THE IMAGE OF THE GALOIS GROUP FOR
SOME CRYSTALLINE REPRESENTATIONS

Victor A. Abrashkin

Max-Planck-Gesellschaft zur

Forderung der Wissenschaltene.V.

AG ,,Algebraische Geometrie und
Zahlentheorie®

Jagerstr. 10-11

10117 Berlin

GERMANY

MPI 95-109

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-Str. 26
53225 Bonn
GERMANY






THE IMAGE OF THE GALOIS GROUP FOR
SOME CRYSTALLINE REPRESENTATIONS

VICTOR A. ABRASHKIN

Arbeitsgruppe ” Algebraische Geometrie und Zahlentheorie”
Jagerstrafie 10/11, Berlin 10117, Germany

0. Introduction.

Let K be the quotient field of Witt vectors ring W(k), where k is an algebraically
closed field of characteristic p > 0, [ = Gal(K/K).

For a € N, a < p~ 1, denote by MI""*(a) a full subcategory of the category of
Z,[I'-modules, which consists of T-invariant lattices of crystalline Q,T']-modules
with Hodge-Tate weights from [0,«a]. Fontaine-Laffaille theory, c.f. [F-L], gives
effective way to study objects of the category MI*"*(a) by the functor

U:MF(a) — MI*"5(q),

where MF(a) is some subcategory of the category of filtered W(k)-modules.

In this paper we follow Fontaine’s idea from [Fol| to study the image H of I in
Autz, U, where U € MI*"(a).

Let T'y; be the Galois group of the maximal tamely ramified extension K, of
K in K. Fix a section s : I'y; — T of the natural projection I' — I';. Let
U be a free Zy-module of finite rank ~ with continuos action of I. Then U is a
semisimple Z,[s(T'y; )]-module. Introduce the following two basic assumptions about
this module (in fact (2y) implies (1y)):

(1) in the isotypical decomposition U = BaezUq all components U, are simple;

(2v) in the isotypical decomposition Endg, U = (Endg, U)") @ (PacgEa) all
components (with nontrivial action of s(I'y;)) E, are simple.

The first assumption implies, that U @ W(F},) = @,esUy, where S = S(U) is
a finite subset of the group of characters CharI'; and rkyyg,) Uy = 1. The set §
satisfies the conjugacy condition: x € S = ox € S, where o 1s absolute Frobenius.
For any such S C Char D, consider the set of functions Fg

n:9 x8§ — ZLyoU {+o0},

such that for any xi1,x2,x3 € S
a) n(x1,x1) 2 L
b) n(x1,x2) = n(ox1,0x2);
C) n(XhX?) S n(Xl)X3)+ n(X%X'Z);
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d) n(x1,x1) = min{ n(x1,x) + n(x;x1) [ x € S }.

If U satisfies assumptions (1) and (2y), the function ny € Fs can be defined
as follows.

Let H! be the image of the higher ramification subgroup I = Ker(I' — T'y;)
in Autz, U. The Lie Z,-algebra H of the p-adic Lie group H ! is Lie subalgebra
and Zy[s(T'i;)]-submodule of Endz, U. If @ € J, then Hy = HN Ey = p"E,
for some ng € Zyo U {+oo}. If x1,x2 € S, X1 # X2, then there exists the unique
a(x1,Xx2) € J, such that xl_lxg appears as a character of the I'y;-module E,(y, v,),
and we set

nU(X] ? X2) = Ma(x1,x2)

If x1 = x2, set

ny(x1,x1) = min{ny(x1,x) +nv(x1) | x € SU),x # x1 }-

We obtained the function ny € Fg, which contains considerable part of infor-
mation about the image H of I' in Autg, U.

One can check up, that for any finite subset S C CharT'; (which satisfies the
conjugacy condition) and any n € Fg, there exists I-module U (which satisfies
assumptions (1y) and (2y)), such that § = S(U) and n = ny.

Let ¢ € N, a £ p—1 and let (CharI'i,)(a) be union of all S(U), where U €
MTI"(q). Consider standard identification

r:Charly — R, = {reQnl0,1) | vy(r) >0}

(if x € CharT,, then r(x) = I/(p™ ~ 1), where 0 < I < p" — 1, x = x¥% and

XN € CharTy; is such that xy(7) = (r7n)7y', where 7y € K is such that
N

mh 7" = —p). Then by Fontaine-Laffaille theory we have

r((Char I'i; )(a)) = R,(a),

where Rp(a) consists of r € R}, such that all digits [,(r),s > 0, of the archimedian
expansion “in a base” p

_b0) b0

P ps+1+"‘

belong to [0, al.

Let a < p— 2. In this case the Fontaine-Laffaille functor & : MFf(a) —
MI“"*(q) is an equivalence of categories. If U € MT*"®(a), then U = (M), where
M € MFy(a), and our main result (theorem A of n. 2.5.1) gives expression for the

function ny in terms related to the filtered module M.
Let

{ny | U e MI®(a) } = U Fi .
SC(Char 'y )(a)

Then by theorem B of n.2.5.2 the subset F5 C Fs is given only by one additional
condition



d') if x1,x0 € S,m1 = r(x1),70 = (X0} and for all s € Z>¢ one has l,(ro) >
ly(1), then

n(x1,x0) = min{ n(x1,x) +n(x,x0) | x €S }.

As application consider the case a = 1, p > 3. If G is a commutative formal
group G over W (k) of finite height, then its Tate module T(G) is an object of the
category U € MT“"®(1). In this case (under assumptions (1y) and (2y)) theorem
B gives )

Fsray # Fsray & Gm GG,

where G, is the formal multiplicative group. In particular, if G is a 1-dimensional
formal group of height A, then

r(S(T(G) = { /(" ~1) [0S i<h}

and
Fsircy = Fs(r(ay)-

This equality gives positive answer to the question of J.-M. Fontaine from [Fol]. In

this case the function nq(g) can be also expressed in terms of functional equation
for logarithm of G.

We did not consider in this paper the case a = p — 1, but it can be considered
in the same way using more complicated construction related to some version U, of
the modification of Fontaine-Laffaille functor from [Abl]. Then theorem A holds,
when U is replaced by U, and theorem B holds (with small correction: if U arises
from “connected” filtered module, and the trivial character 7 belongs to S(U), we
must set 7(n) = 1) for all @ < p— 1, so one can apply it also for formal groups in
the case p = 2.

We did not consider here systematically the second invariant of the image H,
which appears as Z,-module H N (Endg, U)*("x). In some cases (e.g. in the case
of 1-dimensional formal groups) we prove, that

H N (Endg, U)*") = p(Endg, U)* ),
and, therefore, here the knowledge of the function ny € Fgyy is equivalent to the
knowledge of the image H of the Galois group T'.

This paper was written during my stay in the “Arbeitsgruppe Algebraische Ge-
ometrie und Zahlentheorie” (Max-Planck-Gesellschaft, Berlin). I express my grati-
tude to this organization for hospitality.

1. Characterization of some subgroups in GL,(Z,).

1. Let U be a free Z,-module of finite rank h. Consider a closed (in p-adic

topology) subgroup H C Autz, U ~ GLx(Z,), so one has structure of a continuos
Z,[H]-module on U.

1.1. Consider the following properties C1-C3 of H-module U.

C1. There is an ezact sequence of groups

1— H'— H— H —1,
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where H, 13 a cyclic group of order prime to p and H' is a pro-p-group.

In this case one can fix a splitting s : H; — H, what gives the structure of a
continuos Z,[s(Hy)]-module on U. Clearly,

Ue® VV(IFP) = 8 Uy,
XES

where S = S(H) consists of characters x € Hom(H,, W(F,)*), such that
Uy={ueUQW(F,) | hu=x(h)u Vhes(H)}#O.

If o is the absolute Frobenius on W(F,), then one has: x € § = ox € S.

C2. tky(p,) Uy =1 for any x € S(H), i.e. Zp[s(H1)]-module U does not contain
multiple irreducible components.

C3. If x1,x2,X3,Xa € S(H), X1 # X2 and X7 X2 = X3 ' X4, then x1 = xa (and,
therefore, x2 = Xa), i.e. Zp[s(H,)]-module Endz, U does not contain irreducible
multiple components with nonirivial action of s(Hy).

We prove the following proposition to illustrate these properties.

Proposition. If the image of H in Autg, (U ® F,) is a cyclic group of order ¢ — 1,
where ¢ = p", then the properties C1-C3 hold and Uy = U ® F, is a simple Z,[H]-
module.

Proof.
Obviously, C1 is true.
Present S = S(H) as a union of o-orbits

hy—1 h,—1

S={xi,...,0 X1} Xsre- 3O Xs }-

Then ord y; | p** —1for 1 <i < s, and hy + -+ + hy = |S| < k. Now
g—1=CGM{ordy;{1<i<s}< H (ph —1) < pMitthe g
1<i<s
givess =1, h+---+hy=h,or S={ x,0x,...,6"  x } and ord y = ¢ — 1, what
gives the property C2.

Let x1,.-.,Xs € S,x1 # X2,X7 X2 = X3 'X4. One can assume, that y; =
XsX2 =0"x, X3 = "), x4 = 0™, where 0 < ny,n3,ng < h,ny # 0. Because of
the property ord x = ¢ — 1, the equality x;l X2 = X3 X4 is equivalent to

14+ p™ =p™ + p™ mod(q — 1).
The both sides of this equivalence are elements from (2, ¢], so we have the cquality

1 +pﬂ4 =pnz _!_pns'
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Nowne #0=2>14+pm2>p+1>2=n4 #0=>n3=0= x1 = x3. So, we have
also the property C3.

1.2. Let H C Endgz, U be the Z,-Lie algebra of H' C Autz, U. Then H —
H gives one-to-one correspondence between subgroups H C Autz, U (with given
H,) and Z,[s(H;)]-submodules and topologically nilpotent Lie subalgebras H of
Zp[s(Hy)}-module and Lie algebra Endg, U.

Clearly,

Endzp UcC EndW(Fp)(U @ W( »)) = Dx1,x2€5 I'I'DHIW(F (UX1’UX3)'

Under this injection Endgz, U consists of

(a,\'l,){z)x“X:GS € Bx1,x2€5 HomW(Fp)(UM s Uxz )

such that oay, y, = Oy, 0y, fOr any x1,x2 € S, where

o Txyxe a
Ty, ,x2 - Ux'f ? Ux1 ' UXz ? ng'

Let 7 be some character of 5(Hy), then

(Endz, U), =0, if n # Xflxg for any x1,x2 € 5;

rkW(FP)(Endzp Uy, =11ifn= Xl—]XZ, where x1,x2 € S,x1 # X2;
(Ende U)S(Hl) = { (ayidy)xes | oy € W(Fp),aax =,y Yx €S}

Now let H® W(F,) = @ H,. Then the following properties describe H
n€Char s(H,)

as a Zp[s(Hy)]-submodule of Endg, U:
a) if n # Xl_lxg, where x1,x2 € S, then H, = 0;
b) if x1,x2 € S, X1 # X2, then there exists n(x1, x2) € Z»oU {+00}, such that

HX;1X2 = pn(XIaX2) HomW(i‘p)(Uh ) Ux:)'

These “integers” n(x1, x2) satisfy the conjugacy condition n{x1, x2) = n(ox1,ox2).
c) Ho = H4H1) is some Z,-submodule of

(Endg, U)B(Hl) ={ (axidy)xes | ax € W(Fp):ffax =aoyx YXES }.

The following properties describe 'H as a topologically nilpotent Lie subalgebra
of Endg, U:

d) 1f X1, X2, X3 are different elements of S, then {H

therefore, n{x1,x2) + n(xz, x3) = n(x1, x3);
e) if x1,x2 €S, x1 # X2, then [Hxl_ln,?{x;xxl] C Hy and this means

]C'H ,and,

le X,\a

pn()a1X2)+11(X2,X1)(idxl —idy,) € Ho @ W(]Fp);

Y Ho C p(Endzp U)"(Hl).



If x1,x2 € S, x1 # X2, then e) and f) give n(x1, x2) + nlx2,x1) = 1. So, if we
set by definition

n(x, x) = min{n(x, x2) + n(x2,x) | x2 € S;x # x2 }

and require n{yx, x) > 1 for all x € §, then the above property d) can be reformu-
lated in a following way.
dl) if X1,X2:X3 € Sa then

n(x1,x2) + n(xz,xs) 2 n{x1,Xx3)-

So, we have

Proposition. There is one-to-one correspondence between subgroups H C Autz, U,
which satisfy the properties C1-C3, and the following data:
1) a functionn =ny : S x § — ZyoU {400}, such that for any x1,x2,x3 € S

n(x1,x1) = min{n(xi, x2) + n{xz,x1) | x2 €S } > 1;

n(ox1,0x2) = n(x1,X2);
n(X1, x2) + n(xz,x3) 2 n(x1, x3);
2) a Z,-submodule Hy = Ho(H) of p(Endg, U)*(HV) C P& Homyy g, y(Ux, Uy),
such that for any x1,x2 € S

p"(XIsX2)+n(X21X1)(idXI - idxz) €EHo ® W([Fp)'

1.3. Consider the following property
C4. Uy =U @F, is a simple Z,[H]-module.

Clearly, C4 implies C2. Under assumption C4 the above description of H can
be slightly simplified.

From C1 it follows, that Z,[s(H,)]-module U is simple. So, if we fix y € § =
S(H), then S = {x,0x,...,0""tx}. For i € Z/hZ set n(z) = n(c™ x,0™2x),
where (mg —my)mod h = ¢. Then

(i) +n(5) 2 n(i + ),

for any 4,7 € Z/hZ. Remark, that H' = H N (1 + pEndz, U), therefore, all
n(:) € NU{+oc}, and we obtain the function

n=ngy:&L/hZ— NU {+oo}.
- To rewrite the condition 2) of proposition of n.1.3, let
H = Biez/nzMi,

]



where Hy = H*HV as earlier, and for 1 € Z/hZ\ {0} H; is an irreducible
Zp[s(Hy)]-module, such that H; y-1,i, # 0.

For any m € Z/hZ,let Uym, = W(Fp)em, where o€, = €41, Forany my,ms €
Z/hZ, let em,,m, € Homp g, y(Usmiy,omay) be such that e, ,m,(em,) = em,. In

this notation for ¢ = p* and any ¢ € Z/hZ

Hi C { Z: Amem,mti | am € W(F,y),00m = amy1 }-
mEZ/Z

Remark, that for any 7 € Z/hZ H; is completely determined by its projection
Hi(x) to Homyyp y(Uy, Usiy). 1 # 0, then Hi(x) = p"OW (F, eo -
If : € Z/RZ\ {0}, then one can easily verify, that [H;, H—;] C Ho consists of

elements in a form 4 .
pn(:)+n(—') Z XmCrn,m,
meZ/hZ

where «g = o'y — v for some v € W(F,).

If hq|h, denote by Trp s, the trace map of the fields extension given by quotient
fields of the rings W(F;) = W(Fpx ) and W(F,», ). One can easily check up the
following statement

Lemma. If a € W(F,),: € Z/hZ, then the following conditions are equivalent
1) there exists v € W(F,), such that a = o'y — v;
2) if hy = c.g.d.(h,1), then Trp p, @ = 0.

Therefore, if : € Z/RZ\ {0}, then the property [H;, H_:] C Ho is equivalent to

pn(f)+ﬂ(_i) Ker(Trh'(h,i))eO;O C HO(X)‘

Definition.
a) If hy|h, then

n*(hy) = min{ n(?) + n(—1) | i € Z/RZ\ {0},(:,h) = h; };

b) wn) — zp“'("l)KerTr;r,,h1 C W(F,).
hylh

Clearly, W™ is the minimal Zg-submodule in W(F,) containing Z,-modules
prH+n (=D Ker Try, (4 ;) for all i € Z/RZ\ {0}.
Finally, we obtain

Proposition. There is a one-to-one correspondence between pairs (H,x), where
H is a subgroup of Autz, U, which satisfies properties C1, C3, C4, and x is a fixed
character of the H-module U ® F,, and the following data:

1) a function n = ng y : Z/hZ — N U {400}, such that

n(0) = min{ n(i) + n(—i) | 1 € Z/NZ }

and



n(i) -+ n(j) 2 n(i +7)
for alli,7 € Z/hZ,
2) a Z,-module Ho(x) = Ho(H, x), such that

WMeg o C Holx) C pW(F, Jeo o-

2. Case of Fontaine-Laffaille modules.

Let W(k) be the ring of Witt vectors with coeflicients in a perfect field k of
characteristic p > 0. Let K be its quotient field and T’ = Gal(K/K). Let U be
a free Z,-module of finite rank kA with continuos [-action. If the image H of I’
in Autzp U satisfies the properties C1-C3, we also use notation ny,ny,y instead of
nH,NH,y from section 1. Under above assumptions C1-C3 we want to study the
case, when U is Fontaine-Laffaille I'-module, i.e. U is a I’-invariant lattice in some
crystalline Qp[[]-module with Hodge-Tate weights from [0, a], where a < p. For
simplicity we assume, that & is algebraically closed (what is equivalent to the study
of the image of the inertia subgroup of T').

2.1. Some facts from Fontaine-Laffaille theory, [F-L].

Let Acris be Fontaine’s crystalline ring. It has continuos I-action, AL . = W(k).
There is Frobenius endomorphism o¢ris(= o) of Acng, which prolongs standard
Frobenius o of W{k). Aciis has a decreasing filtration of ideals Fil* Acris, such that
o Fil' Acris C P'Acris for 0 < i < p.

Let MF be the category of W(k)-modules M with decreasing filtration of length
< p by W(k)-submodules M = M° > M! > ... D M? = 0 and o-lincar morphisms
¢i: M' — M, such that ¢;|pri+1 = peiqy for all 0 < i < p.

One can consider Acris as the object of the category MF, if Al = Fil' Acsis,
¢;i=ptofor 0 <i<p,and A7, =0.

Let MF be the full subcategory of admissible modules in MF. By definition, MF
consists of finitely generated filtered modules M € MF, such that 3_. ¢:(M?) = M.
MF is an abelian category. Denote by MF (resp., MF,,) a full subcategory of MF
which consists of free (resp., torsion) W(k)-modules M.

Let MTI" be the category of Z,[['}-modules. Then Fontaine-Laffaille theory gives
an exact and faithfull functor ¥ : MF — MI. I M € MFy, then U(M) =
Hom s 7(M, Acris ), where the structure of I'-module on #(M) is induced from the
[-module structure on Acps. In this case U(M) is a free Z,-module, rkz, U(M) =
rkwxy M and U(M) ® Qp is a crystalline Q,[I']-module with weights from [a, b},
if M° = M*® and M**! = 0. If M € MFy,,, then U(M) = Hommr(M, Acris 00),
where Acris,co = li_x}nAﬂis,n, and Acris.n = Acris/P" Acris With induced structure of

neN
the object of the category MF. In this case lengths of W(k)-module M and of
Z ;-module U(M) coincide.

First information about T'-modules Y (M), where M € MF, comes from the study
of simple objects of the category MF. Let R, = { » € QN [0,1] | vp(r) > 0 }. For
any r € R, consider its archimedian decomposition

lo(r) Ls(r)

r=—p—+---+F+...



with digits /,(r), where 0 < l,(r) < p for all s € Z>o. Denote by h(r) the minimal
period of the sequence {l,(r)}s>0: One can use indices from Z/h(r)Z or from Z for
this sequence.

Let r € R, and M(r) € MF be such that

a) pM(r) = 0 and as k-module M(r) has a basis {m; | ¢ € Z/h(r)Z};

b) for 0 < j < p the submodule of filtration M(r)’ is generated by

{m,- | I,‘(T’) > j,i € Z/h(T‘)Z }

(in particular, m; € M(r)5 (D \ M(r)k(D+1);
C) fOI' all ?: < Z/h(T)Z one h&S ¢l.—(r)(mi) = 7711-_'_1_

Ifre Ryand: € Z,let

I,-+,(7‘)

. l,-(r)
i) = =4+

+ ...
Then any simple object of the category MF is isomorphic to M(r) for some r € R,,
and M(ry) ~ M(r) iff ry = r(7) for some : € Z.
If N € N introduce “tamely ramified” character x3 : I' — W(k)” by the
relation
Xn(r)=(r7n)/7N,

— N
where 7 € I" and nny € K is such that 71'",’\, -1

=—p. If x: T — W(k)* is some
continuos character, then y = X*NkN(X) for some N € Nand 0 < kny(x) < p™ - 1.
In this notation

r(x) = kn(x)/ (P —1) € R, 0 [0,1)

does not depend on the choice of N and determines the character y uniquelly.
One can use this invariant to describe the structure of I'-module U(r) = U(M(r)).
If » € R,N[0,1), then U(r) is a simple Zy[I'|-module with the set of characters
S={x,0x,...,0""1x}, where r(x) = . This means pU(r) = 0 and

U(r) @ W(k) = OpesU(r)n,

where U(r), = {u e U(r) @ W(k) | Tu = n(7)u forallT € T'} # 0. f r = 1, then
U(1) = U(0) is trivial I'-module F,.

Let V be a crystalline Qp[I'}-module with weights from [0,p — 1]. We call T-
module U Fontaine-Laffaille I'-module, if U is isomorphic to some I'-invariant Z -
lattice of V. By the main result of Fontaine-Laffaille theory V' contains some
[-invariant lattice isomorphic to U (M) for some M € MF. Generally, one can not
present any I'-invariant lattice of V as U (M), where M € MF, because the functor
U : MF — MT is not fully faithfull. Let MF* be a full subcategory of MF, which
consists of filtered modules M € MF, such that the simple object M(1) does not
appear as a subquotient of M. Then restriction

U MF* — MTD

is fully faithfull functor. So, if Uy C U(M) ® Qp, where M € MF}, is T-invariant
lattice, then Uy = U(M,) for some M; € MF%. In this case

9



M1'= HomF(U1 3 Acris):

where the filtration and o-linear morphisms ¢;, 0 < ¢ < p, on M; are induced from
those on Acnis. (One can apply modification of the Fontaine-Laftaille functor from
[Ab1] to describe all I'-invariant lattices of arbitrary crystalline Q,[I']-module with
weights from [0,p — 1].)

At least in our case, properties of the I-module U = U(M) are related more
directly to properties of the filtered module M’ € MF", such that U = U (M"),
where Uy : MF* — MT is some functor equivalent to the functor #/. Let MF7
be a full subcategory of MF", which consists of filtered modules M, such that
pM = 0. Then construction of U |mry was done in [Abl] (where the more general
case of objects M € MF, such that pM = 0, was considered). Essential part of this
construction can be explained as follows.

Let M € MFYy, then it has k-basis m = (my,...,mn), such that for some
function I : [1, N] — [0, p—1] the filtration submodule M7,0 < j < p, is generated
by { mi |1(z) > j }. If ¢(m) = (di1)(m1), ..., dywy(mn)), then o-linear morphisms
dr, 0 < k < p, are uniquelly defined by the relation

o(m) = mC,

for some C' € GLn(W(k)). Then (M) can be identified with I'-module of residues
modulo pO of K-solutions X = (X,,...,Xn) of the system of equations

X? X7,
(=)0 (=p)iN)

Construction of equivalence of the functors &/ IMF{‘ and U, [M]?;x 1s relatively com-
plicated, c.f. [Abl] (and leads to the construction of the functor 2f). But, if
MF(p — 2) is a full subcategory of MF, which consists of filtered modules M, such
that MP~! = 0, then restrictions of & and #; on MF(p — 2) coincide. So, we can
considerably simplify out arguments by studying only the case of Fontaine-Laffaille
modules in a form U(M), where M € MF(p — 2). Remark, that objects M of the
category MF(p — 2) are characterized by the following property:

if M(r) 13 a simple subquotent of M, then r € R,(p — 2), where

) = xwe.

Ry(p—2)={r€R,|0<,(r)<p—2 foralls >0 }.

2.2. Class MF®®).
Let S be a finite subset of Rp, such that r € § = r(1) € §. Forany r € S we
denote its archimedean decomposition in “a base p” by

. Io(T’) I,,(T)
T, Tt om

+...,
where 0 < [,(r) < p for all s € Z>,.

Introduce class MF() of ob jects of the category MF; as follows. By definition
it consists of filtered free W(k)-modules M, such that

10



T -

a) M has W(k)-basis {m, | r € S} and for any 0 < j < pits filtration submodule
M7 is generated by {m, | ly(r) > j} (in particular, for any r € S one has m, €
Mio(7) \Mlo(r)+l);

b) o-linear morphisms ¢; : M¥ — M are uniquelly defined by relations

Blo(r(=1)Mr(~1) = Mr + Y Brrimy
res

where r € § and coefficients 8.+ € W(k) satisfy the following conditions b, ) and
b2).

bi) Let ry,...,rm € S be such that
S={r,...,r1i(h1 = 1);...;7m, ..., rm(hm — 1)},

where h; = h(r;) is the minimal period of p-digits decomposition for 7; € S. There
exists substitution ( 1 e ), such that
1 er  JIm
ifr = rj (a),r" =r;,(B), where a > b, « € Z/h; Z,B € Zh;Z, then fBrp €
pW(k);

by) if lo(r) < lo(v"), then B = 0.

The above conditions a) and b;) define on M the structure of an object of
the category MF; and the condition b;) describes M/pM = MO ¢ MF,,, as
subsequent extensions of the simple object M(r;,) by M(r;,), where 1 < a < m.
In other words, one has the following exact sequences in the category MFi.,:

0— M® — MY — M(r;)—0

0 — M(rj, ) =M™ — M1 — M(r;, ) — 0.

The condition by) was introduced by Wintenberger, c.f. [Wtb]. He proved, that
the structure of any M € MF; has the above explicit description, which satisfies

this additional property (and even gives a functorial spritting of the filtration on

If U is a free Z ,-module with continuos action of I', and H = H(U) is the image
of I in Autz, U, then Z,[H]-module U automatically satisfies the property C1 of
n.1. In notation of n.1 H! is the image of the higher ramification subgroup I of '
and H, is identified with a quotient of I'y; = I'/I. We can fix a section s : ['y; — T
of the projection I' — T'y; and take induced splitting s : Hy — H. Therefore,
any character x of s(H;) can be considered as character of T'y; (this identification
is induced by composition I'y; —— 3(T'yy) — s(Hy)) and can be given by its r-
invariant r(y) from n.2.1.

Clearly, MF(S) MF(p — 2), if and only if S C Ry(p—2). f M € MF®) and
U = U(M), then the set S(H) of characters of the group s(H;), which appears
in n.1, is identified with S by the correspondence x — r(x). So, U satisfies the
property C2 of n.1. We obtained the following proposition.

~
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Proposition. The following statements are equivalent:
1) U is Fontaine-Laffaille module with weights from [0,p — 2], which satisfies
conditions C1 and C2 of n.1;

2) U ~ U(M), where M € MF®) and § = S(H(U)) C R,(p — 2).
Consider the following property of S C Rp(p — 2).
Cbh. All elements of the set

{ (Tl —rz)modZ | 1,72 € S,T‘l -‘,éT'g }

are different.

Then we have

Corollary. U is Fontaine-Laffaille T-module with weights from [0, p — 2] satisfying
conditions C1-C3 of n.1, if and only if U ~ U(M), where M € MF and § C
Rp(p — 2) satisfies the above property C5.

2.3. Function nyy.

Let M € MF® be given in notation of n.2.2.

Define the function npar : § x § — Z> U {+00} as follows.
For r,r' € S set

n:;.l(ra T') = lnin{ Up(ﬂr’(i),r(i)) ' 1 € Z})

then for ry,ro € §
nM('r“] ) T2) =
= min{ nh(rl,r(l))—l—- . -+n'34(7'(1"1),r(1))+n}'u(r“),r2) | 1> 0,0 ..., rWes }.
Proposition. The function nyps satisfies the following properties:
1) np(r,r) 2 1 for anyr € S;

2) nm(r1(1),72(1)) = np(ry, 7o) for any r1,r2 € S;
3) for any ry,ro,r3 € S

TLM(T‘l,?‘z) < nM(?‘l,Ta) + nM(Ts,‘f'2);
4) if ry,ro € § and for all i € Z holds lo(r1(z)) > lo(r2(7)), then

na(r1,m2) = min{np(ry,7) + np(r,me) | r € S}.

Proof. 1) follows from the property b;) of coefficients By;
2) follows from the equality n},(r(1),7'(1)) = nj,(r,7");
3) follows from definition of nas(ry,r2).

4) If nar(r1,72) = oo, then this equality follows from the above n.3). If
nam(r1,r2) < o0, then

na(ry,r2) = niy(r1, 7)o 40y (r0, ),

12



for some ! > 1 and v, ... 7D € S, because n}(r1,72) = 400 by the property b;)
of n.2.2. Then by definition of na we have

nhe(re, M) 2 na(ry, 7MY, mi (PO r Y ol (PO ) 2 (P ).
This gives
nym(ri,re) > np(rr,r W) + nm(r®, ).

Now it is sufficient to remark, that by the above property 3)

nap(ri,r2) < min{npm(ri,rs) + np(rs,re) | 13 € S}

Remark.

It is not clear from the above definition of the function nag, that it depends only
on the isomorphism class of M € MF'®) in the category MF. This property can be
proved from functoriality of Wintenberger splitting, c.f. [Wtb]. This follows also
from theorem A of n.2.5.1 below.

2.4. Semilinear functions and their graphs.
2.4.1. Let S be a finite set. Denote by Fg the set of functions
H!SXS—-)ZZQU{‘FOO},
such that for all ry,ry,73 € S one has
(17) n(ri,m)>1; "
(27) n(r1,r2) < n(r1,73) +n(rs,r2).

If Sy € §x S and (r;,m2) € S, denote by Si(ry,72) the set of sequences
(ri, 7@ e ry), where 1> 0 and (7, 7). (#(V r2) € §; (in the oriented
graph with vertices S and edges S, this set is the set of all paths, which connect ry
and r2).

Denote by Vs the set of functions

v: Sy — Lo,

where S, C S x S and
(1y) i (r1,...,7D 1) € Sy(r,7), then

o(r,r) 4. 4 v(r“),r) > 1
(2v) if (r1,72) € Sy and (r1,...,7D ) € Sy(ri,72), where 1 > 1, then

v(ri,m2) < v('rl,r(l)) 44 v(r(‘),rz),

So, Vg is the set of oriented graphs with nonnegative integral metrics, where
edges are shortest paths between their vertices and there are no cycles of length 0.
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Enes,let
s(r) = {(r1,72) € § x S | n(r1,72) < n(r1,73) + nrs,72) Vrs € S }
and consider the function #(n) : s Z»o, such that 7w(n)(r1,re) = n(ri,r)

(lf (T],T‘g) € S(n))

We have: n(n) € Vs.
Indeed, (1) and (25) imply (1y). If (2y) does not hold, then there exists
(rl,r(l), o) € S(”)(rl,rg), where | > 1, such that

n(n)(ry,r2) 2 w(n)(r;,r(])) + ot 71'(7'1)(7‘“),1'2).

This gives n(r1,2) > n(ry, 7)) 4n(r(M, r;) and we obtain contradiction (ry,72) ¢
s,
So, we defined the map 7 : Fs — Vs.

Let v € Vs. If Sy(r1,72) = 8, set n(v)(ry,r2) = +00. Otherwise, let
n(w)(r1,r2) = minfo(ry, D) + -+ o0 m) [ (11,70 ) € Sur1,72) )

Clearly, n(v) € Fs and we defined the map 7 : Vs — Fs.

2.4.2. Proposition. 7 and n are inverse one to another bijections of the sets Fg
and Vg.

Proof.
1) Prove, that mn = id ;.
Let n € Fs, v =m(n) € Vg. We want to prove, that for any (r1,72) € S x S

'I](’U)(T‘l y T2) = TZ(Tl y T2).

This is implied by the following lemma.

Lemma.
a) If n(v)(ry1,r2) < +o0, then n(ri,rz) < n(v)(ry,r2).
b) If n(r1,r3) < +oo, then n(v)(r1,r2) € n(ry,ra).

Proof of lemma.
a) 7(v)(ri,r2) < 00 = S(")(Tl’r2) 40 =

n(v)(r1,72) = min{v(ry, v+ 40O 73) | (ry,. .. 0 ) e S™(ry,r3) ).
From definition of v = m(n) it follows, that v(ry, 7)) = n(r,, 7MY, .. o1 ry) =
n(r,ry) and, therefore, n(v)(r1,72) > n(ry,r2).
b) Let n(ry,r2) < +00. Then one can find a presentation
(*) n(T],TQ) = n(rl’r(l)) A+ +7’l(7"([),7‘2),

where r(1), ..., +)) ¢ § and the number of summands [ + 1 = [(r1,72) 1s maximal.

14



Indeed, the set of such presentations is not empty (one can take [ = 0). But the
number of summands of these presentations is certainly restricted, because for any
ro,...,7|s| € S we have the inequality

n(ro,71) + - +n(r|s|—1,75) = 1

(there exist 0 < ¢ < j < |S], such that r; = rj, then the left-hand side is not less,
than n(ry,rig1) + - +n(rj-1,7;) 2 n(ri,r;) > 1).
From the above maximal property of the presentation (*) it follows now, that
(r1, 7N, ., (D, rp) € S, therefore, S (ry,72) £ B, and n(v)(r1,72) < n(r1,72).
Lemma is proved.

2) Prove, that nm = idy;.

Let v € Vs and n = n(v) € Fs.

From definitions of elements of the set Vg and of the map 7 it follows, that one
has n(ri,rz) = v(ri,rz), if (r1,72) € Sy. So,

n)=v & §,=5".

Prove, that S, C S(".

Take (ry,72) € S, and some r3 € S. If either S,(r1,73) = @ or Sy(r3,r2) = 0,
then n(r1 ,7‘2) < +oo = TL(T1 ) 7‘3) + ?1(7‘3,1‘2).

If Sy(r1,73) # 0 and S,(rs,r2) # 0, then

n(ry,rs) = v(rl,r'(l)) 4+ 4 v(r'(ll)’ra)

and
n(rs,r2) = v(rs, 7" M)+ - 4 o' 1y)

for some (r1,7'M, ..., 7D ) € Sy(r1,73), (r3, 7" M L #"UD) 1) € Sy(ra, o).
Now by the property (2y) we have here also n(ry,r2) < n(ri,r3) + n(rs,re).
So, n(r1,rz) < n(ri,rs) + n(rz,re) for all r3 € S, ie. (r1,72) € S(n),

Prove, that $(™ C §,,.

Let (ri,72) € S(") then n(ri,ry) < 400, Su(ri,r2) # 0 and n(ri,r2) =
n(rl,r(l)) oo+ 7E(T(l),T2) for some (7'1,7‘(1),...,?'([),7"2) € Sy(ri,re). 1> 1,
let 3 = r. Then n(r(M r@) ... 4 n(+® ry) > n(rs, ), and n(ry,ry) >
n(r1,73) + n(ra,r2). This gives contradiction (ry,r2) ¢ S{™. Therefore, [ = 0 and
(7‘1,7‘2) € 5,.

Proposition is proved.

2.4.3. We use the following criterium in n.3 below.

Proposition. Let ny,ny € Fs be such that
1) ni(ry,72) > na(r1,72) for any ri,m € S;
2) if 7(ng) = vy € Vs and (ry,73) € Sy,, then ny(r1,72) < va(ry,r2).
Then ny = na.

Proof. Let vy = w(ny) € Vs. Then
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S‘D1 :) Svg-
Indeed, (r1,72) € Sy, =
= n1(r1,7m2) < va(ry,r2) = na(r1,r2) < na(ry, r3)+ne(rs,re) < ni(ry,r3)+ni(rs,r2)

forall g € S, ie. (r1,72) € Sy,.
Clearly, v1]s,, < va.
Now, for any (r;,7m2) € S x S we have

Sy (r1,72) C Sy, (7‘1,7‘2)

and, therefore, ny(ry,re) = n(v)(r1,m2) =

= min{ vl(rl,r(l)) —I—---+v1(r“),r2) | (rl,...,r('),rg) € Sy (r1,m2) } <

min{ ‘Ug(Tl,?‘(l)) 44 UQ(T‘“),Tz) | (r1,... ,r(’),rg) € Suy(r1,72) } = n2(r1,7r2).
Proposition is proved.

2.4.4. Let S be a finite subset in R,, such that r € § = r(1) € S.
Let n € Fs and 7(n) = v € Vs. The above description of the correspondence
n « v implies the following proposition.

Proposition. The following statements 1) and 2) are equivalent:
1) a) for any r1,72 € S one has n(r1(1),72(1)) = n(ri,r2);
b) if ry, 72 € S and lo(r1(2)) 2 lo(r2(?)) for all ¢ € Z, then

n(r1,m2) = min{n(ri,rs) + n(rz,r2) | rs € S}

2) a) if (r1,r2) € Sy, then there exists ¢ € Z, such that

lo(r1(2)) < lo(r2(2))

(in particular, (r,r) ¢ S, for any r € §);
b) if (ry,72) € Sy, then (r1(1),r2(1)) € S, and

v(ry,r2) = v(ri(1),r2(1)).
2.5. Main statements.

Let S C Ry(p — 2) be a finite set, such that r € § = r(1) € S, and § satisfies
the condition C5 of n.2.3.

2.5.1. Let M € MF® and U = U(M). If H(M) is the image of I in Autz, U(M),
then S = S(H(M)) and by proposition of n.1.2 we have the function

M) = nup) - S X S — Zyo U {400}

(we use identification of characters of s(H;) with elements of S, c.f. n.2.2).
Let

nay S xS — ZygU {400}
be the function defined in n.2.2.3.
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Theorem A. In the above notation nyay = ny.
We prove this theorem in n.3 below.

2.5.2. Let a function
n:Sx8— ZyoU{+o0}

be such that for any ry,r9,73 € §
a) n(r1,m1) 2 1;
b) n(r1,r2) = n(ri(1),r2(1));
c) n(ri,r2) < nlry,rs) + n(rs,r2);
d) n(r1,m) = min{ n{r1,7) +n(r,r1) |7 € S }.

From n.1 it follows, that this function n can be related to some subgroup
H C Autz, U, where U is a free Zy-module, rkz, U = |S|. The above aggreement
about identification of characters of s(H; ) with characters of I'y; gives epimorphism
[y — H;. One can check up, that this epimorphism can be prolonged to some epi-
morphism I’ — H. Therefore, any such function n arises from some Zp[I']-module

U.

If U = U(M), where M € MF() | then proposition of n.2.3 and the above
theorem A imply, that the function n = ny(ar) satisfies the following property d'),
which is stronger, than the property d).

d'Yifri,my € S and ly(r1(2)) > lo(r2(2)) for all ¢ € Z, then
n(r1,72) = min{ n(ry,r) + n(r,r2) [T €5 }.

Theorem B. Ifn: S xS§ — Z>oU{-+oo} satisfies the above properties a)-c) and
d'), then there exists M € MF(S), such that n = nyar.

Proof. Let m(n) =v € Vs.
If (r1,72) € Sy, take B2, . € W(k), such that v,(82,, ) = v(ri,r2).
H(Tl,Tg)GSXS\Sv,Set ﬂ[) = U

L2

Show, that there exists M € MF(® given in notation of n.2.2 by these coeflicients
BrarsT1,72 € 5.
Ifr,7" € Sand ly(r) > lo(r'), then by proposition of n.2.5.4 (r,r') ¢ S, therefore,
9. =0 and the condition ) of n.2.2 holds.
To deduce the condition ;) of n.2.2 set for any r,r' € S

r>r', if n(r,r') =0, and r ¥ r', otherwise, i.e. if n(r,r') > 0.
Properties of the function n imply the following properties of the relation >.

1) r ¢ r for any r € S,
2) 711 > 1re,Te > T3 = 11 > 13 for any rq,7r2,73 € S
3) r1 = ry & ri(1) > ro(1) for any r1,7, € S.

Let S = {ri,...,r(h1 = 1);...s7m,...,7(hm — 1)}, c.f. n.2.2. b;).

Properties 1) and 2) imply existence of strictly minimal element r;, (@), €
Z[h;,Z,ie. 75, (ag) # r for any r € S. By the property 3) we have r;_(a) » 7
foralla € Z/h; Z.
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Apply this procedure to the set S;,, = S\{rj,.(a) | « € Z/h;,,Z}. We obtain an
index j;m—1 # jm,such that foralla € Z/hj,_Zandr € S onehasr; _ (a) ¥ r.
Repeating this process we obtain substitution (31 o ;n ), such that

1 v m

if r =rj(a)r =r;(B),a 2 bya € Z/h;Z,B € Zh;Z, then r ¥ 1/, ie.

n(r,r') > 0.

If in the above notation 8%, # 0, then (r,r') € S, and v,(8%,) = v(r,v’) =
n(r,r') >0, 1.e. B%, € pW(k) and condition b;) holds. If 8% = 0, then condition
by) holds by trivial reasons.

Theorem B is proved.

2.5.3. Let G be a formal group of finite height over W(k), chark = p > 2. Then
its Tate module T(G) is Fontaine-Laffaille I'-module with weights 0 and 1.

Assume, that T(G) satisfies conditions C1-C3 of n.1 and denote by S(G) corre-
sponding set of characters S(T(G)) of T'y;. Equivalently, S(G) is a finite subset in
R,(1)\ {0}, where

Ry(1)={reR,|1l,(r)=0 or 1 forall seZy },

such that r € S(G) = r(1) € §(G) and S(G) satisfies the property C5 of n.2.2.
In this case the property d') of n.2.5.2 plays its réle, iff {1/(p — 1)} G S(G), i.e.
if the formal group G contains the multiplicative formal group G, but G # Gy,.
So, we have the following proposition.

Proposition. If S C Rp(1)\ {0;1/(p — 1)} satisfies the property C5 of n.2.2, and
a function n : § X § — Z»o U {+oo} satisfies properties a) — d) of n.2.5.2, then
there exists a formal group G over W(k) of height h = |S|, such that S(G) = §
and nreG) ="n. '

This proposition means, that if U is [-module, such that S(U) = § satisfies
assumptions of the above proposition, then its invariant ny appears in a form
nr(c) for some formal group G. We do not study here realization of the second

invariant Ho(7(G)) from proposition of n.1.2 except some trivial cases (c.f. n.2.5.4
below).

2.5.4. Assume, that

S={rr(1),...,r(h=-1) },

where r € Ry(p — 2) and h = h(r), i.e. the sequence {I,(r)}s>0 of p-digits of r has
minimal positive period h. Let x be the character of s(I',), such that r(x) = r.
By proposition of n.1.1 we have

ordy = p* —1 = S satisfies the condition C5.

So, in this case we can use proposition of n.1.3 for description of the image of
the Galois group I' in Autg, U.
Under above assumptions the condition d') coincides with the condition d).
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Indeed, let 71,71 € S be such that lo(ry(z)) > lo(r2(2)) for all 7 € Z. Take « € Z,
such that ro = ri(a). Then for any ¢ € Z the condition d') implies

lo(ri(3)) 2 bo(r2(3)) = bo(n @ + @) 2 -+ 2 bo(r1(2 + ha)) = b(r1(2)).
Therefore, lo(r1(2)) = lo(r1(i + «)) for all ¢ € Z,. This gives o = 0mod ~ and

Tg =T1.
So, we have the following proposition.

Proposition. -Let r € Ry(p — 2) be such that v = 1/(p" — 1), where | € N and
cgd(l,ph~1)=1,8={rr(1),...,r(h—1) } and let n: Z/hZ — NU {400}
be such that

n(0) = min{ n(i) + n(—t) | ¢ € Z/hZ },
n(i +j) < n(s) +n(j) forall i,; € Z/hZ.

Then there exists M € MF(®)| such that nu(my,x = n (where x is the character
of Ty, such that r(x) =r).

2.5.5. In notation and assumptions of n.2.5.3 suppose, that r € R,(p—2) satisfies

assumption C6 of n.3.12 below, i.e. polynomes lo(r)X”h_ + -+ =1 (r)X and
X?"-1_1 are relatively prime in F,[X]. By remark of n.3.12 the second invariant
Ho(x) of the image H(M) of I in Autz, U(M)) equals pW(Fyn )ego. Therefore,
under additional assumption C6 proposition of n.2.5.3 gives complete information
about H(M).

We have natural realization of the above assumptions in a following situation.

Let p > 2 and G be a 1-dimensional formal group over W(k) of finite height
h. Denote by S(G) the set of characters of the group s(I'y,) of the image H(G) of
I' in Autz, T(G), where T(G) is Tate module of G. Then tamely ramified char-
actex xi (c.f. n.2.2) belongs to S(G) and S(G) = { p'/(p* = 1) |0 < i< h }.
Clearly, additional assumption C6 is also satisfied here and we obtain the following
proposition.

Proposition. Let H be a closed subgroup of Autz, W(F,» ). Then the following
statements are equivalent:

1) There exists 1-dimensional formal group G of height h over W(k) and an
isomorphism of Z,-modules T(G) ~ W(F,» ), which transforms the image H(G) of
T'on H;

2) H is an extension of a cyclic group of order relatively prime to p by normal
pro-p-group (i.e. it satisfies the condition C1 of n.1) and H D W(F,s )*.

Remark. This proposition gives positive answer to the question of J.-M. Fontaine
from [Fol] (a special case of this problem was considered in [Na]). We can also use
a relation between filtered module associated to the above formal groups G and
functional equations of their logarithms, c.f. [Fo2, Ch.5], to give explicit expres-
sion for the associated function ny(g),y: as follows. Let Ig(X) € W, [[X]] be a
logarithm of the formal group G, which satisfies the functional equation

1 R
lg(X) =X + }—)(cxla.lg(X") + o apatig(XP))
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Here o, means action of absolute Frobenius on coefficients of power series, ay, ... ,ap-1 €
pW(k), and ap € W(k)*. Then for any ¢ € Z/hZ we have

nrG),y; (1) =

= min{vy(ai )+ +vp(a,) [s € N1 <iq,...,05 <h(t14+--+1,)modh=1}.

3. Proof of the theorem A.

3.1. Let M € MF® be given in notation of n.2.2. Choose r1,...,r, € 5, such
that
S={ry,...,r1(h1 =1);.cirmye oy Tm(hm — 1) },
where hj = h(r;) are (as earlier) minimal positive periods of p-digit expansions of
rj, 1<y <m.
Choose N € N, such that N =0modh; forall 1 < 7 < m.
Choose B(r; i),(r;r,iy € W(k), where 1 < 7,3' £ m,i,i' € Z/NZ, such that for

every r € S one has
Z ﬂ(rjs'.)y(rjf,':’) = ﬁ‘l',rjf(:")

t€Z/NZ
rj(i)=r

and :
min{ T)p(ﬁ(,-j ,i),(rj;,i‘)) | 2 E Z/NZ,7J(Z) =7 } = vp(ﬂr,rjl(i’))'

Define M* € MF; as follows.
1) M* has W(k)-basis {m(, sy | 1< j <m,i €Z/NZ };
2) for 0 <1 < p the submodule M* of filtration on M* is generated by

{mey,n () 21}

(in particular, m(,, ; € M*(i(D)\ prlolni (D+1y,

3) for 0 <! < p o-linear morphisms ¢; : M* —» M are (uniquelly) defined by
relations

Gt (r) My im1)) = My 1) + Z Biry iy (0 i M(rp0,i7)-
: 1<j'gm
i €Z/NZ

One can easily check up, that the correspondence

IM,M* DTy Z M(r; 5)
i€Z/NZ
ri(t)=r
gives injective morphism ias ar» : M — M™ in the category MFy.
3.2. From definition of the functor ¥/ it follows, that the correspondence

u = (me(u))res € Oresderis
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gives injective morphism of I'-modules
K U(M) B Q)TESAcris-
Also, W(k)-linear prolongation &Ky 4 of &

KW (k) U(M) ® W(k) — @rESAcris

is still injective.
Under the above identification « U(M) is identified with Z,[I']- module of col-
lections (ur)res € @resAeris, such that for every r € S one has

lo(r)

cris

ur € A

and
bro(r(=1)) (Ur(=1)) = ur + E Breitirs.
res
Analogously, U(M*) can be identified with collections ('U-(r,» ))1<j<m,icZ/NZ, Such
that for every 1 < j < m,7 € Z/NZ one has

Li(ry)
cris

Ur; i) cA

and
b1y (r) (U(ry im1)) = U(ry i) + Z Biry iy (rjo i) U(rys i)~
1€<j'Em
i'€Z/NZ
Epimorphism U(za p+) : U(M*) — U(M) and its W(k)-linear prolongation
are induced by the homomorphism

PR Li€m Acris ~ EBrGSAcrisa
i€Z/NZ

such that (a¢,; )1gigm,iez/Nz — (@r)res, where a, = Er,-(i)::r A(r; i)~

FUM)Q W(k)=8,U(M)y and U(M*) @ W(k) = &, U(M*), are decompo-
sitions of s(T'y;)-modules by characters x of the group s(I',), then for every x we
have induced epimorphic map of W(k)-modules

U(tp,pme )y s UM )y — U(M)y.

3.3. For 1 < jo,-..,Jsy - < myap,by,...,a5_1,bs, -+ € Z/NZ define objects
M*(j0)7M*(jlab];a(J?jO)a" . ’M*(jsabs;aa—h.']'s—labs——l;- . -;a07j0) Of the CatEgory
MF; as follows.

M*(jo) has W(k)-basis {m(i,j0) | ¢ € Z/NZ }, for 0 < I < p its filtration
submodule M(jo)*' is generated by {m(3, jo) | Li(rj,) > !}, and o-linear morphisms
¢1: M(jo)* — M*(jo) are uniquelly defined by relations

q51-‘—1("',1'[;,)("'7.'L(Z' - 17]0)) = m(zajO)
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If s > 1, then M*(j,,bs;-..;a0,j0) has W(k)-basis
{m(3,51,b1;...500,70) |0 <1< 3,1 € Z/NZ},
for 0 < I' < p its filtration submodule M(j,, by; .. .; a0, jo)™" is generated by
{m(i,j15,b1; .. .5 a0, Jo) | Li(rs) 2 '},

and o-linear morphisms ¢y : M(js,by;...;ag,jo)*" — M*(Js,bs;..-;a0,0) are
(uniquelly) defined by relations

¢l.’_1(1"j‘)(m(i - 1)jl?bl; v ;aoijo)) = m(i?jlabl; ‘e ;001j0)+
+6(i1bl)ﬁz"l'habt),(F’J'l-x1“l-l)m(al—l’jlul’bl_l; T ;ao’jo)’
where | > 1, § is Kronecker symbol, and

"nrw("i:-1(a‘—l)srh(bf))ﬂ(r‘
iE

’Bzfj,sb!)-("j,_lsﬂl—l) =p bl))(rh_l:al—l)

(lf n;’f(‘rjl—l (al_i)!rjl (bl)) = +OO) we ta“ke ﬁzrjf'b‘)’(rjl—l’a'"l) = 0)‘
For any s > 1 we have natural imbeddings in the category MF
(%) M*(ja=1,ba-15- .00, 50) — M*(Js,bs;.. .5 00, Jo)-

If U*(Ja,ba;...3a0,70) = U(M*(js,bs;...;a0,70)), then we have m projective
systems of Zp[I']-modules

£io = {U*(jmba;- '-;aﬂajO) IJU 18 ﬁxed }a]- SJO S m,

where all connecting morphisms
U*(Js b3 - --500,50) — U™ (Ja=1,b5-15 - 5 @0, J0)

are surjective morphisms of Z,[I']-modules, which arise by Fontaine-Laffaille theory
from embeddings (*).

3.4. Let 1 < jo < m, then by arguments of n.3.2 the correspondence

Kjo t u* = (m(2, 50 )(u"))iez/Nz € Diczynz Acris
gives identification of U*(jp) with Z,{[']-submodule of ®icz/NzAcris, Which consists
of (ui)iez/nz, such that u; € Age’™ and ¢y,_,(r;.y(ui=1) = wi for all i € Z/NZ.
Fix some u*(jo) € U*(jo) \ pU*(jo). I &j,(u*(jo)) = (w*(%,j0))iez/Nz, then

K50(U™(J0)) = { (wiv™(4, jo))iezynz | wi € W(F,), 0w = wiy },

where ¢ = p"N.
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If 7 € s(Ty;), then T7u*(3,50) = Xijo(T)u*(7,50), where x;j, is a character of
5(T¢r) with invariant r(x) = rj, (7).

Indeed, if 7 € T and &j,(Tu*(%,j0)) = (wiru"(¢J0))iez/nz, then the corre-
spondence 7 — w; . gives a continuos homomorphism 7; : I' — W(F,)*, and
Xi = 7ils(r,,) is a character of the group s(I'y;). It is sufficient to prove, that

(*) X = Xi.jo mode(]Fq).

I N = h(rj,) = hj,, then M*(jo) ® k = M(rj,) is a simple object of the
category MF, and the equivalence (x) follows from explicit description of I'-module
UM(r;)) =U*(Go) ® Fp, n.2.1. If N = 0mod hj,, one can reduce the problem to

the above case, because M*(jo) ® k is isomorphic to the product of N/hj, copies
of M(T‘jo )

In fact, the above homomorphisms 7; : I' — W{(Fy)* can be calculated in a
following way.
Let GKT be Lubin-Tate formal group over W(F,) with logarithm

X)=X+X"p+--+X/p°+....

Action of I' on the Tate module T(G%T) of this group is given by continuos homo-
morphism

nrr: I — Aut(G#T) = W(]Fq)*

If I¢® is the inertia subgroup of the Galois group of the maximal abelian extension
of the quotient field of W(F,), then we have a natural projection I' — I2® and
identification of class field theory Iz® = W(F,)*. In these terms the homomorphism
nT 18 equal to the composition

npr T — Igb = W(]Fq)* o W(]Fq)*’

where a(u) = u™!, u € W(F,)*.

Let r = rj,, M*(jo) = M*(r),u*(Jo) = uw*,u*(i,j0) = u*(z). So, for any ¢ €
Z/NZ and 7 € T, we have Tu*(2) = n;(7)u*(1) and n;(7) = o'no(7).

Lemma. 7y = ] (a‘inLT)"(r).
0Ki<N
Proof.

Tate module T = T(G%T) is Fontaine-Laffaille Z,[[']-module, and one can use
the following explicit construction of filtered W(k)-module My € MFy, such that
U(My)=T.

Let 0 = (on)n>0 € T, where o, € G5V () (7 is the maximal ideal of the
valuation ring O of K), [plont1 = 0, for n > 0 and oy = 0 (here [p] = pidgrr €
End GI&T). If 6, € Acis is a lifting of o, modp € mmod pO with respect to the
structural epimorphism Ay is — 0/ p@ from definition of A.;s, then one can show,
that the correspondence

o lim p"l(6,)

n—oo

23



gives well-defined m{"”’ € Hom(T, AL,;.), o¥'md = pm and

My=M= Y W(k)m{®, M} =Wk,
1€Z/NZ

where mEO) =0 moo)/p for 0 <7< N,7mod N =1.
From this construction it follows, that for any 0o € T and 7 € I" one has

() = npr(r)m$” (o).

Let 0 = (0n)n>0 € T be such that o; # 0. Then v = mgO)(O) €Al Tv=
nir(r)v for all 7 € T, and oNv = pu.
Now one can check up, that for all ¢ € Z/NZ

u'(i) - Ut’;(")(o--lv)li-i-l(’") N '(U—(N—l) ) it —1(r) € A' i(r)

cris !

vp(w'(2)) = 0, and ¢y, (n(u'(i — 1)) = ¥'(2).
This gives u' = (u'(i))iez/nz € w(U(M*(r)), v'(0) = wu*(0) for some w €
W(F,)*, and 7u'(0) = no(7)u'(0) for r € I'. On the other hand,

ru'(0) = (7o) (e 7o) (D | (em WD rp)iv-a(n) —

1 (P4t (V-1 ,
= g TR O 2 0),

Lemma is proved.

3.5. We have the following

Proposition. Forl < jo,...,Js, - <m, t,a0,b1,...,85-1,bs, - € Z/NZ there
exist a family of elements u(7, jo),... ,u(7,75,bs;...3500,70)," -+ € Acris, such that
1) u(z,jo) € A0 and for s >1

Cl'lS
b . . Al;(rj_).
u(z7.78) 37"‘100)]0)6 Cris 1
2) b1y (rj)(u(z — 1,70)) = u(z,jo) and for s > 1
‘;bl.'_.l(r,',)(u(i - l,js,bs; s ;aoajﬂ)) - u(i’jhbs; S ao,jO)‘l‘
+5(i7ba)ﬁ(r;.,b,),(r,-‘_l,a,_l)u(as—lajs—labs—l;- . ~;a07j0);
3) for any 7 € s(L'¢r)
TU(2, 54, bs} .. 300,70) = Xib,,...a0(T)(3, J5, 055 . . 10, J0),
where Xigs,,....ao 15 a character of s(T'y;) with invariant
r(Xi,b.,...,ao) = rjo(i — b, + Qgoy — - — by aO);
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4) vp(u(z,jo)) =0 and for s > 1
vp(u(i, Jas baj - -3 @0, J0) 2 nas (g1 (@=1), 75, (Bs)) + - - + niy (7)o (a0), 751 (b1))-

Proof.
Let 1 < jo < m and consider the projective system L;, from n.3.3. We want to
construct a compatible system

u*(Joybas ... 500,50) € U™(Ja,bs5 ... ; 20, J0),
such that u*(jo) € U*(Jo) \ pU*(jo) (cf. n.3.4), and if
u*(2, 7y bs; - 3a0,70) = m{i,Js, b5 500, J0)(w"(Jo, b3 - 300, J0)) € Acriss
then for any 7 € s(I'y;) one has
Tu™(, 79,055+ -+ 5@0,50) = Xiby,..nao(T)u" (%, 78, b5} - -5 G0, Jo)-

In fact, the case s = 0 was considered in n.3.4.
By induction we can assume, that these points are constructed for all [ < s.
Take (4, bs;--.;a0,50) € U*(Js,bs;...;a0,0) such that

ﬁ(jsa ba; vy aO,jO) = u'*(js—l:bs-*l; vt ;GO,]'O)
under epimorphism U*(J4,bs;...;a0,70) — U*(Js=1,bs—~1;-..;@0,J0)-

Let 4(7,7s,0s;---;a0,70) = m(2, 7, bs;---300,70)(0@(Js, bs;--.5a0,J0)) € Acris-
Then

NV . Li(r;
u(zn?.s:bs; . -;aDJO) € Acr(is“)
and
(*) q‘,’f.'_1(rj,)(ﬁ(i - 1’j81 bs; v ;aﬂsjﬂ)) = ﬁ(i-:js:bs; ‘e -;a05j0)+

+6(i, bs)ﬁ(rja lbl):(rja—l Ja;—l)u*(j3_]’ bs_l; tee aO)jO)'
Take decomposition by y-components

(i, oy bay o 50,50) = Y (3, Jar bai .- -5 00, J0)xs
X

where x runs over the set of characters of the group s(I'y,). Clearly, non-zero

components can appear only for characters x, such that r(x) € S (in particular,
one has for such characters o™y = x).
Set

s o T o .
u*(2,7s,bs;...;a0,70) —U(Z,]a,bs,---,ao,Jo)x.-_.,,‘____,,o~

Then comparison of y-components of the above equality (*) gives
b1 1(r ) (U (T = 1,78, 055 . .5 a0, 50)) = u”(4, 555 ba; - - -5 a0, J0 )+
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+6(i, bs)ﬁ;:rjo 1b8):(rj.-! )a.-l)u*(j-"‘l ) b\’_l Yo aU)jO)'

Therefore, there exists u*(7s,bs;...;a0,70) € U*(Js, bs;. .. ;a0,70), such that
m(i3j8$b3; v ;GU)jU)(U*(jS’bs; R aU:jO)) = U*(iuja:bs; SR aU,jU)'

It is easy to see, that u*(j,,bs;...;a0,70) — w*(Js—1,b9—1;...;a0,J0), and by con-
struction these points satisfy properties from the beginning of this proof.
Now, the relation

(%, Joy ba; - - 5a0,70) =

=pnM(r)‘ 1(a, 1),75, (ba N+ +nM(rJo(a0) rll(bl)) *( ja,b 5---;a0)j0)7

gives the family of elements of Acis, which satisfy the properties of our proposition.

3.6. For 1 € 35 < m consider the collection

130} — (U(‘:'O)t)) € Bi1gigm (A-cns)(rJ )
i€Z/NZ

where )
8.3,,) = Z u(iajabs; As5—1,53—1,bs-1;. .. ;GO‘le)}

and the above sum is takenforall s 2 0,1 < 73,...J4—1 < mand by, as_1,...,b1,a0 €
Z/NZ.
One can easily check up, that

w9 € k(U(M™)).
forany 1 < j0 < m.

More generally, if w € W(F,), ¢ = p", let

w * u(io) = (w * u%‘:_??l-))lgjgm,ieZ/NZ;

where
W * ugif?:) = Z(UQ("b'""’ao)w)u(i>j: bs; .- a0, o)

and the above sum is taken forall s > 0,1 < jy,...,7s—1 < m, bs,a5-1,...,b1,0a9 €
Z/NZ and (i, bs,...,a0) =t — by + ag—1 — -+ — by + ao.
Then

SUM) =1 3w xul [, wm € W(E,) }.
I<josm

For 1 <jo,7 <m, 5,1 € Z/NZ, set

w3 =3 uli joybas 500, o),
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where the above sum is taken for all collections (7, 7, bs; . - - ; @o, Jo ), such that j, = j
andi—iozbs — Qg1 ++b] — ag.
Then

(jo) _ (ot}
U = D UG
10€EZ/NZ
one has for any w € W(IF,)
weullly= 32 (unly?,
to€Z/NZ
and for any 7 € s(T'y,)
iy = 5 i,
i0EZ/NZ

where xj,,i, 15 the character of s(T'y;) with invariant 7(xj,,is) = 7, (%0)-
In the above notation «<(U(M*)) is I-module of collections

(u(ji)) € ®1gigm (Acis )(ry i)
i€Z/NZ

such that Goio)
_ io, .y, (Jo.i
who= Y, (0w,
i0€Z/NZ
1<josm
where w1, ..., W, run over W(F,).

Let x be a character of s(T'y;), such that r(x) € S. Then there exist unique 1 <
jx £m and ¢y € Z/h; Z, such that r(x) = r;j (iy). In these terms xyy(g) identifies
U(M*)y with W (k)-submodule of @;,i(Acris)(r; iy, Which consists of (u} (; ), such
that

* i (Jx%0)
oo = 2 (@twg)ugy”
ig mod hjx=ix
(here wj, runs over W(F,)). This module also is generated by N/h; elements
*(io) _ (. (Jxst0)
i = (w0 ) 1gig
=G g

where 19 € Z/NZ is such that zp mod hj, =1y.
Use description of the epimorphism U(zar p+ )y 1 U(M*)y, — U(M), from n.3.2.
This gives generators u{® of W(k)-module (kweU(M))y in a form

USO) = (us‘iO))rES S ®r€S(Acris)ra
where iy € Z/NZ, iomodhj, =i, and

() ae) = 37 i)

r(f)=r
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for any r € S.
3.7. Let 1 < jo <m, r €T. Then for any i € Z/NZ we have

Tu(i, jo) = w(joy,r * u(i, jo)(= T w(j) -+ u(%, 7o),
where w(jq),» € W(Fg)*, cf. n.3.4.
The following lemma can be easily proved by induction on s > 0.

Lemma. For1l < jo,f1,..-,Js, - <M, ag,by,...,8,-1,bs,--- € Z/NZ and 1 € T,
there exist w(;, p,;....a0,j0), € W(Fq), such that

1) for any i« € Z/NZ one has

Tu(l, 7oy Das - -3 @0, J0) = W(je),r * U(T, Jar bss .- 500, 50) + - +
FW(, brsesao,go),r * Ut Jarbas o sandi) + -
FW(G, 500,500, * U(E) Ja);

2) vp(W(4, b45esa0,do)r) 2 P (Then 1 (@a=1),75,(bs)) + -+ - + 0y (56 (@), 75, (B ).

Remark. As in the above n.3.6 we use the notation

w * u(t, g, be5...5a1,51) = (ai_b'+"'+“‘w)u(i,j3, bs;...;a1, 1)

Use this statement to set

tJ0ri0)
(j?‘)or Zw(Jn n ,80,)0),T!

where the above sum is taken for all collections (j,,bs; . . . ; ao, jo), such that j, =7
andi—io =b,—-a,_1 ++bl — ayg.
In this notation the above lemma gives the following proposition.

Proposition. For any 1 < j9,7 < m, 9,1t € Z/NZ and € I there exist wg"")’?r) €
W (F,), such that

(Jo.io) _ iy, (Ja,ip) (71,81),
(1) rugy” = ) (@t el eyt
1<Jl<m
i €Z/NZ
(2) vp(w(jc’")"”)) > Ago:)to),

where AE},O:)' °) js the minimal value of sums
Ny (5,21 (@8s=1),75, (b)) + - - + 1y (50 (a0 ), 5, (B1))

under restrictions 3, = 7 and 1 —1g = by — ay—y + -+ + b — ap.

Let ug(i”) be generators of (kwrU(M))y from n.3.6. Then the formula (%) of
1n.3.6 gives the following corollary.
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Corollary. For every 7 € T, character x of the group s(T'y;), such that r(x) =
ri (ix), and 1o € Z/NZ one has

(ip) _ § (Jx 10) (i)
Tux - w(jxl yil),f * qu !
X1,51

where x1 runs over all characters of s(I'y;), such that r(x;) € S, and 1, runs over
LZ[NZ, such that r;, (i1) =r(x1)-

3.8. Consider the function n = ny : § x § — Z> U {+00} for Z,[I'}-module
U = U(M), which was defined in n.1.2 (we use identification of characters of the
group s(H, ) with characters of s(I', ), which are given by their invariants r(x) € 5).
Let nar : S x § — Z>o U {400} be the function from n.2.3.

Proposition. For any r,ry € S one has
ny(r,re) 2 na(r,ro).
Proof. If r = rg, then
ny(r,r) = min{ ny(r,r1) + ny(ri,r) | r1 € S;r1 #£ 7 }
by definition, and

npar(r,r) = min{ np(r,r) +np(r,7r) | ry € Syrp #1

because n},(r,r) = +00. So, we can assume r # rq.
Hr=r;(i),r0 = rj(i0), where 1 < j,50 < m, 1,ip € Z/NZ, then corollary of
n.3.7 gives

n(ro,7) 2 min{ vp(w(5)) | vo = rig(i),m = () .

Now proposition of n.3.7 implies, that ny(ro,r) is not less, than the minimal
value of

(*) ”Tw(’"j.-l (a-"'l )! T (bs)) +o nFW(Tjo(aO)? Th (bl ))1

where (J,,bs;...;a0,70) is arbitrary collection, such that j, = j and i — 7y = by —
g1+ -+ b — ag.

Assume, that the collection (j,,b4;...;a0,50) with the above restrictions gives
the minimal value of the sum (*). Then the property n} (r1(1),72(1)) = n},;(r1,72)
implies the following equalities

”7\4(7’1‘" 1 (as—l )1 T s (b,)) = nzf(r(l) ) T)a

Tli,{(‘!‘j‘_z (03—2)9 LAY PR (ba—l)) = n*M(T(z),T(l)),

............



nif(r.‘io (aﬂ)’ Th (bl )) = niﬁl(r(S)7 r(s—-l)),
where 7’(1) = Ti.1 (20 +ag—1 — bs), T(z) = T‘j‘_z(io + Ag—2 + Gg—1 — b_g_l + bs),
T = gt ar o aee = by = — b))
) = rio(lo+ag~+ - +ay_1—b — - —b,) =rj(ip) =ro.
Therefore,
nu(ro,) 2 nh(r,r) + 05 (7P, 7Y 4 0y (ro, 7YY 2 napr(ro, 1)

by definition of the function nas.
Proposition is proved.

3.9. Consider the graph vas € Vs of the function nyay, c.f. n.2.4.

Suppose (r®,r!) € S,,, € S x §. By proposition of n.2.4.4, r° # r'. By
the definition of the map = : Fg — Vg, we have vy (r®,r') = np(r%,7') and,
obviously,

opm(r0, 1) = 3 (r%, r!) = min{ vp(Brigiyroy) |1 €Z ).

Let S(r®) = {r°() |i € Z} C S and S(r') = {r'(3) |1 € Z} C S.
Denote by j°, 5! uniquelly defined indices from [1,m], such that r;0 € S(r°) and
T € S(T‘U).

Introduce M(r!,r%) € MFy, such that
a) M(r!,r%) is a free W(k)-module with basis

{m |reSE) Yu{ml|rese)
b) for 0 < I < p its filtration submodule M(r!, %) is generated by
{md |7 €SE®)lo(r) 21 U {my |reSEh),b(r) 21}
¢) o-linear morphisms ¢;, 0 £ ! < p, are (uniquelly) defined by relations

¢10(r(—1))ﬂ12(—1) = m?—a forr € S(TO)?

¢'o(r(—l))m3~(—1) = m}. + Z B mg.,
(T',T)ES(,.O',J)
for r € S(r!), where
S(rony = { (r°(3), 71 (1)) | i € Z } € S(°) x S(r') C § x S,

B, =p~v MG L (7, 1) € S(po 1y, and B, = 0, otherwise.

3.10. Let x',x" be characters of the group Iy, such that r(x') = r! and
r(x%) = r%. Clearly, x! # x°.
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Proposition. In notation and assumption of n.3.9 the following conditions are
equivalent
a) ny(r®, ') < vp(r®,rt);
b) there exists u € U(M(r!,7°)) and 79 € T, such that
(rouyo)ys & PUM(r",7°)) s
c) for some wo € W(F;) and 7o € T
Z (Uio'wo)(ailw(;‘l,bl;ao,ﬁ),ro)u(il,J']) g pru (I 4

0 -1
1t 7blrﬂ0

where the sum is taken for all i°,i',b;,ay € Z/NZ, such that :' —1° = by — ay,
Tjo(io) = T‘O,le (zl) =7l

Proof.

3.10.1. The condition a) is equivalent to existence of u € U = U(M) and 7y € T,
such that -
(T[)'U.XO)XI ¢ va(r T )+1UX"

In notation of n.3.6 this is equivalent to existence of

u* = z w;,uld®) € UM™),

1<jo<m

such that the image of (Tou}, )yt in Uyn does not belong to p”M(ro"'l)"'lan.
In notation of nn. 3.6-3.7 we have
1) ule = (u}e (;1))> where

-0 0 x'O
weo iy = D (0" wio)ull ),
iO

and the sum is taken for all {® € Z/NZ, such that r;(:°) = r°.

2) T(]u;,c, = (Tgu;o,(j'l-)), where
* l.o . ( -0,-0) 9 ‘-
T(lu-xol(j,i) = Z (U wo)(an w(:;l):l),rﬂ )qu:';l)’
iD)jlail

and the sum is taken for all 1 £ j; <m, 4; € Z/NZ and all i® € Z/NZ, such that

T‘jo (?.0) - 1‘0.

3) (TOu;,o)xl = (u;",x‘,(j,i))’ where

" .0 ;1 -o,‘-o ~1,'-1
o = DO w0 WG UG
i%,i

and the sum is taken for all °,i! € Z/NZ, such that 7;0(:°) =% and r;i (') = 1.
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(4°,i%)
(il,fl):fo
n.3.7. Because of (r%,r!) € S,,, and of the part 2) of lemma of n.3.7, we have:

Let w(;, b,:..:a0,j0),m0 D€ some summand from the expression for w from

o T'l
w(jnb-;m;ﬂo,io),fo € p M( ’ )W(]Fq)

and, if s > 2, then

0 .1
w(jllbl;"';aﬂsjﬂ)vrﬂ e pv}“(r o )+1W(Fq)’

Therefore,

(jo,io) — ro,rl 1
w(jlyil)yro = Z w(jllbl;a'()ljo)vrﬂ mOdva( )+ -
b]_ 'GDEZ/NZ

b]_ —do=i.1 _,-D

1
From the property nas(r,r) > 1 and construction of elements uE‘; 1-’; ) it follows,

that
(jl,fl) — . 1 6 . .] d )
u(jlyl') - u(z’] ) ('L,Z )IIIO pAcns-
By these arguments we obtain from the above formula 3), that

* _
Uyo x1,(j1,0) =

-0 -1 .. L. o .1
Z (0" wjo)(a'z w(jl,bl;ao,jo),fo)u(l,]l)6(zal])IDOdPUM(r i )+1Acri3a
%, by a0

where the sum is taken for all :%,:!,b;,a9 € Z/NZ, such that i! —:® = b, — ag,

rjp(i®) =10 rp(l) =1l

Now use formulae from n.3.2 to obtain, that the value of m, € M on the image
of (Tgu;O)xl in U(M),1 is 0, if 7 # r!, and coincides with the expression of the part
c) of our proposition, if r = r'. So, a) and ¢) are equivalent,.

3.10.2. Consider the elements
.. . s . . I R )
u(z,]O),u(z,jl),u (Z,]l,bl;ag,jo)=p (T )u(ﬂa]11bl;a0:.70)eAcris

from n.3.5. Proceeding as in n.3.6, we obtain the following description of elements
of the T-module U(M(r?,r!)).

For any u € U(M(r',r°)) there exist wo,w; € W(F,), such that
if r € S(r?), then
my(u) = Y (o'wo)u(i,i%;

i€Z/NZ
ro(i)=r
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if » € S(r!), then
miu)= Y (Fwu@,i)+ Y (67 F0we)ut (i, 5, b a0, 5°),

iI€Z/NZ 1,a9,b
ri(d)=r

where the last sum is taken for all ¢,a0,b1 € Z/NZ, such that 7;:(z) =r and
(rjo(ao),rj1 (b)) € S(ro,rt).

For the x%-component u,0 of the point u we have
if r € S(r?), then

m2(uy0) = §(r, %) Z (ot wo Yu(i, 5°);
icZ/NZ
r,-o(i)=7‘

if r € S(r!), then
i) =6 Y (o) + Y (@wou G a0 ),

ieZ/NZ io,i,ao,b1
rjl(s')=r

where the last sum is taken for all i°,i,a9,b; € Z/NZ, such that :® =1 — b, + ag,
Tjo(io) = T‘O, ?"J'l (2) =T a.nd (T’jO(ao), T'J’l (bl )) < S(,-D,,-l).

Now we can use, that x° # x! and mou*(7, 5!, b1; ao, ;%) =

= (o'i_b1+a°EU(j0),ro)u*(i,jl ,b1; aOajO) + (Giwzjl,bl;ao,jo),fo )u(i’jl)’
where 79 € I and

_n;{(ros"l)

* - - .
(*) W(j1,81;00,50),70 — P W(;1,b1;a0,3%),m00

to obtain the following description of the point (Tpu,0),1:
if r € S(r%), then m2((Touyo)y1) = 0;
if r € S(r'), then

T 0 il . .
() ma((rouge)y) =8(r,m') D (0 wo)(07 Wit 40 0,0 e T,
ioailsaOybl
where the sum is taken for all :°,4%,a9,b, € Z/NZ, such that i® = ! — b; + ay,
r0(:%) =, rji(i') = r! (we use, that the condition (rjo(ao),rj1(b1)) € S0, is
now a consequence of other ones, because r;1 (by) = r'(by —i'), rjo(ag) = r(ag —1°)

and b; — 1! = qp —1°).

So, the part b) of our proposition is equivalent to existence of wy € W(IF,) and
of 7o € T, such that the right hand side of (**) does not belong to pAeis for r = rl.
But this is equivalent to the part ¢) of our proposition because of the above relation

(%)-

Proposition is proved.

3.11. In notation and assumptions of n.3.9 we have the following proposition.
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Proposition. The statement of the part b) of proposition 3.10 is valid.

Clearly, the above proposition and propositions of nn.3.8 and 2.4.3 imply our
theorem.

Proof of proposition.

This statement uses only the structure of Fp[[']-module U#(M(r',7°)) @ F, =
Ui(r,7°). Galois modules of this kind were studied in details (as important step
in description of all annihilated by p subquotients of Fontaine-Laffaille modules) in
[Ab2]. So, we give only a sketch of the proof.

3.11.1. In the category MF we have a natural exact sequence

(%) 0— M(r") — M@F', " )@k — M(r') — 0,

where M(r1), M(r®) are simple objects of MF, c.f. n.2.2. This gives exact sequence
of F,[I']-modules

(%) 0—>H1——->U1(r1,r0)—>H0——>0,

where H' and H° are simple F,[[']-modules with sets of characters S(r') and S(r%),
respectfully. The extension (#*) is not trivial, because the above extension (*#) is
not trivial in the category MF.

The class of extension (**) is given by nonzero element e(r', ") of the group

Extg,r)(H°, H') = H'(T, Hom(H®, H")) =

= HomF"(I, Hom(H®,H')) C Dy, es(r) Homr"(l’, Hom(H?(D, Hil))
xX0€S(r?)

(here I is the subgroup of higher ramification in T').
Conjugacy condition gives, if

6(T] ) 7'0 )Xo,)a € Homru(I’ Hom(H,‘(zo ? ‘HL ))

is not trivial, then e(r',7%),y, 0y, also is not trivial (here ¢ is absolute Frobenius
and r(oxo) = r{x0)(1),7(ox1) = r(x1)(1)).

3.11.2. Forany r € R\ {0} = { r € QN (0,1] | vp(r) > 0 } define the subfield
K(r) of K as follows. K(r) is composite of fields

{ Kue(Tp) | B W(k) },

where Tg —T5 = B8, %, r = a/b, a,b € Z, vp(b) = 0 and 6, € Ky, is such that
6 = p.

We have the following properties

a) K(r}/K is Galois extension;

b) I(r) = Gal(K(r)/K,;) is abelian group of exponent p;

c) I(r) is isotypical Fp[[';}-module, where action of Ty, is given by the set of
characters conjugated to the character x, such that r(x) = r;
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d)ifr = k/(pN* —1) for some N; € N,k € N, then K(r) coincides with composite
of fields from the set .
{ I{T-T(T.B,Nl) I B e W(k) }:

p™t — gk pMi-1
where Ty v — TN, = Bry, and my = —p.

3.11.3. Use construction of modified Fontaine-Laffaille functor, c.f. the end of
n.2.2. Elements of the Galois module Uy(r!,7°) can be identified with residues
modulo pO of solutions

{ (X [reSE)), (¥ [r€5(") )}

in K of the system of equations

1\ fo(r(=1))
(_1_9) Xf(—l) = X,, wherer € S(ro);

1 IO(T(_]')) »
(__> Viy=Ye+ ). BXe,

p (r’,r)es(rn,,_l)

where r € S(r!).
Over K., all solutions of this system can be expressed via solutions of equations

— k4K
Tq-_T=IB:r’7rN + s

where g =p™, 7 = —p,r=k/(¢g—1),r" =¥ /(¢ - 1).
Now the property d) of n.3.11.2 gives, that all points of Fp[[']-module U;(r!, %)
are defined over composite of flelds K(r — r'), where

(T',T) S S(ro,,A) = { (7‘0(i),r1(i)) |t e Z }

3.11.4. Take xq € S(ro),XI € S(r!), such that e(r!,7%)y.x, # 0. Then

e(r! 7 )xo02 € D(+',r)€S(0,1) Homptr(I(T ~ '), Hom(Hy Hﬁlﬂ))'

Xo?

There exists (15,70} € S(yo,r1), such that the projection of e(r!,r%),, y, to

Hom"* (I(—r + '), Hom(Hy, , H'\l,1 ))

is not trivial. Therefore, the character xg'x; acts.nontrivially on I(ro — 79) and

for some ¢ € Z we have 7(a* (x5 ' x1)) = 7o — 1§ (because I(ro — r}) is isotypical
I'ir-module). This gives

—7r{(x0)(?) + r(x1)(¢) = ro — ry mod Z.

Clearly, (rg,70) € S(ye 1) implies 7o 3 ry, and by the property C5 of the set S
we have ro = 7(x1)(¢) and ry = r(x0)(?), i-e. (r(x0),7(x1)) € S(ro,m).
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Therefore, by conjugacy condition the (x°,x')-component e(r?,7%),0 .1 is also
nontrivial.
Proposition and theorem A are proved.

3.12. Remark. Suppose the set S satisfies the condition C4 of n.1, ie. § =
{ry...,v(h — 1)}, where h = h(r). In this case nyy) = ny takes values in
N U {+o0}, and we can use its analogue

NU(M),x Z/hZ — NU {+OO}

from n.1.3 (where x € CharI'y; is such that r(x) =r).
Consider the following property

h-—1

C6. The polynomes (lo(r)X?
relatively prime in F,[X].

+ - + o1 (r)X)mod p and XP"=1 — 1 are

If our set S satisfies this additional assumption, we can prove, that Ho(x) =
pW(F,n Jego, i.e. the second invariant of the image of the Galois group (c.f. n.1.3)
takes maximal value.

Indeed, relate notation of n.1.3 with constructions of this section by taking m =

1,y =r,N=h; =h M=M"and U =U(M). We can take ¢y = u.g(l), then
m.(eo) = u(0,1) mod p* Acis,
and for any 7 € '
me(Teg) = w(yy,~u(0,1) = mr(w(l),,eo)modpzAc,is.

By lemma of n.3.4

way,r = [[ (7 nur(r) .
0<i<h

Now remark, that if 7 runs over subgroup of higher ramification I of I, then
its image in Autz, U runs over pro-p-group H', np7(7) runs over the subgroup of
principal units of W(F,» ) and, therefore, wy) » mod p2W(IE',,:.) runs over the set

B,={1+p Z (07 a)li(r)mod p? | & € Fyn }.
0<i<h
This gives
Ho(x) mod pQW(]FPh )eoo = Breqo.

The correspondence

o Z (o™ a)li(r)

0<i<h

defines [Fp-linear morphism b, : F,n — F,u. Clearly, assumption C6 implies, that
Kerb, = 0 and, therefore, Imb, = F,». Therefore, Ho(x)mod p? W(Fpn Jeao =
pW(]th Jeoo and we obtain HO(X) = pW(th Jeoo.
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