+1} \tag{12.2}
\end{equation*}
$$

$\mathrm{R}=0$ is equivalent to $\Delta \cap \mathrm{J} \neq \phi$ where

$$
\mathrm{J}=\mathrm{J}\left(\mathrm{H}_{1} \times \ldots \times \mathrm{H}_{\mathrm{n}+1}\right)
$$

as before and $\mathrm{F}_{\mathrm{j}}=0$ defines the irreducible hypersurface $\mathrm{H}_{\mathrm{j}}, \mathrm{j}=1,2, \ldots, \mathrm{n}+1$.
Thus in the general case $c=n+1$, the characteristic condition $J \cap \Delta \neq \phi$ $\Leftrightarrow \in \mathbb{C}(\mathrm{J})$ is a generalitzation of the equation $\mathbf{R}=0$.

In the case $c>n+1$ we checked already in the introduction that $\Delta \cap J \neq \phi$ is equivalent to the identical vanishing of the CAYLEY-SEVERI form S_{J}

DEF. 5.6 page 39) for $U_{0}, U_{1}, \ldots, U_{n}, X_{1}, X_{2}, \ldots, X_{c-n-1}$ where

$$
\mathrm{h}
$$

$U_{j}=\left(u_{j}, u_{j}, \ldots, u_{j}\right) \in \Delta, j=0,1, \ldots, n$ and the x_{1} are arbitrary vectors of $E \otimes \mathbb{C}^{h}$; $1=1,2, \ldots, c-n-1$, i.e.

$$
\begin{equation*}
\mathrm{S}_{\mathrm{J}}\left(\mathrm{U}_{0}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{n}} ; \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{c}-\mathrm{n}-1}\right) \equiv 0 \tag{12.3}
\end{equation*}
$$

iff $\mathrm{h}^{\mathrm{h}} \mathrm{V}^{(\mathrm{j})} \neq \phi \Leftrightarrow \mathrm{J}\left(\mathrm{V}^{(1)} \times \ldots \mathrm{V}^{(\mathrm{h})}\right) \cap \Delta \neq \phi$.
$\mathrm{j}=1$
In particular in the "elimination case" again $c_{1}=c_{2}=\ldots=c_{h}=1, h=c>n+1$ the condition (12.2) is a covariant in the coefficients of the forms F_{j} of degree m_{j} containing $c-n-1$ arbitrary series of variables $X_{1}, X_{2}, \ldots, X_{c-n-1}$. The coefficients of the power products in these X 's gives a system of resultant forms. We hope to study in the near future the relation between this invariant-theoretic approach and the classical ones.

AN INTRINSIC ELIMINATION THEORY

13. HISTORICAL APPROACH. The elimination theory has been completely "eliminated" from algebraic Geometry! I believe that the main reason is that it was not intrinsic enough; as a matter of fact it was always presented in relation with a coordinate system. For instance the HENZELT-NOETHER sophistication of the KRONECKER elimination method was presented as follows: ($[\mathrm{H}-\mathrm{N}]$).
"Let $\mathfrak{m} \subset K\left[\propto_{1}, \ldots, \infty_{\mathrm{n}}\right]$ be a polynomial ideal. We can associate to \mathfrak{m} a "resultant form"

$$
\begin{equation*}
\mathrm{R}_{\mathrm{m}}=\mathrm{R}^{(1)}\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right) \ldots \mathrm{R}^{(\mathrm{i})}\left(\alpha_{\mathrm{i}}, \ldots, \alpha_{\mathrm{n}}\right) \ldots \mathrm{R}^{(\mathrm{n})}\left(\alpha_{\mathrm{n}}\right) \equiv 0(\mathrm{~m}) \tag{13.1}
\end{equation*}
$$

in such a way that R vanishes for all the solutions of m and only for them. If $n \supset m$ and $R_{m}=R_{n}$ then $m=n . "$

We can appreciate that the α_{i} are explicitly used in the statement and in a given order.

The geometrical meaning of the $R^{(i)}$ is clear. $R^{(1)}$ represents the irreducible components of $\mathrm{V}=\mathrm{V}(\mathrm{m})$ of dimension equal to one precisely if

$$
\begin{equation*}
R^{(1)}=\prod T_{\mathbf{r}_{\mathbf{k}}}^{\mathrm{m}_{\mathbf{k}}} \tag{13.2}
\end{equation*}
$$

the hypersurface $\mathrm{F}_{1 \mathrm{k}}=0$ is an irreducible hypersurface contained in the solution variety $\mathrm{V}=\mathrm{V}(\mathrm{m})$ and conversely any such hypersurface appears as a prime factor of $\mathrm{R}^{(1)}, \mathrm{R}^{(2)}\left(\alpha_{2}, \ldots, \alpha_{\mathrm{n}}\right)=0$ represents the projection in the hyperplane $x_{1}=0$ of the locus of irreducible components of codimension two, and

$$
\mathrm{R}^{(\mathrm{i})}\left(x_{\mathrm{i}}, x_{\mathrm{i}+2}, \ldots, x_{\mathrm{n}}\right)=0
$$

appears as the projection in the coordinate space $\alpha_{1}=0, \alpha_{2}=0, \ldots, \alpha_{i-1}=0$ of the locus of irreducible components of $\mathrm{V}=\mathrm{V}(\mathrm{m})$ of codimension equal to $\mathrm{i}: \mathrm{i}=1,2, \ldots, \mathrm{n}$. More precisely if we want to deal again with projective varieties in $\mathbb{P}_{\mathbf{n}}$ we need to introduce the homogeneous coordinates $x_{0}, x_{1}, \ldots, x_{\mathrm{n}}$ and to assume that m is homogeneous. Besides it is necessary ba assume that the prajective frame of reforonce is gonotically lacated raith respect ha V. If this is not the case it is necessary ta apply proviously a gonoric prajective hansfarmation ta achiouc this goal. We emphasize that:

Huch gonoric prajedive soardinate changes more now witton in the natations; as a consequence they did not appear in the formulas; accordingly the results are wrongly applied when the reference frame is badly located with respect to the variety defined by (12.0) again the results are misleading.

The fact that the homogeneous $\mathbf{R}^{(1)}=\mathbf{R}\left(\alpha_{i-1}, \ldots, \alpha_{n}\right)$ appear as a projection from the coordinate space joining the vertices $P_{0}, P_{1}, \ldots, P_{i-2}$ (assumed previously as "well-located") suggests naturally the idea of projecting the locus $\Gamma^{(i)}$ of irreducible components of V of codimension equal to i from a generic $\mathbb{P}_{\mathrm{i}-2}$. But this is CAYLEY'S idea. As a consequence the Author in the two papers $\left[\mathrm{G}_{2}\right]$, $\left[\mathrm{G}_{3}\right]$ replace the original problem of "elimination" by the following one:
sed

$$
\begin{equation*}
F_{j}=c \quad j=1,2, \ldots, r \tag{13.3}
\end{equation*}
$$

Le an axdituary basis of the hamagonoous ideal m. We shall sampute the CAYLEY-SEVERI forms $S^{(i)}$ of $\Gamma^{(i)} ; i=1,2, \ldots$.

$$
\begin{equation*}
S^{(1)}(x)=0 \quad S^{2}\left(x_{1}, x_{2}\right)=0, \ldots, \quad S^{(i)}\left(x_{1}, \ldots, x_{1}\right)=0 \ldots . \tag{13.4}
\end{equation*}
$$

following the same steps as the traditional KRONECKER elimination methad.

The first step is obvious; $S_{1}=h \cdot c \cdot d\left(F_{1}, F_{2}, \ldots, F_{r}\right)$ i.e. the hypersurface component appears in the same way as in the KRONECKER method. The elimination of one variable (which one?) depends on the choice of a well-located (\Leftrightarrow not belonging to $\Gamma^{(2)}$) vertex of the projective frame. If we choose a generic projection center (y)
we are reduced to the first step again because such a cone has codimension one. This can be achieved in an elementary way writing $F_{j}=S{ }^{(1)} G_{j}$, then $G_{j}=G_{j}(\lambda x+\mu y)$ and a resultant system in (λ, μ) :

$$
\begin{equation*}
G_{2 \mathbf{k}}(x, y)=0 \quad k=1,2, \ldots, r_{2} . \tag{13.5}
\end{equation*}
$$

Then

$$
S^{(2)}=\operatorname{hcd}\left(G_{1}, G_{2}, \ldots, G_{\mathrm{r}_{2}}\right)
$$

In such a way - by induction we construct associate systems of equations.

$$
\mathrm{F}_{\mathrm{ck}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{c}}\right)=0 \quad \mathrm{k}=1,2, \ldots, \mathrm{r}_{\mathrm{k}}
$$

where $F_{1 k}=F_{k} r_{1}=r$. Then $S_{c}=$ h.c. $d\left(F_{c k} \cdots\right)$.

With this procedure we can attach to any system (13.3) the associate forms to the $\Gamma^{(i)} \quad i=1,2, \ldots, n$.The prime factor decomposition of $S_{c}\left(x_{1}, \ldots, x_{c}\right)$ gives all the CAYLEY-SEVERI forms of the irreducible components of codimension c of V axith a cotlain intrinsic exponant dephanding anly an m.

We refer to [G2] [G3] for more details. There is a curious paradoxon in this procedure pointed out already in [G2]: instead of decreasing the number of coordinates by successive "elimination" of $x_{0}, x_{1}, \ldots, x_{n}$ we increase by $n+1$ homogeneous coordinates of ($x_{1}, x_{2}, \ldots, x_{c} \ldots$) in every step. However, let us recall that there exists an expression

$$
S_{c}=S_{c}\left(\ldots, p, i_{1} i_{2} \ldots i_{2} \ldots\right)
$$

unique if we assume that all the power products of the p^{\cdots} are standard. Let us specialize the projection points-coming back to the elimination theory, assuming them to be the vertices of the projective reference frame $P_{0}, P_{1} \ldots$ (assuming again that they are well-hocated to avoid identical vanishing ...). Then we have the coordinate matrix

$$
\left[\begin{array}{lllllll}
1 & 0 & 0 & \ldots & 0 & 0 & \ldots \\
0 & 1 & 0 & \ldots & 0 & 0 & \cdots \\
0 & \dot{0} & \cdots & 1 & 0 & \cdots & 0 \\
\boldsymbol{\sigma}_{0} & \boldsymbol{\sigma}_{1} & \cdots & \boldsymbol{\sigma}_{\mathrm{c}-1} & \boldsymbol{a}_{\mathrm{c}} & \cdots & \boldsymbol{\alpha}_{\mathrm{n}}
\end{array}\right]
$$

and we remark that the anly not yora geasmans cacedimates ane $x_{c}, x_{c+1}, \ldots, x_{n}$. The $x_{0}, x_{1}, \ldots, x_{c-1}$ axe" dimionatoon" agaion.

Since the three types of associate forms can be transformed among them it is not difficult to compute the CHOW or the WEIL-SIEGEL forms. We are definitely interested in the latter because we shall prove in [G4] (cf. § 14 for a short Introduction) that the conputation of these formes is equimalont ta use the KRONECKER ctimination methad exith gonotic prajection casedinate systomes acplicilly gionn in the formulas by means of basis $u_{0}, u_{1}, \ldots, u_{n}$ of the dual vector space \dot{E}.

The generic coordinates

$$
\xi_{j}=\left\langle u_{j}, x\right\rangle=\sum_{k=0}^{n} u_{j k} x_{k} j=0,1, \ldots, n
$$

of any vector $x \in E$ (can be interpreted as the projective coordinates of the point (\mathbf{x})) (whenever $\mathrm{x} \neq 0$). The elimination of the generic variables $\xi_{0}, \xi_{1}, \ldots, \xi_{\mathrm{i}-1}$ leads naturally to forms of type.

$$
\mathrm{N}\left(\xi_{1}, \xi_{1+1}, \ldots, \xi_{\mathrm{n}}\right)
$$

and we know that the ξ_{j}^{\prime}, represent actually homogeneous coordinates in the more sophisticated projective space $\mathbb{P}\left(E / E_{n_{-i}}\right)$ where E_{n-1} is defined by $\left\langle u_{j}, x\right\rangle=0$ for $\mathrm{j}=0,1, \ldots, \mathrm{i}-1$ cf. §6. Actually the projection on the coordinate space opposite to $\mathrm{E}_{\mathrm{n}-\mathrm{i}}$ is not needed. The genericity insures that

$$
\mathbb{P}\left(E_{n-i}\right) \cap V(m)-\Gamma^{(1)}-\Gamma^{(2)}-\ldots-\Gamma^{(i-1)}=\phi .
$$

14. INTRINSIC ELIMINATION THEORY USING WEIL-SIEGEL FORMS.

Let us replace the CAYLEY-SEVERI forms by the corresponding WEIL-SIEGEL ones using formulas of type:

$$
\begin{equation*}
\left.\left.S_{c}\left(x, x_{0}, \ldots, x_{c-2}\right)=N_{c}\left(u_{0}, u_{1}, \ldots, u_{d+1} ; x\right)=\mathbb{N}\left(<u_{0}, x\right), \ldots,<u_{d+1}, x\right\rangle\right) \tag{14.1}
\end{equation*}
$$

where $x \in E-\{0\}$ is regarded as variable in the cone $S\left(x, x_{0}, \ldots, x_{c-2}\right)=0$ of vertex $\mathbb{P}_{\mathbf{c}-2}$ spanned by $\left(x_{0}\right),\left(x_{1}\right) ; \ldots ;\left(x_{c-2}\right)(\Leftrightarrow$ intersection of the $d+2$ hyperplanes $\left(u_{j}\right), j=0,1, \ldots, d+1$. The variables $\xi_{j}=\left\langle u_{j}, x\right\rangle$ are again the homogeneous coordinates in the abstract $(d+1)$-dimensional space $\mathbb{P}\left(E / E_{c-1}\right)$ where $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}-1}\right)=\mathbb{P}_{\mathrm{c}-2}$.

If we take the $n+1$ forms $u_{0}, u_{1}, \ldots, u_{n} \in \dot{E}$ dual to $x_{0}, x_{1}, \ldots, x_{n} \in E x_{j} \neq 0$ $u_{j} \neq 0$ we have the following sequence of WEIL-SIEGEL forms:

$$
\begin{aligned}
& S_{1}(x)=N\left(x ; u_{0}, u_{1}, \ldots, u_{n}\right)=\mathbb{N}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{n}\right) \\
& S_{2}\left(x, x_{0}\right)=N\left(x ; u_{1}, u_{2}, \ldots, u_{n}\right)=\mathbb{N}\left(\xi_{1}, \ldots, \xi_{n}\right)
\end{aligned}
$$

$$
\begin{equation*}
S_{3}\left(x, x_{0}, x_{1}\right)=N\left(x ; u_{2}, \ldots, u_{n}\right)=\mathbb{N}\left(\xi_{2}, \ldots, \xi_{n}\right) \tag{14.2}
\end{equation*}
$$

$$
S_{c}\left(x ; x_{0}, x_{1}, \ldots, x_{c-2}\right)=N\left(x ; u_{c-1}, u_{c}, \ldots, u_{n}\right)=\mathbb{N}\left(\xi_{c-1}, \ldots, \xi_{n}\right)
$$

We remark that formally, when we read the (14.2) from top to bottom we have:

$$
\begin{equation*}
\mathrm{N}\left(\mathbf{u}_{0}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}} ; \mathbf{x}\right)=\mathbb{N}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{\mathrm{n}}\right)=0 \tag{14.3}
\end{equation*}
$$

as the equation of the hyforsurface (or better, of the divisat attachod ta $\Gamma^{(i)}$) written in the projective coordinate system $\left(\left(u_{0}\right),\left(u_{1}\right), \ldots,\left(u_{n}\right) ;\left(u_{0}+u_{1}+\ldots+u_{n}\right)\right)$ which can be regarded as "indeterminate": more precisely if nac acuice

$$
\left\langle u_{j}, x_{j}\right\rangle=\sum_{k=0}^{n} u_{j k} x_{k}
$$

we have the $(\mathrm{n}+1) \times(\mathrm{n}+1)$ matrix $\left(\mathrm{u}_{\mathrm{jk}}\right)$ represonting the prowontive coardisate "syston" of Intwaduction dut artitton in the foronula instead of Seing ignoted.

If we write the system (13.3) in this "invariant way"

$$
\left.F_{j}=F_{j}\left(x ; u_{0}, u_{1}, \ldots, u_{n}\right)=\mathbb{F}_{j}\left(\left\langle u_{0}, x\right\rangle \ldots<u_{n}, x\right\rangle\right)
$$

we can perform equally the first step of KRONECKER'S elimination method:

$$
\mathrm{N}_{1}\left(\mathrm{x} ; \mathrm{u}_{0}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\mathbb{N}_{1}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{\mathrm{n}}\right) .
$$

The next step is to divide each F_{j} by $\mathbb{N}_{1}, F_{j}=\mathbb{N}_{1} G_{j}$. Then we can "eliminate ξ_{0} " (but within the generic projective frame $\left(u_{0}\right),\left(u_{1}\right), \ldots,\left(u_{n}\right) ;\left(u_{0}+\ldots+u_{n}\right)$. The new system

$$
\mathrm{G}_{\mathrm{j}}\left(\mathrm{x} ; \mathrm{u}_{0}, \mathrm{u}_{1}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\mathrm{G}_{\mathrm{j}}\left(\xi_{0}, \xi_{1}, \ldots, \xi_{\mathrm{n}}\right)
$$

represents the variety $V-\Gamma{ }^{(1)}$ of codimension two which is not contained in $\xi_{1}=0$. Let us cut $V-\Gamma^{(1)}$ with this hyperplane; we shall have only the useful "generic" variables $\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{n}}$, i.e. we have a system of type:

$$
\mathrm{G}_{\mathrm{j}}\left(\mathrm{x} ; \mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=\tilde{G}_{\mathrm{j}}\left(\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{n}}\right)
$$

representing the projecting cone of $V-\Gamma^{(1)}$ from the intersection point of the n hyperplanes $<u_{j}, x>=0 \quad j=1,2, \ldots, n$ (of vertex P_{0} in the corresponding generic projective frame). Then h.c.d. of the $\mathrm{G}_{\mathrm{j}}\left(\xi_{1} \ldots, \xi_{\mathrm{n}}\right)$ will give us back the WEIL-SIEGEL form attached to $\Gamma^{(2)}$, i.e. to the cycle of codimension 2 represented by m.

In other words we can prove the announced result:

The systomatic samputation of the WEIL-SIEGEL forms $\mathbb{N}_{1}\left(\xi_{\mathrm{c}-1}, \xi_{\mathrm{c}}, \ldots, \xi_{\mathrm{n}}\right)$ far $\mathrm{c}=1,2, \ldots, \mathrm{n}$ is equivalont with the ald KRONECKER dimination methad but waith the proventive prajective coardinate systors kwilt in the formulas.

REMARKS

1) We emphasize the use of the quotient projective spaces $\mathbb{P}\left(E / E_{c-1}\right)$ corresponding to coordinate spaces $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}-1}\right)$ instead of the projection or the face opposite to $\mathbb{P}\left(\mathrm{E}_{\mathrm{c}-1}\right)$.
2) In order to check all the necessary cautions we follow [vdW1] IV Kap. § 31, page 116; as well as the second Edition of vdW's Algebra.

The first steps are possible because we know, that the coefficient of the highest power of each x_{i} is $\neq 0$ (because the corresponding projection space never met the projecting variety. The resultant systems of relative prime forms cannot be identically zero). The coefficient of $\mathbf{x}_{2}^{\mathrm{g}}$ for a WEIL-SIEGEL form is equal to

$$
\pm Y\left(u_{0}, \ldots, u_{i}, \ldots, u_{j+1}\right) \neq 0
$$

for $(i=1,2, \ldots$, etc.).

BIBLIOGRAPHY

[B] BERTINI, Geametria praictiva degli Spotspazi, Principato, Messina, 1923.
[B-V] BODA-VOGEL, On systom of parameloes, lacal intorsection mulliplicity and Sgaut' 's theatess, Proc. Am Math. Soc. 781 (1890) 1-7.
[BOU] BOURBAKI, blgèare multilinćaire, 1044 Act. Sci. Ind. Hermann, Paris, 1968.
[C] CAYLEY, on a now analytical represontation of auroes in space, Collected papers, 4, 446, Quarterly Journal Pure, Appl. math. Vol. III, 1860, and Vol. V (1862), 81-86.
[Ch-vdW] CHOW-VAN DER WAERDEN, ZAG-IX, qedot zugeardrecte Soumon und algedraische diystome aan algedraischan Mannigfalligteiton, Math. Annalen 113, 5(1937) 692-704 (ZAG book, page 212).
[dC-E-P] DE CONCINI-EISENBUD-PROCESI, Hodge thedras, Astérisque 91, 1982.
[F-V] FLENNER-VOGEL, Bonnectivity and its applications to imprapor inforsections in \mathbb{P}_{n}, Mathematica Göttingensis, Heft 53, Oktober 1988.
[F] FULTON, Intorsectian theayy, Ergebnisse der Math., 3 Folge, Bd. 2.
[F-L] FULTON-LAZARSFELD, 8 annectivity and its application in algedraic geametry, LNM, Springer 862 (1981), 26-92.
 all' intorsegionse di due cidi effettici puri $\mathrm{U}_{\mathrm{a}}^{\mathrm{g}}, \mathrm{V}_{\beta}^{1}$ di S_{n} in fungiane
delle $\mathrm{F}\left(\mathrm{U}_{\alpha}^{\mathrm{g}}\right), \mathrm{F}\left(\mathrm{V}_{\beta}^{\mathrm{h}}\right)$ relativi ai cidi secandi, Atti Acc. Naz. Lincei, 8, 24 (1958), 269-276.
[G2] GAETA, On a nows lonsarial algatithse replacing the climination theary, Tensor, 1963, Vol. 13, No. 1.
[G3] " dopra un aspotto praiettioamente inouriante del metado As elisxinazianc di Sraneckot, Rend. Acc. Naz. Lincei (8), 18, 1955, pág. 148-150.
[G4] " Intionsic dimination thoary wath WEIL-SIEGEL farms and applications ta the SCHOTTKY pradlom (to appear).
[Gr] GREEN-MORRISON, The equations defining 8hous watidics, Duke math. Journal, September, 1986.
[Grö1] GRÖBNER, Madorne algedraische geamełtic, Springer Wien-Innsbruck, 1949.
[Grō2] " blgedraische Geametice, I, II, Mannheim; B1 1968, 1970.
[H-M] HENTZELT-NOETHER, Sut Thearic dot Palymamideale und Resullanton, Math. Ann. 88 (1923), 553-79 or E. NOETHER Ges. Abh. page 409.
[H-P] HODGE-PEDOE, Methods of algedraic Yeamety, vol. 1-2 Cambridge University Press, 1952.
[Hu] HURWITZ, Yedot dic Sraegheitfarmen cines algedraischon Madels, Annali di Matematica pura ed. applicata, serie III, t. 20, 1913 and, Yescmmelte b thandlungon, Band II, LXXXVI, 586.
[K] KAPFERER, Tedat Resultanton und Resultanton-Hystame Sitzungsberichte der mathematisch-naturwissenschaftlichen Abteilung der Bayrischen Akademie der Wissenschaften, Jahrgang 1929, 179-200.
[KL] KLEIMAN, Lettot ba ragel.
[M] MARTENS, Wedot dic Lestimonondon bigonschaffion dot Mesultante ran n Soumen nit n Yotaondorlichon, Sitzungsberichte k. Ak. der Wiss., XCIII Band, 525-566.
Tue Shearic dot oflimination Ibidem, 1173-1228 and 1345-1386.
[N] E. NOETHER, Yesannalte thhandungen, Springer, 1983 in particular papers on Elimination theory 18, 22, 24, 25 :
18: Mebor eine brbeit des is Triege gefallonon Th. Hontzelt gut Sliminatiansthcaric, J. Ber. d. BMV 30 (1921), S. 101.
22: Bearbeitung von K. Hentzelt: Sut Shearic dot Polymamideale und Resulthonton, Math. Ann. 88 (1923), S. 53-79.
24: Bliminatiansthearic und allgancine Idealthearic, Math. Ann. 90 (1923), S. 229-261

25: Sliminationsthearic und Sdealthearic, J. Ber. d. DMV 33, S. 116-120.
[P] PEDOE, On a now analyfical represontatian of autres in spaxe, Proc. Camb. Phil. Society, 43 (1947), 455-458.
[SG] SEGRE, C. dulla wavieta che sappresonta le oappic dic punti., Rend.. Circ. Mat. Palermo 5 (1891), 192-204.
[S] SEVERI, Momaric scellc, Zuffi, Bologna 195, in particular: 22 \& ulla varieta che rappresonta gli spazi subardinati. , page 405; (or Ann. de Mat. 8. III, vol. 24, pág. 89-120, 1915) and comments by SEVERI in page 438.
[SI] SIEGEL, Maduln abelochot Funttionan, Nachrichten der Ak. der Wiss. in Göttingen, Math. - phys. Klasse 1960, Nr. 25, 365-427 and Gesamonelte bdhandlungen, Vol. III, 77, pag. 373.
[S-V] STU̇CKRAD-VOGEL, Buchdaun-rings and aphlications VEB Deutscher Verlag der Wissenschaften, Berlin, 1986.
[vdW] VAN DER WAERDEN, Kadouse Glgeha, $2^{\text {te }}$ Auflage, Grund. Math. Wiss. Springer Verlag.
[vdW1] " sinfuehtung in die algedraische Yeanetric, Grund. Math. Wiss. Berlin, Band 51, $2^{\text {nd }}$ Ed, Springer Verlag 1973 and the Appendix II, pag. 271,
[vdW2] The Foundation of algedraic yeannetry frant Howori ba boncre Wcil, (cf. also Archives for History of exact Sciences) Vol. 7, Number 3, 1971, 171-180.
[vdW3] Math. Ann. 115 (1938), 619-842.
[vdW-ZAG] Sue algedraischan yeconethic (Selected papers), Springer, 1983.
[V1] VOGEL, Lectures an results an Sigaut's Thearan, Lecture Notes of the Tata Institute of Fundamental Research. Bombay, n. 74, Springer Verlag, 1984.
[V2] Proceedings of this Conference.
[W] WEIL, Foundations of algedraic yeanachy, $2^{\text {Id }}$ Ed. A. Math. Soc. Coll. Publications, 29, Providence RI, USA, 1962.
[WE] WEITZENBŐCK, Invaciantonthearic, Noordhoff, Grōningen, 1923.

