
On the free boundary problem fo~ the
Navier-Stokes equations governing

the motion of a viscous incompressible
fluid in a slowly rotating container

V. A. Solonnikov

St. Petersburg Branch of V.A. Steklov

Mathematical Institute of the Russian

Academy of Sciences

Fontanka 27

191011 St. Petersburg

Russia

MPV94-97

Max~Planck~Institut für Mathematik

Gottfried~Claren-Straße 26
53225 Bonn

Gennany





On the free boulldary problem for tlle Navier-Stokes
eqllations goverlling the motion of a viscous

incompressible fluid in a slowly rotating container

V.A.Solonnikov
St.Petersburg Brauch of \l.A.Steklov 11athematical Institute

of the Russian Academy of Sciences,
Fontanka 27, 191011 St.Petersburg, Russia

1 Introduction

This article is a continuation of the series of papers [1-5] devoted to stationary [ree
boundary problell1s for the Navier-Stokes equations with moving contact points. There
were investigated p.foblenls governing a viscous flow in a capillary, a coating flow, and
a piston proLlern. Here one rl10re proLlerll of this type is studied.

Let a heavy viscous incoIllpressible liquid partially fill a circular container V C R2

of the radi us Ro rotating about its center with a small angular velocity w (see Fig.l).
We suppose t.hat the force of gravity is directed along the vector -e2 = (0, -1), and we
denote by n a subdotnain of V occupied with the liquid. The boundary of n consists
of two parts: E = an n av (a part of a rigid wall an) and r = an \ av (a free
boundary). The set AJ = t n r is a union of two contact points: x_ and x+. We
are concerned with the following free boundary problern: find n c V (01', what is the
same, a [ree boundary r), the velocity vector field v(x) = (VI,V2) and the pressur~

p(x) satisfying in n thc Navier-Stokes equations

and the boundary conclitions

(1.1 )

uJ/ - gX2 -11· T(v,p)nlr = -PI = Const.

-I -'I) E = 0., 'V, 'iil r = 0, i· S(v)iil r = 0, (1.2)

(1.3)



T(v,p) = -pI + vS(E), Sij = 8
aVi + aaVj ,

Xi Xi

and v, u, 9 are constant positive coeffitients of viscosity, of the surface tension, alld
the acceleration of gravity, respectively. In addition, we fix the volume of the liquid,
i.e. the area of n:

Here Ci = wRoTa, Ta is a tangential vector to ~, i and Ti are a tangential and an
exterior normal vectors to r, respectively, T and S are the stress and the deformation
tensors, i.e.

and we assutne t.hat the contact angle (), i.e. the angle between r anel ~ at the contact
points, equals 7f. This Ineans t.hat r is t.angential to 8n at these points. For eE (0,7f]
our probleIn can not be sohrcd in the class of vector fields v with a finite Dirichlet
integral (see (1,3,4]).

Problem governing the Illotion of a viscous fluid in a rot.ating container was for­
mulated and considered by a different approach in the paper (6] by C.Baiocchi and
V.V.Pukhnachov who were able to reduce it to a certain variational inequality. How­
ever, it has required sOlne lnodifications of the formulation of the problem, in partic­
ular, the prescription of r.

Let us recall the definition of weightcd Hölder spaces in which we are going to
work. For arhitrary non-integral I, s > 0, arbitrary domain C c Rn and a closed set
F c 8C we define the space C~(G, F) as the set of sealar- 01' vector-valued functions
u(x), x E C, with the Bonn

where
1- 3 IDj II ( x) - Di u(y )I

[u]C~(G,F) = L sup p (X) sup I I/-[i) ,
Ijl=[i) xEG YEK(x) x - Y

p(x) = dist(x, F), f«(x) = {y E G : Ix - Yl ~ p(x)/2} anel

. IDiu(x) - Diu(y) I
lulc'(G) = L sup ID1u(x)1 + L sup I 1"-[3)

IJI</ xEG Iil=[l] x.yEG x - Y

is a usual Hölder norn1 in Gf.
The spaces C~(G, F) can bc also introduced for s < 0, in which case the norm is

given by
(lA)luIC~(G,F) = L sup plil- 3 (x)IDiu(x)1 + [U]CHG,F)'

lil<1 xEG

They cau be defined for functions given on Inanifolds, in particular, on r. Finally, we
say that r E C~ if this line may be given by the equations i = i( s) where s E (0, d) is
a parameter and x E C~(I, 81).
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We prove the following theorern.
THEOREM 1. Suppose that

(1.5)

and 9 / (j > Bo > 0 (see Proposition 1 in section 3). Por arbitrary sufficiently small w
problem (1.1 )-( 1.3) has a unique solution with the /ollowing properties:

1. r E V is a curve 0/ the class c;~ (0' E (0,1), I E (1/2,1)) which is close to
the curve r 0 corresponding to the l·est state,

2. v E CJ+()(O, A1), p E cß~~(n, Al) with a positive ß < 1/2, and

lülc 2+ 0 (O M) + IplcI+o(o M) :s cdwl·
fJ' ,tl-I •

(1.6)

We shall construct thc solution of (1.1)-(1.3) according to the scheme applied in
[2-5] to other free boundary problcIllS with lnoving contact points. We consider at
first the rest state, then we construct a fonnal solution of (1.1 )-( 1.3) without paying
attention to the property r c V which can be established on the basis of the local
analysis of the solution carried out in [2,4]. The main difficulties in this problem are
connected with the fOflnal construction of the solution, and it is at this point that
we concentrate our attenti~n. As for the asymptotics of the solution near the contact
points, all the necessary infoflllation (i.e. the study of the behaviour of the solution
hoth for receding anel for advancing contact line with a contact angle 1T at the smooth
rigid wall of arbiirary shape) is cont.ained in the paper [4].

2 The rest state

In the rest state, when w = 0, ü = 0 and p = Po = Const, the free boundary f o is
defined by the equation

(2.1 )

We recall that the force of gravity is clirected opposite to X2-axis anel wc choose the
origin in such a way that the contact points x± have coordinates (±/o,O), 10 < Ro.
Under the condition (1.5) (which is purely technical) the curve r 0 can be given by the
equation

X2 = 'Po(xt}, XI E (-/0 ,/0 ),

where 'Po is an even functioll anel

'Po(±lo) = O.

Equation (2.1) can be wri tten in the fOrIll

d 'P~ ~
--;:::== - B'Po - -- XI E (-/0, [0),

clx I J1+ 'P~2 - a '

3
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or
d . Po

-s1nO'-8<p0=-- (2.4)
dXI u

where B = g/u and 0: is the angle hetween the tangential vector to f o and xl-axis
(tan o:(xt} = <p~(xt}).

Let us consider <Po as a solution of equation (2.3) satisfying the boundary conditions

<p~(-10 ) = tan 0'0, cp~(10 ) = - tan 0:0 (2.5)

where 0'0 = a( -10 ), Choosing]Jo in an appropriate way, we can satisfy also the
conditions (2.2). It is weil known that. for arbitrary 0'0 E (0, 1r /2) problem (2.3), (2.5)
has a unique infinitely differentiable solution which is an even function of Xl satisfying
the inequality <r'o(x) > <p(±/o) = 0. Let us verify that r c V. Differentiation of (2.4)
glves

eP.
- sin 0: = B tall a > 0 (Xl E (-/0,0)).
dxr

In addition,
sin 0'(-/0 ) = sin 0'(0)( -/0 ), sin 0:(0) = sin 0'(0)(0) = 0

where n(O)(xt} is the angle between xraxis and the tangential vector to the part of
the circle 8V located above this axis. Since sin a(O)(xt} is a linear function of Xl, the
above relations ilnply

sino:(xt} < sina(O)(xt}, Xl E (-/0,0)

which shows that f o lies bet.ween xl-axis and the upper part of av.
Next, we prove that the curves r0 corresponding to different values of 0'0 do not

intersect each ot.her, 1110re exactly, the curve corresponding to the greater value of 0'0
is located under the curve corresponding to the smaller value of this angle. We write
equation (2.4) in the fonn

d .
dXl SIll 0'( X.) = By(xd (y = <r' - ]Jo/g)

and we suppose that tliere are given t.wo functions YI (xt} and Y2(X.) satisfying this
equation and thc conditions

v;(O) = 0 (i.e.ai(O) = 0, i = 1,2)

and

It follows that
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hence, al(xI) > O'~(xd and YI(xd < y~(x~) for negative Xl.

Consider two curves f o.: X~ = CPoi(xd, Xl E (-10., lai), i = 1,2, with lai =
Ho sin 0'0i, O'OI > ao~. The function 0'1 is less than the corresponding function for av
at the point -/2, hence, 0'1 (-/2) < 0'2 (-/2), As we have seen, this implies adxd <
0'2(xd or

CP~1 (xd = tan O'l (xd < tan 0'2(xd = cp~2(xd

for Xl E (-/2 ,0). Consequently,

q.e.d.
This shows that the area of n is a 1l10notone decrcasing function of the angle 0'0.

For every value of Inl E (1r RÖ/2 + b1, 1r RÖ - b2 ) there exists exacty one corresponding
value of 0'0 E (d1 , 1r /2 - d2 ), eh > 0, and f o can be [ouod fron1 (2.3),(2.5).

At the conelusion we COIl1pute thc constant Po. Integration of (2.3) over the interval
(-/0 ,/0 ) gives

. 2/0 Pü
-2S1n 0'0 - BA = --­

a

where

j fO
A = cpo(xddxl > 0

-10

is the area of the dOll1ain bet.ween ro anel Xl-axis. Hence,

a BAa a
Po = Ra + 2t;; > Ho'

(2.6)

(2.7)

3. Auxiliary propositions

Let us turn our attention to problenl (1.1 )-(1.3). The [fee boundary r will be found
as aperturbation of f 0, and it will be given by the equation

(3.1 )

where I. are SOllle unknown nUll1bers elose to 10 • The points x_ = (-11, cp( -lt}) anel

x+ = (/2,CP(l2)) should be located on av and the line r should be tangential to av
at these points. Let (0, Yc), Yc = - Ra sin 0'0, be coordinates of the center of V. The
equations of the seIl1i-cil'cles {x E 8\1, X2 > Yc} and {x E 8V, x > o} have the form

aneI
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respective1y, hence, thc above conditions reduce to

-11 = -h(tp(-/I)),

<p'( -/d = k'( -/0 ),

Equation (1.3) may be written in the fonn

12 = h(cp(/2 )),

ep'(/2) = k'(l2)' (3.2)

(3.3)

(3.4)

with q = PI/a, t(xd = a- l ,ü·Tii]X2='P(xI)' It is convenient to map the interval (-/0 ,/0 )

onto (-/ 1.12 ) by Ineans of a linear transfonnation

Xl = p(~ - ()

with
I I + 12

fL = -1-'
2 0

and to introouce t.he fUIlction

cp(~) = cp(p(e- ()).
Then relations (3.3),(3.2) are transfoflned into

~~ ep'(~) - B<p(~) = l(~) - q,
f1 d~ JfL2 +<p'(e)

9' (10) = pk'(l2), ~'( -10 ) = flk'( -lI), (3.5)

-li = -h(ep(-/o)), 12 = h(<p(lo))

with l(c) = t(p( - ()). Thc constant q may be found by the integration of (3.3) with
respect to XI which gives

Since

11
2

'PdxI = f X2 112dS = Inl - f X2 112dS,
-1\ Jr JE

the last relation is equivalent to
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where It = f!.2f1 Ti· Tiidxt. SiIl1ilar equation holds for qo = Po/u (see (2.6)):

Let us write (3.4),(3.5) as a boundary value probleIl1 for the function

1/;(~) = tP(~) - <Po(~).

We need to compute 12 - 10 , I. -10 , p. - 1, 'l/J'(±lo), q - qo. Taking the conditions
<Po(±lo) = Ü into account., we obtain

12- 10 = h(ep(lo)) - h( 'Po(10)) = ljJ(lo) l h'(sljJ(lo))ds =

= h'(O)ljJ(lo) + ,p(lo) l[h'(sljJ(lo)) - h'(O)]ds == h'(O)ljJ(lo) + L2 ,

11 - 10 = h(ep( -10)) - h( 'Po(-10)) = ljJ( -10) l h'tsljJ( -Io))ds

= h'(O)ljJ( -10) + ljJ( -10) l [h'(sljJ( -10)) - h'(O))ds h'(O)ljJ( -10) + L._ (3.9)

These equations iJnply

(3.10)

where

Dp = h'(,Ü) ['l/J(/o) + 'l/J( -'0)]
2 0

is a linear part of the right-hand side with respect to 'l/J anel

M = L. + L2 = 'l/J(,lo) t [h'( s,p(lo)) - h'(O)]ds + ljJ( ~Io) t[h'(sljJ( -10)) - h'(O)]ds
2 0 Jo 2 0 Jo

is the remainder consistillg of higher order tenns.
Further we have

'l/J'(/o) = p,k'(/z) - k'(,o) = (/1 - l)k'(/o) + k'(/2) - k'(/o)+

+(JI - 1)(1/(/2) - 1/(/0)) = bJlk'(/o) + kl/(/o)h'(O)1/J(/o) + Al+, (3.11)

'l/J'( -la) = pk'( -/t} - k'( -la) = bJlk'( -la) - k/l (-/o)h'(O)'l/J( -la) + M_ (3.12)

where
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+(Jl- 1)(k'(/2) - k'(lo)),

M_ = Mk'(-Io) - (11 -10 ) f[k"(-Io - s(l, -10 )) - k"(-Io)]ds - k"(-lo)L,+

+(,1. - 1) (k' (-11) - k' (-10) ).

Für the eomputatiün of q - qo we subtraet (3.8) from (3.7) whieh leads to

1 [( ep'(/o) CP~(/o))
JLq - qo = - 2/0 JJJ2 + ep/2(1

0
) - VI + cp'2( 1

0
) -

_ ( ep'( -/0 ) _ 'P~( -la) )] _ ~ ([ X2 n2dS-
VI1.2 + ep'2( -/0 ) VI + cp~2( -la) 2/0 JE

- j X 2n2dS) + l-I
t + BI (Inl - Inol)·

Eo 2 0 2 0

We transfonn the right-hanel siele Inaking use of the formula

ep'(~) _ <p~( ~) = ( ep'( ~) _ cp~(C) ) +
/ Jl2 + ep'2(~) /1 + 'P~2(~) VI1.2+ ep'2(~) VJL2 + cp~2(~)

+ ( <p~(~) _ <p~(~) ) _ 1/;' ~ [I JJ
2
ds _

/ + uoT) \ ) - (LO V +

[1 (,l - 1)<p~( ~)ds 1/;'(~) - 8Jl<P~(c)
- Jo [(1 + ..'1(11.- 1))2 + <p~2(~))3/2 = (1 + 'P'2(~))3/2 + 4>(~)

where

(3.13)

(3.14)

, [ 1 [Jl
2 1] AI<p~ (C)

4>(~) = ljJ (~) Jo [/,2 + (<p~ + ..'!ljJ'))3/2 - (1 + <p~2)3/2 cl..'! - (1 + 'P~(~))3/2

-(I' - 1)'P~(Of {[( 1+ s(Jl- _ 1)\2 + 'P02(0]3/2 - [1 + 'Po; (0]3/2 } ds

is the sun1 of all the tenns in (3.14) whieh are at least quadratie with respect to 1/;. If
Inl = 100 1, then the last. ternl in (3.13) vanishes, anel (3.14) ilnplies

l _ _ __1 [1/;'(lO) - 81l<P~(l0) _ 1/;'(-la) - 8'l<p~( -la))
Iq qo- 2/0 (1+<p~2(/o))3/2 (1+<p~2(-/o))3/2 +

+~(lo) - <1>( -/0 )] - BI (r X2 n2dS - r X2 n2dS ) + l-,t .
2 0 JE JE o 2 0
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Next, we apply forrnulas (3.11 ),(3.12) and take account of the fact that !..po is an odd
function of~. We obtain

tj/(10 ) - oll!..p~( 10 )

(1 + !..p~2 (/0 ))3/~

= k" (/o)h'(O)[1j;(/o) + 1/;(-10 )] + A1+ - M_ = _ h'(O) ["1/'(1) "11'(_/)]
(1 + k'2(/0))3/2 Ra 'f' 0 + 'f' 0 +

M+-M_
+ (1 + k'2 (/0))3/2'

hence,

or
I t

q - qo = oq + Q + 2/
0

11

where
OlL

oq = -8'l qo + R
o

is a linear part of q - qo with rcspect to '1/;, and

Q
OIl,{tL - 1) - A'l olL(1 - Il) 1 [ A1+ - A1_

= qo+ - - +
11. Roll 2/01L (1 + k'2(l0))3/2

+4>(/0) - 4>( -/0 )] - -IR (r X2 n 2dS - r X2 n 2dS)
2 oll JE JEo

is the surn of higher order tenns.
It remains to writ.e the different.ial equation for 1/;. We subtract (2.3) from (3.4)

and take account of (3.14) which leads to

or
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(3.16)

with

For given l(~), we eonsider (3.15),(3.11) ,(3.12) as a bOllndary vaille problem for.,p. Let
llS stlldy a linearized problell1

d 1/;' - 8fl'P' 8fl
L[TjJ] =d~ (1 + 'P~2)3~2 - B(?j; + fJJ.L'Po) + ~ = f(~),

1/;'(/0 ) - 8pk'(lo) - k"(lo)h'(O)1/J(lo) = a+,

7j;'( -/0 ) - 5pk'( -la) + k"(-lo)h'(O)1/;( -/0 ) = a_.

PROPOSITION 1 Thel'e cxisls such Ba > 0 that for B > Ba problem, (3.16) has a unique
solution 1/; E C?tS(I,81) (a,ß E (0,1), 1= (-10 ,/0 )) for arbi17>Q.7'Y a+,a_ E R, fE
CJ~~(I, aJ). The solu.tion satisfies I.h e inequality

PROOF It is eonvenient to intl'oduee a new llnknown funetion

Sinee 'P(±/o) = 0, we ha.ve

h'(O) - -
EIL = -1-[1,&(10 ) + 1,&( -la)]

2 0

and we may express ?j; in tenns of J; by the fornlula

Problem (3.16) takes thc fonll

d ~' - 2EII'P~ - 5p
d~(1 +tp~2)3/2 -B1f;+ Ra =f(~),

-, J;(lo)
7jJ (10) - I 2 + 2 tan a05p = a+ l

o eos 0'0

- J;( -10 )
ljJ'( -10 ) + I 2 - 2 tan aoDp = a_ :

o eos 0'0

10
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(3.18)

A weak solution of this problem can be defined as a function .J; E W:.i!l (I) satisfying the
integral identity

.. _110 (;j;' - 28p.'P~, - Op.)
L[7/J, 1]] = -1

0
(1 + ep~2)3/21] + B7/Jl1 - Rn 1] d'-

1 [( .J;(lo) )
- (1 + k'2(/o))3/2 locos20'0 - 2tan a08p. 1](/0 )+

(
.J;( -10 ) )]+ I 2 ' -2tanaoop 1](-10 ) +
o cos 00

25J-lk'(l0) a+1J(lo) - a_1]( -10) 110

+(1 + k'2(l0))3/2 {q(lo) + 1}( -/0)] = (1 + k'2( /0) )3/2 - -1
0
f 1]d'

for arbitrary 1] E lVi(I).
If the coefficient B is large enough, then the quadratic fOrIn L[~,~] is positive

definite:

L[~,,};] 2: C2 /:0 (I,};'12+ 1,};12)d~

Indeed, it is easy to sec that.

(3.19)

with C3, C4 independent of B. For t.he estitnate of ljJ we use the identity

which implies

Vf > O.

Similar estilnate holds for 18p12. It is clear now that (3.19) follows [raIn (3.20) in the
case of large B.

For arbitrary f E CJ~~(I,a/), 1} E 1-\12
1
(/) we have

I/:0 J'ld~1 :s s~p P'-ß(~)IJ(01 /:0 l-1(OI11(Old~ :s

~ Cs sup 11}(')1 sup pl-ß(')lf(c)1 ~ CGII1J1IWl(l)lflclta(1 81)'
I I 2 ß-l'

hence, the existence of a unique weak solution follows from the theorem of Lax­
Milgram. Setting 1} = ;j; in (:3.18) we easily obtain

sup 1~(e)1 ~ c711-~lIlVi(l) ~ cs(suppl-ß(e)lf(e)1 + la+1 + la_I), (3.21)
I I
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and 8p can also be evaluated by the expression In the right-hand side. Now, we
consider ;j; as a solution to the problelll

where
d c.p~ bJL

/1 = / + 28/l d~ (1 + c.p~2p/2 - R
ü

'

J;( /0) ;j;( -/0)
b+ = a+ - 28/l t.an 0'0 + / 2' b_ = a_ + 28/l t.au 0'0 - /

o COS 0'0 0 COS 0'0

This problelll was studied in [7] where, in particular, the following estimate for the
solution was established:

(3.22)

(the assumption ß = 0' tnade in [7] is not essential). Estimate (3.17) is a consequence
of (3.21) anel (3.22). The proposition is proved.

Dur second auxiliary proposition concerns the construction of a special mapping
Y : 0 0 -4 n.

PROPOSITION 2 Suppose that the line f is given by equations (3.1) on the interval
(-/0 ,10 ) witJI <.p saf.isJying conditions (3.5),(3.6), moreover, aSSU1ne that <p(~) = c.p(JL(e­
~)) belongs to C?ts (I, aI) a.n d l/wt

10 - <polc3 +O (/ eH} ::; b1
1+,8 ,

with a s1nall positive 81 • Let n c \I be a d01nain with an = EU ru AI, AI = {x+, x _} .
There exists a 1napping Y : n -4 110 with the /ollowing prope7"lies: 1. Y is invertible,
continuous in n a.nd !ws bou71ded de1·ivatives. A1oreove1', Yb:o E c~tß(~o, Mo) and

Yjro E c~tß(ro, AJo) whe1'e A10 = Eon f o= {x~), x~~»}, x~) = (±/o, 0). For ~ E f o

(3.23)

where

j
J - I'} + /0 t _ I /1 - 12

. - 2/
0

' I:. - 0 /1 + 1
2

•

2. The Jacobian 1nab'ix J of the inve1'se transformation y-I satisfies the inequalities

(3.24)

Sllp lJ(z) - 11 + L sup plil(z)IDi Jo(z)l+
0 0 lil:;;I,2 0 0
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+ L sup p2+0(Z) SUp Iy - zl-olDj Jo(z) - Dj Jo(y)1 ~
IJI=2 zEOo YEK(z)

~ Clll0 - <po IC3 +<lI (I all
I+ß •

where p(x) = dist(x, Mo).
PROOF We eonstruct the Inapping Y in the form

Equation (3.23) det.erInines 4>. on r0:

4>t{Zl'<.pO(Z.)) = ('i - l)zl - JL(,

4>2(Zt, <.po(zt}) =0(zt} - <po(zt} ='ljJ(zt}.

In particular,

(3.25)

(3.26)

(3.27)

which implies
(3.28)

Next, we extend Y (z) auto Eo in stIch a way that YEo =.E. Let (1', <p) be standard
polar coordinates on R2 wit.h the center in (0, Yc). A general form of automorphisms
of av is

XI = Roeos(<.p + h(<.p)), X2 = Rosin(c.p + h(c.p)).

Clearly, this transforillation ean be written in the farIn (3.26) with z = (Rn eos <p, Rn sin c.p)
and

<f>.(z) = Ro[eos(c.p + h(c.p)) - eos).?] =

= Rofeos c.p( eos h('P) - 1) - sin c.p sinh( 'P)],

<f>2(Z) = Ro[sin(c.p + h(<.p)) - sin c.p] =

= R0 [si n <.p (cos h(<.p) - 1) + eos <.p si n h(<p )].

These equations ilnply

(3.29)

(3.30)

We 1l1ake the extensioll of Y by the construction of an appropriate funetion h( c.p) on
.Eo. We find the values of h at thc points x± using relation (3.28). Beeause of this
relation, the funetions <Pi eOlllputed at x± (thcy are given by (3.27)) satisfy (3.29) with
eertain h± whieh are detennined by (3.30). It is elementary t.o eonstruet a srnooth (at

]3



least C3+o-smooth) function h on Eo satisfying the conelitions h(x±) = h± and the
inequality

The extensions of ~i are defined now by (3.29), and it is clear that their C3+O(Eo)­
norms can also be evaluateel by the right-hanel siele of (3.31). Now 4>i are elefineel on
0.00 , and they can be extendeel farther into 0 0 . A special care should be taken in the
neighbourhoods of x± (see also [5]). Let <I-it and <J>i2 be extensions of <J>i IEo anel <J>dro
made in such a way t.hat

[4>i2Ic3 +O (0 At) :s; CIGI4>ilc3+0 (r M)'l+ß 0, 0 1+.8 0, 0

We can define <J>i( z) in the neighbourhood of x_, for exatnple, by the formula

where Xi are functions defined hear x_ and possessing the following properties:

I I aXll 0
Xl Eo = 1, Xl ro = 0, -a 000 = ,

n

OXz
XzlEo = 0, Xzlro = 1, an [000 = 0,

Xi are SIllooth everywhere except t.he point x_, °~ Xi ~ 1 and

Inequat.ilies (3.24),(3.25) are easily verified. Away frolll X±, the construction of exten­
sions is quite standard.

The proposition is proved.
REMARK Let <PI anel <pz be two functions satisfying the hypotheses of the proposi­

tion, anel let Yi be corresponding t.ransformations. Since all the extensions operatops
useel in the proposition are linear, it is easily verified that the e1ifferences JI - J2 satisfy
the estiInates (3.24 ),(3.25) with t.hc Banns of the e1ifferences <PI - 'P2 in the right-hand
sieles.

4 Proof of Theorenl 1

The proof of Theorenl 1 is based on the investigation of two auxiliary problems: of
problem (1.]) ,( 1.2) in a gi yen dOIllail n anel of prableln (3.15) ,(3.11),
(3.12).
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THEORE~I 2. 1.Suppose that r is given by equation (3.1) with the /unction 'P
satis/ying the hypotheses 0/ Proposition 2 and that w is sufficiently smaU:

Iwl < f (4.1 )

Then proble7n (1.1 ),(1.2) possesses a unique solution v E CJ+O(O, M), p E CJ~~(O, M),
and

Ivlc;+a(O,M) + Iplc~~~(O,M) ::; cllwl· (4.2)

2. Let 'PI and CP2 be two /unctions satis/ying hypotheses 0/ Proposition 2 and defining
the lines rI und r2, and let VI,])I und V2, P2 be solulions 0/ (1.1 ),( 1.2) in 0 1 and n2 ,

respectively. The /unetions ii(~) = ii . T(Vi, Pi)iil x2 =r,öde) satis/y Ihe inequatily

(4.3)

The first part of the theorcn1 is known. The linerized probieill was studied in [8].
For sn1all w, the nonlineal' probleiTI can be solved by application of the contraction
mapping principle, since the nonlinear tenn satisfies the inequality

Inequality (4.3) is also establisherl by a weIl known procedure. We Inap the domain fl i

onto fh by Illeans of the transfoflnation y = Z(x) where Z = Y2 0 y l-
1 and Yi : 0 0 -t fl i

are nlappings constructed i tl Proposit.ion 2, and we write problen1 (1.]),( 1.2) for vI, PI
in new coordinat.es. It is easy to see that VI - V2 = tO, PI - P2 = s can be considered
as a solut.ion of the lillear probletn

2- --\7 w+\7s =/, \7 . tO = r,

-I -W E2 = Wo, i· S(w)nlr2 = d (4.4)

where [, r, vo, b, d are funci,ions satisfying the incquality

+Idlcl+o(r H) + IblcHo(r M) ~ c3lwll<pl - <P2IcHo (1 all' (4.5)
tl-I 2,/ 2 tl 2, 2 l+tl '

This inequality follows froll1 (4.2) and froIll the reIllark to Proposition 2 (see some
details in [3], section 5). (4.3) is a consequence of (4.5) anel of a coersive estimate of
the solution of (4.5) in weighted Hölder nornlS (see [8]).

Let us consider problein (3.15),(3.11 ),(3.12).
THEOREM 3 Suppose thaI condilion B > Bo is satisfied. For arbilrary i E

Cß~~(I,aI) wiIh a s71wll n07"111:

I l IC1+ o (l all ::; fi
tl-I '
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problem (3.15),(3.11),(3.12) has a unique solution 1/J E Cg~~(l,al), and for this solu­
tion the estimale

(4.7)

holds.
PROOF Consider LI, L2 , A1, A1± ete. as nonlinear funetionals depending on 1/J. It

is clear that

provided thatl,b(~)is slnall enollgh, for instance,

(4.9)

Moreover,

1<Plc~+a(lal):::; cGIJ1- 11(11/Jlc3+a(1&1) +1ft- l i):::; c7IljJl~3+a(lal)' (4.10)
13 ' 1+13 ' 1+13 '

and, finally, since the endpoints of 2:0 are located on xraxis, we have

hence,
IQI ~ clO(I1/J(10)1 2 + 11/J( -10 )1

2
).

Let 1/JI anel 1/J2 be two functions froln the ball (4.9) and let Ld1/;j] ,M[1/;j] etc. be
corresponding fUllctionals. It is easy to see that

i=2

L ILd1/;d - Ld1/J2] I~ cllb(I1/J(lo) -1/J(l0)1 + I1/;( -10) -1/;( -10)1),
i=1

1<I>[1/Jtl- <P[1/;2]lc2t <l(1 &1) ~ C12 bl1/JI -1/;2IcHa (1 &1)' (4.11)
fJ • 1+13 '

lQ[1/Jd - Q[1/;2] I~ CI3b(I1/J(l0) -1/;2(/0)1 + l7/;I (-10) -1/J2( -10)1).

These inequalities Illake it possi ble to ded llce the solvability of the problem (3.15),
(3.11 ),(3.12) frolll the eontraction lnapping principle. \Ve write it in the form of
equation

- 1
1/J = A[FI - Q, A1+, 1\1_] + A[t - -,-lI, 0, 0)] - 81/J (4.12)

2 OlL

where A is a linear operator whieh lnakes correspond a solution of problem (3.16) to
the data (/, (l+, a_]. For arbitrary l(~) satisfying condi tion (4.6) anel arbitrary 1/J, 1/JI, 7/;2
from the ball (4.9) we have

16



181jJI - 81jJ2Ic3+a (181) :::; cls(8 + fdl1/JI -1,b2Ic3+a (181)·
1+t:' ' 1+.8 '

Hence, 8 is a nonlinear contraction operator in the ball (4.9), if

These inequalities are satisfied, if

Then the solvahility of eqllatioll (4.12) follows from the cOlltraction rnapping principle.
The theorelll is proved.

The solution of problelll (3.15),(3.11 ),(3.12) determines a curve r with ar E av
which is tangential tl av at the endpoints, and the area of the corresponding domain
n equals Q. Indeed, if we set

I1 + 12
II=h(~(-/o)), 12 =h(ep(lo)), 11 = 21

o
and define cp(xt} as in section 3, i.e. by eqllation

then (3.11) is equivalent to

or to
ep(/o) = JLk(/2 ),

which imillediately gives tp'(12 ) = k'(12 ), Exactly In the same way the condition
cp'( -/d = k'( -/d can be verified. Finally, the addition of (3.15) and (2.3) leads to (3.4)
(i.e. to (3.3)) with a constant q satisfying (3.13) without the last term. Integration of
(3.3) gives

B
21

o
(Inl - Inol) = 0,

q.e.d.
\Ve are ready uow to carry out a formal construction of the solution of the free

boundary problelll (1.1 )-( 1.3). \·Ve llse the following iterative procedure. Let vi°) =
0, p(O) = PO, n(O) = n o auf! let 17(1\ pP) be a solution of thc first auxiliary problem in
n(O). Further , we solve t.hc second auxiliary problem with the flluction

17



in the right-hand side. This determines the curve r(1) and the domain f2(1). This
procedure is repeated: we define tjJ(m+l) as a solution of tbe second auxiliary prob­
lem with i(m+l) in the right-hand siele, and t(m+l) = a-lii . T(vim+l ), p(m+l»)n where
vim+l), p(m+l) is the solution of the first auxiliary problem in n(m). Let us show that
the sequence fjJ(m) is convergent in C?tß(I,8I). According to (4.12), we have

I(m+l)
~/.(m+l) = A[F(m+l) _ Q(m+l) Al(m+1) Al(m+l)] + A[i(m+1) _ t 0 0]
If/ I ,+, - 21op(m+I) ' , ,

hence,
'lj)(m+1) _1jJ(m) =

= A[F(m+1) _ F(m) _ Q(m+l) + Q(m) A1(m+1) _ Al(m) k/(m+l) _ M(m)]+
I I , + +, - -

j(m+l) j(m)

+
A[i(m+l) _ i(m) _ t - t + I(m)[(21 (m+I))-1 _ (21 (m»)-l] 0 0]

21oI1(m+l) t oJi oJi, ,

Suppose that 1j;m) satisfies the condition (4.6). In virtue of (4.7) anel (4.2),

1..1.(711+1) 1 < It~(rn+l) 1 < 1 I
If/ C 3 +a (1 a/) _ CIG C1+ a (1 a/) _ CI7 W •

1+1'3 • 1'3-1 •
(4.13)

For small w, tbe right-band siele does not exceed 8. Hence, we see tbat all tbe approx­
imations 1/;"' satisfy (4.6).

Further, estilllates (4.10) anel (4.3) ill1ply

1 ~/.(m+1) ~/.(m)1 < [(' + I I) 1~/.(m+1) ..,.(rn) I +
'f' -If/ c3+ a /la/)_CID 0 W 'fJ -0/ c3+ a (181)

1+1'3 • 1+1'3 •

We see that if
CID(8 + IwJ) < 1/2,

then

1 ~/.(m+I) ~;.(m)1 < 2 I 11~/.(rn) .. t.(rn-1) 1
0/ - 'fJ C3+"(18/) _ CID W 0/ - 0/ c3+ a (la/)

1+1'3 • 1+13 '

which guarantees the convergence of {1jJ(m)}, since 2c19lwl < 1. It is evident that all
thc smalllless conelit.iolls ca.n be sat.isfied by the choice of slnall w.

In virtue of (4.13) allel (4.14), the liIniting function 7j; satisfies the inequality

(4.14)

This functions defines the dOlnaill f2, anel iJ anel p can be obtaineel as a solution of
(1.1),(1,2).

Inequality (4.14) does not guarantee that r c V, since the space C?t$(1, 81) is
too wide anel its elelnent.s Inay have singular second derivatives at the points x±. As a
consequence, the curves r corresponding to such elements may leave V. To show that
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this can not happen, we should study the asymptotics of solution near the contact
points. We are not able LO make it here and we refer the reader to the papers [1,2,4].
In particular, it is shown in [4] that the free boundary is rnore regular and it belongs,
as a mininlum, to the dass C?t; with I E (1/2,1), and that it is contained in V,
provided that

(J'

PI> ~.

This condition is guaranteed by (2.7) anel by the smallness of PI - Po, hence, the
solution we have obtained is physically rea.sonable. The proof of Theorem 1 is now
complete.
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