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In classical Iwasawa theory one considers modules over the
completed group ring A = zp[[G]] for G = Zp , and one often
studies these up to quasi-isomorphism, i.e., by neglecting finite
G-modules. In this paper we propose some methods for the study
of A-modules up to isomorphism, which at the same time work for
more general groups G (where a good structure theory in terms
of quasi-isomorphisms is missing anyway). A future application
we have ' in mind is the investigation of Galois extensions defined
by torsion points of abelian varieties. Such extensions have
compact p-adic Lie groups as Galois groups, and we show at
several places that the theory works very nicely for these.

A basic tool is the homotopy theory for A-modules, recalled
in § 1. It amounts to considering A-modules up to projective
factors (which is no serious restriction in view of the Krull-
Schmidt theorem), and has a‘formalism quite analogous to the one
in topology: one has a loop space functor (., a suspension I ,
fibrations, cofibrations etc., and a certain analogue of homotopy
groups in form of the A-modules EF (M) := Exti(M,A) .

There is also an analogue of the Postnikov tower describing
how a module M is‘“glued together" from the modules Er(M) .
Instead of describing this in general, we have described the first

step in 1.9, and the result for G = zp in § 3: in this case a

rank,M

A-module M is determined up to isomorphism by EO(M) = A A '

2
E1(M), E (M) , and a class in Exti(Ez(M),E1(M)) . We then discuss
the modules EY(M) in some detail. For example, we express various
properties of M - like the existence of finite submodules or the

freeness of M/TorAM ~ in terms of the E' (M) . We also give some



formulae for the joud , in terms of inverse limits often encountered
in the applications.

These formulae are deérived from a discussion for general
G in § 2, where we relate the Er to the "dualizing modules"”
Dr(A) = lim Hr(U,A)* (the limits runﬁing over the open subgroups
U of G_;>introduced by Tate for the study of duality theorems
for profinite groups.

In the last three sections we give some applications to Galois
theoretic Iwasawa modules. We starﬁ in § 4 with a general result
on profinite‘groups G of p-cohomological dimension two. If
H £ G 1is a closed normal subgroup and G = G/H , we show how to
describe the A-module H/[H,H](p) in terms of the dualizing médule
Eép)(G) = lim D, (%/p™) of G .

—_—
m

In § 5 this is applied to study the A-module structure of
certain abelian Galois groups over K , for a Galois extension

K/k of number fields with Galois group G . The main results are:

Theorem. If k is local, then the A-module X = Gal(M/K), M
the maximal abelian pro-p-extension of K , is determined by
uK(p) - the group of p-power roots of unity in K - and a canonical

class ¥ € HZ(G,UK(p))V'(where ¥ denotes the Pontrjagin dual).

Theorem. If k is global, let S o {p|p} be a finite set of

primes in k , let K/k be S-ramified, and let KS (resp. MS )
be the maximal (resp. maximal abelian) S-ramified pro-p-extension

of K . Then the A-module Xs = Gal(MS/K) is determined by



i

(p)Gal(KS/K)
Wg = Ei

- where Eép) is the dualizing module of
Gal(KS/k) - and a canonical class Yy € H2(G,ws)V .

The local theorem in particular gives a complete description
m
of the Galois module structure of lim K*/k*P for a finite
P— .
m
Galois extension K/k and contains all previous results on this

subject due to Iwasawa, Borevid¢,... (see [J1] for references).

In the global case we show that W is closely related to

S
X' = Gal(L'/K) , where L'/K 1is the maximal unramified abelian
pro-p-extension in which every prime above p is completely

decomposed. For example, if k(u ) < K , then we get an exact

p
sequence
0 —> X'(-1) —> W' —> & Tndg (&_(-1)) —> &_(-1) —> 0 ,

wh < ] iti TnaC i

ere Gp £ G 1is a decomposition group at g and IndG is the

B
compact induction. If K = k{(u._) , then WSYE.E1(XS} , and by the
D : $

quasi-isomorphism TorA(XS) ~ E1(xs)° (where M° is M with the

new action y-'m = Y-1m for Yy € G and m € M ) we reobtain the
known relations between the characteristic invariants of Xg and
X' (see [W1] 7.10). The above result makes this precise up to
isomorphiém and shows how to extend it to arbitrary G

In § 6 we derive some exact sequences for K = k(p °°) , which
were obtained by K. Wingberg [W1] up to quasi-isomorphigm. As
corollaries we get results on the A—torsion of Xg for varying
S and on the Galois structure of the S-units.

I thank Kay Wingberg for several interesting discussions and

the MPI at Bonn for hospitality and financial support during the



preparation of the final version of this paper. My investigations
on the homotopy theory and first versions of the theorems cited
above already go back to 1984, when I stayed at the Harvard
University, supported by a grant from the DFG. It is perhaps

not too late to thank both institutions warmly. Also, it is a
pleasure to thank Ted Chinburg for stimulating discussions during

that time.



§ 1 Homotopy of modules

A homotopy theory for modules over a ring was introduced by
Eckmann and Hilton [Hi], and it was further used and developed
by Auslander and Bridger [AB], and by the author [J2]. We recall

the basic definitions and results.

Let A be a noetherian ring with unit - not necessarily
commutative. An example we have in mind is the completed group
ring Zp[[G]] of a p-adic Lie group G [La] 2.2.4. All

A-modules considered are assumed to be finitely generated.

1.1. Definition A morphism f:M — N of A-modules is homo-

topic to zero, if it factorizes
f:M ~—~> P —> N

through a projective module P . Two morphisms f , g are homo-
topic (f ~g) , if f-g is homotopic to zero. Let ([M,N] =

= Hom, (M s N /{E g'O} be the group of homotopy classes of morphisms
from M to N , and let Ho(A) be the category, whose objects

are (finitely generated) A-modules and whose morphism sets are

given by Hom (M,N) = [M,N] , that is, the category of

Ho(A)

"A-modules up to homotopy".

1.2, Proposition Let M , N be A-modules and let £f:M — N

be a A-morphism.



a)

b)

c)

f ~0 if and only if f* :Extk(N ; R) —> Extk(M , R) is
zero for all A-modules R and all i 2 1 (it suffices

to consider i = 1} .

f 1is a homotopy equivalence if and only if

£* :Exti(N ; R) ——+-Extk(M + R) is an isomorphism for all

1]
—
—

A-modules R and all i 2 1 (it suffices to consider i

M~N (i.e., M and N are homotopy equivalent, i.e.,
isomorphic in He(A)) if and only if M ® P = N & Q with
projective A-modules P and Q . In particular, M ~ 0 if

and only if M 1is projective.

As a first application of the concept of homotopy, we get

the following generalization.of Schanuel's lemma.

1.3. Lemma Let f ,g:M —> N be surjective A-morphisms. If

f ~qg , then ker f ~ ker g .

[0 il

Procf Let f-g =7 o o: M —> P —> N with P projective, then

we get a commutative exact diagram

0 — K—> M@ P f+w>—N 0

\' 4

0 — L — N®P g+

v
=z
v
o

-



where ¢: (m,p) > (m,p+e(m)) 1is the mapping cylinder of

¢ . But K = ker £ @ P by the commutative exact diagram

0 — ker £ — M ——£—+ N — 0

—~MepP e N — 0

 E<— ®

and similarly L = P ® ker g

The following groups will become important in the sequel.

Their role is similar to that of the homotopy groups in topology.

1.4. Definition Let E (M) = M® = Hom, (M, A) be the A-dual ,

and more generally, let El(M) = Exti(M ;AN for i 20, If M
is a left A-module , say, these are right A-modules by

functoriality and the right A-structure of the bi-module A

The following functors are well-defined (only) up to homo-

topy, i.e., as functors from Ho(A) to Hol(A)

1.5. Definition and theorem

a) The loop space functor Mpw~> QM 1s defined as follows:




i) Choose a surjection P JI> M with P projective,

ii) Let Q = ker 7w .

Thus, (M 1s characterized by an exact sequence

(1.5.1) 0 —> M —>» P —ma» M —» 0

with P projective (i.e., €M is "the" first syzygy-module).

b) Q@ has a left adjoint I (i.e., [ZIM,N] = [M, QN] functo-

rially in M and N) , the suspension functor M k~> IM which

is defined as follows:

i) Choose a surjection P Is M" with P projective
(DM ++ TI’+ + + 4
ii) Let IM = Coker(M — M  —> P ) , where ¢, :M —> M

is the canonical map into the bi-dual.

One has N = IM if and only if E1(N) = 0 and there is an

exact sequence

(1.5.2) M- g -—-—aiM-—0
with ker ¢ = T, (M) : = ker 0y -

c) The transpose DM 1s defined as follows

i) Choose P1 > P > M > 0 exact with projectives P



and P .
0

+
m
1i) Let DM = Coker(PJ—1> P:)

In other words, DM 1is defined by the exact seguence

(1.5.3) 0 —> M > P —> P,  —> DM — 0 .

Then one has D2 = Id and DR = D (hence also DI D)

For the proofs one uses the defining properties of pro-
jectives and the facts that for a projective P the module p’
is also projective and 9y P —> P++ is an isomorphism. For
example, the last facts immediately imply D2 = Id , and the

functoriality of & 1is obtained by a commutative diagram

C—> M —> P —> M — 0
! !
Qf | | £
| |
¥ ¥

0 —> ON—> Q —> N —> 0 ,

where the dotted lifting of £ exists by the projectivity of

P , and Qf is the induced map.

The reader should be aware of the fact that D and the E



interchange left and right A-action . In the case of a group
ring there is a natural equivalence between left and right
modules, induced by the involution of the group ring given by
passing to the inverses of the group elements. Equivalently, we
may in this case use the two left A-module structures of A
to give the Ei(M) and hence DM left A-module structures
again, if M is a left A-module , say. In general this is not
possible, gut for the theory it is not necessary either, and in
the following we shall not specify, if we are talking of left or
right A-modules or if a functor interchanges left and right
A-action . This would only cause notational complications, and

it will always be clear where one had to insert "left" or

"right",.

Recall that the projective dimension pdA(M) of a A-module
M 1is the infimum over the numbers n 2 0 such that there exists

a resolution of length n

with projectives Pi (with the usual convention that inf ¢ = «)

1.6, Theorem The functor M p~> E1(M) induces an equivalence

of categories

A-modules M with - A-modules N
E—

pdA(M) 5 1 up to homotopy with N' = 0



Proof One simply observes that D gives an essential inverse:
Namely, for a module .M with pdA(M) < 1 one obviously has

DM ~ E1(M) and hence DE1(M) ~ DDM ~ M . Moreover, one has

E'(M)* = 0 in view of 1.5.3. On the other hand, if N' = 0 , then
pd, (DN) <1 by 1.5.3 and hence E' (DN) ~ DDN ~ N by the above.
It remains to remark that for A-modules N , N' with N+ = 0

one obviously has HomA(N , N') & [N, N']

1.7. Remark This theorem generalizes and sharpens theorem 2.1 in

[J1] (cf. 2.5 below) and should be compared with section VII § 3

in [Kun].
1.8. Lemma and Definition Let T1(M) = ker 0y as above and
T2(M) = Coker ¢y ¢ SO that

Py

(1.8.1) 0 — T,(M) —> M —> Mt

—_— TZ(M) — 0

e

is exact. Then canonically T1(M) E1(DM) and TZ(M) = E2(DM)

In view of this let
(1.8.2) T, (M) = E® (DM) , iz 1.

(It is clear that El(N) only depends on N up to homotopy for

iz 1)

The proof is straightforward, compare [HS] IV .ex. 7.3. We are

now ready to answer the following question. Suppose we know M
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or IM for a A-module M . Obviously some information on M
is lost (e.g., M ~ 0 if pd (M) < 1) ; how can we recover M
itself? Theorem 1.6 tells us that at least we have to invoke

E1(M) (or, dually, T1(M)) ; the general answer is:

1.9. Theorem A A-module M is determined up to homotopy by

a) M , T1(M) , and a class € ExtA(QZM ,T1(M)) , or by

XM

b) oM , E (M) , and a class b, € ExtR(DZQM,E”M)) )

(Note that these Ext-groups in the first variable only depend on

modules up to homotopy).

Proof
a) Let Xm be the class of the extension
{1.9.1) 0 — T1(M) —> M — Im wM — 0 ,

via the canonical identification

(1.9.2) Im wM:QEM ’

which is obvious from the definitions of I and @ (let us
remark at this place that under this identification, the map

M — Im g

M is the adjunction map M — QIM) . Since M is



- 13 -

determined'by T1(M) , Im Oy and the extension class of 1.9.1,

the result follows.

b) is obtained by dualizing, i.e., by applying the above to
DM . Note that M 1is determined by DM up to homotopy (this is
not true for M* 1) and that we have Tﬁ(DM) = Ej(M) and
QIDM = DIOM , so that we define wM = XDM .

For the understanding of this theorem it should be added that
no information is lost in passing from QM (respectively, IM)

to LM (respectively, QIM) , by the following result.

1.10. Theorem The functors I and Q induce guasiinverse equi-

valences of categories

~

{A-modules ‘M with T1(M) = 0} <§—> {A-modules N with E1(NJ =0}
-

up to homotooy up to homotopy

Proof Note that for any A-module M we have E1(ZM) = 0 by
1.5 b), and hence T, (M) = E' (DAM) = E' (IDM) = 0 . The result now

L ] -
easily follows from the characterization of IM in 1.5 b).

1.11. Corollary

a) The following statements are equivalent:

i) T1(M) =0

ii) M 1is submodule of a free module.



1ii) M ~ OGN for some A-module N .

iv) The adjunction map M —> QIM is a homotopy equivalence.
b) ‘'The following statements are equivalent:

1 E(M =0 .

ii) N ﬁ IM for some A-module N .

iii) The adjunction map ION —> N is a homotopy eguivalence.

1.12. Remark We have worked with finitely geﬁerated modules to

ensure that P’ is again projective and that ¢p is an iso-
morphism for projective P . We have assumed A to be noetherian
to make sure that M~ , §SM etc. are finitely generated again.
For non-noetherian A one formally obtains the samé results, if

one ensures that all considered modules are finitely generated.

For example, D 1is defined for finitely presented A-modules.
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§ 2. Group rings of profinite groups

For a profinite gfoup G define the completed group ring

over Z b
P Y

A= AG) =2Z_[[G]] = lim Z_[G/U] ,
P «<— P
U<G
where U runs over all open normal subgroups of G

For a closed subgroup S £ G and a discrete G-module A

Tate has defined the groups

D_(5,a) = EI: HT (U,A) * (r z 0)
UzSs
where B* = Hom(B,Q/Z) for an abelian group B , and where the
limit runs over all open suﬁgroups U of G containing S , with
transition maps the transposes of the corestriction map
([s1] 1I-79 £f.). This is contravariant in A , and if S is a

normal subgroup, then Dr(S,A) is a discrete G/S-module in a

natural way. In particular, one has the discrete G-module
Dr(A) = Dr({1},A) (r 2 0) .

In the following assume that A 1is noetherian. For example,
G can be a profinite (= compact) Lie group over Qp([La] vV 2.2.4).
Then a finitely generated A-module M has a natural compact
topology as a pseudo-compact module over the pseudo-compact

. < s Vo
algebra A (cf. [Brl]), and its Pontrjagin dual M = Homcont(M,mp/zp)
= lim MU*(where U runs over the open subgroups of G and MU

_—

U



is the module of coinvariants) 1is a discrete G-module. The
functors M > MY and A s AV are quasi-inverse equi-
valences be£ween the category of pseudo-compact A-modules aq@
the category of discrete, zp—torsioﬁ G-modules ([Br])). .Here A’
is the Pontrjagin dual of A , i.e; AY = ax . With-the topology

of pointwise convergence. For an abelian group B and n €N

let B/n = B/nB and B = (b€ Blnb = 0} .

2.1 Theorem. Let M Dbe a finitely generated A-module.

a) There are functorial exact sequences

v r v v
0 - D.(M) & mp/zp - E" (M) - Tor D__,(M7) -0
P
for all r 2 0 , where by definition D, = 0
b) There is a long exact sequence

v

=Tan Yo ...,

> ETM) s limD_( _(M")) » lim D_ . (M'/p™) > E
r' m r-2
—_— P —_—
m m

functorial in M and in G

Proof. We start by observing that M prr—s MY maps projectives
to injectives and that A p~~~» A* carries injectives to projectives,
since A’ = IndG(mp/ZP) (the induced module). Furthermore we have

canonically

M = HomA(M,A) = iif HomA(M,EP[G/U])
U<G

a2

iif HomszG/U](MU,ZP[G/U])
U<G
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n

<—-
U<G

1lim Homz (MU,ZP) '
P

where the limit is taken via the norms. Hence

(M)

e

Ei: Homz (MU,ZP)v
P
U<G

lim M_
B e

UG

n

Q@ /2 .
p PP

where we have used the relation

PO —_
m m

for a finitely generated zp—module

\"4
(lim Homy, (N/pm,z/pm)) = lim N/pm
P

N . We may rewrite this as

iUy ) :
)x g

+, 7. U

2.1.1 M = {1 * T
( y ) (_ll:((M)))@CDp/p

U<G
or as
(2.1.2) MY = 1im (1im (C(M/p™)

—_ \——>
m UgG

In other words, 2.1.1 describes M |~ (M+)V as the composition

of the right exact functors M b~ DO(MV) and N}~ N & O _/Z

while 2.1.2 describes it as the composition of the right exact

Z
P p P

. v
functors M I~ gp(M) and (Mm) P~~~ 1im DO(Mm ) , where gp

sends M to the inductive system

M/pm — M/pm+1

left derivative of M P~ DO(MV)

—>
mm
(M/p") , with transition maps

induced by the p-multiplication. Now the r-th

is M b Dr(MV) , and the

’
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first functors in the compositions map projectives to acyclics
for the second functors. Since M |~~~ M’ and filtering direct
limits are exact, we get two Grothendieck spectral sequences of

homological type

z
2 P v R - Y
Er,S = Torr (DS(M ),mp/zp) = Er+S E (M)
2 _ . s v _ Y+s v
Er,s = iig Dr(L QP(M) ) = Er+S E (M) .
n

The exact sequences in a) and b) follow from this, since

N @z QP/ZP r =0,
z P |
p = =
Tor_. (N,mp/zp) Torxé{N) \ r 1,
0 rz2,
and the left derivatives of gp are
(M/p™) s =0,
s _ , =
Lgp(M) = 3 -4 s =2,
P
0 s 2 2 ,
\

since projective modules are torsion-free. In b) we also use the

MYy ana ( MY = m'/p"

fact that (M/pm)v = -

m
P P

2.2 Remarks. a) The above can be extended to the case of an

arbitrary profinite group G , i.e., to non-noetherian A , as
follows. Call a A-module noetherian, if it has a resolution by
finitely projective A-modules. By looking at such a resolution it

easily follows that 2.1 a) remains true for noetherian modules M



- 19 -

and that 2.1 b) still holds, if Tor

- and M/Tor

Z
P p

hence M ) are noetherian. The other results of this section

(M) (and

extend similarly.
b) It is easy to see that the sequence in 2.1 b) can be identified

with the long exact sequence

)" > E5 Nror, )Y - E5 Y s Ll

P P

ee. > ET (M) o Er(M/Torz

2.3 Lemma. If U £ G is an open subgroup of G , then the

restriction induces a functorial isomorphism of AU-modules

r _ r ~ r . r
EG(M) := ExtA(G)(M,A(G)) —_ ExtA(U)(M,A(U)) = EU(M)

for every A(G)-module M .

Proof. Since A(G) 1s projective as a A(U)-module, this follows

from the obvious case r = 0 by lobking at a free resolution of

M.

2.4 Corollary. Let n = vcdp(G) be the virtual p-cohomological

dimension of G , then Er(M) =0 for r > n+t

Proof. Recall that vcdp(G) < n means that there is an open
subgroup U of G with p-cohomological dimension cdp(U) £n
This obviously implies Dr(A) =0 for r > n , hence the result

by 2.1 a). One may also use 2.3 and [Br] 4.1.

2.5 Corollary. Let G be a finite group, then EO(M) = Homg (M,zp)
P

BT (M) = Tor, (M)' , and E'(M) = 0 for r 2 2 .

P
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Proof. One has vcdp(G) = 0 , so the result follows with 2.4
and 2.1 a). One may also use 2.3 and the isomorphisms

z
r - p v
Ethp(M'zp) = Torr (M,mp/xp) .

2.6 Corollary. Assume that G 1is virtually strict Cohen-Macaulay

at p (i.e., that an open subgroup has this property, see [S1]

V 4,1), with vcdp(G) = n . (Examples of such groups are p-Poincaré

groups of dimension n , in particular, by a result of Lazard

(Lal] Vv 2.5.8, compact Lie groups of dimension n over mp r €.9.,

G = zg ) . Then |

a) Er(zp) =0 for r #n , and‘ En(zp)V = Eép)(G) , the p-torsion
dualizing module.

b) If N is a finite G-module, then Er(N) =0 for r % n+1 ,
and Enﬂ(N)'V = Homzp(Nv,Eép)(G))

c) If M 1is a finitely generated, torsion-free zp-module with
continuous action of G , then Er(M) = 0 for f # n and
20" = Lin D, (/B = ezpzép’(s)

m

Proof c): By 2.1 b) we get

E ()" 5 lim D_((M/pM")
—m>
This is zero for r #+ n by the assumptions (cf.[S1] V 3.1, 5) c¢)
and I annexe, théoréme 3), while for any finite G-module A we

have
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D;I(A) = lim H™(U,n)*
USGT;Zr*
(2.6.1)
= lim HO(U,Homz (A,Eép)(G))) = Homy (A,Eép)(G))
Uigjzes P ?

by duality (see loc.cit). For M as in c) this implies

i

1im Dn((M/pm)V) = 1lim Homy (/™ 7, Eép)(G)) = M 8

_— _— P P
m m

(p)
En (G) ,

hence the result. Part a) is a special case of c¢), while for N

as in b) we may use 2.1 a) to obtain
v
ET(N) =D__, (N') ,

r-1

hence the claim by the previous considerations.

2.7 Remarks. a) In the cited notes by Tate and Verdier the groups

are assumed to have finite p-cohomological dimension, but for our
applications we only had to assume vcdp(G) < , since we could
always pass to some open subgroup.

b) Usually one considers left discrete G-modules A and gives A*
a left G-module structure by (of) (a) = f(0_1a) for £ : A - Q/Z ,
0 €G and a € A , similarly for compact G-modules M and M.
If we do so, we have to give Er(M) the left G-module structure
in the statements above, cf. the discussion in §01. Otherwise we
have to endow A* and M’ with the canonical right G-structure

((of) (a) = f(oa) etc.).
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§ 3. The case G = %

p

In this section let G = zp , SO that A = A(Zp) is the
classical Iwasawa algebra. Then G 1is a p-Poincaré group of
cohomological dimension 1 with dualizing module
E:p)(G) = mp/zp (compare [31) I 3.5 Exemples), and we can
deduce several of the following results from this and the
results in the previous section., Instead we have preferred to
argue more directly, by using well-known facts on A ,e.g., that

it 1is a noetherian local ring with projective dimension pd(A) = 2

(recall that pd(A) = sup pdA(M) , where M runs over all finitely

"

generated A-modules). This implies that E* (M) 0 = Ti(M) for

IA

i 2 3 . We now investigate these groups for i 2 ; for this let

TO(M) be the maximal finite submodule of M .

3.1 Lemma. Let M be a noetherian A-module (as always).
a) T1(M) is the A-torsion submodule of M .
b) E' (M) is a A-torsion module. If M is A-torsion, then E'(M)
is the Iwasawa adjoint a(M) of M ([Iw] 1.3) and has no non-
zero finite submodule. Finally, E1(N) = 0 for a finite module W .

c) T2(M) is finite. One has TZ(M)

1}

0 if and only if M/T1(M)

ut

is free, i.e., if and only if M T1(M) @ Ar for some r 2z O
In particular, T,(M) = 0 for A-torsion modules.
d) E°(M) is finite, one has E-(M) s EX(T,() = T, () , and the
following properties are equivalent:
1) B2 =0,
ii) pdA(M) s 1,
iii) TO(M) =0,

iv) M is a submodule of an elementary A-module.



- 23 -

Proof. a) is clear by tensoring with the field of fractions
of A . The first statement in b) follows from a) since
E1(M) = T1(DM) . For the second statement see [P-R] I.2.2 and
[Bi] 1.2 and remarque, and To(a(M)) = 0 follows from Iwasawa's
first description of (M) in [Iw] 1.3.

By the exact sequence 0 - A l:l> A »'zp -» 0 , where vy is
a topological generator of G , we immediately deduce E1(Zp) = zp

(this always denotes the module zp with trivial action of G ).

The exact sequence

05 E (F/p) » E @) L @) - E2(Z/p) - 0

now shows E1(Z/p) = 0 and hence E1(N) = 0 for every finite
module N , since such N possesses a composition series with
guotients isomorphic to Z/p .

d) : By the structure theory for Iwasawa modules there exists
an exact sequence

f
0 »A->M—>E-->C->0,

where E is elementary and A and C are finite. One has

pdA(E) £ 1 and TO(E) = 0 . The last property implies A = TO(M) ’
the first one implies E2(Im f) = 0 , since this is a quotient of
E2(E) = 0 , hence we get B (M) —~> E®(A) . The isomorphism

2 -
E”(a) = Hom(A,mp/Zp)

now follows from the local duality for the regular local ring A

of dimension 2 with residue field Z/p (cf. [Bi] 1.2). The rest is
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clear: £ 1is injective if and only if TO(M) =0 , i.e., if and
only if TO(M)V = EZ(TO(M)) = E2(M) is zero, i.e., if and only

if pdA(M) < 1 : look at a resolution

"2
0 »P), —> P, Py »M=>0;
if EZ(M) = 0, then w, has a left inverse.
c) now easily follows from the relation T, (M) = EZ(DM) '

the exact sequence 1.8.1 and the well-known fact that M is

projective for <cd(A) § 2 (which can be deduced from the exact
sequence 1.5.3), and that projective modules are free for local

rings.
We now use theorem 1.9 to describe, how a A-module M is
determined by the above invariants. This result is valid more

generally for rings A with pd(A) s 2

3.2 Theorem. A A-module M is determined up to homotopy by

a) TT(M)' T2(M) and a class € Exti(Tz(M),T1(M)), or by

XM

b) ET(M), E2(M) and a class € Exti(Ez(M),E1(M))

YM

++ . . .
Proof. In our case M is projective, so from the exact

Ext-sequence .associated to the exact sequence
++
(3.2.1) 0 > Im ¢, > M > T,(M) - 0

we obtain an isomorphism
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1 ~ 2
ExtA(Im ¢M,T1(M)) _— ExtA(TZ(M) ,T1(M)) .

If by abuse of notation we denote the image of XM under this
isomorphism (which is the class of the 2-extension 1.8.1) again

by X, . a) immediately follows from 1.9 a). Note that 3.2.1 implies

M
Im ﬁM ~ TZ(M) sorthat Im ¢M is determined by TZ(M) up to
homotopy, and in fact, 1.10 implies -T2(M) ~ % Im ¢h = L QI Mo M,
since E'(T,(M)) = 0 by 3.1 b) .

Part b) follows by dualizing, i.e., applying everything to
DM , letting wM = XDM under the identifications T1(DM) = E1(M)
and T,(DM) = E*(M) .

We now further investigate E'  and T, -
3.3 Lemma. a) One has E1(M) <— E1(M/T0(M)) , and equivalence of
the following statements:

i) EN(M) = 0 .

n

ii) M/TO(M) is free, i.e., M TO(M) © AT for some r 2 0

b) the following statements are equivalent:
i) T1(M) =0 .
ii) There is an exact sequence 0 - M+ P - C - 0 with P

projective (= free) and C finite.
Proof. a) The first claim follows from the exact sequence
_ 0 1 1 1 _
0 = E(Ty(M) » E (M/Ty(M)) - E (M) - E (Ty(M) =0

But by 3.1 d4) we have pdA(M/TO(M)) £ 1 , hence M/TO(M) ~ 0 if
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and only if E'(M/Tyj(M)) = 0 by 1.6.
b) The implication ii) = i) is clear (cf. also 1.11). For the

converse we may take the sequence 3.2.1.

3.4 Lemma. If 0 ->M->P - C >0 1is exact with P projective

and C finite, then there is a commutative diagram

0 > M > P > C > 0
ST
v v

0 ——> M —> Mt o TZ(M) - 0

8

with canonical isomorphisms « and B8

Proof. The map 1': M —> P induces an isomorphism

+ o~ .
i+ . pT s M , Since C+ = 0 = E1(C) . The commutative
diagram
0 > M l.p > C > 0
0 —> M * ——> p’
shows that we may take o = (i"'+_)_1 ° bp and for £ the

induced map.

3.5 By 1.2 c¢) and the Krull-Schmidt theorem for A , a A-module
is determined by its homotopy type and its rank. Hence by the
above discussion the investigation of A-modules up to isomorphism

can be reduced to the following three types of A-modules
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4 Y

o d) free modui%s,
(3.5.1) B) A-torsion modules with pdA(M) <1,

C) finite modules,

and two extension classes. For a A-module M the modules in
* .
question are j

++
(3.5.2) A) M B) T1(M)/T0(M) C) Ty(M), Tz(M)

with the extension classes and the one describing the extension

XM
0 - TO(M) - T1(M) - T1(M)/T0(M) -+ 0 . In the "dual picture" we have

(3.5.3) a 20 B 2l on) o 2 o), E°(ECm)
wM and ancother class described below. The three types of
A-modules are characterized by the properties

a) E'(M) =0 = E2(M)

B B2 =0 = 22(M) ,

o B2 =0 =8(0 ,

i.e., they have only one non-vanishing E"
For the categories of A-modules given by A), B) and C) one

has self-dualities given by

a) g0,
B) E| ,
c) E?

This is clear for A), while for a finite modﬁle N we have

B2 (E2(M)) = E°(N') = N'' =N by 3.1 d). The duality for modules
of type B) has been treated in [P-R] I 2.4, i£ also follows from
1.6 by restricting to modules of type B) on both sides. 0f course,

all three cases follow from the general duality theory for
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Cohen-Macaulay modules (cf. [Gr]) or from the simple remark that
canonically P. = PT+ for a complex P. of projective

A-modules.

3.6 Remarks. a) The modules in 3.5.2 and 3.5.3 are related to the

spherical filtration and approximation theorems of [AB] 2 § 6, cf.
also the "Postnikov tower" of M in [J2].

b) In [Jak] Jakovlev has initiated an interesting classification
theory for modules of type B) in terms of cohomology. This has been

continued and extended in [Ko] and [gé].

We now show that the sets of invariants in 3.5.2 and 3.5.3

are in fact the same.
3.7 Lemma. a) There is an exact sequence
2 1 1
0 - E (T2(M)) - E (M - E (T1(M)) - 0

inducing isomorphisms

12

1) E2(T2(M)) E1(M/T1 (M)) = TO(E1(M)) '

{73

i) Bl ) = B /e o)

b) There are canonical isomorphisms

in

1) BN E M) = T /T, 00

ii) EZ(E (M)

n

1ii) EZ(EZ(M))

I3

TO(M)

Proof. a): By splitting the seguence
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)
0 -+ T, (M) - M1 M++->T2(M) >0

into two short exact sequences containing B = Im ¢M = M/T1(M)

we obtain exact sequences

o= »E'® - E(T,m) » B2*) =0

0 = BO(r, (M) » E'(B) »E () » E (T, (M) ~» E°(B) = 0
and hence the result - note that TO(E1(T1(M})) = 0 by 3.1 b)
and that E(T,(M)) is finite by 3.1 d).

b): From 3.3 a) we have E'(E' (M) = E'(E' () /T E (M)

ji4

= (8 (T, m)) = B (B (T, (0 /T, ())) = T, (M) /T, (M) , since

T1(M)/T0(M) is of type B). With a) we conclude
B () = B2(1gE ) = EX(EC(T, () = 7,00

since T2(M) is of type c). The third isomorphism is clear from

3.1 d).

3.8 Corollary. E'(M) is finite = T,(M) is finite

- E(E (M) =0 .

From § 2 we deduce the following formulae for the Er—groups,

which should be compared with [W3] 1.1.

3.9 Lemma. Let M be a finitely generated A-module, let G, be

G

the subgroup of index pn in G , and let M6 = UM
n

n be the

maximal submodule of M on which G acts discretely. Then
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G
0 v, 1
a) B (M) = 1lim m(M ) is free of the same rank as M ,
<—p
n,m Gn
b) E1(Torz (M)) = lim (Mv/pm) '
P <—
n'm
c) B (M/Torg (M) = lim ( m(MV))G ,
' P <— p n
n,m
1 S, _ . v - )
d}) E (M) = ilm m((M )G ) = Homg (M ,Zp) ’
— P n P
n,m G,
e) E1(M/M6) 5 lim ((M) )y /p"
<—
n,m
v
£) 200 s lim 0/pM g = lim g /0",
<— n <= n
n,m n,m

where the transition maps are the obvious ones.

G
Proof. Since HO(Gn,A) =A™ and H1(Gn,A) = AG for a discrete
n

G~module A , a),b),c) and f) immediately follow with 2.1 b) and

remark 2.2 b). From 2.1 a) we get an

G
n
0 —> 1lin (M) /p™ —> E'(M) —>
C—_
n,m
The cokernel obviously is isomorphic
9

kernel vanishes for M = M On the
sequence

0 —> E' (/M%) —> B (M) —>
because (MG)+ =0 = EZ(M/MG) (cf. 3.

sequence is functorial in

be isomorphic to the second one.

exact sequence

l . \'4
im m((M )G y ——> 0
<— p n
n,m
§ .
to Homz (M ,Zp} , While the

other hand one has an exact

g% —> 0,

1 d)). Since the first exact

M , we conclude together that it must



§ 4. Profinite groups of cohomological dimension two

4.1 We shall encounter the following situation for global as
well as for local fields. Let G be a finitely generated
profinite group with p-cohomological dimension cdp(G) < 2

for a fixed prime p . Let H be a closed normal subgroup and

let G = G/H . We are interested in the structure of

Hab(p) as a meodule over the completed group
ab

X = H(p)ab

algebra A Zp[[G]] , where H = H/[H,H] is the maximal

abelian and H(p) is the maximal pro-p quotient of a profinite
group H .
Let w : F -+ G be a surjection, where F 1is a free profinite

group on finitely many generators x -1Xgq - We obtain a

10"

commutative exact diagram

1 —> H > G > G > 1
A A
(4.1.1) ]‘ - ‘
1 —> R > F > G > 1
J A
. U
No= N,

and it follows easily with the methods of Fox and Lyndon that one
has an exact sequence of A-modules
0 —> R(p)P — 1% — 4 299, Z, —> 0
(4.1.2)
ey —> xi-1



- 32 -

where aug is the usual augmentation, {ei}cii=1 is a basis of

d , and ii is the image of X in G c A (cf.[wW1] for the

A
case of a finite p-group).
In [NQD] Nguyen-Quang-Do has (for pro-p-groups) defined a

canonical A-module Y which is very useful for our purposes:

4.2 Definition. Let Y = I(G)H + where I(G) is the augmentation

ideal of zp[[G]] = A(G)

4.3 Lemma (cf. [NQD] 1.7) a) There is a commutative exact diagram

of A-modules

H —>» O

S v o
0 ———>.HW(H,mp/zp) > N/IN,R] (p)

| |

0 —> H2(H,(Dp/zp)v — > N/IN,RI(p) —> R*P(p) —> X —> 0

"

0 o,

>

—_— e — o —> O

where I 1is the augmentation ideal of A

b) N/IN/R](p) is a projective A-module.
Proof. a) follows as in [NQD] 1.7, by taking the H-homology of
the two exact sequences

4.3, - _ — —
(4.3.1) 0 > I(G) > zp[[G]] > %p > 0

(4.3.2) 0 —> N3P (p) —> zp[[G]]d —> I(6) —> 0
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coming from the Lyndon resolution for G (cf. 4.1.2 for G =G ),

noting that

1 v ab
' = H (H, Z = H '
B0z = 8 (H,0,/2)

HO(H.I(G)) =I(G)y =Y,
H, (H,I(6)) = H,(H,Z ) = H°(H,Q_/2 )"
L 277" Cp'Tp
b): Nab(p) is a projective A(G)-module, since cdp(G) s 2 , see

[Br] 5.2. Hence Nab(p)H = N/[N,R](p) 1is a projective A-module.

We now show how to determine X and Y in terms of the

dualizing module of G (Strictly speaking, Eép) is only the

dualizing module in the (most interesting) case cdp(G) = 2 ;

for cdp(G) = 1 we have Eép) =0 ).

4,5 Theorem. Let Eép) = Eép)(G) = lim HZ(U,z/pm)* be defined as

—

m}u

H ab(

and 2z = W , and assume that N

as in § 2, let W = (Eép)) p)

is a finitely generated A(G)-module.

a) One has Y =~ D2  in particular, Y is determined by Z up to
projective summands.

b) Up to projective summands, X is determined by W and a class

X € HZ(G,W)* = HZ(G,Z) s [Y,I] , via lemma 1.3 and the exact

sequence
£
0 —> X > Y > I ——> 0
( x corresponds to the homotopy class of £ ). As an alternative

description, there is an exact sequence
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d

0 — R(PI®P > x02% —> v —0,

whose extension is the image of ¥ under the injection
[¥,1] &> Ext}\(Y,R(p)ab} )

c) Let X0 € HZ(G,Eép))* be the canonical class: this is the
class corresponding to the identity map under the canonical

isomorphism (cf. [S1] I-8.1)
2 (p) - (p) »(p)
H™(G,E,"")* = Hom, (E,™ ,E,77)

Then x is the image of X0 under the map
1% (6,P ) v —> w¥ G, w*

which is the transpose of the inflation.
d) The modules X and Y are determined up to isomorphism by

the above invariants and the isomorphism class of N/[N,R](p)

Proof. a) By the projectivity of Nab(p) , 4.3.2 induces an
exact sequence
)-I-

(4.5.1) (A(G)dl e (Nab(p))+ o E;(I(G)) — 0 .

By assumption, zp is a noetherian A(G)-module (2.2), so by 4.3.1

and 2.1 b) we get

n

mV ()V
(lim D, (x/p")) = (B,P))
—_—>
m

1 2
EG(I(G)) = EG(ZP)

hence, by taking H-coinvariants, an exact sequence

(4.5.2) AH* —s W/INRIENDYT —> 2 —> 0,
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where we have used the canonical isomorphisms

NP (p)y, = N/IN,RI (D)
(4.5.3) HomA(G)(M,A(G))H = HomA(MH,A) '

for every finitely generated A(G)-module M . The result now

follows by comparing 4.5.2 with the exact sequence from 4.3 a)

N/I[N/RI(p) ———$ Ad —_— Y —> 0 .

b) The first isomorphism is clear since Z = Wv , and the second
one is proved in lemma 4.6 b) below. Then the first claim immediately

follows from 1.3. For the second claim note that the exact sequence

0 —> R*®P(p) —> 19 > I > 0

by 4.6 a) below induces an exact sequence
0 —> [v,1] > Bxt) (¥,R%(p)) — B' (1)
Now by definition & maps the class of f to the class of the

pull-back extension

0 —> Rab(p) —_— A(-1 —_
A

|

1
T

0 —> R¥P(p) —> X' — > v — 0
X

J

X =
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and obviously X' =z X & Ad
c¢) This follows from the functionality in 4.6 c) below: the
above discussion is also valid for G = G , and the class of
f : Y ——> I is the image of the identity map under

[1(6),1(6)] —> [1(6),,1(6),] T&> [¥,1)

It remains to show that the identity map corresponds to X0 via
the isomorphism 4.6 b) for G and M = Eé(zp) , via the identifi-

cation DM = DEé(xp) = DEé(I(G)) = I(G) . Locking at the diagram

26— Dt —s PNt — Ej@ ) —> 0

l u n |

0 - 1(6)" —> W) HT — WPt —> Eé(%p) — 0,

with exact bottom row, one easily checks that both classes
correspond to the class of the natural inclusion I(G) &——> A(G)
. 2 _ + d. +

in Hz(G,EG(Zp)) = Kexr ((I(G) )G —> ((A(G) ) )G)

d) has only to be shown for Y , by (the proof of) 1.3 and the
Krull-Schmidt theorem for A . For Y it suffices to show the

following: if

d

A 95 p > Z > 0

are two exact sequences of A-modules. with finitely generated
projectives P and Q , then P = Q implies

+

+
Coker(P+ BN (Ad)+) = Coker(Q+ 3L—> (Ad)+) .
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This easily follows with the same techniques as in the proof
of 1.3, together with the Krull-Schmidt theorem.
o B N

4.6 Lemma. a) Let 0 —> R > P > > 0 be an exact

sequence of A-modules, with P finitely generated projective,
and let M be another finitely generated A-module. In the long

exact Ext-sequence

B« Ok

HomA(M,P) > HomA(M,N) _ ExtA(M,R)

> ExtA(M,P)

one has Ker o, = quer B, = [M,N] .
b) Let M be a finitely presented A = A(G) - module, then there

is a canonical, functorial isomorphism
H2(G,M) = [DM,I] .

c) This isomorphism is functorial in G , in the following sense:

if H 1is a closed normal subgroup of G , then the diagram

~

H2(G,M) > [DM,I(G)]

v
[(DM) ;s T(G) ;]

) !
H, (G/H,M,) — [D (M), I(G/H) ]

is commutative, where the left arrow is the deflation and the
right arrows are obtained by the obvious functoriality of [ , 1,
the canonical identification (DM)H o D(MH) , and the map

I(G)H —> I(G/H)
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Proof. a) Obviously for £ : M ——> N one has f € Im 8, = £~0
For the converse implication note that every map Q ——> N , with
Q projective, factorizes through B8

b) Choose an exact sequence (of right A-modules, say)

1 L
¢O—>N-—>F, —> F, —> M —> 0 ,

1 0

with finitely generated free modules FO' F so that DM 1is

1 !

defined by exactness of

+
0 —_— F1 —> DM —> 0 .

Then we have a canonical isomorphism N = (DM)+ , by the commutative

diagram
0 > N > F, —> Fy
® ¢
F,[ F0
v v v
+ ++ ++
0 —> DM —> F1 —_— F0

On the other hand we have

o . 1
H,(G,M} = Ker(N, —> (F,).) = 1 (F,I)/NI .

Now it is readily checked that

++ + . +
I = HomA(F1,A)I x HomA(F1,I) '

and so we may identify

-1 .
1 (F,I) = Hom, (DM, I) c Hom, (DM,A)
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On the other hand the exact sequence

HomA(DM,Aé) _— HomA(DM,I) —> [DM,I] —> 0
| ni

HomA(DM,A)d  — HomA(DM,A)

d -
..,hd) p—> i§1hi(xi-1)

(h1,.

coming from a) and 4.1.2 shows

NI = Hom, (DM,M)I = {f € HomA(DM,I)If ~ 0} .

Together we obtain the result, the functoriality in M being clear
by the existence of compatible resolutions.

c¢) The deflation being the canonical extension of the isomorphism-

HO(G,M) = M = (MH)G/H = HO(G/H,MH)

to the higher homoiogy groups, this follows immediately by going
through the steps of the above construction. The identification

(DM)H o D(MH) is deduced from formula 4.5.3.

4.7 Remarks. a) Obviously, 4.6 a) holds for any ring A , while

4.6 b) and c¢) remain true for any profinite group G with finitely

many topological generators. More generally, one can show isomor-

phisms

(02, 0*m] = H, (G,M), 120,

under the assumption that Q'M  is finitely generated. This implies

4.6 b) by an isomorphism [DZP,QM] = [DM,I] , which for finitely
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generated Rab(p) coincides with

DE_,QM] = [IDE_,M] = [DRZ_,M] = [DM,QzZ 1 .
( D I p 1 = [DQ b 1 = [ p]

b) From 4.5.2 and 4.3 we obtain an isomorphism

Z = HY(H zZ) .
{ ,mp/ p
c) Assume that HZ(H,mp/zp) = 0 . Then pdA(Y) < 1, and we
can compare 4.5 with the general method 1.9 b) as follows: Choosing
a surjection P —>> Rab(p) with P projective we get a commutative

exact diagram

0 —> N/IN,R]I(p) —> Rab(p) > X > 0
A A
A A
P = P
A
v J
0 —> R (p) —> X —> N/IN,R](p) —> O ,

ie., QX > QRab(p) ow QZI . Furthermore we have morphisms

2

Extl(DEQX,E1(X)) = Extl(DZQ I, E1(X))

2 B

a DI,E (X)] 2> [DI,E (X)] ,

>> [QDZQZI,E1(X)] s [922

with o induced by the Ext-sequence for

0 ——> QDEQzl —_— Q —> DEQZI —_> 0

( Q projective), and B by the adjunction of Q and I . One

easily checks that under the composition Yy (from 1.9 b)) is
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mapped to the same class as y = yx(X) (from 4.5 b)) under

[y,1] = [DI,DY) = [DI,E (v)] —X—> [DI,E'(X)] .

,
f B (R%P(p)) = E%(T) = E3(zp) vanishes, then IQRZ®(p) = R?P(p)
by 1.10 and thus o 1is an isomorphism. If both E3(xp) and

E1(I) = Ez(zp) vanish (e.g., if G 1is virtually strict
p-Cohen-Macaulay with vcdp(G) =n #* 2,3) , then 22921-& I and

so B 1is an isomorphism, and vy 1is an isomorphism by the exact

sequence from 4.3

E1(I) _— E1(Y) _—_ E1(X) —_ E2(I)
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§ 5 Applications to number theory

We apply the results of the previous section to the
following number theoretic situation. Fix a prime p and let
k be a finite extension of @ or @ . In the case of a g-

P
adic field let Q/k be a p-closed Galois extension, i.e., an

extension which has no non-trivial :p-exXtension. For a global
field k 1let S be-a finite set of places containing those
obove p « «» , and let Q/k be a (p,S8) - closed Galois ex-
" tension, i.e., Q/k is unramified outside S (S - ramified)
and £ has no non-trivial S - ramified p-extension. Let
K/k be a Galois subextension and set G = Gal(Q/k) ,

H = Gal(Q/K) , and G = Gal(K/k) . For any field L denote
by uL(p) the group of p-power roots of unity.

As in § 4, we want to study the A = A(G) - module
( -«

5.1. Theorem Let k be a finite extension of mp , n = [k :mp]
a) There is an isomorphism of A-modules

X = lim A(L) ,
-~
L

where L runs over all finite extensions L/k , L < @ , and

. m
A(L) = lim L /(L™)P is the p-completion of LY.

I
m
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b) One has cdp(G) s 2, HZ(H ,mp/ Zp) = (0 , and an iso-

morphism of G-modules

BSP)(6) = ug(p)

c) G 1is generated by d = n+2 elements as a profinite group.
Let F —» G , N, R, Y etc. be as in § 4, then
NP (p) = z [[61] .

d) Let Tqr v ,0n+2 be topological generators of G , and let
a.,
. _ i
a, € zp with 'Gi(c) =z for all ¢ € uK(p) ,
i=1, ... ,n+2 . Then there is an exact sequence
) 0 —» A ——7—An+2 s Y —> 0

1 l_—" (-01-a1' e . 'U

e) X 1is determined up to isomorphism by uK(p) and the image of

B2 (6, ug (p))* 25 % (6, (o)) *

Proof
a) is clear from class field theory.

b) If A 1is a p-torsion G-module , then the inflation
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(5.1.2) H(G,a) 85 ik, a)

is an isomorphism for all r 2 0 , since cdp(Gal(E/Q)) <1

for an algebraic closure k of k (same argument as in [S1]
IT 5.6). The first two claims thus follow from the fact that
scdp(Gal(E/k)) = 2 (loc. cit. 5.3). Applying 5.1.2 to a finite

extension L/k , L € 2 , we get an isomorphism

2 2
H® (Gal(Q/L) , 8/p™* = H°(L ,Z/p™ = u ,
with the group of pm-th roots of unity in L , by Tate's local
duality theorem (loc. cit. 5.2). By passing to the limit over m

and L we obtain the last claim.

c) This follows from [J1] 3.1 and 3.2. Note that it suffices to
prove N/[N ,'Rl(p) = xP[G] in the case of finite G , since two
pseudocompact Zp[[G]] - modules M and M' , with M finitely
ggnerated, are isomorphic if MH = M; for every open normal
subgroup H of G (use that an inverse limit of noﬁ-emty compact
sets is non-empty). By Swan's theorem (see [S3] 16.1 Cor. 2) and

the projectivity of Nab

(p) it suffices to show the above iso-
morphism after tensoring with mp ,which follows from [J1] 3.1

and 4.3 above, together with the vanishing of H2(H ,mp/ ZP)

d) With the ndtations of § 4 we have W = Hp(p) and
Z = uK(p)V. Since Y ~ DZ and H2(H ,mp/ %p) = 0 , we immediately

get 5.1.1 from transposing the exact seqguence
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A2 s n B (p)Y — 0
(5.1.3)
-1
& >0y -3y
where {ei}?:$ is a basis of A%? ang ¢ sends 1 to a generator

of UK(p)V (given the 1left action of G) , once we have shown

that (u.K(p)")+ = 0 . This is clear, because (uK(p)“')U is

finite for every open normal subgroup U of G

e) This is clear from 4.5 b) and d), since Xo generates the

pro-cyclic group HZ(G, uQ(p))* s Endhﬂﬂp)) and any two generators

differ by multiplication with an element a € Z;

5.2. Examples

a) If G 1is finite cyclic, then there is a commutative diagram

B2 (G, (p)) 225 w% (6, ug(p)) < w2 (6, 2

”z Ul inf

ﬁo(G,uK(p)) —=—ﬁ°(G,K") HZ(G,K") ,

14

so the Galois module A(K) 1is determined by the order of the

group uK(p) N NK/k(Kx) r and one easily reobtains the results in
[Ger].
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b) If cdp(G) £1, then I is projective (cf. [Br] 5.1),
hence Y = X & I , and in particular, X ~ D(uK(p)v) has pro-
jective dimension < 1 and is determined by E1(X) = uK(p)V
For example, assume that G z'Zp x A with a finite group A ,
p{(4 : 1) , then with 2.6 we obtain the following. If uK(p)
is infinite, then

and if uK(p) is finite, then X 1is determined by an exact se-

quence

0 — x — A} — uK(p) — 0 .
2 0. _ 1 A - v
(Note that E"(X) = 0 and E (X) s E (Hg (P)) = uK(p) in the last
case). This regives results of Iwasawa [Iw] theorem 21 and Dummit

{Dul], cf. also [J1] 4.3.

c) If G has an open subgroup U = z; , with p f (G:U) , and

. 2 . :
if uK(p) is infinite, then H" (G ,uK{p))* 3 HomG(uK(p) ,mp/ zp)

= 0 , and one easily shows Rab(p) = Ad"1 . Thus

by the second description of 4.5 b). For example, if 'G 5 Zp ’
then X = M' @ A% , where M' 1is given by the exact sequence
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0 — A — A2 —> M!' — 0

1 > (o-yx{o) , T-x(1))

. ..
with o, T generators of G and ¥ :G ——9-ZF> the cyclotomic

character.

d) If G 1is a p-adic Lie group, then the methods of [S2] show
that H2(G ,uK(p)) is always finite. Hence there is always an in-
jection . 1

x e 19 ey r¥%P(p) 0 v

with cokernel of finite exponent.

Now let kX be a finite extension of § , and let Q be as
above. Let kS be the maximal S-ramified extension of k , and
_ . . _ _ _ yab
set GS = Gal(ks/k) , HS = Gal(kS/K) . Then X = XS H™ " (p)
= Hgb(p) is the Galois group over K of the maximal abelian

S-ramified pro-p-extension of K

5.3. Lemma

a) If p++ 2 or if p =2 and k is totally imaginary, then

cd (G) < 2 .
p() ,

b} If an open subgroup of G 1is a pro-p-group , then G is
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finitely generated as a profinite group.

Proof
a) For a p-torsion G-module A the inflation
(5.3.1) B (G, a) 225 w76, a)

is an isomorphism for all r 2 0 , and this implies the claim

(see [Neul)s.
b) This follows, e.g., from [J1] 3.2 b).

In the following we shall assume that cdp(G) S 2 and that
G has finitely many topological generators. Let - for a suitable
d-F, R and N be chosen as in § 4, and let Y = YS = I(G)H
as in 4.2. It is easy to see that Y = I(GS)H , in particular this

A-module only depends on K and S., and by 4.3 we have a diagram

of A-modules

(5.4.1) I = I
0 —> Hy(Hg, Z ) —> N/[N,R](p) —> A% — ¥, —> 0
| ]
0 —> H,(Hg, Z)) —> N/IN,R)(p) —> R¥®(p) —> xg —> 0,
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. o 2 VoL 2
since H2(Hs.,mp) = H (Hg ,mp/ zp) = H"(H ,mp/ zp) by the
argument of 5.3 a). Here I and Rab(p) only depend on the

structure of G as an abstract group and X and YS on the

S
invariants described in theorem 4.5. It is conjectured that

HZ(Hs ,Qp/ zp) vanishes; for a finite extension K/k this is
equivalent to the Leopoldt conijecture for K and p (compare

5.4 a) below), on the other hand this vanishing is known, if

K contains the cyclotomic Zp-extension of k (cf. [Sch] 4.7).

Let X, = Gal (L/K) and Xy = Gal(L'/K) where L 1is the
maximal abelian unramified pro-p-extension of K and L'/K |is
the maximal subextension in which every prime above S is com-
pletely decomposed. For K/k finite let Sf(K) be the set of
finite primes in K 1lying above S , and for P € Sf(K) let

Ko be the completion of K at ¥? . Then define

S P!
PES . (K)
U=Ug= T Uy,
PeES(K) °
X
where A, (resp. Up ) 1is the p-complection of K, (resp.
of the group of units in Kp ). Let OK (resp. OS ) be the

ring of integers (resp. S-integers) in K and set
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For arbitrary K/k define the groups AP.' UP , A, U, E

and ES as the inverse limits - via the norms - of the above

groups for all finite intermediate layers L/k , L £ K

The next theorem extends results of Kuz'min [Kuz], Nguyen-

Quang-Do [NQD] and the author [J1].

5.4, Theorem

a) With the notations as above, there is a commutative exact

diagram of A-modules

2 %
0 — H (H§'mp/ Zp) —> E —> US —_ XS —_ X2 —> 0

- I

2 v’ i
0 — H (ﬁs,mp/ Zp) —> E, —> A, — X_. —> X3 —> 0

S S S

b) If dzr}+r,+1 , there is an isomorphism

d-ri-r2—1
N/IN ,Rl(p}) = @ A
VESé

& A
(GV)
Here §S! is the set of real places of k which ramify (i.e.,
become complex) in K , r; is the cardinality of S/ , and r,
is the number of complex places of k . For each v € Sa

G, = éav> is a chosen decomposition group at v in G , and

A(G ) = A/A(UV-1) is the module of coinvariants for the right
\%
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Gv—module structure of A , regarded as a left A-module.

c) Let Eép)(G) be the dualizing module of G . If My S Q .,

then there is an exact sequence

0 — ul(p) 1 8 Indg (v(p)) —> Ez(p)(G) —> 0
PESf I

t

where, for each, p € S¢ = Sf(k),, Gp is a decomposition group

at g in G , Indg means induction from Gﬂ to G , wu(p)
p

is the G-module of p-power roots of unity in an algebraic

closure @ of @ , and 1 is the natural map.

Q) ret w=w_.=©8P )" ana 2 -2_ =%’ as in § 4 - so
S 2 S S H
i~ . w(P) S . :
that YS ~ DZS by 4.5 a). Then WS = E, (GS) , in particular,
WS and ZS only depend on K .and S . There is an exact sequence

a

G 1 reg 1
0 —> 1 (p) —> © (L, () —> W, —>H (HLupe) =3¢ H (K_,up) ,
Hk pestHde qu S grhl pes, P

where, fur each p € Sf ’ Gp is the image of Gp in G, K

is the completion of K at the prime P/ belonging to G_ ,

b
and res is induced by HZ(HSq uip)) inf, H2(K s u(p)) —

R

H1(Kp .u(p)i . In particular, if uK(p) is infinite, then there

is an exact sequence

0 — X3(— 1) —> ZS —> ® A GA(GF)

zp(-—1) o Zp(-—1) — 0 ,
PES,
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where zp(1) = lim u m and X3(-1) = X, ®z Zp(-1) for.

& P P

p 4 - 1) = Ho Z (1 Z is the usual Tate twist of X, .
L= 1 m‘p( L1 2 3
Proof

a) This is clear from the cited references; we only remark that
for K/k finite the lower sequence by Kummer theory can be iden-

tified with the exact sequence

2 v 1 1
0 — H"(H,,Q /%) —> H (H,,E (1)) — @& H (K-, Z (1))
S PP S° P pes(x)  F P
(5.4.2)

1 v \
—> H (HS ,Qp/ xp) —> Gal(L'/K} — 0

coming from Tate's duality theorem ([Tal 3.1, compare [Schl 2.5)

and the fact that H2(Ko , Q/ Zp) = 0 ; here H1(- , Zp(1)) =
= lim H1(- T m) . The upper seguence is an easy consequence by
<« P

class field theory, and the general case follows by passing to
the limit over the intermediate finite layers, since this limit
for HZ(HS ,mp/ Zp)v is taken via the duals of the restriction

maps (cf. [Mi] I 4.19).

b) We already know that N/[N ,R](p) 1is a projective A-module,
and for its description it suffices to consider the case of finite
G (same argument as for 5.1 c)). For finite G the claim follows
with the arguments in [J1] 3.3: By Swan's theorem it suffices to

consider N/[N, R](p) @Z Qp . From a) we get the equality
p
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:ab 2 v :
= H (Hy, z - [X.®
(N/IN,R](pP) emp] [R™7(p) ® @] + [H” (Hg mp/ o emp] [Xq mp]
in the Grothendieck group KO(QP[G]) of finitely generated

QP[G]-modules , [A] denoting the class of such a module A . From

a) we have
2 v ‘
X. ® - [H " (H. , Z ={vueQlJ-lE® ’
( g Qp] [(H™( S Qp/ p) 1 { Qp] [ Qp]
and we may proceed as in [J1].

c) From Tate's duality theorem we get an exact sequence for

finite K/k , K < kg

2 v
0 —> u (p) —> @ U, (p) — H (H, , T )
K PES (K) Kp S P
(5.4.3)
—> 8 (Hg,u(p) — @  H (K, ,ulp) .
PES . (K)

£
By passing to the direct limit over all finite layers K/k con-

tained in (/k we obtain the result, since for H2(HS ,zp)V =

= lin B (Hg ,2/p™ " = lim 52 (H,2/p™" the limit is taken via
o ™

the duals of the corestrictions, while for H1(HS y u(p)) =

H1(H, e(p)) and the last group it is taken via the restrictions.

n

Tne first exact sequence in d) now follows either by only
passing to the limit over all finite layers in x/k , Or by taking
the Hs-cohomology of a similar sequence for Eép)(GS) as the one

for Eép)(G) in ¢c) . The second sequence is obtained by taking
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the Pontrjagin dual of the first one. Finally we immediatly
(p) (p) Gal(kS/Q)
obtain E,P'(6) = E)F (6, from 5.3.1.

5.5. Examples (valid for the global and the local case)

a) If G = %p , it is well-known that I(G) = A , Hence

Y = X8 A, and in particular, X ~ DZ is completely determined
by 2 (compare [J1] p. 123, 124, where this was proved under
too restrictive assumptions - and where the Zp(1)'s in (43)
have to be replaced by Zp(-—1}'s). A similar discussion holds

for cdp(G) £ 1 (cf. 5.2 b)).

b) Assume that H2(H ,mp/ %p) 0 . If cdp(G) £ 3 , then
pdA(X) £ 1 (since pdﬂ(Rab(p)) £ 1, cf. [Br] 4.4, and hence

0 ~ QRab(p) ~ X , cf., 4.7 ¢)). Thus X ~ DE1(X) by theorem
1.6, and by the arguments in 4.5 d) X 1is determined up to:iso-

morphism by E1(x) . By 4.3 we have an exact sequence
1 1 1 2
E'(I) — E (Y) ~—> E (X) ~—> E"(I) — 0
n 1 I

2 3
z E”(Z
E (Zp) ( p)

If cdp(G) = 2 , then E1(X) is the cokernel of Eéka)V-=

= E2( mp) —> 2 , and, in fact this map is just the element
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2 v o (p) N 2
X € H°(G , W) = HomG(W, E," (G)) = HomG(E ( zp) , Z) . For
example, if G = Z; , then Ez( ZP) = Zp , and the map corres-
ponds to an element in ZG = HomG(W ,Qp/ zp) . If k 1is global

and uK(p) is infinite, then the second exact sequence in 5.4

d) shows ZG = X3(-1)G .

If cdp(G) =3 and G is strict p-Cohen-Macaulay, then

we obtain an exact sequence
0——+Z—>E1(X)—>E3(zp)—>0,

whose extension class now is given by the element y €

1 1

(P) N
cont(G ,Hom(W,E3 (G))) =H_ ny

B2 (G,wWw" = H (G,Hom(E3( zzp) ¢ Z))
c) The invariant yx € H2(G ,W)V is zero if and only if every

p-embedding problem is solvable for XK/k and G , i.e., if every

diagram with exact row

G
m
NA
v :
0 —> A —> E - G —> 1 ’

with finite abelian p-group A , can be completed by a homo-

morphism s: G —> E with ps =7 ., This follows with the injection
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HA (G, A) &—> 1 (o) B (6, EP)
uEHomG(A,Ezp )

with the same arguments as in [JW].

5.6. Remark In this and the following section it is convenient

to give all modules the left Galois module structures. In view
. . . . v o
.of the discussion in 2.7 b) this means that C° = Homcont(C,mp/Zp) ,
Homg (C,D) etc. have the action given by (of) (c) = of(o-1c) '
P
only then Tate's sequences 5.4.2, 5.4.3 are Galois equivarient.

In particular, the action on the Iwasawa adjoint E1(X) is the

one of [W2] and different from the one in [Iw].
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§ 6. Some results for the cyclotomic Zp-extensions

We consider a situation as in the previous section, with
k a global field and K = k(u(p)) . Since there are only finitely
many primes in K over every prime of k , the sequénce of 5.4 d)
becomes
o o o
(6.1) 0 —> Xy(-1) —> 2, —2> @ IndJ (xp(-1))—i> Z(-1)—> 0 .

S G
FESf j

The following result was proved by K. Wingberg in [W2] up to

guasi-isomorphisms,

6.2 Theorem. The sequence 6.1 can be identified with an exact

sequence

0 —> X (-1) —> E' (X)) —> E' (&) —> E' (Bg) —> 0
induced from the exact sequence

00— E. —>A —> X, —> X, —> 0 .
Proof. Splitting the latter sequence into two short ones

0 —> E > A > B: > 0

0 > B > X, —> X

we get a commutative exact ‘diagram
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1 1 1 2
E (X3).———> E (XS) —> E (B} —> E (X3)

1 B
E (Xg)

(6.2.1)

where we have used that E2(80 vanishes as quotient of EZ(XS) = 0

Now by the considerations in 4.5 and example 5.5 a),

identified with the map o,

> E!(A)

|

1
E (Eg)

|

o,

can be

B

in 6.1. On the other hand, by the

well-known local theory (compare 5.2 b)) we have

A = T1(A) o A[k:(D] '
. G
T1(A) = & Indg; (Zp(1))
feS, b
Hence we get a commutative diagram
Coker 8
/ \ll 5.2.
E1(XS) B > E'(A) )
J )
\ v
1 1
E (T, (a)) > E (T, (Eg))
: l
v
| B (Z_(1))
P
f
a N a v
g l—»>e 1ma; @ (-1)—2» z_(-1)
nES g P P

f

”,’/_,”4 0

1

’



- 59 -
in which E'(E.) —> E'(T,(E.)) and E (E.) —> E (£ (1)) are
S 178 . S P
surjective, since EZ(M/T1(M)) = 0 for any A-module and
2 _ : _ L
E (ES/Zp(1)) = 0 , since ES/ZP(1) has no non-zero finite

submodule.
Hence the surjections on the right are all isomorphisms

which proves the claim.

The next consequence has also been obtained by K. Wingberg
(unpublished) by somewhat different means.

& Zp(1) , where §S_  1is the set of

s (G_)

6.3 Corollary. E., & & A
: VES v

archimedean places of k and GV , for each v € 5_ , is the

decomposition group of v in G . In particular, T1(ES) = zp(1) .

Proof. The exact sequence

0=z ()" — Bl (Bg/z (1) —> &' (B) > &'z (1))
shows E1(ES/ZP(1)) = 0 . Since on the other hand pdA(ES/Zp(1)) <1,
because this module does not contain any noﬁ—trivial finite sub-
module, we deduce from theorem 1.6 that ES/ZP(1) is projective.

Its isomorphism class is easily computed by the methods already

used in the proof of 5.4 b), by computing Eg ® Qp for finite

intermediate layers.

6.4 Corollary. There is an exact sequence

0 —> T, (BEg) —> T,(Ag) —> T, (Xg) —> E' (X;(=1)) —> 0,
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in particular, for T > S a finite set of primes one has an

exact sequence

0 —> @ Indg (Z (1))
BETNS g P

> T1(XT) ———> T1(XS) —> 0

Proof. Define Zé by the exact sequence

0 —> zp(n _— T1(AS) —_— 'I'1 (XS) —_ Z) — 0

e

Splitting this sequence into two short exact sequences as indicated,

we obtain a commutative exact diagram

0 —> E1(Zé) — s E| (T, (X)) ——> ET(R) —> EZ(Zé) >0
H 1
1 1 1
(6.4.1) E (T1(XS)) -> E (T1(A))-*E (Ep(1)) —> 0
!
v

1
E (npﬂ)) '

where we have used the facts that RJC =0 = Zp(ﬂ+ {since these

are A-torsion modules) and 0 = E2(T1(XS)) —_> EZ(R) . The
exactness of the second row follows from the proof of 6.3 since
1 _al 1 .. .
E (T,(Xg)) = E (XS)/TO(E (X)) by 3.6 ii). Since
E1(A) SR E1(T1(A)) is torsion-free, a comparison of 6.4.1 with

6.2 now shows-

1}

Bl (2y) = X5(-1) /T, (X, (=1))

0

2 '
E”(28)
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In particular, pdA(Zé) £ 1, and Zé = E1(E1(Zé)) by theorem

+

1.6, since (Zé) = 0 {(cf. also the statement about the self-

duality for modules of type B) in § 3). We conclude

O - - : B -
ZS = B (X3( 1)/T0(X3( 1))) = E (X3( )
cf. 3.3 a), hence the first claim. The obtained seguence is

functorial in S , hence the second claim is an obvious consequence,

by the exact sequence

0 —> ® Ind> (Z_(1)) —> T,(Ap) —> T,(ay) —> 0 .

pETNS Gp P

We finish by calculating for Xg the A-modules associated

to it by the general discussion in § 3.

6.5 Corollary. a) EO(X ) = ® A , where sS is the set of
S c™(G) 4 5 -
v € Soo v
complex archimedean places of k, E1(XS) = ZS' EZ(XS) =0 .

- - _ _ v
b) TO(XS) =0, T1(XS) = E (zs), T, (Xg) = TO(X3( 0" .

S 1 _
c) TO(X3) = iiﬁ H (Gn,ES(K)) , Where Gn = Gal(K/k(u n+1)) ,

n

ES(K) = OE}K is the group of S-units in K , and the limit is

taken via the corestrictions.

Proof. All formulae are clear from the previous discussion and
the fact that XS o DZs , except for the claim in c¢). For this

let kn = k(p n+1) and let Cls(kn) (resp.ClS(K) ) be the S-class
group of kn (resp. K }. There is a well-known commutative diagram

of finite groups
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G
1 n+1
0 —> H (G ,4,E5(K)) ——>Clglk  4) —>Clg(K)

lcor lN tr
v

> H1(Gn,ES(K))

n
>Cls(kn) >ClS(K) )
where. ‘cor is the corestriction, N the norm, and . tr the trace

of Gn/G

N+ 1 .'By passing to the inverse limit over n we obtain an

exact sequence of G-modules

G

. 1 . n

0 —> 1lim H (Gn,ES(K)) —> Xy —> llm(US(K) .
< — <—
n n
1
Now lim H (G ,Eg(K)) is finite, since the order of H1(Gn,ES(K))
<_
n

is bounded independently of n [Iw] 5.2. Hence it suffices to show
that the last group has no non-trivial finite G-submodule. It
suffices to show the same for the fixed module under the pro-p-group

G0 , since for a finite Go-module A+ 0 one has A 0 + 0 . But

[ “n\% o
11mc1 (X) = limClS(K) ,
\
<— <—
n n
where the inverse limit is taken via the p-multiplication, so this

group is uniquely p-divisible.

6.6 Example. There is an exact sequence

0 —> E1(ZS) —> X, —> & A

—> Hom llm H (G £ (K)),u(p) —> 0.
S vesS (G,,) (. )

n

This should be compared with Iwasawa's results in [Iw] 8.3.
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