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DUPIN HYPERSURFACES

U. Pinkall

0) Introduction

In [8] Cecil and Ryan propose to study the class of those hypersur-
faces M in the sphere s® with the property that each principal
curvature of M is constant along the leavgs of its corresponding
principal foliation. Hypersurfaces with this property can be consi-
dered also in éuclidean space or in hyperbblic épace and we will call

3

such a hypersurface a Dupin hypersurface. In R the only Dupin

hypersurfaces are spheres, planes and the well-known cyclides of

Dupin.

It is known that the class of Dupin hypersurfaces in s is
invariant under éonformal transformations of S" . In this paper we
will show that this class is invariant even under the transformations
of Lie's sphere geometry. This geometry therefore provides a suit-
able setting for the study of Dupin hypersurfaces. We will give here
a self-contained introduction to the differential geometric aspects

of Lie geometry.

JIf, at each point, a Dupin hypersurface in R® has only two
distinct principal curvatures of multiplicities p,q (p+tq = n-1) ,
it is called a cyclide of Dupin of characteristic (p,q) . In [6,7]
Cecil and Ryan classified all cyclides of Dupin that are complete
with réspecﬁ to the metric induced by R" . Even for n = 3 the
condition of completeness excludes some interesting examples (see

fig. 2) . From the viewpoint of Lie-geometry it is easy



to decribe all cyclides of Dupin without any completeness assump-
tion. It turns out that up to Lie-transformations there is only one
cyclide of Dupin of a given characteristic.

Finally we discuss examples of Dupin hypersurfaces. Because of con-
formal invariance it does not matter whether we describe these ex-
amples as hypersurfaces of S" or of any other space of constant cur-
vature. The examples include the isoparametric hypersurfaces in s
and the tubes around extrinsically symmetric submanifolds of r" ’

n

s and H® . (For a classification of the latter see [2,9,16].

We shall indicate several inductive procedures that yield a Dupin

hypersurface in Rn”

given one in R" . This can be used to show
that for every n there are hypersurfaces of Dupin with any pres-

cribed multiplicities of the principal curvatures.

1) Lie geometric hypersurfaces

n 1

Let S be the unit sphere in R Throughout this paper we will
assume nz22 . A unit tangent vector to s at some point g can
be described as a pair (g,n) € s? xs® with pen =0 . Here "."

1

denotes the scalar product in R | we will identify the unit tan-

gent bundle us®™ of S® with the set of all such pairs.

Let p,n : us®™ —> s® denote the restrictions to US™ of the cano-
nical projections of s® xs® onto its factors. Then the equatioh
dpen = 0 defines a codimension one distribution D on Us®™. 1f

o Mn-1

—_— Sn is an immersion, n: Mn-1 —_— Sn a unit nérmal 4vec-
tor field for p then (p,n) : Mn'1 —> us™ is an integral manifold

of the distribution D . This motivates the following



Definition: A Lie geometric hypersurface in s" is an (n-1)-

.dimensional integral manifold of the distribution D
in us”.

Remark: In the terminblogy of [1], appendix 4 D defines a "con-
tact structure® on US". A Lie geometric hypersurface is a "Legendre

sﬁbﬁ\ani'fold" of this contact structure.

If f: VLY us® , £ = (p,n) 1is a Lie geometric hypersurface

then p: M ' —> s® is asmooth mapping, but in general p will
not be an immersion. For example the unit normal bundle of any im-
mersed submanifold N of S" can be considered as a Lie geometric
hypersurface, and in this case g will not be an immersion unless

the submanifold has codimension one. We will show however that in

some sense a Lie geometric hype;surface is always "nearly" an immersed

hypersurfaceé For each a € [-w,7)

(2) » fu : = (cos ap+ sinan, -sinap+ cosan)

is again a Lie geometric hypersurface that will be called the parallel
surface to f in the distance a . |

n-1

Theorem 1: Let £ = (p,n) : M ' —> us®™ be a Lie geometric hyper-

surface, fu = (yu,nu) the parallel surfaces of £. Then

for each q¢€ an'

the mapping 3 : 1 5 s" fails
to be an 1mmersion at g only for at most n-1 values

of &« in [0,%).



Hence locally Lie geometric hypersurfaces are just -~pa'ra11e1-sut-—
faces of ordinary hypersurfaces. The possible singulafities of the

mapping P can always be "removed"” by passing to a parallel surface.

Before we prove theorem 1 we first state two lemmas:

Lemma 1: Let M be differentiable manifold, W a real vectorspace
endowed with a symmetric bilinear form <,> , q€M . Then
for any two functions gp,n : M —> W such that <p,n>=

const and «<dp,n>= 0 the bilinear form on an

(3) (X,Y) —> <Xp,¥n >

is symmetric.

Proof: Let X,YeTqM . Choose vectorfields X,¥ in some neighbor-
hood of g such that ?\‘q = X, ?qs Y and [X,Y] = 0 . Then differen-
tiating the equation <p,n>= const and observing <«dp,n>=0 we

obtain

(4) <p,Xn>= 0 .

Differentiating again in the direction Y we arrive at
(5) <Ypg,Xn >+ <p,¥Xn>= 0 .

Similarly we have

(6) <Xg,¥Yn>+ <pg,Xyn>= 0 .

Because XY = YX equations (5) and (6) imply (3).



Lemma 2: Let V,W be real vectorspaces, dimV = dim W = n,
<,> a positive definite scalar product on W. Suppose
A,B $t V—> W are linear and satisfy the folléwing con-
ditions:

a) «<AX,BY> = <AY,BX> for all X,YEV .

b) kern Ankern B = {0} .

Then AA+B : V—> W fails to be a bijection for at most

[n-1-dim kern A] values of M €ER.

Proof: Set V : =V/kernA , W=ImA . PFPor XEV let X denote
the image of X in V wunder the canonical projection. For YEW
the orthogonal projection of Y onto W will be denoted by Y . We

can define a mapping B : V —> W by ‘setting
(7) E(i) = B{X) .,
because by property a) for X€ kern A we have

(8) <BX,AY> =0 , all YEV

i.e. B(kern A) c (Im A) . Similarly we define a mapping A:V — W
by setting A(X) .= A(X) + A 4is bijective. We can make V into a
euclidean vectorspace by means of

(9) <X, ¥>: = <AX,AY>.

If we define L : V—>V by L=T% |

have

B then for all X,YEV we



"
A
>
]

(10) <AX,BY>

By (10) and property a) L is self-adjoint. Furthermore for all

X€V we have

(11) <BX,BX> 2 <BX ,BX>
=<BX,BX>
= <LX,LX>
=< X ,1%% .

For X€V, X€R we have X€ kern ()\A+B) 1if and only if

(12) <AAX+BX, AAX+BX>= 0

By (11) the left hand term in (12) is greater or equal :to

(13) <(AI+L)X, (AI+L)X> 20 .

Hence X€ kern (AA+B) is equivalent to X€ kern (A\I+L) . Clearly
AI+L fails to be bijective for at most (n—1-dim kern A) values of A. We show
that for these values of 1 also AA+B is bijective: For such

A-values X€ kern (AA+B ) implies X = 0 i.e. X€ kern A , hence also

X€ kern B and by property b} X = 0.



Proof of theorem 1: By lemma 1 the mappings

A=ap|_: -rqn“" —> [p(q),n(q) ]+ and B=dn] s TqM“'1 —>[p(q) n(q) 1t

satisfy property a) of lemma 2. Property b} is satisfied because
f is a submanifold of US™ . Therefore by lemma 2
dﬂ.alq = cosaA + sinaB 1is bijective with the exception of at

most n - 1 values of o in [0,7) .

2) Lie transformations

Let Sn.1<:Sn be an umbillic hypersphere, p: Sn-1 —> s® the

sn--1 1

inclusion and n: —> s® a unit normal vector field on s,

n-1

Then (p,n) : S —> us® is a Lie geometric hypersurface that

will be called an oriented sphere. For q es® et iq:Uan —sys™®
denote the inclusion of the fibre of Us" over g into us™.
Then iq is a Lie geometric hypersurface that may be considered as

n=1  chrinks to a point) of an oriented

a limiting case (as S
sphere. It will be useful for our purpose to call also i an

oriented sphere.

Definition: A diffeomorphism ¢ : Usn‘f—> us™ is called a Lie

transformation if it carries oriented spheres into

oriented spheres.

It is easy to see that every Lie transformation is automatically
a "contact transformation", that means it preserves the distribu-
tion D . Therefore a Lie transformation alw&ys carries Lie geo-

metric hypersurfaces ihto Lie geometric hypersurfaces.



Examples of Lie transformations are

1) The "prolongation” to ush ~of conformal transformations

n

¥y : 8 —> sn , defined as 1%—;-[ .

2) The mappings ®, us® —> us®

(p,n) > (cos ap+ sinan), -sinap+ cosan)

already appearing in the last chapter.

We will prove below that the group G of all Lie transformations is
a Lie group isomorphic to 0(n+1,2)/ {-I,I} ; but first we have to
give a convenient descriptidn of the manifold ('.)n + of all oriented

spheres in s® .

For m € s" » PER those (;:,11)EUSn with
(14) R = cospp - ;in on

form an oriented sphere (fig. 1). m 1is one of the

fig. 1

n+1

two "centers" of the sphere. If Lk = (%,x,y) €ER x RxIR 4is any

vector such that k¢ g, 5.3 - x2 -yz = 0 then there is a multiple



2 2

E=2k=(n,X,y) of % such that m-m=X° + y° = 1, that means

(15) £ = (m,cosp, sinp)

for some pER. f‘ is uniquely determined by X up to sign. Via
(14) there corresponds to R (hence also to k) an oriented sphere

n

in S . Because all nonzero multiples of k determine the same

oriented sphere we have a mapping of the quadric

(16) Q= {Ik1eP™2 <k, k> = 0}

n+2

onto the set of all oriented spheres in s™ . Here P is the

real projective space corresponding to the wvectorspace
_ l!n+1

vn+3

xRxR, [k] is the projective point spanned by &k
and <«,> is the symmetric bilinear form on Vn+3 with

(17) <(@,x,¥), B,X,¥)> =3.32 -xz-y'z .

It is easy to verify that this correspondence between projective
points on the quadric Q and oriented spheres in s is bijective.
For the sake of brevity we will usually omit the word "oriented"

and simply speak of "the sphere [ k] " or even "the sphere k ".

Two oriented spheres are said to be in oriented contact if they

intersect as subsets of UuUs" .

Lemma 3: Two oriented spheres [k,] + [k;] are in oriented con-

tact if and only if <h1, k2> = 0 .,

The proof is left to the reader. Lemma 3 implies that two spheres
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{k,1,[(k,] are in oriented contact if and only if the projective

n+2

line in P spanned by [k1] and [kzl is entirely contained

in Q.

We had defined a Lie transformation as a sphere-preserving diffe-~
omorphism us® —> us™ . Every Lie transformation 1nduceé in thé
obvious way a line-preserving mapping Q —> Q . Cohversely every
line-preserving diffeomorphism Q —> Q determines a Lie transfor-

mation.

Lemma 4: Every line-preserving diffeomorphism ¢: Q —> Q 1is the
restriction to Q of a projective transformation

a P"*z —_> ]Pm'z 1eaving Q fixed.

Proof: Q carries in a natural way a conformal structure [4 ] .
For each p€Q the light cone of this conformal structure in TPQ
consists just of the tangent vectors to the lines through p that
lieon Q. Thus ¢®: Q —> Q must be conformal. The lemma now

follows from lemma 6 of [4] .

Corollary: The group of all Lie transformations is a Lie group
isomorphic to 0(n+1,2)/{-I,I} .

Remark: It can be proved that the group of all Lie trdnsformations
is generated by the special transformations of type 1) and 2) on
page 8.
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3) Curvature surfaces

In the rest of this paper we will study properties of Lie geometric
hypersurfaces that are invariant under Lie transformations. The re-
sults of thé last chapter show that the group G of all Lie trans-
formations acts éh the mahifold .Q of all oriented spheres in a way
thaf is easy‘to describe algeb:aicaliy. The action of G on US" is
visualized best if we identify us® with the manifold of all projec-
tive lines on Q. It will thus be useful to have a description of

Lie geometric hypersurfaces in terms of oriented spheres.

Let (p,n) : M —> us®™ be a Lie geometric hypersurface. Define
[k,1,[k,] : M—>Q by

(18) 1!1 = (p,1,0)
k2 = (n'0'1) -
Then Lk, and } satisfy the following conditions:

1 2

a) For all p€M the vectors k,1 (p) and kz(p) are

linearly independent and we have
<h1'kj>. 0 ? i'j = 1'2 .

b) There is no pe€EM, xe'rpn such that simultaneously

dh‘1 (X) and dkz(x) are in span (k1 (P), ky(P)).

c) <dk1. k2>-0 .

The properties a), b), c) are conserved if we pass from &k,, h1 to
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(19) i‘, =a k, +Bk,
B,=vk s ny

where o,B,Y,86 : M —> R are functions such that a§ -8y is every-
where different from zero on M . Conversely, if we are given

k1,h2 : M —> V ., satisfying a), b) and c) then it is easy to veri-
fy that there are functions a,B8,y,6 : M —> R , g,0 : M —> sh

such that

(20) ak, + Bk, = (p,1,0)
YR+ Sky= (n,0,1)

and that (p,n) : M —> us® is a Lie geometric hypersurface.

Thus every Lie geometric hypersurface in 8" can be described by
an (n-1)-dimensional manifold M and a pair of functions

k1,h2 :t M —> Vi3 subject to conditions a),b),c). We will denote
such a description by (M,k1,k2) . Geometrically this description
amounts to the following: Let (p,n) : M —> us® be a Lie geometric
hypersurface such that p is an immersion. Then for any Q€M we
select in a smooth way two oriented hyperspheres k.'(q.) ,kz(q) that
are tangent to the hypersurface at p(g) and that provide the right

orientation at p(gq) (defined by the normal vector n(g)).

Definition: Let (M,k1,h2) be a Lie geometric hypersurface,
pGM,A,u GR' ‘Apu) L (0,0) . Then the Bphere

R = Ak1(p) + uk,(p) 1is called a curvature sphere at
p 1f there is a tangent vector xe'rpu + X¢0 such
that
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(21) Adk (X)+udk, (X) € span (k,(p),k,(p)) .

X" is then called a "direction of curvature" corresponding

‘to 'k .

Note that the above definition is invariant with respect to the
transformations (19), i.e. the definition does not depend on the
choice of k1,k2 . Obviously the notion of a curvature sphere is in-

variant with respect to Lie transformations.

Let (M,h1,k2) be a Lie geometric hypersurface in st + XEM and
suppose that 'k1 and kz are given as in (18). By theorem 1 we
can assume without loss of generality (applying if necessary a Lie
transformation) that p is an immersion in some neighborhood of x .
It is then easy to verify that Y €'1'x14 is a direction of curvature
with corresponding curvature sphere &= cos pk1 (x) + sin pkz(x)
if and only if A= - arcot (p) 41is a principal curvature of the
hypersurface § at x and m = cos p + sinpn (one of the two
center points of k) is a corresponding focal point. Thus we can
aﬁply well known results in the theory of hypersurfaces in s" to
obtain

Proposition 1: Let '(H, k1,k2) be a Lie geometric hypersurface in

s® . Then
~a) At each point p €M there are at most n-1 dif-

ferent spheres of curvature fk,,...,%K_ .

b) The directions of curvature corresponding to

:o form a linear subspace U, of TM .



c) TPM =0,

0.’..0 Ur .
d) If dim U, is constant on an open set VcM
then the distribution on V defined by U,

is integrable.

The dimension of Ua is called the multiplicity of the curvature

sphere ?a .

By a curvature surface of (M,k1,h2) we mean a connected submani-
fold N of M with the property that at each point p of N
the tangent space TPN is equal to one of the Uu . It follows
from [14], proposition 1 that there is an open dense set M c M
such that the multiplicities of the principal curvatures are lo-
cally constant on M, . If p 1is in M,,E& a curvature sphere
at p and Ua‘=TpM the corresponding subspace of directions

of curvature then by d) of theorem 2 Ua is the tangent space

at p of some curvature surface through p .

4) Dupin hypersurfaces

Definition: A Lie geometric hypersurface in s® is called
a Dupin hypersurface if along each curvaturé
surface the corresponding principal curvature
is constant. A Dupin hypersurface is called
proper if all curvature spheres have constant

multiplicities on M .

If a Lie geometric hypersurface (p,n) : M —> us" is also a hyper-
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surface in the usual sense (f.e. § : M —> S® is an immersion)
then we can talk about the principal curvatures of (p,n) . Using
the representation (18) it is easy to see that in this case Dupin
hypersurfaces are characterized by the fact that along each curva-

ture surface the corresponding principal curvature is constant.

The next proposition showé that in order to check whether a given
hypersurface is a Dupin hypersurface it is sufficient to consider

the lines of curvature, i.e. the one~dimensional curvature surfaces.

Proposition 2: Let S be curvature surface in a Lie geometric hy-

persurface (p,n) : M —> us" and suppose dim S2 2.
Then along §$ the corresponding curvature sphere is

constant.

Proof: It is sufficient to show that along S the corresponding
curvature. sphere is locally constant, hence we may assume that

g : M —> 8" is an immersion. Then we have to show that along S
the corresponding principal curvature is constant. To prove this the
argument in the proof of proposition 2.3 in [15] can be applied with

some obvious modifications.

Because the multiplicity of a continuous principal curvature func-
tion on a hypersurface of s® is upper semicontinuous there is for
evar& line of curvature S an open neighborhood U 4in M such that
the multiplicity of the principal curvature corresponding to S 1is
equal to one on U . Thus by the next propbaition the lines of cur-
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vature of a Dupin hypersurface (p,n) : M —> us® are mapped by

p either onto points or onto pieces of circles.

Proposition 3: Let (p,n) : M —> us" be a Lie geometric hyper-

surface, ScM a d-dimensional curvature surface,

U an open neighborhood of S§ in M such that

(1) along S the corresponding curvature sphere

is constant.

(ii) the multiplicity of the curvature sphere cor-

responding to S 1is constant on U .

Then p(S) 4is either a single point or a d-dimen-
sional umbillic submanifold of 8" .

Proof: Let (pw,nw) : M —> US" be a parallel surface to (p,n)

such that p : M —> s® is an immersion in some neighborhood U of
a point p€S (cf. theorem 1). Then S is also a curvature surface
of (pw,nw) and by proposition 3.2 of [5] we know that ﬁw(SIIU)'
is a d-dimensional umbillic submanifold of S" . Now using property
(1) it can be seen by elementary geometry that g(UNS) is either
a single point or also a d-dimensional umbillic submanifold of st .

The same must then be true of course for a(S) .

Theorem 2: Let (p,n) : M —> us®” be a Lie geometric hypersurface.

Then the follow1n§ statements are equivalent:

(1) (p,n) 4is a Dupin hypersurface



(11) Along every line of curvature (i.e. one-dimensi-
onal curvature surface) in M the corresponding

curvature sphere is constant.

(iii) Every line of curvature in M is mapped by §p
either onto a single point or a piece of a circle

in s .

Proof: According to the remark preceding proposition 3 we have

(1) =» (ii) . (ii) =» (i) follows from proposition 2 and proposition 3.2

of [5] (general position can be achieved using our theorem 1).

5) Connection with euclidean and hyperbolic geometry

So far we have been concerned only with the geometry in s . but Lie
geometric methods can also be applied to problems in euclidean and
hyperbolic geometry. This is already clear from the fact that the
group of all Lie transformations contains all conformal transforma-
tions of s® , and from the conformal viewpoint all spaces of con-
stant curvature are locally equivalent. For later use we supply some
explicit formulas for the euclidean case:

A unit tangent vector to R" can be described as a pair

(x,1) € UR® = RMxg?!

. An oriented sphere in R® with center ¢
and (signed) radius r is then the set of all (x,1) € UR® such

that

(22) X=c+run .
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We now consider the stereographic projection

(23) g: R® —> sPcr™! = R« R
_( 2x 1-X X
o (x) = (1+x-x ’ 1+x-x) y

To each (x,u) EURn we assign (p,n) €USn as

- do (1) )
(24) (g,1) (o(x) , ) ),

Explicitly we have
(25) n= (u,-x-u) - (xn)pg .

Using (23), (24) and (25) a straightforward computation shows that
(22) is equivalent to (14) if we define m and p in such é way
that (m, cos p, sinp) is proportional to |

(26) keR™TAxRxR = R'*RxRxR

2

k = (2¢c,1-c.c+1r ,1+c-t—r2,2r) .

Similarly an oriented hyperplane in R"™  with normal vector v and
oriented distance @ from the origin can be described as the set of

all (x,v) €U r" such that

(27) x.v = 4
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Under stereographic projection'there corresponds to this hyper-
plane the oriented sphere in s™

(28) kR = (v,-4,4,1) .

Formulas similar to (26) and (28) are the starting point in the

classical treatment of Lie geometry in Blaschke [3].

Thus Lie geometry also describes the geometry
of oriented spheres (including points, hyperplanes and the point
at infinity) in euclidean space. If we now crall a hypersurface in

mn

a "Dupin hypersurface" if it is the stereographic projection
of a Dupin hypersurface in s® then it is clear that also in
euclidean space Dupin hypersurfaces are characterized by the pro-
perty that along each curvature surface the corresponding principal

curvature is constant.

6) Cyclides of Dupin

A Dupin hypersurface in s is called a cyclide of Dupin of cha-
racteristic (p,q) if at each point it has exactly two curvature

spheres . of muliplicities p,q respectively.

Theorem 3:
a) Every connected cyclide of Dupin is contained in a unique

compact and connected cyclide of Dupin.

- b) Any two cyclides of Dupin with the same characteristic are

locally Lie equivalent.
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Proof:  Let (M,k,,k,) be a cyclide of Dupin of characteristic

(p,q) . We may assume that k1 and kz are the curvature spheres
of M . At each point p€M there are two complementary subspaces

U1 and U

the distributions on M defined by these subspaces are integrable.

2 of TpM corresponding to k1 and kz . By theorem 1

As a consequence M can locally be identified with an open set

W= Uch:]Rp XJRq such that

(i) k1(u,v) depends only on v for (u,v) €W

kz(u,v) depends only on u for (u,v) €W

(11) k(W) and k,(W) are smooth submanifolds of Q< P2

of dimensions q,p respectively.

We claim that k1 (W) 4is contained in a (g+1)-dimensional linear

subspace of :IPm'2 . Suppose on the contrary that there are g+2

linearly independent points k1 (wi) ¢ Wareoo ,wq+2

<k1(u,v), kz(u,v)> =0 for (u,v) €W together with (i) implies

€EW . Now

<h1 (w), k1(7v)>' =0 for all w,wWEW . So kz(w) is contained

in the subspace
(29) E = [k, (w1),...,h2(wq+2)]lc1>“*2

which has dimension (n+2)-(g+1)-1 = p . This is not possible since
k2 (W) cENQ contradicts (ii).

We know that k1 (W) 1is an open subset of E1 nQ , where 15:1 is

a (g+1)~-dimensional linear subspace of ]Pn*z . A similar argument
as above shows that hz (W) 4is an open subset of E2 nQ , where

E2 = EJ1' is the (p+1)-dimensional polar subspace of li:1 . It is
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easy to show that if E, and E, : é'E# 'are subspaces of ph+2

such that E1t1Q and 22110 contain manifolds of dimensions p

and g respectively, then the scalar product <,> must have

signature

(30) (~+...4) on E; , (=+...4) on E, .
[Wp— [
q+1 p+1

It is now clear, that a maximal connected cyclide containing
(M,k1,k2) is given by (Sq:tsp,§1,§2) where

s : = E, NQ, sP = E,NQ and 31 for example makes the following

diagramm commute:

p~1(s%
p
(31) E1 Y
s x SP—ou—s g9
LR
Here p is the natural projection of V _, onto ™2 ana n,

projection onto the first factor. Both assertions of the theorem

are now clear.

»From"the'viéwpoint_of Lie-geometry the geometric structure of a

cyéiide.Of bupin is extremely simple: Any choice of two orthogonal

n+2

complements E B, of P with signature (30) will determine

a cyclide of Dupin and vice-versa.
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Fig. 2, which is taken from [10] illustrates two different appea-

rances of the cyclide of Dupin in IR3.

7) Reducible Dupin hypersurfaces

In [12] the Dupin hypersurfaces in -S4 are classified up to Lie
transformations. In higher dimensions such a classification seems
to be very involved, so one has to resort to some coarser type of
classification. Here we will introduce a notion of reducibility for
Dupin hypersurfaces. In order to know all Dupin hypersurfaces it

will then be sufficient to know all the irreducible ones.

For the following considerations it is convenient to work in JRrAl
rather than in s® + 80 we will rely here on the concepts introduced

in Chapter 5.

Suppose we are given a Dupin hypersurface (x,un) : M —> uRr" .

Because the considerations to follow are of a local nature we can
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assume that X: M —> R" is an embedding and we may identify M
with X(M) cR" . We consider 1" as the linear subspace

1

R’ x {0} 4in ®**' . It is then easy to check that the following

constructions lead to a Dupin hypersurface in ]Rn+1 :

(1) Let N be the cylinder Mx R c®' .

(2) Take an (n-1) -dimensional linear subspace mn-1= R" and
consider the rotations ¢t of :an+1 that leave ]R“-1
pointwise fixed. Let M be the hypersurface of IRn”

generated by M under the rotations ¢ £

(3) Project M stereographically onto a hypersurface
fics®cr™! . Let ® be the cone R-# over . fl .
(4) Let ¥ be a tube in ®™' around M .

Definition: A Dupin hypersurface ¥ in 15”4 that is the re-
sult of one of the above constructions (1)-(4) will
be called reducible. More generally every Dupin hyper-
surface (M,k1,k2) that is locally Lie equivalent to

such a hypersurface will also be called reducible.

For example the cyclides of Dupin described in section 6 are always

reducible . It turns out that there is a simple criterion for re-

ducibility:
Theorem 4: Let (M,k1,k2) be a proper Dupin hypersurface in r",
‘;1.'.‘..,;; t M —> 1Pn+2 its curvature spheres. Then the

following properties are equivalent:
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(1) (M,k1.k2) is reducible.

(1) Por some 1i€{1,...,r} ii(n) is contained in

an n-dimensional linear subspace of 1Pn+2

Proof: Let us note first, that the following manifolds of spheres

are hyperplane sections of the Lie-quadric:

a) the hyperplanes in r"
b) the spheres with a fixed radius r

c) the spheres that are orthogonal to a fixed sphere.

In the coordinates (26), (28) the hyperplanes are characterized

by x + x = 0 , the spheres with radius r by

n+1 n+2

r(xn+1+xn+2) = X .3 - This proves that a) and b) are hyperplane sections.

As regards c) it can be assumed that the fixed sphere is a hyper-
plane H through the origin. A sphere is orthogonal to H if and
only if its center lies in H . This clearly imposes a linear con-

dition on the vector (26). The sets a), b), c) are of the form
(32) {hl <k,a>} =0

with «<a,a> = 0,-1,1 4in case a), b), c) respectively.

It is now easy to see that every reducible hypersurface has a fa-
mily of curvature spheres that is contained in two hyperplane sec-
tions of the Lie quadric. For example the tangent hyperplanes of a
cylinder are curvature spheres and are orthogonal to a fixed hyper-

plane in R" . Hence (1) implies (ii).
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Let (M,k1,k2) be a Dupin hypersurface, % : M:—->2Pn+2 a fa-

mily of curvature spheres contained in an n-dimensional linear

-n+2

subspaée E of P . Then <,> must have signature

(++),(0+)' or (~+) on the poiar subspace El « because otherwise
ENQ would be empty or would éonsist of a single point.

If the signature is (++) a Lie-transformation can achieve that
ENQ consists of all spheres that have their centers in a fixed
(n-2)-dimeénsional linear subspace R"!' of R". Since one family
of curvature spheres of (M,k1,k2) lies in ENQ and M,k k)

is the ehvelope of these spheres, (M,k1,k2) must be a hypersurface
of rotation with the “axis® ®R""2 .

If the signature of El is (0+) a Lie—transformation can achieve

that the set of spheres R(M) consists of hyperplanes orthogonal to
a fixed hyperplane. In this case (M,k1,k2) is a cylinder.

If the signature of o is (-+) we have the choice to represent

(M,k1,h2) elither as a cone or as a tube.

8) Examples of Dupin hypersurfaces

Theorem 5: Given v1,...,vr;€,n with Viteeoty = n-1 there
is a proper Dupin hypersurface in s™ whose princi-~

pal curvatures are of multiplicities VyreesVy .

Proof: The method of proof will be clear when we have shown how

5

to construct Dupin hypersurfaces in S~ with (Vyreeov )
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equal to (1,1,2) and (1,1,1,1) respectively.

Let Mz be an open part of a cyclide of Dupin in ]R3 that does

not contain parabolic points. The cylinder M3 1 = M2 x Re 1!4 is
4

then a Dupin hypersurface in IR with three distinct principal

curvatures A1.k2,x3 at each point. One of these curvatures is zero.
If we form again the cylinder M4 : = M3x R the resulting hyper-

5

surface in R will have the desired properties with (v1,...,vr)

equal to (1,1,2) . To obtain a Dupin hypersurface of type (1,1,1,1)
we first invert M3 in a suitable hypersphere of 114 . Then we

restrict attention to an open part M, of the image, on which all

3
principal curvatures are distinct from zero. The image under stereo-

5

graphic projection into S of the cylinder M4 : = ﬁ3 xR will

then have the desired properties.

Examples constructed as above are always reducible.

Every isoparametric hypersurface in s is a compact proper Dupin
hypersurface. It would be interesting to know, which of these ex-
amples are irreducible. The tubes around totally geodesic submani-
folds are reducible, while those isoparametric hypersurfaces whose
symmetry group acts irreducibly on ]znﬂ are irreducible in the

Lie geometric sense.

Another class of examples is provided by the extrinsically symmetric
submanifolds of R", 8® or H" . A submanifold in a Qpace of con-

stant curvature is called "symmetric" if for each p€EM there is
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an isometry ¢ of the surrounding space that leaves M invari-
ant, leaves the normal space of M in p pointwise fixed and in-

p

duces -Id, , in the tangent space T M [2,9,16] . We now show
| 4 ,
that every such submanifold M (considered as a Lie geometric

hypersurface) is a Dupin hypersurface:

Let M, be a tube around M in the distance ¢ , where ¢ is
small enough to ensure that Me is an immersed hypersurface. As
a Lie geometric hypersurface Me is equivalent to M , hence it

suffices to show that Me is a Dupin hypersurface.

For peue let w(p) be its projection on M , ¢ as above the sym-
metry of the surrounding space that leaves w(p) fixed. p 1is also
fixed by ¢ and in TpM€ there is a subspace of dimension

codim (M)-1 that is pointwise fixed by o, . We can decompose

T Me as an orthogonal direct sum

p
r
(33) Tp“e = N@OeV® a£1 Uu ,

where N ® V is the eigenspace corresponding to the principal cur-
vature 1/é and the U, correspond to the other principal curva-
tures AqreeerA, . By theorem 2 it is sufficient to show that along
every'liﬁé of éurvaturé the correspénding principal curvature is
conétant. Let try(t) be a line of curvature, tH»A(t) the corres-
ponding principal curvature. We will show y'(t,) =0 for all t_ .
Let N,V,Ua be defined as in (33) with p = y(t ) . If y'(to) is
in N®V then )(t) = 1/e for all t and therefore 1i'(t,) =0 .
If y'(t,) is in U, then A'(0) = 0 because o, induces
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-IdU in Ua , and by symmetry the curve vy is mapped onto
a

itself by o .

Thus we have proved that every extrinsically symmetric submanifold

N or 8" is a Dupin hypersurface. It would be interesting

in ®R",s
to know which of these examples are irreducible Dupin hypersurfaces,

and which of them are proper.

9) Global properties

Recently some global properties of Dupin hypersurfaces have aroused
interest. Call a Dupin hypersurface (p,n) : M —> us™ regular if
it is proper and g: M —> s” is an immersion.

G. Thorbergsson [18] proved that every compact regular Dupin hyper-
surface in s" is taut, so in particular p 1is always an embedding
in this case. Conversely it has been shown [13] that every taut

n

submanifold of R" or S (considered as a Lie geometric hyper-

surface) is a Dupin hypersurface.

R. Miyaoka [11] proved that every compact regular Dupin hypersur-
face in s  with exactly three distinct principal curvatures at
each point is Lie equivalent to an isoparametric hypersurface in

s” .



‘21

(3]
[4]
(5]
16
(7]

(8l

(93

[10]

{¥1] R. Miyaoka; Compact Dupin hypersurfaces, to appear in Math.

" Zeitschrift.

(12}

- 29 =

p 3’Arnold. Mathematical methods of classical mechanics,
pringet 1978,

E. &aekes and H. Reckziegel, On symmetric ‘submanifolds of
spaces of constant curvatura. Math. Ann. 263, 419-433. (1983).

W. Blaschke; Vorlesungen {iber Differentialgeometrie III,
Berlin 1929.

M. Caﬁéh-gnd'Y. Kerﬁrat, Domaines symétriques des quadriques
projectives, J. Math. pures et appl. 62, 327-348, (1983).

T.E. Cecil and P.J. Ryan, Focal sets of submanifolds,

Pacific J. Math. 78, (1978), 27-39.

T.E. Cecil and P.J. Ryan, Focal sets, taut embeddings and
the cyclides of Dupin, Math. Ann. 236 (1978), 177-190.

T.E. Cecil and P.J. Ryan, Conformal geometry and the cyclides

T.E. Cecil and P.J. Ryan, Tight spherical embeddings, in
Global Differential Geometry and Global Analysis (1979),
Lecture Notes in Math. 338.

D. Ferus, Symmetric submanifolds of euclidean space,
Math. Ann. 247 (1980), 81-93.

K. Pladt and A. Baur, Analytische Geometrie spezieller

Fléchen und Raumkurven, Braunschweig 1975,

U.wrinkﬁll,fbup;nﬁsche Hyperfllchen in E4 + to appear in
Manuscripta Math.



[13]

[14]

[15]

[16]

[(17]

(18]

- 30 -

' U. Pinkall, Curvature properties of taut submanifolds,

preprint 1983.

H. Reckziegel, Krﬁmmungsflachen von isometrischen Immer-
sionen in R¥ume konstanter Krimmung, Hath Ann. 223
169-181 (1976).

P.J. Ryan, Homogeneity and some curvature conditions for
hypersurfaces, T8hoku Math. J. 21, 363-388, (1969).

M. Takeuchi, Parallel submanifolds of space forms, in:
Manifolds and Lie groups, 429-447, Basel 1981.

G. Thorbergsson, Highly connected taut submanifolds, Math.
Ann. 265, 399-405 (1983).

G. Thorbergsson, Dupin hypersurfaces, Bull. London Math.
Soc. 15 (1983), 493-498.

U. Pinkall
Max-Planck-Institut fiir Mathematik
Gottfried-Claren-Str. 26

5300 Bonn 3



	Seite 1 
	Seite 2 
	Seite 3 
	Seite 4 
	Seite 5 
	Seite 6 
	Seite 7 
	Seite 8 
	Seite 9 
	Seite 10 
	Seite 11 
	Seite 12 
	Seite 13 
	Seite 14 
	Seite 15 
	Seite 16 
	Seite 17 
	Seite 18 
	Seite 19 
	Seite 20 
	Seite 21 
	Seite 22 
	Seite 23 
	Seite 24 
	Seite 25 
	Seite 26 
	Seite 27 
	Seite 28 
	Seite 29 
	Seite 30 
	Seite 31 

