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ON FROBENIUS TRACES*

S.G.TANKEEV

ABSTRACT. In this paper we discuss one diophantine property of the Frobenius traces
associated to an abelian variety over a number field k and give its application to the
proof of the Mumford - Tate cünjecture für 4p-dimensional abelian variety J over k,
where p is a prime number, p ~ 17, Cent(End(J 0 k)) = Z or (under some weak
assumptions) EndO(J 0 k) is an imaginary quadratic extension üf Q.

§O. INTRODUCTION

0.1. Let J be an abelian variety over a number field k c C, [k : Q] < 00. Suppose
that I is a prime number,

PI: Gal(k/k) --t GL(H~t(J 0 k, Q,))

"is the naturall-adic representation.
It is weIl known that PI is unramified outside a finite set T of non-Archimedean

places of k". We denote by Pu E Gal(k/k) the Frobenius eleluent associated with
a place v of Q lying over an unramified place v of k. I t is weIl known that the
conjugacy dass of PI(F;l) depends only on v, the eharacteristie polynomial of
PI(Fi1

) lies in Z[t]C QI[t], and aIl its roots are of absolute value (Normk/Q(v))1/2.
Let S be a set of non-Archimedean places of k. We recaIl that the Dirichlet

density of S in the set of all non-Archimedean places of k is defined as

. log x
hm --Card{v E S INormk/Q(v) ::; x}

x-too X

(if such linli t exists). It is weIl known that the densi ty of {v I Normk /Q (v) = Pv}
equals 1 [4, eh.8, sect.2.4].

The foIlowing result is weIl known.
0.2. N. Katz theorem [6,seet.2.1], [13,sect.2. 7.1]. Assume that /or some

natural number n zn > 2·dimkJ and each Zn-torsion point 0/ J(k) is mtional ouer
k. Then the set { v I v is unramified place 0/ k, Normk/Q(v) = Pv is a prime number

and Pv does not divide Tr(PI(F;l ))} is 0/ density 1.
This theorem plays an important role in the proof of the foIlowing theorem.
0.3. J .-P. Serre theorem[6,sect.6]. Let J be a simple abelian variety over a

number field k . // dimkJ is an odd integer and End(J @ k) = Z, then the Hodge
[9],[10] Tate [21] and Mum/ord - Tate conjectures [11] hold /or J. "

*This paper is a result of my stay at the Max-Planck-Institut fur Mathematik in 1995-96. It
is my pleasure to thank the members of MPI for their hospitality.
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2 S.G. TANKEEV

The survey of SeITe's technique is contained in [6].
We want to extend Serre theorem into the area of even dimensions.
Let tl be the set of all eigenvalues of PI(Fi1

) (without counting multiplicities).
The Galois group Gal(Q/Q) acts in a natural way on ~ and on ~ .~. For each

. -x
element 1] E ~ . ~ we define a map T71 : .6. -+ Q by the formula T71 (0) = 170-1.

This map is a modification of the corresponding map T~ : ~ -+ QX in [6,sect.5.2],
which is defined by the formula ~(o) = ,20-1 for , E ~. It is evident that for

each (7 E Gal(Q/Q)

Card(T(T(71)(~)n ~) = Card(T(T('1)(a(~)) n a(~)) = Card(T'1(~) n ~),

and hence for any constant c the set

{1] E ~. ~ICard(T71(~) n tl) = c} is Gal(Q/Q) - invariant. (0.3.1)

So we have a good instrument of computing the Gal(Q/Q)-invariant subsets of
~ . ~, which is used, for example, in [18],[19],[20].

On the other hand, some (not all) elements of ~ . .6. are the eigenvalues of
p~2(Fi1) , where

is the naturall-adic representation. Henee there is a reason to look at the trace of
pr2(Fi 1

).

0.4. Theorem. Let J be a d-dimensional abelian variety over a number field k.
Assume thai /or some natural number n zn > d(2d - 1), each ln-torsion point 0/
J(k) is rational over k and k contains all the (Zn )th roots 0/ unity. 1/ d?:. 2 thell the
set { v I V is unramified place 0/ k, Normk/Q(v) = Pv is a prime number and Pv

does not divide Tr(pr 2(Fi 1
))} is 0/ density 1. t

The main idea of the proof is similar to the idea which is used in the proof of
A.Ogus result concerning the existence of many ordinary reductions of an abelian
surface over a nUllbel' field [13, seet.2.7-2.10]. Of course, we use G. Faltings theorems
[8].

Assume that J has a good reduction J v at the non-Archimedean place v of k. It
is evident that Tr(pr2 (F;1)) coincides with the trace of linear operator in the 2nd
homology of Jv induced by the Frobenius endomorphism of abelian variety Jv over
a prime field IFp1,l •

0.5. We recall that J has an ordinary reduction at a non-Archimedean place v
of k with a residue field k(v) = f q1,l of characteristic pv {:} the special fibre Jv of
the Neron minimal model of J is an abelian variety and the following equivalent
conditions hold:

(0.5.1) pv-rank of J v equals dimk(v)Jv;
(0.5.2) for any eigenvalue 0 of the Frobenius endomorphism of l-adic Tate module

TI(Jv 0k(v) k(v))(l =f=. Pv) and for any plaee W of Q oyer Pv the following relation
holds:

W(o)
-(-) E {0,1}
W qv
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[7,sect.2].
0.6. Definition. An abelian variety J over a number field k has many ordinary

reductions <=> there exists a set S of non-ArchiInedean pIaces of k such that J has
an ordinary reduction at each place v E Sand the density of S is positive.

Now we consider some consequences of the theorem 0.4. We denote by (Lie
Im(pI))88 the semisimple part of the reductive Lie algebra Lie Im(pI)' The following
result is initially proved in [20, th.1.14, 1.16, 1.17] under the additional assulnption
that J has many ordinary reductions.

0.7. Theorem. Assume that p is a prime number. Let J be a simple 4p
dimensional abelian variety over a number field k.

Assume that End(J 0 k) = Z and p2:: 17. Then (Lie Im(pz) )88 ® Ql is a
semisimple Lie algebra 01 type C4p , the general Hodge, Tate and Mum/ord - Tate
eonjeetures hold lor J.

Assume that EndO( J (9 k) is an indefinite quaternion division algebra over Q
and p i= 2, P i= 5. Then (Lie Im(pl))88 (9 Ql is a semisimple Lie algebra 0/ type C2p ,

the general Hodge, Tate and Mumlord - Tate eonjeetures hold lor J.
Assume that EndO( J (9 k) is a definite quaternion division algebra over Q and

p i= 2. Then (Lie Im(PI))H (9 QI is a semisimple Lie algebra 0/ type D zp , the
Mumford - Tate eonjeeture holds /or J.

0.8. Assurne that Eudo (J 0 k) = K is an imaginary quadratic extension of
Q. Then!< 0Q C is the direct smn of two copies of C indexed by two different
embeddings {7, T ofthe field I{ to C, Lie(Jc)=MO' ffiMr, where MO' = {v E Lie(Jc) I
e . v = a(e)v for all e EI<}, Mr = {v. E Lie(JC) I e . v = T(e)v for all e EI<},
dimkJ = nO' + nr , nO'=dimcMO' 2:: 1, nr=dimcMr 2:: 1 [16, th.5]. The following
result is a strong variant of (20, th.1.18].

0.9. Theorem. Assume that p is a prime number, p 2:: 17. Let J bc an ab
solutely simple 4p-dimensional abelian variety over a number field k. Assume that
EndO(J (9 Je) is an imaginary quadratie extension 01 Q. Then (Lie Im(pl))88 (9 QI
is a semisimple Lie algebra 01 type A Zp - 1 or A 3 X A p - 1 . If J has many ordinary
reductions, then (Lie Im(pz))8" (9Ql is a semisimple Lie algebra 0/ type A Zp - 1 , there
exists a eanonieal isomorphism 01 semisimple parts

[Lie Im(pz)]"8 ::: [Lie[MT(JCHQI )]]H j

moreover, lor nO' f 2p it extends to an isomorphism

Lie Im(PI) ::: Lie[MT(Jc)(Qdl

and in this ease the Q,-spaee H;[(J 0 k, QI (r) )G al (k/ k) is spanned by the eohomology
classes 01 intersections 0/ divisors.

§1. ON THE FROBENIUS TRACE IN THE

2ND HOMOLOGY OF AN ABELIAN VARIETY

1.1. We give here a proof of theorem 004.
Assume that Tr(prZ(Fi 1

)) = Pv . bv , where bv is an integer. By A.Weil theorem
[12, chA, §21, thA] the absolute value of bv is less than 01' equal to
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Moreover, we may assume that Pv is unramified in k. From the relation Norm k /Q (v)
= Pv it follows that Pv splits completely in k. Hence we have

(1.1.1)

By the condition of the theorem k containes all the (ln)th roots of unity. On the
other hand it is weIl known that (Q;v ho r.!l ~ Z / (Pv - 1)Z. It follows from (1.1.1)
that zn I(Pv - 1) and hence

Pv = 1(mod zn). (1.1.2)

By the condition of the theorem all the Zn-torsion points of lek) are rational over
k. It follows that Pll Cal (k';k) is trivial mod zn and hence p~2IGal(k/k) is also trivial
mod zn. So

Pv . bv = d(2d - 1)(mod zn). (1.1.3)

It is clear that the relations (1.1.1)-(1.1.3) and the inequality zn> d( 2d - 1) imply
the relations

d(2d - l)(mod zn) = bv(mod zn),

bv = d(2d - 1),

Tr(p~2(Fil)) = Pv . bv = pv . d(2d - 1). (1.1.4)

This trace is the sum of d(2d - 1) complex numbers of absolute value Pv. Hence
the relation (1.1.4) implies that each number actually equals Pv and all eigenvalues
of p~2(Fil) are equal to Pv. In this situation

(1.1.5)

where
Xl: Gal(k/k) --+ Zr

is the cyclotomic character, defined by the natural action of Gal(k/k) on the 1
dimensional Tate module Zl(l) = TI(Il) attached to the group of Z-power of roots
of urnty in k.

1.2. Fix a k-polarization on J once for aU. We denote by

the induced nondegenerate alternating form on H~t(J !SI k, Ql). Since the Weil
pairing is known to be Gal(k/ k )-equivariant, one has

\lJ(O"x,O"y) = Xl] (0") . \lJ(x, y)

for all 0" E Gal(k/k); x, Y E H~t(J!SI k, Qt}. This relation implies I(er(pI) C Ker(Xl).
Hence we may consider Xl as a character of Im(pI). So

/(8) = Tr(8 A2 ) - d(2d - l)Tr(xi] (8))
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is an analytic funetion on the eompact i-adie Lie group Im(pz). In virtue of (1.1.5)
this function vanishes on the set {PI (Fi 1

) Iv is unramified plaee of k, Normk /Q(v) =
Pv is a prime number and Pv divides Tr(pi2(Fi 1

))}.

Assume that the zero loeus Zf of f is the group Im(p I). From G.Faltings the
orems (8] it foHows that PI and pi2 are semisimple representations. Sinee two
semisimple representations in charaeteristie 0 are isomorphie if ancl only if they
have the same traee, we have the relations pi2 = (X,I )EIld(2d-l) and

(1.2.1 )

On the other hand, by G.Faltings results [8]

1 -
EndIm(PI)Het(J 0 k, Q/) ~ End(J) 0 Q,.

By the weH known Tate theorems [22, th.3, th.4] this relation implies

(1.2.2)

It foHows from (1.2.1 )-(1.2.2) that the Q,-spaee H;t (J 0 k, Q,( 1)) is generated by
algebraic eohomology classes. Sinee rank(NS(J 0k C)) ~ h1,I(J 0k C), we have the
equality h2,O ( J 0k C) = 0 . Trus is possible only if J is an elliptic eurve.

In our situation dimkJ ~ 2. Hence the zero locus Zf of f is an analytic hy
persurface on the compact l-adic Lie group Im(pz) and it is stable by eonjugation.
Let p, be the Haar measure on Im(pl) such that the total mass of Im(pl) is 1. It
is weil known that P,(Zf) = 0 [15, ch.l, seet.2.2, exercise]. Hence by Chebotarev
density theorem the set {viv is unramified place of k, Normk/Q(v) = Pv is a prime
number and Pl(Fi1

) E Zf} is of density O. Hence {viv is unramified place of k,
Normk/Q(v) = Pv is a prime number and Pv divides Tr(pi 2(Fi 1

))} is of density O.
This proves the claim.

1.3. Corollary. Let J be a d-dimensional abelian variety over a number field k.
Assume that for some natural number n zn > d(2d - 1), each in -torsion point of

Jek) is rational over k and k contains all. the (In )th roots 0/ unity. I/ d~ 2 then

the set { v I v is unramified place 0/ k, Normk/Q(v) = Pv is a prime number and
pv does not divide the trace of linear operator in the 2nd homology 0/ Jv induced
by the Frobenius endomorphism 0/ abelian variety Jv ouer a prime field IFpv } is 0/
density 1.

§2. CVCLES ON SIMPLE ABELIAN VARIETY

OF DIMENSION 4p OVER A NUMBER FIELD

2.1. We give here the proof of theorem 0.7.
Suppose that End(J 0 k) = Z and p~ 17. Let N+ = {1,2, ...} be the set of all

positive natural numbers. First of all we introduee the set of exceptionai numbers

(
1 )2m-l

E (1) = {4
'
! ~ +2 281m+41-4m-3 4

'
(nl. + 1)21+1 II m E N+} =

x , 2 2i + 1~' , ,

={4,10,16,32,64):08,126,256,500,512,864,1024,1372,1716,2048, ...}. It is easy to
verify that for each prime number p the number 4p is not exceptional [20, lemma
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4.3J. Hence Lie Hg(JC) 0Q C = SP8p and the general Hodge conjecture holds for
Je x ... x Je, where Hg(Je) is the Hodge group of the complex abelian variety
Je = J ~k C [19, th.l.lJ.

We also recall the folowing classification result.
2.2. Theorem[17, th.2], [18, th.2.2], [19, th.4.1], [20, th.2.2]. Assume that 9 is a

simple Lie algebm of rank m ouer an algebraically closed field of characteristic zero,
Wl ,W2, ... ,Wm are fundamental weights, E = E(nl WI + ... +nmwm ) is an irreducible
9-module with the highest weight nlwl + ... + nmwm, where ni E N.

Let p be a prime number.
Suppose that deg E = p.
If E is an orthogonal representation, then the triple (type of 9, E, p) assumes the

/ollowing values:
(AI ,E((p-l)Wl),p)(p ~ 3);

(B(p-l)/2, E(Wl), p)(p ~ 5);

(G2, E(WI), 7).

(2.2.1 )

(2.2.2)

(2.2.3)

Moreover, the highest wei9ht of 9-module E is a mdical weight.
I/ E is a symplectic representation, then the tripIe (type 0/ 9, E, p) assumes the

following value:
(Al, E(Wl), 2).

1/ E =f=. E*, then the triple (type 0/ g, E,p) assumes the /0110wi1lg values:

(2.2.4)

(2.2.5)

Suppose that deg E = 2p.
If E is an orthogonal representation, then the tripie (type of g, E, p) assumes the

jollowing values:
(B2 , E(2w2 ), 5);

(B2 , E(2wd, 7);

(C3 ,E(W2),7);

(G2, E(W2), 7);

(F4 , E(W4), 13);

(Dp , E(Wl)' p)(p ~ 3).

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)

(2.2.10)

(2.2.11)

Moreover, in (2.2.6) - (2.2.10) the highest weight 0/ g-module E is a radical weight.
If E is a symplectic representation, then the tripie (type of 9, E,p) assumes the

following values:
(AI, E((2p - 1)Wl),p);

(C3 , E(W3), 7);

(Cp , E(Wl)' p).

(2.2.12)

(2.2.13)

(2.2.14)

1/ E =f=. E*, then the tripie (type 0/ 9, E, p) ass~mes the /ollowing values:

(A 2 , E(2wl), 3), (A2 , E(2w2 ), 3); (2.2.15)
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(Az,E(3w1 ), 5), (A z,E(3wz), 5);

(A3 , E(2w1 ), 5), (A 3 , E(2w3 ), 5);

(At, E(wz), 5), (A4 , E(W3), 5);

(Azp_l, E(Wl)' p), (AZp - 1 , E(wzp-d, p).

7

(2.2.16)

(2.2.17)

(2.2.18)

(2.2.19)

Suppose that deg E = 4p.
11 Eis an orthogonal representation, then the triple (type 0/ g, E, p) assumes the

/ollowing values:
(Az, E(WI +wz), 2); (2.2.20)

(A3 , E (2wz), 5) ; (2.2.21 )

(B3,E(W3), 2); (2.2.22)

(B4 , E(2wl)' 11); (2.2.23)

(Cs, E (Wz ), 11); (2.2.24)

(D4 ,E(wz), 7); (2.2.25)

(D4 , E(W3), 2); (2.2.26)

(D4 , E(W4), 2)j (2.2.27)

(F4 , E(wd, 13); (2.2.28)

(D zp , E(Wl), p). (2.2.29)

Moreover, in (2.2.20), (2.2.21), (2.2.23), (2.2.24), (2.2.25), (2.2.28) the highest
weight 0/ g-module E is a radical weight.

1/ E is a symplectic representation, then the tripIe (type 0/ 9, E,p) aSS'lLmes the
/ollowing values:

(A1 ,E((4p -l)Wl),p);

(As , E(W3), 5);

(Bz,E(3wz), 5);

(Czp ,E(Wl)'p).

1/ E =I=- E*, then the tripIe (type 0/ 9, E,p) assumes the /ollowing values:

(A3 , E(WI +wZ), 5), (A 3 , E(wz +W3), 5);

(A3 , E(3wl), 5), (A3 , E(3w3), 5);

(A6 , E(2wl), 7), (A6 , E(2w6 ), 7);

(A7 ,E(wz),7),(A7 ,E(W6),7);

(A4p _1, E(Wl), p), (A4p - 1 , E(W4p-d,p)·

This theorem follows from H.Weyl formula [3, ch.8J.

(2.2.30)

(2.2.31 )

(2.2.32)

(2.2.33)

(2.2.34)

(2.2.35)

(2.2.36)

(2.2.37)

(2.2.38)

(2.2.39)
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2.3. Let GVj be the algebraic envelope of Im(pI) cGL(Vi), where

By F .A.Bogomolov theorem [1] Lie Im(pt)=Lie(GVj) and GVj containes the group
Gm of homotheties. By G.Faltings theorems [8] G\Ij is reductive and

Endc v (Vi) = End(J) 0 QI.
I

Let g,=Lie Im(pl). We shall denote by g;8 the semisimple part of gl. By J.-P.Serre
theorem [6,th.3.10] the rank of GVj (resp.g, ) is independent of 1. In the case
under consideration we may assurne that G\Ij =S\Ij ·Gm , where SVj =[G\Ij, G\Ij] is
the commutator subgroup of G\Ij [6, sect.1.2.2b].

2.4. Assume that v is a non-Archimedean place of k at which J has a good
reduction. Let v be any extension of v to k and let Fu E Gal(k/ k) be the corre
sponding Frobenius element. It is well known that the characteristic polynomial
of PI(F;l) coincides with the characteristic polynomial of the Frobenius endomor
phism 1f'v of the reduction Jv of J at v. We denote by ß the set of all eigenvalues
of PI(Fi 1

) (without counting multiplicities). Let r v be a multiplicative subgroup
-x

of Q generated by ~.

It is weH known that Q[1f'v] = TI !{i, ](i are number fields. The n1ultiplicative
group Q[1f'v] x defines a Q-torus T1rv = rr RKi/Q(GmKJ, where RK;fQ are the Weil
restrietions of scalar functors. Let H v be the smallest algebraic subgroup of T1rv

defined aver Q, such that 1f'v E Hv(Q). As is well-known, H v is a group af multiplica
tive type. The connected component of the identity in H v is called the Frobenius
torus T v . It can be regarded as the Q-model of the connected component of 1 in
the Zariski closure of the set {PI(Fi1)n In E Z} in GVj [6, sect.3b].

2.5. As an easy consequence of the theorem 0.4 and [6, prop.3.6, 5.2.1, lemma
2.1, cor.3.8] we have the following result.

After replacing k by some finite extension we may assume that fOT" some set S
0/ density 1 in the set of all non·Archimedean places of k and Jor each v E S the
Jollowing conditions hold:

1) for a fixed integer n;::: 2 such that zn > (2dimkJ)2, the ln-torsion points 0/
J(f) are rational points ouer k and k containes all the (zn) th roots of unity;

2) Pv =char(k(v)) > (2dim k J )2;
3) Normk/Q(v) = pv;
4) the Frobenius troces Tr(pI(Fi 1

)) and Tr(p~2(F;1)) are not divisible by Pv;
5) r v is torsion-free, Gv/ is connected and PI(Fi 1

) E Tv(QI);
6) the Frobenius torus T v is a maximal torus 0/ GVj and

rank(rv) = dim(Tv ) = rank(Gvj).

2.6. It is weIl known that Vi ® Q, is an absolutely irreducible sYluplectiG g;8 0Q,
module.

Assume that the Lie algebra gi~ ® Q, is simple. From the relation dimkJ =
4p rt Ex(l) it follows that gj8 C9 QI is the Lie algebra of type C4p [18, sect.1.3-1.8].
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On the other hand, Lie Hg(Jc)0QI C sp(Vj 0 Qt}. By Piatetski-Shapiro -Deligne 
Borovoi theorem [14), [2] there exists a canonical embedding

Lie Im(pI) C Lie[MT(JcHQz)] = Q, x Lie[Hg(JcHQt}).

So there exists a canonical isomorphism of Lie algebras

Lie Im(pI) ~ Lie[MT(Jc)(Qz)].

This relation implies the equivalence of the usual Hodge conjecture for Je and the
Tate conjecture for J.

2.7. Now we mayassurne that the Lie algebra g;8 ® QI is not simple.
Let f : S --+ S\!I ~ Q, be the universal covering, where S = SI X S2 X ... X Sq is a

product of simple simply connected algebraic Q,-groups. An isogeny f extends to
an Isogeny

1 : Gm X S1 X ... X Sq --+ Gm . (S \!I 0 Qt) = GVI ® Q"

defined by the formula f((a, s)) = a· I(s) for a E Gm, S E SI X ... X Sq.
By (2.5.6) the Frobenius torus Tv is a maximal torus of Gv,. Hence

-1 - 0T = (I (Tv ® QI)) c Gm X SI X ... X Sq

is a maximal subtorus. Consider the canonical projections

pri : Gm X SI X X Sq --+ Si.

It is evident that T = pro(T) X pr} (T) X X prq(T).
On the other hand,

Vi 0 QI = W1 ® ... 0 Wq ,

where W 1 is an irreducible Gm X Sl-1nodule, W2 is an irreducible S2-module, ... ,Wq
is an irreducible Bq-module. Let

Pi : Bi --+ GL(Wd(i ~ 2)

are the corresponding representations. We have a commutative diagram

S S Pl@ ... @PQG ( )Gm X } X ... X q --+ L W 1 ® ... ® W q

tl

c

11

By (2.5.5) pt(Fi1
) E Tv(Qt}, hence there exists an element
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such that
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(PI ® ... ® pq)(Tu) = f( rv) = PI(F;I).

We see that each eigenvalue of PI(F;I) is of the form X~O\TO)· X~l)(TI)"'X;q)(Tq),
where X~m) E X(prm(T)) are some characters.

2.8. By (2.5.1) Im(p,)C {x EEnd T,(J ® k) I x E 1 + zn End T,( J 0 k)}. Hence
for any x EIm(p,) the Z-adic logarithm log x is defined.

Let p be the Haar measure on Im(pl) uormalized by the equality f.l(Im(p,)) = l.
It is weIl known that X = {x E Irn(PI) I log x is a regular element in Lie Im(pl)} is
open and everywhere dense in Im(pl)' Its boundary ax is a closed analytic subset.
So J.L( aX) = 0 [15, sect.2.2]. Moreover, the set X is invariant under conjugation
in Im(PI)' By Chebotarev theorem the density of {Vlpl(F;l) E X} is equal to
p(X) = 1 - J.L( aX) = 1 [15, sect.2.2, corollary 2]. Hence we may assume that
for v the conditions (2.5.1)-(2.5.6) hold and 10gpl(FiI ) is a regular element in Lie
Im(pl)'

On the other hand, each Wi is a symplectic or orthogonal Si-module. TheoreIu
2.2 and the inequality p ;::: 17 imply that the pair (type of gi ~ 0 Ql, Vi ®Q,) assumes
oue of the following values:

(C ( (1) (2»))
2 x D p , E wI + wI , (2.8.1)

(2.8.2)

(2.8.3)

(2.8.4)

(2.8.5)

(2.8.6)

(2.8.7)

(2.8.8)

(2.8.9)

(2.8.10)

(2.8.11)

where an index (i) shows that the corresponding fundamental weight relates to the
i-th factor.

2.9. Consider the case (C2 X D p , E(wP) + w~2»)). In virtue of (2.5.6) we may
assume that ~ = {..\a~~ßtllj = 1, ... ,p} , where A,al,a2,ßl, ... ,ßp are multi
plicatively independent ( in other words, these numbers generate the lnultiplicative

-x
subgroup of tQ of rank p +3).

2.10. Lemma. The· /ollowing s'ltbsets 0/ ~ .~ are Gal(QjQ)-invariant:

{,.\2}; {..\2a~la~1}j {..\2a~~}; {..\2ßflßt I
li # j};
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{A2ß;2}; {A2Q~l Q~lß;lßj1li f:. j};

{A2Q~lQ~1 ß;2}; {A2a~~ßtlßt1li f:. j};

{A2Q~~ßt2}.
1

M oreover, A2 = ±pv.
Proof. Let t] E ~ . ß. We may assume that

11

If 0 E ~, then T1J(o) = 1]0-1, hence

T>'2(0) E ~ ~ 0 E~; T>'2or(o) E ~ ~ 0 E {AQ1ßt1 I j = 1, ... ,p};

T>'2 0102 (0) E ß <=> 0 E {AQ1,2ßjl I j = 1, ... ,p}; T>'2ßr(O) E ~ <=> 0 E {AQ~~ßl};

T>.2orß?(o) E ~ <=> 0 E {AQ1ßl}; T>.2 oI02ß?(0) E ~ {:} 0 E {AQ1,2ß1};

T>'2ßIß2(O) E ~ {:} 0 E {AQt~ßI12}; T>'2oißIß2(0) E ~ <=> 0 E {AQ Ißl,2};

T>.2 01 02ßl ß2 (0) E ~ {:} 0 E {AQI ,2ßI,2}.

It is clear that

Card(T>'2ala2(~)n ~) = 4p; Card(T.\2ß?(~) n ~) = 4;

Card(T.\2oißr(~) n~) = 1; Card(T>'201a2ßr(~) n~) = 2;

Card(T>'2ßIß2(ß) n~) = 8; Card(T.\2orßIß2(~) n~) = 2;

Card(T.\20102ßIß2(~) n ~) = 4.

The Gal(Q/Q)-invariance of {A 2 }, {A2Q~la~1},{A2Q~~},{A 2 ßt1ß*lli -I j},
{A2Q~~ßt2}, {A2ßt2} U {A2Q~lQ~1 ßt1ßj1li -I j}, {~2o:~1o:~lß~2}U
{A2a~~ßtlßjllif:. j} follows from (0.3.1).
Since {A2Qt1Q~lßtlßtlli -I j} = {A2at1Q~1}. {A2ßtl ßjl li -I j}. {A- 2} and

each factor of this decomposition is Gal(Q/Q)-invariant, we get the Gal(Q/Q)
invariance of thc sets {A2atla~Iß;=Ißjlli -I j} and {A 2ßt2

}. The Gal(Q/Q)
invariance of another sets follows from the fact that each factor of the decomposi
tions {A2at1a~lß;=2}= {A2atla~1}. {A2ß;2}. {A- 2} ,{A2Q~~ß;=lßt1Ii -I j} =
{A2a~~}. {A2ß;lßt1]i -I j}. {A- 2} is Gal(Q/Q)-invariant.

The relation A2 = ±pv follows from the fact that A2 E Q is of absolute value Pv'
Lemma 2.10 is proved.

2.11. It is evident that the set of all eigenvalues of p~2(Fi1) is equal to ~ .~ 
{A2Q~~ßt2}.

By! theorem 0.4 we mayassume that Pv does not divide Tr(p~2(F;1)). The
symmetry implies that the multiplicity of 1] E {A2atla~l} as an eigenvalue of
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pt2(Fi 1
) is independent of the choice of 1]. This is valid for another Gal(Q/Q)

invariant subsets which are defined in the statement of lemma 2.10. We deduce
from this lemma that Tr(p~2(F;1)) is a surn of integers of the following types:

..\2, L..\2atlarl, L..\2at~, LA2ßi±lßt I
, LA2ßt2

, LA2atlarlßtlßtl,
i#;j i#;j

Hence Pv does not divide at least one of the sums above.
2.12. Assume that pv does not divide 2::: A2at1 a~l. Then for each place w of Q

lying over pv

W(L A2atla~1) = O.

It follows that there exists x w E {A2at1a~ I
} such that w (x w) = O. Hence

Since both summands in the last brackets are nonnegative in virtue of the relations
x w ßt2 E ~ . ~ , we have the equalities

So W(ßl) = 0 for all w Ipv. It follows that ßl is a root of 1 [23, sublemma 3.4.0] con
trary to the assumption that ..\, al, a2, ßl' ... ,ßp are multiplicatively independent.

Hence Pv divides 2:::..\2at1a~ 1
. From the relation A2 = ±Pv we dedlice that

2::: at1a~l is an integer.
By the similar arguments we prove that L:: at~ is an integer.

2.13. Assume that pv does not divide 2: i#; j A'2 ßt 1ßt1
. Then for each place W

of Q lying over pv

W(L A2ßt- Ißt1
) = O.

i#;j

It follows that there exists X w E {..\2ßt 1ßt l
} such that w(x w ) = O. Henee

Since both summands in the last brackets are nonnegative in virtue of the relations
xw at2 E ~ . ~ , we have the equalities

So w(ad = 0 for all wlPv. It follows that al is a root of 1 [23, sublemma 3.4.0] con
trary to the assumption that ..\, al, a2, ßI, ... , ßp are multiplicatively independent.

H d"d '"' \ 2ß±lß±1 d '"' ß±lß±I' .enee Pv lVI es LJi#;j A i j' an LJi#;j i j 18 an Integer.
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By the similar arguments we prove that 2: ß;2 is an integer.
2.14. Consider the decomposition

L )..,2o:t
l o:t1ßt-lßtl = (L ,\2o:~1 o:t l ) .(L ßt-lßjl).

ii:j i#-j •

13

We have proved that Pu divides the first factor of this decoluposition, and the second
factor is an integer. Hence Pu divides the product.

The decompositions

L )..,2o:~~ßtlßjl = (L )..,2o:~~) .(L ßtlßjl)
i=/-j i=/-j

show that pu divides each left side.
Hence Pu divides Tr(p~2(Fil)) contrary to our assumption. This excludes the

(C D E( (1) (2»))case 2 x p, W I + WI .

2.15. Since the structure of .6. does not distinguish the cases (C2 x Dp,E(wP) +
wi 2»)) and (Al x Al x Cp,E(wil) +wi2

) +wi3»)) = (D2 x Cp,E(wi 1
) +wi2»)), we

exclude the case (Al x Al X Cp, E(wi l
) +wi2

) +wi3»)) by the same procedure.

2.16. Consider the case (Al x D 2p , E(wP) +wi2»)). In virtue of (2.5.6) we may as
surne that .6. = {Aa~l ßf=l]i = 1, ... , 2p}, where A, al, ßI, ... ,ß2p are multiplicatively
independent. The proof of the foUowing result is similar to the proof of lemlna 2.10.

2.17. Lelnma. The Jollowing subsets 0/ .6. . .6. are Gal(Q/Q)-invariant:

Moreover, ,\2 = ±pu.
2.18. It is evident that thc set of aU eigenvalues of pt2(Fi l

) is equal to .6 . .6. 
{,\2a~2ßf=2}.

By theorem 0.4 we mayassume that Pu does not divide Tr(p~2(Fil)). It is
evident that this trace is a surn of integers of the foUowing types:

Hence Pu does not divide at least one of the sums above. By the arguments of
sections 2.12-2.14 we prove that

L a~2, L ßt-lßt1, L ßt-2, L af2ßt-1ßjl
i=/-j i=/-i

are integers. Hence Pu divides Tr(p~2(Fil)) contrary to our assumption. This

excludes the case (Al x D 2p , E(wP) +wi2»)).
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2.19. Consider the case (Al X DPl E(3wP) +W~2»)). In virtue of (2.5.6) we rnay as

surne that 6.. = {"\a~ll±3 ßIU li = 1, ""P}, where"\, 01, ß1l ... ,ßp are multiplicatively
independent.

2.20. Lemma. The /ollowing subsets 0/ 6 . 6.. are Gal(Q/Q)-invariant:

{,,\2}j {A2af2}; {,,\2a~4};{A2a~6};{A2ßt-1ßt1
1i i j}; {A2a~2ßt-1ßt1)i i j};

{,,\2 0 f4 ßt-1ßt1
1i i j}j {A2at6ßt-1ßt1

1i i j}; {A 2ßt-2};

{A 2a~2 ßt-2}; {A 2at4 ßt-2}j {A 2 af6 ßt-2}.

Moreover, A2 = ±pv.
Prooj. Let 7] E .6. . 6... We may assume that

{ \2 \2 2 \2 4 \2 6 \2ß2 \2 2ß2 \2 4ß2 \2 6ß2
1] E A ,A all A a 1, A all Al' A all' A a 1 l' A all'

A2ßIß2,A2aißIß2,A20tßIß2,A2a~ß1ß2}'

If 0 E 6.., then T71 (J) = 1]0- 1 , hence

T,\2(0) E 6.. {:} 0 E.6.j T,\2oi(J) E.6. {:} JE {Aat 1l3 ßt-1li = 1, ... ,p};

T,\2a4 (0) E 6 {:} 0 E {Aa~,3 ßt-1 1i = 1, ""P}
1

T,\20~(0) E .6. {:} 0 E {Aafßt-1Ii = 1, ... ,p}j

T,\2ß'f(0) E.6. {::} J E {Aa~ll±3ßl}; T).'lOiß'f(o) E.ö {:} J E {Aa~113ß1};

T,\:Jo1ßr(J) E 6.. {:} 0 E {Aa~,3ßl}; T,\20~ß'f(O) E.ö {:} 0 E {Aafßl};

T,\2ßIß:J(O) E.ö {::} 0 E {Aa~ll±3ßl12}j T,\:J oißlß2(O) E.ö {::} 0 E {Aa~ll3ßl12};

T,\2otßIß:J(O) E 6 {:} 0 E {Aa~,3ßlI2}; T,\:JO~ßIß2(J) E .ö {::} 0 E {Aarßl,2}'

I t is clear that

Card(T,\2 a 4(6) n.6.) = 4pj Card(T,\:Jo6(.6.) n 6) = 2p;
1 1

Card(T,\:Jß2(L\) n .6.) = 4j Card(T,\:J o :Jß2(L\) n 6) = 3;
1 1 1

Card(T,\204p:J(.6.) n.6.) = 2; Card(T,\:Jo6ß2(.6.) n.6.) = 1;
1 1 1 1

Card(T,\:JßIß:J(.6.) n.6.) = 8j Card(T,\2oißIß2(.6.) n.6.) = 6j

Card(T,\201ßIP:J(.6.) n .6.) = 4; Card(T,\2o~ßIß2(.6.) n .6.) = 2.

The Gal(Q/Q)-invariance of {A2}, {A 2at2}, {A2at4}, {A2at6
},

{A 2ß;2} U{A2a~4 ßt-1ßt1l i i j}, {,,\2a~2ß;2},
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{A2Q~4ß~2} U {A2a~6ß;=lßtl li =f. j}, {A2a~6ß~2},

{A2ß;=1ßtl li ~ j}, {t\2a~2ß~lßtl li ~ j}

follows from (0.3.1). Since

15

and each factor of this decomposition is Gal(QJQ)-invariant, we get the Gal(QJQ)
invariance of the sets {t\ 2at4 ß;=lßt1 li -f:. j} and {A2ß;=2 } . The decomposition
{t\2at6ß;lß;1Ii -f:. j} = {t\2a~6}. {t\2ß;lß;1Ii -f:. j}. {t\-2} gives the Gal(QJlQ)

invariance of the sets {t\ 2at6ßtlß;lli -f:. j}' and {,\2at4 ß;2}. This proves the
claim.

2.21. It is evident that the set of all eigenvalues of pt2 (F;1) is equal to ß· ß 
{,\2 at 6ß;=2}.

By theorem 0.4 we may asstune that Pu does not divide Tr(p~2(F;1)). It is
evident that this trace is a surn of integers of the following types:

Hence Pu does not divide at least one of the sums above. By the arguments of
section 2.12 we prove that

are integers. By the arguments of section 2.13 we prove that

are integers. The decomposition

L ,\2 at6ß;=lßjl = ,\2. (L at6
). (Lßt1ßjl)

i#i i#i

shows that Pu divides the left side. Hence Pu divides Tr(p~2(F;1)) contrary to our

assumption. This excludes the case (Al X Dp , E(3wi l )- +wi2
))).

2.22. Consider the cases (2.8.5)-(2.8.10). It is clear that dimQWq = p and
dimQ W1 ® ... ® Wq- l = 8.

2.23. Lemnla.ln' the notations 0/ section 2.7 assume that one 0/ the /ollowing
conditions hold:

1) 51 is a simple simply connected Lie group 0/ type AI, W 1= E(7wP));
2) SI is a simple simply connected Lie group 0/ type C4 , W l = E(wP));
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3) 51 X 52 X 53 is a semisimple simply connected Lie group 0/ type Al x Al X Al,
Wl 0 W2 0 W3 = E(wi l

) +wi 2
) +wi 3

)).

Then the highest weight 0/ Bq-module W q is not a radical weight.
2.24. Proof. It is evident that

~ = {Aatlli = 1, ... ,4}. {ßj I j = l, ... ,p},

where A, al, ... ,0'4 correspond to Gm X Bl X ... X Sq-l, and ßl, ... , ßp correspond to
Sq. We da not suppose that these numbers are multiplicatively independent. Let
q> = {Aatlli = 1, ... ,4}, W = {ßj I j = 1, ... ,p}.

Assume that the highest weight of Bq-module vVq is a radical weight. In this
case 0 is a weight of Lie( Bq )-module Wq [3, ch.8,§ 7, exercise 3]. Hence 1 E W anel
q> c r v' On the other hand, ßj = (Aalßj )/(ACq) E r v' Hence werv' We denote
by f.p (resp. f w) the multiplicative subgroup of f v generated by q. (l'esp. w). In
virtue of (2.5.5)-(2.5.6) f.p anel f q, are torsion-free abelian groups of positive rank.

It is cleal' that rank(r.p) :::; 1+rank X(prl(T) X ... xprq_l(T)), rank(fq,) :::;rank
X(prq(T) ), f v C f 4' • f w. Hence the relations

rank(fv) :::; rank(r4t • r IJI) :::; rank(f4t ) + rank(fq,) :::;

1 + rank X(pr l (T) x ... X prq_l (T)) + rank X(prq(T)) = rank X(T) =

rank X(Tv 0 Ql) = rank(fv)

imply the relations

rank(f4') = 1 +rank X(pr1(T) x ... X prq_ l (T)) =

Hence

rank Gm X Bl X ... X Sq-1 2:: 2,

rank(fq,) = rank X(prq(T)) = rankSq,

rank(fv) = rank(f4t • f q,) = rank(f4t) + rank(f IJI ).

feit n rq, = (1).

(2.24.1 )

(2.24.2)

(2.24.3)

Due to [6, sect. 5.2] for each , E ß we define ~ : ß --+ QX by the formula

T~(8) = ,28- 1
. It is evident that for each (J E Gal(Q/Q)

and hence for any constant c the set

{, E ß I Card(~(ß) n ß) = c} is Gal(Q/Q) - invariant.

Consider the case (2.23.1). In this situation we may assume that

(2.24.4)
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, E {Aa~l} <=> Card(~(~) n ~) ~ 7p.
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(2.24.5)

Indeed, we mayassurne that , E { Aalßi' Aa~ßi,Aarßi, AaIßi I i = 1, ... , p}. For
J E ~ we have ~(J) = ,2J-1. Hence the multiplicative independence of A, a1

(which follows from (2.24.1)) and (2.24.3) imply the relation

Tfo1ßi(J) = (Aa1ßi)2 . J-1 E ~ <=> J E {Aa~11±3,±5,7 . ßl· w} n~.

It is evident that

Since 1 E '11, we have the relation (ßl· \l1 = '11) => (ß; E \J!, ßf E q" ... , ß[ E '11 for all
natural r). Hence ßi is a root of unity, ßi = 1 because r w is torsion-free, 1 = Aal.
On the other hand,

and Card(Tforßi (~) n~) ::; 5p. It is cIear that for r ~ 3 Card(~orßi (~)n~) < 7p.

So the claim (2.24.5) is proved. In virtue of (2.24.4) the set {Aa~l} is Gal(QjQ)
invariant. Hence Aa) + Aa1

1 E Z. Moreover, Aal + Aa1
1 =I- 0: otherwise we wOllld

have Aal = (-1)Aa11 E r v and (-1) E r v contrary to the condition (2.5.5). On
the other hand, the absolute value of Aal + Aa11 is less than or equal to 2....;p;.
Hence for Pv >> 0 we get the relation Aal + Aal 1 =I- O(mod Pv). Then for each
place w of Q lying over Pv

W(L Aat1
) = O.

It follows that there exists X w E {Aa~)} such that w(x w ) = O. Hence

(2.24.6)

Since both summands in the last brackets are nonnegative in virtue of the relations
x w ßt1 E ~ , we have the equalities

So w(ßj) = 0 for all wlPv. It follows that Vj ßj is a root of 1 [23, sublemlna 3.4.0]
contrary to the relation (2.24.2).

Consider the case (2.23.2). In this situation we may assume that

cI> = {Aat 1 li = 1, ... ,4},

where A, 0'1, ... , a4 are multiplicatively independent. We claim that

(2.24.7)
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Indeed, we may assume that , = Aa1ßi, 0 = Aajßt, where a, b E {±1}. We
have T~(o) = ,28-1

. Hence the multiplicative independe~ceof A, a}, ... , a4 (which
follows from (2.24.1)) and (2.24.3) imply the relation

T~nlPj(o) = (>..a1ßi? . (AajßZ)-l = Aaiajaß:ß;b E ~ {::}

(Aaiaja E <I> and ß:ß;b E 'lJ) {::} (aj = a1 and ß?ß;b E 'lJ) {::}

(0 = Aa1ßZ and ßrß;b E 'lJ).

It is clear that

Card(T~ (~) n ~) ;::: p = Card( 'lJ) {::} ßl . 'lJ = 'lJ.

By the arguments above we know that ßl . 'lJ = 'lJ {::} ßi = 1. This proves the
claim (2.24.7). Moreover, <I> = {, E ~ I Card(T~(~) n~) ;::: p} is the Gal(QjQ)-

invariant set. By the condition (2.5.4) Tr(Pl(~l )) = I:PEIJr C>~=XE4> x)ß =I- O. Hence
2:XEep x =/:. O, and the absolute value of this integer is less than or equal to 8yP;;.
For Pv >> 0 we get the relation 2:xEep x =/:.0(mod Pv)' Then for each place W of Q
lying over Pv

W(L x) = o.
xEep

It follows that there exists X w E <I> such that w(x w ) = O. Hence we get the relation
(2.24.6) in the new situation. By the arguments above we know that this relation
implies the relation rank('lJ) = 0 contrary to the relation (2.24.2).

Consider the case (2.23.3). In this situation we may assume that

<I> - {Aa±la±la±l 1 i-I 2 3}- 123 -",

where A, a}, 0'2, a3 are multiplicatively independent. We claim that

, E <I> <=> Card(~(~) n ~) 2 p.

Indeecl, we may assume that

(2.24.8)

where a1,a2,a3,b E {±1}. We have ~(8) = ,28- 1 . Hence the multiplicative
independence of A, 0'1, 0'2, 0'3 (which follows from (2.24.1)) ancl (2.24.3) imply the
relation

.L-\... (\ 2-a} 2-a2 2-a3 E ;r.. cl ß2ß-b E .TI)
~ AO'l a 2 0'3 ~ an i k ~

{::} (a? = O'j for all j and ß?ß;b E 'lJ)

{::} (0 = Aal 02 a3ßt ancl ß: ß;b E 'lJ).
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Card(~(~)n ~) ? p = Card(w) {:} ß? . \J! = \J!.
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By the arguments above we know that ß? .w = w {:} ßi = 1. This proves the claim
(2.24.8). Moreover, q. = {, E ~ I Card(~(~)n~) ? p} is the Gal(Q/Q)-invariant
set. We obtain the contradiction by the same arguments as before. Lemma 2.23 is
proved.

Thus the cases (2.8.5)-(2.8.10) are excluded.
2.25. Consider the case

( ( (1) (2) ( ) (3))) ( (I) ( ) (2)Al X Al X Al, E wl +w1 + 2p - 1 w l = D 2 X Al, E w l + 2p - 1 w l )).

In virtue of (2.5.6) we mayassume that ~ = {Aa~~ß~1,±3"",±(2P-I)}, where
A, al , 0'2, ßI are multiplicatively independent. '

2.26. Lemma. For each natural number m (0 :s; m :s; 2p - 1) the Jollowing
subsets 0/ ~ .~ are Gal(Q/Q)-invariant:

{A2ß±2m}. {A2O'±la±lß±2m}. {A2Q'±2ß±2m}
I , 1 2 1 , 1,2 1 .

Moreover, A2 = ±pv.
Proof. Let 17 E ~ .~. We may assume that

If 0 E ~, then T l1 (o) = ryo-l, hence

T>'2ßrm(O) E ~ {:} J E {AQ'~~ßr Iris an add integer, Irl :s; 2p-1, 12m - r l :s; 2p-1},

Card(T,\2ß?m(ß) n ß) = 8p - 47n;

T>.2ot ßrm(J) E ~ {:} J E {Aalßr Iris an odd integer, Irl :s; 2p-1, 12m-rl :s; 2p-1},

Card(T,\2o~ß2m(ß)n ß) = 2p - 7n;
1 1

T>'2 01 o~ßfm (J) E ß <=? 0 E {Aal ,2ß[ I
r is an acid integer, Irl :s; 2p - 1, 12m - rl :s; 2p - 1},

Card(T'\~Ol02ßrm(ß) n ß) = 4p - 27n.

It is easy ta see that

17 E {A 2
} {:} Card(Tl1 (ß) n~) = 8p,

17 E {A 2ßt2
} <=> Card(Tl1(~) n ~) = 8p - 4.

In virtue of (0.3.1) {A 2
} and {A 2ßt2

} are Ga!(Q/Q)- invariant sets. The relation
A2 = ±pv follows from the fact that ,,\2 E Q is of absolute value PU' Moreaver,
{ß~2} is a Gal(Q/Q)-invariant set. Hence {ß~2m} is a Gal(Q/Q)-invariant set far
each natural ffi.
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On the other hand,
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Since {A2ß~2P} is a Gal(Q/Q)-invariant set, we see that {A20'tI0'~1} is also invari
ant under the action of Gal(Q/Q).

It is clear that

Since {A2ß~2P} and {A20'tI0'~1} are Gal(Q/Q)-invariant sets, we see that {A20't~}
I

is also Gal(Q/Q)-invariant. Lemma 2.26 is proved.
2.27. It is evident that the set of all eigenvalues of p~2(Fil) is equal to ~ .~ -

{
\ 2 ±2ß±(4P-2)}
A 0'1,2 1 .

By theorem 0.4 we lnay assume that Pu does not divide Tr(p~2(Fil)). It is
evident that this trace is a sum of integers of the following types:

A2(ß?m + ß12m ), (2:: A2atlarl )(ß;m + ß1
2m ) (1 ~ m ::; 2p - 1),

(2:: A2a~~)(ß?m + ß12m ) (1 ~ m ~ 2p - 2).

Hence Pu does not divide at least one of the sums above. By the arguments of
sections 2.12-2.13 we prove that

are integers. Hence Pu divides Tr(pf2(Fi l
)) contrary to our assumption. This

excludes the case (Al x Al X Al, E(w~I) + W~2) + (2p - 1)w~3))).

2.28. Now we may assume that EndO(J 0 k) is a quaternion division algebra
over Q. This case is completely investigated in [20, th.1.16, th.1.17). Theorem 0.7
is proved.

§3. ON THE l-ADIC REPRESENTATION ASSOCIATED TO AN ABELIAN

VARIETY OF THE 4TH TYPE BY ALBERT'S CLASSIFICATION

3.1. We give here a proof of theorem 0.9. After replacing k by some finite
extension we may assume that for J the conditions (2.5.1)-(2.5.6) hold. In this case
GVj =SVj ·Gm , where SVj is the connected component of the identity of Gv,nSL(Vl).
By G.Faltings results [8]

Endsv, (Vi) = Endcv, (Vi) ~ End(J) <3> Ql.

By the weH known Tate theorems [22, th.3, th.4] this relation" implies

(3.1.1)

(3.1.2)
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Schur's lemma and (3.1.1)-(3.1.2) give the decomposition Vi 0 Ql = U EB U*, where
U and U* are 4p-dimensional irreducible nonisomorphie dual Lie 5\'1 0 Ql-moduli,

dilIlQ Cent(Lie(S \'I )) ::; 1. (3.1.3)

3.2. Theorem 2.2 and the inequality p 2:: 17 imply that the pair (type of giS 0
Ql, U) assumes one of the following values:

(A4P- I ' E(W1,4p-1))j

(D2p ,E(WI ))j

(C2P1 E(WI));

(AI, E((4p - l)wd);

( ( (1) (2»))Al x Cp, E wl +wl j

( (
(1) (2»))Al x D p , E wl +wl j

( (
(1) (2) )Al X Al, E w l + (2p - 1)wI );

( (1) (2) ( ) (3»))(Al x Al X Al, E w l + w l + P - 1 w1 ;

(
(1) (2) (3»))(Al x Al X B(p-I)/2, E w l + w l + w l j

(1) ( ) (2»))(Al x A1 ,E(3wI + p - 1 w l ;

( ( (1) (2»))Al x B(p-I)/2, E 3wI +wl j

(02 X AI,E(wP) + (p -1)w~2»));

( (1) (2»))(C2 xB(p-I)/2,EwI +WI j

(
(1) (2) ))(Al X A2p- I , E w l + Wlt2p-1 ;

(
(1) (2) (3»))(Al X Al X Ap- 1, E W I +WI +WI,p-I ;

( (
(1) (2)

C2 x Ap-I,E WI +W1,p-1))j

( ( (1) (2»))Al X Ap - I , E 3wI +W 1,p-1 ;

(1) ( (2) )(A3 X A I ,E(WI3 + p-1)w) ) j
I

( (
(1) (2)

A3 X B(p-I)/2, E W1,3 + W1 ))j

( ( (I) (2»))A3 X Ap_I, E WI ,3 +W1,p-1 .

(3.2.1)

(3.2.2)

(3.2.3)

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

(3.2.15)

(3.2.16)

(3.2.17)

(3.2.18)

(3.2.19)

(3.2.20)

3.3. Consider the case (3.2.1). We see that giS ® Ql is the Lie algebra of
type Atp-l and Lie Hg(Jc)0Ql C gl(U). By Piatetski-Shapiro -Deligne - Borovoi
theorem [14], [2] there exists a canonical embedding .

Lie Im(pI) C Lie[MT(Jc)(Qt)] = Ql x Lie[Hg(Jc)(QI)].
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So there exists a eanonieal isomorphism of semisimple parts

(3.3.1)

Moreover, if n(T #- 2p then n(T #- n r and dirnQ Cent( GVj) 2:: 2 [5, seet.3.1, step 3].
Hence the isomorphism (3.3.1) extends to the isomorphism

Lie Im(pl) ~ Lie[MT(Jc)(Ql )].

So the Mumford - Tate conjecture holds for J, diIllQ Cent(Svl)
Cent[Hg(Jc)(QI)]. Hence

diIllQ H;;(J 0 k, Ql(r))Gal(k/k) ::; l.

[19, th.l.1]. It follows that the Ql-space H;[(J 0 k, Ql(r))Gal(k/k) is spanned by the
eohomology classes of intersections of divisors.

3.4. We want to exclude all cases (3.2.2)-(3.2.19) by the following procedure.
First of all we note that in eases (3.2.2)-(3.2.13) there exists an isomorphism of

gi~ 0 Q,-moduli U ~ U*. Hence the relation (3.1.3) implies the relations

U = E(w)(X), U* = E(w)( -X), (3.4.1)

where w is the highest weight of giS 0 Q,-module U and X#-O is the highest weight
of Cent(Lie(SVj 0 QI))-module U.

3.5. Consider the cases (3.2.2)-(3.2.3). It follows from (3.4.1) that

~ = {Aa~lßtlli = 1, ... ,2p},

where A, al, ßl, ... , ß2p are multiplicatively independent. Hence the structure of ~
in these eases coineides with the strueture of ~ in the case (2.8.3). This excludes
the eases (3.2.2)-(3.2.3).

3.6. Consider the case (3.2.4). In virtue of (3.4.1) we mayassume that ~ =
{Aa~lßtl

,±3,... ,±(4P-l)}, where A, al, ßl are multiplicatively independent.
3.7. Lemma. Por each natuml number m (0 ::; m ::; 4p-l) the jollowing subsets

0/ ~ .~ are Gal(Q/Q)-invariant:

{A2ßt2m }; {A2a~2ßt2m}.

Moreover, A2 = ±pv.
Prao/. Let 1} E ~ .~. We may assume that

If J E ß, then Tt] (J) = ryJ-I, hence

TA2ß~m(J) E ~ {:} J E {Aat1ßr I ris an odd integer, Irl ::; 4p-l, 12m-rl ::; 4p-l},

Card(T,\2ß?rn(~)n~) = 8p - 2m;
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T.\2 a ?ßrfn (J) E ~ <=} 0 E {A0:1ßr , ris an odd integer, Irl ~ 4p-1, 12m-rl ~ 4p-1},

Card(T.\2a2ß2fn(~)n ~) = 4p - m.
1 1

It is easy to see that

1] E {A 2
} {::} Card(Tl1(~) n~) = 8p,

7] E {A 2ßt2} <=} Card(Tl1(~) n~) = 8p - 2.

In virtue of (0.3.1) {A2} and {A2ß~2} are Gal(Q/Q)-invariant sets. The relation
A2 = ±pv follows from the fact that A2 E Q is of absolute value Pv. Moreover,
{ß~2} is a Gal(Q/Q)-invariant set. Hence {ßt2m } is a Gal(Q/Q)-invariant set for
each natural m.

On the other hand,

Since {A2ß~4P} is a Gal(Q/Q)-invaxiant set, we see that {A20:t2} is also Gal(Q/Q)
invariant. Hence {A 2 0:t2 ßt2m} is a Gal(Q/Q)-invariant set. Lemma 3.7 is proved.

3.8. It is evident that the set of all eigenvalues of p~2(Fil) is equal to ~ . ~ 
{A 20:t2ßt(8P-2)}.

By theorem 0.4 we may assume that Pv does not clivicle Tr(pt 2 (Fi l
)). It is

evident that this trace is a sum of integers of the following types:

Hence Pv does not divide at least one of the sums above. By the arguments of
sections 2.12-2.13 we prove that

are integers. Hence Pu divides Tr(pt 2 (Fi l
)) contrary to our assumption. Trus

excludes the case (3.2.4).
3.9. Consider the cases (3.2.5), (3.2.6). In virtue of (3.4.1) we 1nay assurne that

~ = {Ao:t10:~1 ßt=1 li = 1, ... , p}, where A, 0:], 0:2, ß], ... , ßp are multiplicatively in
dependent. Let ,1 = 0:10:2, 12 = a~la2' It is evident that ~ = {Ar~~ßt=l li =
1, ... , p}, where A, /1, 12, ßl, ... , ßp are multiplicatively independent. Hence the struc
ture of ~ is identical to the structure of ~ in the case (2.8.1). This excludes the
eases (3.2.5),(3.2.6).

3.10. Consider the case (3.2.7). In virtue of (3.4.1) we may assume that ~ =
{Aatl o:~lßtl

,±3, ... ,±(2P-l)}, where A, 0:1,0:2, ßl are multiplicatively independent.

L t -1 It . 'cl t th t A {\- ±lß±1,±3,... ,±(2P-l)} he rl = 0:10:2, r2 = 0: 1 0:2· 18 eVl en a U = AI12 1 ,w ere
A, r], r2, ßl are multiplicatively independent. Henee we' may exclude this ease by
the arguments of sections 2.26-2.27.
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3.11. Consider the cases (3.2.8),(3.2.9). In this situation we may assume that
cI> = {"\at\l'~l O';l}, where "\, cq, 0'2,0'3 are multiplicatively independent, \IJ =
{ßj I j = 1, ... ,p}. We may exclude the cases (3.2.8)-(3.2.9) by the arguments of
section 2.24.

3.12. Consider the cases (3.2.10)-(3.2.11). In virtue of (3.4.1) we mayassurne
that 6. = {,,\0:~la~11±3}. {ß1, ... ,ßp}, where "\,0:1,0'2 are multiplicatively indepen
dent, 1 E {ßl, ... ,ßp}. Let cI> = {,,\o:tlO'~11±3}, \IJ = {ßl, ... ,ßp}. \Ve know that
1 E \IJ. Hence cI> C r v, \IJ C r v . In the notations of section 2.24 we have: r ~ and
r'l' are torsion-free abelian groups of positive rank,

We claim that

r~nr'l'=(I). (3.12.1)

(3.12.2)

Indeed, we may assume that, E {"\ala2ßi,"\alo:~ßi li = 1, ... ,p}. For 0 E 6.
we have ~(o) = ,20-1. Hence the rnultiplicative independence of "\, a!, 0'2 and
(3.12.1) irnply the relation

'I1nln2ßi(0) = ("\alO'2ßd2 . 0-1
E 6. {=} 0 E {"\O'lat l13 . ß?' w} n 6..

It is evident that

From the arguments of section 2.24 it follows that the relation ß; .w= W implies
ßi = 1. Hence I = "\al a2. On the other hand,

and Card(7101n~ßj(6.)n6.) ::; p. So the claim (3.12.2) is proved. In virtue of (2.24.4)

the set {"\a~lo:~l} is Gal(QjQ)-invariant. Hence I: ,,\O'tla;l E Z. Moreover,
I: "\at! a~l =I- 0: otherwise we would have

and heuce 0'1 = _a~l or 0:2 = -0'2
1

; assume, for example, that al = -0'1""1; then

contrary to the condition (2.5.5).
On the other hand, the absolute value of I: "\at 1 O'~l is less than or equal to

4$. Hence for Pv » 0 we get the relation I: "\a~latl =1= O(nl0d Pu)' Then for
each place W of Q lying over Pv
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It follows that there exists Xw E {.-\at1a;1} such that w(x w ) = O. Hence we obtain
the relation (2.24.6) in the new situation. It follows that Vj ßj is a root of 1 contrary
to the relation rank(rw) 2: 1. Thus the cases (3.2.10)-(3.2.11) are excluded.

3.13. Consider the cases (3.2.12)-(3.2.13). In virtue of (3.4.1) we lnay assume
that ~ = {.-\at l a~~} . {ß1 , ... , ßp}, where .-\,0'1, 0'2, 0'3 are multiplicatively indepen-

dent, 1 E {ßl, ... , ßp}. Let <P = {.-\at IO't1}, 'lJ = {ßl, ... , ßp}. In the notations of
section 2.24 we have: r ep and r q, are torsion-free abelian groups of positive rank,

r4> n fq, = (1). (3.13.1)

We claim that the relation (2.24.8) is true in this new situation. Indeed, we lnay
assume that I E {.-\ala2ßi li = 1, ... ,p}. For 8 E ~ we have ~(8) = ,28-1. Hence
the multiplicative independence of .-\, 0'1, 0'2 ,0'3 and (3.13.1) imply the relation

It is easy to see that

Hence the claim (2.24.8) is proved. Thus we may exclude the cases (3.2.12)-(3.2.13)
by the arguments of section 2.24.

3.14. Consider the case (3.2.14). We may assume that U = E(wP) +wi 2))(x),
U* = E(wP) + W~~)_l)( -X), where X is the highest weight of Cent(Lie(SVi 0 Q,))
module U. After replacing p by 2p we may use the arguments of [19, sect.4.20-4.26]
in order to exclude this variant.

3.15. Consider the cases (3.2.15)-(3.2.16).
Assume, for example, that X =1= O. In this situation

{.-\O'l1ß~~}·{811, ...,8;~1,8182 ...8p-1)}'

where ).,,0'1, ßl' ß2, 81, ... , 8p- l are multiplicatively independent. The next lemma
follows from (0.3.1).

3.16. Lemlua. The following subsets of .6.6. are Gal(Q/Q))-invariant:

{).,2}; {.-\2ßt1ßi l }; {.-\2ß~~};

{.-\28i 8jl I i =1= j} U {).,2 (81 ...8;' ..8p_d±1 }u

{.-\2(ai8i8j )±1 I i -I j} U{.-\2(ai(81 ...8i' 8p_d- I )±1}j

{.-\2ßt1ßi18i 8jl li =1= j} U{.-\2ßtlßil(81 8~ 8p_d±1}U

{.-\2ßtlßt I (ai8i8j)±1 li f:. j} U {.-\2ßtlßtl(ai(8I 8i' .. ·Jp_d-l)±1}j

{.-\2(ai8;)±1} U{).,2(ai(81...8p_I)-2)±1};
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{,,\2ß~ioiojl li 1= j} U {..\2ß~i(Ol ... O; Op_l)±1}U

{..\2ß~~(aioiOj)±1 li 1= j} U {..\2ß~~(ai(Ol Ot ...op_d-l)±1};

{,,\2 ßt1ß;l (o:~O;)±l }U {..\2 ßt1ßt1(o:i (Ol ...Op-l )-2)±1};

{,,\2ß~~(o:io;)±1} U {..\2ß~i(o:i(Ol ...Op_l)-2)±1},

where ot means that Oi is omited. Moreover ..\2 = ±pv.
Indeed, it is easy to see that

Card(T).:;l(~)n.ö) = 8p;

Card(T).2ßrl ß~l (6) n ~) = 4p;

Card(T,.\2ß±:;l(~) n 6) = 2p;1, :;l

Card(T.\2iS.iS7"1 (~) n 6) = Card(T,.\:;l(iS1 ... iS; ... iSp_1)±1 (6) n ~) =
J

Card(T.\2(n~iS.iSj )±l (6) n 6) = Card(T.\:;l(n~(iSl ... iSf ... iSp_d-1 )±1 (6) n 6) = 8;

Card(T,.\2ßr l ß;liS i iSj l (6) n ~) = Card(T,.\2ßr lß~l(iSl ... iSt ... iSp_d±l (~) n 6) =

Card(T,.\2ßr lß:1(nrojC5j )±l (6)n6) = Card(T.\2ßr l ß;H(n~(ol ...of ...op_d-1 )±l (6)n6) =

4 = Card(T.\2(n~iSt)±1 (6) n 6) = Card(T,.\2(nr(Ol Op_d-2)±1 (~) n 6);

Card(T,.\2ß~;OiiSjl(6) n 6) = Card(T.\2ß~;(iSl ...0t Op_d±1 (6) n 6) =

Card(T,.\2ß~~(n~iS;iSj)±1(6) n 6) = Card(T,.\2ß~~(ni(iSl ... iSf ...iSp_d-l)±1(6) n 6) =

2 = Card(T).2ßr lßi1(n?ot)±1 (6) n6) = Card(T).2ßr lßil(n~(iSl ... iSp_d-2)±1 (6) n 6);

Card(T.\2ß~~(n~iSt)±1(6) n 6) = Card(T).2ß~~(ni(Ol ...Op_d-2)±1 (6) n 6) = 1.

Then we may use some decompositions which are similar to the decompositions of
section 2.10.

3.17. It is evident that the set of all eigenvalues of pt2 (F;1) is equal "ta 6 . 6 
{,,\2ßti(aio;)±1} - {..\2ßti(ai(ol ...op-d-2)±1}.

By I theorem 0.4 we m~y assume that Pv does not divide Tr(pt2 ( Fi 1
) ). The

symmetry implies that the multiplicity of 1] E {,,\2 ßt1ß~l} as an eigenvalue of
pt2(Fi 1

) is independent of the choice of "1. This is valid for another Gal(Q/Q)
invariant subsets which are defined in the statement of lemma 3.16. We deduce
from this lemlna that Tr(pt 2(Fi 1

)) is a surn of integers of the following types:

Hence Pv does not divide at least one of the sums above.
Assume that Pv does not divide ~..\2ßt1ß;l. Then for each place W of Q lying

over Pv there exists x w E {..\2 ßt1ß~l} such that w (x w) = O. Hence
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Since both summands in the last brackets are nonnegative in virtue of the relations
Xw(010;-1)±1 E 6..6. 1 we have the equalities

So W ( 01 8;-1) = 0 for all w Ipv . It follows that 81821 is a root of 1 [23 , sublemnla
3.4.0] contrary to the assumption that 81 ,82 are multiplicatively independent.

Hence Pv divides ~,.\2ßt1ßi:1
. From the relation ,.\2 = ±pv we deduce that

~ßt1ßi:1 is an integer.
By the similar arguments we prove that ~ ßt~ is an integer.
Using the relation '

W(X w) = ~{w(xwßD +W(x wß;2)}

for X w E {,.\2SiSj1 1 i # j} U {..\2(81...8;' ..8p_1)±1} U {..\2(aioiOj)±1 I i -I j} U
{,.\2 (ai (81" .8t ...8p _t}-1 )±1} we deduce that

L 8i8j 1+L (81" .S;' ..8p_d±1 +L (ai Oi8j )±1 +L (ai (81...8; ...8p-d -1 )±1
i~j i~j

is an integer. By the similar arguments we show that

is an integer. Hence L, ßt1ßt1 (aio; )±1 +~ ßt1ßt1(ai (81...8p_d-2)±1 is an inte
ger. Thus Pv divides Tr(pr2 (Fi1

)) contrary to our assurnptions. We may exclude
the case X = 0 by the same arguments.

3.18. Consider the case (3.2.17). Assume, for example, that X # O. In this
situation

6. = {;\a1ß~1,±3}. {SI, ... ,8p- h (0182 8p_t}-1}U

{;\a}l ßt1,±3} . {8l 1
, ••. , 8;21l01S2 8p-l},

where A, a1, ßh 01, "'l Sp-l are multiplicatively independent. The next lemma fol
lows from (0.3.1).

3.19. Lemma. The jollowing subsets 0/ 6..6. are Gal(Q/Q))-invariant:

{ ;\2} j {;\2 ßt2} j j {A2 ßt4} j {A 2 ßt6
} ;

{A20iOjl I i -I j} U {A2(81...0;' ..Sp_d±1}U

{;\2(ai oi8j)±1 li # j} U {;\2(ai(81 ot···op_d-1)±1};

{;\2ßt2oiojl I i -I j} U {;\2ßt2(81 S;' ..Op_1)±1}U

{;\2ßt2 (ai8ioj )±1 li -Ij}U {;\2ßt2(ai(81...8t···8p_t}-1)±1}j

{A 2ßt48iSj1 I i # j} U {;\2 ßt4(Ol ...8;' ..8p_d±1}U
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{;\2ßt4
( a~OiOj )±1 I i i= j} U {;\Zßt4

( a~ (01'''0~ ...Op_1)-1 )±1};

{;\2ßt60iOj1 li i=j}U {;\2ßt6(01 ...0f, ..Op_l)±1}U

{;\Zßt6(a~OiOj)±1 li i= j} U {;\2ßt6(a~(01".0~ ...op_d-1)±1};

{AZ(aio;)±l} U {AZ(ai(Ol ...op_d-Z)±l};

{;\2ßtZ(aio;)±1} U {;\ZßtZ(ai(Ol op_d-Z)±l}j

{A2ßt4 (aIo;)±1} U {;\Zßt4 (aI(01 Op_l)-Z)±1};

{A2ßt6(aio;)±1} U {;\Zßt6(ai(01 op_d-Z)±1};

where ot means that Oi is omited. Moreover A2 = ±pv.
3.20. It is evident that the set of all eigenvalues of pt2(Fi l

) is equal to .6.·60 
{A Zßt6 (ai0;) ±l} - {A2ßt6 (ai (01" .Op_d-2 )±1 }. Hence we may exclude the case
(3.2.17) by the procedure of section 3.17.

3.21. Consider the cases (3.2.18)-(3.2.19).
Assurne, for example, that X i= O. In this situation

where /\, al, O'z, a3, a4 are multiplicatively independent, 1 E {ß1,'''' ßp}. Let <P =
Aal {O'z, a3, a4, (a2a3a4)-1} U Aa11{a21

, Q3 l , 0:41
, O:z 0:3 0:4 }, W = {ßll ... , ßp}. In

the notations of section 2.24 we have: r.p and r'lr are torsion-free abelian groups
of positive rank, r4> n rqt = (1). We claim that

f E <P ~ Ca.rd(~(.6.) n .6.) ~ p. (3.21.1)

Indeed, we may assume that I E {Aal Ci.2ßi, ACi.l (Ci.z 0:3 Ci.4) -1 ßi I i = 1, ... , p}. Hence
the multiplicative independence of A, 0:1, . ",0:4 and the relation r 4> nrqt = (1) imply
the relation

Tfo1 02ßi (0) = (Aal D:2ßi)2 . 0-1 E .6. ~

J E {AO:IQ2ß; . w} n 6o.

It is clear that

and

Hence the claim (3.21.1) is proved. We see that the relation (2.24.7) holds in this
new situation. Hence we may exclude the cases (3.2.18)-(3.2.19) by the arguluents
of section 2.24.

3.22. Finally we consider the case (3.2.20). Assume, for example, that X #- O. In
this situation
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AO'~l . {ß-;-l, ß21, ß3"l ,ß1ß2ß3} . {0-;-1 , ... , 0;~1' 0102 ...Op-1},

where 'x, a1, ß1, ß2, ß3, Öl, ... ,Öp-1 are multiplicatively independent. The next result
follows from (0.3.1).

3.23. Lemma. The Jollowing subsets 0/ ~. ~ are Gal(Q/Q) )-inuariant:

{,X2}; {,X2ßkß, 1 I k f; I} U {A2(ß1ß~ß3)±1};

{,x2ÖiÖjl I i f; j} U {,x2(Öl" .0;' ..Öp_I)±l};

{,X2(ßkßr)±1(O'ioiOj)±1Ik f; l,i f;j}U{,X2(ßkßr)±1(ai(01 ...0; ...OP_1)-1)±1Ik f; l};

{,x2ßkßr-
l OiOjl I k f; 1, i f; j} U {,x2ßkßr-

1(01.' .0;' ..Öp-1 )±1 I k f:. l};

{,x2(ßl ßZß3 )±1 OiOj1 I i f:. j} U {,x2(ßl ß~ß3 )±1 (Öl' ..or ...Op-1 )±l }j

{,.\2(aißZÖiÖj)±1 li f; j} U {,.\2(aiß~(01 ...Ot ...Op_I)-1 )±l}U

{,X2(ßkßr)±1(aiör)±1 Ik f:.l} U {,.\2(ßkß,)±1(ai(Öl." ÖP_1)-2)±1 Ik f:.1}U

{,X2(ai(ßIß2ß3)-2 ÖiÖj )±1 li f:. j} U {,X2(ai(ßIß2ß3)-2(Öl ...0; ...Op_l)-1 )±1};

{,X2(aiß~o"?)±1} U {,X2(aißZ(01 ...OP_l)-2)±1}U

{,.\2(ai (ßl ß2ß3) -2 ör )±l } U {A2(ai (ß1 ß2ßa) -2 (Öl ...Öp-l) -2 )±l };

where Jt means that Oi is omited. Moreouer,X2 = ±pv.
Indeed, it is easy to see that

Card(T,.\2(~)n ~) = 8p;

Card(T,\2ßkßj-1 (~) n ~) = Card(T,\2(ßIß~ß3)±1 (~) n ~) = 2p;

CaId(T,\20iOjl (~) n ~) = Card(T,\2(Ol ...ot ...op_d±1 (6.) n ~) = 8;

Card(T,\2(ßkßd±1(O!aiOj)±1(~) n~) =

Card(T,\2(ßkßd±1(O!(ch ...ot ...OP_l)-1)±t(6.) n~) = 4;

Card(T,\2ßkß1- 16i ojl (~) n ~) = Card(T,.\2(ßIß~ß3)±lo;ajl (~) n ~) =

Card(T,.\2ßkß
j
- 1(al ...of ...ap_l )±l (~) n~) = Card(T,.\2(ßIß~ß3)±1(al ...Ot- ..Op_l )±l (~) n~)

= Card(T,\2(otß,ai Oj )±l (ß) n ß) = Card(T,\2(orß'(Ol ...at ...op_d-1 )±l (~) n ~) =

Card(T,\2(ßkßI)±1(O?af)±1 (ß) n ~) = Card(T,\2(ßkßd±1(O!(Ol ...OP_l)-2)±1 (~) n ~) =

Card(T,\2(o?(ßIß2ß3)-2aiOj)±1 (~) n ~) =

Card(T,\2(oi(ßIß2ß3)-2(Ol ...ot ...op_d-1)±l (~) n ~) = 2;

Card(T,\2(orß~on±1 (~) n ~) =

Card(T,\2(O?ß;(al ...Op_d-2)±1 (~) n~) =
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Card(T,\2(O~(ßIß2ß3)-2öt)±1(.6) n.6) =

Card(T'\~(o~(ßIß2ß3)-2(Öl"'Öp_ d-2)± 1 (.6.) n .6.) = 1.

3.24. It is evident that the set of all eigenvalues of p~2(F;1) is equal to

.6. . .6. - {,\2(aißzo;)±1} - {,\2(aißZ(ol ...0p_d-2)±1}

{,\2(ai(ß1ß2ß3)-2 o;)±1} - {,\2(ai(ß1ß2ß3)-2(Ol ...0p_1)-2)±1}.

On the other hand, the elements of the Gal(QjQ))-invariant set

have the very "mixed" multiplicative structure. So we can't use here the usual
technique of sections 2.12-2.13, 3.17.

3.25. Assulne that J has many ordinary reductions. In this situation we may
choose v such that the conditions (2.5.1 )-(2.5.6) and an additional condition

(3.25.1 )

hold, where w is an arbitrary place of Q lying over Pv. It follows from (0.5.2).
Suppose that

W(,\2 ßIß:;l) = 0

w(p~)

for some place wlPv' Then for each a E Gal(QjQ)

(aw)(a(,\2ß1ß;1)) _ 0

(aw )(p~ ) -,

hence from the relation

obtained above and from the transitivity of the natural action of Gal(QjQ) on
{ wlw is a place of Q over Pv } it follows that 'v'wlPv 3x w E {,\2ßkßt-

l I k #
l} U {,\2(ßIßZß3)±1} such that w(x w ) = O.

So, 'v'w I Pv
1

0= w(x w) = 2"{W(XWOl0;1) + w(xwo1102)}'

Since both summands in the last brackets are nonnegative in virtue of the relations
Xw(010;1)±1 E.6.·.6., we have the equalities

So w(010;1) = 0 for all wlPv. It follows that 010;1 is a root of 1 [23, sublemma
3.4.0] contrary to the assumption that 01,02 are multiplicatively independent.
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W(J\2ßIß:;I) = 1
w(p~)

for some place w. Let p be a complex conjugation defined by some fixed embedding
Q c C. It is wen known that

[18,(3.16.2)]. So in our situation we have the impossible relation

(pW)(J\ 2ßIß:;I) -0
(pw)(p~) -.

Hence
W(J\2(ßIß:;I )±I) 1

w(p~) 2

for all places wlPv. It follows that ßIß:;I is a root of 1 [23, subleIuula 3.4.0] contrary
to the assumption that ßI, ß2 are multiplicatively independent. So giS ® QI is not
the Lie algebra of type A 3 x A p - I . Theorem 0.9 is proved.
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