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1 Introduction

This article is a continuation of the series of papers [1-5] devoted to stationary free
boundary problems for the Navier-Stokes equations with moving contact points. There
were investigated problems governing a viscous flow in a capillary, a coating flow, and
a piston problem. Here one more problem of this type is studied.

Let a heavy viscous incompressible liquid partially fill a circular container V C R;
of the radius Ry rotating about its center with a small angular velocity w (see Fig.1).
We suppose that the force of gravity is directed along the vector —e, = (0, —1), and we
denote by © a subdomain of V occupied with the liquid. The boundary of § consists
of two parts: £ = dQ N JV (a part of a rigid wall d2) and T = 90\ AV (a free
boundary). The set M = £ N T is a union of two contact points: z_ and z,. We
are concerned with the following free boundary problem: find @ C V (or, what is the
same, a free boundary T'), the velocity vector field #(z) = (vy,v,) and the pressure
p(z) satisfying in Q the Navier-Stokes equations

— vV (5 V)i +Vp=0, z€ (1.1)
and the boundary conditions
dg=a, v-flr=0, 7 S@)ir=0, (1.2)

ol — gzy — - T(0,p)itlr = —p1 = Const. (1.3)



Here @ = wRy7p, 7o is a tangential vector to X, 7 and 7 are a tangential and an
exterior normal vectors to T, respectively, T' and S are the stress and the deformation
tensors, i.e.
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and v, o, g are constant positive coeffitients of viscosity, of the surface tension, and
the acceleration of gravity, respectively. In addition, we fix the volume of the liquid,
i.e. the area of Q:

T(v,p) = —pl +v5(7), $i;=

0]=Q < rR?

and we assume that the contact angle 8, i.e. the angle between I' and T at the contact
points, equals 7. This means that I' is tangential to Q2 at these points. For 8 € (0, 7]
our problem can not be solved in the class of vector fields ¢ with a finite Dirichlet
integral (see [1,3,4]).

Problem governing the motion of a viscous fluid in a rotating container was for-
mulated and considered by a different approach in the paper [6] by C.Baiocchi and
V.V.Pukhnachov who were able to reduce it to a certain variational inequality. How-
ever, it has required some modifications of the formulation of the problem, in partic-
ular, the prescription of T

Let us recall the definition of weighted Holder spaces in which we are going to
work. For arbitrary non-integral I, s > 0, arbitrary domain G C R" and a closed set
F C 8G we define the space C!(G, F') as the set of scalar- or vector-valued functions
u(z), z € G, with the norm

WG F) = IUICv(G) + Z sup Pljl-’(l‘)wj“(m” + [u]C£(G,F)s
s<|ii<t z€G

where

_ |Diu(z) = D7u(y)|
(e = SUPP’ *(z) sup
Hen |j|z=:m #€G ek o=yl

p(z) = dist(z, F), K(z)={ye€G:|z—-y|<p(z)/2} and
|D7u(z) = D7u(y)|

|z — yle-t

)

lulcigy =Y. sup|D]u(:c |+ > sup
i<t =€C lil= [11”60

is a usual Holder norm in G.

The spaces C!(G, F) can be also introduced for s < 0, in which case the norm is
given by

ulcyermy = 3 sup P12 (2)| DPu(e)] + [w)eye.r)- (1.4)
til<t =€

They can be defined for functions given on manifolds, in particular, on I'. Finally, we
say that I' € C! if this line may be given by the equations & = #(s) where s € (0, d) is
a parameter and ¥ € C!(1,81).



We prove the following theorem.
THEOREM 1. Suppose that

Q| € (xR3/2+ by, mR2 — b)), by, by >0, (1.5)

and g/o > By > 0 (see Proposition | in section 3). For arbitrary sufficiently small w
problem (1.1)-(1.3) has a unique solution with the following properties:

1. T €V is a curve of the class Clzi'fv' (e € (0,1), v € (1/2,1)) which is close to
the curve I'g corresponding to the rest state,

2. 7€ C';"'“(Q,A’[), pE C;,ff(ﬂ, M) with a positive § < 1/2, and
|6|C§*°(n.u) + |P|G§,t‘;(ﬂ.1\1) < afwl. (1.6)

We shall construct the solution of (1.1)-(1.3) according to the scheme applied in
[2-5] to other free boundary problems with moving contact points. We consider at
first the rest state, then we construct a formal solution of (1.1)-(1.3) without paying
attention to the property I' C V which can be established on the basis of the local
analysis of the solution carried out in {2,4]. The main difficulties in this problem are
connected with the formal construction of the solution, and it is at this point that
we concentrate our attention. As for the asymptotics of the solution near the contact
points, all the necessary information (i.e. the study of the behaviour of the solution
both for receding and for advancing contact line with a contact angle 7 at the smooth
rigid wall of arbitrary shape) is contained in the paper [4].

2 The rest state

In the rest state, when w =0, ¢ =0 and p = py = Const, the free boundary Iy is
defined by the equation
oH — gz = —py. (2.1)

We recall that the force of gravity is directed opposite to z,-axis and we choose the
origin in such a way that the contact points z4 have coordinates (£ly,0), lp < Ro.
Under the condition (1.5) (which is purely technical) the curve I'y can be given by the
equation

Ty = (Po(Il), T € (—Io,lo)-

where g 1s an even function and
Equation (2.1) can be written in the form

d ’
-——-—-——-—-(io—-—- - B(,DO = —%, T € (_IO,[O)a (23)

dz, /1+‘P;)2



or

d . Po
. sinae — By = - (2.4)

where B = g/o and a is the angle between the tangential vector to I'p and z,-axis

(tan afz1) = @p(z1)).
Let us consider ¢, as a solution of equation (2.3) satisfying the boundary conditions

@o(—lo) = tan ao, wy(lo) = ~tanag (2.5)

where o = a(—Ilp). Choosing py in an appropriate way, we can satisfy also the
conditions (2.2). It is well known that for arbitrary ao € (0,7/2) problem (2.3), (2.5)
has a unique infinitely differentiable solution which is an even function of z, satisfying
the inequality @o(z) > ©(£lo) = 0. Let us verify that I' C V. Differentiation of (2.4)
gives

%sina = Btana >0 (z; € (—,0)).
Ty

In addition,
sina(—lp) = sin a!?(—=lp), sin(0) = sin P (0) =0

where a!®(z,) is the angle between z,-axis and the tangential vector to the part of
the circle 9V located above this axis. Since sin a!®(z;) is a linear function of z, the
above relations imply

sina(z;) < sina®(z,), =z, € (—lo,0)

which shows that I'y lies between z,-axis and the upper part of V.

Next, we prove that the curves I'g corresponding to different values of oy do not
intersect each other, more exactly, the curve corresponding to the greater value of ap
1s located under the curve corresponding to the smaller value of this angle. We write
equation (2.4) in the form

d .
(-{-——sma'(:l:l) = By(Il) (y =@ — PO/Q)
.I]

and we suppose that there are given two functions y(z;) and y,(z,) satisfying this
equation and the conditions

yi(0) =0 (ie;(0)=0, i=1,2)

and
y1(0) < y2(0).

It follows that :
d . .
— SN O |g, =0 < — sin 3|z, =
(lml l|.1.'| 0 dﬂjl 2| 1 0)



hence, a;(z1) > aa(21) and y;(z1) < y2(z2) for negative z,.

Consider two curves I'o; 1 zo = oi(z1), 21 € (—loi,loi), 7 = 1,2, with ly; =
Rosin ag;, gy > ap. The function ay is less than the corresponding function for 9V
at the point —l;, hence, a;(—{2) < az(—{3). As we have seen, this implies ay(z;) <
aq(zy) or

por(21) = tan ay(z1) < tan ez(z1) = @py(21)

for z; € (—13,0). Consequently,

eo(z1) = por(=t) + [ ()€ < punl=) + [ @hal€)d = ponlzs),

q.e.d.

This shows that the area of {2 is a monotone decreasing function of the angle ao.
For every value of || € (v R%/2 + b,, 7 R% — by) there exists exacty one corresponding
" value of ag € (d),7/2 — d2), d; >0, and [’ can be found from (2.3),(2.5).

At the conclusion we compute the constant pg. Integration of (2.3) over the interval
(—lo, lo) gives

l
—2sinag — BA = —2 oPo (2.6)
o
where 1
1]
A= r wol(zy)dz; > 0
=ip
is the area of the domain between 'y and z,-axis. Hence,
o BAc o
. o - 2.7
Po Ro + 2o > Ra (2.7)

3. Auxiliary propositions

Let us turn our attention to problem (1.1)-(1.3). The free boundary T" will be found
as a perturbation of T'p, and it will be given by the equation

zy = (z1), 1 € (=11, b) (3.1)

where [; are some unknown numbers close to ls. The points z_ = (=, (—{;)) and
z4 = (I, (1)) should be located on 9V and the line " should be tangential to 3V
at these points. Let (0,¥.), y. = —Rosinap, be coordinates of the center of V. The
equations of the semi-circles {z € dV, z; > y.} and {z € 3V, z > 0} have the form

Iy = I:(Tl)zyc—}—vR%-—-xf, T, € (‘—Ro, Ro)

Iy = h. I') ﬁo I‘) - yc , I € (Jc R{))yc'*' RO),

and

3



respectively, hence, the above conditions reduce to
—li=—ho(-1l1)), b =h{e(h)),
¢'(=h) =K(=bh), ¢'(L)=F() (3.2)

Equation (1.3) may be written in the form

!

d
dl‘; /1 + (’9'2

with ¢ = pi /o, t(z1) = 07" ii-Tii|;,=p(z,). It is convenient to map the interval (—lo, lo)
onto (—!;.lz) by means of a linear transformation

- Bp=tz1) —q, =1 € (=l,h) (3.3)

) = p(€ =€)
with
L_11+[2 52111—12
= 2[0 ) 011-}-12’

and to introduce the function

3(8) = p(u(€ —£)).

Then relations (3.3),(3.2) are transformed into

1d @'(5) ey
G'(lo) = uk'(l2),  &'(=lo) = uk'(=11), (3.5)

—h=—-h3(—l)), L= h(3(h))

with £(£) = t(u(€ = €)). The constant ¢ may be found by the integration of (3.3) with
respect to z; which gives

©'(12)
V1 +92(h) \/1+<,o

Since

l Bf I] d.’El = —‘/ - Tnd:t:l (12+[1) (3 6)
1) h

2

(;JdIl = / .‘EQngdS = |Q| —/ 3:2112(15,
-1 r z

the last relation is equivalent to

&)  9'(=h)
Vit +¢2(lo) i+ & (=)

1
- B|Q| + B/‘;“ TanadS = ;It — 2loug (3.7)



where [, = i"',l il - Tidz,. Similar equation holds for ¢o = po/o (see (2.6)):
woll)  wp(=lo)
VI+eR() 1+ ed(=h)

Let us write (3.4),(3.5) as a boundary value problem for the function

$(§) = B(£) — wol§)-

We need to compute I, — ly, I} —lo, p—1, ¥'(£l), ¢— go. Taking the conditions
wo(%lp) = 0 into account, we obtain

— B|%| + B /Eo 29n2dS = —2logo.  (3.8)

b~ lo = h(3(lo)) — h(wollo)) = (lo) [ H(sip(lo))ds =

= R(0)¢(lo) + z/;(lo)/ol[h'(w(lo)) — 1'(0)]ds = R'(0)(l) + Lo,
L= lo = h(3(=1o)) = h(po(=1o)) = ¥(—1o) / B (s1b(—1o))ds
= K(OW(~lo) + $(~1o) [ (W(s(~1o)) = K(O)ds = KOWp(~k) + Li. (3.9

These equations imply

pu—1= 11(12+11-2!0)—6p+11! (3.10)
where 20
op = 121 )W([o) + (=)
0

is a linear part of the right-hand side with respect to ¥ and

M=L+1L,= 21’:)/ [h(s h'(0)]ds 4 k) "’ /[h — K'(0))ds

is the remainder consisting of higher order terms.
Further we have

P'(lo) = pk'(lp) = &'(l) = (1 — 1)K (lo) + K'(I2) — k'(lo)+

+(p = V) (K (L) = K (lo)) = buk'(Io) + k" ()R (0)b (L) + My, (3.11)
Y'(—lo) = pk'(—h) — K'(—lo) = k' (—lo) — k" (—lo) ' (0)p(—lo) + M- (3.12)

where
l " " "
My = ME ) + (I — o) /0 K" (lo + s(l — lo)) — K" (Io)|ds + k" (o) Lo+
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+(1 = (K (l2) = (b)),
M- = MK(~l) = (b= lo) | K (—lo — s(ly ~ o)) — K" (=lo)]ds — k" (=lo) L1+
+p = DK (=l) = K (=lo)).

For the computation of ¢ — go we subtract (3.8) from (3.7) which leads to

Bg—Go =~

n K () ) )_
2 [\ \/ut+ &%) 1+ 0%(l)

B
- (L ZTon,dS—

_( (—l) (zo>)
V2 +@2(=lo) 1 + (=)

21,
[
_ /Eo mzds) tgr+ —(|Q| 1Q0]). (3.13)
We transform the right-hand side making use of the formula
#(6) () ( #(6) 2(8) )
Vit +¢2(¢) \/1 +od(€)  \yu+@2(8) \/#2+‘P (6)
+ ( o(¢) ©o(£) ) plds
S +ed©)  Ji+ed© [# + (o + 59T
(u — Dwo()ds _ Y8 — Suwe(§)
/ T+ D)2+ o2@F7 ~ (+e2@pr T 0 (314

where

o 1 #2 _ 1 ds — AJQO(E) _
*E)=+¢ (5)/0 [[,u2 + (w0 +s9)P2 (14 996”)3”] RGN

1 1
~6e= 0940 [ s e - e

is the sum of all the terms in (3.14) which are at least quadratic with respect to ©. If
1| = |Q%], then the last term in (3.13) vanishes, and (3.14) implies

1 l:l/)'(lo)—&u(,?f)(lo) P'(=lo) — Sppp(~lo))

Rg=Go=—7-

2 | (L+ed()P? (L4 (=1)PP?
B I
+¢(lo) - (1)( [0)] - é“l; (/ Igngds / IgngdS) 210



Next, we apply formulas (3.11),(3.12) and take account of the fact that ¢ is an odd
function of £. We obtain

P'(b) — Sppplle) _ P'(=lo) = bppo(=lo) _ ¥'(lo) = ¥'(—lo) = 2K (lo)ép _

(1 + ¢’ (lo))*/? (1 + e (=) (14 ¢ (lo))*?

_ F()(O)(lo) +¥(=l)] + My = M_ __ K(0) )
- (1 + £'2(1p))3/2 2 = "R, [¥(lo) + ¥ (—lo)]+

M, — M_
(T + )7

+

hence,

bp 1 My — M_
e =0 =7 = 5 [(1+k'2(1 7+ ®llo) = & lo)]

B I
210 (/ TonqadS — / mzngdS) 210

_ ke u 1 M, —M_
9= =——] qm+’“,?0 5o | T3 F2(l ))3,2+d>(to) ®(—1lo)

B It
210‘“_ (/ Ton.dS — / a:znzdS') 210

I
210”

or

qg—qo=06q+Q +

where 5
t
bg=—6 —_
g0 + Ro

is a linear part of ¢ — ¢o with respect to ¢, and

Su(pe—1)—-M Sp(l — p) 1 [ M, — M_
(

9= i T T Rn o (L R

B
+0 (1) = 9(~lo)] - 7 (/ ZanadS — / mgnzdS)

is the sum of higher order terms.

It remains to write the diflerential equation for 1. We subtract (2.3) from (3.4)
and take account of (3.14) which leads to

d P'(€) — 5#%(5) d @0

df ( ( ))3/2 6IIVEW - BI!) = t—(f) — (q — (IO) + Fl(f),
d Y'(&) — dup! 5 ~ I,
EI/EI(?' <;)62(!£(;)03(/£2) — By + Sppo) + ﬁ; =l -5 thO-Q  (319)
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wodE (T+eR(E)Pr  pde Iz d (1 + @ ()

For given #(£), we consider (3.15),(3.11),(3.12) as a boundary value problem for 1. Let
us study a linearized problem

d ¢ — bup; 6
L1 = s = B + bugo) + 70 = 1(6)
#'(lo) = 8k (1) = K () ()b (la) = s, (3.16)

W'(—lo) — 6pk'(—lo) + K" (—lo) ' (0)p(~lo) = a_.

PROPOSITION 1 There exists such By > 0 that for B > By problem (3.16) has a unique
solution ¢ € C?Ig(l,al) (a, B €(0,1), I={(=lo,lp)) for arbitraryay,a_ € R, f €
Cy(1,01). The solution satisfies the inequality

[Ylestsan < el flestean + o] + la-]). (3.17)
PRrooOF [t is convenient to introduce a new unknown function

P(€) = P(€) + Supo(€)-
Since ¢(2{p) = 0, we have

5= %w’;uo) FP(=lo)]

and we may express ¥ in terms of ¥ by the formula

Problem (3.16) takes the form

d @' = 26u0) - b
IO i

-~

- l
Y'(lo) — _¥lo) + 2tan apbp = ag,
lo cos? ag
. (=1
¥'(—=lo) + —¢( o) — 2tanaebp = a_ :
g cos? ag

10



A weak solution of this problem can be defined as a function ¥ € W} (1) satisfying the
integral identity

I L S "
Liy,n) = f_lo (WU + Byn — Eﬂ) dé—

-~

1 P(lo)
- (1 + k'2(ly))3/2 [(Ig costag 2tan aoép) 1(lo)+

+ (%:(—o—s;’_oa)'o — 2tan crg5,u) q(—lo)] +
(] _2*_6:":(53))3/2 [’ﬂ(l’o) + 7?(—[0)] = a+(721({?_)k7221[;;7)g/_:0) - _I:O fﬂdf (318)

for arbitrary 5 € W, (I). o
If the coefficient B is large enough, then the quadratic form L[,] is positive
definite:

L2 o [ (T + 0)de (3.19)

Indeed, it is easy to see that
~ - Tlo ~ lo . 5 I o . -~ ~
LBz es [ 3+ [ e~ 2 [ Wiag - e + 1(-to)) (.20

with c3, ¢4 independent of B. For the estimate of 1 we use the identity

Pl + (-l = [ B0+ T [T e
which implies
B2(lo) + 9(~lo) < ej"’ B2 (1)dt + (l + l) /'° B)dt, Ve > 0.
e

€ lo —ID

Similar estimate holds for |§x|%. It is clear now that (3.19) follows from (3.20) in the
case of large B.
For arbitrary f € C3¥7(1,01), n € W}(I) we have

lo o
If_l0 fndg) < St}pp""(f)lf(f)lf_lo PP (€)In(€)|d¢ <

< cs sup [n(€)] sup PO < eslinllwynlflettarany;

-1

hence, the existence of a unique weak solution follows from the theorem of Lax-
Milgram. Setting 7 = v in (3.18) we easily obtain

sup [B(6)] < erlldllwyry < ca(sup PPON(E)] + las| + la-]), (3.21)

11



and ép can also be evaluated by the expression in the right-hand side. Now, we
consider ¥ as a solution to the problem

PR )
e B —
AT
V)= by, (=) = b_
where J ’ 5
= 4 %o %
fl _f+26ﬂ(i6(1 +§9(')2)]/2 R{)’
b+=a+—26,utana-0+—-w———, b_ = a_ + 26putan ap — ‘:b(—[l)) )
lo cos? ag lg cos ap

This problem was studied in {7] where, in particular, the following estimate for the
solution was established:

|J’|c3j;g(1.al) < C9(|fl|c},j‘;(1.af) + 04| + |b_]) (3.22)

i

(the assumption § = o made in [7] is not essential). Estimate (3.17) is a consequence
of (3.21) and (3.22). The proposition is proved.

Our second auxiliary proposition concerns the construction of a special mapping
Y . Qo b d Q

PROPOSITION 2 Suppose that the line I' is given by equations (3.1) on the interval
(=lo, lo) with o satisfying conditions (3.5),(3.6), moreover, assume that 3(€) = @(p({—
£)) belongs to C3E5(1,01) and that

|3 — &90|cfig(1.31) <6

with a small positive §;. Let @ C V be a domain with 90 = EUTUM, M = {z,,z_}.
There ezists a mapping Y : 1 — Qo with the following properties: 1. Y is invertible,
continuous in ) and has bounded derivatives. Moreover, Yl|s, € CS"":'(EO, M) and

148
Ylr, € C3F5(To, Mo) where Mo = £o N To = {20,29}, 2§ = (£,0). For € € T
Y(2) = (p(z1 — €),3(21)) (3.23)
where
l=12+10 —_111—12
T

2. The Jacobian matriz J of the inverse transformation Y ~' satisfies the inequalities
|J = Tgztaqgoary + |7 — llezra(ryany < C10l? = woleata (s any: (3.24)

sup |J(z) =1+ 3 sup pVl(2)| DY Jo(2)|+
o

=12 o

12



+ )" sup p**°(2) sup |y — 2|7 D7 Jo(2) — D Jo(y)| <
lil=2 z€Q yeEK(z)

S enfp - 990|c§‘:{g(1,31) (3.25)
where p(z) = dist(z, Mo).
PROOF We construct the mapping ¥ in the form

Y(2) =z 4+ ®(2) = (21 + 91(2), 22 + $2(2)) (3.26)
Equation (3.23) determines ¢; on [y:
b1 (21, 00(21)) = (1 = 1)1 = 4,

®o(21,00(21)) = P(21) — wol21) = ¥(21).

In particular,

R
O1(—1o,0) = —(p — 1)lp — pulo l] T 12 ==l 4+, &1(l,0)=10L-1,
1+ {2
D2(—1o,0) = &(—lo) = @(—11), P2(lo,0) = (L) (3.27)
which implies
V() = 2§, (3.28)

Next, we extend Y(z) onto ¥y in such a way that YE, = L. Let (r,¢) be standard

polar coordinates on R? with the center in (0,y.). A general form of automorphisms
of gV is

z = Rocos(p + (), 2= Rosin(p + h(p)).

Clearly, this transformation can be written in the form (3.26) with z = (Rg cos ¢, Rosin @)
and

81(2) = Rolcos(ip + () ~ cos ] =
= Ru[cos p(cos k() — 1) — sinpsinh(p)],
®2(2) = Rofsin(p + h(p)) — sing] =
= Rolsin p(cos () — 1) + cos @sin h(p)]. (3.29)

These equations imply
Rosinh(p) = ®2(2) cos o — @4(r) sin . (3.30)

We make the extension of Y by the construction of an appropriate function h(p) on
Lo. We find the values of & at the points z4 using relation (3.28). Because of this
relation, the functions ¢; computed at 4 (they are given by (3.27)) satisfy (3.29) with
certain hy which are determined by (3.30). It is elementary to construct a smooth (at

13



least C***-smooth) function h on ¥y satisfying the conditions h(zy) = hy and the
inequality

Ihlostagse) < cra(lhel + [h-1) < cial|@(lo) = wollo)] + 15(~lo) = po(~la)]).  (3.31)

The extensions of ®; are defined now by (3.29), and it is clear that their C?**(Z,)-
norms can also be evaluated by the right-hand side of (3.31). Now &; are defined on
0%, and they can be extended farther into 2. A special care should be taken in the
neighbourhoods of z, (see also [5]). Let ®;; and ®;; be extensions of ®;|g, and &;|r,
made in such a way that

|¢il|chS(no~ﬁlo) < 015|¢i|cf:g(20,Mo)’

|¢‘2|Cfig(ﬂo.z“lo) < CIGI"I)i'cfig(FD.Mo)'

We can define ®;(z) in the neighbourhood of z_, for example, by the formula
D;(2) = xa(2)(®ir(2) = Pi(z-)) + x2(2)(Pia(2) — Dilz-)) + Pi(z-)
where y; are functions defined hear z_ and possessing the following properties:

8Xl
Xllf-'o =1, /\'llro =0, Elaﬂo =0,

aXz
X2|Eo = 03 X'—’Iro = la 'b_n_laﬂo = 05

Xi are smooth everywhere except the point z_, 0 < x; <1 and
1D xi(2)| € errlz = z-|7H,

Inequatilies (3.24),(3.25) are easily verified. Away from z4, the construction of exten-
sions is quite standard.

The proposition is proved.

REMARK Let ¢; and ¢, be two functions satisfying the hypotheses of the proposi-
tion, and let Y; be corresponding transformations. Since all the extensions operatops
used in the proposition are linear, it is easily verified that the differences J, — J; satisfy
the estimates (3.24),(3.25) with the norms of the differences ¢, — @, in the right-hand
sides.

4 Proof of Theorem 1

The proof of Theorem 1 is based on the investigation of two auxiliary problems: of
problem (1.1),(1.2) in a given domail © and of problem (3.15),(3.11)},
(3.12).
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THEOREM 2. 1.Suppose that T' is given by equation (3.1) with the function ¢
satisfying the hypotheses of Proposition 2 and that w is sufficiently small:

jwh <€ (4.1)

Then problem (1.1),(1.2) possesses a unique solution & € C5**(Q, M), p € C5X3(Q, M),
and

|17|c§+°(n.u) + |P|c;’;‘;(n.M) < afwl. (4.2)
2. Let ¢y and ;3 be two functions satisfying hypotheses of Proposition 2 and defining

the lines Iy and 'y, and let Ty, p, and Uq,p, be solutions of (1.1),(1.2) in Q and Oy,
respectively. The functions t;(€) = i - T(9;, pi)ii|z,=¢,(¢) Satisfy the inequatity

|ty — £2|c;,j‘;(1‘31) < eofwll@r — 952|Cfi§(l‘6l)' (4.3)

The first part of the theorem is known. The linerized problem was studied in [8].
For small w, the nonlinear problem can be solved by application of the contraction
mapping principle, since the nonlinear term satisfies the inequality

(v - V)lﬁlcg_,(ﬂ.:\!) < C2|17|c§+°(n.M)|13|c§+°(n.M)

Inequality (4.3) is also established by a well known procedure. We map the domain 2,
onto ), by means of the transformation y = Z(z) where Z = Y0¥, ' and Y; : £ — €
are mappings constructed in Proposition 2, and we write problem (1.1),(1.2) for @\, py
in new coordinates. It is easy to see that ¥} — ¥ = W, p; — p» = s can be considered
as a solution of the linear problem

VG +Vs=f, V-d=r

W|g, =Wo, W-tt|r,=0b, 7T S(Wi|r,=d (4.4)

"~ where f, 7, U, b, d are Tunctions satisfying the inequality

Iflcs._?(nz-f\fn) + |"'|cgtT(nz,A42) + |150|c;+°($?,1wz)+

Hldlorre . an) + blczrer, an) < eslwllér — @2losre a1 (4.5)

This inequality follows from (4.2) and from the remark to Proposition 2 (see some
details in [3], section 5). (4.3) is a consequence of (4.5) and of a coersive estimate of
the solution of (4.5) in weighted Holder norms (see [8]).

Let us consider problem (3.15),(3.11),(3.12).

THEOREM 3 Suppose that condition B > Bqy is satisfied. For arbitrary 1 €
C;,i‘;(l,al) with a small norm:

|f|c;t§'{1,al) Sea (4.6)
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problem (3.15),(3.11),(3.12) has a unique solution ¥ € Cp*{(I,01), and for this solu-
tion the estimale

|¢|c3+g(1 an S C4|t|cl+°(1 an (4.7)

1+

holds.
ProoF Consider Ly, Lo, M, M, etc. as nonlinear functionals depending on . It
is clear that

[Lil + [Lal + |M| + [My] + IM_) S es([p(lo)* + [9(=0)[*), ~ (4.8)

provided that 1(€)is small enough, for instance,

I'J)|cf¢g(lar <6 (4.9)
Moreover,
|@lcateqran < colt = H([$lesraron + |1 = 1]) < CT|¢|?;§¢;(;‘3;), (4.10)

[0 (lo)] + |®(=lo)] < es([¥(lo)]* + (= o)[*)

and, finally, since the endpoints of ¥, are located on z,-axis, we have

| jE TongdS — /E zam2dS| < eo([D(lo)[? + [H(~1o) ),
1]

hence,
1Q < cro([(lo)[* + 1b(=lo)[*)-

Let 3, and 3, be two functions from the ball (4.9) and let L;[;], M[¢;] etc. be
corresponding functionals. It is easy to see that

=2

S 1 Lilhr] = Liliball < enib(p(lo) — $(lo)] + [b(—o) — (~lo)]),

=1
Iq)[‘/’l] - ¢[¢2]|c§+“(1_31) < C125|¢1 - ¢2|ci‘i§(1,31): (4-11)

Q1] — Q]| < c13b(|(lo) — P2(lo)] + [1h1(=lo) — Pa(~10)])-

These inequalities make it possible to deduce the solvability of the problem (3.15),
(3.11),(3.12) from the contraction mapping principle. We write it in the form of
equation

b= A[FL —Q, My, M_] + Ali - 1 2110 0,0 = By (4.12)

where A is a linear operator which makes correspond a solution of problem (3.16) to
the data [f, a4, a_]. For arbitrary ¢(£) satisfying condition (4.6) and arbitrary 3,1, 1,
from the ball (4.9) we have

|B¢|c;‘j{;(1.al) < c1a(6® + 1),
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1By = Bibalcstaron < €1s(é + €)[$n = alcstaran-
Hence, B is a nonlinear contraction operator in the ball (4.9), if
(8 +6)<é as(f+e)<t.
These inequalities are satisfied, if
§ < min(cgy,crs)/2, € < min(cry,crs)/2.

Then the solvability of equation (4.12) follows from the contraction mapping principle.
The theorem is proved.

The solution of problem (3.15),(3.11),(3.12) determines a curve I' with 9" € 9V
which is tangential tI JV at the endpoints, and the area of the corresponding domain
Q equals (). Indeed, if we set

B(€) = wol(€) + B(§),

L+

= h@(=h)), b= h&(b)), n= 2l

and define (z;) as in section 3, i.e. by equation

o(p(€ =€) = &(¢),

then (3.11) is equivalent to

'(lo) = pk'(I2) = k' (lo),

or to
B(lo) = pk(l2),

which immediately gives ¢'(l;) = k'({2). Exactly in the same way the condition
©'(—l1) = k(=) can be verified. Finally, the addition of (3.15) and (2.3) leads to (3.4)
(i.e. to (3.3)) with a constant ¢ satisfying (3.13) without the last term. Integration of
(3.3) gives

(19 = 192]) = 0
o, e
q.e.d.

We are ready now to carry out a formal construction of the solution of the free
boundary problem (1.1)-(1.3). We use the following iterative procedure. Let #(® =
0,p9 = po, U@ = Qy and let 51, p) be a solution of the first auxiliary problem in
'Q(o). Further, we solve the second auxiliary problem with the function

. 1. -
['(l)(g) = ;“‘ ’ T(ﬁ‘(l)vp(]))"‘)'m:vo(f)
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in the right-hand side. This determines the curve I'") and the domain Q). This
procedure is repeated: we define ¥(™+!) as a solution of the second auxiliary prob-
lem with £™+)) in the right-hand side, and t(™*V) = o=177 . T(g(m+1) p(m+1)7 where
gm+1) p(m+1) ig the solution of the first auxiliary problem in Q™). Let us show that

the sequence ¢(™) is convergent in C{}5(1,81). According to (4.12), we have

(m+1)
(m+1) _ (m+1) (m41) prlm+1) p(m+1) j(m+1) If_
1/) -_— A[Fl bl Q ’ AJ+ 3 Al_ ] + A[t - 210#(111-}-1) b 0, 0],

hence,
w(m+1) — ¢("=) —

= A[F{mHD) — plm _QUmtd) 4 gtm) pg () gl agtmdD) _ pgtmh)y

A
2lppu(m+1)

Suppose that ™) satisfies the condition (4.6). In virtue of (4.7) and (4.2),

FA[LHD — 20— + 1M (2lop ) = (2004™) 71,0, 0]

I’J’(m+l)|cf‘:g(1.61) < CIG|£(m+I)|C‘13"_'T(I.5‘I) < arrfw]. (4.13)

For small w, the right-hand side does not exceed §. Hence, we see that all the approx-
imations ™ satisfy (4.6).
Further, estimates (4.10) and (4.3) imply

|¢,(m+1) _ 'l’(m)lcﬁglhf”) < ciof(6 + |w|)|¢(m+l) - %b(m)|c3+°(1.al)+

1+ 8

Flw|[p™ - ¢(m—])|cfj;g(1.31)]
We see that if

C19(6+ |w|) < 1/2,

then

[ty — lb(m)lcfig(l,a:) < 2ep0lw|[y™ — ¢(m~l)|cfj:;(i.af)

which guarantees the convergence of {#(™}, since 2¢j9|w]| < 1. It is evident that all
the smallness conditions can be satisfied by the choice of small w.
In virtue of (4.13) and (4.14)}, the limiting function ¥ satisfies the inequality
|'¢|caig(1,af) < cgolwl. (4.14)

1

This functions defines the domain €, and ¥ and p can be obtained as a solution of

(1.1),(1,2).
Inequality (4.14) does not guarantee that I' C V, since the space CT}5(1,d1) is
too wide and its elements may have singular second derivatives at the points z;. As a

consequence, the curves I' corresponding to such elements may leave V. To show that

18



this can not happen, we should study the asymptotics of solution near the contact
points. We are not able to make it here and we refer the reader to the papers [1,2,4].
In particular, it is shown in [4] that the free boundary is more regular and it belongs,
as a minimum, to the class C7{2 with ¥ € (1/2,1), and that it is contained in V,

provided that
o
P> E
This condition is guaranteed by (2.7) and by the smallness of p; — po, hence, the
solution we have obtained is physically reasonable. The proof of Theorem 1 is now

complete.
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