ON FROBENIUS TRACES

S.G. Tankeev

Vladimir State Technical University ul. Gorkogo, 87
600029 Vladimir

RUSSIA

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY

ON FROBENIUS TRACES*

S.G.Tankeev

Abstract

In this paper we discuss one diophantine property of the Frobenius traces associated to an abelian variety over a number field k and give its application to the proof of the Mumford - Tate conjecture for $4 p$-dimensional abelian variety J over k, where p is a prime number, $p \geq 17, \operatorname{Cent}(\operatorname{End}(J \otimes \bar{k}))=\mathbb{Z}$ or (under some weak assumptions) $\operatorname{End}^{0}(J \otimes \bar{k})$ is an imaginary quadratic extension of \mathbb{Q}.

§0. Introduction

0.1 . Let J be an abelian variety over a number field $k \subset \mathbb{C},[k: \mathbb{Q}]<\infty$. Suppose that l is a prime number,

$$
\rho_{l}: \operatorname{Gal}(\bar{k} / k) \rightarrow \mathrm{GL}\left(H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right)\right)
$$

is the natural l-adic representation.
It is well known that ρ_{l} is unramified outside a finite set T of non-Archimedean places of k. We denote by $F_{\bar{v}} \in \operatorname{Gal}(\bar{k} / k)$ the Frobenius element associated with a place \bar{v} of $\overline{\mathbb{Q}}$ lying over an unramified place v of k. It is well known that the conjugacy class of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ depends only on v, the characteristic polynomial of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ lies in $\mathbb{Z}[t] \subset \mathbb{Q}_{l}[t]$, and all its roots are of absolute value $\left(\operatorname{Norm}_{k / \mathbf{Q}}(v)\right)^{1 / 2}$.

Let S be a set of non-Archimedean places of k. We recall that the Dirichlet density of S in the set of all non-Archimedean places of k is defined as

$$
\lim _{x \rightarrow \infty} \frac{\log x}{x} \operatorname{Card}\left\{v \in S \mid \operatorname{Norm}_{k / \mathbb{Q}}(v) \leq x\right\}
$$

(if such limit exists). It is well known that the density of $\left\{v \mid \operatorname{Norm}_{k / \mathbf{Q}}(v)=p_{v}\right\}$ equals 1 [4, ch. 8 , sect.2.4].

The following result is well known.
0.2. N. Katz theorem [6,sect.2.1], [13,sect.2.7.1]. Assume that for some natural number $n l^{n}>2 \cdot \operatorname{dim}_{k} J$ and each l^{n}-torsion point of $J(\bar{k})$ is rational over k. Then the set $\left\{v \mid v\right.$ is unramified place of $k, \operatorname{Norm}_{k / \mathbb{Q}}(v)=p_{v}$ is a prime number and p_{v} does not divide $\left.\operatorname{Tr}\left(\rho_{l}\left(F_{\bar{v}}^{-1}\right)\right)\right\}$ is of density 1 .

This theorem plays an important role in the proof of the following theorem.
0.3. J.-P. Serre theorem[6,sect.6]. Let J be a simple abelian variety over a number field k. If $\operatorname{dim}_{k} J$ is an odd integer and $\operatorname{End}(J \otimes \bar{k})=\mathbb{Z}$, then the Hodge [9],[10] Tate [21] and Mumford - Tate conjectures [11] hold for J.

[^0]The survey of Serre's technique is contained in [6].
We want to extend Serre theorem into the area of even dimensions.
Let Δ be the set of all eigenvalues of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ (without counting multiplicities). The Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ acts in a natural way on Δ and on $\Delta \cdot \Delta$. For each element $\eta \in \Delta \cdot \Delta$ we define a map $T_{\eta}: \Delta \rightarrow \overline{\mathbb{Q}}^{\times}$by the formula $T_{\eta}(\delta)=\eta \delta^{-1}$. This map is a modification of the corresponding map $T_{\gamma}^{0}: \Delta \rightarrow \overline{\mathbb{Q}}^{\times}$in [6,sect.5.2], which is defined by the formula $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$ for $\gamma \in \Delta$. It is evident that for each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\operatorname{Card}\left(T_{\sigma(\eta)}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\sigma(\eta)}(\sigma(\Delta)) \cap \sigma(\Delta)\right)=\operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)
$$

and hence for any constant c the set

$$
\begin{equation*}
\left\{\eta \in \Delta \cdot \Delta \mid \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=c\right\} \text { is } \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})-\text { invariant. } \tag{0.3.1}
\end{equation*}
$$

So we have a good instrument of computing the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant subsets of $\Delta \cdot \Delta$, which is used, for example, in [18],[19], [20].

On the other hand, some (not all) elements of $\Delta \cdot \Delta$ are the eigenvalues of $\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)$, where

$$
\rho_{l}^{\wedge 2}: \operatorname{Gal}(\bar{k} / k) \rightarrow \mathrm{GL}\left(H_{e t}^{2}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right)\right)=\mathrm{GL}\left(\wedge^{2} H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right)\right)
$$

is the natural l-adic representation. Hence there is a reason to look at the trace of $\rho_{l}{ }^{2}\left(F_{\bar{v}}^{-1}\right)$.
0.4. Theorem. Let J be a d-dimensional abelian variety over a number field k. Assume that for some natural number $n l^{n}>d(2 d-1)$, each l^{n}-torsion point of $J(\bar{k})$ is rational over k and k contains all the $\left(l^{n}\right)^{\text {th }}$ roots of unity. If $d \geq 2$ then the set $\left\{v \mid v\right.$ is unramified place of $k, \operatorname{Norm}_{k / Q}(v)=p_{v}$ is a prime number and p_{v} does not divide $\left.\operatorname{Tr}\left(\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)\right)\right\}$ is of density 1 .

The main idea of the proof is similar to the idea which is used in the proof of A.Ogus result concerning the existence of many ordinary reductions of an abelian surface over a number field [13, sect.2.7-2.10]. Of course, we use G.Faltings theorems [8].

Assume that J has a good reduction J_{v} at the non-Archimedean place v of k. It is evident that $\operatorname{Tr}\left(\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)\right)$ coincides with the trace of linear operator in the 2nd homology of J_{v} induced by the Frobenius endomorphism of abelian variety J_{v} over a prime field $\mathbb{F}_{p_{v}}$.
0.5 . We recall that J has an ordinary reduction at a non-Archimedean place v of k with a residue field $k(v)=\mathbb{F}_{q_{v}}$ of characteristic $p_{v} \Leftrightarrow$ the special fibre J_{v} of the Neron minimal model of J is an abelian variety and the following equivalent conditions hold:
(0.5.1) p_{v}-rank of J_{v} equals $\operatorname{dim}_{k(v)} J_{v}$;
(0.5.2) for any eigenvalue δ of the Frobenius endomorphism of l-adic Tate module $T_{l}\left(J_{v} \otimes_{k(v)} \overline{k(v)}\right)\left(l \neq p_{v}\right)$ and for any place w of $\overline{\mathbb{Q}}$ over p_{v} the following relation holds:

$$
\frac{w(\delta)}{w\left(q_{v}\right)} \in\{0,1\}
$$

[7,sect.2].
0.6. Deflnition. An abelian variety J over a number field k has many ordinary reductions \Leftrightarrow there exists a set S of non-Archimedean places of k such that J has an ordinary reduction at each place $v \in S$ and the density of S is positive.

Now we consider some consequences of the theorem 0.4. We denote by (Lie $\left.\operatorname{Im}\left(\rho_{l}\right)\right)^{s s}$ the semisimple part of the reductive Lie algebra Lie $\operatorname{Im}\left(\rho_{l}\right)$. The following result is initially proved in [20, th. $1.14,1.16,1.17]$ under the additional assumption that J has many ordinary reductions.
0.7. Theorem. Assume that p is a prime number. Let J be a simple $4 p$ dimensional abelian variety over a number field k.

Assume that $\operatorname{End}(J \otimes \bar{k})=\mathbb{Z}$ and $\mathrm{p} \geq 17$. Then $\left(\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right)\right)^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $C_{4 p}$, the general Hodge, Tate and Mumford - Tate conjectures hold for J.

Assume that $\operatorname{End}^{0}(J \otimes \bar{k})$ is an indefinite quaternion division algebra over \mathbb{Q} and $p \neq 2, p \neq 5$. Then $\left(\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right)\right)^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $C_{2 p}$, the general Hodge, Tate and Mumford - Tate conjectures hold for J.

Assume that $\operatorname{End}^{0}(J \otimes \bar{k})$ is a definite quaternion division algebra over \mathbb{Q} and $p \neq 2$. Then $\left(\text { Lie } \operatorname{Im}\left(\rho_{l}\right)\right)^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $D_{2 p}$, the Mumford - Tate conjecture holds for J.
0.8. Assume that $\operatorname{End}^{0}(J \otimes \bar{k})=K$ is an imaginary quadratic extension of \mathbb{Q}. Then $K \otimes \mathbb{Q} \mathbb{C}$ is the direct sum of two copies of \mathbb{C} indexed by two different embeddings σ, τ of the field K to $\mathbb{C}, \operatorname{Lie}\left(J_{\mathbf{C}}\right)=M_{\sigma} \oplus M_{\tau}$, where $M_{\sigma}=\left\{v \in \operatorname{Lie}\left(J_{\mathbf{C}}\right) \mid\right.$ $e \cdot v=\sigma(e) v$ for all $e \in K\}, M_{\tau}=\left\{v \in \operatorname{Lie}\left(J_{\mathbb{C}}\right) \mid e \cdot v=\tau(e) v\right.$ for all $\left.e \in K\right\}$, $\operatorname{dim}_{k} J=n_{\sigma}+n_{\tau}, n_{\sigma}=\operatorname{dim}_{C} M_{\sigma} \geq 1, n_{\tau}=\operatorname{dim}_{C} M_{\tau} \geq 1$ [16, th.5]. The following result is a strong variant of [20, th.1.18].
0.9. Theorem. Assume that p is a prime number, $p \geq 17$. Let J be an absolutely simple $4 p$-dimensional abelian variety over a number field k. Assume that $\operatorname{End}^{0}(J \otimes \bar{k})$ is an imaginary quadratic extension of \mathbb{Q}. Then $\left(\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right)\right)^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $A_{2 p-1}$ or $A_{3} \times A_{p-1}$. If J has many ordinary reductions, then $\left(\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right)\right)^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is a semisimple Lie algebra of type $A_{2 p-1}$, there exists a canonical isomorphism of semisimple parts

$$
\left[\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right)\right]^{s s} \simeq\left[\operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]\right]^{s s}
$$

moreover, for $n_{\sigma} \neq 2 p$ it extends to an isomorphism

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \simeq \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

and in this case the \mathbb{Q}_{l}-space $H_{e t}^{2 r}\left(J \otimes \bar{k}, \mathbb{Q}_{l}(r)\right)^{\mathrm{Gal}(\bar{k} / k)}$ is spanned by the cohomology classes of intersections of divisors.

§1. On the Frobenius trace in the
 2ND Homology of an abelian variety

1.1. We give here a proof of theorem 0.4.

Assume that $\operatorname{Tr}\left(\rho_{i}{ }^{2}\left(F_{\bar{v}}^{-1}\right)\right)=p_{v} \cdot b_{v}$, where b_{v} is an integer. By A. Weil theorem $\left[12\right.$, ch. $4, \S 21$, th.4] the absolute value of b_{v} is less than or equal to

$$
d(2 d-1)=\operatorname{dim}_{\mathbb{d}} H_{e t}^{2}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right)
$$

Moreover, we may assume that p_{v} is unramified in k. From the relation $\operatorname{Norm}_{k / \mathbb{Q}}(v)$ $=p_{v}$ it follows that p_{v} splits completely in k. Hence we have

$$
\begin{equation*}
k \otimes \mathbf{Q} \mathbb{Q}_{p_{v}} \simeq \mathbb{Q}_{p_{v}} \times \ldots \times \mathbb{Q}_{p_{v}} \tag{1.1.1}
\end{equation*}
$$

By the condition of the theorem k containes all the $\left(l^{n}\right)^{t h}$ roots of unity. On the other hand it is well known that $\left(\mathbb{Q}_{p_{v}}^{\times}\right)_{\text {tors }} \simeq \mathbb{Z} /\left(p_{v}-1\right) \mathbb{Z}$. It follows from (1.1.1) that $l^{n} \mid\left(p_{v}-1\right)$ and hence

$$
\begin{equation*}
p_{v}=1\left(\bmod l^{n}\right) \tag{1.1.2}
\end{equation*}
$$

By the condition of the theorem all the l^{n}-torsion points of $J(\bar{k})$ are rational over k. It follows that $\left.\rho_{l}\right|_{\text {Gal }(\bar{k} / k)}$ is trivial mod l^{n} and hence $\left.\rho_{l}^{\wedge 2}\right|_{\text {Gal }(\bar{k} / k)}$ is also trivial $\bmod l^{n}$. So

$$
\begin{equation*}
p_{v} \cdot b_{v}=d(2 d-1)\left(\bmod l^{n}\right) \tag{1.1.3}
\end{equation*}
$$

It is clear that the relations (1.1.1)-(1.1.3) and the inequality $l^{n}>d(2 d-1)$ imply the relations

$$
\begin{gather*}
d(2 d-1)\left(\bmod l^{n}\right)=b_{v}\left(\bmod l^{n}\right), \\
b_{v}=d(2 d-1) \\
\operatorname{Tr}\left(\rho_{l}^{\wedge^{2}}\left(F_{\bar{v}}^{-1}\right)\right)=p_{v} \cdot b_{v}=p_{v} \cdot d(2 d-1) . \tag{1.1.4}
\end{gather*}
$$

This trace is the sum of $d(2 d-1)$ complex numbers of absolute value p_{v}. Hence the relation (1.1.4) implies that each number actually equals p_{v} and all eigenvalues of $\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)$ are equal to p_{v}. In this situation

$$
\begin{equation*}
\operatorname{Tr}\left(\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)\right)=d(2 d-1) \operatorname{Tr}\left(\chi_{l}^{-1}\left(F_{\bar{v}}^{-1}\right)\right), \tag{1.1.5}
\end{equation*}
$$

where

$$
\chi_{l}: \operatorname{Gal}(\bar{k} / k) \rightarrow \mathbb{Z}_{l}^{\times}
$$

is the cyclotomic character, defined by the natural action of $\operatorname{Gal}(\bar{k} / k)$ on the 1dimensional Tate module $\mathbb{Z}_{l}(1)=T_{l}(\mu)$ attached to the group of l-power of roots of unity in \bar{k}.
1.2. Fix a k-polarization on J once for all. We denote by

$$
\Psi: H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right) \times H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right) \rightarrow \mathbb{Q}_{l}(-1)
$$

the induced nondegenerate alternating form on $H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right)$. Since the Weil pairing is known to be $\operatorname{Gal}(\bar{k} / k)$-equivariant, one has

$$
\Psi(\sigma x, \sigma y)=\chi_{l}^{-1}(\sigma) \cdot \Psi(x, y)
$$

for all $\sigma \in \operatorname{Gal}(\bar{k} / k) ; x, y \in H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right)$. This relation implies $\operatorname{Ker}\left(\rho_{l}\right) \subset \operatorname{Ker}\left(\chi_{l}\right)$. Hence we may consider χ_{l} as a character of $\operatorname{Im}\left(\rho_{l}\right)$. So

$$
f(s)=\operatorname{Tr}\left(s^{\wedge 2}\right)-d(2 d-1) \operatorname{Tr}\left(\chi_{l}^{-1}(s)\right)
$$

is an analytic function on the compact l-adic Lie group $\operatorname{Im}\left(\rho_{l}\right)$. In virtue of (1.1.5) this function vanishes on the set $\left\{\rho_{l}\left(F_{\bar{v}}^{-1}\right) \mid v\right.$ is unramified place of $k, \operatorname{Norm}_{k / \mathbb{Q}}(v)=$ p_{v} is a prime number and p_{v} divides $\left.\operatorname{Tr}\left(\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)\right)\right\}$.

Assume that the zero locus Z_{f} of f is the group $\operatorname{Im}\left(\rho_{l}\right)$. From G.Faltings theorems [8] it follows that ρ_{l} and $\rho_{l}^{\wedge 2}$ are semisimple representations. Since two semisimple representations in characteristic 0 are isomorphic if and only if they have the same trace, we have the relations $\rho_{l}^{\wedge 2}=\left(\chi_{l}^{-1}\right)^{\oplus d(2 d-1)}$ and

$$
\begin{equation*}
\operatorname{dim}_{Q_{t}} H_{e t}^{2}\left(J \otimes \bar{k}, \mathbb{Q}_{l}(1)\right)^{\operatorname{Im}\left(\rho_{l}\right)}=d(2 d-1) \tag{1.2.1}
\end{equation*}
$$

On the other hand, by G.Faltings results [8]

$$
\operatorname{End}_{\operatorname{Im}\left(\rho_{l}\right)} H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right) \simeq \operatorname{End}(J) \otimes \mathbb{Q}_{l}
$$

By the well known Tate theorems [22, th.3, th.4] this relation implies

$$
\begin{equation*}
H_{e t}^{2}\left(J \otimes \bar{k}, \mathbb{Q}_{l}(1)\right)^{\operatorname{Im}\left(\rho_{l}\right)} \simeq \mathrm{NS}(J) \otimes \mathbb{Q}_{l} \tag{1.2.2}
\end{equation*}
$$

It follows from (1.2.1)-(1.2.2) that the \mathbb{Q}_{1}-space $H_{e t}^{2}\left(J \otimes \bar{k}, \mathbb{Q}_{l}(1)\right)$ is generated by algebraic cohomology classes. Since $\operatorname{rank}\left(\mathrm{NS}\left(J \otimes_{k} \mathbb{C}\right)\right) \leq h^{1,1}\left(J \otimes_{k} \mathbb{C}\right)$, we have the equality $h^{2,0}\left(J \otimes_{k} \mathbb{C}\right)=0$. This is possible only if J is an elliptic curve.

In our situation $\operatorname{dim}_{k} J \geq 2$. Hence the zero locus Z_{f} of f is an analytic hypersurface on the compact l-adic Lie group $\operatorname{Im}\left(\rho_{l}\right)$ and it is stable by conjugation. Let μ be the Haar measure on $\operatorname{Im}\left(\rho_{l}\right)$ such that the total mass of $\operatorname{Im}\left(\rho_{l}\right)$ is 1 . It is well known that $\mu\left(Z_{f}\right)=0$ [15, ch.1, sect.2.2, exercise]. Hence by Chebotarev density theorem the set $\left\{v \mid v\right.$ is unramified place of $k, \operatorname{Norm}_{k / \mathbf{Q}}(v)=p_{v}$ is a prime number and $\left.\rho_{l}\left(F_{\bar{v}}^{-1}\right) \in Z_{f}\right\}$ is of density 0 . Hence $\{v \mid v$ is unramified place of k, $\operatorname{Norm}_{k / \mathbb{Q}}(v)=p_{v}$ is a prime number and p_{v} divides $\left.\operatorname{Tr}\left(\rho_{l} \wedge^{2}\left(F_{\bar{v}}^{-1}\right)\right)\right\}$ is of density 0 . This proves the claim.
1.3. Corollary. Let J be a d-dimensional abelian variety over a number field k. Assume that for some natural number $n l^{n}>d(2 d-1)$, each l^{n}-torsion point of $J(\bar{k})$ is rational over k and k contains all the $\left(l^{n}\right)^{\text {th }}$ roots of unity. If $d \geq 2$ then the set $\left\{v \mid v\right.$ is unramified place of $k, \operatorname{Norm}_{k / \mathrm{Q}}(v)=p_{v}$ is a prime number and p_{v} does not divide the trace of linear operator in the 2nd homology of J_{v} induced by the Frobenius endomorphism of abelian variety J_{v} over a prime field $\left.\mathbb{F}_{p_{v}}\right\}$ is of density 1 .

§2. Cycles on simple abelian variety of dimension 4 P OVER a NUMBER FIELD

2.1. We give here the proof of theorem 0.7 .

Suppose that $\operatorname{End}(J \otimes \bar{k})=\mathbb{Z}$ and $\mathrm{p} \geq 17$. Let $\mathbb{N}^{+}=\{1,2, \ldots\}$ be the set of all positive natural numbers. First of all we introduce the set of exceptional numbers

$$
\begin{aligned}
& \quad E x(1)=\left\{4^{l}, \frac{1}{2}\binom{4 l+2}{2 l+1}^{2 m-1}, 2^{8 l m+4 l-4 m-3}, 4^{l}(m+1)^{2 l+1} \mid l, m \in \mathbb{N}^{+}\right\}= \\
& =\{4,10,16,32,64,108,126,256,500,512,864,1024,1372,1716,2048, \ldots\} . \text { It is easy to } \\
& \text { verify that for each prime number } p \text { the number } 4 p \text { is not exceptional }[20, \text { lemma }
\end{aligned}
$$

4.3]. Hence Lie $\operatorname{Hg}\left(J_{\mathbf{C}}\right) \otimes_{\mathbb{Q}} \mathbb{C}=s p_{8 p}$ and the general Hodge conjecture holds for $J_{\mathbf{C}} \times \ldots \times J_{\mathbb{C}}$, where $\mathrm{Hg}\left(J_{\mathbf{C}}\right)$ is the Hodge group of the complex abelian variety $J_{\mathbb{C}}=J \otimes_{k} \mathbb{C}[19$, th.1.1].

We also recall the folowing classification result.
2.2. Theorem[17, th.2], [18, th.2.2], [19, th.4.1], [20, th.2.2]. Assume that g is a simple Lie algebra of rank m over an algebraically closed field of characteristic zero, $\omega_{1}, \omega_{2}, \ldots, \omega_{m}$ are fundamental weights, $E=E\left(n_{1} \omega_{1}+\ldots+n_{m} \omega_{m}\right)$ is an irreducible g-module with the highest weight $n_{1} \omega_{1}+\ldots+n_{m} \omega_{m}$, where $n_{i} \in \mathbb{N}$.

Let p be a prime number.
Suppose that $\operatorname{deg} E=p$.
If E is an orthogonal representation, then the triple (type of g, E, p) assumes the following values:

$$
\begin{gather*}
\left(A_{1}, E\left((p-1) \omega_{1}\right), p\right)(p \geq 3) \tag{2.2.1}\\
\left(B_{(p-1) / 2}, E\left(\omega_{1}\right), p\right)(p \geq 5) \tag{2.2.2}\\
\left(G_{2}, E\left(\omega_{1}\right), 7\right) \tag{2.2.3}
\end{gather*}
$$

Moreover, the highest weight of g-module E is a radical weight.
If E is a symplectic representation, then the triple (type of g, E, p) assumes the following value:

$$
\begin{equation*}
\left(A_{1}, E\left(\omega_{1}\right), 2\right) \tag{2.2.4}
\end{equation*}
$$

If $E \neq E^{*}$, then the triple (type of g, E, p) assumes the following values:

$$
\begin{equation*}
\left(A_{p-1}, E\left(\omega_{1}\right), p\right),\left(A_{p-1}, E\left(\omega_{p-1}\right), p\right)(p \geq 3) \tag{2.2.5}
\end{equation*}
$$

Suppose that $\operatorname{deg} E=2 p$.
If E is an orthogonal representation, then the triple (type of g, E, p) assumes the following values:

$$
\begin{gather*}
\left(B_{2}, E\left(2 \omega_{2}\right), 5\right) ; \tag{2.2.6}\\
\left(B_{2}, E\left(2 \omega_{1}\right), 7\right) ; \tag{2.2.7}\\
\left(C_{3}, E\left(\omega_{2}\right), 7\right) ; \tag{2.2.8}\\
\left(G_{2}, E\left(\omega_{2}\right), 7\right) ; \tag{2.2.9}\\
\left(F_{4}, E\left(\omega_{4}\right), 13\right) ; \tag{2.2.10}\\
\left(D_{p}, E\left(\omega_{1}\right), p\right)(p \geq 3) . \tag{2.2.11}
\end{gather*}
$$

Moreover, in (2.2.6) - (2.2.10) the highest weight of g-module E is a radical weight.
If E is a symplectic representation, then the triple (type of g, E, p) assumes the following values:

$$
\begin{gather*}
\left(A_{1}, E\left((2 p-1) \omega_{1}\right), p\right) \tag{2.2.12}\\
\left(C_{3}, E\left(\omega_{3}\right), 7\right) \tag{2.2.13}\\
\left(C_{p}, E\left(\omega_{1}\right), p\right) \tag{2.2.14}
\end{gather*}
$$

If $E \neq E^{*}$, then the triple (type of g, E, p) assumes the following values:

$$
\begin{equation*}
\left(A_{2}, E\left(2 \omega_{1}\right), 3\right),\left(A_{2}, E\left(2 \omega_{2}\right), 3\right) \tag{2.2.15}
\end{equation*}
$$

$$
\begin{gather*}
\left(A_{2}, E\left(3 \omega_{1}\right), 5\right),\left(A_{2}, E\left(3 \omega_{2}\right), 5\right) ; \tag{2.2.16}\\
\left(A_{3}, E\left(2 \omega_{1}\right), 5\right),\left(A_{3}, E\left(2 \omega_{3}\right), 5\right) ; \tag{2.2.17}\\
\left(A_{4}, E\left(\omega_{2}\right), 5\right),\left(A_{4}, E\left(\omega_{3}\right), 5\right) ; \tag{2.2.18}\\
\left(A_{2 p-1}, E\left(\omega_{1}\right), p\right),\left(A_{2 p-1}, E\left(\omega_{2 p-1}\right), p\right) \tag{2.2.19}
\end{gather*}
$$

Suppose that $\operatorname{deg} E=4 p$.
If E is an orthogonal representation, then the triple (type of g, E, p) assumes the following values:

$$
\begin{gather*}
\left(A_{2}, E\left(\omega_{1}+\omega_{2}\right), 2\right) ; \tag{2.2.20}\\
\left(A_{3}, E\left(2 \omega_{2}\right), 5\right) ; \tag{2.2.21}\\
\left(B_{3}, E\left(\omega_{3}\right), 2\right) ; \tag{2.2.22}\\
\left(B_{4}, E\left(2 \omega_{1}\right), 11\right) ; \tag{2.2.23}\\
\left(C_{5}, E\left(\omega_{2}\right), 11\right) ; \tag{2.2.24}\\
\left(D_{4}, E\left(\omega_{2}\right), 7\right) ; \tag{2.2.25}\\
\left(D_{4}, E\left(\omega_{3}\right), 2\right) ; \tag{2.2.26}\\
\left(D_{4}, E\left(\omega_{4}\right), 2\right) ; \tag{2.2.27}\\
\left(F_{4}, E\left(\omega_{1}\right), 13\right) ; \tag{2.2.28}\\
\left(D_{2 p}, E\left(\omega_{1}\right), p\right) \tag{2.2.29}
\end{gather*}
$$

Moreover, in (2.2.20), (2.2.21), (2.2.23), (2.2.24), (2.2.25), (2.2.28) the highest weight of g-module E is a radical weight.

If E is a symplectic representation, then the triple (type of g, E, p) assumes the following values:

$$
\begin{gather*}
\left(A_{1}, E\left((4 p-1) \omega_{1}\right), p\right) \tag{2.2.30}\\
\left(A_{5}, E\left(\omega_{3}\right), 5\right) ; \tag{2.2.31}\\
\left(B_{2}, E\left(3 \omega_{2}\right), 5\right) ; \tag{2.2.32}\\
\left(C_{2 p}, E\left(\omega_{1}\right), p\right) \tag{2.2.33}
\end{gather*}
$$

If $E \neq E^{*}$, then the triple (type of g, E, p) assumes the following values:

$$
\begin{gather*}
\left(A_{2}, E\left(6 \omega_{1}\right), 7\right),\left(A_{2}, E\left(6 \omega_{2}\right), 7\right) ; \tag{2.2.34}\\
\left(A_{3}, E\left(\omega_{1}+\omega_{2}\right), 5\right),\left(A_{3}, E\left(\omega_{2}+\omega_{3}\right), 5\right) ; \tag{2.2.35}\\
\left(A_{3}, E\left(3 \omega_{1}\right), 5\right),\left(A_{3}, E\left(3 \omega_{3}\right), 5\right) ; \tag{2.2.36}\\
\left(A_{6}, E\left(2 \omega_{1}\right), 7\right),\left(A_{6}, E\left(2 \omega_{6}\right), 7\right) ; \tag{2.2.37}\\
\left(A_{7}, E\left(\omega_{2}\right), 7\right),\left(A_{7}, E\left(\omega_{6}\right), 7\right) ; \tag{2.2.38}\\
\left(A_{4 p-1}, E\left(\omega_{1}\right), p\right),\left(A_{4 p-1}, E\left(\omega_{4 p-1}\right), p\right) \tag{2.2.39}
\end{gather*}
$$

This theorem follows from H.Weyl formula [3, ch.8].
2.3. Let $G_{V_{l}}$ be the algebraic envelope of $\operatorname{Im}\left(\rho_{l}\right) \subset G L\left(V_{l}\right)$, where

$$
V_{l}=H_{e t}^{1}\left(J \otimes \bar{k}, \mathbb{Q}_{l}\right) .
$$

By F.A.Bogomolov theorem [1] $\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right)=\operatorname{Lie}\left(G_{V_{l}}\right)$ and $G_{V_{l}}$ containes the group G_{m} of homotheties. By G.Faltings theorems [8] $G_{V_{l}}$ is reductive and

$$
\operatorname{End}_{G_{V_{l}}}\left(V_{l}\right)=\operatorname{End}(J) \otimes \mathbb{Q}_{l}
$$

Let $g_{l}=$ Lie $\operatorname{Im}\left(\rho_{l}\right)$. We shall denote by $g_{l}^{s s}$ the semisimple part of g_{l}. By J.-P.Serre theorem [6,th.3.10] the rank of $G_{V_{l}}$ (resp. g_{l}) is independent of l. In the case under consideration we may assume that $G_{V_{i}}=S_{V_{i}} \cdot \mathrm{G}_{m}$, where $S_{V_{i}}=\left[G_{V_{i}}, G_{V_{i}}\right]$ is the commutator subgroup of $G_{V_{l}}$ [6 , sect.1.2.2b].
2.4. Assume that v is a non-Archimedean place of k at which J has a good reduction. Let \bar{v} be any extension of v to \bar{k} and let $F_{\bar{v}} \in \operatorname{Gal}(\bar{k} / k)$ be the corresponding Frobenius element. It is well known that the characteristic polynomial of $\rho_{l}\left(F_{\vec{v}}^{-1}\right)$ coincides with the characteristic polynomial of the Frobenius endomorphism π_{v} of the reduction J_{v} of J at v. We denote by Δ the set of all eigenvalues of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ (without counting multiplicities). Let Γ_{v} be a multiplicative subgroup of $\overline{\mathbb{Q}}^{\times}$generated by Δ.

It is well known that $\mathbb{Q}\left[\pi_{v}\right]=\prod K_{i}, K_{i}$ are number fields. The multiplicative group $\mathbb{Q}\left[\pi_{v}\right]^{\times}$defines a \mathbb{Q}-torus $T_{\pi_{v}}=\prod R_{K_{i} / \mathbf{Q}}\left(\mathrm{G}_{m K_{i}}\right)$, where $R_{K_{i} / \mathbf{Q}}$ are the Weil restrictions of scalar functors. Let H_{v} be the smallest algebraic subgroup of $T_{\pi_{v}}$ defined over \mathbb{Q}, such that $\pi_{v} \in H_{v}(\mathbb{Q})$. As is well-known, H_{v} is a group of multiplicative type. The connected component of the identity in H_{v} is called the Frobenius torus T_{v}. It can be regarded as the \mathbb{Q}-model of the connected component of 1 in the Zariski closure of the set $\left\{\rho_{l}\left(F_{\bar{v}}^{-1}\right)^{n} \mid n \in \mathbb{Z}\right\}$ in $G_{V_{l}}[6$, sect.3b].
2.5 . As an easy consequence of the theorem 0.4 and $[6$, prop.3.6, 5.2.1, lemma 2.1, cor.3.8] we have the following result.

After replacing k by some finite extension we may assume that for some set S of density 1 in the set of all non-Archimedean places of k and for each $v \in S$ the following conditions hold:

1) for a fixed integer $n \geq 2$ such that $l^{n}>\left(2 \operatorname{dim}_{k} J\right)^{2}$, the l^{n}-torsion points of $J(\bar{k})$ are rational points over k and k containes all the $\left(l^{n}\right)^{\text {th }}$ roots of unity;
2) $p_{v}=\operatorname{char}(k(v))>\left(2 \operatorname{dim}_{k} J\right)^{2}$;
3) $\operatorname{Norm}_{k / \mathbf{Q}}(v)=p_{v}$;
4) the Frobenius traces $\operatorname{Tr}\left(\rho_{l}\left(F_{\bar{v}}^{-1}\right)\right)$ and $\operatorname{Tr}\left(\rho_{l}^{\wedge^{2}}\left(F_{\bar{v}}^{-1}\right)\right)$ are not divisible by p_{v};
5) Γ_{v} is torsion-free, $G_{V_{l}}$ is connected and $\rho_{l}\left(F_{\bar{v}}^{-1}\right) \in T_{v}\left(\overline{\mathbb{Q}_{l}}\right)$;
6) the Frobenius torus T_{v} is a maximal torus of $G_{V_{l}}$ and

$$
\operatorname{rank}\left(\Gamma_{v}\right)=\operatorname{dim}\left(T_{v}\right)=\operatorname{rank}\left(G_{V_{i}}\right)
$$

2.6. It is well known that $V_{l} \otimes \overline{\mathbb{Q}_{l}}$ is an absolutely irreducible symplectic $g_{l}^{s s} \otimes{\overline{\mathbb{Q}} l^{-}}^{-}$ module.

Assume that the Lie algebra $g_{i}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is simple. From the relation $\operatorname{dim}_{k} J=$ $4 p \notin E x(1)$ it follows that $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is the Lie algebra of type $C_{4 p}$ [18, sect.1.3-1.8].

On the other hand, Lie $\operatorname{Hg}\left(J_{\mathbb{C}}\right) \otimes \overline{\mathbb{Q}_{l}} \subset s p\left(V_{l} \otimes \overline{\mathbb{Q}_{l}}\right)$. By Piatetski-Shapiro -Deligne Borovoi theorem [14], [2] there exists a canonical embedding

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \subset \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]=\mathbb{Q}_{l} \times \operatorname{Lie}\left[\operatorname{Hg}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

So there exists a canonical isomorphism of Lie algebras

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \simeq \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

This relation implies the equivalence of the usual Hodge conjecture for $J_{\mathbf{C}}$ and the Tate conjecture for J.
2.7. Now we may assume that the Lie algebra $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is not simple.

Let $f: S \rightarrow S_{V_{l}} \otimes \overline{\mathbb{Q}_{l}}$ be the universal covering, where $S=S_{1} \times S_{2} \times \ldots \times S_{q}$ is a product of simple simply connected algebraic $\overline{\mathbb{Q}_{l}}$-groups. An isogeny f extends to an isogeny

$$
f: \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q} \rightarrow \mathrm{G}_{m} \cdot\left(S_{V_{l}} \otimes \overline{\mathbb{Q}_{l}}\right)=G_{V_{l}} \otimes \overline{\mathbb{Q}_{l}}
$$

defined by the formula $f((a, s))=a \cdot f(s)$ for $a \in \mathrm{G}_{m}, s \in S_{1} \times \ldots \times S_{q}$.
By (2.5.6) the Frobenius torus T_{v} is a maximal torus of $G_{V_{i}}$. Hence

$$
T=\left(f^{-1}\left(T_{v} \otimes \overline{\mathbb{Q}_{l}}\right)\right)^{0} \subset \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q}
$$

is a maximal subtorus. Consider the canonical projections

$$
\begin{aligned}
\mathrm{pr}_{0} & : \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q} \rightarrow \mathrm{G}_{m} \\
\mathrm{pr}_{i} & : \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q} \rightarrow S_{\mathrm{i}} .
\end{aligned}
$$

It is evident that $T=\operatorname{pr}_{0}(T) \times \operatorname{pr}_{1}(T) \times \ldots \times \operatorname{pr}_{q}(T)$.
On the other hand,

$$
V_{l} \otimes \overline{\mathbb{Q}_{l}}=W_{1} \otimes \ldots \otimes W_{q}
$$

where W_{1} is an irreducible $\mathrm{G}_{m} \times S_{1}$-module, W_{2} is an irreducible S_{2}-module, \ldots, W_{q} is an irreducible S_{q}-module. Let

$$
\begin{aligned}
& \rho_{1}: \mathrm{G}_{m} \times S_{1} \rightarrow \mathrm{GL}\left(W_{1}\right), \\
& \rho_{i}: S_{i} \rightarrow \mathrm{GL}\left(W_{i}\right)(i \geq 2)
\end{aligned}
$$

are the corresponding representations. We have a commutative diagram

$$
\begin{array}{cc}
\mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q} \xrightarrow{\rho_{1} \otimes \ldots \otimes \rho_{q}} \mathrm{GL}\left(W_{1} \otimes \ldots \otimes W_{q}\right) \\
& \downarrow f \\
G_{V_{l}} \otimes \overline{\mathbb{Q}_{l}} \quad \subset & \| \\
\mathrm{GL}\left(W_{1} \otimes \ldots \otimes W_{q}\right)
\end{array}
$$

By (2.5.5) $\rho_{l}\left(F_{\bar{v}}^{-1}\right) \in T_{v}\left(\overline{\mathbb{Q}_{l}}\right)$, hence there exists an element

$$
\tau_{\bar{v}}=\left(\tau_{0}, \tau_{1}, \ldots, \tau_{q}\right) \in \operatorname{pr}_{0}(T) \times \operatorname{pr}_{1}(T) \times \ldots \times \operatorname{pr}_{q}(T)
$$

such that

$$
\left(\rho_{1} \otimes \ldots \otimes \rho_{q}\right)\left(\tau_{\bar{v}}\right)=f\left(\tau_{\bar{v}}\right)=\rho_{l}\left(F_{\bar{v}}^{-1}\right) .
$$

We see that each eigenvalue of $\rho_{l}\left(F_{\bar{v}}^{-1}\right)$ is of the form $\chi_{0}^{(0)}\left(\tau_{0}\right) \cdot \chi_{i}^{(1)}\left(\tau_{1}\right) \ldots \chi_{j}^{(q)}\left(\tau_{q}\right)$, where $\chi_{k}^{(m)} \in \mathrm{X}\left(\operatorname{pr}_{m}(T)\right)$ are some characters.
2.8. By (2.5.1) $\operatorname{Im}\left(\rho_{l}\right) \subset\left\{x \in \operatorname{End} T_{l}(J \otimes \bar{k}) \mid x \in 1+l^{n} \operatorname{End} T_{l}(J \otimes \bar{k})\right\}$. Hence for any $x \in \operatorname{Im}\left(\rho_{l}\right)$ the l-adic $\operatorname{logarithm} \log x$ is defined.

Let μ be the Haar measure on $\operatorname{Im}\left(\rho_{l}\right)$ normalized by the equality $\mu\left(\operatorname{Im}\left(\rho_{l}\right)\right)=1$. It is well known that $X=\left\{x \in \operatorname{Im}\left(\rho_{l}\right) \mid \log x\right.$ is a regular element in Lie $\left.\operatorname{Im}\left(\rho_{l}\right)\right\}$ is open and everywhere dense in $\operatorname{Im}\left(\rho_{l}\right)$. Its boundary ∂X is a closed analytic subset. So $\mu(\partial X)=0$ [15, sect.2.2]. Moreover, the set X is invariant under conjugation in $\operatorname{Im}\left(\rho_{l}\right)$. By Chebotarev theorem the density of $\left\{v \mid \rho_{l}\left(F_{\bar{v}}^{-1}\right) \in X\right\}$ is equal to $\mu(X)=1-\mu(\partial X)=1[15$, sect.2.2, corollary 2]. Hence we may assume that for v the conditions (2.5.1)-(2.5.6) hold and $\log \rho_{l}\left(F_{\bar{v}}^{-1}\right)$ is a regular element in Lie $\operatorname{Im}\left(\rho_{l}\right)$.

On the other hand, each W_{i} is a symplectic or orthogonal S_{i}-module. Theorem 2.2 and the inequality $p \geq 17 \mathrm{imply}$ that the pair (type of $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}, V_{l} \otimes \overline{\mathbb{Q}_{l}}$) assumes one of the following values:

$$
\begin{gather*}
\left(C_{2} \times D_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right), \tag{2.8.1}\\
\left(A_{1} \times A_{1} \times C_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1}^{(3)}\right)\right), \tag{2.8.2}\\
\left(A_{1} \times D_{2 p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right), \tag{2.8.3}\\
\left(A_{1} \times D_{p}, E\left(3 \omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right), \tag{2.8.4}\\
\left(A_{1} \times A_{1}, E\left(7 \omega_{1}^{(1)}+(p-1) \omega_{1}^{(2)}\right)\right), \tag{2.8.5}\\
\left(A_{1} \times B_{(p-1) / 2}, E\left(7 \omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right), \tag{2.8.6}\\
\left(C_{4} \times A_{1}, E\left(\omega_{1}^{(1)}+(p-1) \omega_{1}^{(2)}\right)\right), \tag{2.8.7}\\
\left(C_{4} \times B_{(p-1) / 2}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right), \tag{2.8.8}\\
\left(A_{1} \times A_{1} \times A_{1} \times A_{1}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1}^{(3)}+(p-1) \omega_{1}^{(4)}\right)\right), \tag{2.8.9}\\
\left(A_{1} \times A_{1} \times A_{1} \times B_{(p-1) / 2}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1}^{(3)}+\omega_{1}^{(4)}\right)\right), \tag{2.8.10}\\
\left(A_{1} \times A_{1} \times A_{1}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+(2 p-1) \omega_{1}^{(3)}\right)\right), \tag{2.8.11}
\end{gather*}
$$

where an index (i) shows that the corresponding fundamental weight relates to the i-th factor.
2.9. Consider the case $\left(C_{2} \times D_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)$. In virtue of (2.5.6) we may assume that $\Delta=\left\{\lambda \alpha_{1,2}^{ \pm 1} \beta_{j}^{ \pm 1} \mid j=1, \ldots, p\right\}$, where $\lambda, \alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{p}$ are multiplicatively independent (in other words, these numbers generate the multiplicative subgroup of $\overline{\mathbb{Q}}^{\times}$of rank $p+3$).
2.10. Lemma . The following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant:

$$
\left\{\lambda^{2}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\} ;\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2}\right\} ;\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ;
$$

$$
\begin{aligned}
&\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ; \\
&\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 2}\right\} ;\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ; \\
&\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 2}\right\}
\end{aligned}
$$

Moreover, $\lambda^{2}= \pm p_{v}$.
Proof. Let $\eta \in \Delta \cdot \Delta$. We may assume that

$$
\eta \in\left\{\lambda^{2}, \lambda^{2} \alpha_{1}^{2}, \lambda^{2} \alpha_{1} \alpha_{2}, \lambda^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2}, \lambda^{2} \beta_{1} \beta_{2}, \lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2}\right\} .
$$

If $\delta \in \Delta$, then $T_{\eta}(\delta)=\eta \delta^{-1}$, hence

$$
\begin{gathered}
T_{\lambda^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in \Delta ; T_{\lambda^{2} \alpha_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{j}^{ \pm 1} \mid j=1, \ldots, p\right\} ; \\
T_{\lambda^{2} \alpha_{1} \alpha_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{j}^{ \pm 1} \mid j=1, \ldots, p\right\} ; T_{\lambda^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2}^{ \pm 1} \beta_{1}\right\} ; \\
T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{1}\right\} ; T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{1}\right\} ; \\
T_{\lambda^{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2}^{ \pm 1} \beta_{1,2}\right\} ; T_{\lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{1,2}\right\} ; \\
T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{1,2}\right\} .
\end{gathered}
$$

It is clear that

$$
\begin{gathered}
\operatorname{Card}\left(T_{\lambda^{2}}(\Delta) \cap \Delta\right)=\operatorname{Card}(\Delta)=8 p ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2}}(\Delta) \cap \Delta\right)=2 p ; \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2}}(\Delta) \cap \Delta\right)=4 p ; \quad \operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=4 ; \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=1 ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=2 ; \\
\operatorname{Card}\left(T_{\lambda^{2} \beta_{1} \beta_{2}}(\Delta) \cap \Delta\right)=8 ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}}(\Delta) \cap \Delta\right)=2 \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1} \beta_{2}}(\Delta) \cap \Delta\right)=4
\end{gathered}
$$

The $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariance of $\left\{\lambda^{2}\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\},\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2}\right\},\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}$, $\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 2}\right\}, \quad\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\} \cup\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 2}\right\} \cup$ $\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}$ follows from (0.3.1).
Since $\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}=\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\} \cdot\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} \cdot\left\{\lambda^{-2}\right\}$ and each factor of this decomposition is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant, we get the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariance of the sets $\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}$ and $\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\}$. The $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariance of another sets follows from the fact that each factor of the decompositions $\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 2}\right\}=\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\} \cdot\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\} \cdot\left\{\lambda^{-2}\right\},\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}=$ $\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2}\right\} \cdot\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} \cdot\left\{\lambda^{-2}\right\}$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant.

The relation $\lambda^{2}= \pm p_{v}$ follows from the fact that $\lambda^{2} \in \mathbb{Q}$ is of absolute value p_{v}. Lemma 2.10 is proved.
2.11. It is evident that the set of all eigenvalues of $\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)$ is equal to $\Delta \cdot \Delta-$ $\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 2}\right\}$.

By theorem 0.4 we may assume that p_{v} does not divide $\operatorname{Tr}\left(\rho_{l}^{\wedge^{2}}\left(F_{\bar{v}}^{-1}\right)\right)$. The symmetry implies that the multiplicity of $\eta \in\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\}$ as an eigenvalue of
$\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)$ is independent of the choice of η. This is valid for another $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariant subsets which are defined in the statement of lemma 2.10. We deduce from this lemma that $\operatorname{Tr}\left(\rho_{l} \wedge^{2}\left(F_{\bar{v}}^{-1}\right)\right)$ is a sum of integers of the following types:

$$
\begin{gathered}
\lambda^{2}, \sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}, \sum \lambda^{2} \alpha_{1,2}^{ \pm 2}, \sum_{i \neq j} \lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum \lambda^{2} \beta_{i}^{ \pm 2}, \sum_{i \neq j} \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \\
\sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 2}, \sum_{i \neq j} \lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}
\end{gathered}
$$

Hence p_{v} does not divide at least one of the sums above.
2.12. Assume that p_{v} does not divide $\sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}$. Then for each place w of $\overline{\mathbb{Q}}$ lying over p_{v}

$$
w\left(\sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right)=0
$$

It follows that there exists $x_{w} \in\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\}$ such that $w\left(x_{w}\right)=0$. Hence

$$
0=w\left(x_{w}\right)=\frac{1}{2}\left\{w\left(x_{w} \beta_{1}^{2}\right)+w\left(x_{w} \beta_{1}^{-2}\right)\right\} .
$$

Since both summands in the last brackets are nonnegative in virtue of the relations $x_{w} \beta_{1}^{ \pm 2} \in \Delta \cdot \Delta$, we have the equalities

$$
w\left(x_{w} \beta_{1}^{2}\right)=w\left(x_{w} \beta_{1}^{-2}\right)=0 .
$$

So $w\left(\beta_{1}\right)=0$ for all $w \mid p_{v}$. It follows that β_{1} is a root of 1 [23, sublemma 3.4.0] contrary to the assumption that $\lambda, \alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{p}$ are multiplicatively independent.

Hence p_{v} divides $\sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}$. From the relation $\lambda^{2}= \pm p_{v}$ we deduce that $\sum \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}$ is an integer.

By the similar arguments we prove that $\sum \alpha_{1,2}^{ \pm 2}$ is an integer.
2.13. Assume that p_{v} does not divide $\sum_{i \neq j} \lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}$. Then for each place w of $\overline{\mathbb{Q}}$ lying over p_{v}

$$
w\left(\sum_{i \neq j} \lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}\right)=0
$$

It follows that there exists $x_{w} \in\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}\right\}$ such that $w\left(x_{w}\right)=0$. Hence

$$
0=w\left(x_{w}\right)=\frac{1}{2}\left\{w\left(x_{w} \alpha_{1}^{2}\right)+w\left(x_{w} \alpha_{1}^{-2}\right)\right\} .
$$

Since both summands in the last brackets are nonnegative in virtue of the relations $x_{w} \alpha_{1}^{ \pm 2} \in \Delta \cdot \Delta$, we have the equalities

$$
w\left(x_{w} \alpha_{1}^{2}\right)=w\left(x_{w} \alpha_{1}^{-2}\right)=0
$$

So $w\left(\alpha_{1}\right)=0$ for all $w \mid p_{v}$. It follows that α_{1} is a root of 1 [23, sublemma 3.4.0] contrary to the assumption that $\lambda, \alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{p}$ are multiplicatively independent.

Hence p_{v} divides $\sum_{i \neq j} \lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}$, and $\sum_{i \neq j} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}$ is an integer.

By the similar arguments we prove that $\sum \beta_{i}^{ \pm 2}$ is an integer.
2.14. Consider the decomposition

$$
\sum_{i \neq j} \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}=\left(\sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right) \cdot\left(\sum_{i \neq j} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}\right) .
$$

We have proved that p_{v} divides the first factor of this decomposition, and the second factor is an integer. Hence p_{v} divides the product.

The decompositions

$$
\begin{aligned}
& \sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 2}=\left(\sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right) \cdot\left(\sum \beta_{i}^{ \pm 2}\right) \\
& \sum_{i \neq j} \lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}=\left(\sum \lambda^{2} \alpha_{1,2}^{ \pm 2}\right) \cdot\left(\sum_{i \neq j} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}\right)
\end{aligned}
$$

show that p_{v} divides each left side.
Hence p_{v} divides $\operatorname{Tr}\left(\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)\right)$ contrary to our assumption. This excludes the case $\left(C_{2} \times D_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)$.
2.15. Since the structure of Δ does not distinguish the cases $\left(C_{2} \times D_{p}, E\left(\omega_{1}^{(1)}+\right.\right.$ $\left.\left.\omega_{1}^{(2)}\right)\right)$ and $\left(A_{1} \times A_{1} \times C_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1}^{(3)}\right)\right)=\left(D_{2} \times C_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)$, we exclude the case $\left(A_{1} \times A_{1} \times C_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1}^{(3)}\right)\right)$ by the same procedure.
2.16. Consider the case $\left(A_{1} \times D_{2 p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)$. In virtue of (2.5.6) we may assume that $\Delta=\left\{\lambda \alpha_{1}^{ \pm 1} \beta_{i}^{ \pm 1} \mid i=1, \ldots, 2 p\right\}$, where $\lambda, \alpha_{1}, \beta_{1}, \ldots, \beta_{2 p}$ are multiplicatively independent. The proof of the following result is similar to the proof of lemma 2.10.
2.17. Lemma. The following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant:

$$
\begin{gathered}
\left\{\lambda^{2}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 2}\right\} ;\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ;\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\} ; \\
\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 2}\right\} .
\end{gathered}
$$

Moreover, $\lambda^{2}= \pm p_{v}$.
2.18. It is evident that the set of all eigenvalues of $\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)$ is equal to $\Delta \cdot \Delta-$ $\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 2}\right\}$.

By theorem 0.4 we may assume that p_{v} does not divide $\operatorname{Tr}\left(\rho_{l}^{\hat{l}^{2}}\left(F_{\bar{v}}^{-1}\right)\right)$. It is evident that this trace is a sum of integers of the following types:

$$
\lambda^{2}, \sum \lambda^{2} \alpha_{1}^{ \pm 2}, \sum_{i \neq j} \lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum \lambda^{2} \beta_{i}^{ \pm 2}, \sum_{i \neq j} \lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} .
$$

Hence p_{v} does not divide at least one of the sums above. By the arguments of sections 2.12-2.14 we prove that

$$
\sum \alpha_{1}^{ \pm 2}, \sum_{i \neq j} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum \beta_{i}^{ \pm 2}, \sum_{i \neq j} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}
$$

are integers. Hence p_{v} divides $\operatorname{Tr}\left(\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)\right)$ contrary to our assumption. This excludes the case $\left(A_{1} \times D_{2 p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)$.
2.19. Consider the case $\left(A_{1} \times D_{p}, E\left(3 \omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)$. In virtue of (2.5.6) we may assume that $\Delta=\left\{\lambda \alpha_{1}^{ \pm 1, \pm 3} \beta_{i}^{ \pm 1} \mid i=1, \ldots, p\right\}$, where $\lambda, \alpha_{1}, \beta_{1}, \ldots, \beta_{p}$ are multiplicatively independent.
2.20. Lemma. The following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant:

$$
\begin{gathered}
\left\{\lambda^{2}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 2}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 4}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 6}\right\} ;\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ; \\
\left\{\lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} ;\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\} ; \\
\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 2}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 2}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 2}\right\} .
\end{gathered}
$$

Moreover, $\lambda^{2}= \pm p_{v}$.
Proof. Let $\eta \in \Delta \cdot \Delta$. We may assume that

$$
\begin{gathered}
\eta \in\left\{\lambda^{2}, \lambda^{2} \alpha_{1}^{2}, \lambda^{2} \alpha_{1}^{4}, \lambda^{2} \alpha_{1}^{6}, \lambda^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}, \lambda^{2} \alpha_{1}^{4} \beta_{1}^{2}, \lambda^{2} \alpha_{1}^{6} \beta_{1}^{2},\right. \\
\left.\lambda^{2} \beta_{1} \beta_{2}, \lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}, \lambda^{2} \alpha_{1}^{4} \beta_{1} \beta_{2}, \lambda^{2} \alpha_{1}^{6} \beta_{1} \beta_{2}\right\} .
\end{gathered}
$$

If $\delta \in \Delta$, then $T_{\eta}(\delta)=\eta \delta^{-1}$, hence

$$
\begin{gathered}
T_{\lambda^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in \Delta ; T_{\lambda^{2} \alpha_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1,3} \beta_{i}^{ \pm 1} \mid i=1, \ldots, p\right\} ; \\
T_{\lambda^{2} \alpha_{1}^{4}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{1,3} \beta_{i}^{ \pm 1} \mid i=1, \ldots, p\right\} \\
T_{\lambda^{2} \alpha_{1}^{\mathrm{G}}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{3} \beta_{i}^{ \pm 1} \mid i=1, \ldots, p\right\} ; \\
T_{\lambda^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1, \pm 3} \beta_{1}\right\} ; T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1,3} \beta_{1}\right\} ; \\
T_{\lambda^{2} \alpha_{1}^{4} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{1,3} \beta_{1}\right\} ; T_{\lambda^{2} \alpha_{1}^{9} \beta_{1}^{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{3} \beta_{1}\right\} ; \\
T_{\lambda^{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1, \pm 3} \beta_{1,2}\right\} ; T_{\lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1,3} \beta_{1,2}\right\} ; \\
T_{\lambda^{2} \alpha_{1}^{4} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{1,3} \beta_{1,2}\right\} ; T_{\lambda^{2} \alpha_{1}^{\beta} \beta_{1} \beta_{2}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{3} \beta_{1,2}\right\}
\end{gathered}
$$

It is clear that

$$
\begin{gathered}
\operatorname{Card}\left(T_{\lambda^{2}}(\Delta) \cap \Delta\right)=\operatorname{Card}(\Delta)=8 p ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2}}(\Delta) \cap \Delta\right)=6 p ; \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{4}}(\Delta) \cap \Delta\right)=4 p ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{6}}(\Delta) \cap \Delta\right)=2 p \\
\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=4 ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=3 ; \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{4} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=2 ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{6} \beta_{1}^{2}}(\Delta) \cap \Delta\right)=1 ; \\
\operatorname{Card}\left(T_{\lambda^{2} \beta_{1} \beta_{2}}(\Delta) \cap \Delta\right)=8 ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1} \beta_{2}}(\Delta) \cap \Delta\right)=6 ; \\
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{4} \beta_{1} \beta_{2}}(\Delta) \cap \Delta\right)=4 ; \quad \operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{6} \beta_{1} \beta_{2}}(\Delta) \cap \Delta\right)=2
\end{gathered}
$$

The $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariance of $\left\{\lambda^{2}\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 2}\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 4}\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 6}\right\}$,

$$
\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\} \cup\left\{\lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 2}\right\}
$$

$$
\begin{gathered}
\left\{\lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 2}\right\} \cup\left\{\lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 2}\right\} \\
\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\},\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}
\end{gathered}
$$

follows from (0.3.1). Since

$$
\left\{\lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}=\left\{\lambda^{2} \alpha_{1}^{ \pm 4}\right\} \cdot\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} \cdot\left\{\lambda^{-2}\right\}
$$

and each factor of this decomposition is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant, we get the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariance of the sets $\left\{\lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}$ and $\left\{\lambda^{2} \beta_{i}^{ \pm 2}\right\}$. The decomposition $\left\{\lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}=\left\{\lambda^{2} \alpha_{1}^{ \pm 6}\right\} \cdot\left\{\lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\} \cdot\left\{\lambda^{-2}\right\}$ gives the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariance of the sets $\left\{\lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1} \mid i \neq j\right\}$ and $\left\{\lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 2}\right\}$. This proves the claim.
2.21. It is evident that the set of all eigenvalues of $\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)$ is equal to $\Delta \cdot \Delta-$ $\left\{\lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 2}\right\}$.

By theorem 0.4 we may assume that p_{v} does not divide $\operatorname{Tr}\left(\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)\right)$. It is evident that this trace is a sum of integers of the following types:

$$
\begin{gathered}
\lambda^{2}, \sum \lambda^{2} \alpha_{1}^{ \pm 2}, \sum \lambda^{2} \alpha_{1}^{ \pm 4}, \sum \lambda^{2} \alpha_{1}^{ \pm 6}, \sum_{i \neq j} \lambda^{2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum_{i \neq j} \lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \\
\sum_{i \neq j} \lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum_{i \neq j} \lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum \lambda^{2} \beta_{i}^{ \pm 2}, \sum \lambda^{2} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 2}, \sum \lambda^{2} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 2} .
\end{gathered}
$$

Hence p_{v} does not divide at least one of the sums above. By the arguments of section 2.12 we prove that

$$
\sum \alpha_{1}^{ \pm 2}, \sum \alpha_{1}^{ \pm 4}, \sum \alpha_{1}^{ \pm 6}
$$

are integers. By the arguments of section 2.13 we prove that

$$
\sum_{i \neq j} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum_{i \neq j} \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum_{i \neq j} \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}, \sum \beta_{i}^{ \pm 2}, \sum \alpha_{1}^{ \pm 2} \beta_{i}^{ \pm 2}, \sum \alpha_{1}^{ \pm 4} \beta_{i}^{ \pm 2}
$$

are integers. The decomposition

$$
\sum_{i \neq j} \lambda^{2} \alpha_{1}^{ \pm 6} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}=\lambda^{2} \cdot\left(\sum \alpha_{1}^{ \pm 6}\right) \cdot\left(\sum_{i \neq j} \beta_{i}^{ \pm 1} \beta_{j}^{ \pm 1}\right)
$$

shows that p_{v} divides the left side. Hence p_{v} divides $\operatorname{Tr}\left(\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)\right)$ contrary to our assumption. This excludes the case ($\left.A_{1} \times D_{p}, E\left(3 \omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right)$.
2.22. Consider the cases (2.8.5)-(2.8.10). It is clear that $\operatorname{dim}_{\bar{@}} W_{q}=p$ and $\operatorname{dim}_{\overline{Q_{8}}} W_{1} \otimes \ldots \otimes W_{q-1}=8$.
2.23. Lemma. In the notations of section 2.7 assume that one of the following conditions hold:

1) S_{1} is a simple simply connected Lie group of type $A_{1}, W_{1}=E\left(7 \omega_{1}^{(1)}\right)$;
2) S_{1} is a simple simply connected Lie group of type $C_{4}, W_{1}=E\left(\omega_{1}^{(1)}\right)$;
3) $S_{1} \times S_{2} \times S_{3}$ is a semisimple simply connected Lie group of type $A_{1} \times A_{1} \times A_{1}$, $W_{1} \otimes W_{2} \otimes W_{3}=E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1}^{(3)}\right)$.

Then the highest weight of S_{q}-module W_{q} is not a radical weight.
2.24. Proof. It is evident that

$$
\Delta=\left\{\lambda \alpha_{i}^{ \pm 1} \mid i=1, \ldots, 4\right\} \cdot\left\{\beta_{j} \mid j=1, \ldots, p\right\}
$$

where $\lambda, \alpha_{1}, \ldots, \alpha_{4}$ correspond to $\mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q-1}$, and $\beta_{1}, \ldots, \beta_{p}$ correspond to S_{q}. We do not suppose that these numbers are multiplicatively independent. Let $\Phi=\left\{\lambda \alpha_{i}^{ \pm 1} \mid i=1, \ldots, 4\right\}, \Psi=\left\{\beta_{j} \mid j=1, \ldots, p\right\}$.

Assume that the highest weight of S_{q}-module W_{q} is a radical weight. In this case 0 is a weight of $\operatorname{Lie}\left(S_{q}\right)$-module $W_{q}[3, \operatorname{ch} .8, \S 7$, exercise 3]. Hence $1 \in \Psi$ and $\Phi \subset \Gamma_{v}$. On the other hand, $\beta_{j}=\left(\lambda \alpha_{1} \beta_{j}\right) /\left(\lambda \alpha_{1}\right) \in \Gamma_{v}$. Hence $\Psi \subset \Gamma_{v}$. We denote by Γ_{Φ} (resp. Γ_{Ψ}) the multiplicative subgroup of Γ_{v} generated by Φ (resp. Ψ). In virtue of (2.5.5)-(2.5.6) Γ_{Φ} and Γ_{Ψ} are torsion-free abelian groups of positive rank.

It is clear that $\operatorname{rank}\left(\Gamma_{\Phi}\right) \leq 1+\operatorname{rank} \mathrm{X}\left(\operatorname{pr}_{1}(T) \times \ldots \times \operatorname{pr}_{q-1}(T)\right), \operatorname{rank}\left(\Gamma_{\Psi}\right) \leq \operatorname{rank}$ $\mathrm{X}\left(\operatorname{pr}_{q}(T)\right), \Gamma_{v} \subset \Gamma_{\Phi} \cdot \Gamma_{\Psi}$. Hence the relations

$$
\begin{gathered}
\operatorname{rank}\left(\Gamma_{v}\right) \leq \operatorname{rank}\left(\Gamma_{\Phi} \cdot \Gamma_{\Psi}\right) \leq \operatorname{rank}\left(\Gamma_{\Phi}\right)+\operatorname{rank}\left(\Gamma_{\Psi}\right) \leq \\
1+\operatorname{rank} \mathrm{X}\left(\operatorname{pr}_{1}(T) \times \ldots \times \operatorname{pr}_{q-1}(T)\right)+\operatorname{rank} \mathrm{X}\left(\operatorname{pr}_{q}(T)\right)=\operatorname{rank} \mathrm{X}(T)= \\
\operatorname{rank} \mathrm{X}\left(T_{v} \otimes \overline{\mathbb{Q}_{l}}\right)=\operatorname{rank}\left(\Gamma_{v}\right)
\end{gathered}
$$

imply the relations

$$
\begin{gather*}
\operatorname{rank}\left(\Gamma_{\Phi}\right)=1+\operatorname{rank} \mathrm{X}\left(\operatorname{pr}_{1}(T) \times \ldots \times \mathrm{pr}_{q-1}(T)\right)= \\
\operatorname{rank} \mathrm{G}_{m} \times S_{1} \times \ldots \times S_{q-1} \geq 2, \tag{2.24.1}\\
\operatorname{rank}\left(\Gamma_{\Psi}\right)=\operatorname{rank} \mathrm{X}\left(\operatorname{pr}_{q}(T)\right)=\operatorname{rank} S_{q}, \tag{2.24.2}\\
\operatorname{rank}\left(\Gamma_{v}\right)=\operatorname{rank}\left(\Gamma_{\Phi} \cdot \Gamma_{\Psi}\right)=\operatorname{rank}\left(\Gamma_{\Phi}\right)+\operatorname{rank}\left(\Gamma_{\Psi}\right) .
\end{gather*}
$$

Hence

$$
\begin{equation*}
\Gamma_{\Phi} \cap \Gamma_{\Psi}=(1) . \tag{2.24.3}
\end{equation*}
$$

Due to $[6$, sect. 5.2$]$ for each $\gamma \in \Delta$ we define $T_{\gamma}^{0}: \Delta \rightarrow \overline{\mathbb{Q}}^{\times}$by the formula $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$. It is evident that for each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\operatorname{Card}\left(T_{\sigma(\gamma)}^{0}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\sigma(\gamma)}^{0}(\sigma(\Delta)) \cap \sigma(\Delta)\right)=\operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right)
$$

and hence for any constant c the set

$$
\begin{equation*}
\left\{\gamma \in \Delta \mid \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right)=c\right\} \text { is } \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \text { - invariant. } \tag{2.24.4}
\end{equation*}
$$

Consider the case (2.23.1). In this situation we may assume that

$$
\Phi=\left\{\lambda \alpha_{1}^{ \pm 1, \pm 3, \pm 5, \pm 7}\right\}
$$

We claim that

$$
\begin{equation*}
\gamma \in\left\{\lambda \alpha_{1}^{ \pm 1}\right\} \Leftrightarrow \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq 7 p \tag{2.24.5}
\end{equation*}
$$

Indeed, we may assume that $\gamma \in\left\{\lambda \alpha_{1} \beta_{i}, \lambda \alpha_{1}^{3} \beta_{i}, \lambda \alpha_{1}^{5} \beta_{i}, \lambda \alpha_{1}^{7} \beta_{i} \mid i=1, \ldots, p\right\}$. For $\delta \in \Delta$ we have $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$. Hence the multiplicative independence of λ, α_{1} (which follows from (2.24.1)) and (2.24.3) imply the relation

$$
T_{\lambda \alpha_{1} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1} \beta_{i}\right)^{2} \cdot \delta^{-1} \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1, \pm 3, \pm 5,7} \cdot \beta_{i}^{2} \cdot \Psi\right\} \cap \Delta
$$

It is evident that

$$
\operatorname{Card}\left(T_{\lambda \alpha_{1} \beta_{i}}^{0}(\Delta) \cap \Delta\right) \geq 7 p \Leftrightarrow \beta_{i}^{2} \cdot \Psi=\Psi
$$

Since $1 \in \Psi$, we have the relation $\left(\beta_{i}^{2} \cdot \Psi=\Psi\right) \Rightarrow\left(\beta_{i}^{2} \in \Psi, \beta_{i}^{3} \in \Psi, \ldots, \beta_{i}^{r} \in \Psi\right.$ for all natural r). Hence β_{i} is a root of unity, $\beta_{i}=1$ because Γ_{Ψ} is torsion-free, $\gamma=\lambda \alpha_{1}$. On the other hand,

$$
T_{\lambda \alpha_{1}^{3} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1}^{3} \beta_{i}\right)^{2} \cdot \delta^{-1} \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1,3,5,7} \cdot \beta_{i}^{2} \cdot \Psi\right\} \cap \Delta
$$

and $\operatorname{Card}\left(T_{\lambda \alpha_{1}^{3} \beta_{i}}^{0}(\Delta) \cap \Delta\right) \leq 5 p$. It is clear that for $r \geq 3 \operatorname{Card}\left(T_{\lambda \alpha_{i}^{r} \beta_{i}}^{0}(\Delta) \cap \Delta\right)<7 p$. So the claim (2.24.5) is proved. In virtue of (2.24.4) the set $\left\{\lambda \alpha_{1}^{ \pm 1}\right\}$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariant. Hence $\lambda \alpha_{1}+\lambda \alpha_{1}^{-1} \in \mathbb{Z}$. Moreover, $\lambda \alpha_{1}+\lambda \alpha_{1}^{-1} \neq 0$: otherwise we would have $\lambda \alpha_{1}=(-1) \lambda \alpha_{1}^{-1} \in \Gamma_{v}$ and $(-1) \in \Gamma_{v}$ contrary to the condition (2.5.5). On the other hand, the absolute value of $\lambda \alpha_{1}+\lambda \alpha_{1}^{-1}$ is less than or equal to $2 \sqrt{p_{v}}$. Hence for $p_{v} \gg 0$ we get the relation $\lambda \alpha_{1}+\lambda \alpha_{1}^{-1} \neq 0\left(\bmod p_{v}\right)$. Then for each place w of $\overline{\mathbb{Q}}$ lying over p_{v}

$$
w\left(\sum \lambda \alpha_{1}^{ \pm 1}\right)=0
$$

It follows that there exists $x_{w} \in\left\{\lambda \alpha_{1}^{ \pm 1}\right\}$ such that $w\left(x_{w}\right)=0$. Hence

$$
\begin{equation*}
0=w\left(x_{w}\right)=\frac{1}{2}\left\{w\left(x_{w} \beta_{j}\right)+w\left(x_{w} \beta_{j}^{-1}\right)\right\} \tag{2.24.6}
\end{equation*}
$$

Since both summands in the last brackets are nonnegative in virtue of the relations $x_{w} \beta_{j}^{ \pm 1} \in \Delta$, we have the equalities

$$
w\left(x_{w} \beta_{j}\right)=w\left(x_{w} \beta_{j}^{-1}\right)=0
$$

So $w\left(\beta_{j}\right)=0$ for all $w \mid p_{v}$. It follows that $\forall j \beta_{j}$ is a root of 1 [23, sublemma 3.4.0] contrary to the relation (2.24.2).

Consider the case (2.23.2). In this situation we may assume that

$$
\Phi=\left\{\lambda \alpha_{i}^{ \pm 1} \mid i=1, \ldots, 4\right\}
$$

where $\lambda, \alpha_{1}, \ldots, \alpha_{4}$ are multiplicatively independent. We claim that

$$
\begin{equation*}
\gamma \in \Phi \Leftrightarrow \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq p \tag{2.24.7}
\end{equation*}
$$

Indeed, we may assume that $\gamma=\lambda \alpha_{1} \beta_{i}, \delta=\lambda \alpha_{j}^{a} \beta_{k}^{b}$, where $a, b \in\{ \pm 1\}$. We have $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$. Hence the multiplicative independence of $\lambda, \alpha_{1}, \ldots, \alpha_{4}$ (which follows from (2.24.1)) and (2.24.3) imply the relation

$$
\begin{gathered}
T_{\lambda \alpha_{1} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1} \beta_{i}\right)^{2} \cdot\left(\lambda \alpha_{j}^{a} \beta_{k}^{b}\right)^{-1}=\lambda \alpha_{1}^{2} \alpha_{j}^{-a} \beta_{i}^{2} \beta_{k}^{-b} \in \Delta \Leftrightarrow \\
\left(\lambda \alpha_{1}^{2} \alpha_{j}^{-a} \in \Phi \text { and } \beta_{i}^{2} \beta_{k}^{-b} \in \Psi\right) \Leftrightarrow\left(\alpha_{j}^{a}=\alpha_{1} \text { and } \beta_{i}^{2} \beta_{k}^{-b} \in \Psi\right) \Leftrightarrow \\
\left(\delta=\lambda \alpha_{1} \beta_{k}^{b} \text { and } \beta_{i}^{2} \beta_{k}^{-b} \in \Psi\right) .
\end{gathered}
$$

It is clear that

$$
\operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq p=\operatorname{Card}(\Psi) \Leftrightarrow \beta_{i}^{2} \cdot \Psi=\Psi
$$

By the arguments above we know that $\beta_{i}^{2} \cdot \Psi=\Psi \Leftrightarrow \beta_{i}=1$. This proves the claim (2.24.7). Moreover, $\Phi=\left\{\gamma \in \Delta \mid \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq p\right\}$ is the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariant set. By the condition (2.5.4) $\operatorname{Tr}\left(\rho_{l}\left(\mathbb{F}_{v}^{-1}\right)\right)=\sum_{\beta \in \Psi}\left(\sum_{x \in \Phi} x\right) \beta \neq 0$. Hence $\sum_{x \in \Phi} x \neq 0$, and the absolute value of this integer is less than or equal to $8 \sqrt{p_{v}}$. For $p_{v} \gg 0$ we get the relation $\sum_{x \in \Phi} x \neq 0\left(\bmod p_{v}\right)$. Then for each place w of $\overline{\mathbb{Q}}$ lying over p_{v}

$$
w\left(\sum_{x \in \Phi} x\right)=0 .
$$

It follows that there exists $x_{w} \in \Phi$ such that $w\left(x_{w}\right)=0$. Hence we get the relation (2.24.6) in the new situation. By the arguments above we know that this relation implies the relation $\operatorname{rank}(\Psi)=0$ contrary to the relation (2.24.2).

Consider the case (2.23.3). In this situation we may assume that

$$
\Phi=\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \alpha_{3}^{ \pm 1} \mid i=1,2,3\right\}
$$

where $\lambda, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are multiplicatively independent. We claim that

$$
\begin{equation*}
\gamma \in \Phi \Leftrightarrow \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq p \tag{2.24.8}
\end{equation*}
$$

Indeed, we may assume that

$$
\gamma=\lambda \alpha_{1} \alpha_{2} \alpha_{3} \beta_{i}, \delta=\lambda \alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}} \beta_{k}^{b},
$$

where $a_{1}, a_{2}, a_{3}, b \in\{ \pm 1\}$. We have $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$. Hence the multiplicative independence of $\lambda, \alpha_{1}, \alpha_{2}, \alpha_{3}$ (which follows from (2.24.1)) and (2.24.3) imply the relation

$$
\begin{gathered}
T_{\lambda \alpha_{1} \alpha_{2} \alpha_{3} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1} \alpha_{2} \alpha_{3} \beta_{i}\right)^{2} \cdot\left(\lambda \alpha_{1}^{a_{1}} \alpha_{2}^{a_{2}} \alpha_{3}^{a_{3}} \beta_{k}^{b}\right)^{-1}=\lambda \alpha_{1}^{2-a_{1}} \alpha_{2}^{2-a_{2}} \alpha_{3}^{2-a_{3}} \beta_{i}^{2} \beta_{k}^{-b} \in \Delta \\
\Leftrightarrow\left(\lambda \alpha_{1}^{2-a_{1}} \alpha_{2}^{2-a_{2}} \alpha_{3}^{2-a_{3}} \in \Phi \text { and } \beta_{i}^{2} \beta_{k}^{-b} \in \Psi\right) \\
\Leftrightarrow\left(\alpha_{j}^{a_{j}}=\alpha_{j} \text { for all } j \text { and } \beta_{i}^{2} \beta_{k}^{-b} \in \Psi\right) \\
\Leftrightarrow\left(\delta=\lambda \alpha_{1} \alpha_{2} \alpha_{3} \beta_{k}^{b} \text { and } \beta_{i}^{2} \beta_{k}^{-b} \in \Psi\right) .
\end{gathered}
$$

It is clear that

$$
\operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq p=\operatorname{Card}(\Psi) \Leftrightarrow \beta_{i}^{2} \cdot \Psi=\Psi
$$

By the arguments above we know that $\beta_{i}^{2} \cdot \Psi=\Psi \Leftrightarrow \beta_{i}=1$. This proves the claim (2.24.8). Moreover, $\Phi=\left\{\gamma \in \Delta \mid \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq p\right\}$ is the $\mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set. We obtain the contradiction by the same arguments as before. Lemma 2.23 is proved.

Thus the cases (2.8.5)-(2.8.10) are excluded.
2.25. Consider the case
$\left(A_{1} \times A_{1} \times A_{1}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+(2 p-1) \omega_{1}^{(3)}\right)\right)=\left(D_{2} \times A_{1}, E\left(\omega_{1}^{(1)}+(2 p-1) \omega_{1}^{(2)}\right)\right)$.
In virtue of (2.5.6) we may assume that $\Delta=\left\{\lambda \alpha_{1,2}^{ \pm 1} \beta_{1}^{ \pm 1, \pm 3, \ldots, \pm(2 p-1)}\right\}$, where $\lambda, \alpha_{1}, \alpha_{2}, \beta_{1}$ are multiplicatively independent.
2.26. Lemma. For each natural number $m(0 \leq m \leq 2 p-1)$ the following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant:

$$
\left\{\lambda^{2} \beta_{1}^{ \pm 2 m}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{1}^{ \pm 2 m}\right\} ;\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{1}^{ \pm 2 m}\right\}
$$

Moreover, $\lambda^{2}= \pm p_{v}$.
Proof. Let $\eta \in \Delta \cdot \Delta$. We may assume that

$$
\eta \in\left\{\lambda^{2} \beta_{1}^{2 m}, \lambda^{2} \alpha_{1}^{2} \beta_{1}^{2 m}, \lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2 m}\right\} .
$$

If $\delta \in \Delta$, then $T_{\eta}(\delta)=\eta \delta^{-1}$, hence
$T_{\lambda^{2} \beta_{1}^{2 m}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2}^{ \pm 1} \beta_{1}^{r} \mid r\right.$ is an odd integer, $\left.|r| \leq 2 p-1,|2 m-r| \leq 2 p-1\right\}$,

$$
\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{2 m}}(\Delta) \cap \Delta\right)=8 p-4 m ;
$$

$T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2 m}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{1}^{r} \mid r\right.$ is an odd integer, $\left.|r| \leq 2 p-1,|2 m-r| \leq 2 p-1\right\}$,
$\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2 m}}(\Delta) \cap \Delta\right)=2 p-m ;$
$T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2 m}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1,2} \beta_{1}^{r} \mid\right.$
r is an odd integer, $|r| \leq 2 p-1,|2 m-r| \leq 2 p-1\}$,
$\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1} \alpha_{2} \beta_{1}^{2 m}}(\Delta) \cap \Delta\right)=4 p-2 m$.
It is easy to see that

$$
\begin{aligned}
\eta \in\left\{\lambda^{2}\right\} & \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=8 p \\
\eta \in\left\{\lambda^{2} \beta_{1}^{ \pm 2}\right\} & \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=8 p-4 .
\end{aligned}
$$

In virtue of (0.3.1) $\left\{\lambda^{2}\right\}$ and $\left\{\lambda^{2} \beta_{1}^{ \pm 2}\right\}$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant sets. The relation $\lambda^{2}= \pm p_{v}$ follows from the fact that $\lambda^{2} \in \mathbb{Q}$ is of absolute value p_{v}. Moreover, $\left\{\beta_{1}^{ \pm 2}\right\}$ is a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set. Hence $\left\{\beta_{1}^{ \pm 2 m}\right\}$ is a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set for each natural m.

On the other hand,

$$
\eta \in\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}, \lambda^{2} \beta_{1}^{ \pm 2 p}\right\} \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=4 p
$$

Since $\left\{\lambda^{2} \beta_{1}^{ \pm 2 p}\right\}$ is a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set, we see that $\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\}$ is also invariant under the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.

It is clear that

$$
\eta \in\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2}, \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{1}^{ \pm 2 p}\right\} \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=2 p
$$

Since $\left\{\lambda^{2} \beta_{1}^{ \pm 2 p}\right\}$ and $\left\{\lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\}$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant sets, we see that $\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2}\right\}$ is also $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant. Lemma 2.26 is proved.
2.27. It is evident that the set of all eigenvalues of $\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)$ is equal to $\Delta \cdot \Delta-$ $\left\{\lambda^{2} \alpha_{1,2}^{ \pm 2} \beta_{1}^{ \pm(4 p-2)}\right\}$.

By theorem 0.4 we may assume that p_{v} does not divide $\operatorname{Tr}\left(\rho_{l}^{\wedge}{ }^{2}\left(F_{\bar{v}}{ }^{-1}\right)\right)$. It is evident that this trace is a sum of integers of the following types:

$$
\begin{gathered}
\lambda^{2}, \sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}, \sum \lambda^{2} \alpha_{1,2}^{ \pm 2} \\
\lambda^{2}\left(\beta_{1}^{2 m}+\beta_{1}^{-2 m}\right),\left(\sum \lambda^{2} \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right)\left(\beta_{1}^{2 m}+\beta_{1}^{-2 m}\right)(1 \leq m \leq 2 p-1) \\
\left(\sum \lambda^{2} \alpha_{1,2}^{ \pm 2}\right)\left(\beta_{1}^{2 m}+\beta_{1}^{-2 m}\right)(1 \leq m \leq 2 p-2)
\end{gathered}
$$

Hence p_{v} does not divide at least one of the sums above. By the arguments of sections 2.12-2.13 we prove that

$$
\sum \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}, \sum \alpha_{1,2}^{ \pm 2},\left(\beta_{1}^{2 m}+\beta_{1}^{-2 m}\right)(1 \leq m \leq 2 p-1)
$$

are integers. Hence p_{v} divides $\operatorname{Tr}\left(\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)\right)$ contrary to our assumption. This excludes the case ($A_{1} \times A_{1} \times A_{1}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+(2 p-1) \omega_{1}^{(3)}\right)$).
2.28. Now we may assume that $\operatorname{End}^{0}(J \otimes \bar{k})$ is a quaternion division algebra over \mathbb{Q}. This case is completely investigated in $[20$, th.1.16, th.1.17]. Theorem 0.7 is proved.

§3. On the l-adic representation associated to an abelian variety of the 4th type by Albert's classification

3.1. We give here a proof of theorem 0.9. After replacing k by some finite extension we may assume that for J the conditions (2.5.1)-(2.5.6) hold. In this case $G_{V_{l}}=S_{V_{i}} \mathrm{G}_{m}$, where $S_{V_{l}}$ is the connected component of the identity of $G_{V_{l}} \cap \mathrm{SL}\left(V_{l}\right)$. By G.Faltings results [8]

$$
\begin{equation*}
\operatorname{End}_{S_{V_{l}}}\left(V_{l}\right)=\operatorname{End}_{G_{V_{l}}}\left(V_{l}\right) \simeq \operatorname{End}(J) \otimes \mathbb{Q}_{l} \tag{3.1.1}
\end{equation*}
$$

By the well known Tate theorems [22, th.3, th.4] this relation implies

$$
\begin{equation*}
1=\operatorname{rank} \mathrm{NS}(J)=\operatorname{dim}\left(\wedge^{2} V_{l}\right)^{S_{V_{t}}} \tag{3.1.2}
\end{equation*}
$$

Schur's lemma and (3.1.1)-(3.1.2) give the decomposition $V_{l} \otimes \overline{\mathbb{Q}_{l}}=U \oplus U^{*}$, where U and U^{*} are $4 p$-dimensional irreducible nonisomorphic dual Lie $S_{V_{l}} \otimes \overline{\mathbb{Q}_{l}}$-moduli,

$$
\begin{equation*}
\operatorname{dim}_{d} \operatorname{Cent}\left(\operatorname{Lie}\left(S_{V_{l}}\right)\right) \leq 1 \tag{3.1.3}
\end{equation*}
$$

3.2. Theorem 2.2 and the inequality $p \geq 17$ imply that the pair (type of $g_{l}^{s s} \otimes$ $\left.\overline{\mathbb{Q}_{l}}, U\right)$ assumes one of the following values:

$$
\begin{gather*}
\left(A_{4 p-1}, E\left(\omega_{1,4 p-1}\right)\right) ; \tag{3.2.1}\\
\left(D_{2 p}, E\left(\omega_{1}\right)\right) ; \tag{3.2.2}\\
\left(C_{2 p}, E\left(\omega_{1}\right)\right) ; \tag{3.2.3}\\
\left(A_{1}, E\left((4 p-1) \omega_{1}\right)\right) ; \tag{3.2.4}\\
\left(A_{1} \times C_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right) ; \tag{3.2.5}\\
\left(A_{1} \times D_{p}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right) ; \tag{3.2.6}\\
\left(A_{1} \times A_{1}, E\left(\omega_{1}^{(1)}+(2 p-1) \omega_{1}^{(2)}\right)\right) ; \tag{3.2.7}\\
\left(A_{1} \times A_{1} \times A_{1}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+(p-1) \omega_{1}^{(3)}\right)\right) ; \tag{3.2.8}\\
\left(A_{1} \times A_{1} \times B_{(p-1) / 2}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1}^{(3)}\right)\right) ; \tag{3.2.9}\\
\left(A_{1} \times A_{1}, E\left(3 \omega_{1}^{(1)}+(p-1) \omega_{1}^{(2)}\right)\right) ; \tag{3.2.10}\\
\left(A_{1} \times B_{(p-1) / 2}, E\left(3 \omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right) ; \tag{3.2.11}\\
\left(C_{2} \times A_{1}, E\left(\omega_{1}^{(1)}+(p-1) \omega_{1}^{(2)}\right)\right) ; \tag{3.2.12}\\
\left(C_{2} \times B_{(p-1) / 2}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)\right) ; \tag{3.2.13}\\
\left(A_{1} \times A_{2 p-1}, E\left(\omega_{1}^{(1)}+\omega_{1,2 p-1}^{(2)}\right)\right) ; \tag{3.2.14}\\
\left(A_{1} \times A_{1} \times A_{p-1}, E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}+\omega_{1, p-1}^{(3)}\right)\right) ; \tag{3.2.15}\\
\left(C_{2} \times A_{p-1}, E\left(\omega_{1}^{(1)}+\omega_{1, p-1}^{(2)}\right)\right) ; \tag{3.2.16}\\
\left(A_{1} \times A_{p-1}, E\left(3 \omega_{1}^{(1)}+\omega_{1, p-1}^{(2)}\right)\right) ; \tag{3.2.17}\\
\left(A_{3} \times A_{1}, E\left(\omega_{1,3}^{(1)}+(p-1) \omega_{1}^{(2)}\right)\right) ; \tag{3.2.18}\\
\left(A_{3} \times B_{(p-1) / 2}, E\left(\omega_{1,3}^{(1)}+\omega_{1}^{(2)}\right)\right) ; \tag{3.2.19}\\
\left(A_{3} \times A_{p-1}, E\left(\omega_{1,3}^{(1)}+\omega_{1, p-1}^{(2)}\right)\right) ; \tag{3.2.20}
\end{gather*}
$$

3.3. Consider the case (3.2.1). We see that $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$ is the Lie algebra of type $A_{4 p-1}$ and Lie $\operatorname{Hg}\left(J_{\mathbf{C}}\right) \otimes \overline{\mathbb{Q}_{l}} \subset g l(U)$. By Piatetski-Shapiro -Deligne - Borovoi theorem [14], [2] there exists a canonical embedding •

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \subset \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbb{C}}\right)\left(\mathbb{Q}_{l}\right)\right]=\mathbb{Q}_{l} \times \operatorname{Lie}\left[\operatorname{Hg}\left(J_{\mathbb{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

So there exists a canonical isomorphism of semisimple parts

$$
\begin{equation*}
\left[\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right)\right]^{s s} \simeq\left[\operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathrm{C}}\right)\left(\mathbb{Q}_{l}\right)\right]\right]^{s s} . \tag{3.3.1}
\end{equation*}
$$

Moreover, if $n_{\sigma} \neq 2 p$ then $n_{\sigma} \neq n_{\tau}$ and $\operatorname{dim}_{\mathbb{Q}_{\mathscr{G}}} \operatorname{Cent}\left(G_{V_{l}}\right) \geq 2[5$, sect.3.1, step 3]. Hence the isomorphism (3.3.1) extends to the isomorphism

$$
\operatorname{Lie} \operatorname{Im}\left(\rho_{l}\right) \simeq \operatorname{Lie}\left[\operatorname{MT}\left(J_{\mathbf{C}}\right)\left(\mathbb{Q}_{l}\right)\right]
$$

So the Mumford - Tate conjecture holds for $J, \operatorname{dim} \operatorname{Cent}\left(S_{V_{1}}\right)=1=\operatorname{dim}_{\mathbb{Q}}$ $\operatorname{Cent}\left[\operatorname{Hg}\left(J_{\mathbb{C}}\right)\left(\mathbb{Q}_{l}\right)\right]$. Hence

$$
\operatorname{dim}_{\mathbb{O}} H_{e t}^{2 r}\left(J \otimes \bar{k}, \mathbb{Q}_{l}(r)\right)^{\operatorname{Gal}(\bar{k} / k)} \leq 1
$$

[19, th.1.1]. It follows that the \mathbb{Q}_{l}-space $H_{e t}^{2 r}\left(J \otimes \bar{k}, \mathbb{Q}_{l}(r)\right)^{\mathrm{Gal}(\bar{k} / k)}$ is spanned by the cohomology classes of intersections of divisors.
3.4. We want to exclude all cases (3.2.2)-(3.2.19) by the following procedure.

First of all we note that in cases (3.2.2)-(3.2.13) there exists an isomorphism of $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$-moduli $U \simeq U^{*}$. Hence the relation (3.1.3) implies the relations

$$
\begin{equation*}
U=E(\omega)(\chi), U^{*}=E(\omega)(-\chi) \tag{3.4.1}
\end{equation*}
$$

where ω is the highest weight of $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{l}}$-module U and $\chi \neq 0$ is the highest weight of $\operatorname{Cent}\left(\operatorname{Lie}\left(S_{V_{l}} \otimes \overline{\mathbb{Q}_{l}}\right)\right.$-module U.
3.5. Consider the cases (3.2.2)-(3.2.3). It follows from (3.4.1) that

$$
\Delta=\left\{\lambda \alpha_{1}^{ \pm 1} \beta_{i}^{ \pm 1} \mid i=1, \ldots, 2 p\right\},
$$

where $\lambda, \alpha_{1}, \beta_{1}, \ldots, \beta_{2 p}$ are multiplicatively independent. Hence the structure of Δ in these cases coincides with the structure of Δ in the case (2.8.3). This excludes the cases (3.2.2)-(3.2.3).
3.6. Consider the case (3.2.4). In virtue of (3.4.1) we may assume that $\Delta=$ $\left\{\lambda \alpha_{1}^{ \pm 1} \beta_{1}^{ \pm 1, \pm 3, \ldots, \pm(4 p-1)}\right\}$, where $\lambda, \alpha_{1}, \beta_{1}$ are multiplicatively independent.
3.7. Lemma. For each natural number $m(0 \leq m \leq 4 p-1)$ the following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant:

$$
\left\{\lambda^{2} \beta_{1}^{ \pm 2 m}\right\} ;\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{1}^{ \pm 2 m}\right\}
$$

Moreover, $\lambda^{2}= \pm p_{v}$.
Proof. Let $\eta \in \Delta \cdot \Delta$. We may assume that

$$
\eta \in\left\{\lambda^{2} \beta_{1}^{2 m}, \lambda^{2} \alpha_{1}^{2} \beta_{1}^{2 m}\right\} .
$$

If $\delta \in \Delta$, then $T_{\eta}(\delta)=\eta \delta^{-1}$, hence
$T_{\lambda^{2} \beta_{1}^{2 m}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1}^{ \pm 1} \beta_{1}^{r} \mid r\right.$ is an odd integer, $\left.|r| \leq 4 p-1,|2 m-r| \leq 4 p-1\right\}$,

$$
\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{2 m}}(\Delta) \cap \Delta\right)=8 p-2 m ;
$$

$T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2 m}}(\delta) \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \beta_{1}^{r} \mid r\right.$ is an odd integer, $\left.|r| \leq 4 p-1,|2 m-r| \leq 4 p-1\right\}$,

$$
\operatorname{Card}\left(T_{\lambda^{2} \alpha_{1}^{2} \beta_{1}^{2 m}}(\Delta) \cap \Delta\right)=4 p-m
$$

It is easy to see that

$$
\begin{aligned}
\eta \in\left\{\lambda^{2}\right\} & \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=8 p, \\
\eta \in\left\{\lambda^{2} \beta_{1}^{ \pm 2}\right\} & \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=8 p-2 .
\end{aligned}
$$

In virtue of (0.3.1) $\left\{\lambda^{2}\right\}$ and $\left\{\lambda^{2} \beta_{1}^{ \pm 2}\right\}$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant sets. The relation $\lambda^{2}= \pm p_{v}$ follows from the fact that $\lambda^{2} \in \mathbb{Q}$ is of absolute value p_{v}. Moreover, $\left\{\beta_{1}^{ \pm 2}\right\}$ is a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set. Hence $\left\{\beta_{1}^{ \pm 2 m}\right\}$ is a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set for each natural m.

On the other hand,

$$
\eta \in\left\{\lambda^{2} \alpha_{1}^{ \pm 2}, \lambda^{2} \beta_{1}^{ \pm 4 p}\right\} \Leftrightarrow \operatorname{Card}\left(T_{\eta}(\Delta) \cap \Delta\right)=4 p
$$

Since $\left\{\lambda^{2} \beta_{1}^{ \pm 4 p}\right\}$ is a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set, we see that $\left\{\lambda^{2} \alpha_{1}^{ \pm 2}\right\}$ is also $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariant. Hence $\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{1}^{ \pm 2 m}\right\}$ is a $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant set. Lemma 3.7 is proved.
3.8. It is evident that the set of all eigenvalues of $\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)$ is equal to $\Delta \cdot \Delta-$ $\left\{\lambda^{2} \alpha_{1}^{ \pm 2} \beta_{1}^{ \pm(8 p-2)}\right\}$.

By theorem 0.4 we may assume that p_{v} does not divide $\operatorname{Tr}\left(\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)\right)$. It is evident that this trace is a sum of integers of the following types:

$$
\begin{gathered}
\lambda^{2}, \sum \lambda^{2} \alpha_{1}^{ \pm 2}, \lambda^{2}\left(\beta_{1}^{2 m}+\beta_{1}^{-2 m}\right),(1 \leq m \leq 4 p-1) \\
\left(\sum \lambda^{2} \alpha_{1}^{ \pm 2}\right)\left(\beta_{1}^{2 m}+\beta_{1}^{-2 m}\right)(1 \leq m \leq 4 p-2)
\end{gathered}
$$

Hence p_{v} does not divide at least one of the sums above. By the arguments of sections 2.12-2.13 we prove that

$$
\sum \alpha_{1}^{ \pm 2},\left(\beta_{1}^{2 m}+\beta_{1}^{-2 m}\right)(1 \leq m \leq 4 p-1)
$$

are integers. Hence p_{v} divides $\operatorname{Tr}\left(\rho_{l}^{\wedge^{2}}\left(F_{\bar{v}}^{-1}\right)\right)$ contrary to our assumption. This excludes the case (3.2.4).
3.9. Consider the cases (3.2.5), (3.2.6). In virtue of (3.4.1) we may assume that $\Delta=\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{i}^{ \pm 1} \mid i=1, \ldots, p\right\}$, where $\lambda, \alpha_{1}, \alpha_{2}, \beta_{1}, \ldots, \beta_{p}$ are multiplicatively independent. Let $\gamma_{1}=\alpha_{1} \alpha_{2}, \gamma_{2}=\alpha_{1}^{-1} \alpha_{2}$. It is evident that $\Delta=\left\{\lambda \gamma_{1,2}^{ \pm 1} \beta_{i}^{ \pm 1} \mid i=\right.$ $1, \ldots, p\}$, where $\lambda, \gamma_{1}, \gamma_{2}, \beta_{1}, \ldots, \beta_{p}$ are multiplicatively independent. Hence the structure of Δ is identical to the structure of Δ in the case (2.8.1). This excludes the cases (3.2.5),(3.2.6).
3.10. Consider the case (3.2.7). In virtue of (3.4.1) we may assume that $\Delta=$ $\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \beta_{1}^{ \pm 1, \pm 3, \ldots, \pm(2 p-1)}\right\}$, where $\lambda, \alpha_{1}, \alpha_{2}, \beta_{1}$ are multiplicatively independent. Let $\gamma_{1}=\alpha_{1} \alpha_{2}, \gamma_{2}=\alpha_{1}^{-1} \alpha_{2}$. It is evident that $\Delta=\left\{\lambda \gamma_{1,2}^{ \pm 1} \beta_{1}^{ \pm 1, \pm 3, \ldots, \pm(2 p-1)}\right\}$, where $\lambda, \gamma_{1}, \gamma_{2}, \beta_{1}$ are multiplicatively independent. Hence we may exclude this case by the arguments of sections 2.26-2.27.
3.11. Consider the cases (3.2.8), (3.2.9). In this situation we may assume that $\Phi=\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \alpha_{3}^{ \pm 1}\right\}$, where $\lambda, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are multiplicatively independent, $\Psi=$ $\left\{\beta_{j} \mid j=1, \ldots, p\right\}$. We may exclude the cases (3.2.8)-(3.2.9) by the arguments of section 2.24 .
3.12. Consider the cases (3.2.10)-(3.2.11). In virtue of (3.4.1) we may assume that $\Delta=\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1, \pm 3}\right\} \cdot\left\{\beta_{1}, \ldots, \beta_{p}\right\}$, where $\lambda, \alpha_{1}, \alpha_{2}$ are multiplicatively independent, $1 \in\left\{\beta_{1}, \ldots, \beta_{p}\right\}$. Let $\Phi=\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1, \pm 3}\right\}, \Psi=\left\{\beta_{1}, \ldots, \beta_{p}\right\}$. We know that $1 \in \Psi$. Hence $\Phi \subset \Gamma_{v}, \Psi \subset \Gamma_{v}$. In the notations of section 2.24 we have: Γ_{Φ} and Γ_{Ψ} are torsion-free abelian groups of positive rank,

$$
\begin{equation*}
\Gamma_{\Phi} \cap \Gamma_{\Psi}=(1) . \tag{3.12.1}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\gamma \in\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\} \Leftrightarrow \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq 3 p \tag{3.12.2}
\end{equation*}
$$

Indeed, we may assume that $\gamma \in\left\{\lambda \alpha_{1} \alpha_{2} \beta_{i}, \lambda \alpha_{1} \alpha_{2}^{3} \beta_{i} \mid i=1, \ldots, p\right\}$. For $\delta \in \Delta$ we have $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$. Hence the multiplicative independence of $\lambda, \alpha_{1}, \alpha_{2}$ and (3.12.1) imply the relation

$$
T_{\lambda \alpha_{1} \alpha_{2} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1} \alpha_{2} \beta_{i}\right)^{2} \cdot \delta^{-1} \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \alpha_{2}^{ \pm 1,3} \cdot \beta_{i}^{2} \cdot \Psi\right\} \cap \Delta .
$$

It is evident that

$$
\operatorname{Card}\left(T_{\lambda \alpha_{1} \alpha_{2} \beta_{i}}^{0}(\Delta) \cap \Delta\right) \geq 3 p \Leftrightarrow \beta_{i}^{2} \cdot \Psi=\Psi
$$

From the arguments of section 2.24 it follows that the relation $\beta_{i}^{2} \cdot \Psi=\Psi$ implies $\beta_{i}=1$. Hence $\gamma=\lambda \alpha_{1} \alpha_{2}$. On the other hand,

$$
T_{\lambda \alpha_{1} \alpha_{2}^{3} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1} \alpha_{2}^{3} \beta_{i}\right)^{2} \cdot \delta^{-1} \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \alpha_{2}^{3} \cdot \beta_{i}^{2} \cdot \Psi\right\} \cap \Delta
$$

and $\operatorname{Card}\left(T_{\lambda \alpha_{1} \alpha_{2}^{3} \beta_{i}}^{0}(\Delta) \cap \Delta\right) \leq p$. So the claim (3.12.2) is proved. In virtue of (2.24.4) the set $\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\}$ is $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-invariant. Hence $\sum \lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \in \mathbb{Z}$. Moreover, $\sum \lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \neq 0$: otherwise we would have

$$
0=\lambda\left(\alpha_{1}+\alpha_{1}^{-1}\right)\left(\alpha_{2}+\alpha_{2}^{-1}\right)
$$

and hence $\alpha_{1}=-\alpha_{1}^{-1}$ or $\alpha_{2}=-\alpha_{2}^{-1}$; assume, for example, that $\alpha_{1}=-\alpha_{1}^{-1}$; then

$$
\lambda \alpha_{1} \alpha_{2}=-\lambda \alpha_{1}^{-1} \alpha_{2} \in \Delta, \lambda \alpha_{1}^{-1} \alpha_{2} \in \Delta,-1=\lambda \alpha_{1} \alpha_{2} /\left(\lambda \alpha_{1}^{-1} \alpha_{2}\right) \in \Gamma_{v}
$$

contrary to the condition (2.5.5).
On the other hand, the absolute value of $\sum \lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}$ is less than or equal to $4 \sqrt{p_{v}}$. Hence for $p_{v} \gg 0$ we get the relation $\sum \lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1} \neq 0\left(\bmod p_{v}\right)$. Then for each place w of $\overline{\mathbb{Q}}$ lying over p_{v}

$$
w\left(\sum \lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right)=0
$$

It follows that there exists $x_{w} \in\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2}^{ \pm 1}\right\}$ such that $w\left(x_{w}\right)=0$. Hence we obtain the relation (2.24.6) in the new situation. It follows that $\forall j \beta_{j}$ is a root of 1 contrary to the relation $\operatorname{rank}\left(\Gamma_{\Psi}\right) \geq 1$. Thus the cases (3.2.10)-(3.2.11) are excluded.
3.13. Consider the cases (3.2.12)-(3.2.13). In virtue of (3.4.1) we may assume that $\Delta=\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2,3}^{ \pm 1}\right\} \cdot\left\{\beta_{1}, \ldots, \beta_{p}\right\}$, where $\lambda, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are multiplicatively independent, $1 \in\left\{\beta_{1}, \ldots, \beta_{p}\right\}$. Let $\Phi=\left\{\lambda \alpha_{1}^{ \pm 1} \alpha_{2,3}^{ \pm 1}\right\}, \Psi=\left\{\beta_{1}, \ldots, \beta_{p}\right\}$. In the notations of section 2.24 we have: Γ_{Φ} and Γ_{Ψ} are torsion-free abelian groups of positive rank,

$$
\begin{equation*}
\Gamma_{\Phi} \cap \Gamma_{\Psi}=(1) . \tag{3.13.1}
\end{equation*}
$$

We claim that the relation (2.24.8) is true in this new situation. Indeed, we may assume that $\gamma \in\left\{\lambda \alpha_{1} \alpha_{2} \beta_{i} \mid i=1, \ldots, p\right\}$. For $\delta \in \Delta$ we have $T_{\gamma}^{0}(\delta)=\gamma^{2} \delta^{-1}$. Hence the multiplicative independence of $\lambda, \alpha_{1}, \alpha_{2}, \alpha_{3}$ and (3.13.1) imply the relation

$$
T_{\lambda \alpha_{1} \alpha_{2} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1} \alpha_{2} \beta_{i}\right)^{2} \cdot \delta^{-1} \in \Delta \Leftrightarrow \delta \in\left\{\lambda \alpha_{1} \alpha_{2} \cdot \beta_{i}^{2} \cdot \Psi\right\} \cap \Delta
$$

It is easy to see that

$$
\operatorname{Card}\left(T_{\lambda \alpha_{1} \alpha_{2} \beta_{i}}^{0}(\Delta) \cap \Delta\right) \geq p \Leftrightarrow \beta_{i}^{2} \cdot \Psi=\Psi \Leftrightarrow \beta_{i}=1 .
$$

Hence the claim (2.24.8) is proved. Thus we may exclude the cases (3.2.12)-(3.2.13) by the arguments of section 2.24 .
3.14. Consider the case (3.2.14). We may assume that $U=E\left(\omega_{1}^{(1)}+\omega_{1}^{(2)}\right)(\chi)$, $U^{*}=E\left(\omega_{1}^{(1)}+\omega_{2 p-1}^{(2)}\right)(-\chi)$, where χ is the highest weight of $\operatorname{Cent}\left(\operatorname{Lie}\left(S_{V_{l}} \otimes \overline{\mathbb{Q}_{l}}\right)\right)$ module U. After replacing p by $2 p$ we may use the arguments of [19, sect.4.20-4.26] in order to exclude this variant.
3.15. Consider the cases (3.2.15)-(3.2.16).

Assume, for example, that $\chi \neq 0$. In this situation

$$
\begin{aligned}
\Delta= & \left\{\lambda \alpha_{1} \beta_{1,2}^{ \pm 1}\right\} \cdot\left\{\delta_{1}, \ldots, \delta_{p-1},\left(\delta_{1} \delta_{2} \ldots \delta_{p-1}\right)^{-1}\right\} \cup \\
& \left.\left\{\lambda \alpha_{1}^{-1} \beta_{1,2}^{ \pm 1}\right\} \cdot\left\{\delta_{1}^{-1}, \ldots, \delta_{p-1}^{-1}, \delta_{1} \delta_{2} \ldots \delta_{p-1}\right)\right\}
\end{aligned}
$$

where $\lambda, \alpha_{1}, \beta_{1}, \beta_{2}, \delta_{1}, \ldots, \delta_{p-1}$ are multiplicatively independent. The next lemma follows from (0.3.1).
3.16. Lemma. The following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$)-invariant:

$$
\begin{gathered}
\left\{\lambda^{2}\right\} ;\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\right\} ;\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\right\} ; \\
\left\{\lambda^{2} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} ;
\end{gathered}
$$

$$
\begin{gathered}
\left\{\lambda^{2} \beta_{1,2}^{ \pm 2} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\},
\end{gathered}
$$

where δ_{i}^{\wedge} means that δ_{i} is omited. Moreover $\lambda^{2}= \pm p_{v}$.
Indeed, it is easy to see that

$$
\operatorname{Card}\left(T_{\lambda^{2}}(\Delta) \cap \Delta\right)=8 p
$$

$$
\begin{aligned}
& \operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}}(\Delta) \cap \Delta\right)=4 p \\
& \quad \operatorname{Card}\left(T_{\lambda^{2} \beta_{1,2}^{ \pm 2}}(\Delta) \cap \Delta\right)=2 p
\end{aligned}
$$

$$
\operatorname{Card}\left(T_{\lambda^{2} \delta_{i} \delta_{j}^{-1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=
$$

$$
\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{\hat{i}}^{\hat{1}} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=8
$$

$\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm} \delta_{i} \delta_{j}^{-1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=$ $\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\hat{i}} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=$ $4=\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\left.\lambda^{2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}(\Delta) \cap \Delta\right) ; ~}\right.$
$\operatorname{Card}\left(T_{\lambda^{2} \beta_{1,2}^{ \pm} \delta_{i} \delta_{j}^{-1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=$
$\operatorname{Card}\left(T_{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=$

$$
2=\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right) ;
$$

$\operatorname{Card}\left(T_{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2} \delta_{\mathrm{i}}^{2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=1$.
Then we may use some decompositions which are similar to the decompositions of section 2.10.
3.17. It is evident that the set of all eigenvalues of $\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)$ is equal to $\Delta \cdot \Delta-$ $\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\}-\left\{\lambda^{2} \beta_{1,2}^{ \pm 2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\}$.

By theorem 0.4 we may assume that p_{v} does not divide $\operatorname{Tr}\left(\rho_{l}^{\wedge^{2}}\left(F_{\bar{v}}^{-1}\right)\right)$. The symmetry implies that the multiplicity of $\eta \in\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\right\}$ as an eigenvalue of $\rho_{l}^{\wedge}\left(F_{\bar{v}}^{-1}\right)$ is independent of the choice of η. This is valid for another $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ invariant subsets which are defined in the statement of lemma 3.16. We deduce from this lemma that $\operatorname{Tr}\left(\rho_{l}^{\wedge^{2}}\left(F_{\bar{v}}^{-1}\right)\right)$ is a sum of integers of the following types:

$$
\lambda^{2}, \sum \lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}, \ldots, \sum \lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}+\sum \lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1} .
$$

Hence p_{v} does not divide at least one of the sums above.
Assume that p_{v} does not divide $\sum \lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}$. Then for each place w of $\overline{\mathbb{Q}}$ lying over p_{v} there exists $x_{w} \in\left\{\lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\right\}$ such that $w\left(x_{w}\right)=0$. Hence

$$
0=w\left(x_{w}\right)=\frac{1}{2}\left\{w\left(x_{w} \delta_{1} \delta_{2}^{-1}\right)+w\left(x_{w} \delta_{1}^{-1} \delta_{2}\right)\right\}
$$

Since both summands in the last brackets are nonnegative in virtue of the relations $x_{w}\left(\delta_{1} \delta_{2}^{-1}\right)^{ \pm 1} \in \Delta \cdot \Delta$, we have the equalities

$$
w\left(x_{w} \delta_{1} \delta_{2}^{-1}\right)=w\left(x_{w} \delta_{1}^{-1} \delta_{2}\right)=0
$$

So $w\left(\delta_{1} \delta_{2}^{-1}\right)=0$ for all $w \mid p_{v}$. It follows that $\delta_{1} \delta_{2}^{-1}$ is a root of 1 [23, sublemma 3.4.0] contrary to the assumption that δ_{1}, δ_{2} are multiplicatively independent.

Hence p_{v} divides $\sum \lambda^{2} \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}$. From the relation $\lambda^{2}= \pm p_{v}$ we deduce that $\sum \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}$ is an integer.

By the similar arguments we prove that $\sum \beta_{1,2}^{ \pm 2}$ is an integer.
Using the relation

$$
w\left(x_{w}\right)=\frac{1}{2}\left\{w\left(x_{w} \beta_{1}^{2}\right)+w\left(x_{w} \beta_{1}^{-2}\right)\right\}
$$

for $x_{w} \in\left\{\lambda^{2} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup$ $\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\}$ we deduce that

$$
\sum_{i \neq j} \delta_{i} \delta_{j}^{-1}+\sum\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}+\sum_{i \neq j}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1}+\sum\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}
$$

is an integer. By the similar arguments we show that

$$
\sum\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}+\sum\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}
$$

is an integer. Hence $\sum \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}+\sum \beta_{1}^{ \pm 1} \beta_{2}^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}$ is an integer. Thus p_{v} divides $\operatorname{Tr}\left(\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)\right)$ contrary to our assumptions. We may exclude the case $\chi=0$ by the same arguments.
3.18. Consider the case (3.2.17). Assume, for example, that $\chi \neq 0$. In this situation

$$
\begin{aligned}
\Delta= & \left\{\lambda \alpha_{1} \beta_{1}^{ \pm 1, \pm 3}\right\} \cdot\left\{\delta_{1}, \ldots, \delta_{p-1},\left(\delta_{1} \delta_{2} \ldots \delta_{p-1}\right)^{-1}\right\} \cup \\
& \left\{\lambda \alpha_{1}^{-1} \beta_{1}^{ \pm 1, \pm 3}\right\} \cdot\left\{\delta_{1}^{-1}, \ldots, \delta_{p-1}^{-1}, \delta_{1} \delta_{2} \ldots \delta_{p-1}\right\}
\end{aligned}
$$

where $\lambda, \alpha_{1}, \beta_{1}, \delta_{1}, \ldots, \delta_{p-1}$ are multiplicatively independent. The next lemma follows from (0.3.1).
3.19. Lemma. The following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$-invariant:

$$
\begin{gathered}
\left\{\lambda^{2}\right\} ;\left\{\lambda^{2} \beta_{1}^{ \pm 2}\right\} ; ;\left\{\lambda^{2} \beta_{1}^{ \pm 4}\right\} ;\left\{\lambda^{2} \beta_{1}^{ \pm 6}\right\} ; \\
\left\{\lambda^{2} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 2} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2} \beta_{1}^{ \pm 2}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 4} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 4}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup
\end{gathered}
$$

$$
\begin{aligned}
\left\{\lambda^{2} \beta_{1}^{ \pm 4}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 4}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 6} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 6}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2} \beta_{1}^{ \pm 6}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 6}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 2}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 2}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 4}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 4}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \beta_{1}^{ \pm 6}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2} \beta_{1}^{ \pm 6}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} ;
\end{aligned}
$$

where δ_{i} means that δ_{i} is omited. Moreover $\lambda^{2}= \pm p_{v}$.
3.20. It is evident that the set of all eigenvalues of $\rho_{l}{ }^{2}\left(F_{\bar{v}}^{-1}\right)$ is equal to $\Delta \cdot \Delta$ $\left\{\lambda^{2} \beta_{1}^{ \pm 6}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\}-\left\{\lambda^{2} \beta_{1}^{ \pm 6}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\}$. Hence we may exclude the case (3.2.17) by the procedure of section 3.17.
3.21. Consider the cases (3.2.18)-(3.2.19).

Assume, for example, that $\chi \neq 0$. In this situation

$$
\Delta=\left\{\lambda \alpha_{1}\left\{\alpha_{2}, \alpha_{3}, \alpha_{4},\left(\alpha_{2} \alpha_{3} \alpha_{4}\right)^{-1}\right\} \cup \lambda \alpha_{1}^{-1}\left\{\alpha_{2}^{-1}, \alpha_{3}^{-1}, \alpha_{4}^{-1}, \alpha_{2} \alpha_{3} \alpha_{4}\right\}\right\} \cdot\left\{\beta_{1}, \ldots, \beta_{p}\right\}
$$

where $\lambda, \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are multiplicatively independent, $1 \in\left\{\beta_{1}, \ldots, \beta_{p}\right\}$. Let $\Phi=$ $\lambda \alpha_{1}\left\{\alpha_{2}, \alpha_{3}, \alpha_{4},\left(\alpha_{2} \alpha_{3} \alpha_{4}\right)^{-1}\right\} \cup \lambda \alpha_{1}^{-1}\left\{\alpha_{2}^{-1}, \alpha_{3}^{-1}, \alpha_{4}^{-1}, \alpha_{2} \alpha_{3} \alpha_{4}\right\}, \Psi=\left\{\beta_{1}, \ldots, \beta_{p}\right\}$. In the notations of section 2.24 we have: Γ_{Φ} and Γ_{Ψ} are torsion-free abelian groups of positive rank, $\Gamma_{\Phi} \cap \Gamma_{\Psi}=$ (1). We claim that

$$
\begin{equation*}
\gamma \in \Phi \Leftrightarrow \operatorname{Card}\left(T_{\gamma}^{0}(\Delta) \cap \Delta\right) \geq p \tag{3.21.1}
\end{equation*}
$$

Indeed, we may assume that $\gamma \in\left\{\lambda \alpha_{1} \alpha_{2} \beta_{i}, \lambda \alpha_{1}\left(\alpha_{2} \alpha_{3} \alpha_{4}\right)^{-1} \beta_{i} \mid i=1, \ldots, p\right\}$. Hence the multiplicative independence of $\lambda, \alpha_{1}, \ldots, \alpha_{4}$ and the relation $\Gamma_{\Phi} \cap \Gamma_{\Psi}=(1)$ imply the relation

$$
\begin{gathered}
T_{\lambda \alpha_{1} \alpha_{2} \beta_{i}}^{0}(\delta)=\left(\lambda \alpha_{1} \alpha_{2} \beta_{i}\right)^{2} \cdot \delta^{-1} \in \Delta \Leftrightarrow \\
\delta \in\left\{\lambda \alpha_{1} \alpha_{2} \beta_{i}^{2} \cdot \Psi\right\} \cap \Delta .
\end{gathered}
$$

It is clear that

$$
\operatorname{Card}\left(T_{\lambda \alpha_{1} \alpha_{2} \beta_{i}}^{0}(\Delta) \cap \Delta\right) \geq p=\operatorname{Card}(\Psi) \Leftrightarrow \beta_{i}^{2} \cdot \Psi=\Psi \Leftrightarrow \beta_{i}=1
$$

and

$$
\operatorname{Card}\left(T_{\lambda \alpha_{1}\left(\alpha_{2} \alpha_{3} \alpha_{4}\right)^{-1} \beta_{i}}^{0}(\Delta) \cap \Delta\right) \geq p=\operatorname{Card}(\Psi) \Leftrightarrow \beta_{i}^{2} \cdot \Psi=\Psi \Leftrightarrow \beta_{i}=1 .
$$

Hence the claim (3.21.1) is proved. We see that the relation (2.24.7) holds in this new situation. Hence we may exclude the cases (3.2.18)-(3.2.19) by the arguments of section 2.24 .
3.22. Finally we consider the case (3.2.20). Assume, for example, that $\chi \neq 0$. In this situation

$$
\Delta=\lambda \alpha_{1} \cdot\left\{\beta_{1}, \beta_{2}, \beta_{3},\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-1}\right\} \cdot\left\{\delta_{1}, \ldots, \delta_{p-1},\left(\delta_{1} \delta_{2} \ldots \delta_{p-1}\right)^{-1}\right\} \cup
$$

$$
\lambda \alpha_{1}^{-1} \cdot\left\{\beta_{1}^{-1}, \beta_{2}^{-1}, \beta_{3}^{-1}, \beta_{1} \beta_{2} \beta_{3}\right\} \cdot\left\{\delta_{1}^{-1}, \ldots, \delta_{p-1}^{-1}, \delta_{1} \delta_{2} \ldots \delta_{p-1}\right\}
$$

where $\lambda, \alpha_{1}, \beta_{1}, \beta_{2}, \beta_{3}, \delta_{1}, \ldots, \delta_{p-1}$ are multiplicatively independent. The next result follows from (0.3.1).
3.23. Lemma. The following subsets of $\Delta \cdot \Delta$ are $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$-invariant:

$$
\begin{gathered}
\left\{\lambda^{2}\right\} ;\left\{\lambda^{2} \beta_{k} \beta_{l}^{-1} \mid k \neq l\right\} \cup\left\{\lambda^{2}\left(\beta_{1} \beta_{k}^{2} \beta_{3}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid k \neq l, i \neq j\right\} \cup\left\{\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1} \mid k \neq l\right\} ; \\
\left\{\lambda^{2} \beta_{k} \beta_{l}^{-1} \delta_{i} \delta_{j}^{-1} \mid k \neq l, i \neq j\right\} \cup\left\{\lambda^{2} \beta_{k} \beta_{l}^{-1}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1} \mid k \neq l\right\} ; \\
\left\{\lambda^{2}\left(\beta_{1} \beta_{k}^{2} \beta_{3}\right)^{ \pm 1} \delta_{i} \delta_{j}^{-1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\beta_{1} \beta_{k}^{2} \beta_{3}\right)^{ \pm 1}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2}\left(\alpha_{1}^{2} \beta_{k}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2} \beta_{k}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1} \mid k \neq l\right\} \cup\left\{\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1} \mid k \neq l\right\} \cup \\
\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid i \neq j\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}\right\} ; \\
\left\{\lambda^{2}\left(\alpha_{1}^{2} \beta_{k}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2} \beta_{k}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} \cup \\
\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2} \delta_{i}^{2}\right)^{ \pm 1}\right\} \cup\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} ;
\end{gathered}
$$

where δ_{i}^{\wedge} means that δ_{i} is omited. Moreover $\lambda^{2}= \pm p_{v}$.
Indeed, it is easy to see that

$$
\operatorname{Card}\left(T_{\lambda^{2}}(\Delta) \cap \Delta\right)=8 p ;
$$

$\operatorname{Card}\left(T_{\lambda^{2} \beta_{k} \beta_{l}^{-1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2}\left(\beta_{1} \beta_{k}^{2} \beta_{3}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=2 p ;$
$\operatorname{Card}\left(T_{\lambda^{2} \delta_{i} \delta_{j}^{-1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=8 ;$

$$
\operatorname{Card}\left(T_{\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=
$$

$\operatorname{Card}\left(T_{\lambda^{2} \beta_{h} \beta_{l}^{-1} \delta_{i} \delta_{j}^{-1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2}\left(\beta_{1} \beta_{h}^{2} \beta_{3}\right)^{ \pm 1 \delta_{i} \delta_{j}^{-1}}}(\Delta) \cap \Delta\right)=$
$\operatorname{Card}\left(T_{\lambda^{2} \beta_{k} \beta_{i}^{-1}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\lambda^{2}\left(\beta_{1} \beta_{k}^{2} \beta_{3}\right)^{ \pm 1}\left(\delta_{1} \ldots \delta_{i}^{2} \ldots \delta_{p-1}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)$
$\operatorname{Card}\left(T_{\lambda^{2}\left(\beta_{k} \beta_{i}\right)^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i}^{2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=\operatorname{Card}\left(T_{\left.\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm}(\Delta) \cap \Delta\right)=}(\Delta)\right.$

$$
\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2} \delta_{i} \delta_{j}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=
$$

$\operatorname{Card}\left(T_{\left.\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2}\left(\delta_{1} \ldots \delta_{\hat{i}}^{\hat{i}} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1}(\Delta) \cap \Delta\right)=2 ; ~ ; ~ ; ~}^{\text {a }}\right.$

$$
\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2} \beta_{4}^{2} \delta_{\mathrm{j}}^{2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=
$$

$$
\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2} \beta_{k}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=
$$

$$
\begin{gathered}
\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2} \delta_{i}^{2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)= \\
\operatorname{Card}\left(T_{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}}(\Delta) \cap \Delta\right)=1 .
\end{gathered}
$$

3.24. It is evident that the set of all eigenvalues of $\rho_{l}^{\wedge 2}\left(F_{\bar{v}}^{-1}\right)$ is equal to

$$
\begin{gathered}
\Delta \cdot \Delta-\left\{\lambda^{2}\left(\alpha_{1}^{2} \beta_{k}^{2} \delta_{i}^{2}\right)^{ \pm 1}\right\}-\left\{\lambda^{2}\left(\alpha_{1}^{2} \beta_{k}^{2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\}- \\
\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2} \delta_{i}^{2}\right)^{ \pm 1}\right\}-\left\{\lambda^{2}\left(\alpha_{1}^{2}\left(\beta_{1} \beta_{2} \beta_{3}\right)^{-2}\left(\delta_{1} \ldots \delta_{p-1}\right)^{-2}\right)^{ \pm 1}\right\} .
\end{gathered}
$$

On the other hand, the elements of the $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}))$-invariant set

$$
\left\{\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2} \delta_{i} \delta_{j}\right)^{ \pm 1} \mid k \neq l, i \neq j\right\} \cup\left\{\lambda^{2}\left(\beta_{k} \beta_{l}\right)^{ \pm 1}\left(\alpha_{1}^{2}\left(\delta_{1} \ldots \delta_{i}^{\wedge} \ldots \delta_{p-1}\right)^{-1}\right)^{ \pm 1} \mid k \neq l\right\}
$$

have the very "mixed" multiplicative structure. So we can't use here the usual technique of sections 2.12-2.13, 3.17.
3.25. Assume that J has many ordinary reductions. In this situation we may choose v such that the conditions (2.5.1)-(2.5.6) and an additional condition

$$
\begin{equation*}
\frac{w(\Delta \cdot \Delta)}{w\left(p_{v}^{2}\right)} \subset\left\{0, \frac{1}{2}, 1\right\} . \tag{3.25.1}
\end{equation*}
$$

hold, where w is an arbitrary place of $\overline{\mathbb{Q}}$ lying over p_{v}. It follows from (0.5.2).
Suppose that

$$
\frac{w\left(\lambda^{2} \beta_{1} \beta_{2}^{-1}\right)}{w\left(p_{v}^{2}\right)}=0
$$

for some place $w \mid p_{v}$. Then for each $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$

$$
\frac{(\sigma w)\left(\sigma\left(\lambda^{2} \beta_{1} \beta_{2}^{-1}\right)\right)}{(\sigma w)\left(p_{v}^{2}\right)}=0
$$

hence from the relation

$$
\sigma\left(\lambda^{2} \beta_{1} \beta_{2}^{-1}\right) \in\left\{\lambda^{2} \beta_{k} \beta_{l}^{-1} \mid k \neq l\right\} \cup\left\{\lambda^{2}\left(\beta_{1} \beta_{k}^{2} \beta_{3}\right)^{ \pm 1}\right\}
$$

obtained above and from the transitivity of the natural action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on $\left\{w \mid w\right.$ is a place of $\overline{\mathbb{Q}}$ over $\left.p_{v}\right\}$ it follows that $\forall w \mid p_{v} \exists x_{w} \in\left\{\lambda^{2} \beta_{k} \beta_{l}^{-1} \mid k \neq\right.$ $l\} \cup\left\{\lambda^{2}\left(\beta_{1} \beta_{k}^{2} \beta_{3}\right)^{ \pm 1}\right\}$ such that $w\left(x_{w}\right)=0$.

So, $\forall w \mid p_{v}$

$$
0=w\left(x_{w}\right)=\frac{1}{2}\left\{w\left(x_{w} \delta_{1} \delta_{2}^{-1}\right)+w\left(x_{w} \delta_{1}^{-1} \delta_{2}\right)\right\}
$$

Since both summands in the last brackets are nonnegative in virtue of the relations $x_{w}\left(\delta_{1} \delta_{2}^{-1}\right)^{ \pm 1} \in \Delta \cdot \Delta$, we have the equalities

$$
w\left(x_{w} \delta_{1} \delta_{2}^{-1}\right)=w\left(x_{w} \delta_{1}^{-1} \delta_{2}\right)=0
$$

So $w\left(\delta_{1} \delta_{2}^{-1}\right)=0$ for all $w \mid p_{v}$. It follows that $\delta_{1} \delta_{2}^{-1}$ is a root of 1 [23, sublemma 3.4.0] contrary to the assumption that δ_{1}, δ_{2} are multiplicatively independent.

Suppose that

$$
\frac{w\left(\lambda^{2} \beta_{1} \beta_{2}^{-1}\right)}{w\left(p_{v}^{2}\right)}=1
$$

for some place w. Let ρ be a complex conjugation defined by some fixed embedding $\overline{\mathbb{Q}} \subset \mathbb{C}$. It is well known that

$$
\frac{w\left(\lambda^{2} \beta_{1} \beta_{2}^{-1}\right)}{w\left(p_{v}^{2}\right)}+\frac{(\rho w)\left(\lambda^{2} \beta_{1} \beta_{2}^{-1}\right)}{(\rho w)\left(p_{v}^{2}\right)}=1
$$

[18,(3.16.2)]. So in our situation we have the impossible relation

$$
\frac{(\rho w)\left(\lambda^{2} \beta_{1} \beta_{2}^{-1}\right)}{(\rho w)\left(p_{v}^{2}\right)}=0
$$

Hence

$$
\frac{w\left(\lambda^{2}\left(\beta_{1} \beta_{2}^{-1}\right)^{ \pm 1}\right)}{w\left(p_{v}^{2}\right)}=\frac{1}{2}
$$

for all places $w \mid p_{v}$. It follows that $\beta_{1} \beta_{2}^{-1}$ is a root of 1 [23, sublemma 3.4.0] contrary to the assumption that β_{1}, β_{2} are multiplicatively independent. So $g_{l}^{s s} \otimes \overline{\mathbb{Q}_{I}}$ is not the Lie algebra of type $A_{3} \times A_{p-1}$. Theorem 0.9 is proved.

References

[1] F.A.Bogomolov, Sur l'algebricite des representations l-adiques, C.R.Acad.Sc.Paris 290 (1980), 701-703.
[2] M.V.Borovoi, Shimura-Deligne schemes $M_{\mathbf{C}}(G, h)$ and rational cohomology classes of type (p, p) on abelian varieties, In:Questions of the theory of groups and homological algebra, Jaroslavl State University, Jaroslavl, 1977, pp. 3-53.
[3] N.Bourbaki, Groups et algebres de Lie, Chaps. 1-8, Actualites Sci.Indust.,nos.1285,1349, 1337,1364,Hermann, Paris, 1971,1972,1968,1975.
[4] J.W.S.Cassels and A.Frohlich (editors), Algebraic number theory, (Proc.International Conf.,Brighton,1965),Academic Press,London, and Thompson, Washington,D.C., 1967.
[5] W.Chi, On the l-adic representations attached to simple abelian varieties of type IV, Bull.Austral.Math.Soc. 44 (1991), 71-78.
[6] W.Chi, l-adic and λ-adic representations associated to abelian varieties defined over number fields, Amer.J.Math. 114 (1992), 315-353.
[7] P.Deligne, Varietes abeliennes ordinaires sur un corps fini, Invent.Math. 8 (1969), 238-243.
[8] G.Faltings, Endlichkeitssatze fur abelsche Varietaten uber Zahlkorpern, Invent.Math. 73 (1983), 349-366.
[9] A.Grothendieck, Hodge's general conjecture is false for trivial reasons, Topology 8 (1969), 299-303.
[10] W.V.D.Hodge, The topological invariants of algebraic varieties, Proc.Internat.Congr. Math.(Cambridge,MA,1950),Amer.Math.Soc., Providence,RI, 1 (1952), 182-192.
[11] D.Mumford, Families of abelian varieties, Algebraic Groups and Discontinuous Subgroups,Proc.Sympos.Pure Math., Amer.Math.Soc.,Providence,RI, 9 (1966), 347-352.
[12] D.Mumford(in collaboration with C.P.Ramanujam), Abelian varieties, Tata Inst.Fund. Res.,Bombay,and Oxford Univ.Press,London, 1970.
[13] A.Ogus, Hodge cycles and crystalline cohomology, Hodge cycles, motives, and Shimura varieties. Lecture Notes in Math., Springer-Verlag, Berlin 900 (1982), 357-414.
[14] I.I.Piatetski-Shapiro, Interrelations between the Tate and Hodge conjectures for abelian varieties, Mat.Sb. 85 (1971), 610-620.
[15] J.-P.Serre, Abelian b-adic representations and elliptic curves, Benjamin, New York, 1968.
[16] G.Shimura, On analytic families of polarized abelian varieties and automorphic functions, Ann. Math. 78 (1963), 149-192.
[17] S.G.Tankeev, Cycles on simple abelian varieties of prime dimension over number fields, Izv.Russian Acad.Sci.Ser.Math. 51,n.6 (1987), 1214-1227.
[18] S.G.Tankeev, Algebraic cycles on abelian variety without complex multiplication, Izv. Russian Acad.Sci.Ser.Math. 58,n. 3 (1994), 103-126.
[19] S.G.Tankeev, Cycles on abelian varieties and exceptional numbers, Izv.Russian Acad. Sci.Ser.Math. 60 (1996), to appear.
[20] S.G.Tankeev, Algebraic cycles on simple $4 p$-dimensional abelian variety over a number field, to appear.
[21] J.Tate, Algebraic cycles and poles of zeta functions, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, pp. 93-110.
[22] J.Tate, Endomorphisms of abelian varieties over finite fields, Invent.Math. 2 (1966), 134-144.
[23] Yu.G.Zarhin, Weights of simple Lie algebras in cohomology of algebraic varieties, Izv.Russian Acad.Sci. Ser.Math. 48,n. 2 (1984), 264-304.

Vladimir State Technical University, ul. Gorkogo, 87, Vladimir, 600029, Russia E-MAIL(BEFORE 29.02.1996):TANKEEV@MPIM-BONN.MPG.DE
E-MAIL(AFTER 29.02.1996):TANKEEV ${ }^{\circ} / 0$ RTFQVPTI.VLADIMIR.SU

[^0]: *This paper is a result of my stay at the Max-Planck-Institut fur Mathematik in 1995-96. It is my pleasure to thank the members of MPI for their hospitality.

