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JET BUNDLES ON GORENSTEIN CURVES AND APPLICATIONS

LETTERIO GATTO AND ANDREA T. RICOLFI

Dedicated to Professor Goo Ishikawa, on the occasion of his 60th birthday

ABSTRACT. In the last twenty years a number of papers appeared aiming to construct locally
free replacements of the sheaf of principal parts for families of Gorenstein curves. The main
goal of this survey is to present to the widest possible mathematical audience a catalogue
of such constructions, discussing the related literature and reporting on a few applications
to classical problems in Enumerative Algebraic Geometry.
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0. INTRODUCTION

The purpose of this expository paper is to present a catalogue of locally free replacements
of the sheaves of principal parts for (families of) Gorenstein curves. In the smooth category,
locally free sheaves of principal parts are better known as jet bundles, understood as those
locally free sheaves whose transition functions reflect the transformation rules of the partial
derivatives of a local section under a change of local coordinates (more details in Section 1.4).
Being a natural globalisation of the fundamental notion of Taylor expansion of a function
in a neighborhood of a point, jet bundles are ubiquitous in Mathematics. They proved
powerful tools for the study of deformation theories within a wide variety of mathematical
situations and have a number of purely algebraic incarnations: besides the aforementioned
principal parts of a quasi-coherent sheaf [28]we should mention, for instance, the theory of
arc spaces on algebraic varieties [10, 40], introduced by Nash in [44] to deal with resolutions
of singular loci of singular varieties.

The issue we want to cope with in this survey is that sheaves of principal parts of vector
bundles defined on a singular variety X are not locally free. Roughly speaking, the reason
is that the analytic construction carried out in the smooth category, based on gluing local
expressions of sections together with their partial derivatives, up to a given order, is no
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2 L. GATTO AND A. T. RICOLFI

longer available. Indeed, around singular points there are no local parameters with respect
to which one can take derivatives. This is yet another way of saying that the sheaf Ω1

X of
sections of the cotangent bundle is not locally free at the singular points.

If C is a projective reduced singular curve, it is desirable, in many interesting situations,
to dispose of a notion of global derivative of a regular section. If the singularities of C
are mild, that is, if they are Gorenstein, locally free substitutes of the classical principal
parts can be constructed by exploiting a natural derivation OC →ωC , taking values in the
dualising sheaf, which by the Gorenstein condition is an invertible sheaf. This allows one
to mimic the usual procedure adopted in the smooth category. Related constructions have
recently been reconsidered by A. Patel and A. Swaminathan in [46], under the name of
sheaves of invincible parts, motivated by the classical problem of counting hyperflexes in
one-parameter families of plane curves. Besides loc. cit., locally free jets on Gorenstein
curves have been investigated by a number of authors, starting about twenty years ago
[35, 36, 34, 18, 25]. The reader can consult [19, 26, 20], and the references therein, for several
applications.

0.1. The role of jet bundles in Algebraic Geometry. The importance of jet extensions of
line bundles in algebraic geometry emerges from their ability to provide the proper flexible
framework where to formulate and solve elementary but classical enumerative questions,
such as:

(i) How many flexes does a plane curve possess?
(ii) How many members in a generic pencil of plane curves have a hyperflex?

(iii) How many fibres in a one-parameter family of curves of genus 3 are hyperelliptic?
(iv) What is the class, in the rational Picard group of M g , the moduli space of stable

curves of genus g , of the closure of the locus of smooth curves possessing a special
Weierstrass point?

We will touch upon each of these problems in this survey report.

0.2. Wronskian sections over Gorenstein curves. A theory of ramification points of linear
systems on Gorenstein curves was proposed in 1984 by C. Widland in his Ph.D. thesis, also
exposed in a number of joint papers with Robert F. Lax [53, 52]. The dualising sheafωC on
an integral curve C , first defined by Rosenlicht [49] via residues on the normalisation eC ,
can be realised as the sheaf of regular differentials on C , as explained by Serre in [50, Ch. 4
§ 3]. There is a natural map Ω1

C →ωC allowing one to define a derivation d: OC →ωC , by
composition with the universal derivation OC →Ω1

C . Differentiating local regular functions
by means of this composed differential allowed Widland [51] and Lax to define a global
Wronskian section associated to a linear system on a Gorenstein curve C , coinciding with
the classical one for smooth curves.

As a quick illustration of how such construction works, consider a plane curve ι : C ,→P2

of degree d , carrying the degree d line bundle OC (1) = ι∗OP2 (1). The Wronskian by Widland
and Lax vanishes along all the flexes of C , but also at singular points. The total order of
vanishing equals the number of flexes on a smooth curve of the same degree. For example, if
C is an irreducible nodal plane cubic, the Wronskian associated to the bundle OC (1) would
vanish at three smooth flexes, but also at the node with multiplicity 6. If C were cuspidal,
the Wronskian would vanish at the unique smooth flex, and at the cusp with multiplicity 8.
In all cases the “total number” (which is 9) of inflection points is conserved.

In sum, the Wronskian defined by Widland and Lax is able to recover the classical Plücker
formula counting smooth flexes on singular curves, but within a framework that is par-
ticularly suited to deal with degeneration problems, provided one learns how to extend it
to families. For families of smooth curves, as pointed out by Laksov [33], the Wronskian
section of a relative line bundle should be thought of as the determinant of a map from the
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pullback of the Hodge bundle to a jet bundle. The theory by Widland and Lax, however, was
lacking a suitable notion of jet bundles for Gorenstein curves, as Ragni Piene [47] remarked
in her AMS review of [53]:

“This (Widland and Lax) Wronskian is a section of the line bundle L⊗s ⊗
ω⊗(s−1)s/2

C , where s ..= dim H 0(X , L ). They define the section locally and
show that it patches. (In the classical case in which X is smooth, one easily
defines the Wronskian globally, by using the (s −1)st sheaf of principal parts
on X of L . To do this in the present case, one would need a generalisation of
these sheaves, whereω plays the role ofΩ1

X . Such a generalisation is known
only for s = 2.)”

These generalisations are nowadays available in the aforementioned references. In the
last two sections we will present a few applications and open questions arising from the
use of such an extended notion of jet bundles for one-parameter families of stable curves.

0.3. Overview of contents. In the first section we describe the construction of principal
parts, jet bundles (with a glimpse on an abstract construction by Laksov and Thorup) and
invincible parts by Patel and Swaminathan. In Section 2 we describe two applications of
locally free replacements: the enumeration of hyperflexes in families of plane curves via
automatic degeneracies [46], and the determination of the class of the stable hyperelliptic
locus in genus 3 [19]. In Section 3 we define ramification points of linear systems on smooth
curves; we introduce the classical Wronskian section attached to a linear system and state
the associated Brill–Segre formula. In Section 4 we describe a generalisation to Gorenstein
curves, due to Lax and Widland. In Section 5 we review the main ingredients needed in
the computation of the class in Pic(M g )⊗Q of the locus of curves possessing a special
Weierstrass point as in [26]. In Section 6 we propose a few examples and some natural but
still open questions.

Conventions. All schemes are Noetherian and defined over C. Any scheme X comes
equipped with a sheaf ofC-algebras OX . If U ⊂ X is an open subset in the Zariski (resp. an-
alytic) topology, then OX (U ) is the ring of regular (resp. holomorphic) functions on U . A
curve is a reduced, purely 1-dimensional scheme of finite type overC. We denote by KC the
canonical line bundle of a smooth curve C . In the presence of singularities, we will write
ωC for the dualising sheaf. We denote by Ω1

π the sheaf of relative Kähler differentials on a
(flat) family of curves π: X → S .

Acknowledgment. Both authors are grateful to the anonymous referee for carefully
reading the paper and for providing valuable comments, that definitely improved the shape
of the paper in terms of clarity and readability. The first author is also indebted to Professor
Stanisław (Staszek) Janeczko for encouraging support. The second author wishes to thank
Max-Planck Institut für Mathematik for support.

This paper is dedicated to Professor Goo Ishikawa, on the occasion of the celebration (Goo
’60) of his sixtieth birthday, wishing him many more years of new beautiful theorems.

1. PRINCIPAL PARTS, JETS AND INVINCIBLE PARTS

This first section is devoted to recall the definition and properties of the sheaves of
principal parts and to introduce a couple of related constructions: jets of vector bundles,
especially those of rank 1, and the Patel–Swaminathan invincible parts. We start by giving
the general idea of jets, which blends their analytic construction with the algebraic presence
of the dualising sheaf.
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These constructions lead to the technique of locally free replacements of principal parts
for families of curves with at worst Gorenstein singularities. They are intended to deal
with degenerations of ramification points of linear systems in one parameter families of
curves of fixed arithmetic genus. In fact, in Section 2 we shall give two applications to see
the theory in action: the count of hyperflexes in a pencil, as performed in [46], and the
determination of the class of the stable hyperelliptic locus in genus 3, as worked out by
Esteves [19].

1.1. The idea of jets. Our guiding idea is the following ansatz, which we shall implement
below only in the case of algebraic curves. Let X be a (not necessarily smooth) complex
algebraic variety of dimension r . If X is not smooth, the sheaf of differentials Ω1

X is not
locally free. Even in this case it is possible to construct, in a purely algebraic fashion, the
sheaf of principal parts (see Section 1.3) attached to any quasi-coherent sheafM . If X is
singular, this sheaf is not locally free (even ifM is locally free), and this makes harder its
use even to solve elementary enumerative problems. But suppose one has an OX -module
homomorphism φ : Ω1

X →M , where M is a locally free sheaf of rank r = dim X . This
induces a derivation d: OX →M obtained by composingφ with the universal derivation
OX →Ω1

X attached to X . Let P ∈ X be a point and U an open neighborhood of P trivialising
M , that is,

M (U ) =O (U ) ·m1⊕ · · ·⊕O (U ) ·mr .

Such a trivialisation allows one to define partial derivatives with respect to the generators
m1, . . . , mr ∈M (U ). In the smooth case, and takingM =Ω1

X , these generators can just be
taken to be the differentials of a local system of parameters around P . Following an idea
essentially due to Lax and Widland, one defines for each f ∈O (U ) its “partial derivatives”
di f ∈O (U ) by means of the relation

d f =
r
∑

i=1

di f ·mi

inM (U ). Iterating this process in the obvious way, one can define higher order partial
derivatives (with respect to m1, . . . , mr ), and thus jet bundles, precisely as in the smooth
category.

1.2. Dualising sheaves. This technical section can be skipped at a first reading. It will be
applied below in special cases only, but it is important because it puts the subject in the
perspective of new applications.

Any proper flat family of curves π: X → S has a dualising complexω·π
..=π!OS . Here π! is

the right adjoint to Rπ∗. The cohomology sheaf of the dualising complex

ωπ = h−1(ω·π),

in degree −1 (where 1 is the relative dimension of π) is called the relative dualising sheaf of
the family. Its formation commutes with arbitrary base change; for instance, we have

ωπ
�

�

X s
=ωX s

for X s =π−1(s ) a fibre of π.

Example 1.1. Let π: X → S be a local complete intersection morphism. This means that
there is a factorisation π: X → Y → S with i : X → Y a regular immersion and Y → S a
smooth morphism. Then one can compute the dualising sheaf of π as

(1.1) ωπ = det(I /I 2)∨⊗OX
i ∗det Ω1

Y /S ,
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where I ⊂ OY is the ideal sheaf of X in Y . Every curve in a smooth surface is a local
complete intersection scheme. For instance, if i : C ,→P2 is a plane curve of degree d , the
ideal sheaf of i is OP2 (−d ) and so (1.1) yields

ωC =OC (d )⊗OC
i ∗det Ω1

P2 =OC (d −3).

Definition 1.2. A (proper) C-scheme X is said to be Cohen–Macaulay if its dualising com-
plexω·X is quasi-isomorphic to a sheaf. When this sheaf, necessarily isomorphic toωX , is
invertible, X is called Gorenstein.

For a proper flat morphismπ: X → S , the relative dualising sheafωπ is invertible precisely
when π has Gorenstein fibres.

1.3. Principal parts. Sheaves of principal parts were introduced in [28, Ch. 16.3]. Let
π: X → S be a morphism of schemes, I the ideal sheaf of the diagonal∆: X → X ×S X and
denote by Ω1

π =∆
∗(I /I 2) the sheaf of relative Kähler differentials. Let p and q denote the

projections X ×S X → X , and denote by ∆k ⊂ X ×S X the closed subscheme defined by
I k+1, for every k ≥ 0. Then, for every quasi-coherent OX -module E , the sheaf

P k
π (E )

..= p∗
�

q ∗E ⊗O∆k

�

is quasi-coherent and is called the k -th sheaf of principal parts associated to the pair (π, E ).
When S = Spec Cwe simply write P k (E ) instead of P k

π (E ).

PROPOSITION 1.3. Let π: X → S be a smooth morphism, E a quasi-coherent OX -module.
The sheaves of principal parts fit into right exact sequences

E ⊗Symk Ω1
π→ P k

π (E )→ P k−1
π (E )→ 0

for every k ≥ 1. If E is locally free then the sequence is exact on the left, and P k
π (E ) is locally

free for all k ≥ 0.

PROOF. Consider the short exact sequence

0→I k/I k+1→O∆k
→O∆k−1

→ 0.

Tensoring it with q ∗E gives an exact sequence

(1.2) q ∗E ⊗I k/I k+1 ε−→ q ∗E ⊗O∆k
→ q ∗E ⊗O∆k−1

→ 0.

The sheaf q ∗E ⊗I k/I k+1 is supported on the diagonal∆0 ⊂ X ×S X , and the same is true
for its quotientQ ..= (q ∗E ⊗I k/I k+1)/kerε ⊂ q ∗E ⊗O∆k

. Since p |∆0
is an isomorphism,

we have R i p∗F = 0 for all i > 0 and all sheavesF supported on∆0. Therefore, applying p∗
to (1.2) we obtain

(1.3) p∗
�

q ∗E ⊗I k/I k+1
�

→ P k
π (E )→ P k−1

π (E )→R 1p∗Q = 0,

which is the required exact sequence, since

p∗
�

q ∗E ⊗I k/I k+1
�

=∆∗
�

q ∗E ⊗I k/I k+1
�

=∆∗q ∗E ⊗∆∗
�

I k/I k+1
�

= E ⊗∆∗Symk
�

I /I 2
�

= E ⊗Symk Ω1
π.

We used smoothness of π to ensure that I is locally generated by a regular sequence. This
allowed us to make the identification I k/I k+1 = Symk (I /I 2) in the third equality above.
If E is locally free, then (1.2) is exact on the left, and the same is true for (1.3), so that local
freeness of P k

π (E ) follows by induction exploiting the resulting short exact sequence and
the base case provided by P 0

π (E ) = E .
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Example 1.4. Suppose π: X → S is smooth. Then there is a splitting P 1
π (OX ) =OX ⊕Ω1

π. For
an arbitrary vector bundle E , the splitting of the first bundle of principal parts usually fails
even when S is a point. In fact, in this case, the splitting is equivalent to the vanishing of
the Atiyah class of E , which by definition is the extension class

A(E ) ∈ Ext1
X (E , E ⊗Ω1

X )

attached to the short exact sequence of Proposition 1.3 taken with k = 1. But the vanishing
of the Atiyah class is known to be equivalent to the existence of a holomorphic connection
on E .

Note that for every quasi-coherent sheaf E on X one has a canonical map

(1.4) ν: π∗π∗E → p∗q
∗E → P k

π (E ),

where the first one is an isomorphism when π is flat, and the second one comes from
applying p∗(q ∗E ⊗−) to the surjection O �O∆k

.

Example 1.5. To illustrate the classical way of dealing with bundles of principal parts, we
now compute the number δ of singular fibres in a general pencil of hypersurfaces of degree
d in Pn . This calculation will be used in Subsection 2.1.2. The number δ is nothing but the
degree of the discriminant hypersurface in the space of degree d forms on Pn , which in
turn is the degree of

cn (P
1(OPn (d ))) ∈ An (Pn ).

By Proposition 1.3, the bundle P 1(OPn (d )) is an extension of OPn (d ) by Ω1
Pn (d ). The Euler

sequence
0→Ω1

Pn →OPn (−1)n+1→OPn → 0

twisted by OPn (d ) says that the same is true for the bundle OPn (d −1)n+1. Then the Whitney
sum formula implies that

c (P 1(OPn (d ))) = c (OPn (d −1)n+1) = (1+ (d −1)ζ)n+1,

where ζ ∈ A1(Pn ) is the hyperplane class. Computing the n-th Chern class gives

(1.5) δ= (n +1) · (d −1)n .

1.4. Jet bundles. Letπ: X → S be a quasi-projective local complete intersection morphism
of constant relative dimension d ≥ 0. Let Ω1

π be the sheaf of relative differentials, and Ωd
π

its d -th exterior power. Then there exists a canonical morphism Ωd
π →ωπ restricting to

the identity over the smooth locus of π (see Corollary 4.13 in [39, Section 6.4] for a proof).
The construction goes as follows. Let X → Y → S be a factorisation of π, with i : X → Y a
regular immersion with ideal I ⊂OY and Y → S smooth. The exact sequence

I /I 2→ i ∗Ω1
Y /S →Ω

1
π→ 0

induces a canonical map

µY : Ωd
π ⊗det I /I 2→ i ∗det Ω1

Y /S .

According to (1.1), tensoring µY with the dual of det I /I 2 gives a morphism Ωd
π→ωπ. It

is not difficult to see that this map does not depend on the choice of factorisation.

A natural morphism of sheaves Ω1
π → ωπ, restricting to the identity on the smooth

locus of π, exists for arbitrary flat families π: (X , x0)→ (S , 0) of germs of reduced curves [1,
Prop. 4.2.1]. More generally, the results in [17, Sec. 4.4] show that a natural morphism

(1.6) φ : Ωd
π→ωπ,

can be constructed for every flat morphismπ: X → S of relative dimension d over a reduced
base S (and over a field of characteristic zero).
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We now apply this construction to flat families π: X → S of Gorenstein curves (so for
d = 1), taking advantage of the invertibility ofωπ in order to construct locally free jets. When
dealing with such families, we will therefore assume to be working over a reduced base,
which will be enough for all our applications. Composing φ with the exterior derivative
homomorphism d: OX →Ω1

π attached to the family gives an OS -linear derivation

(1.7) dπ : OX →ωπ.

For every integer k ≥ 0 and line bundle L on X , there exists a vector bundle

(1.8) J k
π (L )

of rank k +1 on X , called the k -th jet extension of L relative to the family π. We refer to [26,
Section 2] for its detailed construction in the case of stable curves. The same construction
(as well as the proof of Proposition 1.7 below) extends to any family of Gorenstein curves as
one only uses the map Ω1

π→ωπ and the invertibility of the relative dualising sheaf. The
bundle (1.8) depends on the derivation dπ (although we do not emphasise it in the notation),
and formalises the idea of taking derivatives (with respect to dπ) of sections of L along the
fibres of π. It can be thought of as a holomorphic, or algebraic, analogue of the C∞ bundle
of coefficients of the Taylor expansion of the smooth functions on a differentiable manifold.
When S = Spec Cwe simply write J k (L ).

We now sketch the construction of the jet bundle (1.8). Suppose we have an open covering
U = {Uα } of X , trivialising ωπ and L at the same time, with generators εα ∈ωπ(Uα) and
ψα ∈ L (Uα) respectively over the ring of functions on Uα. Then for every non constant global
section λ ∈H 0(X , L )we can write

λ|Uα =ρα ·ψα ∈ L (Uα)

for certain functionsρα ∈OX (Uα). Then one can define operators D i
α : OUα→OUα inductively

for i ≥ 0, by letting D 0
α (ρα) =ρα and by the relation

dπ(D
i−1
α (ρα)) =D i

α(ρα) ·εα.

It is then an easy technical step to show that over the intersection Uαβ =Uα∩Uβ , the (k +1)-
vectors (D i

α(ρα))
T and (D i

β (ρβ ))
T differ by a matrix Mαβ ∈GLk+1(OUαβ ), and that in fact the

data {Mαβ } define a 1-cocycle with respect to U . The verification of this fact uses that dπ is
a derivation. The upshot is that the vectors (D i

α(ρα)) glue to a global section

(1.9) D kλ

of a well defined vector bundle J k
π (L ). Moreover, the bundle obtained comes with a natural

C-linear morphism

(1.10) δ : OX → J k
π (L )

such that if J k
π (L )|Uα is free with basis {εα,i : 0≤ i ≤ k }, then δ is defined on this open patch

by f 7→
∑k

i=0 D i
α( f ) ·εα,i .

Example 1.6. When S is a point, X is a smooth projective curve, L is the cotangent bundle
Ω1

X with the exterior derivative d: OX →Ω1
X , theC-linear map (1.10) reduces to the “Taylor

expansion” truncated at order k . More precisely, let U ⊂ X be an open subset (trivialising
ωX = Ω1

X ) with local coordinate x . Then we can take ε= d x ∈ Ω1
X (U ) as an OX (U )-linear

generator, and {d x i : 0≤ i ≤ k } can be taken as a basis of J k (Ω1
X )|U . The restriction δ|U of

(1.10) then takes the form

f 7→
k
∑

i=0

1

i !

∂ i f

∂ x i
d x i ,
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where the denominator 1/i ! is there for cosmetic reasons. The cocycle condition that the
above coefficients need to satisfy is equivalent to the chain rule for holomorphic functions.

Computations in intersection theory involving jet bundles often rely on the application
of the following key result.

PROPOSITION 1.7 ([26, Prop. 2.5]). Let π: X → S be a flat family of Gorenstein curves.
Then, for every k ≥ 1 and line bundle L on X , there is an exact sequence of vector bundles

(1.11) 0→ L ⊗ω⊗k
π → J k

π (L )→ J k−1
π (L )→ 0.

LEMMA 1.8. Let π: X → S be a flat family of Gorenstein curves with smooth locus U ⊂ X ,
let L be a line bundle on X , and fix an integer k ≥ 0. Then

J k
π (L )

�

�

U
= P k

π (L )
�

�

U
.

PROOF. The derivation dπ : OX →ωπ defined in (1.7) and used to define the k -jets restricts
to the universal derivation d: OU →Ω1

U /S over the smooth locus U . But jet bundles taken
with respect to the universal derivation agree with principal parts in the smooth case, as one
can verify directly from their construction; see also [35, Section 4.11] for a reference.

1.4.1. The approach of Laksov and Thorup. Laksov and Thorup [35] generalised the con-
struction of (1.10) in the following sense. Given an S-scheme X and a quasi-coherent
OX -moduleM admitting an OS -linear derivation d: OX →M , they constructed for all k ≥ 0
an OS -algebra

J k =J k
M ,d

over X , along with an algebra map δ : OX →J k generalising the one constructed in (1.10).
The sheaf J k is called the k -th algebra of jets. It is quasi-coherent, and of finite type
wheneverM is. For every OX -moduleL , one can consider the OX -module

J k (L ) =J k ⊗OX
L

ofL -twisted jets. They fit into exact sequences

L ⊗M⊗k →J k (L )→J k−1(L )→ 0,

that are left exact wheneverM is S-flat. The construction carried out in [35] works over
fields of arbitrary characteristic and is completely intrinsic, in particular it avoids the
technical step of verifying the cocycle condition.

1.4.2. Arc spaces. The study of arc spaces (also called jet schemes) was initiated by Nash
[44] in the 60’s in the context of Singularity Theory. Arcs on algebraic varieties received a lot
of attention more recently since Kontsevich’s lecture [32]. See for instance the papers by
Denef–Loeser [10, 9] and Looijenga [40]. An arc of order n on a variety X based at point P
is a morphism

α: Spec C[t ]/t n+1→ X

sending the closed point to P . The reader may correctly think of it as the expression of
a germ of complex curve considered together with its first n derivatives. For instance if
n = 1, one obtains the classical notion of tangent space at a point. These maps form an
algebraic variety Ln (X ), and the inverse limit L(X ) = limLn (X ) is the full arc space of X , an
infinite type scheme whoseC-points correspond to morphisms Spec C¹t º→ X . Kontsevich
invented Motivic Integration in order to prove that smooth birational Calabi–Yau manifolds
have the same Hodge numbers; he constructed a motivic measure on L(X ), which can
be thought of as the analogue of the p -adic measure used earlier by Batyrev to show that
smooth birational Calabi–Yau manifolds have equal Betti numbers. Other remarkable
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notions introduced by Denef–Loeser are the motivic Milnor fibre and the motivic vanishing
cycle; the latter is the motivic incarnation of the perverse sheaf of vanishing cycles attached
to a regular (holomorphic) function U →C. This theory has a wide variety of applications
in Singularity Theory, but it has also proven successful in Algebraic Geometry, for instance
in the study of degenerations of abelian varieties via motivic zeta functions [29].

1.5. Invincible parts. An elegant approach to the problem of locally free replacements
of principal parts has been proposed by Patel and Swaminathan in their recent report
[46]. Their construction is formally more adherent to the purely algebraic definition of
principal parts as described in Section 1.3. To perform the construction they restrict to
certain families of curves according to the following:

Definition 1.9. Let π: X → S be a proper flat morphism of pure Gorenstein curves. Then π
is called an admissible family if the locus Γ ⊂ X over whichπ is not smooth has codimension
at least 2.

Let π: X → S be an admissible family with X and S smooth, irreducible varieties, and
assume dimS = 1. Let E be a vector bundle on the total space X . Patel and Swaminathan
define the k -th order sheaf of invincible parts associated to (π, E ) as the double dual sheaf

P k
π (E )

∨∨.

This intrinsic construction is related to the gluing procedure (giving rise to jets) described
in Section 1.4, via the following observation.

PROPOSITION 1.10. Let π: X → S be an admissible family of Gorenstein curves, with X
and S smooth irreducible varieties and dimS = 1. Let L be a line bundle on X . Then the
sheaf of invincible parts P k

π (L )
∨∨ agrees with the jet bundle J k

π (L ) of (1.8).

PROOF. The vector bundle J k
π (L ) restricted to the smooth locus U = X \ Γ of π agrees with

P k
π (L )|U by Lemma 1.8. But by [46, Prop. 10], P k

π (L )
∨∨ is the unique locally free sheaf with

this property.

2. TWO APPLICATIONS

2.1. Counting flexes via automatic degeneracies. In this section we report on one of the
main applications of the sheaves of invincible parts that motivated the research by Patel
and Swaminathan. In particular, we wish to describe the application of their theory of
automatic degeneracies to the enumeration of hyperflexes in general pencils of plane curves.
A hyperflex on a plane curve C ⊂ P2 is a point on the normalisation P ∈ eC such that for
some line ` ⊂ P2 we have ordP (ν∗`) ≥ 4, where ν: eC → C is the normalisation map. The
general plane curve of degree d > 1 has no hyperflexes, but one expects to find a finite
number of hyperflexes in a pencil. One has the following classical result.

PROPOSITION 2.1. In a general pencil of plane curves of degree d , exactly

6(d −3)(3d −2)

will have hyperflexes.

Remark 2.2. Note that this number vanishes for d = 3. This should be expected, for in a
general pencil of plane cubics all fibres are irreducible, but a cubic possessing a hyperflex
is necessarily reducible.
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A proof of Proposition 2.1 via principal parts can be found in [16]. A different approach,
via relative Hilbert schemes, has been taken by Ran [48]. In [46], the authors apply their
theory of automatic degeneracies to give a new proof of Proposition 2.1. More precisely,
after a suitable Chern class calculation, which we review below in the language of jet
bundles, the authors subtract the individual contribution of each node in the pencil to
get the desired answer. Strictly speaking, interpreting the node contribution in terms of
automatic degeneracies is a step that relies upon a genericity assumption described neatly
in [46, Remark 20], and that we take for granted here. Let us note that it is extremely useful
to have an explicit function (see Subsection 2.1.1 below) computing the “correction term”
one has to take into account while performing a Chern class/Porteous calculation over a
family of curves containing singular members.

2.1.1. Automatic degeneracies. Given a (proper, non-smooth) morphism of Gorenstein
curves X → S , the associated sheaves of principal parts are not locally free, but the jets
constructed out of the derivation (1.7) are locally free. To answer questions on the inflec-
tionary behavior of the family X → S , the classical strategy is to set up a suitable Porteous
calculation and compute the degree of the appropriate Chern classes of the jet bundles.
However, inflection points are by definition smooth points, and singularities in the fibres
X s tend to “attract” inflection points as limits; so one has to excise the contribution to
this Porteous calculation coming from the singular points of the fibres. This problem was
tackled in [46], where the authors propose a theoretical solution, working nicely at least
under certain assumptions. More precisely, the authors are able to attach to any germ
f ∈C¹x , y º of a plane curve singularity a function

AD( f ): N→N, m 7→ADm ( f ),

whose value at m ∈N they call the m-th order automatic degeneracy associated to f . From
its definition [46, Def. 18], it is clear that the function AD( f ) is an analytic invariant of
the germ f . We refer the reader to [46, Section 5] for an algorithmic approach to the
computation of the values of this function.

Given a 1-parameter admissible family X → S of curves where the singularity f = 0
appears in a fibre, the number ADm ( f ) is the correction term one has to take into account
in the Porteous calculation aimed at enumerating m-th order inflection points on X → S .
The authors determine this function in the nodal case by proving [46, Theorem 21] the
formula

(2.1) ADm (x y ) =

�

m +1

4

�

.

It remains an open problem to compute the function AD( f ) for other singularities, although
in loc. cit. a few computations for a specific m are carried out, for instance

AD4
�

y 2− x 3
�

= 10

for the cusp singularity.

2.1.2. The count of hyperflexes. Let X ⊂P2×P1→P1 be a generic pencil of plane curves of
degree d . It can be realised explicitly as follows. Let us choose two general plane curves
C1 and C2 of degree d , the generators of the pencil. Their intersection will consist of d 2

reduced points. Blowing up these points gives

π: X ,→P2×P1→P1.

Consider the line bundle Ld = b ∗OP2 (d ), where b : X →P2 is the blow up map. The number
we are after is

∫

X

c2(J
3
π (Ld ))−

�

5

4

�

·δ,
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where δ= 3(d −1)2 is the number of nodes computed in (1.5) and the binomial coefficient
computes the automatic degeneracy of a node, using (2.1) with m = 4. This number is
determined by the Chern classes

η= c1(ωπ), ζ= c1(Ld ).

Using the exact sequences of Proposition 1.7 we get

c2(J
3
π (Ld )) = 11η2+18ηζ+6ζ2.

It is easy to see that ζ2 ∈ A2(X ) has degree 1. Exploiting that E 2 =−d 2, one can check that
η2 has degree 3d 2−12d +9. Finally, ηζ has degree 2d −3. The difference

11(3d 2−12d +9) +18(2d −3) +6−5 ·3(d −1)2 = 6(d −3)(3d −2)

computes the number of hyperflexes prescribed by Proposition 2.1.

2.2. The stable hyperelliptic locus in genus 3, after Esteves. In this section we will see the
sheaves of principal parts and the technique of locally free replacements in action to solve
a concrete problem. The results in this section hold over an algebraically closed field k
of characteristic different from 2. Consider the moduli space M3 of smooth, projective,
connected curves of genus 3. A hyperelliptic curve of genus 3 is a 2 : 1 branched covering of
the projective line with 8 ramification points.

Let H ⊂M3 be the divisor parametrising hyperelliptic curves, and let H be its closure in
the Deligne–Mumford moduli space M 3 of stable curves. The vector space Pic(M3)⊗Q is
generated by the Hodge class λ (pulled back from M 3), whereas Pic(M 3)⊗Q is generated
by λ, δ0 and δ1, with δi denoting the boundary classes on M 3. A proof of the following
theorem, expressing the classes [H ] and [H ] in terms of the above generators, can be found
in in [30].

THEOREM 2.1. One has

(2.2) [H ] = 9λ

and

(2.3) [H ] = 9λ−δ0−3δ1.

Formula (2.2) also follows from Mumford’s relation [43, p. 314]. Below is a quick descrip-
tion of how Esteves [19, Thm. 1] proves formula (2.3).

2.2.1. Smooth curves. Let π: C→ S be a smooth family of genus 3 curves. We constructed
in (1.4) a natural map of vector bundles ν: π∗π∗Ω

1
π→ P 1

π (Ω
1
π) on C, where the source has

rank 3 and the target has rank 2. Assuming the general fibre is not hyperelliptic, it turns
out that the top degeneracy scheme D of ν (supported on points P such that ν|P is not
onto) has the expected codimension, namely 2. Then Porteous formula applies and gives
[D ] = c2(P 1

π (Ω
1
π)−π

∗π∗Ω
1
π)∩ [C]. Pushing this identity down to S , and observing that there

are 8 Weierstrass points on a hyperelliptic curve of genus 3, one gets, after a few calculations,
the relation 8hπ = 72λπ, proving the formula for [H ].

2.2.2. Stable curves. Let now X→ S be a family of stable curves of genus 3, which for sim-
plicity we assume general from the start. This means S is smooth and 1-dimensional, the
general fibre of π is smooth and the finitely many singular fibres have only one singular-
ity. One can see that only two types of singularities can appear in the fibres: a uninodal
irreducible curve Z ⊂X, or a reducible curve X ∪N Y ⊂X consisting of a genus 1 curve X
meeting a genus 2 curve transversally at the node N . It is also harmless to assume there is
exactly one singular fibre of each type.
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After replacing the sheaf of differentials Ω1
π with the (invertible) dualising sheaf ωπ,

Esteves obtains, via a certain pushout construction, a natural map of vector bundles

ν: π∗π∗ωπ→ P 1
π (ωπ)→F

where, as before, the source has rank 3 and the target has rank 2. Note that the middle
sheaf, the sheaf P 1

π (ωπ) of principal parts, is not locally free because of the presence of
singularities. However, by construction, the restriction of ν to the smooth locus recovers
the old map ν from the previous paragraph. Unfortunately, one cannot apply Porteous
formula directly here, because this time the top degeneracy scheme of ν has the wrong
dimension, as it contains the elliptic component X .

The way out is to replace ωπ by its twist L = ωπ ⊗ OX(−X ).1 Repeating the pushout
construction gives the diagram

0 L ⊗Ω1
π P 1

π (L ) L 0

0 L ⊗ωπ F ′ L 0

←→

←→id⊗φ

←→

←→

←→

⇐⇐

←→

←→ ←→ ←→ ←→

whereφ is as in (1.6). The map of vector bundles

ν′ :π∗π∗L→ P 1
π (L )→F

′

has now top degeneracy scheme of the expected dimension. It can be characterised as
follows.

PROPOSITION 2.3 ([19, Prop. 2]). The top degeneracy scheme D ′ of ν′ consists of:

(1) the 8 Weierstrass points of each smooth hyperelliptic fibre, each with multiplicity 1;
(2) the node of Z , with multiplicity 1;
(3) the node N = X ∩Y , with multiplicity 2;
(4) the 3 points A ∈ X \ {N } such that 2A = 2N , each with multiplicity 1;
(5) the 6 Weierstrass points of Y , each with multiplicity 1.

The multiplicities tell us how much the points we do not want to count actually con-
tribute. Esteves then proves [19, Prop. 3] the crucial relation π∗[D ′] = 72λπ−7δ0,π−7δ1,π.
Subtracting the unwanted contributions (2) – (5) with the indicated multiplicities on both
sides, one gets the relation

8hπ = 72λπ−8δ0,π−24δ1,π,

thus proving the formula for [H ] in Theorem 2.1.

3. RAMIFICATION POINTS ON RIEMANN SURFACES

In order to make clear that, at least from the point of view of ramification points of linear
systems, Gorenstein curves almost behave as if they were smooth, it is probably useful
to quickly introduce the notion of ramification loci of linear systems in the classical case
of compact Riemann surfaces, which correspond, in the algebraic category, to smooth
projective curves.

1A similar technique involving twisting by suitable divisors will be exploited in Section 5.2.
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3.1. Ramification loci of Linear Systems. A linear system on a smooth curve C of genus
g is a pair (L , V ), where L is a line bundle and V ⊂H 0(C , L ) is a linear subspace. If L has
degree d and dim V = r +1, one refers to (L , V ) as a g r

d on C . When V =H 0(C , L ) the linear
system is called complete. For instance the complete linear system attached to KC is the
canonical linear system. Every g r

d defines a rational map

ϕV : C ¹¹Ë PV , P 7→ (v0(P ) : v1(P ) : · · · : vr (P )),

where (v0, . . . , vr ) is aC-basis of V . The closure of the image of ϕV is a projective curve, not
necessarily smooth, of arithmetic genus g +δ where δ is a measure of the singularities of
the image, that may be also rather nasty. See Proposition 4.8 in the next section for the
(local) meaning of the number δ. The rational map ϕV turns into a morphism if (L , V ) has
no base point, that is, for all P ∈C there is a section v ∈V not vanishing at P . If moreover
the map separates points, in the sense that for all pairs P1, P2 ∈C there is a section vanishing
at Pi and not at Pj , then the map is an embedding and the image itself is smooth of the
same geometric genus as C . For most curves a basis (ω0, . . . ,ωg−1) of H 0(C , KC ) is enough
to embed C in Pg−1. The curves for which the canonical morphism is not an embedding
are called hyperelliptic. They can be embedded in P3g−4 by means of a basis of K ⊗2

C .

We now define what it means for a section v ∈V \0 to vanish at a point P ∈C to a given
order. This is a crucial concept in the theory of ramification (or inflectionary behavior) of
linear systems. Observe that, given a point P ∈C , any section v ∈V defines an element vP

in the stalk LP via the maps
V ⊂H 0(C , L )→ LP .

Definition 3.1. Let v ∈V \0 be a section, P ∈C a point. We define

ordP v ..= dimC LP /vP ∈N

to be the order of vanishing of v at P .

Definition 3.2. Let (L , V ) be a g r
d . A point P ∈C is said to be a ramification point of (L , V ) if

there exists a section v ∈V \0 such that ordP v ≥ r +1. A ramification point of the canonical
linear system (KC , H 0(C , KC )) is called a Weierstrass point.

Example 3.3. Let ι : C ,→ P2 be a smooth plane quartic. Then C has genus 3 and the
complete linear system attached to KC = ι∗OP2 (1) is the linear system cut out by lines.
Therefore the Weierstrass points of C are precisely the flexes. It is known classically that
there are 24 of them. We take the opportunity here to recall that flexes of plane quartics are
geometrically very relevant: their configuration in the plane determines and is determined
by the smooth quartic. See the work of Pacini and Testa [45] for this exciting story.

Example 3.4. The g 2
4 on P1 determined by

V =C · x0 x 3
1 ⊕C · x

4
1 ⊕C · x

4
0 ∈G (3, H 0(OP1 (4)))

defines the morphism ϕV : P1→P2 given by

(x0 : x1) 7→ (x0 x 3
1 : x 4

1 : x 4
0 ).

In the coordinates x , y and z on P2, the image ofϕV is the plane quartic curve x 4− y 3z = 0.
The curve possesses a unique triple point at P ..= (0 : 0 : 1) and a hyperflex at the point
Q ..= (0 : 1 : 0), as it is clear from the local equation x 4 − z = 0 (the tangent is z = 0). An
elementary Hessian calculation shows that Q has multiplicity2 2 in the count of flexes of C .
Then, by Example 3.3, any reasonable theory of Weierstrass points on singular curves should
assign the “weight” 22 to the triple point P , in order to reach the total number of flexes of a

2We will soon interpret this multiplicity as ramification weight, see (3.2).



14 L. GATTO AND A. T. RICOLFI

quartic curve. See Example 4.11 for the same calculation in terms of the Wronskian (cf. also
Remark 4.12 for the relationship between the Hessian and the Wronskian at smooth points).

In fact, the curve C can be easily smoothed in a pencil

x 4− y 3z + t · L (x , y )z 3 = 0

where L (x , y ) = a x +b y is a general linear form. An easy check, based on the computation
of the Jacobian ideal, shows that the generic fibre of the pencil is a smooth quartic having a
hyperflex at the point (0 : 1 : 0). Then there must be exactly 22 smooth flexes that for t = 0
collapse at the point P = (0 : 0 : 1). According to the theory of Widland and Lax, sketched
in Section 4, the triple point is a singular Weierstrass point of the curve, thought of as a
Gorenstein curve of arithmetic genus 3.

3.2. Gap sequences and weights. Let P ∈ C be an arbitrary point, (L , V ) a linear system,
and assume 0< r < d . For i ≥ 0, let us denote by

V (−i P )⊂V

the subspace of sections vanishing at P with order at least i . Note that V (−(d +1)P ) = 0. If

dim V (−(i −1)P )> dim V (−i P ),

then i is called a gap of (L , V ) at P . It is immediate to check that in the descending filtration

(3.1) V ⊇V (−P )⊇V (−2P )⊇ · · · ⊇V (−(r +1)P )⊇ · · · ⊇V (−d P )⊇ 0

there are exactly r +1= dim V gaps. Note that 1 is not a gap at P if and only if P is a base
point of V .

Definition 3.5. The gap sequence of (L , V ) at P ∈C is the sequence

αL ,V (P ) :α1 <α2 < · · ·<αr+1

consisting of the gaps of (L , V ) at P , ordered increasingly.

For a generic point on C , the gap sequence is (1, 2, . . . , r +1), meaning that the dimension
jumps in (3.1) occur as early as possible. Equivalent to the gap sequence is the vanishing
sequence, whose i -th term is αi − i . The ramification weight of (L , V ) at P is the sum

(3.2) wtL ,V (P ) =
∑

i

(αi − i ).

One may rephrase the condition that P is a ramification point for (L , V ) in the following
equivalent ways:

(i) V (−(r +1)P ) 6= 0, that is, (r +1)P is a special divisor on C ;
(ii) the gap sequence of (L , V ) at P is not (1, 2, . . . , r +1);

(iii) the vanishing sequence of (L , V ) at P is not (0, 0, . . . , 0);
(iv) the ramification weight wtL ,V (P ) is strictly positive.

According to (i), P ∈C is a Weierstrass point if and only if h 0(KC (−g P ))> 0.

Definition 3.6. Weierstrass points of weight one are called normal, or simple. On a general
curve of genus at least 3 these are the only Weierstrass points to be found. Those of weight
at least two are usually called special (or exceptional) Weierstrass points.

The locus in M g of curves possessing special Weierstrass points has been studied by
Cukierman and Diaz. We review the core computations in the subject in Section 5.
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3.3. Total ramification weight and Brill–Segre formulas. The notion of ramification point
of a linear system (L , V ) recalled in Definition 3.2 relies on the notion of order of vanishing
of a section of L . This compact algebraic definition can be phrased also in the following
way, which was used for the first time by Laksov [33] to study ramification points of linear
systems on curves in arbitrary characteristic. There exists a map

(3.3) D r : C ×V → J r (L ), (P, v ) 7→D r v (P ),

where D r v ∈ H 0(C , J r (L )) is the section defined in (1.9), and whose vanishing at P is
equivalent to the condition ordP v ≥ r +1 of Definition 3.2. The map D r is a map of vector
bundles of the same rank r +1, so it is locally represented by an (r +1)× (r +1)matrix. The
condition D r v (P ) = 0 then says that (3.3) drops rank at P . This in turn means that P is a
zero of the Wronskian section

WV
..= det D r ∈H 0

�

C ,
r+1
∧

J r (L )

�

attached to (L , V ). The total ramification weight of (L , V ), namely the total number of
ramification points (counted with multiplicities), is

wtV
..= deg

r+1
∧

J r (L ) =
∑

P

wtL ,V (P ).

It can be computed by means of the short exact sequence

0→ L ⊗K ⊗r
C → J r (L )→ J r−1(L )→ 0,

reviewed in Proposition 1.7. By induction, one obtains a canonical identification
r+1
∧

J r (L ) = L⊗r+1⊗K r (r+1)/2
C .

Using that deg KC = 2g −2, one finds the Brill–Segre formula

(3.4) wtV = (r +1)d + (g −1)r (r +1)

attached to (L , V ). For instance, since h 0(C , KC ) = g , the number of Weierstrass points
(counted with multiplicities) is easily computed as

(3.5) wtKC
= deg

g
∧

J g−1(KC ) = (g −1)g (g +1).

For g = 3, (3.5) gives the 24 flexes on a plane quartic, as in Example 3.3.

4. RAMIFICATION POINTS ON GORENTEIN CURVES

The study of Weierstrass points on singular curves is mainly motivated by degeneration
problems. For instance it is a well known result of Diaz [13, Appendix 2, p. 60] that the
node of an irreducible uninodal curve of arithmetic genus g can be seen as a limit of
g (g −1)Weierstrass points on nearby curves. In this section we review the Lax and Widland
construction of the Wronskian section attached to a linear system on a Gorenstein curve.

The key idea is to define derivatives of local regular functions in the extended sense
sketched at the beginning of Section 1. One exploits the natural map Ω1

C →ωC (see the
references in Section 1.4 for its construction), where ωC is invertible by the Gorenstein
condition. The dualising sheaf is explicitly described by means of regular differentials on
C . Thanks to this extended definition of differential Widland and Lax are able to attach
a Wronskian section to each linear system on C , as we shall show in Section 4.2, after a
few preliminaries aimed to reinterpret the Gorenstein condition of Definition 1.2 in local
analytic terms. In the last year some progress has been done also in the direction of linear
systems on non-Gorenstein curves, essentially thanks to the investigations of R. Vidal-
Martins. See e.g. [41] and references therein. As for Gorenstein curves we should mention
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the clever way to deform monomial curves due to Contiero and Stöhr [2] to compute
dimension of moduli spaces of curves possessing a Weierstrass point with prescribed
numerical semigroup.

4.1. The analytic Gorenstein condition. Let C be a Cohen–Macaulay curve. Its dualising
sheafωC has the properties

(4.1) H 0(C ,OC ) =H 1(C ,ωC )
∨, H 1(C ,OC ) =H 0(C ,ωC )

∨.

Recall that g ..= pa (C ) ..= h 1(C ,OC ) is the arithmetic genus of C . For smooth curves we have
Ω1

C =ωC . But if C is singular, the sheaf Ω1
C is no longer locally free and it does not coincide

withωC . The dualising sheaf itself may or may not be locally free: the curves for which it is
are the Gorenstein curves.

Example 4.1. All local complete intersection curves are Gorenstein. This includes curves
embedded in smooth surfaces as well as the stable curves of Deligne–Mumford. Note that,
by the adjunction formula, a plane curve ι : C ,→ P2 of degree d has canonical bundle
ωC = ι∗OP2 (d −3), clearly a line bundle. See also Example 1.1 for a relative, more general
formula.

The dualising sheafωC of a reduced curve C was first defined by Rosenlicht [49] in terms
of residues on the normalisation of C . For a Gorenstein curve, this sheaf has a very simple
local description. In [50, Section IV.10], to which we refer the reader for further details, it
is shown that the stalkωC ,P is the module of regular differentials at P . We now recall an
analytic criterion allowing one to check local freeness ofωC .

Let ν: eC →C be the normalisation of an integral curve C , and let S ⊂C be its singular
locus. The canonical morphism OC → ν∗O eC is injective, with quotient a finite length sheaf
supported on S . We denote by

(4.2) δP
..= dimC eOC ,P /OC ,P

the fibre dimension of this finite sheaf at a point P ∈ C . Clearly δP > 0 if and only if
P ∈ S . This number is an analytic invariant of singularities [50, p. 59]. The sum

∑

P δP =
pa (C )−pa ( eC ) is the number δ quickly mentioned in Section 3. Another local measure of
singularities is the conductor ideal.

Definition 4.2. Let B be the integral closure of an integral domain A. The conductor ideal
of A ⊂ B is the largest ideal I ⊂ A that is an ideal of B , that is, the set of elements a ∈ A
such that a ·B ⊂ A. Let C be an integral curve, P ∈C a point. We denote by cP ⊂OC ,P the
conductor ideal of OC ,P ⊂ eOC ,P . Define the number

nP
..= dimC eOC ,P /cP .

For instance if eOC ,P =OC ,P then cP = eOC ,P and nP vanishes in this case. We wish to recall
the following characterisation.

PROPOSITION 4.3 ([50, Proposition IV.7]). An integral projective curve C is Gorenstein if
and only if nP = 2δP for all P ∈C .

In other words, the numerical condition nP = 2δP guarantees that the sheaf of regular
differentials is invertible at P .

Example 4.4. Let P be the origin (0, 0) of the affine cuspidal plane cubic y 2− x 3 = 0. Then
OC ,P = C[t 2, t 3](t 2,t 3). The normalisation is the local ring eOC ,P = C[t ](t ). In this case the
conductor is the localisation of the conductor of the subring C[t 2, t 3]⊂C[t ]. Since

C[t 2, t 3] =C+Ct 2+Ct 3+ t 2C[t ],
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the conductor is the ideal (t 2, t 3), and its extension in eOC ,P is (t 2). Then nP = dimCC[t ]/t 2 =
2, and δP = dimCC[t ]/C[t 2, t 3] = 1. Thus P is a Gorenstein singularity. Having this point
as its only singularity, the cuspidal curve is a Gorenstein curve of arithmetic genus 1.

Example 4.5. Let C be the complex rational curve defined by the parametric equations X =
t 3, Y = t 4, Z = t 5. Then C is the spectrum (the set of prime ideals) of the ringC[t 3, t 4, t 5].
Clearly the origin P = (0, 0, 0) of A3 is a singular point of C . One has that

OC ,P =C[t 3, t 4, t 5](t 3,t 4,t 5)

is not a Gorenstein singularity: the conductor of C[t 3, t 4, t 5](t 3,t 4,t 5) ⊂ C[t ](t ) is t 3C[t ](t ).
Thus nP = 3, an odd number, and C cannot be Gorenstein at P .

4.2. The Wronskian section after Widland–Lax. We now explain the construction, due to
Widland and Lax, of the Wronskian attached to a linear system (L , V ) on a Gorenstein curve.
For simplicity we shall stick to the case of integral (reduced, as usual, and irreducible) curves
to avoid coping with linear systems possessing non zero sections identically vanishing along
an irreducible component. For example if X ∪Y is a uninodal reducibile curve of arithmetic
genus g the space of global sections of the dualising sheaf has dimension g but there are
non-zero sections vanishing identically along X (or on Y ). However if one considers a linear
system on a reducible curve that is not degenerate on any component then everything goes
through just as in the irreducible case.

If P ∈ C is a singular point on an (integral) curve C , the maximal ideal mP ⊂ OC ,P is
not principal and so there is no local parameter whose differential would be able to freely
generate Ω1

C ,P . But we can still consider the natural map Ω1
C →ωC (cf. Section 1.4) and its

composition

d: OC →ωC

with the universal derivation OC →Ω1
C .

Let now (L , V ) be a g r
d on the (Gorenstein) curve C , and let P be any point (smooth

or not). Let (v0, v1, . . . , vr ) be a basis of V . Then vi ,P , the image of vi in the stalk LP , is of
the form vi ,P = fi ·ψP where fi ∈ OC ,P and ψP generates LP over OC ,P . Letting σP be a

generator ofωC ,P overOC ,P , one can define regular functions f ′i , f (2)i , . . . , f (r )i ∈OC ,P through
the identities

d fi = f ′i ·σP , d f
( j−1)

i = f ( j ) ·σP

inωC ,P , for each i = 0,1, . . . , r (cf. also Section 1.4). If P were a smooth point, one could
takeσP = d z , where z is a generator of the maximal ideal mP ⊂OC ,P , thus recovering the
classical situation.

Definition 4.6. The Widland–Lax (WL) Wronskian around P ∈C is the determinant

(4.3) WLV ,σP
=

�

�

�

�

�

�

�

�

�

f0 f1 . . . fr

f ′0 f ′1 . . . f ′r
...

...
...

...

f (r )0 f (r )1 . . . f (r )r

�

�

�

�

�

�

�

�

�

∈OC ,P .

A point P is said to be a V -ramificaton point (or also a V -Weierstrass point) ifWLV ,σP
(P ) = 0,

that is, if ordP WLV ,σP
> 0.

Our next task will be to show that the germ (4.3), as well as its vanishing at P , does not
depend on the choice of the generatorsψP andσP of LP andωC ,P respectively; then we
will use the explicit description ofωC in the previous section to check that singular points
are V -ramification points with high weight.
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So ifφP andτP are others generators, then vi = g iφP and d g (i−1) = g (i )τP . LetψP = `PφP

andσP = kPτP . Then a straightforward exercise shows that

WLV ,σP
= `r+1

P k r (r+1)/2
P ·WLV ,τP

.

This proves at once that the vanishing is well defined and that all the sections WLV ,σP
patch

together to give a global section

WLV ,P ∈H 0
�

C , L⊗r+1⊗ω⊗r (r+1)/2
C

�

.

If f ∈OC ,P is any germ, according to Definition 3.1 one has

(4.4) ordP f = dimC
OP

f · OP
= dimC

eOP

f · eOP

=
∑

Q∈ν−1(P )

ordQ f ,

where in the last equality f is seen as an element of O
eC ,Q via OC ,P ⊂ eOC ,P ⊂O eC ,Q .

Definition 4.7. Let P ∈C . Define the V -weight of P and total V -ramification weight as

wtV (P ) ..= ordP WLV ,P , wtV
..=
∑

P∈C

wtV (P ).

According to (4.4), one can compute the V -weight at P as

wtV (P ) =
∑

Q∈ν−1(P )

ordQ WLV ,P .

PROPOSITION 4.8. Let (L , V ) be a g r
d on a Gorenstein curve C of arithmetic genus g . Then

(4.5) wtV = (r +1)d + (g −1)r (r +1).

Moreover, for all P ∈C , the inequality

(4.6) wtV (P )≥δP r (r +1)

holds, with δP as defined in (4.2). That is, singular points have “high weight”.

In particular if L =ωC , one has that wtωC
(P )≥δP g (g −1). Proposition 4.8 in [38] relies

on an explicit description of the generator of the dualising sheaf around the singularities,
that we shall review below just to provide a few examples illustrating the situation. The
verification we offer here makes evident how the theory by Lax and Widland offers the right
framework to study the classical Plücker formulas in terms of degenerations.

PROOF OF PROPOSITION 4.8. Formula (4.5) is clear. Let now P be a singular point of C
and νP : eCP →C be the partial normalisation of C around a singular point P . Then eCP is
Gorenstein of arithmetic genus g −δP . Consider the linear system ( eV ,ν∗P L ), where eV is
spanned by ν∗P v0,ν∗P v1, . . . ,ν∗P vr . It is a g r

d on eCP . Applying the formula (4.5) for the total
weight to eV , we find

wt
eV = (r +1)d + (g −1−δP )r (r +1) =wtV −δP r (r +1).

The eV -Weierstrass points on eCP are the same as the V -Weierstrass points on C . Then the
difference counts the minimum weight of the singular point P with respect to (L , V ).

In general wtV (P ) =δP r (r +1)+E (P ). The correction E (P ) is called the extraweight. It is
zero if no point of ν−1

P (P ) is a ramification point of the linear system ( eV ,ν∗P L ).

Example 4.9. If P ∈C is a cusp, one hasδP = 1, hence its weight is at least r (r +1). However
the vanishing sequence of eV at the preimage of P in the normalisation is 0, 2, . . . , r +1. Then

wtV (P ) = r (r +1) + r = r (r +2).

If L =ωC then wtωC
(P ) = g 2−1.
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Before offering a few examples of how the WL Wronskian works concretely in computa-
tions, we recall the following fact.

PROPOSITION 4.10 ([24, p. 362]). Let τ be a local section of Ω1
eC

and let τQ its image in

the stalk Ω1
eC ,Q

. Assume that Ω1
eC ,Q
= O

eC ,Q ·τQ for all Q ∈ ν−1(P ) and that h generates the

conductor in each local ring O
eC ,Q . Then τ/h generatesωC ,P over OC ,P .

Example 4.11. Let us revisit from Example 3.4 the rational irreducible quartic plane curve
given by x 4 − y 3z = 0 in homogeneous coordinates x , y , z on P2. It is Gorenstein of
arithmetic genus 3 withωC =OP2 (1)|C . It has a triple point at P ..= (0 : 0 : 1) and a hyperflex
at Q ..= (0 : 1 : 0), i.e. a Weierstrass point of weight 2. To see that the Weierstrass weight at Q
is 2 one may argue by writing down the Wronskian of a basis of holomorphic differentials
adapted at Q (i.e. ω0 = d t , ω1 = t d t and ω2 = t 4 d t ). The vanishing sequence is 0,1,4
(equivalently, the gap sequence is 1, 2, 5) so the weight is 2.

In the chart z 6= 0, V = H 0(C ,ωC ) is spanned by (t 3, t 4,1), which are nothing but the
parametric equations mapping P1 onto the quartic. One has

OC ,P =C+C · t 3+C · t 4+ t 6 ·C[t ](t ), nP = 6, δP = 3.

According to Proposition 4.8, P is a Weierstrass point with weight at leastδP ·3(3−1) = 18. The
exact weight can be directly computed through the Wronskian as follows. The preimage of
P through the normalisation map is just one point eP . Then d t generatesΩ1

eC , eP
and therefore

σ= d t /t 6 is a regular differential at P . A basis of the space of regular differentials at P is
then given by

(σ, t 3σ, t 4σ),

so the Wronskian is
�

�

�

�

�

�

1 t 3 t 4

0 3t 8 4t 9

0 24t 13 36t 14

�

�

�

�

�

�

∈ t 22 ·C[t ].

It follows that P is a Weierstrass point of weight 22, as anticipated in Example 3.4. Together
with the hyperflex at Q , one fills the total weight, 24, of a Gorenstein curve of genus 3. The
example shows that the point P has extraweight E (P ) = 4. This can also be computed by
looking at the vanishing sequence of the linear system eV , generated by (1, t 3, t 4). Clearly
the vanishing sequence is 0, 3, 4, whose weight is 4, as predicted by the calculation above.

The output of this example is of course in agreement with the classical fact that the Hes-
sian of the given plane curve cuts the singular points and the flexes. In this case the Hessian
cuts indeed the singular point with multiplicity 22 and the hyperflex Q with multiplicity 2.

Remark 4.12. A local calculation shows that the Hessian of a plane curve cutting the
inflection points with respect the linear system of lines follows by the vanishing of the
Wronskians at those points (at least when they are smooth).

Example 4.13. The previous example was rather easy because we have dealt with a uni-
branch singularity (that is, ν−1(P ) consisted of just one point). To illustrate the behavior of
theWLWronskian with multibranch singularities, let C be the plane cubic x 3+x 2z−y 2z = 0.
It has a unique singular point, the node P ..= (0 : 0 : 1). The curve C is Gorenstein of arith-
metic genus 1. Let us compute its V -weight, where V denotes the complete linear system
H 0(C ,OP2 (1)|C ). Clearly the coordinate functions x , y and z form a basis of V . They can be
expressed by means of a local parameter t on the normalisation ν: P1→C . In the open set
z 6= 1, indeed, C has parametric equations x = t 2−1 and y = t (t 2−1). The preimage of the
point P via ν are Q1

..= (t −1) and Q2
..= (t +1) thought of as points of Spec C[t ]. One has
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that OC ,P =C+ (t 2−1) · eOC ,P , thus the conductor is (t 2−1). Since d t generates both Ω1
Q1

and Ω1
Q2

,σP
..= d t /(t 2−1) generates the dualising sheafωC ,P . Let

σQ1
..=

d t

t −1
and σQ2

..=
d t

t +1
.

Then one has

wtV (P ) = ordP WLV ,σP
= ordQ1

WLV ,σQ1
+ordQ2

WLV ,σQ2
.

We shall show that ordQ1
WLV ,σQ1

= 3, By symmetry, the same will hold for ordQ2
WLV ,σQ2

,
showing that the weight of P as a singular ramification point is 6 as expected. For simplicity,
let us put z = t −1. In this new coordinate the basis of ν∗L near Q1 is given by v0

..= z (z +2),
v1

..= z (z 2 + 3z + 2) and v3 = 1. The conductor is generated by z near Q1. Then the WL-
Wronskian near Q1 is:

WLV ,σQ1
=

�

�

�

�

�

�

z 2+2z z 3+3z 2+2z 1
2z 2+2z 3z 2+6z 2+2z 0
4z 2+2z 6z 2+12z 2+2z 0

�

�

�

�

�

�

= z 3(3z +4) ∈ z 3 ·C[z ]

as desired. The computations around Q2 are similar and then P is a singular ramification
point of weight 6.

5. THE CLASS OF SPECIAL WEIERSTRASS POINTS

5.1. Introducing the main characters. Let Mg be the moduli space of smooth projective
curves of genus g ≥ 2. It is a normal quasi-projective variety of dimension 3g −3. Let

Mg ⊂M g

be its Deligne–Mumford compactification via stable curves. It is a projective variety with
orbifold singularities. Thus, its Picard group with rational coefficients is as well-behaved as
the Picard group of a smooth variety. The boundary M g \Mg is a union of divisors∆i ⊂M g ,
each obtained as the image of the clutching morphism

M i ,1×M g−i ,1→M g ,

defined by glueing two stable 1-pointed curves (X , x ) and (Y , y ) identifying the markings x
and y . By a general point of∆i we shall mean a curve that lies in the image of the open part
Mi ,1×Mg−i ,1. Note that i ranges from 0 to [g /2], with i = 0 corresponding to irreducible

uninodal curves. We use the standard notation δi for the class of∆i in Pic(M g )⊗Q, and
we always assume i ≤ g − i .

·
X Y

A

i g − i

FIGURE 1. A general element of the boundary divisor∆i ⊂M g .

This section aims to sketch the calculation of the class in Pic(M g )⊗Q of the closure in

M g of the locus of points in Mg corresponding to curves possessing a special Weierstrass
point. Recall from Definition 3.6 that a Weierstrass point (WP, for short) is special if its
weight as a zero of the Wronskian is strictly bigger than 1. Let us define

(5.1) wt(k ) ..=
�

[C ] ∈Mg

�

�C has a WP with weight at least k
	

.
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Let Mg ,1 be the space of 1-pointed smooth curves, and M g ,1 be the moduli space of stable
1-pointed curves. Borrowing standard notation from the literature, define the “vertical” loci

VDg−1
..=
�

[C , P ] ∈Mg ,1

�

� P is a WP whose first non-gap is g −1
	

VDg+1
..=
�

[C , P ] ∈Mg ,1

�

� there isσ ∈H 0(C , KC ) such that D gσ(P ) = 0
	

.

Taking their images along the forgetful morphism Mg ,1→Mg we get the subvarieties Dg−1

andDg+1 of Mg , respectively. Diaz [13, Section 7] and Cukierman [6, Section 5]were able to
determine the classes

�

Dg±1

�

∈ Pic(M g )⊗Q.

The main observation of [26] is that while computing the classes of Dg±1 is quite hard, the
computation of their sum is quite straightforward. Let

Vwt(2)⊂M g ,1

be the closure of the locus of points [C , P ] ∈Mg ,1 such that P is a special Weierstrass point
on C , namely a zero of the Wronskian of order bigger than 1. The goal is to globalise the
notion of Wronskian to families possessing singular fibres. This will be achieved through
jet extensions of the relative dualising sheaf defined on a family of stable curves. Using (a)
the invertibility of the relative dualising sheaf and (b) the locally free replacement of the
principal part sheaves for such families, everything goes through via a standard Chern class
calculation, as we show below. We warn the reader that our computation is not performed
on the entire moduli space but just on 1-parameter families of stable curves with smooth
generic fibre, in order to avoid delicate foundational issues regarding the geometry of the
moduli space of curves.

5.2. Special Weierstrass points. Let π′ : C′→ T be a (proper, flat) family of stable curves
over a smooth projective curve T , such that C′ is a smooth surface, with smooth generic
fibre C′η. In particular, by the compactness of T , the fibre C′t is smooth for all but finitely
many t ∈ T . If the family is general, the singular fibres are general curves of type ∆i .
The general fibre of type ∆0 is an irreducible uninodal curve of arithmetic genus g . Let
π: C → T be the family one gets by blowing up all the nodes of the irreducible singular
curves. The irreducible nodal fibres get replaced by curves of the form C ∪ L , where C is
a smooth irreducible curve of genus g −1 and L is a smooth rational curve, intersecting
C transversally at two points (the preimages of the node through the blow up map). The
rational component L is the exceptional divisor which contracts onto the node by blow
down. From now on we shall work with the new family

π: C→ T ,

where all the singular fibres are reducible.
As for all families of stable curves, the dualising sheafωπ is invertible, and its pushforward

Eπ ..=π∗ωπ

is a rank g vector bundle on T , called the Hodge bundle (of the family). Its fibre over t ∈ T
computes

H 0(Ct ,ωπ|Ct
) =H 0(Ct ,ωCt

).

If Ct0
= X ∪A Y is a uninodal reducible curve of type∆i , one has a splitting

(5.2) H 0(C0,ωC0
) =H 0(X , KX (A))⊕H 0(Y , KY (A)).

A Weierstrass point on the generic fibre is a ramification point of the complete linear
series attached to KCη

..=ωπ|Cη . So it must belong to the degeneracy locus of the map of
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rank g vector bundles

π∗Eπ J
g−1
π (ωπ)

C

T

← →Dg−1

←

←
←←

←→ π

The zero locus of the determinant map
∧g Dg−1 may be identified with a sectionWπ of the

line bundle

L ..=
g
∧

J g−1
π (ωπ)⊗π∗

g
∧

E∨π.

The vanishing locus of this section cuts the Weierstrass points on the generic fibre. More-
overWπ identically vanishes on the reducible fibres Ct of type∆i for 1≤ i ≤ [g /2]. Indeed,
the identification (5.2) shows that there exist nonzero regular differentials on Ct vanish-
ing identically on either component. MoreoverWπ identically vanishes on the rational
components L gotten by blowing up the nodes of the original irreducible nodal fibres.

A local computation due to Cukierman [6, Proposition 2.0.8] (but see also [7] for an alter-
native way of computing), determines the order of vanishing ofWπ along each component
of the reducible fibres of π. Let F ⊂ C be the Cartier divisor corresponding to the zero locus
ofWπ along the singular fibres. Then, letting Zη be the cycle representing Z (Wπ|Cη ) ⊂ C,
one has

[Z (Wπ)] =Zη+ F.

One can view Z (Wπ|Cη ) as the zero locus of the Wronskian section “divided out” by the local
equations of the components of the singular fibres. More precisely,Wπ induces a section
fWπ of the line bundleL (−F ), which coincides withWπ away from F . Therefore we have

(5.3) Zη = c1

� g
∧

J g−1
π (ωπ)

�

−π∗c1(Eπ)− F =
1

2
g (g +1)c1(ωπ)−π∗λπ− F

where λπ ..= c1(Eπ) denotes, as is customary, the first Chern class of the Hodge bundle of
the family. From now on, we use the (standard) notation Kπ ..= c1(ωπ).

Remark 5.1. Intersecting the class (5.3) with a fibre Ct , one gets

Zη ·Ct =
1

2
g (g +1)Kπ ·Ct −π∗λπ ·Ct − F ·Ct .

But the second and third products vanish because Ct is linearly equivalent to the generic
fibre (and the intersection of two fibres is zero), whereas the first term corresponds to a
divisor of degree (g −1)g (g +1) on Ct . In the case where t corresponds to a singular fibre,
the degree of this divisor would be the total weight of the limits of Weierstrass points on
that fibre.

The issue is now to detect and compute the class of the locus of special Weierstrass points
in the fibres of π. Since the family πmay have singular fibres, the traditional version of
principal parts would not help unless one decided to focus on open sets where they are
locally free. This is for example the approach followed in [6]. However, using the locally free
replacement provided by jet bundles, we can now consider the “derivative” DfWπ of the
section fWπ ∈H 0(C,L (−F )), whereL (−F )) denotes the twistL ⊗OC OC (−F ). The derivative
DfWπ is a global holomorphic section of the rank two bundle

J 1
π (L (−F )).
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By abuse of notation let us write simply Vwt(2) for the locus Vwt(2)π ⊂ C defined by the zero
locus of DfWπ.

Definition 5.2. Let C0 be any stable curve of arithmetic genus g ≥ 2. A point P0 ∈C0 is said
to be a limit of a (special) Weierstrass point if there exists a family X→ Spec C¹t º such that
Xη is smooth, X0 is semistably equivalent to C0 and there is a (special) Weierstrass point Pη
such that P0 ∈ Pη.

It turns out that Vwt(2) is the locus of special Weierstrass points on smooth fibres of π. In
fact if the family C→ T is general, then only singular fibres of the codimension 1 boundary
strata of M g occur. If X ∪A Y is a general member of∆i , one may assume that A is not a
Weierstrass point neither for X nor for Y . Then if P0 ∈ X ⊂ X ∪A Y is a limit of a special
Weierstrass point it must be a special ramification point of KX ((g − i +1)P ) by [7, Theorem
5.1]. But by [8], for a general curve X and for each j ≥ 0, there are only finitely many pairs
(P,Q ) ∈ X ×X such that Q is a special ramification point of the linear system KX (( j +1)P ).
See also Example 6.4 below.

It follows that the locus Vwt(2) is zero dimensional. Indeed, the special Weierstrass points
have the expected codimension 2 in general family of smooth curves. Its class is given by
the top (that is, second) Chern class of J 1

π (L (−F )). Explicitly, we have

(5.4)
�

Vwt(2)
�

= c2

�

J 1
π

�

ω⊗g (g+1)/2
π ⊗π∗

g
∧

E∨π(−F )

��

.

By the Whitney sum formula applied to the short exact sequence

0→ωπ⊗L (−F )→ J 1
π (L (−F ))→L (−F )→ 0,

and recalling that (5.3) is computing precisely c1(L (−F )), one finds

�

Vwt(2)
�

=
�

1

2
g (g +1)Kπ−π∗λπ− F

��

1

2
g (g +1)Kπ+Kπ−π∗λπ− F

�

.

Thus in A2(C)we find

�

Vwt(2)
�

=
1

4
g (g +1)(g 2+ g +2)K 2

π − (g
2+ g +1)(Kπ(F +π

∗λπ))+ F 2,

where we have used (π∗λπ)2 = 0= F ·π∗λπ. We want to compute the pushforward

(5.5) π∗
�

Vwt(2)
�

=
1

4
g (g +1)(g 2+ g +2)π∗K

2
π

− (g 2+ g +1)
�

π∗(Kπ · F ) +π∗(Kπ ·π∗λπ)
�

+π∗F
2.

The reason why we are interested in the class (5.5) is that if g ≥ 4 the degree ofπ restricted
to Vwt(2) is 1. Therefore, if we let

wt(2)⊂ T

be the locus of points parametrising fibres possessing special Weierstrass points, then its
class is given by (5.5). The reason why for g ≥ 4 the degree of π is 1, is because of the
following important result, obtained by combining results by Coppens [3] and Diaz [11].

THEOREM 5.1. If a general curve of genus g ≥ 4 has a special Weierstrass point, then all
the other points are normal.

To complete the computation, let Fi ⊂ C be the (vertical) divisor corresponding to the
zero locus of the Wronskian along the singular fibres of type type∆i , for 1≤ i ≤ [g /2]. Thus
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F =
∑[g /2]

i=1 Fi and clearly we have Fi1
· Fi2
= 0 for i1 6= i2. Moreover, we have decompositions

Fi
..=
∑

j

Fi j , Fi j =mi X j +mg−i Yj ,

with each Fi j supported on a fibre X j ∪A j
Yj of type∆i . Recall that the notation means that

X j and Yj have genus i and g − i respectively, and they meet transversally at the (unique)
node A j . The multiplicities mi (resp. mg−i ) with whichWπ vanishes along X j (resp. Yj )
only depend on i . Using that −Y 2

j =−X 2
j = X j ·Yj = [A j ] ∈ A2(C), it is easy to check that

F 2
i j =

�

2mi mg−i −m 2
i −m 2

g−i

�

[A j ].

To compute (5.5), we will apply the projection formula π∗(π∗α ·β ) =α ·π∗β . The push-
forward π∗K

2
π is by definition the tautological class κ1 ∈ A1(T ). Define

δi ,π
..=
∑

j

π∗[A j ] ∈ A1(T ).

This is the class of the points corresponding to singular fibres of type ∆i . We have the
following identities in A1(T ):

π∗(Kπ ·π∗λπ) =π∗Kπ ·λπ = (2g −2)λπ
π∗(Kπ · Fi j ) =miπ∗(Kπ ·X j ) +mg−iπ∗(Kπ ·Yj )

=
�

mi (2i −1) +mg−i (2(g − i )−1)
�

·π∗[A j ]

=
�

2(i mi + (g − i )mg−i )−mi −mg−i

�

·π∗[A j ].

Substituting the above identities in (5.5) we obtain

(5.6) π∗
�

Vwt(2)
�

=
1

4
g (g + 1)(g 2 + g + 2)κ1 − 2(g 2 + g + 1)(g − 1)λπ − c0δ0,π −

[g /2]
∑

i=1

ciδi ,π

where δ0 is the class of the locus in T of type∆0 (irreducible uninodal), c0 is a coefficient to
be determined and

(5.7) ci = (g
2+ g +1)

�

2(i mi + (g − i )mg−i )−mi −mg−i

�

+2mi mg−i −m 2
i −m 2

g−i .

Now one uses one of the most fundamental relations between tautological classes. The
class κ1,π and λπ are not independent: they satisfy the relation

κ1,π = 12λπ−
∑

i

δi ,π.

This is a conseguence of the Grothendieck–Riemann–Roch formula, as explained for in-
stance in [42]. Thus formula (5.6) can be simplified into

(5.8) π∗
�

Vwt(2)
�

=
�

3g (g +1)(g 2+ g +2)−2(g 2+ g +1)(g −1)
�

λπ

−
[g /2]
∑

i=0

�

ci +
1

4
g (g +1)(g 2+ g +2)

�

δi ,π,

which, after renaming coefficients, becomes

(5.9) π∗
�

Vwt(2)
�

=
�

2+6g +9g 2+4g 3+3g 4
�

λπ−a0δ0−
[g /2]
∑

i=1

biδi ,π.

Clearly the expression (5.9) is not complete: one still needs to determine the coefficients a0

and bi . Computing bi amounts to finding the explicit expressions for mi , for all 1≤ i ≤ [g /2].
This has been done by Cukierman in his doctoral thesis (but see [7, Proposition 6.3] for an
alternative slightly more conceptual, although probably longer, proof).
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THEOREM 5.2 ([6, Prop. 2.0.8]). The multiplicities mi with which the Wronskian Wπ
vanishes along X j (of genus i ), are given by:

(5.10) mi =

�

g − i +1

2

�

.

The way Cukierman proves Theorem 5.2 is the following. He considers a family f : X→ S
of curves of genus g parametrised by S = Spec C¹t º, with smooth generic fibre and special
fibre semistably equivalent to a uninodal reducible curve X ∪A Y with components of
genus i and g − i respectively. After checking that f∗ω f ⊗k (0) is isomorphic to H 0(KX (A))⊕
H 0(KY (A)), he constructs suitable global bases of f∗ω f such that the first elements are non
degenerate on one component and vanish on the other. He then computes the relative
Wronskian using such bases and finds the multiplicity displayed in (5.10). All the technical
details are in [6].

Granting Theorem 5.2, we can now compute the right hand side of (5.9). We need to
substitute the expressions (5.10) into the constant ci defined in (5.7). This finally gives (see
also [26] for more computational details)

(5.11) bi = (g
3+3g 2+2g +2)i (g − i ).

We still have to determine a0. To this end, we use the following argument, due to Harris
and Mumford [31]. Consider the simple elliptic pencil x0E1 + x1E2, where E1 and E2 are
two plane cubics intersecting transversally at 9 points. Let S be the blow-up of P2 at the
intersection points. This gives an elliptic fibration

(5.12) ε: S→P1

with nine sections (the exceptional divisors of the blown up points. Let Σ1 be any one
of them. Then consider a general curve C of genus g −1, and choose a constant section
P : C → C ×C . Construct the family φ : F1 → P1, by gluing C ×C and S, by identifying
Σ1 with P . The fibre over a point t ∈ P1 is the union C ∪ Et , with C meeting Et = ε−1(t )
transversally at a single point. In other words, what varies in the family is just the j -invariant
of the elliptic curve.

THEOREM 5.3 ([13, Lemma 7.2]). The fibres of φ : F1 → P1 contain no limits of special
Weierstrass points, that is,φ∗[Vwt(2)] = 0.

Harris and Mumford computed the degrees of λ, δ0 and δ1 to be, respectively: 1, 12 and
−1. Taking degrees on both sides of (5.9), withφ taking the role of π, we get the (numerical)
relation

0=

∫

P1

φ∗
�

Vwt(2)
�

= (2+6g +9g 2+4g 3+3g 4) ·1−a0 ·12+ b1 ·1.

Given the expression of b1 computed in (5.11), one obtains

a0 =
1

6
g (g +1)(2g 2+ g +3).

We have therefore reconstructed the proof of the following result.

THEOREM 5.4 ([26, Theorem 5.1]). Let π: C → T be a family of stable curves of genus
g ≥ 4 with smooth generic fibre. Then the class in A1(T ) of the locus of points whose fibres
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possess a special Weierstrass point is

(5.13) π∗
�

Vwt(2)
�

=
�

2+6g +9g 2+4g 3+3g 4
�

λπ

−
1

6
g (g +1)(2g 2+ g +3)δ0−

[g /2]
∑

i=1

(g 3+3g 2+2g +2)i (g − i )δi .

Remark 5.3. Let now [wt(2)] be the class in A1(T ) of the locus of points of T corresponding
to fibres carrying special Weierstrass points. By Theorem 5.1, for g ≥ 4 one has

�

wt(2)
�

= deg(π)
�

π(Vwt(2))
�

=
�

π(Vwt(2))
�

=π∗
�

Vwt(2))
�

,

because deg(π) = 1. We may conclude that for g ≥ 4, the right hand side of (5.13) is the
expression of the class [wt(2)].

5.3. Low genus. We observe that formula (5.13) holds for genus 1, 2 and 3 as well, and
actually recovers classical relations among tautological classes.

5.3.1. Genus 1. Recall the elliptic fibration ε from (5.12). No member of the pencil (either a
smooth or rational plane cubic) possesses Weierstrass points. In particular there are no
special Weierstrass points. Then [wt(2)] = 0. Setting g = 1 in (5.13) one obtains the relation

(5.14) 12λ−δ0 = 0,

expressing the classical fact that ε: S → P1 has 12 irreducible nodal fibres. Indeed, the
degree of λ on this pencil is 1, as the relative dualising sheaf restricted to the section Σ1 ⊂S
is OS (−Σ1)|Σ1

, which has degree −Σ2
1 = 1.

5.3.2. Genus 2. A curve of genus 2 is hyperelliptic: it is a ramified double cover of the
projective line. The Riemann–Hurwitz formula gives 6 ramification points which are the
Weierstrass points. All these ramification points are simple. This means that if C→ T is a
family of curves of genus 2, then

(5.15) 0=
�

wt(2)
�

= 130λ−13δ0−26δ1.

This recovers the well known relation 10λ−δ0−2δ1 = 0, discussed in [43], showing that the
classes λ,δ0,δ1 are not independent in Pic(M 2)⊗Q. See [5] for the generalisation and [20]
for the interpretation of the Cornalba and Harris formula generalising (5.15) in the rational
Picard group of moduli spaces of stable hyperelliptic curves.

5.3.3. Genus 3. In genus 3 the hyperelliptic locus is contained in Vwt(2). Since each hyperel-
liptic curve of genus 3 has 8 Weierstrass points, the map π restricted to it has degree greater
than 1. Since each hyperelliptic Weierstrass point has weight 3, a local check performed
carefully in [12] shows that the degree of π restricted to VH3 is 16. On the other hand it is
known (see e. g. [14]) that each genus 3 curve possessing a hyperflex has only one such. So
the degree of π restricted to H, the hyperflex locus, is 1 and then for g = 3 formula (5.13)
can be correctly written as

16 · [H 3] + [H] =
�

wt(2)
�

= 452λ−48δ0−124δ1.

The calculation [H 3] = 9λ−δ0−3δ1 was already reviewed in Section 2.2. Then, the class of
the curves possessing a hyperflex is given by

(5.16) [H] = 308λ−32δ0−82δ1.
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Example 5.4. Consider a pencil of plane quartic curves with smooth generic fibre. Since it
has no reducible fibres, the degree of δ1 is zero on this family. The degree of δ0 is 27 while
the degree of λ is 3. Then in a pencil of plane quartics one finds precisely 308 ·3−32 ·27= 60
hyperflexes, as predicted by Proposition 2.1 using the automatic degeneracy formula by
Patel and Swaminathan.

6. FURTHER EXAMPLES AND OPEN QUESTIONS

The purpose of this section is to show how the theory of Weierstrass points on Gorenstein
curves may help to interpret some phenomenologies that naturally occur in the geometry
and intersection theory of the moduli space of curves.

6.1. The Examples.

Example 6.1. Let π: X→ S ..= Spec C¹t º be a family of stable curves, such that

(1) X is a smooth surface analytically equivalent to x y − t = 0,
(2) Xη is a smooth curve of genus g , and
(3) X0 is a stable uninodal curve, union of a smooth curve X of genus g −1 intersecting

transversally an elliptic curve E at a point A, that is, X0 = X ∪A E .

• •

Xη

η 0

X

E
genus 1

g −1

S

A ·

FIGURE 2. A family of stable curves degenerating to a general member of
∆1 ⊂M g .

One says that P0 ∈X0 \ {A} is a limit of a Weierstrass point if, possibly after a base change,
there is a rational section P : S →X such that Pη is a Weierstrass point on Xη. The limit of
Weierstrass points are very well understood for reducible curves of compact type, by means
of many investigations due to Eisenbud, Harris and their school. In fact several classical
references (see e.g. [13, 15]) show that

(a) if P0 ∈ E , then P0 6= A is a ramification point of the linear system O (g A). Applying
the Brill–Segre formula (3.4), the total weight wtV of the ramification points of the
linear system V =H 0(E ,O (g A)) is g 2, including the point A. Thus there are at most
g 2−1 Weierstrass points on the smooth generic fibre degenerating to the elliptic
component. All the ramification points of V are simple, as one can check via the
sequence of dimensions

dim V ≥ dim V (−A)≥ · · · ≥ dim V (−g A)≥ dim V (−(g +1)A) = 0.

(b) If P0 ∈ X \ {A} is a limit of a Weierstrass point, then it is a ramification point of
the linear system W ..=H 0(X , KX (2A)). Applying the Brill–Segre formula (3.4) once
more, by replacing r +1 by g and d by 2g −2, one obtains

wtW = 2g (g −1) + (g −2)g (g −1) = (g −1)(2g + g 2−2g ) = g 2(g −1).

The point A contributes with weight g − 1 (as one easily checks by looking at its
vanishing sequence) and thus there are at most (g −1)2(g +1)Weierstrass points on
Xη degenerating to X .
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It follows that no more than

(wtV −1) + (wtW − g +1) =wtV +wtW − g = g 3− g

Weierstrass points on Xη can degenerate to X0. Since the total weight of the Weierstrass
points of Xη is g 3 − g , it follows that all the ramification points of the linear systems V
and W are indeed limits of Weierstrass points. There are exactly g 2−1 distinct Weierstrass
points degenerating on E and a total weight of (g − 1)2(g + 1)Weierstrass points on Xη
degenerating on X . Moreover, the counting argument shows that the node A is not a limit.
Notice that g 2 − 1 is the weight of a cuspidal curve of arithmetic genus g , according to
Example 4.9. This is not a coincidence.

The situation just described is related to the behavior of a family of smooth genus g
curves, degenerating to a cuspidal curve of arithmetic genus g . The relative dualising sheaf
coincides with the canonical sheaf on smooth fibres. The Weierstrass points of the smooth
fibres degenerate to the Weierstrass points on the special fibre (with respect to the dualising
sheaf), including the cusp, and the cusp has weight g 2−1 in the sense of Widland and Lax.
Let us now show how to construct a model of the original family contracting the elliptic
curve to a cusp. The idea is to considerωπ(−X ), the dualising sheaf twisted by−X (a Cartier
divisor, due to the smoothness hypothesis on X). We have

π∗ωπ(−X )⊗C(0)∼=H 0(X0,ωπ(−X )|X0
).

Now observe that h 0(X0,ωπ(−X )|X0
)≥ g = h 0(X ,ωX (2A)). But the restriction map

(6.1) H 0(X0,ωπ(−X )|X0
)→H 0(X ,ωX (2A)), σ 7→σ|X ,

is injective. Indeed, if σ|X = 0 then σ(A) = 0, that is, σ|E ∈ H 0(OE (−A)) = 0. Thus σ = 0,
which implies that the (6.1) is an isomorphism. Now the sheafM ..=π∗ωπ(−X )maps the
family π: X→ S in P(π∗ωπ(−X )), i.e. we have the following diagram:

X P(π∗ωπ(−X ))

S

← →
φM

←→π ←

→

The generic fibre Xη is mapped byφM isomorphically onto its canonical image, a geometri-
cally smooth curve of genus g , whereas the special fibre is a cuspidal curve having a cusp in
A, and the elliptic component of X0 is contracted to A byφM . In fact, since the restriction
of such a map to E has degree 0, one has φM (Q ) = φM (A) for all Q ∈ E . Then there are
g 2−1 Weierstrass points degenerating onto the cusp: this number equals the weight of the
cusp as a Weierstrass point with respect to the dualising sheaf.

Example 6.2. As another illustration of the same phenomenology, consider the classical
case of a pencil of cubics, for instance

Ct : z y 2− x 3− t y z 2 = 0.

The generic fibre Ct is smooth. It has 9 flexes, as classically known. But C0 has only one
smooth flex at F ..= (0 : 1 : 0). Thus the remaining flexes collapse to the cusp P ..= (1 : 0 : 0),
as is visible by considering the normalisation. The Weierstrass points with respect to
the linear system of lines can be detected via the Wronskian determinant by Widland
and Lax. It predicts that the cusp has weight 8. The cubic C0 is the image of the map
(x 3

0 , x0 x 2
1 , x 3

1 ): P
1→ P2. In the open affine set x0 = 1, it is just the map t → (t 2, t 3). Notice

that d t is a regular differential at P of A1 ⊂P1 and thenσ ..= d t /t 2 generates the dualising
sheaf at the cusp (where (t 2) is the conductor of OP ⊂ eOP ). One has

(t n )′σ ..= d(t n ) = n t n−1 d t = n t n+1 d t

t 2
= n t n+1σ
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from which (t n )′ = n t n+1. The Wronskian around the point P is then given by
�

�

�

�

�

�

1 t 2 t 3

0 (t 2)′ (t 3)′

0 (t 2)′′ (t 3)′′

�

�

�

�

�

�

=

�

�

�

�

�

�

1 t 2 t 3

0 2t 3 3t 4

0 6t 4 12t 5

�

�

�

�

�

�

∈ t 8 ·C[t ].

Example 6.3. In [15], Eisenbud and Harris study limits of Weierstrass points on a nodal
reducible curve C which is the union of a curve X of genus g − i together with 1 ≤ i ≤ g
elliptic tails, a curve of arithmetic genus g . More precisely, if X→ S has smooth generic
fibre Xη and X0 is semistably equivalent to C , then each elliptic tail carries g 2 − 1 limits
of Weierstrass points on nearby smooth curves: these are in turn the ramification points
of the linear systems OE j

(A j ), where A j is the intersection point X ∩ E j . The remaining
Weierstrass points of Xη degenerate on smooth points of X . The theory predicts that if
P0 ∈ X is a limit of a Weierstrass point Pη ∈ Xη, then it is a ramification point of a linear
system V ∈ G (g , H 0(KX (2A1 + · · ·+ 2Ai )) such that Ai is a base point of V (−A1 − · · · − Ai ).
If ÒX is the i -cuspidal curve got by making each A j into a cusp, as explained in [50], then

V = 〈ν∗ω1, . . . ,ν∗ωg 〉, where (ω1, . . . ,ωg ) is a basis of H 0(ÒX ,ω
ÒX ) and ν: X → ÒX is the nor-

malisation. This linear system coincides with the one induced by the dualising sheaf of the
irreducible curve with i cusps that X normalises.

E1

E2
.
.
.

Ei

g − i

X ÒX

A1

A2
...

Ai

FIGURE 3. Stable reduction of a degeneration to a cuspidal curve.

Example 6.4. Let C be a smooth complex curve of genus g − 1 ≥ 1 and let ÒC → C be a
family of cuspidal curves parametrised by C itself contructed as follows. If Q ∈C is a point,
the fibre ÒCQ is the cuspidal curve obtained from C by creating a cusp at the point Q , that
is, the cuspidal curve associated to the modulus 2Q in the sense of [50, p. 61]. In other
words, ÒCQ is the curve such that O

ÒCQ ,P =OC ,P if P 6=Q , whilst O
ÒCQ ,Q is the subring of OC ,Q

of the regular functions whose derivatives vanish at Q . One wonders which fibres of the
family carry special Weierstrass points (with respect to the dualising sheaf) away from the
cusp {Q}. Let ν : C → ÒCQ be the normalisation of ÒCQ . Then ν∗ω

ÒCQ
= KC (2Q ) and then the

special ramification points, but Q , of ÒCQ are the special ramification points of the linear
system KC (2Q ). For general Q , one cannot expect to find any such point. So, solving the
problem amounts to finding the locus SW1 of all the pairs (P,Q ) ∈ C ×C such that P is a
special ramification point of KC (2Q ). The number N (g ) of such pairs is obtained by putting
i = 1 in [8, formula (20)]:

N (g ) ..=

∫

C×C

[SW1] = 6g 4+14g 3+10g 2−14g −16.

Notice that N (1) = 0, because a rational cuspidal curve of arithmetic genus 1 (i.e. a plane
cuspidal cubic) has no hyperflexes.

Example 6.5. Example 6.4 can be interpreted within the geometrical framework of moduli
space of stable curves as follows. Let C→ X be a family such that CQ is the curve X ∪Q∼0 E ,
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where (E ,0) is an elliptic curve. Then P0 ∈ X is a limit of a special Weierstrass point if and
only if it is a special Weierstrass point of the linear system KC (2P ). This fact has been
generalised first of all in [7]: if X ∪A Y is a uninodal stable curve of arithmetic genus g union
of a smooth curve of genus i and a smooth curve of genus g − i then P0 ∈ X is limit of a
special Weierstrass point on Xη if and only if either P0 is a ramification point of the linear
system KX ((gY +1)A) or P0 is a ramification point of the linear system KX ((gY +2)A) and
A is a Weierstrass point for the component Y . In case Y is an elliptic curve, i.e. without
Weierstrass points, the limits on X are solely the ramification points of KX (2P ), as claimed.

Example 6.6. The first example not immediately treated by the theory of Eisenbud and
Harris is that of a family X→ S of curves of genus 3 such that the special fibre X0 is the
union of two elliptic curves intersecting transversally at two points A1 and A2 (the “banana
curve”).

E1

E2

FIGURE 4. The banana curve: an example of a genus 3 curve carrying a
1-parameter family of limits of Weierstrass points.

In this case each point on each component can be limit of Weierstrass points, in the
sense that for each point P0, say in E1, there exists a smoothing family X→ S such that P0

is limit of a Weierstrass point of a curve of genus 3. All the Weierstrass points distribute
themselves in twelve points on E1 and twelve points on E2. Esteves and Medeiros prove in
[21] that the variety of limit canonical system of the “banana curve” is parametrised by P1.

Indeed each P0 ∈ Ei determines uniquely a point in the pencil of linear systems V ∈
G (3, H 0(O (2A1+2A2))which contains H 0(O (A1+A2)). Thus for each component there is a
12 : 1 ramified covering Ei →P1 and the (fixed) ramification points are the limits of special
Weierstrass points on nearby smooth curves. Also this example may be interpreted in terms
of the theory of Widland and Lax (see [4] for details). In fact the linear system VP0

defined
on E1 maps E1 to a plane quartic with a tacnodal singularity (δA = 2, local analytic equation
(y − x 2)2 = 0) at the coincident images of A1 and A2 . Then the limits of Weierstrass points
on E1 are precisely the smooth flexes, while the information about the Weierstrass points
degenerating on the other components is lost in the tacnode. Notice that according the
theory of Widland and Lax a tacnode must have weight at least δ ·3 ·2= 2 ·3 ·2= 12.

6.2. Open Questions.

6.2.1. Porteous Formula with excess. Consider the loci

wt(2) ..=
�

[C ] ∈Mg

�

�C has a special Weierstrass point
	

,

Dg−1
..=
�

[C ] ∈Mg

�

�C has a special Weierstrass point of type g −1
	

,

Dg+1
..=
�

[C ] ∈Mg

�

�C has a special Weierstrass point of type g +1
	

.

Although wt(2) is clearly equal to the set-theoretic unionDg−1 ∪Dg+1, it is not obvious that

�

wt(2)
�

=
�

Dg−1

�

+
�

Dg+1

�

.
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This is the main result of [26]. Within the general framework discussed in Section 5, consider
the maps of vector bundles

π∗Eπ J
g−2
π ωπ

C

T

← →Dg−2

←

←
←←

←→

π∗Eπ J
g
πωπ

C

T

← →Dg

←

←
←←

←→

The loci Dg−1 and Dg+1 are in fact in the degeneracy loci of the above maps; however these
maps degenerate identically along the special singular fibre which are divisors of C. So, to
compute the class of the loci ofDg−1 andDg+1 one should dispose of a Porteous formula
with excess, generalising the residual formula for top Chern classes as in [23, Example
14.1.4]. To our knowledge, such formulas are not known up to now.

6.2.2. Computing automatic degeneracies. It is an interesting problem, already raised in [46],
to compute the function ADm ( f ) of automatic degeneracies (as discussed in Section 2.1.1)
for more complicated plane curve singularities than the node. Some results for low values
of m have already been obtained in loc. cit. For instance it would be very useful to be able
to determine the function AD( f ) for cusps, ordinary triple points, tacnodes.

6.2.3. Porteous formula for Coherent sheaves. To study situations like 6.2.1 but avoiding the
locally free replacement of the principal parts, S. Diaz proposed in [14] a Porteous formula
for maps of coherent sheaves. This was a question asked by Harris and Morrison in [30].
The purpose is that of getting rid of two issues at once: excess contributions, and the lack of
local freeness of principal parts of the dualising sheaf at singularities. Diaz’s theory is nice
and elegant. However the main example he proposes is the computation of the hyperelliptic
locus in genus 3, which Esteves computed as sketched in Section 2.2, again using locally
free substitute of principal parts. It would be interesting to work out more examples to
extract all the potential of Diaz’ extension of Porteous’ formula for coherent sheaves.

6.2.4. Dimension estimates. Recall the definition (5.1) of wt(k ). In [27] it is proven that for
g ≥ 4 the locus wt(3) of curves possessing a special Weierstrass point of weight at least 3 has
the expected codimension 2. It is a hard problem to determine the irreducible components
ofwt(k ) and their dimensions. For instance Eisenbud and Harris prove that if k ≤ [g /2] then
wt(k ) has at least one irreducible component of the expected codimension k . In general,
however, the problem is widely open. It would be natural to conjecture that wt(k )⊂Mg has
the expected codimension k if g � 0, but there is really no rigorous evidence to support
such a guess.

6.2.5. Computing new classes. Only a handful of classes of geometrically defined loci of
higher codimension in M g have been computed. For instance Faber and Pandharipande

have determined the class of the hyperelliptic locus in M 4 via stable maps [22]. Let C→ S be
a family of stable curves of genus g ≥ 5 parametrised by a smooth complete surface S . Then
many singular fibres belonging to boundary strata of M g of higher codimension can occur.
If π: X→ S is a family of stable curves of genus 4 parameterized by a complete scheme of
dimension at least 2, then Faber and Pandharipande are able to compute the locus of points
in S corresponding to hyperelliptic fibres. Esteves and Abreu (private communication)
are able to compute the class [H 4] using the same method we discussed in Section 2.2.
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However it seems a hard problem to determine the class in A3g−5(M g ) (already for g = 4) of

the locus wt(3). This would be the push forward of the third Chern class of

J 2
π

�

ωg (g+1)/2
π ⊗

g
∧

E∨π

�

,

where J 2
π is the locally free replacement constructed in the previous sections. Unfortunately,

one has no control on the degree of the restriction of π to the irreducible components of
Vwt(3). In genus 4 this locus should contain, with some multiplicity, the hyperelliptic locus,
the (nonempty) locus of curves possessing a Weierstrass point with gap sequence (1, 2, 3, 7)
and the (nonempty) locus of curves possessing a Weierstrass point with gap sequence
(1,2,4,7). These loci all have the expected codimension 2 (by [37]), but as far as we know
their multiplicities in wt(3) are not known.
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