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ON FROBENIUS TRACES*

S.G. TANKEEV

ABSTRAGT. In this paper we discuss one diophantine property of the Frobenius traces
associated to an abelian variety over a number field £ and give its application to the
proof of the Mumford - Tate conjecture for 4p-dimensional abelian variety J over k,
where p is a prime number, p > 17, Cent(End(J ® k)) = Z or (under some weak
assumptions) End®(J @ k) is an imaginary quadratic extension of Q.

§0. INTRODUCTION

0.1. Let J be an abelian variety over a number field k C C, [k : Q] < co. Suppose
that ! is a prime number,

p1: Gal(k/k) = GL(HL(J @ &, Q)))

- is the natural [-adic representation.

It is well known that p; is unramified outside a finite set T of non-Archimedean
places of k. We denote by Fy € Gal(k/k) the Frobenius element associated with
a place T of Q lying over an unramified place v of k. It is well known that the
conjugacy class of pi(F, 1) depends only on v, the characteristic polynomial of
pi(Fy ') lies in Z[t}C Qi[t], and all its roots are of absolute value (Normy q(v))!/2.

Let S be a set of non-Archimedean places of k. We recall that the Dirichlet
density of S in the set of all non-Archimedean places of k is defined as

log z

lim
300 I

Card{v € § | Normy g(v) < z}

(if such limit exists). It is well known that the density of {v | Normy,g(v) = p,}
equals 1 [4, ch.8, sect.2.4].

The following result is well known.

0.2. N. Katz theorem [6,sect.2.1], [13,sect.2.7.1]. Assume that for some
natural number n [" > 2.dimyJ and each I™-torsion point of J(k) is rational over
k. Then the set { v | v is unramified place of k, Normy g(v) = py 18 a prime number
and p, does not divide Tr(pi(Fo'))} is of density 1.

This theorem plays an important role in the proof of the following theorem.

0.3. J.-P. Serre theorem[6,sect.6]. Let J be a simple abelian variety over a
number field k . If dimgJ is an odd integer and End(J ® k) = Z, then the Hodge
[9],[10] Tate [21) and Mumford - Tate conjectures [11] hold for J. -

*This paper is a result of my stay at the Max-Planck-Institut fur Mathematik in 1995-96. It
is my pleasure to thank the members of MPI for their hospitality.
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2 S.G. TANKEEV

The survey of Serre’s technique is contained in [6).

We want to extend Serre theorem into the area of even dimensions.

Let A be the set of all eigenvalues of p;(F; ') (without counting multiplicities).
The Galois group Gal(Q/Q) acts in a natural way on A and on A - A. For each

element 7 € A- A we define a map T, : A — Q by the formula T,(8) = né~1L.
This map is a modification of the corresponding map T_? A > @x in [6,sect.5.2],
which is defined by the formula T9(§) = v26~! for v € A. It is evident that for
each o € Gal(Q/Q)

Card(To(p)(A) N A) = Card(Ty(p)(0(A)) No(A)) = Card(T,(A) N A),
and hence for any constant c the set
{n € A-A|Card(T,(A) N A) = c}is Gal(Q/Q) — invariant. (0.3.1)

So we have a good instrument of computing the Gal(Q/Q)-invariant subsets of
A - A, which is used, for example, in [18],[19],[20].

On the other hand, some (not all) elements of A - A are the eigenvalues of
PP (Fst) | where

pr? : Gal(k/k) — GL(HZ,(J ® k, Q) = GL(A*H,,(J @ k, Qu))

is the natural [-adic representation. Hence there is a reason to look at the trace of
PPH(ETY).

0.4. Theorem. Let J be a d-dimensional abelian variety over a number field k.
Assume that for some natural number n 1™ > d(2d — 1), each {"-torsion point of
J(k) is rational over k and k contains all the (I")** roots of unity. If d> 2 then the
set { v | v is unramified place of k, Normy o(v) = py is a prime number and p,
does not divide Tr(pP*(Fy'))} is of density 1. .

The main idea of the proof is similar to the idea which is used in the proof of
A.Ogus result concerning the existence of many ordinary reductions of an abelian
surface over a number field [13, sect.2.7-2.10]. Of course, we use G.Faltings theorems
(8].

Assume that J has a good reduction J, at the non-Archimedean place v of k. It
is evident that Tr(pf?(Fo ")) coincides with the trace of linear operator in the 2nd
homology of J, induced by the Frobenius endomorphism of abelian variety J, over
a prime field Fy, .

0.5. We recall that J has an ordinary reduction at a non-Archimedean place v
of k with a residue field k(v) = F,, of characteristic p, & the special fibre J, of
the Neron minimal model of J is an abelian variety and the following equivalent
conditions hold:

(0.5.1) py-rank of J, equals dimp(y)Jy;

(0.5.2) for any eigenvalue § of the Frobenius endomorphism of /-adic Tate module
Ti(Jo ®k(w) k(®))(I # pv) and for any place w of Q over p, the following relation
holds:

w(f)

w(gy)

€ {0,1}
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[7,sect.2].

0.6. Definition. An abelian variety J over a number field £ has many ordinary
reductions < there exists a set S of non-Archimedean places of k such that J has
an ordinary reduction at each place v € S and the density of S is positive.

Now we consider some consequences of the theorem 0.4. We denote by (Lie
Im(p;))*® the semisimple part of the reductive Lie algebra Lie Im(p;). The following
result is initially proved in (20, th.1.14, 1.16, 1.17] under the additional assumption
that J has many ordinary reductions.

0.7. Theorem. Assume that p is a prime number. Let J be a simple 4p-
dimensional abelian variety over a number field k.

Assume that End(J @ k) = Z and p> 17. Then (Lie Im(p;))** @ Qi is a
semissmple Lie algebra of type Cyp, the general Hodge, Tate and Mumford - Tate
conjectures hold for J.

Assume that End°(J ® k) is an indefinite quaternion division algebra over Q
and p # 2, p# 5. Then (Lie Im(p;))** @ Qi is a semisimple Lie algebra of type Csp,
the general Hodge, Tate and Mumford - Tate conjectures hold for J.

Assume that End®(J ® k) is a definite quaternion division algebra over Q and
p # 2. Then (Lie Im(p1))** ® Qi is a semisimple Lie algebra of type Doy, the
Mumford - Tate conjecture holds for J.

0.8. Assume that End®(J ® k) = K is an imaginary quadratic extension of
Q. Then K ®¢ C is the direct sum of two copies of C indexed by two different
embeddings o, T of the field K to C, Lie(J¢c)=M, & M,, where M, = {v € Lie(J¢) |
e-v =o(e)v forall e € K}, M, = {v. € Lie(Jg) | e- v = 7(e)v for all ¢ € K},
dimgJ = ng + nr, ne=dimcM, > 1, n,=dimcM, > 1 {16, th.5]. The following
result is a strong variant of {20, th.1.18]. ’

0.9. Theorem. Assume that p 18 a prime number, p > 17. Let J be an ab-
solutely simple 4dp-dimensional abelian variety over a number field k. Assume that
End®(J ® E) is an imaginary quadratic extension of Q. Then (Lie Im(p;))** @ Q;
13 a semisimnple Lie algebra of type Azp_y or Az X A,_y. If J has many ordinary
reductions, then (Lie Im(p;))** @ Qy is a semisimple Lie algebra of type Azp—1, there
ezists a canonical 1somorphism of semisimple parts

[Lie Im(p;)]** = [Lie[MT(Jc)(Qn)]]**;
moreover, for n, # 2p it eztends to an isomorphism
Lie Im(p;) ~ Lie[]MT(Jc)(Q1))

and in this case the Q-space HZ (JQF, Qi(r))S*/%) is spanned by the cohomology
classes of intersections of divisors.

§1. ON THE FROBENIUS TRACE IN THE
2ND HOMOLOGY OF AN ABELIAN VARIETY

1.1. We give here a proof of theorem 0.4.
Assume that Tr(p{?(F5!')) = py - by, where b, is an integer. By A.Weil theorem
[12, ch.4, §21, th.4] the absolute value of b, is less than or equal to

d(2d — 1) = dimg H,(J @ k, Q).
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Moreover, we may assume that p, is unramified in £. From the relation Normy /g(v)
= p, it follows that p, splits completely in k. Hence we have

E@oQp, ~Qp, X ... xQp,. (1.1.1)

By the condition of the theorem k containes all the (I”)** roots of unity. On the
other hand it is well known that (Q} )tors = Z/(py — 1)Z. It follows from (1.1.1)
that {*|(py — 1) and hence

Py = 1(mod ™). (1.1.2)

By the condition of the theorem all the I"-torsion points of J(k) are rational over
k. It follows that p;lGa](;/k) is trivial mod {" and hence pf2|Ga|(;/k) is also trivial
mod [". So

Py - by = d(2d - 1)(mod I™). (1.1.3)

It is clear that the relations (1.1.1)-(1.1.3) and the inequality I* > d(2d — 1) imply
the relations

d(2d — 1)(mod {™) = b,(mod "),
by = d(2d — 1),
Te(p{*(F5 ")) = pv - by = py - d(2d ~ 1). (1.1.4)

This trace is the sum of d(2d — 1) complex numbers of absolute value p,. Hence
the relation (1.1.4) implies that each number actually equals p, and all eigenvalues
of pp?(F!) are equal to py. In this situation

v

Te(pf*(F5 1)) = d(2d - DTr(x; ' (F5 1)), (1.1.5)

where

xi: Gal(k/k) = Zf

is the cyclotomic character, defined by the natural action of Gal(k/k) on the 1-
dimensional Tate module Z;(1) = Tj(p) attached to the group of I-power of roots
of unity in k.

1.2. Fix a k-polarization on J once for all. We denote by

U He(J @k, Qi) x Hyy(J @K, Q1) = Qu(-1)

the induced nondegenerate alternating form on H 1(J ®%,Q). Since the Weil
pairing is known to be Gal(k/k)-equivariant, one has

U(oz,oy) = x7' (o) - ¥(z,y)

for all o € Gal(k/k);z,y € HY(J®%,Q:). This relation implies Ker(p;) C Ker(x;).

Hence we may consider x; as a character of Im(p;). So

fs) = Te(s™) — d(2d = 1)Tr(x; 7" (s))

)
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is an analytic function on the compact l-adic Lie group Im(p;). In virtue of (1.1.5)
this function vanishes on the set {p;(F5')|v is unramified place of k, Normy /(v) =
Py is a prime number and p, divides Tr(p?(Fy ')}

Assume that the zero locus Zy of f is the group Im(p;). From G.Faltings the-
orems (8] it follows that p; and p{*? are semisimple representations. Since two
semisimple representations in characteristic 0 are isomorphic if and only if they
have the same trace, we have the relations pf? = (x;')®%24-1) and

dimg, H2,(J @ k, Q(1))™) = d(2d — 1). (1.2.1)
On the other hand, by G.Faltings results [§]

Endlm(p:)Hgt(J ® k, Q) ~ End(J) ® Q1.

By the well known Tate theorems (22, th.3, th.4] this relation implies
H2,(J @k, Qu(1))™) ~ NS(J) ® Q. (1.2.2)

It follows from (1.2.1)-(1.2.2) that the Q-space H?,(J ® k,Qi(1)) is generated by
algebraic cohomology classes. Since rank(NS(J ® C)) < h1}(J @« C), we have the
equality h?°(J ®; C) = 0 . This is possible only if J is an elliptic curve.

In our situation dimiJ > 2. Hence the zero locus Z; of f is an analytic hy-
persurface on the compact [-adic Lie group Im(p;) and it is stable by conjugation.
Let p be the Haar measure on Im(p;) such that the total mass of Im(p;) is 1. It
is well known that p(Zf) = 0 [15, ch.1, sect.2.2, exercise]. Hence by Chebotarev
density theorem the set {v|v is unramified place of k, Normyg(v) = p, is a prime
number and p;(F; ') € Z;} is of density 0. Hence {v|v is unramified place of k,
Normy g(v) = py is a prime number and p, divides Tr(p{?(F5'))} is of density 0.
This proves the claim.

1.3. Corollary. Let J be a d-dimensional abelian variety over a number field k.
Assume that for some natural number n " > d(2d — 1), each ["-torsion point of
J(k) is rational over k and k contains all the (I")* roots of unity. If d> 2 then
the set { v | v is unramified place of k, Normyo(v) = p, is a prime number and
py does not divide the trace of linear operator in the 2nd homology of J, induced
by the Frobenius endomorphism of abelian variety J, over a prime field F, } is of
density 1.

§2. CYCLES ON SIMPLE ABELIAN VARIETY
OF DIMENSION 4P OVER A NUMBER FIELD

2.1. We give here the proof of theorem 0.7.
Suppose that End(J ® k) = Z and p> 17. Let N* = {1,2,...} be the set of all
positive natural numbers. First of all we introduce the set of ezceptional numbers

_ i
Ea(1) = {4, 3 oA +1,

’281m+4l-—4m—3,4[(n1 + 1)2!+1 | l’m = N+} —

={4,10,16,32,64,108,126,256,500,512,864,1024,1372,1716,2048,...}. It is easy to

verify that for each prime number p the number 4p is not exceptional [20, lemma
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4.3]. Hence Lie Hg(Jc) ®g C = spsp and the general Hodge conjecture holds for
Jc %X ... x Jg, where Hg(Jc) is the Hodge group of the complex abelian variety
Jc = J @ C[19, th.1.1].

We also recall the folowing classification result.

2.2. Theorem(17, th.2], [18, th.2.2], [19, th.4.1], [20, th.2.2]. Assume that g is a
simple Lie algebra of rank m over an algebraically closed field of characteristic zero,
W1, W7, ...,wm are fundamental weights, E = E(nqw) + ... + npwm ) 18 an irreducible
g-module with the highest weight nywy + ... + npwm,, where n; € N,

Let p be a prime number.

Suppose that deg E = p.

If E is an orthogonal representation, then the triple (type of g, E, p) assumes the
following values:

(A1, E((p — Dwn),p)(p 2 3); (2.2.1)
(B(p-1)/2, E(w1),p)(p 2 5); (2.2.2)
(G2, E(w1),7). (2.2.3)

Moreover, the highest weight of g-module E 13 a radical weight.
If E is a symplectic representation, then the triple (type of g, E, p) assumes the
following value:

(A1, E{w:),2). (2.2.4)
If E # E*, then the triple (type of g, E,p) assumes the following values:
(AP—IaE(wl)’p)’ (AP-ISE(WP-l)’p)(p 2 3)' (2'2'5)

Suppose that deg E = 2p.
If E 1s an orthogonal representation, then the triple (type of g, E, p) assumes the
following values:

(B2, B(2w2),5); (2.2.6)
(B2, B(2w1),7); (2.2.7)
(Cs, E(w2), 7); (2.2.8)
(G2, E(w2),7); (2.2.9)
(Fi, B(ws),13); (2.2.10)
(Dp, E(w1),p)(p 2 3). (2.2.11)

Moreover, in (2.2.6) — (2.2.10) the highest weight of g-module E is a radical weight.
If E is a symplectic representation, then the triple (type of g, E,p) assumes the
following values:

(A1, E((2p — Dw1), p); (2.2.12)
(Cs, E(ws), 7); (2.2.13)
(Cp, E(w1), p)- (2.2.14)

If E #+ E*, then the triple (type of g, E, p) assumes the following values:

(Az, E(2w1),3), (A2, E(2w2), 3); (2.2.15)
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(A2, E(3w1),5), (A2, E(3ws),5); (2.2.16)
(A3, E(2w1),5), (A3, E(2w3), 5); (2.2.17)
(A4, E(w2),5), (A4, E{ws), 5); (2.2.18)
(A2p-1, E(w1), p), (A2p-1, E(w2p—1), ). (2.2.19)

Suppose that deg E = 4p.
If E is an orthogonal representation, then the triple (type of g, E, p) assumes the
following values:

(A2, E(w1 +w2),2); (2.2.20)
(As, E(2w2),5); (2.2.21)
(Bs, E(ws),2); (2.2.22)

(Ba, B(2w1),11); (2.2.23)
(Cs, E(ws), 11); (2.2.24)
(D4, B(w2), 7); (2.2.25)
(D4, E(ws), 2); (2.2.26)
(D4, E(ws), 2); (2.2.27)
(Fi, E(w1),13); (2.2.28)
(D2p, E(w1),p)- (2.2.29)

Moreover, in (2.2.20), (2.2.21), (2.2.23), (2.2.24), (2.2.25), (2.2.28) the highest
weight of g-module E is a radical weight.

If E is a symplectic representation, then the triple (type of g, E,p) assumes the
following values:

(A1, E((4p — L)w1), p); (2.2.30)
(As, B(w),5); (2.2.31)
(B2, E(3w2),5); (2.2.32)
(C2p, E(w1),p)- (2.2.33)

If E # E*, then the triple (type of g, E,p) assumes the following values:
(Az, E(6w1),7), (Az, E(6ws), 7); (2.2.34)
(As, E(w1 +w2),5), (A3, E(wz + ws), 5); (2.2.35)
(A3, E(3w1),5), (43, E(3ws),5); (2.2.36)
(A, E(2w1),7), (4s, E(2we), 7); (2.2.37)
(A7, B(wz),7), (A7, B(ws),7); (2.2.38)
(Asp-1, E(w1),p), (Adp—1, E(wsp-1),p). (2.2.39)

This theorem follows from H.Weyl formula [3, ch.8].
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2.3. Let Gy; be the algebraic envelope of Im(p;) CGL(V}), where
Vi=H{(J®Fk Q)

By F.A.Bogomolov theorem [1] Lie Im(p;)=Lie(Gy;) and Gy, containes the group
Gy, of homotheties. By G.Faltings theorems [8] Gy, is reductive and

Endg,, (Vi) = End(J) ® Q..

Let gi=Lie Im(p;). We shall denote by g;° the semisimple part of g;. By J.-P.Serre
theorem [6,th.3.10] the rank of Gy, (resp.g; ) is independent of [. In the case
under consideration we may assume that Gv;=Sv, -G, , where Sy,=[Gvy;,Gy] is
the commutator subgroup of Gy, [6, sect.1.2.2b].

2.4. Assume that v i1s a non-Archimedean place of k at which J has a good
reduction. Let T be any extension of v to k and let Fy € Gal(k/k) be the corre-
sponding Frobenius element. It is well known that the characteristic polynomial
of pi(F;!) coincides with the characteristic polynomial of the Frobenius endomor-
phism m, of the reduction J, of J at v. We denote by A the set of all eigenvalues
of pi(F5 ') (without counting multiplicities). Let T'y be a multiplicative subgroup

of §° generated by A.

It is well known that Q[m,]=]] K:, K; are number fields. The multiplicative
group Q[r,]* defines a Q-torus Tr, = [[ Rk, /0(Gmk;), where Ry, /g are the Weil
restrictions of scalar functors. Let H, be the smallest algebraic subgroup of T,
defined over Q, such that =, € H,(Q). Asis well-known, H, is a group of multiplica-
tive type. The connected component of the identity in H, is called the Frobenius
torus T,. It can be regarded as the Q-model of the connected component of 1 in
the Zariski closure of the set {p/(Fs)"|n € Z} in Gy; [6, sect.3b].

2.5. As an easy consequence of the theorem 0.4 and {6, prop.3.6, 5.2.1, lemma
2.1, cor.3.8} we have the following result.

After replacing k by some finite eztension we may assume that for some set S
of denstty 1 in the set of all non-Archimedean places of k and for each v € S the
following conditions hold:

1) for a fized integer n > 2 such that ™ > (2dimgJ)?, the [™-torsion points of
J(k) are rational points over k and k containes all the (I™)** roots of unity;

2) py, =char(k(v)) > (2dimsJ)?;

3) Normy/q(v) = poj

4) the Frobenius traces Tr(pi(Fx')) and Tr(pp?(Fo')) are not divisible by py;

5) T, is torsion-free, Gy, is connected and pi(Fy') € T,(Qi);

6) the Frobenius torus T, is a mazimal torus of Gy, and

rank(T',) = dim(7,) = rank(Gy;).

2.6. It is well known that V;® Q; is an absolutely irreducible symplectic g;° Q-
module. .

Assume that the Lie algebra g7* ® @ is simple. From the relation dimgJ =
4p ¢ Ez(1) it follows that g* ® Q is the Lie algebra of type Cj, [18, sect.1.3-1.8].
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On the other hand, Lie Hg(Jc)®Q; C sp(Vi ® Q). By Piatetski-Shapiro -Deligne -
Borovoi theorem [14], [2] there exists a canonical embedding

Lie Im(p;) C Lie]MT(Jc)(Q:)] = Qi x Lie[Hg(Jc)(Q1)].
So there exists a canonical isomorphism of Lie algebras

Lie Im(p;) ~ Lie[MT(Jc)(Q:)].

This relation implies the equivalence of the usual Hodge conjecture for J¢ and the
Tate conjecture for J.

2.7. Now we may assume that the Lie algebra ¢/* @ Qi is not simple.

Let f: S — Sv; ® Qi be the universal covering, where § = $; x S X ... x S, is a
product of simple simply connected algebraic @;-groups. An isogeny f extends to
an isogeny

fiGmxSixX..x8 =GCGn (Sy,®@Q) =Gy, ®Q,

defined by the formula f((a,s)) = a- f(s) for a € Gy, 8 € S1 X ... X 5.
By (2.5.6) the Frobenius torus T, is a maximal torus of Gy;,. Hence

T=(f""To®@Q))°’ CGnxS x..x8,
is a maximal subtorus. Consider the canonical projections
pry i Gm X 51 X ... X 5y = Gy

pr; : Gm X 51 x ... x § = S

It is evident that T = pry(T) x pry(T') x ... x pr(T).
On the other hand, .
VieW=me..0W,

where W) is an irreducible Gy, X §1-module, W; is an irreducible S;-module,..., W,
is an irreducible S;-module. Let

P1 : G X S] b g GL(W]),

pi: 5,‘ - GL(W,‘)(I' > 2)
are the corresponding representations. We have a commutative diagram

Gm % 81 % ... x 8" ZPGL(IW; ® .. @ W,)

L I

Gv®Q C GLW,©..9W,)
By (2.5.5) pi(Fo ') € T,(Qy), hence there exists an element

5 = (70,71, -, Tq) € Pro(T) X pry(T) X ... X pry(T)
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such that
(1 ® .. @ pg)(15) = f(7s) = pu(F5 ).

We see tha.t each eigenvalue of pi(Fo ') is of the form XSO) (7o) - Xgl)(ﬁ) (q)(Tq)’

where xk ™ ¢ X(pr,,(T)) are some characters.

2.8. By (2.5.1) Im(p:)C {z €End TW(J ®k) |z € 1 +{"End Ty(J ® k)}. Hence
for any = €Im(p;) the l-adic logarithm log = is defined.

Let i be the Haar measure on Im(p;) normalized by the equality u(Im(p;)) = 1.
It is well known that X = {z € Im(p;) | log z is a regular element in Lie Im(p;)} is
open and everywhere dense in Im(p;). Its boundary X is a closed analytic subset.
So u(0X) = 0 [15, sect.2.2]. Moreover, the set X is invariant under conjugation
in Im(p;). By Chebotarev theorem the density of {v|p/(Fs') € X} is equal to
w(X) =1 — p(0X) = 1 [15, sect.2.2, corollary 2. Hence we may assume that
for v the conditions (2.5.1)-(2.5.6) hold and log p;(F ') is a regular element in Lie
Im(py).

On the other hand, each W; is a symplectic or orthogonal S;-module. Theorem
2.2 and the inequality p > 17 imply that the pair (type of ¢7*®Qr, Vi®Q;) assumes
one of the following values:

(Cy x Dp, B +w!®y), (2.8.1)

(A1 x Ay x Cp, B! +w® + @), (2.8.2)

(A1 x Dy, E@ +w®)),  (283)

(A x Dy, B3t + 0Py, (2.8.4)

(41 x Ay, E(Tw) + (p — 1)w'?)), (2.8.5)

(A1 X B(poyyja, B(1w{" + (™)), (2.8.6)

(Cy % A1, B! + (p = 1)wi?)), (2.8.7)

| (Cs X By—1)/2, B +w?)), (2.8.8)
(Ay X Ay x Ay x Ay, B(w!" +w§2’ +0l® 4 (p = DY), (2.8.9)
(A1 X Ay X A1 X Bp—1)/2 B! + w0 +wl® 4 o®y), (2.8.10)
(Ay x Ay x Ay, BV +w“” +(2p - Dw!™Y), (2.8.11)

where an index (i) shows that the corresponding fundamental weight relates to the
i-th factor.

2.9. Consider the case (Cy x Dp, E(w; 4 wlz))) In virtue of (2.5.6) we may
assume that A = {)\aﬂﬁ;ﬁ] 7 = 1,.. ,p} where A a1,02,01,...,8p are multi-
plicatively independent { in other words, these numbers generate the multiplicative
subgroup of @x of rank p + 3). _

2.10. Lemma . The following subsets of A - A are Gal(Q/Q)-invariant:

(OB (NaFlad}; (\2af2); (A26E 65 £ );
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{Azﬁ-ﬁ}; {Mai o B B i # 5);
{Mai oy B L (Ve 38E B 1 £ 7Y

{’\20’1,216.?&2}-
Moreover, \? = £p,.
Proof. Let n € A - A. We may assume that

ne {/\2,/\201,/\2%02,/\2[31,/\201 1,/\2a1a2ﬁ1=/\251ﬂ2,)\20 ﬁlﬁZ,/\zaIQ’?ﬁlﬁz}-

If § € A, then T, (6) = né~", hence

Tha(6) €A SED; Thug(d)eA&se{danff' |j=1,....p}
Th2ayaa(8) € A € A1 2B |5 =1,..,p} Taep2(d) € A & 5 € {Maf}Bi};
Th2a2p3(8) € A& 8 € {d1fr}; Thrayaqp2(d) € A 6 € {Aa1fi )
Th2p,p,(6) € A & 6 € {Maf}Br2}; Thrazpp,(8) € A& 6 € {Aarfr};
Tr20y030,8.(0) € & & & € {Aay 2012}
It is clear that

Card(Tx2(A) N A) = Card(A) = 8p; Card(Tyz,2(A) N A) = 2p;

Card(Thzayap(A) N D) = dp; Card(Thags(A) N A) = 4
Card(Thagepz(A)NA) = 1; Card(Tyzg, appz(A) N A) = 2;
Card(Thag,,(A) N A) =8 Card(Thagap, 4,(A) N A) = 2

Card(Tazq,a,8,8,(D) NA) =
The Gal(Q/Q)-invariance of {f\Q} {Naiaz'}, {Nail}, {f\zﬁilﬁil i #3},

(RadpE], (262 U (Mo BRI 33, (e o 2L
{N%a] zﬂilﬂillz # j} follows from (0 3. 1)
Since (Ao laF FEHi £ j} = [Nailadl} - (VFFEi £ 7} - (A2} and

each factor of this decomposition is Gal(@/Q)—invaria.nt, we get the Gal(Q/Q)-
invariance of the sets {/\Zafla;tlﬁftlﬁjﬂh # 7} and {\26*?}. The Gal(Q/Q)-
invariance of another sets follows from the fact that each factor of the decomposi-
tions {Mai o3 B} = {Maieq "} (N*BE%} (A7}, (MBI B £ ) =
(Nl EEGE s £ 7) - O 2} s Gall@/Q) imariont

The relation \? = +p, follows from the fact that A\* € Q is of absolute value p,.
Lemma 2.10 is proved.

2.11. It is evident that the set of all eigenvalues of p} (F{l) is equal to A+ A —
{\2a7367).

By 'theorem 0.4 we may assume that p, does not divide Tr(pf?(Fo')). The
symmetry implies that the multiplicity of n € {Ma'aF!} as an eigenvalue of
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p{*(Fs') is independent of the choice of 1. This is valid for another Gal(Q/Q)-
invariant subsets which are defined in the statement of lemma 2.10. We deduce
from this lemma that Tr(p?(F5')) is a sum of integers of the following types:

/\2’ Z )‘2aii:1a;tl’ Z)‘Zaf%a Z )\zﬁftlﬂfl, Z /\2,8?:2, Z /\2aii:la;|:1)6i:tlﬂ;|:1’
i%; i#;
Z Azaflaflﬁfm, Z /\2ait‘§ﬁiilﬁ;ﬂ.
i#j
Hence p, does not divide at least one of the sums above. _
2.12. Assume that p, does not divide 3 /\gozitl a;tl. Then for each place w of QQ

lying over p,
w(Z AMatla#!) = 0.

It follows that there exists z,, € {A\2a¥' !} such that w(z,) = 0. Hence

0= w(za) = 5 {w(zub)) + wlzubi)

Since both summands in the last brackets are nonnegative in virtue of the relations
:cu,ﬁf':2 € A - A, we have the equalities

w(z,fE) = w(:cwﬁl_z) = 0.

So w(f1) = 0 for all w|p,. It follows that B, is a root of 1 [23, sublemma 3.4.0] con-
trary to the assumption that A, ay, ay, B4, ..., 8, are multiplicatively independent.

Hence p, divides Z)\zaibla;,t]. From the relation A*> = £p, we deduce that
S aflaf! is an integer.

By the similar arguments we prove that 3 ali,g is an integer.

2.13. Assume that p, does not divide E'-#j Azﬂiﬂﬁfﬂ. Then for each place w
of Q lying over p,

w()  NBFBF) =0.
i#

It follows that there exists z,, € {z\zﬁfﬂﬂjﬂ} such that w(z,) = 0. Hence

0= w(zw) = 5 w(aead) +w(zuar?)}.

Since both summands in the last brackets are nonnegative in virtue of the relations
azwalﬂ € A - A, we have the equalities

w(zwae?) = w(zya?) =0.
So w(ey) = 0 for all w|p,. It follows that a; is a root of 1 [23, sublemma 3.4.0) con-

trary to the assumption that A, a;, a2, fs,..., 8, are multiplicatively independent.
i 2 pEl pkl +1 541 . .
Hence p, divides 3°,, A*B; 87, and 3., B B is an integer.
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By the similar arguments we prove that 3 ,Bxiz is an integer.
2.14. Consider the decomposition

Z )\2alila§tlﬁi:l:lﬁ;!:1 - Z )\2 Zﬁ:}:lﬁ:&l)

i#] #i

We have proved that p, divides the first factor of this decomposition, and the second
factor is an integer. Hence p, divides the product.
The decompositions

Z /\Zaiblag:lﬁ?ﬂ — (Z :i:l :I:l (Z ﬁ:t2)
Z)\Qal 2ﬁ:hlﬁzl:l _ Z’\2a]2 Zﬁﬂ:lﬁﬂ:l)

1#] i#]
show that p, divides each left side.

Hence p, divides Tr(pf?(Fo ")) contrary to our assumption. This excludes the
case (Cy x Dy, E(w'V + w{®)).

2.15. Since the structure of A does not distinguish the cases (Cy x DP,E(wgl) +
wi)) and (A; x Ay x Cp, B! + i + ) = (D, x C,, B + i), we
exclude the case (4; x Ay x Cp, E(w; w4 wiz) +w§3))) by the same procedure.

2.16. Consider the case (4, X Dy,, E(w m—l—w( ))) In virtue of (2.5.6) we may as-
sume that A = {AeF!'F i = 1,...,2p}, where A, a1, 41, ...y B2p are multiplicatively

independent. The proof of the following result is similar to the proof of lemma 2.10.
2.17. Lemma. The following subsets of A - A are Gal(Q/Q)-invariant:

{NME A (NBE BT £ 5 (N6

(NP B 67 i # 5k (N ei?B).

Moreover, A= xp,.

2.18. It is evident that the set of all eigenvalues of pf?(Fy ') is equal to A+ A —
{Mai?p}.

By theorem 0.4 we may assume that p, does not divide Tr(pf2(Ft)). It is
evident that this trace i1s a sum of integers of the following types:

N, Y ONEE, Y ONBEEE Y ONEE, D N BB
i#j t#]

Hence p, does not divide at least one of the sums above. By the arguments of
sections 2.12-2.14 we prove that

Z aiiﬂ’ Z ﬂiﬂ:lﬁ;‘tl, Zﬁ?ﬂ, Zaitzﬂiilﬁ;tl
i#j i#j

are integers. Hence p, divides Tr(pf?(F5')) contrary to our assumption. This

excludes the case (A1 x Dap, E(w, (1) + w(2))).
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2.19. Consider the case (A; x D, E(Bw%l)-i—wg?))). In virtue of (2.5.6) we may as-

sume that A = {/\a;t}’ﬂﬁiil li = 1,...,p}, where A, a3, 1, ..., O, are multiplicatively

independent.
2.20. Lemma. The following subsets of A+ A are Gal(Q/Q)-invariant:

{22} (02 (N2l (M 2ait ) (B B i # 51 {N e B BE i # 5]
{NaF B 57 i # 51 AN B B i # 71 {8 )
(N8} (N e B2 (N6}

Moreover, \? = +£p,,.
Proof. Let n € A - A. We may assume that

1€ (N, \%a?, \ad, Maf, X262, N2 a2, M2 et 62, \2alB,
NP1 By, N2t By Ba, M i} By B, AP0 B1 B2 )
If § € A, then T;)(§) = né~*, hence
() €A &S €A; Thega(f) €A bde {Aaf B i=1,..,p};
Th2et(8) € A& 8 € {Aey? B i = 1,...,p}
Thaas(6) € A & 8 € {Xa}f i =1,...,p};
Thag2(8) € A 8 € Mo "1}y Thagzpe(6) € A w8 € Mo *Bi};
Taza153(8) € A& 6 € A" Bi}s Thzaspz(6) € A 6 € {Nalfi};
Th2p,p,(8) € A& 6 € Mo P10} Thanzp,p,(6) € A 8 € {Naf"*fi);
Trratpp,(6) EA S € {Aa}'sﬁl,z};TAza?ﬁlﬂz(a) €A & e {aif ).
It is clear that
Card(Tx2(A) N A) = Card(A) = 8p; Card(Taz,2(A) N A) = 6p;
Card(Th2q:(A) NA) = 4p; Card(Thzqe(A) N A) = 2p;
Card(Ty2g2(8) N A) = 4; Card(Thagz2p2(A) N A) = 3;
Card(Tyzqsp2(A) N A) = 2; Card(Thzaep2(A)NA) =1;
Card(Txap,5,(A) N A) = 8; Card(Thagzg, 5,(A) N A) =6;
Card(Tazatp,p,(A) N A) = 4; Card(Tazaep,45,(A) NA) = 2.
The Gal(Q/Q)-invariance of {A\?}, {\2af?}, {\2a?}, {\2aif),

(MU (N2a BE pE i £ 5}, (\2ad? g7,
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(A2 B2y U (NP B B # 5}, (N8B,
(VBB # 51, (N B B3 1 # 5}
follows from (0.3.1). Since

(NaFBE BE i # 5} = {\2aF'} - (N2AEBE i # 5} {472}

and each factor of this decomposition is Gal(Q/Q)-invariant, we get the Gal(Q/Q)-
invariance of the sets {)\zalﬂﬁfﬂﬂflli # 7} and {)\?8F?}. The decomposition
(W BB # 5} = {\af°} - ANBEBF i # 5} (AP} gives the Gal(Q/Q)-
invariance of the sets {A2ajt6ﬁiil,8ji]|i # j} and {N2a*B*?}. This proves the
claim.

2.21. Tt is evident that the set of all eigenvalues of pf*?(F ) is equal to A+ A —
[aFpEr).

By theorem 0.4 we may assume that p, does not divide Tr(p]2(F5')). It is
evident that this trace is a sum of integers of the following types:

/\2’ Z)@aihz? Z/\izazlt‘i, Z,\2ail:6, Z’\zﬁ;‘ilﬁ;ﬂ! Z)\2ail:2ﬁi:l:1ﬁjil,

i#] i#]

Z )‘2ail:4ﬁi:l:1ﬁ;]:1’ Z Azaihsﬁfﬂﬁ;-hl, Z /\Zﬁ';i:Z, Z A2ait2ﬁ:b2’ Z )\2(1?:4,8?:2.
i#] 1#]

Hence p, does not divide at least one of the sums above. By the arguments of
section 2.12 we prove that

X2 +4 +6
Doai Y et Do

are integers. By the arguments of section 2.13 we prove that

SaEE, et s e, Yerater, Y Y et Y et

i i7t] i

are integers. The decomposition

2N BELE = N (D od®) - (BT AT)
it} 1]

shows that p, divides the left side. Hence p, divides Tr(p?(F5!)) contrary to our

assumption. This excludes the case (A; x DP,E(3w£1)'+w§2))).

2.22. Consider the cases (2.8.5)-(2.8.10). It is clear that dimgW, = p and
dimgW1 ®... @ Wy_1 =8.

2.23. Lemma.ln the notations of section 2.7 assume that one of the following
conditions hold: :

1) 51 13 a simple simply connected Lie group of type Ay, Wy = E(7w§l))'

2) S; is a simple simply connected Lie group of type Cy, Wy = E(w§1));
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3) S1 % 53 x S3 18 a semisimple simply connected Lie group of type Ay x A1 x A,
Wi @ Wy ® Ws = B(w{) +wf? + ).

Then the highest weight of Sg-module W, 13 not a radical weight.

2.24. Proof. It is evident that

A= {)‘a?ﬂ'z = ]-a a4} ' {ng | .7 = 11 ---,P},

where A, ay,...,a4 correspond to Gy, X S1 X ... X S4-1, and fBy,..., 8, correspond to
S, We do not suppose that these numbers are multiplicatively independent. Let
®={NFi=1,..,4}, ¥ ={8; | =1,..,p}.

Assume that the highest weight of S;-module W, is a radical weight. In this
case 0 is a weight of Lie(S,)-module W, (3, ch.8,§ 7, exercise 3]. Hence 1 € ¥ and
® C T',. On the other hand, 8; = (Ae1B;)/(Aey) € T',. Hence ¥ C T',. We denote
by I's (resp. I'y) the multiplicative subgroup of I', generated by & (resp. ¥). In
virtue of (2.5.5)-(2.5.6) ' and 'y are torsion-free abelian groups of positive rank.

It is clear that rank(T'e) < 1+4rank X(pry(T) X ...xprg—1(T)), rank(T'y) <rank
X(pre(T)), Ty C Te - T'y. Hence the relations

rank(T',) < rank(l's - I'y) < rank(T'¢ ) + rank(Ty) <
1 + rank X(pr;(T) X ... x pry_;(T)) + rank X(pr (7)) = rank X(T') =
rank X(T, ® Q;) = rank(T,)
imply the relations

rank(l'g) = 1 + rank X(pr (T) x ... x pr,_;(T)) =
rank Gy, X 51 X ... X S4—1 2 2, (2.24.1)
rank(I'y ) = rank X(pr (T)) = rankS,, (2.24.2)

rank(I',) = rank(l's - I'y) = rank(Fy ) + rank(T'y).

Hence
T'e NTy = (1). (2.24.3)

Due to [6, sect. 5.2] for each v € A we define T9 : A — Q" by the formula
T3(8) =~26~'. It is evident that for each o € Gal(Q/Q)

Card(TS,)(A) N A) = Card(T2)(o(A)) N o(A)) = Card(TIA) N A),
and hence for any constant ¢ the set
{v €A | Card(TH(A) N A) = c}is Gal(Q/Q) — invariant. (2.24.4)
Consider the case (2.23.1). In this situation we may assume that

$ = {/\ail:] ,:i‘:3‘:{:5,:i:7}.
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We claim that
v € {Maf'} & Card(T2(A)N A) > 7p. (2.24.5)

Indeed, we may assume that v € {Ae1 i, Aa3Bi, Aa$Bi, AalBi | i = 1,...,p}. For
6 € A we have T,?(c?) = ~%§~!. Hence the multiplicative independence of A, oy
(which follows from (2.24.1)) and (2.24.3) imply the relation

TR05.(6) = (M)t - 67 € A & 5 € P **5T. 52 0} n A
It is evident that
Ca.rd(Tf\)alﬂ'.(A) NAY>Tpe 2. =10,
Since 1 € ¥, we have the relation (820 = ¥) = (82 € ¥, 83 € ¥, ..., 47 € ¥ for all
natural r). Hence f; is a root of unity, §; = 1 because I'y is torsion-free, vy = Ae;.
On the other hand,
T,(\)G?ﬂ.' (6) = (’\a?ﬁf)z dleAwde {’\aiﬂ'B’SJ ) ﬂ:z ) ‘I,} NA,

and Card(Tf\’a,;,ﬂ;(A)ﬂA) < 5p. Itis clear that for r > 3 Card(TR,:4,(A)NA) < Tp.

So the claim (2.24.5) is proved. In virtue of (2.24.4) the set {\a'} is Gal(Q/Q)-
invariant. Hence Aa; 4+ Aaj' € Z. Moreover, Ay + Aaj ! # 0: otherwise we would
have Aoy = (—1)daj! € T, and (—1) € T', contrary to the condition (2.5.5). On
the other hand, the absolute value of Aoy + /\arl_l is less than or equal to 2,/p,.
Hence for p, >> 0 we get the relation Aa; + Aaj?! # O(mod p,). Then for each

place w of @ lying over p,
w()_ Aoi!) =0.

It follows that there exists ., € {AaF!} such that w(z,) = 0. Hence

0=w(zy)= %{w(zwﬁj) + w(”cwﬁj—l)} (2.24.6)

Since both summands in the last brackets are nonnegative in virtue of the relations
a:wﬁ;t] € A , we have the equalities

w(zubs) = w(zuf;!) =0
So w(B;) = 0 for all wlp,. It follows that Vj f; is a root of 1 [23, sublemma 3.4.0]
contrary to the relation (2.24.2).
Consider the case (2.23.2). In this situation we may assume that
®={t|i=1,..,4},

where A, a1, ..., a4 are multiplicatively independent. We claim that

v €® & Card(TH(A)NA) > p. (2.24.7)



18 S.G. TANKEEV

Indeed, we may assume that vy = Aafi, § = Ae?fBf, where a,b € {£1}. We
have T,?(J) = 42§~1. Hence the multiplicative independence of A, a1, ..., a4 (which
follows from (2.24.1)) and (2.24.3) imply the relation

TRas:(8) = Qenfi)? - (M BR)™! = dala B2 € A &
(Motaj® € @ and BiB;P € ¥) & (af = oy and BB € 1) &
(6 = A3} and BIB;° € ©).
It is clear that
Card(TJ(A)NA) > p= Card(¥) & 87 - ¥ = T.

By the arguments above we know that 87 - ¥ = ¥ & §; = 1. This proves the
claim (2.24.7). Moreover, ® = {y € A | Card(T(A) N A) > p} is the Gal(Q/Q)-
invariant set. By the condition (2.5.4) Tr(pi(Fz')) = 2sev(zee 2)B # 0. Hence
Yzes T # 0, and the absolute value of this integer is less than or equal to 8,/p,.
For p, >> 0 we get the relation 34 = # 0(mod p,). Then for each place w of Q

lying over p,
w(z z)=0.
rzed

It follows that there exists z,, € ® such that w(z,) = 0. Hence we get the relation
(2.24.6) in the new situation. By the arguments above we know that this relation
implies the relation rank(¥) = 0 contrary to the relation (2.24.2).

Consider the case (2.23.3). In this situation we may assume that

® = {Moflaflad! |1=1,2,3},
where A, a1, a2, a3 are multiplicatively independent. We claim that
v € ® & Card(TH(A)N A) > p. (2.24.8)
Indeed, we may assume that
v = daimasfi, § = Aaflas?as®sy,
where ay,a3,a3,b € {£1}. We have T9(§) = v*67'. Hence the multiplicative
independence of A, a1, aq, a3 (which follows from (2.24.1)) and (2.24.3) imply the
relation
TRerazaas; (8) = (Aon0203f:)" (Aatag?es®By) ™ = Aol og "oy " BI6" € A
& (M2 al™2027% ¢ ® and B26; 0 € )
& (o} = a; for all j and A6 € )
& (8 = Mgzl and G230 € T).
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It is clear that
Card(T9(A)NA) > p = Card(¥) & 7 - ¥ = T.

By the arguments above we know that 82 - ¥ = ¥ & f§; = 1. This proves the claim
(2.24.8). Moreover, ® = {y € A | Card(T9(A)NA) > p} is the Gal(Q/Q)-invariant
set. We obtain the contradiction by the same arguments as before. Lemma 2.23 is
proved.

Thus the cases (2.8.5)-(2.8.10) are excluded.

2.25. Consider the case

(A1 x A1 x A1, Bw!) +0® + 2p - 1)) = (Dy x 41, B + (2p — 1wl?)).

1 gL ES Iy e
2

In virtue of (2.5.6) we may assume that A = {Ao{5f;

A, a1, a9, 81 are multiplicatively independent.
2.26. Lemma. For each natural number m (0 < m < 2p — 1) the following
subsets of A- A are Gal(Q/Q)-invariant:

O !

Moreover, \? = &p,.
Proof. Let n € A - A. We may assume that

7€ (B, VadBEm, Mo 0gim),
If § € A, then T, (8) = né~?, hence
Tyepm(d)e D& b€ {)\aﬁ;ﬂf | 7is an odd integer, |r] < 2p—1,|2m—r| < 2p—1},
Card(Tyzg2m(A) N A) = 8p — 4m;
Tx2a2p3m(8) € A & 6 € {da1f] | ris an odd integer, |r| < 2p—1,[2m—r| < 2p—1},
Card(Tyzq2p2m(A) NA) = 2p —m;
T)\Qalagﬂf’“((s) EA&BE {/\C’ELQJBI |
ris an odd integer, |r| < 2p — 1,2m — r| < 2p — 1},
Card(Tzq,0,p2m (D) N A) = 4p — 2m.
It is easy to see that
1€ V) & Card(Ty(8) N A) = p

n € {\?F} © Card(T,(A)NA) = 8p — 4.

In virtue of (0.3.1) {)?} and {A\?8*?} are Gal(@/Q)-invariant sets. The relation
A = +p, follows from the fact that A\* € Q is of absolute value p,. Moreover,
{BF?} is a Gal(Q/Q)-invariant set. Hence {8X*™} is a Gal(Q/Q)-invariant set for

each natural m.
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On the other hand,
n € {\aflaf!, N FF?P) & Card(T,(A) N A) = 4p.

Since {A\28F%"} is a Gal(Q/Q)-invariant set, we see that {\?aF Yo'} is also invari-
ant under the action of Gal(Q/Q).
It is clear that

n € {Nafl, Mot af BT} & Card(T,(A) N A) = 2p.

Since {\24%} and {\?af' o'} are Gal(Q/Q)-invariant sets, we see that {\ai?}
is also Gal(Q/Q)-invariant. Lemma 2.26 is proved.
2. 27 It is evident that the set of all eigenvalues of pj'?(F ') is equal to A - A —

+(4p-2
{A? a; 2 1 (r )}

By theorem 0.4 we may assume that p, does not divide Tr(pf2(Fo')). It is
evident that this trace is a sum of integers of the following types:

/\2’ Z/\2 :l:lazzl:l’ Z)\Za] 2
NI+ 672m), Y Noflaf)(BE™ + B72™) (1 <m < 2p— 1),

O Nef(B™ +B7%™) (1< m < 2p—2).

Hence p, does not divide at least one of the sums above. By the arguments of
sections 2.12-2.13 we prove that

Zailagﬂazalw m+181_2m) (1<m<2p-1)

are integers. Hence p, divides Tr(p{*(Fs!)) contrary to our assumption. This
excludes the case (A1 x A; x A;, E(w (1) + w(2) + (2p — l)wf’))).
2.28. Now we may assume that Endo(J ® k) is a quaternion division algebra

over Q. This case is completely investigated in [20, th.1.16, th.1.17]. Theorem 0.7
is proved.

§3. ON THE [-ADIC REPRESENTATION ASSOCIATED TO AN ABELIAN
VARIETY OF THE 4TH TYPE BY ALBERT’S CLASSIFICATION

3.1. We give here a proof of theorem 0.9. After replacing k by some finite
extension we may assume that for J the conditions (2.5.1)-(2.5.6) hold. In this case
Gv;=Sv;*Gm , where Sy; is the connected component of the identity of Gy, NSL(V}).
By G.Faltings results (8]

Endg,, (Vi) = Endg,, (V1) ~ End(J) @ Q. (3.1.1)
By the well known Tate theorems [22, th.3, th.4] this relation implies

1 = rank NS(J) = dimg, (A2V;)*%. (3.1.2)
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Schur’s lemma and (3.1.1)-(3.1.2) give the decomposition Vi @ Q; = U ® U~, where
U and U* are 4p-dimensional irreducible nonisomorphic dual Lie Sy, @ Q;-moduli,

dimgy Cent(Lie(Sy;)) < 1.

(3.1.3)

3.2. Theorem 2.2 and the inequality p > 17 imply that the pair (type of ¢{° ®

Qq, U) assumes one of the following values:
(A1p—1, B(w1,4p-1));

(Dap, E(wn));
(Ca2py E(w1));
(A1, E((4p — Dwr));

(A1 x Cp, Bw(” +w{™));
(A1 x Dy, Blwi” +w{?));
(A1 x A]aE(wgl) +(2p - 1)‘*’@));
(Ar x A x A, B(wiD + 0l 4+ (p - 1)0P));
(A; x A1 X B(p_1)/2s E(ng) + ‘*’P + wga)));
(A1 x A1, E(3w” + (p — 1)wi));

(A; x B(p—l)/?aE(ngl) + wgz)));

(Ca x Av, Ewi” + (p— 1)wf?));

(C2 % Bp—1y2 B(wl” + w{?));

(A x Agpoy, BV + w0 _));

(A1 % A1 x Ap_g, BV 4+ 0® + 0 _);
(Cq x Ap—lvE(wgl) + wﬁz-l));

(A1 x Ap1, BB + (D _)));

(As x A1, E(wi + (p — 1w;”));

(A X B(p—l)/zaE(wg +W§2)))5

(As x Ap—laE(wﬁzg +w§?;),_1)).

3.3. Consider the case (3.2.1). We see that ¢f° @ Q is the Lie algebra of
type Agp—1 and Lie Hg(Jc)®Q: C ¢l(U). By Piatetski-Shapiro -Deligne - Borovoi

theorem [14], [2] there exists a canonical embedding °

Lie Im(p) C Lie[MT(Jc)(Qi)] = Qi x Lie[Hg(Jc)(Qi)].
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So there exists a canonical isomorphism of semisimple parts
{Lie Im(p;)]** ~ [Lie[MT(Jc)(Q)]]**. (3.3.1)

Moreover, if n, # 2p then n, # n, and dimg Cent(Gy;) > 2 [5, sect.3.1, step 3].
Hence the isomorphism (3.3.1) extends to the isomorphism

Lie Im(p;) ~ Lie[MT(Jc)(Q:)].

So the Mumford - Tate conjecture holds for J, dimg Cent(Sy,) = 1 =dimg
Cent[Hg(Jc)(Q1)). Hence

dimg H2'(J @ &, Qy(r))C*/k) < 1.

(19, th.1.1). Tt follows that the Q;-space HZ (J @k, Q;(r))®*(¥/¥) is spanned by the
cohomology classes of intersections of divisors.
3.4. We want to exclude all cases (3.2.2)-(3.2.19) by the following procedure.
First of all we note that in cases (3.2.2)-(3.2.13) there exists an isomorphism of
g;* ® Q-moduli U ~ U*. Hence the relation (3.1.3) implies the relations

U=E(w)x), U" = E(w)(-x), (3.4.1)

where w is the highest weight of ¢{* ® Q;-module U and x # 0 is the highest weight
of Cent(Lie(Sy, ® Q;))-module U.
3.5. Consider the cases (3.2.2)-(3.2.3). It follows from (3.4.1) that

A= {)\aib]ﬁ,:hllz = 1,.--,2P},

where A, a1, B1, ..., f2p are multiplicatively independent. Hence the structure of A
in these cases coincides with the structure of A in the case (2.8.3). This excludes
the cases (3.2.2)-(3.2.3).

3.6. Consider the case (3.2.4). In virtue of (3.4.1) we may assume that A =
{)\ail:lﬁf:l':hs""’i“p—l)}, where A, a1, 01 are multiplicatively independent.
3.7. Lemma. For each natural number m (0 < m < dp—1) the following subsets

of A- A are Gal(Q/Q)-invariant:
DRy, (ratigEm)

Moreover, \? = +p,.
Proof. Let n € A+ A. We may assume that

n € {\*B™, N el ).
If 6 € A, then T, () = nd~!, hence
Thapgam(d) €A b € {AaFB7 | ris an odd integer, |r| < dp—1,|2m—r| < dp—1},
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Th2q353m(8) € A & 6 € {Aenf] | ris an odd integer, |r] < 4p—1, [2m—r| < 4p—1},

It is easy to see that
n € {\?*} & Card(T,(A) N A) = 8p,

n € {\18E} & Card(T,(A)NA) =8p—2.

In virtue of (0.3.1) {\?} and {\?8?} are Gal(Q/Q)-invariant sets. The relation
A = +p, follows from the fact that A e Qis of absolute value p,. Moreover,
{BF%} is a Gal(Q/Q)-invariant set. Hence {8E2™} is a Gal(Q/Q)-invariant set for

each natural m.

On the other hand,
n € {Naif?, \267P} & Card(T,(A) NA) = 4p.

Since {\24*?} is a Gal(Q/Q)-invariant set, we see that {\2aF?} is also Gal(Q/Q)-
invariant. Hence {A\?ait?8E?™} is a Gal(Q/Q)-invariant set. Lemma 3.7 is proved.
3.8. It is evident that the set of all eigenvalues of pP?(Fo ') is equal to A - A —
(Na? g,
By theorem 0.4 we may assume that p, does not divide Tr(pp?(F5')). It is
evident that this trace is a sum of integers of the following types:

ALY N, MBI+ A7), (1< m < dp—1),

O Nai)(BI™ 4+ B77) (L<m < 4p—2).

Hence p, does not divide at least one of the sums above. By the arguments of
sections 2.12-2.13 we prove that

> e, (BB (1<m<dp—1)

are integers. Hence p, divides Tr(pf?(F5')) contrary to our assumption. This
excludes the case (3.2.4).

3.9. Consider the cases (3.2.5), (3.2.6). In virtue of (3.4.1) we may assume that
A= {Aaihlazilﬁjﬂ |7 =1,...,p}, where A, o1, 2, B4, ..., Bp are multiplicatively in-
dependent. Let v1 = ajag, v2 = al‘lag. It is evident that A = {,\'ﬁféﬁf‘] |7 =
1,..,p}, where A\, v1, 72, B1, ..., Bp are multiplicatively independent. Hence the struc-
ture of A is identical to the structure of A in the case (2.8.1). This excludes the
cases (3.2.5),(3.2.6).

3.10. Consider the case (3.2.7). In virtue of (3.4.1) we may assume that A =
{Aaiﬂaflﬁfl’is’“"im‘p_l)}, where A, a1, a9, 8 are multiplicatively independent.
Let v; = ajaz, v = o] ' as. It is evident that A = {)\’yf% ;H’ﬂ """ :*:(2”_1)}, where
A, 71,72, 01 are multiplicatively independent. Hence we may exclude this case by
the arguments of sections 2.26-2.27.
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3 11. Consider the cases (3.2.8),(3.2.9). In this situation we may assume that

{/\a:’:1 £ 1}, where A, a1, a2, as are multiplicatively independent, ¥ =

{ﬁJ |7 =1,. ,p} We may exclude the cases (3.2.8)-(3.2.9) by the arguments of
section 2.24.

3.12. Consider the cases (3.2.10)-(3.2.11). In virtue of (3.4.1) we may assume
that A = {\aFle; =1 i3} {B1,..,Bp}, where A\, a1, @, are multiplicatively indepen-

dent, 1 € {f1,.. aﬁp} Let & = {)\ail 1, ia} ¥ = {b,...,0p}. We know that
1€¥. Hence @ C T, ¥ C T',. In the notatxons of section 2.24 we have: I'¢ and
'y are torsion-free abelian groups of positive rank,

F'e NTy = (1) (3.12.1)

We claim that
v € {Daflaf'} & Card(T(A) N A) > 3p. (3.12.2)

Indeed, we may assume that v € {Aajef;, \e1e3f; |1 = 1,...,p}. For§ € A
we have T,?(J) = ~2§71. Hence the multiplicative independence of A, ¢y, @y and
(3.12.1) imply the relation

Trcass (6) = Q100f:)? - 67 € A § € Penoy™® - p2- T} N A,
It is evident that
Card(Tha, a,s,(A)NA) 2 3p & 37U = 0.

From the arguments of section 2.24 it follows that the relation 82 - ¥ = ¥ implies
B; = 1. Hence v = Aajaz. On the other hand,

Taazs:(8) = Qia3fi)? - 67" € A o d € {harag - 7 - T} N A,

and Ca.rd(Tgmagﬁ‘_(A)ﬂA) < p. Sothe claim (3.12.2) is proved. In virtue of (2.24.4)

the set {Aai'af!'} is Gal(Q/Q)-invariant. Hence Y Moi'es' € Z. Moreover,
3 /\aitla;tl # 0: otherwise we would have

0= XMay + o7 Hag +a3)
and hence @y = —a; ! or ay = —a; '; assume, for example, that oy = —a]™; then
Aayag = —)\al_lag €A, /\al_laz EA, 1= /\a]ag/(/\al_lag) el

contrary to the condition (2.5.5).

On the other hand, the absolute value of 3 Aeiflai! is less than or equal to
4,/py. Hence for p, >> 0 we get the relation E/\afﬂ #1 £ 0(mod py). Then for
each place w of Q lying over p, -

w(z Aatlad) = 0.
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It follows that there exists £, € {AaiFaf!} such that w(z,) = 0. Hence we obtain
the relation (2.24.6) in the new situation. It follows that ¥j §; is a root of 1 contrary
to the relation rank(I'y) > 1. Thus the cases (3.2.10)-(3.2.11) are excluded.

3.13. Consider the cases (3.2.12)-(3.2.13). In virtue of (3.4.1) we may assume
that A = {Aaitlag:’é} {B1,...,Bp}, where A, a1, a2, a3 are multiplicatively indepen-

dent, 1 € {f1,...,0p}. Let & = {/\aitlag:_},}, ¢ = {B,...,53s}. In the notations of
section 2.24 we have: I'¢ and I'y are torsion-free abelian groups of positive rank,

I NTy = (1). (3.13.1)

We claim that the relation (2.24.8) is true in this new situation. Indeed, we may
assume that v € {Aaje2f; | i =1,...,p}. For § € A we have T9(8) = v*6~". Hence
the multiplicative independence of A, o1, a2, @3 and (3.13.1) imply the relation

Toeoap:(8) = (Aenafi)? - 67 € A & § € {Aanay - B - U} N A.

It is easy to see that

Hence the claim (2.24.8) is proved. Thus we may exclude the cases (3.2.12)-(3.2.13)
by the arguments of section 2.24.

3.14. Consider the case (3.2.14). We may assume that U = E(wil) + wgz))(x),
U* = E(wgl) +w£?_])(—x), where y is the highest weight of Cent(Lie(Sy, ® Q/))-
module U. After replacing p by 2p we may use the arguments of [19, sect.4.20-4.26]
in order to exclude this variant.

3.15. Consider the cases (3.2.15)-(3.2.16).

Assume, for example, that x # 0. In this situation

A = {Aa1BE}} - {61, 0, 8pm1, (6182...8p1) 7" JU

AaT'BEIY {671, 852, 6180..6,20)),

where A, a1, 01,082,601, ...,0p—1 are multiplicatively independent. The next lemma
follows from (0.3.1).

3.16. Lemma. The following subsets of A-A are Gal(Q/Q))-invariant:
(AT (NBE' B Y (MR
{/\25,-(5]-'1 | i 73U {N2(8:...62...6,_1)* JU
{N(a38:8;)% i # 5 U Al (8.60 . 6-) ) F
(N2BEBE6:67 i # FYU{NBE B (6162 ..6p1)F 1 JU
{MB B (o 8:d)*! | i # 5} U BT B (0] (8187 .8p-0) T
DA(@2E)E YU (0361 6pmr) D)
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{NBE38:071 i # JYU{NBES (8167 ...8p—1)F JU
(NB5(ad8:6;)%! i # Y U{N B (0l (6160 .6,-1) )Y
(N8 B (a3 1) 1 U (N BF 87 (ad (81..6,—1) 1) );
{(\2BE5(e18H)F U N B2 (] (81.-.8,-1) ) *'Y,

where 5! means that §; is omited. Moreover \* = +p,.
Indeed, it is easy to see that

Card(Txs(A) N A) = 8p;
Card(T,\gﬂilﬂéu (A)N A) = 4p;
Card(Ty2pz2(A) N A) = 2p;

Card(TAz.s;a;‘ (A)NA) = Card(Trzs, .. 62..5,_)% (A) N A) =
Card(T2(a2s;5,)x1 (A) N A) = Card(Taa(az(s,..60..5,_,) -1 (A) N A) = §;
Card(Tyaget 15,50+ (8) N A) = Card(Tyages a5, sz..5, e (A) N A) =

Card(Tyag1 551 (a26,0;)41 (BINA) = Card(Tyagts p21(a2(5,...50...5,_1)-1y2: (B)NA) =
4 = Card(Tya(azszy1 (8) N A) = Card(Tyaaz(s, 5,251 (A) N A);
Card(Tyzpz25,5-1 (D) N A) = Card(Thagza(s, . s2..5,_,)21 (D) N A) =
Cafd(T,\ﬂﬂi’(afs.-aj)il(A) NA) = Card(T A28E2(a2(4; .. 59_._5P_1)-1)i1(A) NA) =
2 = Card(Tyz g1 g1 (42221 (B) N A) = Card(Tyz gt g1 25, ..6,,)-2)21 (B) N A);
Card(Tyzgi3(a252)21 (A) N A) = Card(Tyzg22(03(5,...6,_,)-221 (B) NA) =1

Then we may use some decompositions which are similar to the decompositions of
section 2.10.

3.17. It is evident that the set of all eigenvalues of pf*?(Fy ') is equal to A- A —
(X263 (a81) 1} — (N85 (e} (61.-8p-1) %)),

By theorem 0.4 we may assume that p, does not d1v1de Te(pp?(Fs')). The
symmetry implies that the multiplicity of n € {\2g! } as an eigenvalue of
pP2(FS1) is independent of the choice of 7. This is va.lid for another Gal(Q/Q)-
invariant subsets which are defined in the statement of lemma 3.16. We deduce
from this lemma that Tr(pf?(Fs')) is a sum of integers of the following types:

N2, ST NBEE, LS N B (036 + 3 N B B (0281 6pm) )R

Hence p, does not divide at least one of the sums above. _
Assume that p, does not divide Y A? ﬁlil ﬁf‘l Then for each place w of Q lying
over p, there exists z,, € {\2FE! 8"} such that w(z,) = 0. Hence

0 = w(ze) = %{w(mw(ﬁ&z—l) + w(zwd162)).
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Since both summands in the last brackets are nonnegative in virtue of the relations
T4(8616; )T € A- A, we have the equalities

w(zw6187") = w(zwdy18) = 0.

So w(818;') = 0 for all w|p,. It follows that 6,6, is a root of 1 [23, sublemma
3.4.0] contrary to the assumption that 61,4, are multiplicatively independent.

Hence p, divides 3 A28 6!, From the relation A\? = +p, we deduce that
S BEBE is an integer.

By the similar arguments we prove that 3 ﬁfg is an integer.

Using the relation

{w(zwhl) +w(zwby *)}

w(Tw) =

b |

for @y, € {A26:07 |4 # 7} U {\(81...67...8p1) '} U {N(a}did;)F |1 # j}U
{2 (a3(6;...60.. 5,,_) DE1Y we deduce that

DUED TS IANCED Y EUARES y ST AR
i#j 7]

is an integer. By the similar arguments we show that

S (@3 + Y (@810 5pmn) )

is an integer. Hence 3 ! 8! (o262)E! + 3 4 651 (a2 (61...6p—1) %) E! is an inte-
ger. Thus p, divides Tr(pp?(F; ")) contrary to our assumptions. We may exclude
the case y = 0 by the same arguments.

3.18. Consider the case (3.2.17). Assume, for example, that y # 0. In this
situation

A=y BEEY {8y, ., 851, (8182...8,-1) 1 JU
{’\al_l l:h],:t:i} {51_ URELE! p 116152 P—1}1

where A, ay, f1,61, ..., 06,—1 are multiplicatively independent. The next lemma fol-
lows from (0.3.1).
3.19. Lemma. The following subsets of A-A are Gal(Q/Q))-invariant:

27} (BB 5 (NP (ARBEC)

{N26:67" i # 5T U{N(61...67..8p—1)F U
{AN2(addid;) ™ |1 # 73U (N (d (6180 8p) ) )
{NB26:87 |1 # 5} U {NBF (81886, 1)F1 U
(VB2 (ad6:8;)* i # YU (NPBF(ed (8180 .6p—1) TN F Y
{NBE6:8T | i # U N B (61,876, 1)F U
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(A6 (e16:8;)™ i # Y U{N B (] (8187 8p-1) T Y
{NBF08:671 |1 # YU (NBF(61..67.6p—1)F U
{NB8(036:6;)F" | i # jYU{NBE (@l (61...87 . .dp—1) T )F' ]

{8 U N (ad(61.-6p-1) 72 )
{82 (afs)F yu N f?(a%(al ~)THE
{APBE (o 61) 1} U (N B (0l (d1.-6p-1) ) )
{NBF0(aF82) ™ Y U N B0 (0l (81.-6p1) " 2) ' s

where 8% means that §; is omited. Moreover \? = :i:pv.

3.20. It is evident that the set of all eigenvalues of pf?(F ') is equal to A+ A —
{A\?2BES (a262)%1} — {Azﬂf:s(a%((sl..‘(gp_])-z):hl}. Hence we may exclude the case
(3.2.17) by the procedure of section 3.17.

3.21. Consider the cases (3.2.18)-(3.2.19).

Assume, for example, that y £ 0. In this situation

A = {dan{es, as, a4, (arezas) T U ey Hag ol ot epasas}) - {Br, -, Bp

where A, a1, a2, a3, a4 are multiplicatively independent, 1 € {f1,...,0p}. Let & =

Aa{ag, a3, 04, (@zaaag) ' HU /\al_l{az_l,agl,azl,a2a3a4}, U ={6,...6,} In
the notations of section 2.24 we have: 'y and 'y are torsion-free abelian groups
of positive rank, I'¢ N[y = (1). We claim that

v € ® & Card(TO(A)N A) 2 p. (3.21.1)

Indeed, we may assume that v € { a1a20;, Aen(esazay) 18 |1 =1,...,p}. Hence
the multiplicative independence of A, o1, ..., a4 and the relation I'e N[’y = (1) imply
the relation

TR anp (8) = (Qarenfi)? - 67 e A e
§ € {Aayazff? - TINA.
It is clear that

Card(Thg, 0,8, (A)NA) > p=Card(¥) & 3] T =T & §; =1

Ca‘rd(T)?m(azaaa-;)“lﬂ;(A) NA) 2 p=Card(¥) & ﬁ? =06 8=1
Hence the claim (3.21.1) is proved. We see that the relation (2.24.7) holds in this
new situation. Hence we may exclude the cases (3.2.18)-(3.2.19) by the arguments
of section 2.24.

3.22. Finally we consider the case (3.2.20). Assume, for example, that y # 0. In

this situation

A =day-{B1,B2,8s,(B10283) 7} - {61,..., 8p—1,(8162..8p—1) " JU
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Aot - (BT, B By BB} - {67, 650,816 8p 21 ),

where A, a1, 1, B2, 33,61, ..., 6p—1 are multiplicatively independent. The next result
follows from (0.3.1). _
3.23. Lemma. The following subsets of A-A are Gal(Q/Q))-invariant:

(A% (VBB | R # DU (81876) % );
(N80T i # JYU{N (6162, 8-1) ' };

{2 (BB (7 8:8;)! |k # L1 # jYU{N (BB (F(61..60..6p—1) ™) |k #£ 1)
{X"ﬁkﬁ,“&é;l k£ Li#7}U {Azﬁkﬁ,‘l(51...6,?...6,,..1)*1 | k £ 1}
{A\2(BiBEBs )1 6:651 | i # 53U AN (B1BEBs) T (6167 1) ™' }5
(N (a1B78:8;)F |1 # 73U (N (@}BE (81806, -1) ) U
{2 (BB (aT83) |k # 13U {2 (BrB)* (0 (61-.8p—1) ") |k # 1JU
{3 (B18285) T28:8;) %" | i # 5} U (N2 (aF(B1B2Ba) 2 (8180 8p—1) T E
{(N(e1BE6) ' YU N (I BE(b1...6p—1) TH)F JU
{X2(a}(B18283) T2 82) 1} U {N* (0} (B1B2s) " (81.--8p-1) ") F 5

where &' means that 6; is omited. Moreover A = 4p,.
Indeed, it is easy to see that

Card(Ty2(A) N A) = 8p;

Card(T,\ﬂ,ekﬁfl(A) nA)= CMd(TA‘(ﬁlﬂfﬁa)il(A) NA) =2p;
Card(Tyas,5-1(A) N A) = Card(Txzs,..52...6,- 5 (B) N A) = §;
Card(Tz(g, p,)+1(a28:8;)1 (D) N A) =
Card(Thz(g, 8,)%1 (a2(8y...60..8,-1)- 1) (A) N A) = 4;
CMd(T,\ﬂﬁ,,ﬁ,-ls.-.s;l(A) NA)= CMd(TAz(g,ﬁgga)ila.-é;l(A) nAa)=
Card(Tyag, g-1(s,...62...5,-1)21 (D) N A) = Card(Thz(g, g25)21(5,...67...6,_ )% (D) N A)

= Card(T)‘z(a?ﬁz,sigj)ﬂ(A) N A) = Card(TAg(a'fﬁf(Jl...J?...J 1):};1(&) N A) =

p—1)"
Card(TAz(ﬂhﬁi)il(a?lg?)il(A) N A) = Card(TAz(ﬁkﬂI)il(af((;l.._Jp_l)_g)il (A) M A) =
Ca‘rd(TI\g(C@(ﬁiﬁ:ﬂa)_z&ﬁj)il (A)NA)=
Card(Tx2(a2(8; 8285)=2(8: ...60..86,—1)- 1)1 (A) N A) = 2;
Card(T,\z(Ofﬂfa?)i1(A) N A) =

Card(TAz(a¥ﬂf(5l___5P_1)-2)i1 (A) ] A) =
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CaId(sz(a'f(ﬁl52ﬂ3)—25?)i1 (A) M A) =
Card(Tha(a3(8,8285)-2(81..6,-)- 1 (B) N A) = 1.

3.24. Tt is evident that the set of all eigenvalues of p/?(F>!) is equal to
A A= {N (B8} — (N (a3 BE(61.-8p—1) ) F -

{N¥(ad(01B25)"287) "} — {A*(ad (B1 o) ™ (81...8p-1) 1) ).
On the other hand, the elements of the Gal(Q/Q))-invariant set

(N (BrB)F (1 8:8;)* |k # Li # 73U {N (BB (03 (8160 .8p—1) T * | B # 1)

have the very ”"mixed” multiplicative structure. So we can’t use here the usual
technique of sections 2.12-2.13, 3.17.

3.25. Assume that J has many ordinary reductions. In this situation we may
choose v such that the conditions (2.5.1)-(2.5.6) and an additional condition

% c {0,2,1}. (3.25.1)

hold, where w is an arbitrary place of Q lying over p,. It follows from (0.5.2).
Suppose that

w(XB18;)
w(p})
for some place w|p,. Then for each o € Gal(Q/Q)

(ow)(a(\F165 )
(ow)(p})

=0

=0,

hence from the relation
a(M 6187 ") € (N8B! |k # 1FU{N(B1BBs) ")

obtained above and from the transitivity of the natural action of Gal(Q/Q) on
{ wlw is a place of Q over p, } it follows that Vw|p, 3z, € {N2BB3;" | k #
1} U {X2(513%B2)*"} such that w(zy) = 0.

So, Yw | py

0 = w(zy) = %{w(xwalagl) +w(z0s18)]}.

Since both summands in the last brackets are nonnegative in virtue of the relations
z,(8:6; 1)t € A+ A, we have the equalities

w(zwd1851) = w(zwd16,) = 0.

So w(8;8; 1) = 0 for all w|p,. It follows that §;6;" is a root of 1 [23, sublemma
3.4.0) contrary to the assumption that §;,d, are multiplicatively independent.
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Suppose that
w(X 58y
w(p)

for some place w. Let p be a complex conjugation defined by some fixed embedding
Q c C. It is well known that

wNAi8y ) | (pw)(X*BiB5T)

=1

=1
w(p?) (pw)(p?)
[18,(3.16.2)]. So in our situation we have the impossible relation
()55 _
(pw)(p3)

Hence

w2 (/87 )*) 1

w(pl) 2
for all places w|p,. It follows that 83 85" is a root of 1 [23, sublemma 3.4.0] contrary

to the assumption that By, 8, are multiplicatively independent. So ¢f* ® Q; is not
the Lie algebra of type A3 x Ap_;. Theorem 0.9 is proved.
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