THE IMAGE OF THE GALOIS GROUP FOR SOME CRYSTALLINE REPRESENTATIONS

Victor A. Abrashkin

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. AG "Algebraische Geometrie und Zahlentheorie" Jägerstr. 10-11 10117 Berlin GERMANY

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 53225 Bonn GERMANY

MPI 95-109

.

.

THE IMAGE OF THE GALOIS GROUP FOR SOME CRYSTALLINE REPRESENTATIONS

VICTOR A. ABRASHKIN

Arbeitsgruppe "Algebraische Geometrie und Zahlentheorie" Jägerstraße 10/11, Berlin 10117, Germany

0. Introduction.

Let K be the quotient field of Witt vectors ring W(k), where k is an algebraically closed field of characteristic p > 0, $\Gamma = \text{Gal}(\bar{K}/K)$.

For $a \in \mathbb{N}$, $a \leq p-1$, denote by $M\Gamma^{cris}(a)$ a full subcategory of the category of $\mathbb{Z}_p[\Gamma]$ -modules, which consists of Γ -invariant lattices of crystalline $\mathbb{Q}_p[\Gamma]$ -modules with Hodge-Tate weights from [0, a]. Fontaine-Laffaille theory, c.f. [F-L], gives effective way to study objects of the category $M\Gamma^{cris}(a)$ by the functor

$$\mathcal{U}: \mathrm{MF}_f(a) \longrightarrow \mathrm{MF}^{\mathrm{cris}}(a),$$

where $MF_f(a)$ is some subcategory of the category of filtered W(k)-modules.

In this paper we follow Fontaine's idea from [Fo1] to study the image H of Γ in $\operatorname{Aut}_{\mathbb{Z}_{p}} U$, where $U \in \mathrm{M}\Gamma^{\operatorname{cris}}(a)$.

Let Γ_{tr} be the Galois group of the maximal tamely ramified extension K_{tr} of K in \overline{K} . Fix a section $s : \Gamma_{tr} \longrightarrow \Gamma$ of the natural projection $\Gamma \longrightarrow \Gamma_{tr}$. Let U be a free \mathbb{Z}_p -module of finite rank h with continuous action of Γ . Then U is a semisimple $\mathbb{Z}_p[s(\Gamma_{tr})]$ -module. Introduce the following two basic assumptions about this module (in fact (2_U) implies (1_U)):

 (1_U) in the isotypical decomposition $U = \bigoplus_{\alpha \in \mathcal{I}} U_\alpha$ all components U_α are simple;

(2_U) in the isotypical decomposition $\operatorname{End}_{\mathbb{Z}_p} U = (\operatorname{End}_{\mathbb{Z}_p} U)^{s(\Gamma_{\operatorname{tr}})} \oplus (\oplus_{\alpha \in \mathcal{J}} E_{\alpha})$ all components (with nontrivial action of $s(\Gamma_{\operatorname{tr}})$) E_{α} are simple.

The first assumption implies, that $U \otimes W(\tilde{F}_p) = \bigoplus_{\chi \in S} U_{\chi}$, where S = S(U) is a finite subset of the group of characters Char Γ_{tr} and $\operatorname{rk}_{W(\tilde{F}_p)} U_{\chi} = 1$. The set Ssatisfies the conjugacy condition: $\chi \in S \Rightarrow \sigma \chi \in S$, where σ is absolute Frobenius.

For any such $S \subset \operatorname{Char} \Gamma_{\operatorname{tr}}$ consider the set of functions \mathcal{F}_S

$$n: S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\},\$$

such that for any $\chi_1, \chi_2, \chi_3 \in S$

a) $n(\chi_1, \chi_1) \ge 1;$ b) $n(\chi_1, \chi_2) = n(\sigma\chi_1, \sigma\chi_2);$ c) $n(\chi_1, \chi_2) \le n(\sigma\chi_1, \sigma\chi_2);$

c) $n(\chi_1, \chi_2) \le n(\chi_1, \chi_3) + n(\chi_3, \chi_2);$

d) $n(\chi_1, \chi_1) = \min\{ n(\chi_1, \chi) + n(\chi, \chi_1) \mid \chi \in S \}.$

If U satisfies assumptions (1_U) and (2_U) , the function $n_U \in \mathcal{F}_S$ can be defined as follows.

Let H^1 be the image of the higher ramification subgroup $I = \operatorname{Ker}(\Gamma \longrightarrow \Gamma_{\operatorname{tr}})$ in $\operatorname{Aut}_{\mathbb{Z}_p} U$. The Lie \mathbb{Z}_p -algebra \mathcal{H} of the *p*-adic Lie group H^1 is Lie subalgebra and $\mathbb{Z}_p[s(\Gamma_{\operatorname{tr}})]$ -submodule of $\operatorname{End}_{\mathbb{Z}_p} U$. If $\alpha \in \mathcal{J}$, then $\mathcal{H}_{\alpha} = \mathcal{H} \cap E_{\alpha} = p^{n_{\alpha}} E_{\alpha}$ for some $n_{\alpha} \in \mathbb{Z}_{\geq 0} \cup \{+\infty\}$. If $\chi_1, \chi_2 \in S, \chi_1 \neq \chi_2$, then there exists the unique $\alpha(\chi_1, \chi_2) \in \mathcal{J}$, such that $\chi_1^{-1}\chi_2$ appears as a character of the $\Gamma_{\operatorname{tr}}$ -module $E_{\alpha(\chi_1, \chi_2)}$, and we set

$$n_U(\chi_1,\chi_2)=n_{\alpha(\chi_1,\chi_2)}.$$

If $\chi_1 = \chi_2$, set

$$n_U(\chi_1, \chi_1) = \min\{n_U(\chi_1, \chi) + n_U(\chi, \chi_1) \mid \chi \in S(U), \chi \neq \chi_1\}.$$

We obtained the function $n_U \in \mathcal{F}_S$, which contains considerable part of information about the image H of Γ in Aut_{\mathbb{Z}_p} U.

One can check up, that for any finite subset $S \subset \operatorname{Char} \Gamma_{\operatorname{tr}}$ (which satisfies the conjugacy condition) and any $n \in \mathcal{F}_S$, there exists Γ -module U (which satisfies assumptions (1_U) and (2_U)), such that S = S(U) and $n = n_U$.

Let $a \in \mathbb{N}$, $a \leq p-1$ and let $(\operatorname{Char} \Gamma_{\operatorname{tr}})(a)$ be union of all S(U), where $U \in M\Gamma^{\operatorname{cris}}(a)$. Consider standard identification

$$r: \operatorname{Char} \Gamma_{\operatorname{tr}} \longrightarrow R'_p = \{ r \in \mathbb{Q} \cap [0,1) \mid v_p(r) \ge 0 \}$$

(if $\chi \in \operatorname{Char} \Gamma_{\operatorname{tr}}$, then $r(\chi) = l/(p^N - 1)$, where $0 \leq l < p^N - 1$, $\chi = \chi_N^{*l}$ and $\chi_N^* \in \operatorname{Char} \Gamma_{\operatorname{tr}}$ is such that $\chi_N^*(\tau) = (\tau \pi_N) \pi_N^{-1}$, where $\pi_N \in \overline{K}$ is such that $\pi_N^{p^N-1} = -p$). Then by Fontaine-Laffaille theory we have

$$r((\operatorname{Char} \Gamma_{\operatorname{tr}})(a)) = R_p(a)$$

where $R_p(a)$ consists of $r \in R'_p$, such that all digits $l_s(r), s \ge 0$, of the archimedian expansion "in a base" p

$$r = \frac{l_0(r)}{p} + \dots + \frac{l_s(r)}{p^{s+1}} + \dots$$

belong to [0, a].

Let $a \leq p-2$. In this case the Fontaine-Laffaille functor $\mathcal{U} : \mathrm{MF}_f(a) \longrightarrow \mathrm{M\Gamma}^{\mathrm{cris}}(a)$ is an equivalence of categories. If $U \in \mathrm{M\Gamma}^{\mathrm{cris}}(a)$, then $U = \mathcal{U}(M)$, where $M \in \mathrm{MF}_f(a)$, and our main result (theorem A of n. 2.5.1) gives expression for the function n_U in terms related to the filtered module M.

Let

$$\{ n_U \mid U \in \mathrm{M}\Gamma^{\mathrm{cris}}(a) \} = \bigcup_{S \subset (\mathrm{Char} \ \Gamma_{\mathrm{tr}})(a)} \mathcal{F}'_S$$

Then by theorem B of n.2.5.2 the subset $\mathcal{F}'_S \subset \mathcal{F}_S$ is given only by one additional condition

d') if $\chi_1, \chi_0 \in S, r_1 = r(\chi_1), r_0 = r(\chi_0)$ and for all $s \in \mathbb{Z}_{\geq 0}$ one has $l_s(r_0) \geq l_s(r_1)$, then

$$n(\chi_1, \chi_0) = \min\{ n(\chi_1, \chi) + n(\chi, \chi_0) \mid \chi \in S \}.$$

As application consider the case $a = 1, p \ge 3$. If G is a commutative formal group G over W(k) of finite height, then its Tate module T(G) is an object of the category $U \in M\Gamma^{cris}(1)$. In this case (under assumptions (1_U) and (2_U)) theorem B gives

$$\mathcal{F}'_{S(T(G))} \neq \mathcal{F}_{S(T(G))} \Leftrightarrow \hat{\mathbb{G}}_m \subsetneqq G ,$$

where $\hat{\mathbb{G}}_m$ is the formal multiplicative group. In particular, if G is a 1-dimensional formal group of height h, then

$$r(S(T(G)) = \{ p^{i}/(p^{h} - 1) \mid 0 \le i < h \}$$

 and

$$\mathcal{F}_{S(T(G))}' = \mathcal{F}_{S(T(G))}.$$

This equality gives positive answer to the question of J.-M. Fontaine from [Fo1]. In this case the function $n_{T(G)}$ can be also expressed in terms of functional equation for logarithm of G.

We did not consider in this paper the case a = p - 1, but it can be considered in the same way using more complicated construction related to some version \mathcal{U}_1 of the modification of Fontaine-Laffaille functor from [Ab1]. Then theorem A holds, when \mathcal{U} is replaced by \mathcal{U}_1 , and theorem B holds (with small correction: if U arises from "connected" filtered module, and the trivial character η belongs to S(U), we must set $r(\eta) = 1$) for all $a \leq p - 1$, so one can apply it also for formal groups in the case p = 2.

We did not consider here systematically the second invariant of the image H, which appears as \mathbb{Z}_{p} -module $\mathcal{H} \cap (\operatorname{End}_{\mathbb{Z}_{p}} U)^{s(\Gamma_{tr})}$. In some cases (e.g. in the case of 1-dimensional formal groups) we prove, that

$$\mathcal{H} \cap (\operatorname{End}_{\mathbf{Z}_n} U)^{s(\Gamma_{\operatorname{tr}})} = p(\operatorname{End}_{\mathbf{Z}_n} U)^{s(\Gamma_{\operatorname{tr}})}.$$

and, therefore, here the knowledge of the function $n_U \in \mathcal{F}_{S(U)}$ is equivalent to the knowledge of the image H of the Galois group Γ .

This paper was written during my stay in the "Arbeitsgruppe Algebraische Geometrie und Zahlentheorie" (Max-Planck-Gesellschaft, Berlin). I express my gratitude to this organization for hospitality.

1. Characterization of some subgroups in $GL_h(\mathbb{Z}_p)$.

1. Let U be a free \mathbb{Z}_p -module of finite rank h. Consider a closed (in p-adic topology) subgroup $H \subset \operatorname{Aut}_{\mathbb{Z}_p} U \simeq \operatorname{GL}_h(\mathbb{Z}_p)$, so one has structure of a continuos $\mathbb{Z}_p[H]$ -module on U.

1.1. Consider the following properties C1-C3 of H-module U.

C1. There is an exact sequence of groups

$$1 \longrightarrow H^1 \longrightarrow H \longrightarrow H_1 \longrightarrow 1,$$

where H_1 is a cyclic group of order prime to p and H^1 is a pro-p-group.

In this case one can fix a splitting $s: H_1 \longrightarrow H$, what gives the structure of a continuos $\mathbb{Z}_p[s(H_1)]$ -module on U. Clearly,

$$U \otimes W(\bar{\mathbb{F}}_p) = \bigoplus_{\chi \in S} U_{\chi},$$

where S = S(H) consists of characters $\chi \in \text{Hom}(H_1, W(\bar{\mathbb{F}}_p)^*)$, such that

$$U_{\chi} = \{ u \in U \otimes W(\bar{\mathbb{F}}_p) \mid hu = \chi(h)u \quad \forall h \in s(H_1) \} \neq 0.$$

If σ is the absolute Frobenius on $W(\bar{\mathbb{F}}_p)$, then one has: $\chi \in S \Rightarrow \sigma \chi \in S$.

C2. $\operatorname{rk}_{W(\bar{\mathbf{F}}_p)} U_{\chi} = 1$ for any $\chi \in S(H)$, i.e. $\mathbb{Z}_p[s(H_1)]$ -module U does not contain multiple irreducible components.

C3. If $\chi_1, \chi_2, \chi_3, \chi_4 \in S(H)$, $\chi_1 \neq \chi_2$ and $\chi_1^{-1}\chi_2 = \chi_3^{-1}\chi_4$, then $\chi_1 = \chi_3$ (and, therefore, $\chi_2 = \chi_4$), i.e. $\mathbb{Z}_p[s(H_1)]$ -module $\operatorname{End}_{\mathbb{Z}_p} U$ does not contain irreducible multiple components with nontrivial action of $s(H_1)$.

We prove the following proposition to illustrate these properties.

Proposition. If the image of H in $\operatorname{Aut}_{\mathbb{F}_p}(U \otimes \mathbb{F}_p)$ is a cyclic group of order q-1, where $q = p^h$, then the properties C1-C3 hold and $U_1 = U \otimes \mathbb{F}_p$ is a simple $\mathbb{Z}_p[H]$ -module.

Proof.

Obviously, C1 is true.

Present S = S(H) as a union of σ -orbits

$$S = \{ \chi_1, \ldots, \sigma^{h_1 - 1} \chi_1; \ldots; \chi_s, \ldots, \sigma^{h_s - 1} \chi_s \}.$$

Then ord $\chi_i \mid p^{h_i} - 1$ for $1 \le i \le s$, and $h_1 + \dots + h_s = |S| \le h$. Now

$$q-1 = C.G.M.\{ \text{ ord } \chi_i \mid 1 \le i \le s \} \le \prod_{1 \le i \le s} (p^{h_i} - 1) \le p^{h_1 + \dots + h_s} - s$$

gives $s = 1, h_1 + \dots + h_s = h$, or $S = \{\chi, \sigma\chi, \dots, \sigma^{h-1}\chi\}$ and $\operatorname{ord} \chi = q-1$, what gives the property C2.

Let $\chi_1, \ldots, \chi_4 \in S, \chi_1 \neq \chi_2, \chi_1^{-1}\chi_2 = \chi_3^{-1}\chi_4$. One can assume, that $\chi_1 = \chi, \chi_2 = \sigma^{n_2}\chi, \chi_3 = \sigma^{n_3}\chi, \chi_4 = \sigma^{n_4}\chi$, where $0 \le n_2, n_3, n_4 < h, n_2 \neq 0$. Because of the property ord $\chi = q - 1$, the equality $\chi_1^{-1}\chi_2 = \chi_3^{-1}\chi_4$ is equivalent to

$$1 + p^{n_4} \equiv p^{n_2} + p^{n_3} \operatorname{mod}(q-1).$$

The both sides of this equivalence are elements from [2, q], so we have the equality

$$1 + p^{n_4} = p^{n_2} + p^{n_3}.$$

Now $n_2 \neq 0 \Rightarrow 1 + p^{n_4} \ge p + 1 > 2 \Rightarrow n_4 \neq 0 \Rightarrow n_3 = 0 \Rightarrow \chi_1 = \chi_3$. So, we have also the property C3.

1.2. Let $\mathcal{H} \subset \operatorname{End}_{\mathbb{Z}_p} U$ be the \mathbb{Z}_p -Lie algebra of $H^1 \subset \operatorname{Aut}_{\mathbb{Z}_p} U$. Then $H \mapsto \mathcal{H}$ gives one-to-one correspondence between subgroups $H \subset \operatorname{Aut}_{\mathbb{Z}_p} U$ (with given H_1) and $\mathbb{Z}_p[s(H_1)]$ -submodules and topologically nilpotent Lie subalgebras \mathcal{H} of $\mathbb{Z}_p[s(H_1)]$ -module and Lie algebra $\operatorname{End}_{\mathbb{Z}_p} U$.

Clearly,

$$\operatorname{End}_{\mathbf{Z}_p} U \subset \operatorname{End}_{W(\bar{\mathbf{F}}_p)}(U \otimes W(\bar{\mathbb{F}}_p)) = \bigoplus_{\chi_1, \chi_2 \in S} \operatorname{Hom}_{W(\bar{\mathbf{F}}_p)}(U_{\chi_1}, U_{\chi_2}).$$

Under this injection $\operatorname{End}_{\mathbf{Z}_{p}} U$ consists of

$$(\alpha_{\chi_1,\chi_2})_{\chi_1,\chi_2\in S}\in \bigoplus_{\chi_1,\chi_2\in S}\operatorname{Hom}_{W(\bar{\mathbf{F}}_n)}(U_{\chi_1},U_{\chi_2}),$$

such that $\sigma \alpha_{\chi_1,\chi_2} = \alpha_{\sigma\chi_1,\sigma\chi_2}$ for any $\chi_1,\chi_2 \in S$, where

$$\sigma \alpha_{\chi_1,\chi_2}: U_{\chi_1^p} \xrightarrow{\sigma^{-1}} U_{\chi_1} \xrightarrow{\alpha_{\chi_1,\chi_2}} U_{\chi_2} \xrightarrow{\sigma} U_{\chi_2^p}.$$

Let η be some character of $s(H_1)$, then

 $(\operatorname{End}_{\mathbf{Z}_p} U)_{\eta} = 0$, if $\eta \neq \chi_1^{-1}\chi_2$ for any $\chi_1, \chi_2 \in S$;

 $\operatorname{rk}_{W(\tilde{\mathbf{F}}_{\mathbf{p}})}(\operatorname{End}_{\mathbf{Z}_{\mathbf{p}}}U)_{\eta} = 1$, if $\eta = \chi_1^{-1}\chi_2$, where $\chi_1, \chi_2 \in S, \chi_1 \neq \chi_2$;

 $(\operatorname{End}_{\mathbf{Z}_p} U)^{s(H_1)} = \{ (\alpha_{\chi} \operatorname{id}_{\chi})_{\chi \in S} \mid \alpha_{\chi} \in W(\bar{\mathbb{F}}_p), \sigma \alpha_{\chi} = \alpha_{\sigma\chi} \quad \forall \chi \in S \}.$

Now let $\mathcal{H} \otimes W(\bar{\mathbb{F}}_p) = \bigoplus_{\eta \in \operatorname{Char} s(H_1)} \mathcal{H}_{\eta}$. Then the following properties describe \mathcal{H}

as a $\mathbb{Z}_p[s(H_1)]$ -submodule of $\operatorname{End}_{\mathbb{Z}_p} U$:

a) if $\eta \neq \chi_1^{-1}\chi_2$, where $\chi_1, \chi_2 \in S$, then $\mathcal{H}_{\eta} = 0$;

b) if $\chi_1, \chi_2 \in S, \chi_1 \neq \chi_2$, then there exists $n(\chi_1, \chi_2) \in \mathbb{Z}_{\geq 0} \cup \{+\infty\}$, such that

$$\mathcal{H}_{\chi_1^{-1}\chi_2} = p^{n(\chi_1,\chi_2)} \operatorname{Hom}_{W(\bar{\mathbf{F}}_p)}(U_{\chi_1}, U_{\chi_2}).$$

These "integers" $n(\chi_1, \chi_2)$ satisfy the conjugacy condition $n(\chi_1, \chi_2) = n(\sigma\chi_1, \sigma\chi_2)$. c) $\mathcal{H}_0 = \mathcal{H}^{s(H_1)}$ is some \mathbb{Z}_p -submodule of

$$(\operatorname{End}_{\mathbf{Z}_p} U)^{\mathfrak{o}(H_1)} = \{ (\alpha_{\chi} \operatorname{id}_{\chi})_{\chi \in S} \mid \alpha_{\chi} \in W(\bar{\mathbb{F}}_p), \sigma \alpha_{\chi} = \alpha_{\sigma \chi} \ \forall \chi \in S \}.$$

The following properties describe \mathcal{H} as a topologically nilpotent Lie subalgebra of $\operatorname{End}_{\mathbb{Z}_{\nu}} U$:

d) if χ_1, χ_2, χ_3 are different elements of S, then $[\mathcal{H}_{\chi_1^{-1}\chi_2}, \mathcal{H}_{\chi_2^{-1}\chi_3}] \subset \mathcal{H}_{\chi_1^{-1}\chi_3}$ and, therefore, $n(\chi_1, \chi_2) + n(\chi_2, \chi_3) \ge n(\chi_1, \chi_3);$

e) if $\chi_1, \chi_2 \in S, \chi_1 \neq \chi_2$, then $[\mathcal{H}_{\chi_1^{-1}\chi_2}, \mathcal{H}_{\chi_2^{-1}\chi_1}] \subset \mathcal{H}_0$ and this means

$$p^{n(\chi_1,\chi_2)+n(\chi_2,\chi_1)}(\mathrm{id}_{\chi_1}-\mathrm{id}_{\chi_2}) \in \mathcal{H}_0 \otimes W(\bar{\mathbb{F}}_p);$$

f) $\mathcal{H}_0 \subset p(\operatorname{End}_{\mathbf{Z}_p} U)^{s(H_1)}$.

If $\chi_1, \chi_2 \in S, \chi_1 \neq \chi_2$, then e) and f) give $n(\chi_1, \chi_2) + n(\chi_2, \chi_1) \ge 1$. So, if we set by definition

$$n(\chi,\chi) = \min\{n(\chi,\chi_2) + n(\chi_2,\chi) \mid \chi_2 \in S, \chi \neq \chi_2\},\$$

and require $n(\chi, \chi) \ge 1$ for all $\chi \in S$, then the above property d) can be reformulated in a following way.

 d_1) if $\chi_1, \chi_2, \chi_3 \in S$, then

$$n(\chi_1, \chi_2) + n(\chi_2, \chi_3) \ge n(\chi_1, \chi_3).$$

So, we have

Proposition. There is one-to-one correspondence between subgroups $H \subset \operatorname{Aut}_{\mathbb{Z}_p} U$, which satisfy the properties C1-C3, and the following data:

1) a function $n = n_H : S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$, such that for any $\chi_1, \chi_2, \chi_3 \in S$

$$n(\chi_1, \chi_1) = \min\{n(\chi_1, \chi_2) + n(\chi_2, \chi_1) \mid \chi_2 \in S \} \ge 1;$$

$$n(\sigma\chi_1, \sigma\chi_2) = n(\chi_1, \chi_2);$$

$$n(\chi_1, \chi_2) + n(\chi_2, \chi_3) \ge n(\chi_1, \chi_3);$$

2) a \mathbb{Z}_p -submodule $\mathcal{H}_0 = \mathcal{H}_0(H)$ of $p(\operatorname{End}_{\mathbb{Z}_p} U)^{\mathfrak{s}(H_1)} \subset p \bigoplus_{\chi \in S} \operatorname{Hom}_{W(\bar{\mathbb{F}}_p)}(U_{\chi}, U_{\chi}),$ such that for any $\chi_1, \chi_2 \in S$

$$p^{n(\chi_1,\chi_2)+n(\chi_2,\chi_1)}(\mathrm{id}_{\chi_1}-\mathrm{id}_{\chi_2}) \in \mathcal{H}_0 \otimes W(\bar{\mathbb{F}}_p).$$

1.3. Consider the following property

C4. $U_1 = U \otimes \mathbb{F}_p$ is a simple $\mathbb{Z}_p[H]$ -module.

Clearly, C4 implies C2. Under assumption C4 the above description of H can be slightly simplified.

From C1 it follows, that $\mathbb{Z}_p[s(H_1)]$ -module U is simple. So, if we fix $\chi \in S = S(H)$, then $S = \{\chi, \sigma\chi, \ldots, \sigma^{h-1}\chi\}$. For $i \in \mathbb{Z}/h\mathbb{Z}$ set $n(i) = n(\sigma^{m_1}\chi, \sigma^{m_2}\chi)$, where $(m_2 - m_1) \mod h = i$. Then

$$n(i) + n(j) \ge n(i+j),$$

for any $i, j \in \mathbb{Z}/h\mathbb{Z}$. Remark, that $H^1 = H \cap (1 + p \operatorname{End}_{\mathbb{Z}_p} U)$, therefore, all $n(i) \in \mathbb{N} \cup \{+\infty\}$, and we obtain the function

$$n = n_{H,\chi} : \mathbb{Z}/h\mathbb{Z} \longrightarrow \mathbb{N} \cup \{+\infty\}.$$

- To rewrite the condition 2) of proposition of n.1.3, let

$$\mathcal{H} = \oplus_{i \in \mathbb{Z}/h\mathbb{Z}} \mathcal{H}_i,$$

where $\mathcal{H}_0 = \mathcal{H}^{s(H_1)}$ as earlier, and for $i \in \mathbb{Z}/h\mathbb{Z} \setminus \{0\}$ \mathcal{H}_i is an irreducible $\mathbb{Z}_p[s(H_1)]$ -module, such that $\mathcal{H}_{i,\chi^{-1}\sigma^i\chi} \neq 0$.

For any $m \in \mathbb{Z}/h\mathbb{Z}$, let $U_{\sigma^m\chi} = W(\tilde{\mathbb{F}}_p)e_m$, where $\sigma e_m = e_{m+1}$. For any $m_1, m_2 \in \mathbb{Z}/h\mathbb{Z}$, let $e_{m_1,m_2} \in \operatorname{Hom}_{W(\tilde{\mathbb{F}}_p)}(U_{\sigma^{m_1}\chi,\sigma^{m_2}\chi})$ be such that $e_{m_1,m_2}(e_{m_1}) = e_{m_2}$. In this notation for $q = p^h$ and any $i \in \mathbb{Z}/h\mathbb{Z}$

$$\mathcal{H}_i \subset \{ \sum_{m \in \mathbb{Z}/h\mathbb{Z}} \alpha_m e_{m,m+i} \mid \alpha_m \in W(\mathbb{F}_q), \sigma \alpha_m = \alpha_{m+1} \}.$$

Remark, that for any $i \in \mathbb{Z}/h\mathbb{Z}$ \mathcal{H}_i is completely determined by its projection $\mathcal{H}_i(\chi)$ to $\operatorname{Hom}_{W(\mathbb{F}_p)}(U_{\chi}, U_{\sigma^i\chi})$. If $i \neq 0$, then $\mathcal{H}_i(\chi) = p^{n(i)}W(\mathbb{F}_q)e_{0,i}$.

If $i \in \mathbb{Z}/h\mathbb{Z} \setminus \{0\}$, then one can easily verify, that $[\mathcal{H}_i, \mathcal{H}_{-i}] \subset \mathcal{H}_0$ consists of elements in a form

$$p^{n(i)+n(-i)}\sum_{m\in\mathbb{Z}/h\mathbb{Z}}\alpha_m e_{m,m},$$

where $\alpha_0 = \sigma^i \gamma - \gamma$ for some $\gamma \in W(\mathbb{F}_q)$.

If $h_1|h$, denote by $\operatorname{Tr}_{h,h_1}$ the trace map of the fields extension given by quotient fields of the rings $W(\mathbb{F}_q) = W(\mathbb{F}_{p^h})$ and $W(\mathbb{F}_{p^{h_1}})$. One can easily check up the following statement

Lemma. If $\alpha \in W(\mathbb{F}_q), i \in \mathbb{Z}/h\mathbb{Z}$, then the following conditions are equivalent 1) there exists $\gamma \in W(\mathbb{F}_q)$, such that $\alpha = \sigma^i \gamma - \gamma$; 2) if $h_1 = c.g.d.(h, i)$, then $\operatorname{Tr}_{h,h_1} \alpha = 0$.

Therefore, if $i \in \mathbb{Z}/h\mathbb{Z} \setminus \{0\}$, then the property $[\mathcal{H}_i, \mathcal{H}_{-i}] \subset \mathcal{H}_0$ is equivalent to

 $p^{n(i)+n(-i)}\operatorname{Ker}(\operatorname{Tr}_{h,(h,i)})e_{0,0}\subset\mathcal{H}_0(\chi).$

Definition.

a) If $h_1|h$, then

$$n^{*}(h_{1}) = \min\{ n(i) + n(-i) \mid i \in \mathbb{Z}/h\mathbb{Z} \setminus \{0\}, (i,h) = h_{1} \};$$

b)
$$W^{(n)} = \sum_{h_1|h} p^{n^*(h_1)} \operatorname{Ker} \operatorname{Tr}_{h,h_1} \subset W(\mathbb{F}_q).$$

Clearly, $W^{(n)}$ is the minimal \mathbb{Z}_p -submodule in $W(\mathbb{F}_p)$ containing \mathbb{Z}_p -modules $p^{n(i)+n(-i)} \operatorname{Ker} \operatorname{Tr}_{h,(h,i)}$ for all $i \in \mathbb{Z}/h\mathbb{Z} \setminus \{0\}$.

Finally, we obtain

Proposition. There is a one-to-one correspondence between pairs (H, χ) , where H is a subgroup of $\operatorname{Aut}_{\mathbb{Z}_p} U$, which satisfies properties C1, C3, C4, and χ is a fixed character of the H-module $U \otimes \mathbb{F}_p$, and the following data:

1) a function $n = n_{H,\chi} : \mathbb{Z}/h\mathbb{Z} \longrightarrow \mathbb{N} \cup \{+\infty\}$, such that

$$n(0) = \min\{ n(i) + n(-i) \mid i \in \mathbb{Z}/N\mathbb{Z} \}$$

and

$$n(i) + n(j) \ge n(i+j)$$

for all $i, j \in \mathbb{Z}/h\mathbb{Z}$;

2) a \mathbb{Z}_p -module $\mathcal{H}_0(\chi) = \mathcal{H}_0(H,\chi)$, such that

$$W^{(n)}e_{0,0} \subset \mathcal{H}_0(\chi) \subset pW(\mathbb{F}_q)e_{0,0}.$$

2. Case of Fontaine-Laffaille modules.

Let W(k) be the ring of Witt vectors with coefficients in a perfect field k of characteristic p > 0. Let K be its quotient field and $\Gamma = \operatorname{Gal}(\overline{K}/K)$. Let U be a free \mathbb{Z}_p -module of finite rank h with continuos Γ -action. If the image H of Γ in Aut_{Z_p} U satisfies the properties C1-C3, we also use notation $n_U, n_{U,\chi}$ instead of $n_H, n_{H,\chi}$ from section 1. Under above assumptions C1-C3 we want to study the case, when U is Fontaine-Laffaille Γ -module, i.e. U is a Γ -invariant lattice in some crystalline $\mathbb{Q}_p[\Gamma]$ -module with Hodge-Tate weights from [0, a], where a < p. For simplicity we assume, that k is algebraically closed (what is equivalent to the study of the image of the inertia subgroup of Γ).

2.1. Some facts from Fontaine-Laffaille theory, [F-L].

Let A_{cris} be Fontaine's crystalline ring. It has continuos Γ -action, $A_{\text{cris}}^{\Gamma} = W(k)$. There is Frobenius endomorphism $\sigma_{\text{cris}}(=\sigma)$ of A_{cris} , which prolongs standard Frobenius σ of W(k). A_{cris} has a decreasing filtration of ideals Filⁱ A_{cris} , such that σ Filⁱ $A_{\text{cris}} \subset p^i A_{\text{cris}}$ for $0 \leq i < p$.

Let \mathcal{MF} be the category of W(k)-modules M with decreasing filtration of length < p by W(k)-submodules $M = M^0 \supset M^1 \supset \cdots \supset M^p = 0$ and σ -linear morphisms $\phi_i : M^i \longrightarrow M$, such that $\phi_i|_{M^{i+1}} = p\phi_{i+1}$ for all $0 \le i < p$.

One can consider A_{cris} as the object of the category \mathcal{MF} , if $A_{\text{cris}}^i = \text{Fil}^i A_{\text{cris}}$, $\phi_i = p^{-i}\sigma$ for $0 \leq i < p$, and $A_{\text{cris}}^p = 0$.

Let MF be the full subcategory of admissible modules in \mathcal{MF} . By definition, MF consists of finitely generated filtered modules $M \in \mathcal{MF}$, such that $\sum_i \phi_i(M^i) = M$. MF is an abelian category. Denote by MF_f (resp., MF_{tor}) a full subcategory of MF which consists of free (resp., torsion) W(k)-modules M.

Let $M\Gamma$ be the category of $\mathbb{Z}_p[\Gamma]$ -modules. Then Fontaine-Laffaille theory gives an exact and faithfull functor $\mathcal{U} : MF \longrightarrow M\Gamma$. If $M \in MF_f$, then $\mathcal{U}(M) =$ $\operatorname{Hom}_{\mathcal{MF}}(M, A_{\operatorname{cris}})$, where the structure of Γ -module on $\mathcal{U}(M)$ is induced from the Γ -module structure on A_{cris} . In this case $\mathcal{U}(M)$ is a free \mathbb{Z}_p -module, $\operatorname{rk}_{\mathbb{Z}_p} \mathcal{U}(M) =$ $\operatorname{rk}_{W(k)} M$ and $\mathcal{U}(M) \otimes \mathbb{Q}_p$ is a crystalline $\mathbb{Q}_p[\Gamma]$ -module with weights from [a, b], if $M^0 = M^a$ and $M^{b+1} = 0$. If $M \in \operatorname{MF}_{\operatorname{tor}}$, then $\mathcal{U}(M) = \operatorname{Hom}_{\mathcal{MF}}(M, A_{\operatorname{cris},\infty})$, where $A_{\operatorname{cris},\infty} = \varinjlim_{n \in \mathbb{N}} A_{\operatorname{cris},n}$, and $A_{\operatorname{cris},n} = A_{\operatorname{cris}}/p^n A_{\operatorname{cris}}$ with induced structure of

the object of the category \mathcal{MF} . In this case lengths of W(k)-module M and of \mathbb{Z}_p -module $\mathcal{U}(M)$ coincide.

First information about Γ -modules $\mathcal{U}(M)$, where $M \in MF$, comes from the study of simple objects of the category MF. Let $R_p = \{ r \in \mathbb{Q} \cap [0,1] \mid v_p(r) \ge 0 \}$. For any $r \in R_p$ consider its archimedian decomposition

$$r = \frac{l_0(r)}{p} + \dots + \frac{l_s(r)}{p^{s+1}} + \dots$$

with digits $l_s(r)$, where $0 \leq l_s(r) < p$ for all $s \in \mathbb{Z}_{\geq 0}$. Denote by h(r) the minimal period of the sequence $\{l_s(r)\}_{s\geq 0}$. One can use indices from $\mathbb{Z}/h(r)\mathbb{Z}$ or from \mathbb{Z} for this sequence.

Let $r \in R_p$ and $M(r) \in MF$ be such that

a) pM(r) = 0 and as k-module M(r) has a basis $\{m_i \mid i \in \mathbb{Z}/h(r)\mathbb{Z}\};\$

b) for $0 \leq j < p$ the submodule of filtration $M(r)^j$ is generated by

$$\{m_i \mid l_i(r) \ge j, i \in \mathbb{Z}/h(r)\mathbb{Z}\}$$

(in particular, $m_i \in M(r)^{l_i(r)} \setminus M(r)^{l_i(r)+1}$);

c) for all $i \in \mathbb{Z}/h(r)\mathbb{Z}$ one has $\phi_{l_i(r)}(m_i) = m_{i+1}$.

If $r \in R_p$ and $i \in \mathbb{Z}$, let

$$r(i) = \frac{l_i(r)}{p} + \dots + \frac{l_{i+s}(r)}{p^{s+1}} + \dots$$

Then any simple object of the category MF is isomorphic to M(r) for some $r \in R_p$, and $M(r_1) \simeq M(r)$ iff $r_1 = r(i)$ for some $i \in \mathbb{Z}$.

If $N \in \mathbb{N}$ introduce "tamely ramified" character $\chi_N^* : \Gamma \longrightarrow W(k)^*$ by the relation

$$\chi_N^*(\tau) = (\tau \pi_N)/\pi_N,$$

where $\tau \in \Gamma$ and $\pi_N \in \overline{K}$ is such that $\pi_N^{p^N-1} = -p$. If $\chi : \Gamma \longrightarrow W(k)^*$ is some continuos character, then $\chi = \chi_N^{*k_N(\chi)}$ for some $N \in \mathbb{N}$ and $0 \leq k_N(\chi) < p^N - 1$. In this notation

$$r(\chi) = k_N(\chi)/(p^N - 1) \in R_p \cap [0, 1)$$

does not depend on the choice of N and determines the character χ uniquelly. One can use this invariant to describe the structure of Γ -module $U(r) = \mathcal{U}(M(r))$. If $r \in R_p \cap [0,1)$, then U(r) is a simple $\mathbb{Z}_p[\Gamma]$ -module with the set of characters $S = \{\chi, \sigma\chi, \ldots, \sigma^{h(r)-1}\chi\}$, where $r(\chi) = r$. This means pU(r) = 0 and

$$U(r) \otimes W(k) = \bigoplus_{\eta \in S} U(r)_{\eta},$$

where $U(r)_{\eta} = \{ u \in U(r) \otimes W(k) \mid \tau u = \eta(\tau)u \text{ for all } \tau \in \Gamma \} \neq 0$. If r = 1, then U(1) = U(0) is trivial Γ -module \mathbb{F}_p .

Let V be a crystalline $\mathbb{Q}_p[\Gamma]$ -module with weights from [0, p-1]. We call Γ module U Fontaine-Laffaille Γ -module, if U is isomorphic to some Γ -invariant \mathbb{Z}_{p^-} lattice of V. By the main result of Fontaine-Laffaille theory V contains some Γ -invariant lattice isomorphic to $\mathcal{U}(M)$ for some $M \in \mathrm{MF}_f$. Generally, one can not present any Γ -invariant lattice of V as $\mathcal{U}(M)$, where $M \in \mathrm{MF}_f$, because the functor $\mathcal{U}: \mathrm{MF} \longrightarrow \mathrm{M}\Gamma$ is not fully faithfull. Let MF^u be a full subcategory of MF, which consists of filtered modules $M \in \mathrm{MF}_f$, such that the simple object M(1) does not appear as a subquotient of M. Then restriction

$$\mathcal{U}: \mathrm{MF}^u \longrightarrow \mathrm{M\Gamma}$$

is fully faithfull functor. So, if $U_1 \subset \mathcal{U}(M) \otimes \mathbb{Q}_p$, where $M \in \mathrm{MF}_f^u$, is Γ -invariant lattice, then $U_1 = \mathcal{U}(M_1)$ for some $M_1 \in \mathrm{MF}_f^u$. In this case

$$M_1 = \operatorname{Hom}^{\Gamma}(U_1, A_{\operatorname{cris}}),$$

where the filtration and σ -linear morphisms ϕ_i , $0 \leq i < p$, on M_1 are induced from those on A_{cris} . (One can apply modification of the Fontaine-Laffaille functor from [Ab1] to describe all Γ -invariant lattices of arbitrary crystalline $\mathbb{Q}_p[\Gamma]$ -module with weights from [0, p - 1].)

At least in our case, properties of the Γ -module $U = \mathcal{U}(M)$ are related more directly to properties of the filtered module $M' \in \mathrm{MF}^u$, such that $U = \mathcal{U}_1(M')$, where $\mathcal{U}_1 : \mathrm{MF}^u \longrightarrow \mathrm{M\Gamma}$ is some functor equivalent to the functor \mathcal{U} . Let MF_1^u be a full subcategory of MF^u , which consists of filtered modules M, such that pM = 0. Then construction of $\mathcal{U}_1|_{\mathrm{MF}_1^u}$ was done in [Ab1] (where the more general case of objects $M \in \mathrm{MF}$, such that pM = 0, was considered). Essential part of this construction can be explained as follows.

Let $M \in \mathrm{MF}_1^u$, then it has k-basis $\overline{m} = (m_1, \ldots, m_N)$, such that for some function $l: [1, N] \longrightarrow [0, p-1]$ the filtration submodule $M^j, 0 \leq j < p$, is generated by $\{m_i \mid l(i) \geq j\}$. If $\overline{\phi}(\overline{m}) = (\phi_{l(1)}(m_1), \ldots, \phi_{l(N)}(m_N))$, then σ -linear morphisms $\phi_k, 0 \leq k < p$, are uniquely defined by the relation

$$\bar{\phi}(\bar{m}) = \bar{m}C,$$

for some $C \in \operatorname{GL}_N(W(k))$. Then $\mathcal{U}_1(M)$ can be identified with Γ -module of residues modulo $p\bar{O}$ of \bar{K} -solutions $\bar{X} = (X_1, \ldots, X_N)$ of the system of equations

$$\left(\frac{X_1^p}{(-p)^{l(1)}}, \dots, \frac{X_N^p}{(-p)^{l(N)}}\right) = (X_1, \dots, X_N)C$$

Construction of equivalence of the functors $\mathcal{U}|_{\mathrm{MF}_{1}^{u}}$ and $\mathcal{U}_{1}|_{\mathrm{MF}_{1}^{u}}$ is relatively complicated, c.f. [Ab1] (and leads to the construction of the functor \mathcal{U}_{1}). But, if $\mathrm{MF}(p-2)$ is a full subcategory of MF, which consists of filtered modules M, such that $M^{p-1} = 0$, then restrictions of \mathcal{U} and \mathcal{U}_{1} on $\mathrm{MF}(p-2)$ coincide. So, we can considerably simplify out arguments by studying only the case of Fontaine-Laffaille modules in a form $\mathcal{U}(M)$, where $M \in \mathrm{MF}(p-2)$. Remark, that objects M of the category $\mathrm{MF}(p-2)$ are characterized by the following property:

if M(r) is a simple subquotent of M, then $r \in R_p(p-2)$, where

$$R_p(p-2) = \{ r \in R_p \mid 0 \le l_s(r) \le p-2 \text{ for all } s \ge 0 \}.$$

2.2. Class $MF^{(S)}$.

Let S be a finite subset of R_p , such that $r \in S \Rightarrow r(1) \in S$. For any $r \in S$ we denote its archimedean decomposition in "a base p" by

$$r=\frac{l_0(r)}{p}+\cdots+\frac{l_s(r)}{p^{s+1}}+\ldots,$$

where $0 \leq l_s(r) < p$ for all $s \in \mathbb{Z}_{\geq 0}$.

Introduce class $MF^{(S)}$ of objects of the category MF_f as follows. By definition it consists of filtered free W(k)-modules M, such that

a) M has W(k)-basis $\{m_r \mid r \in S\}$ and for any $0 \leq j \leq p$ its filtration submodule M^j is generated by $\{m_r \mid l_0(r) \geq j\}$ (in particular, for any $r \in S$ one has $m_r \in M^{l_0(r)} \setminus M^{l_0(r)+1}$);

b) σ -linear morphisms $\phi_j: M^j \longrightarrow M$ are uniquely defined by relations

$$\phi_{l_0(r(-1))}m_{r(-1)} = m_r + \sum_{r' \in S} \beta_{rr'}m_{r'}$$

where $r \in S$ and coefficients $\beta_{rr'} \in W(k)$ satisfy the following conditions b_1) and b_2).

 b_1) Let $r_1, \ldots, r_m \in S$ be such that

$$S = \{r_1, \ldots, r_1(h_1 - 1); \ldots; r_m, \ldots, r_m(h_m - 1)\},\$$

where $h_j = h(r_j)$ is the minimal period of *p*-digits decomposition for $r_j \in S$. There exists substitution $\begin{pmatrix} 1 & \dots & m \\ j_1 & \dots & j_m \end{pmatrix}$, such that

if $r = r_{j_a}(\alpha), r' = r_{j_b}(\beta)$, where $a \ge b$, $\alpha \in \mathbb{Z}/h_{j_a}\mathbb{Z}, \beta \in \mathbb{Z}h_{j_b}\mathbb{Z}$, then $\beta_{rr'} \in pW(k)$;

 b_2) if $l_0(r) \le l_0(r')$, then $\beta_{rr'} = 0$.

The above conditions a) and b_1) define on M the structure of an object of the category MF_f and the condition b_1) describes $M/pM = M^{(1)} \in MF_{tor}$ as subsequent extensions of the simple object $M(r_{j_1})$ by $M(r_{j_a})$, where $1 < a \leq m$. In other words, one has the following exact sequences in the category MF_{tor} :

The condition b_2) was introduced by Wintenberger, c.f. [Wtb]. He proved, that the structure of any $M \in MF_f$ has the above explicit description, which satisfies this additional property (and even gives a functorial spritting of the filtration on M).

If U is a free \mathbb{Z}_p -module with continuos action of Γ , and H = H(U) is the image of Γ in Aut_{Z_p} U, then $\mathbb{Z}_p[H]$ -module U automatically satisfies the property C1 of n.1. In notation of n.1 H^1 is the image of the higher ramification subgroup I of Γ and H_1 is identified with a quotient of $\Gamma_{tr} = \Gamma/I$. We can fix a section $s : \Gamma_{tr} \longrightarrow \Gamma$ of the projection $\Gamma \longrightarrow \Gamma_{tr}$ and take induced splitting $s : H_1 \longrightarrow H$. Therefore, any character χ of $s(H_1)$ can be considered as character of Γ_{tr} (this identification is induced by composition $\Gamma_{tr} \xrightarrow{s} s(\Gamma_{tr}) \longrightarrow s(H_1)$) and can be given by its rinvariant $r(\chi)$ from n.2.1.

Clearly, $MF^{(S)} \subset MF(p-2)$, if and only if $S \subset R_p(p-2)$. If $M \in MF^{(S)}$ and $U = \mathcal{U}(M)$, then the set S(H) of characters of the group $s(H_1)$, which appears in n.1, is identified with S by the correspondence $\chi \mapsto r(\chi)$. So, U satisfies the property C2 of n.1. We obtained the following proposition.

Proposition. The following statements are equivalent:

1) U is Fontaine-Laffaille module with weights from [0, p-2], which satisfies conditions C1 and C2 of n.1;

2) $U \simeq \mathcal{U}(M)$, where $M \in MF^{(S)}$ and $S = S(H(U)) \subset R_p(p-2)$.

Consider the following property of $S \subset R_p(p-2)$.

C5. All elements of the set

$$\{ (r_1 - r_2) \mod \mathbb{Z} \mid r_1, r_2 \in S, r_1 \neq r_2 \}$$

are different.

Then we have

Corollary. U is Fontaine-Laffaille Γ -module with weights from [0, p-2] satisfying conditions C1-C3 of n.1, if and only if $U \simeq \mathcal{U}(M)$, where $M \in MF^{(S)}$ and $S \subset R_p(p-2)$ satisfies the above property C5.

2.3. Function n_M . Let $M \in MF^{(S)}$ be given in notation of n.2.2. Define the function $n_M : S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$ as follows. For $r, r' \in S$ set

$$n_{M}^{*}(r,r') = \min\{ v_{p}(\beta_{r'(i),r(i)}) \mid i \in \mathbb{Z} \},\$$

then for $r_1, r_2 \in S$

$$n_M(r_1, r_2) =$$

 $= \min\{ n_M^*(r_1, r^{(1)}) + \dots + n_M^*(r^{(l-1)}, r^{(l)}) + n_M^*(r^{(l)}, r_2) \mid l \ge 0, r^{(1)}, \dots, r^{(l)} \in S \}.$

Proposition. The function n_M satisfies the following properties:

1) $n_M(r,r) \ge 1$ for any $r \in S$;

- 2) $n_M(r_1(1), r_2(1)) = n_M(r_1, r_2)$ for any $r_1, r_2 \in S$;
- 3) for any $r_1, r_2, r_3 \in S$

$$n_M(r_1, r_2) \le n_M(r_1, r_3) + n_M(r_3, r_2);$$

4) if $r_1, r_2 \in S$ and for all $i \in \mathbb{Z}$ holds $l_0(r_1(i)) \geq l_0(r_2(i))$, then

$$n_M(r_1, r_2) = \min\{n_M(r_1, r) + n_M(r, r_2) \mid r \in S\}.$$

Proof. 1) follows from the property b_1) of coefficients $\beta_{rr'}$;

2) follows from the equality $n_M^*(r(1), r'(1)) = n_M^*(r, r');$

3) follows from definition of $n_M(r_1, r_2)$.

4) If $n_M(r_1, r_2) = +\infty$, then this equality follows from the above n.3). If $n_M(r_1, r_2) < +\infty$, then

$$n_M(r_1, r_2) = n_M^*(r_1, r^{(1)}) + \dots + n_M^*(r^{(l)}, r_2),$$

for some $l \ge 1$ and $r^{(1)}, \ldots, r^{(l)} \in S$, because $n_M^*(r_1, r_2) = +\infty$ by the property b_2) of n.2.2. Then by definition of n_M we have

$$n_M^*(r_1, r^{(1)}) \ge n_M(r_1, r^{(1)}), \quad n_M^*(r^{(1)}, r^{(2)}) + \dots + n_M^*(r^{(l)}, r_2) \ge n_M(r^{(1)}, r_2).$$

This gives

$$n_M(r_1, r_2) \ge n_M(r_1, r^{(1)}) + n_M(r^{(1)}, r_2).$$

Now it is sufficient to remark, that by the above property 3)

$$n_M(r_1, r_2) \le \min\{n_M(r_1, r_3) + n_M(r_3, r_2) \mid r_3 \in S\}.$$

Remark.

It is not clear from the above definition of the function n_M , that it depends only on the isomorphism class of $M \in MF^{(S)}$ in the category MF. This property can be proved from functoriality of Wintenberger splitting, c.f. [Wtb]. This follows also from theorem A of n.2.5.1 below.

2.4. Semilinear functions and their graphs.

2.4.1. Let S be a finite set. Denote by \mathcal{F}_S the set of functions

$$n: S \times S \longrightarrow \mathbb{Z}_{>0} \cup \{+\infty\},\$$

such that for all $r_1, r_2, r_3 \in S$ one has

$$(1_{\mathcal{F}}) \quad n(r_1, r_1) \ge 1;$$

$$(2_{\mathcal{F}}) \quad n(r_1, r_2) \le n(r_1, r_3) + n(r_3, r_2).$$

If $S_1 \subset S \times S$ and $(r_1, r_2) \in S_1$, denote by $S_1(r_1, r_2)$ the set of sequences $(r_1, r^{(1)}, \ldots, r^{(l)}, r_2)$, where $l \geq 0$ and $(r_1, r^{(1)}), \ldots, (r^{(l)}, r_2) \in S_1$ (in the oriented graph with vertices S and edges S_1 this set is the set of all paths, which connect r_1 and r_2).

Denote by \mathcal{V}_S the set of functions

$$v: S_v \longrightarrow \mathbb{Z}_{\geq 0},$$

where $S_v \subset S \times S$ and

 $(1_{\mathcal{V}})$ if $(r_1, \ldots, r^{(l)}, r) \in S_v(r, r)$, then

$$v(r, r^{(1)}) + \dots + v(r^{(l)}, r) \ge 1;$$

$$(2_{\mathcal{V}})$$
 if $(r_1, r_2) \in S_v$ and $(r_1, \ldots, r^{(l)}, r_2) \in S_v(r_1, r_2)$, where $l \ge 1$, then

$$v(r_1, r_2) < v(r_1, r^{(1)}) + \dots + v(r^{(l)}, r_2).$$

So, \mathcal{V}_S is the set of oriented graphs with nonnegative integral metrics, where edges are shortest paths between their vertices and there are no cycles of length 0.

If $n \in S$, let

$$S^{(n)} = \{ (r_1, r_2) \in S \times S \mid n(r_1, r_2) < n(r_1, r_3) + n(r_3, r_2) \; \forall r_3 \in S \}$$

and consider the function $\pi(n): S^{(n)} \longrightarrow \mathbb{Z}_{\geq 0}$, such that $\pi(n)(r_1, r_2) = n(r_1, r_2)$ (if $(r_1, r_2) \in S^{(n)}$).

We have: $\pi(n) \in \mathcal{V}_S$.

Indeed, $(1_{\mathcal{F}})$ and $(2_{\mathcal{F}})$ imply $(1_{\mathcal{V}})$. If $(2_{\mathcal{V}})$ does not hold, then there exists $(r_1, r^{(1)}, \ldots, r^{(l)}, r_2) \in S^{(n)}(r_1, r_2)$, where $l \geq 1$, such that

$$\pi(n)(r_1, r_2) \ge \pi(n)(r_1, r^{(1)}) + \dots + \pi(n)(r^{(l)}, r_2).$$

This gives $n(r_1, r_2) \ge n(r_1, r^{(1)}) + n(r^{(1)}, r_2)$ and we obtain contradiction $(r_1, r_2) \notin S^{(n)}$.

So, we defined the map $\pi : \mathcal{F}_S \longrightarrow \mathcal{V}_S$.

Let $v \in \mathcal{V}_S$. If $S_v(r_1, r_2) = \emptyset$, set $\eta(v)(r_1, r_2) = +\infty$. Otherwise, let

$$\eta(v)(r_1,r_2) = \min\{v(r_1,r^{(1)}) + \dots + v(r^{(l)},r_2) \mid (r_1,\dots,r^{(l)},r_2) \in S_v(r_1,r_2) \}.$$

Clearly, $\eta(v) \in \mathcal{F}_S$ and we defined the map $\eta: \mathcal{V}_S \longrightarrow \mathcal{F}_S$.

2.4.2. Proposition. π and η are inverse one to another bijections of the sets \mathcal{F}_S and \mathcal{V}_S .

Proof.

1) Prove, that $\pi \eta = id_{\mathcal{F}_s}$.

Let $n \in \mathcal{F}_S$, $v = \pi(n) \in \mathcal{V}_S$. We want to prove, that for any $(r_1, r_2) \in S \times S$

$$\eta(v)(r_1, r_2) = n(r_1, r_2).$$

This is implied by the following lemma.

Lemma.

a) If $\eta(v)(r_1, r_2) < +\infty$, then $n(r_1, r_2) \le \eta(v)(r_1, r_2)$. b) If $n(r_1, r_2) < +\infty$, then $\eta(v)(r_1, r_2) \le n(r_1, r_2)$.

Proof of lemma.

a)
$$\eta(v)(r_1, r_2) < +\infty \Rightarrow S^{(n)}(r_1, r_2) \neq \emptyset \Rightarrow$$

$$\eta(v)(r_1,r_2) = \min\{v(r_1,r^{(1)}) + \dots + v(r^{(l)},r_2) \mid (r_1,\dots,r^{(l)},r_2) \in S^{(n)}(r_1,r_2) \}.$$

From definition of $v = \pi(n)$ it follows, that $v(r_1, r^{(1)}) = n(r_1, r^{(1)}), \ldots, v(r^{(l)}, r_2) = n(r^{(l)}, r_2)$ and, therefore, $\eta(v)(r_1, r_2) \ge n(r_1, r_2)$.

b) Let $n(r_1, r_2) < +\infty$. Then one can find a presentation

(*)
$$n(r_1, r_2) = n(r_1, r^{(1)}) + \dots + n(r^{(l)}, r_2)$$

where $r^{(1)}, \ldots, r^{(l)} \in S$ and the number of summands $l + 1 = l(r_1, r_2)$ is maximal.

Indeed, the set of such presentations is not empty (one can take l = 0). But the number of summands of these presentations is certainly restricted, because for any $r_0, \ldots, r_{|S|} \in S$ we have the inequality

$$n(r_0, r_1) + \dots + n(r_{|S|-1}, r_{|S|}) \ge 1$$

(there exist $0 \le i < j \le |S|$, such that $r_i = r_j$, then the left-hand side is not less, than $n(r_i, r_{i+1}) + \cdots + n(r_{j-1}, r_j) \ge n(r_i, r_j) \ge 1$).

From the above maximal property of the presentation (*) it follows now, that $(r_1, r^{(1)}), \ldots, (r^{(l)}, r_2) \in S^{(n)}$, therefore, $S^{(n)}(r_1, r_2) \neq \emptyset$, and $\eta(v)(r_1, r_2) \leq n(r_1, r_2)$. Lemma is proved.

2) Prove, that $\eta \pi = i d_{\mathcal{V}_S}$.

Let $v \in \mathcal{V}_S$ and $n = \eta(v) \in \mathcal{F}_S$.

From definitions of elements of the set \mathcal{V}_S and of the map η it follows, that one has $n(r_1, r_2) = v(r_1, r_2)$, if $(r_1, r_2) \in S_v$. So,

$$\pi(n) = v \iff S_v = S^{(n)}.$$

Prove, that $S_v \subset S^{(n)}$.

Take $(r_1, r_2) \in S_v$ and some $r_3 \in S$. If either $S_v(r_1, r_3) = \emptyset$ or $S_v(r_3, r_2) = \emptyset$, then $n(r_1, r_2) < +\infty = n(r_1, r_3) + n(r_3, r_2)$.

If $S_v(r_1, r_3) \neq \emptyset$ and $S_v(r_3, r_2) \neq \emptyset$, then

$$n(r_1, r_3) = v(r_1, r'^{(1)}) + \dots + v(r'^{(l_1)}, r_3)$$

and

$$n(r_3, r_2) = v(r_3, r''^{(1)}) + \dots + v(r''^{(l_2)}, r_2)$$

for some $(r_1, r'^{(1)}, \ldots, r'^{(l_1)}, r_3) \in S_v(r_1, r_3), (r_3, r''^{(1)}, \ldots, r''^{(l_2)}, r_2) \in S_v(r_3, r_2).$ Now by the property $(2_{\mathcal{V}})$ we have here also $n(r_1, r_2) < n(r_1, r_3) + n(r_3, r_2).$ So, $n(r_1, r_2) < n(r_1, r_3) + n(r_3, r_2)$ for all $r_3 \in S$, i.e. $(r_1, r_2) \in S^{(n)}$.

b0, n(1, 1, 2) < n(1, 1, 3) + n(1, 3, 1, 2) for all $1, 3 \in D$, i.e. (1, 1, 3)

Prove, that $S^{(n)} \subset S_v$.

Let $(r_1, r_2) \in S^{(n)}$, then $n(r_1, r_2) < +\infty$, $S_v(r_1, r_2) \neq \emptyset$ and $n(r_1, r_2) = n(r_1, r^{(1)}) + \cdots + n(r^{(l)}, r_2)$ for some $(r_1, r^{(1)}, \ldots, r^{(l)}, r_2) \in S_v(r_1, r_2)$. If $l \ge 1$, let $r_3 = r^{(1)}$. Then $n(r^{(1)}, r^{(2)}) + \cdots + n(r^{(l)}, r_2) \ge n(r_3, r_2)$, and $n(r_1, r_2) \ge n(r_1, r_3) + n(r_3, r_2)$. This gives contradiction $(r_1, r_2) \notin S^{(n)}$. Therefore, l = 0 and $(r_1, r_2) \in S_v$.

Proposition is proved.

2.4.3. We use the following criterium in n.3 below.

Proposition. Let $n_1, n_2 \in \mathcal{F}_S$ be such that

1) $n_1(r_1, r_2) \ge n_2(r_1, r_2)$ for any $r_1, r_2 \in S$; 2) if $\pi(n_2) = v_2 \in \mathcal{V}_S$ and $(r_1, r_2) \in S_{v_2}$, then $n_1(r_1, r_2) \le v_2(r_1, r_2)$. Then $n_1 = n_2$.

Proof. Let $v_1 = \pi(n_1) \in \mathcal{V}_S$. Then

$$S_{v_1} \supset S_{v_2}.$$

Indeed, $(r_1, r_2) \in S_{v_2} \Rightarrow$

$$\Rightarrow n_1(r_1, r_2) \le v_2(r_1, r_2) = n_2(r_1, r_2) < n_2(r_1, r_3) + n_2(r_3, r_2) \le n_1(r_1, r_3) + n_1(r_3, r_2)$$

for all $r_3 \in S$, i.e. $(r_1, r_2) \in S_r$.

r all $r_3 \in S$, i.e. $(r_1, r_2) \in S_{v_1}$. Clearly, $v_1|_{S_{v_2}} \leq v_2$. Now, for any $(r_1, r_2) \in S \times S$ we have

$$S_{v_2}(r_1, r_2) \subset S_{v_1}(r_1, r_2)$$

and, therefore, $n_1(r_1, r_2) = \eta(v_1)(r_1, r_2) =$

$$= \min\{ v_1(r_1, r^{(1)}) + \dots + v_1(r^{(l)}, r_2) \mid (r_1, \dots, r^{(l)}, r_2) \in S_{v_1}(r_1, r_2) \} \le$$

 $\min\{ v_2(r_1, r^{(1)}) + \dots + v_2(r^{(l)}, r_2) \mid (r_1, \dots, r^{(l)}, r_2) \in S_{v_2}(r_1, r_2) \} = n_2(r_1, r_2).$

Proposition is proved.

2.4.4. Let S be a finite subset in R_p , such that $r \in S \Rightarrow r(1) \in S$. Let $n \in \mathcal{F}_S$ and $\pi(n) = v \in \mathcal{V}_S$. The above description of the correspondence $n \leftrightarrow v$ implies the following proposition.

Proposition. The following statements 1) and 2) are equivalent:

1) a) for any $r_1, r_2 \in S$ one has $n(r_1(1), r_2(1)) = n(r_1, r_2)$; b) if $r_1, r_2 \in S$ and $l_0(r_1(i)) \ge l_0(r_2(i))$ for all $i \in \mathbb{Z}$, then $n(r_1, r_2) = \min\{n(r_1, r_3) + n(r_3, r_2) \mid r_3 \in S\}$

2) a) if $(r_1, r_2) \in S_v$, then there exists $i \in \mathbb{Z}$, such that

 $l_0(r_1(i)) < l_0(r_2(i))$

(in particular, $(r, r) \notin S_v$ for any $r \in S$); b) if $(r_1, r_2) \in S_v$, then $(r_1(1), r_2(1)) \in S_v$ and $v(r_1, r_2) = v(r_1(1), r_2(1)).$

2.5. Main statements.

Let $S \subset R_p(p-2)$ be a finite set, such that $r \in S \Rightarrow r(1) \in S$, and S satisfies the condition C5 of n.2.3.

2.5.1. Let $M \in MF^{(S)}$ and $U = \mathcal{U}(M)$. If H(M) is the image of Γ in Aut_{Z_p} $\mathcal{U}(M)$, then S = S(H(M)) and by proposition of n.1.2 we have the function

$$n_{H(M)} = n_{\mathcal{U}(M)} : S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$$

(we use identification of characters of $s(H_1)$ with elements of S, c.f. n.2.2). Let

 $n_M: S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$

be the function defined in n.2.2.3.

Theorem A. In the above notation $n_{\mathcal{U}(M)} = n_M$.

We prove this theorem in n.3 below.

2.5.2. Let a function

$$n: S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$$

be such that for any $r_1, r_2, r_3 \in S$

a) $n(r_1, r_1) \ge 1$; b) $n(r_1, r_2) = n(r_1(1), r_2(1))$; c) $n(r_1, r_2) \le n(r_1, r_3) + n(r_3, r_2)$; d) $n(r_1, r_1) = \min\{ n(r_1, r) + n(r, r_1) \mid r \in S \}$.

From n.1 it follows, that this function n can be related to some subgroup $H \subset \operatorname{Aut}_{\mathbb{Z}_p} U$, where U is a free \mathbb{Z}_p -module, $\operatorname{rk}_{\mathbb{Z}_p} U = |S|$. The above aggreement about identification of characters of $s(H_1)$ with characters of $\Gamma_{\operatorname{tr}}$ gives epimorphism $\Gamma_{\operatorname{tr}} \longrightarrow H_1$. One can check up, that this epimorphism can be prolonged to some epimorphism $\Gamma \longrightarrow H$. Therefore, any such function n arises from some $\mathbb{Z}_p[\Gamma]$ -module U.

If U = U(M), where $M \in MF^{(S)}$, then proposition of n.2.3 and the above theorem A imply, that the function $n = n_{U(M)}$ satisfies the following property d', which is stronger, than the property d).

d' if $r_1, r_2 \in S$ and $l_0(r_1(i)) \geq l_0(r_2(i))$ for all $i \in \mathbb{Z}$, then

$$n(r_1, r_2) = \min\{ n(r_1, r) + n(r, r_2) \mid r \in S \}.$$

Theorem B. If $n: S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$ satisfies the above properties a)-c) and d', then there exists $M \in MF^{(S)}$, such that $n = n_{\mathcal{U}(M)}$.

Proof. Let $\pi(n) = v \in \mathcal{V}_S$.

If $(r_1, r_2) \in S_v$, take $\beta_{r_2, r_1}^0 \in W(k)$, such that $v_p(\beta_{r_2r_1}^0) = v(r_1, r_2)$. If $(r_1, r_2) \in S \times S \setminus S_v$, set $\beta_{r_2r_1}^0 = 0$.

Show, that there exists $M \in MF^{(S)}$ given in notation of n.2.2 by these coefficients $\beta^0_{r_2r_1}, r_1, r_2 \in S$.

If $r, r' \in S$ and $l_0(r) \ge l_0(r')$, then by proposition of n.2.5.4 $(r, r') \notin S_v$, therefore, $\beta_{r'r}^0 = 0$ and the condition b_2) of n.2.2 holds.

To deduce the condition b_1) of n.2.2 set for any $r, r' \in S$

 $r \succ r'$, if n(r, r') = 0, and $r \not\succ r'$, otherwise, i.e. if n(r, r') > 0.

Properties of the function n imply the following properties of the relation \succ .

- 1) $r \not\succ r$ for any $r \in S$;
- 2) $r_1 \succ r_2, r_2 \succ r_3 \Rightarrow r_1 \succ r_3$ for any $r_1, r_2, r_3 \in S$;
- 3) $r_1 \succ r_2 \Leftrightarrow r_1(1) \succ r_2(1)$ for any $r_1, r_2 \in S$.

Let $S = \{r_1, \ldots, r(h_1 - 1); \ldots; r_m, \ldots, r(h_m - 1)\}$, c.f. n.2.2. b_1).

Properties 1) and 2) imply existence of strictly minimal element $r_{j_m}(\alpha_0), \alpha_0 \in \mathbb{Z}/h_{j_m}\mathbb{Z}$, i.e. $r_{j_m}(\alpha_0) \not\succ r$ for any $r \in S$. By the property 3) we have $r_{j_m}(\alpha) \succ r$ for all $\alpha \in \mathbb{Z}/h_{j_m}\mathbb{Z}$.

Apply this procedure to the set $S_{j_m} = S \setminus \{r_{j_m}(\alpha) \mid \alpha \in \mathbb{Z}/h_{j_m}\mathbb{Z}\}$. We obtain an index $j_{m-1} \neq j_m$, such that for all $\alpha \in \mathbb{Z}/h_{j_{m-1}}\mathbb{Z}$ and $r \in S_{j_m}$ one has $r_{j_{m-1}}(\alpha) \neq r$. Repeating this process we obtain substitution $\begin{pmatrix} 1 & \cdots & m \\ j_1 & \cdots & j_m \end{pmatrix}$, such that

if $r = r_{j_a}(\alpha), r' = r_{j_b}(\beta), a \ge b, \alpha \in \mathbb{Z}/h_{j_a}\mathbb{Z}, \beta \in \mathbb{Z}h_{j_b}\mathbb{Z}$, then $r \not\succ r'$, i.e. n(r,r') > 0.

If in the above notation $\beta_{r'r}^0 \neq 0$, then $(r,r') \in S_v$ and $v_p(\beta_{r'r}^0) = v(r,r') = n(r,r') > 0$, i.e. $\beta_{r'r}^0 \in pW(k)$ and condition b_1 holds. If $\beta_{r'r}^0 = 0$, then condition b_1 holds by trivial reasons.

Theorem B is proved.

2.5.3. Let G be a formal group of finite height over W(k), char k = p > 2. Then its Tate module T(G) is Fontaine-Laffaille Γ -module with weights 0 and 1.

Assume, that T(G) satisfies conditions C1-C3 of n.1 and denote by S(G) corresponding set of characters S(T(G)) of Γ_{tr} . Equivalently, S(G) is a finite subset in $R_p(1) \setminus \{0\}$, where

$$R_p(1) = \{ r \in R_p \mid l_s(r) = 0 \text{ or } 1 \text{ for all } s \in \mathbb{Z}_{\geq 0} \},\$$

such that $r \in S(G) \Rightarrow r(1) \in S(G)$ and S(G) satisfies the property C5 of n.2.2.

In this case the property d') of n.2.5.2 plays its rôle, iff $\{1/(p-1)\} \subsetneq S(G)$, i.e. if the formal group G contains the multiplicative formal group $\hat{\mathbb{G}}_m$, but $G \neq \hat{\mathbb{G}}_m$.

So, we have the following proposition.

Proposition. If $S \subset R_p(1) \setminus \{0; 1/(p-1)\}$ satisfies the property C5 of n.2.2, and a function $n: S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$ satisfies properties a - d of n.2.5.2, then there exists a formal group G over W(k) of height h = |S|, such that S(G) = Sand $n_{T(G)} = n$.

This proposition means, that if U is Γ -module, such that S(U) = S satisfies assumptions of the above proposition, then its invariant n_U appears in a form $n_{T(G)}$ for some formal group G. We do not study here realization of the second invariant $\mathcal{H}_0(T(G))$ from proposition of n.1.2 except some trivial cases (c.f. n.2.5.4 below).

2.5.4. Assume, that

$$S = \{r, r(1), \ldots, r(h-1)\},\$$

where $r \in R_p(p-2)$ and h = h(r), i.e. the sequence $\{l_s(r)\}_{s\geq 0}$ of p-digits of r has minimal positive period h. Let χ be the character of $s(\Gamma_{tr})$, such that $r(\chi) = r$. By proposition of n.1.1 we have

ord $\chi = p^h - 1 \Rightarrow S$ satisfies the condition C5.

So, in this case we can use proposition of n.1.3 for description of the image of the Galois group Γ in Aut_{Z_v} U.

Under above assumptions the condition d') coincides with the condition d).

Indeed, let $r_1, r_1 \in S$ be such that $l_0(r_1(i)) \ge l_0(r_2(i))$ for all $i \in \mathbb{Z}$. Take $\alpha \in \mathbb{Z}$, such that $r_2 = r_1(\alpha)$. Then for any $i \in \mathbb{Z}$ the condition d') implies

$$l_0(r_1(i)) \ge l_0(r_2(i)) = l_0(r_1(i+\alpha)) \ge \cdots \ge l_0(r_1(i+h\alpha)) = l_0(r_1(i)).$$

Therefore, $l_0(r_1(i)) = l_0(r_1(i + \alpha))$ for all $i \in \mathbb{Z}$, This gives $\alpha \equiv 0 \mod h$ and $r_2 = r_1$.

So, we have the following proposition.

Proposition. Let $r \in R_p(p-2)$ be such that $r = l/(p^h - 1)$, where $l \in \mathbb{N}$ and $c.g.d.(l, p^h - 1) = 1$, $S = \{r, r(1), \ldots, r(h-1)\}$ and let $n : \mathbb{Z}/h\mathbb{Z} \longrightarrow \mathbb{N} \cup \{+\infty\}$ be such that

$$n(0) = \min\{ n(i) + n(-i) \mid i \in \mathbb{Z}/h\mathbb{Z} \},$$

$$n(i+j) \le n(i) + n(j) \text{ for all } i, j \in \mathbb{Z}/h\mathbb{Z}.$$

Then there exists $M \in MF^{(S)}$, such that $n_{\mathcal{U}(M),\chi} = n$ (where χ is the character of Γ_{tr} , such that $r(\chi) = r$).

2.5.5. In notation and assumptions of n.2.5.3 suppose, that $r \in R_p(p-2)$ satisfies assumption C6 of n.3.12 below, i.e. polynomes $l_0(r)X^{p^{h-1}} + \cdots + l_{h-1}(r)X$ and $X^{p^{h-1}} - 1$ are relatively prime in $\mathbb{F}_p[X]$. By remark of n.3.12 the second invariant $\mathcal{H}_0(\chi)$ of the image H(M) of Γ in $\operatorname{Aut}_{\mathbb{Z}_p} \mathcal{U}(M)$) equals $pW(\mathbb{F}_{p^h})e_{00}$. Therefore, under additional assumption C6 proposition of n.2.5.3 gives complete information about H(M).

We have natural realization of the above assumptions in a following situation.

Let p > 2 and G be a 1-dimensional formal group over W(k) of finite height h. Denote by S(G) the set of characters of the group $s(\Gamma_{tr})$ of the image H(G) of Γ in Aut_{Z_p} T(G), where T(G) is Tate module of G. Then tamely ramified character χ_h^* (c.f. n.2.2) belongs to S(G) and $S(G) = \{ p^i/(p^h - 1) \mid 0 \le i < h \}$. Clearly, additional assumption C6 is also satisfied here and we obtain the following proposition.

Proposition. Let H be a closed subgroup of $\operatorname{Aut}_{\mathbb{Z}_p} W(\mathbb{F}_{p^h})$. Then the following statements are equivalent:

1) There exists 1-dimensional formal group G of height h over W(k) and an isomorphism of \mathbb{Z}_p -modules $T(G) \simeq W(\mathbb{F}_{p^h})$, which transforms the image H(G) of Γ on H;

2) *H* is an extension of a cyclic group of order relatively prime to *p* by normal pro-*p*-group (i.e. it satisfies the condition C1 of n.1) and $H \supset W(\mathbb{F}_{p^h})^*$.

Remark. This proposition gives positive answer to the question of J.-M. Fontaine from [Fo1] (a special case of this problem was considered in [Na]). We can also use a relation between filtered module associated to the above formal groups G and functional equations of their logarithms, c.f. [Fo2, Ch.5], to give explicit expression for the associated function $n_{T(G),\chi_{h}^{*}}$ as follows. Let $l_{G}(X) \in W_{\mathbf{Q}_{p}}[[X]]$ be a logarithm of the formal group G, which satisfies the functional equation

$$l_G(X) = X + \frac{1}{p} (\alpha_1 \sigma_* l_G(X^p) + \dots + \alpha_h \sigma_*^h l_G(X^{p^h}))$$

Here σ_* means action of absolute Frobenius on coefficients of power series, $\alpha_1, \ldots, \alpha_{h-1} \in pW(k)$, and $\alpha_h \in W(k)^*$. Then for any $i \in \mathbb{Z}/h\mathbb{Z}$ we have

$$n_{T(G),\chi_h^*}(i) =$$

 $= \min\{v_p(\alpha_{i_1}) + \dots + v_p(\alpha_{i_s}) \mid s \in \mathbb{N}, 1 \leq i_1, \dots, i_s < h, (i_1 + \dots + i_s) \mod h = i \}.$

3. Proof of the theorem A.

3.1. Let $M \in MF^{(S)}$ be given in notation of n.2.2. Choose $r_1, \ldots, r_m \in S$, such that

$$S = \{ r_1, \dots, r_1(h_1 - 1); \dots; r_m, \dots, r_m(h_m - 1) \}$$

where $h_j = h(r_j)$ are (as earlier) minimal positive periods of p-digit expansions of $r_j, 1 \le j \le m$.

Choose $N \in \mathbb{N}$, such that $N \equiv 0 \mod h_j$ for all $1 \leq j \leq m$.

Choose $\beta_{(r_j,i),(r_{j'},i')} \in W(k)$, where $1 \leq j, j' \leq m, i, i' \in \mathbb{Z}/N\mathbb{Z}$, such that for every $r \in S$ one has

$$\sum_{\substack{i \in \mathbb{Z}/N\mathbb{Z} \\ r_j(i) = r}} \beta_{(r_j,i),(r_{j'},i')} = \beta_{r,r_{j'}(i')}$$

and

$$\min\{ v_p(\beta_{(r_j,i),(r_{j'},i')}) \mid i \in \mathbb{Z}/N\mathbb{Z}, r_j(i) = r \} = v_p(\beta_{r,r_{j'}(i')}).$$

Define $M^* \in MF_f$ as follows.

1) M^* has W(k)-basis $\{m_{(r_j,i)} \mid 1 \leq j \leq m, i \in \mathbb{Z}/N\mathbb{Z}\};$

2) for $0 \leq l < p$ the submodule M^{*l} of filtration on M^* is generated by

$$\{ m_{(r_j,i)} \mid l_i(r_j) \geq l \}$$

(in particular, $m_{(r_j,i)} \in M^{*l_0(r_j(i))} \setminus M^{*l_0(r_j(i))+1}$);

3) for $0 \leq l -linear morphisms <math>\phi_l : M^{*l} \longrightarrow M$ are (uniquelly) defined by relations

$$\phi_{l_{i-1}(r_j)}(m_{(r_j,i-1)}) = m_{(r_j,i)} + \sum_{\substack{1 \le j' \le m \\ i' \in \mathbb{Z}/N\mathbb{Z}}} \beta_{(r_j,i),(r_{j'},i')} m_{(r_{j'},i')}$$

One can easily check up, that the correspondence

$$i_{M,M^*}: m_r \mapsto \sum_{\substack{i \in \mathbf{Z}/N\mathbf{Z} \\ r_j(i) = r}} m_{(r_j,i)}$$

gives injective morphism $i_{M,M^*}: M \longrightarrow M^*$ in the category MF_f .

3.2. From definition of the functor \mathcal{U} it follows, that the correspondence

$$u \mapsto (m_r(u))_{r \in S} \in \bigoplus_{r \in S} A_{cris}$$

gives injective morphism of Γ -modules

$$\kappa: \mathcal{U}(M) \longrightarrow \bigoplus_{r \in S} A_{\operatorname{cris}}.$$

Also, W(k)-linear prolongation $\kappa_{W(k)}$ of κ

$$\kappa_{W(k)}: \mathcal{U}(M) \otimes W(k) \longrightarrow \bigoplus_{r \in S} A_{\operatorname{cris}}$$

is still injective.

Under the above identification $\kappa \ \mathcal{U}(M)$ is identified with $\mathbb{Z}_p[\Gamma]$ - module of collections $(u_r)_{r\in S} \in \bigoplus_{r\in S} A_{cris}$, such that for every $r \in S$ one has

$$u_r \in A_{\operatorname{cris}}^{l_0(r)}$$

and

$$\phi_{l_0(r(-1))}(u_{r(-1)}) = u_r + \sum_{r' \in S} \beta_{rr'} u_{r'}.$$

Analogously, $\mathcal{U}(M^*)$ can be identified with collections $(u_{(r_j,i)})_{1 \leq j \leq m, i \in \mathbb{Z}/N\mathbb{Z}}$, such that for every $1 \leq j \leq m, i \in \mathbb{Z}/N\mathbb{Z}$ one has

$$u_{(r_j,i)} \in A^{l_i(r_j)}_{\mathrm{cris}}$$

 and

$$\phi_{l_{i-1}(r_j)}(u_{(r_j,i-1)}) = u_{(r_j,i)} + \sum_{\substack{1 \leq j' \leq m \\ i' \in \mathbb{Z}/N\mathbb{Z}}} \beta_{(r_j,i),(r_{j'},i')} u_{(r_{j'},i')}.$$

Epimorphism $\mathcal{U}(i_{M,M^*}) : \mathcal{U}(M^*) \longrightarrow \mathcal{U}(M)$ and its W(k)-linear prolongation are induced by the homomorphism

$$\begin{array}{ccc} \oplus_{1 \leqslant j \leqslant m} A_{\operatorname{cris}} \longrightarrow \oplus_{r \in S} A_{\operatorname{cris}}, \\ i \in \mathbb{Z}/N\mathbb{Z} \end{array}$$

such that $(a_{(r_j,i)})_{1 \leq j \leq m, i \in \mathbb{Z}/N\mathbb{Z}} \mapsto (a_r)_{r \in S}$, where $a_r = \sum_{r_j(i)=r} a_{(r_j,i)}$.

If $\mathcal{U}(M) \otimes W(k) = \bigoplus_{\chi} \mathcal{U}(M)_{\chi}$ and $\mathcal{U}(M^*) \otimes W(k) = \bigoplus_{\chi} \mathcal{U}(M^*)_{\chi}$ are decompositions of $s(\Gamma_{\rm tr})$ -modules by characters χ of the group $s(\Gamma_{\rm tr})$, then for every χ we have induced epimorphic map of W(k)-modules

$$\mathcal{U}(i_{M,M^*})_{\chi}:\mathcal{U}(M^*)_{\chi}\longrightarrow \mathcal{U}(M)_{\chi}.$$

3.3. For $1 \leq j_0, \ldots, j_s, \cdots \leq m, a_0, b_1, \ldots, a_{s-1}, b_s, \cdots \in \mathbb{Z}/N\mathbb{Z}$ define objects $M^*(j_0), M^*(j_1, b_1; a_0, j_0), \ldots, M^*(j_s, b_s; a_{s-1}, j_{s-1}, b_{s-1}; \ldots; a_0, j_0)$ of the category MF_f as follows.

 $M^*(j_0)$ has W(k)-basis $\{m(i, j_0) \mid i \in \mathbb{Z}/N\mathbb{Z}\}$, for $0 \leq l < p$ its filtration submodule $M(j_0)^{*l}$ is generated by $\{m(i, j_0) \mid l_i(r_{j_0}) \geq l\}$, and σ -linear morphisms $\phi_l : M(j_0)^{*l} \longrightarrow M^*(j_0)$ are uniquely defined by relations

$$\phi_{l_{i-1}(r_{j_0})}(m(i-1,j_0)) = m(i,j_0).$$

If $s \geq 1$, then $M^*(j_s, b_s; \ldots; a_0, j_0)$ has W(k)-basis

$$\{m(i, j_l, b_l; \ldots; a_0, j_0) \mid 0 \le l \le s, i \in \mathbb{Z}/N\mathbb{Z}\},\$$

for $0 \leq l' < p$ its filtration submodule $M(j_s, b_s; ...; a_0, j_0)^{*l'}$ is generated by

$$\{m(i, j_l, b_l; \ldots; a_0, j_0) \mid l_i(r_{j_l}) \geq l'\},\$$

and σ -linear morphisms $\phi_{l'}: M(j_s, b_s; \ldots; a_0, j_0)^{*l'} \longrightarrow M^*(j_s, b_s; \ldots; a_0, j_0)$ are (uniquelly) defined by relations

$$\phi_{l_{i-1}(r_{j_l})}(m(i-1,j_l,b_l;\ldots;a_0,j_0)) = m(i,j_l,b_l;\ldots;a_0,j_0) + \delta(i,b_l)\beta^*_{(r_{j_l},b_l),(r_{j_{l-1}},a_{l-1})}m(a_{l-1},j_{l-1},b_{l-1};\ldots;a_0,j_0),$$

where $l \geq 1$, δ is Kronecker symbol, and

$$\beta^*_{(r_{j_l},b_l),(r_{j_{l-1}},a_{l-1})} = p^{-n^*_{\mathcal{M}}(r_{j_{l-1}}(a_{l-1}),r_{j_l}(b_l))}\beta_{(r_{j_l},b_l),(r_{j_{l-1}},a_{l-1})}$$

(if $n_M^*(r_{j_{l-1}}(a_{l-1}), r_{j_l}(b_l)) = +\infty$, we take $\beta_{(r_{j_l}, b_l), (r_{j_{l-1}}, a_{l-1})}^* = 0$).

For any $s \ge 1$ we have natural imbeddings in the category MF_f

$$(*) \qquad \qquad M^*(j_{s-1}, b_{s-1}; \ldots; a_0, j_0) \longrightarrow M^*(j_s, b_s; \ldots; a_0, j_0).$$

If $U^*(j_s, b_s; \ldots; a_0, j_0) = \mathcal{U}(M^*(j_s, b_s; \ldots; a_0, j_0))$, then we have m projective systems of $\mathbb{Z}_p[\Gamma]$ -modules

$$\mathcal{L}_{j_0} = \{ U^*(j_s, b_s; \dots; a_0, j_0) \mid j_0 \text{ is fixed } \}, 1 \le j_0 \le m,$$

where all connecting morphisms

$$U^*(j_s, b_s; \ldots; a_0, j_0) \longrightarrow U^*(j_{s-1}, b_{s-1}; \ldots; a_0, j_0)$$

are surjective morphisms of $\mathbb{Z}_p[\Gamma]$ -modules, which arise by Fontaine-Laffaille theory from embeddings (*).

3.4. Let $1 \leq j_0 \leq m$, then by arguments of n.3.2 the correspondence

$$\kappa_{j_0}: u^* \mapsto (m(i, j_0)(u^*))_{i \in \mathbb{Z}/N\mathbb{Z}} \in \bigoplus_{i \in \mathbb{Z}/N\mathbb{Z}} A_{cris}$$

gives identification of $U^*(j_0)$ with $\mathbb{Z}_p[\Gamma]$ -submodule of $\bigoplus_{i \in \mathbb{Z}/N\mathbb{Z}} A_{cris}$, which consists of $(u_i)_{i \in \mathbb{Z}/N\mathbb{Z}}$, such that $u_i \in A_{cris}^{l_i(r_{j_0})}$ and $\phi_{l_{i-1}(r_{j_0})}(u_{i-1}) = u_i$ for all $i \in \mathbb{Z}/N\mathbb{Z}$. Fix some $u^*(j_0) \in U^*(j_0) \setminus pU^*(j_0)$. If $\kappa_{j_0}(u^*(j_0)) = (u^*(i,j_0))_{i \in \mathbb{Z}/N\mathbb{Z}}$, then

$$\kappa_{j_0}(U^*(j_0)) = \{ (w_i u^*(i, j_0))_{i \in \mathbb{Z}/N\mathbb{Z}} \mid w_i \in W(\mathbb{F}_q), \sigma w_i = w_{i+1} \},\$$

where $q = p^N$.

If $\tau \in s(\Gamma_{tr})$, then $\tau u^*(i, j_0) = \chi_{i, j_0}(\tau) u^*(i, j_0)$, where χ_{i, j_0} is a character of $s(\Gamma_{tr})$ with invariant $r(\chi) = r_{j_0}(i)$.

Indeed, if $\tau \in \Gamma$ and $\kappa_{j_0}(\tau u^*(i, j_0)) = (w_{i,\tau}u^*(i, j_0))_{i \in \mathbb{Z}/N\mathbb{Z}}$, then the correspondence $\tau \mapsto w_{i,\tau}$ gives a continuous homomorphism $\eta_i : \Gamma \longrightarrow W(\mathbb{F}_q)^*$, and $\chi_i = \eta_i|_{s(\Gamma_{tr})}$ is a character of the group $s(\Gamma_{tr})$. It is sufficient to prove, that

(*)
$$\chi \equiv \chi_{i,j_0} \mod pW(\mathbb{F}_q).$$

If $N = h(r_{j_0}) = h_{j_0}$, then $M^*(j_0) \otimes k = M(r_{j_0})$ is a simple object of the category MF, and the equivalence (*) follows from explicit description of Γ -module $\mathcal{U}(M(r_{j_0})) = U^*(j_0) \otimes \mathbb{F}_p$, n.2.1. If $N \equiv 0 \mod h_{j_0}$, one can reduce the problem to the above case, because $M^*(j_0) \otimes k$ is isomorphic to the product of N/h_{j_0} copies of $M(r_{j_0})$.

In fact, the above homomorphisms $\eta_i : \Gamma \longrightarrow W(\mathbb{F}_q)^*$ can be calculated in a following way.

Let G_N^{LT} be Lubin-Tate formal group over $W(\mathbb{F}_q)$ with logarithm

$$l(X) = X + X^{q}/p + \dots + X^{q^{\bullet}}/p^{\bullet} + \dots$$

Action of Γ on the Tate module $T(G_N^{LT})$ of this group is given by continuos homomorphism

$$\eta_{LT}: \Gamma \longrightarrow \operatorname{Aut}(G_h^{LT}) = W(\mathbb{F}_q)^*.$$

If I_0^{ab} is the inertia subgroup of the Galois group of the maximal abelian extension of the quotient field of $W(\mathbb{F}_q)$, then we have a natural projection $\Gamma \longrightarrow I_0^{ab}$ and identification of class field theory $I_0^{ab} = W(\mathbb{F}_q)^*$. In these terms the homomorphism η_{LT} is equal to the composition

$$\eta_{LT}: \Gamma \longrightarrow I_0^{\mathrm{ab}} = W(\mathbb{F}_q)^* \stackrel{\alpha}{\longrightarrow} W(\mathbb{F}_q)^*,$$

where $\alpha(u) = u^{-1}, u \in W(\mathbb{F}_q)^*$.

Let $r = r_{j_0}, M^*(j_0) = M^*(r), u^*(j_0) = u^*, u^*(i, j_0) = u^*(i)$. So, for any $i \in \mathbb{Z}/N\mathbb{Z}$ and $\tau \in \Gamma$, we have $\tau u^*(i) = \eta_i(\tau)u^*(i)$ and $\eta_i(\tau) = \sigma^i \eta_0(\tau)$.

Lemma. $\eta_0 = \prod_{0 \leq i < N} (\sigma^{-i} \eta_{LT})^{l_i(r)}.$

Proof.

Tate module $T = T(G_N^{LT})$ is Fontaine-Laffaille $\mathbb{Z}_p[\Gamma]$ -module, and one can use the following explicit construction of filtered W(k)-module $M_0 \in MF_f$, such that $\mathcal{U}(M_0) = T$.

Let $o = (o_n)_{n \ge 0} \in T$, where $o_n \in G_N^{LT}(\bar{m})$ (\bar{m} is the maximal ideal of the valuation ring \bar{O} of \bar{K}), $[p]o_{n+1} = o_n$ for $n \ge 0$ and $o_0 = 0$ (here $[p] = p \operatorname{id}_{G_N^{LT}} \in \operatorname{End} G_N^{LT}$). If $\hat{o}_n \in A_{\operatorname{cris}}$ is a lifting of $o_n \mod p \in \bar{m} \mod p\bar{O}$ with respect to the structural epimorphism $A_{\operatorname{cris}} \longrightarrow \bar{O}/p\bar{O}$ from definition of A_{cris} , then one can show, that the correspondence

$$o \mapsto \lim_{n \to \infty} p^n l(\hat{o}_n)$$

gives well-defined $m_0^{(0)} \in \operatorname{Hom}(T, A_{\operatorname{cris}}^1), \, \sigma^N m_0^0 = p m_0^0$ and

$$M_0 = M_0^0 = \sum_{i \in \mathbf{Z}/N\mathbf{Z}} W(k) m_i^{(0)}, \quad M_0^1 = W(k) m_0^{(0)},$$

where $m_i^{(0)} = \sigma^{\hat{i}} m_0^{(0)} / p$ for $0 < \hat{i} \le N, \hat{i} \mod N = i$.

From this construction it follows, that for any $o \in T$ and $\tau \in \Gamma$ one has

$$au m_0^{(0)}(o) = \eta_{LT}(\tau) m_0^{(0)}(o).$$

Let $o = (o_n)_{n \ge 0} \in T$ be such that $o_1 \ne 0$. Then $v = m_0^{(0)}(o) \in A_{\text{cris}}^1$, $\tau v = \eta_{LT}(\tau)v$ for all $\tau \in \Gamma$, and $\sigma^N v = pv$.

Now one can check up, that for all $i \in \mathbb{Z}/N\mathbb{Z}$

$$u'(i) = v^{l_i(r)} (\sigma^{-1} v)^{l_{i+1}(r)} \dots (\sigma^{-(N-1)} v)^{l_{i+N-1}(r)} \in A_{\operatorname{cris}}^{l_i(r)},$$

 $v_p(u'(i)) = 0$, and $\phi_{l_{i-1}(r)}(u'(i-1)) = u'(i)$.

This gives $u' = (u'(i))_{i \in \mathbb{Z}/N\mathbb{Z}} \in \kappa(U(M^*(r)), u'(0) = wu^*(0)$ for some $w \in W(\mathbb{F}_q)^*$, and $\tau u'(0) = \eta_0(\tau)u'(0)$ for $\tau \in \Gamma$. On the other hand,

$$\tau u'(0) = (\tau v)^{l_0(r)} (\sigma^{-1} \tau v)^{l_1(r)} \dots (\sigma^{-(N-1)} \tau v)^{l_{N-1}(r)} =$$
$$= \eta_{LT}^{l_0(r) + \sigma^{-1} l_1(r) + \dots + \sigma^{-(N-1)} l_{N-1}(r)} (\tau) u'(0).$$

Lemma is proved.

3.5. We have the following

Proposition. For $1 \leq j_0, \ldots, j_s, \cdots \leq m$, $i, a_0, b_1, \ldots, a_{s-1}, b_s, \cdots \in \mathbb{Z}/N\mathbb{Z}$ there exist a family of elements $u(i, j_0), \ldots, u(i, j_s, b_s; \ldots; a_0, j_0), \cdots \in A_{cris}$, such that 1) $u(i, j_0) \in A_{cris}^{l_i(r_{j_0})}$ and for $s \geq 1$

$$u(i, j_s, b_s; \dots; a_0, j_0) \in A_{cris}^{l_i(r_{j_s})};$$
2) $\phi_{l_{i-1}(r_{j_0})}(u(i-1, j_0)) = u(i, j_0) \text{ and for } s \ge 1$

$$\phi_{l_{i-1}(r_{j_s})}(u(i-1,j_s,b_s;\ldots;a_0,j_0)) = u(i,j_s,b_s;\ldots;a_0,j_0) + \delta(i,b_s) \theta_{l_{i-1}(r_{j_s})}(u(i-1,j_s,b_s;\ldots;a_0,j_0)) = u(i,j_s,b_s;\ldots;a_0,j_0) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1}))}(u(i-1,j_s,b_s;\ldots;a_0,j_0)) = u(i,j_s,b_s;\ldots;a_0,j_0) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1}))}(u(i-1,j_s,b_s;\ldots;a_0,j_0)) = u(i,j_s,b_s;\ldots;a_0,j_0) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1}))}(u(i-1,j_s,b_s;\ldots;a_0,j_0)) = u(i,j_s,b_s;\ldots;a_0,j_0) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1})) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1}))}(u(i-1,j_s)) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1})) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1}))}(u(i-1,j_s)) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1}(r_{i-1}))) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}(r_{i-1}(r_{i-1}))) + \delta(i,b_s) \theta_{l_{i-1}(r_{i-1}($$

$$+\delta(i,b_{s})\beta_{(r_{j_{s}},b_{s}),(r_{j_{s-1}},a_{s-1})}u(a_{s-1},j_{s-1},b_{s-1};\ldots;a_{0},j_{0});$$

3) for any $\tau \in s(\Gamma_{tr})$

$$\tau u(i, j_s, b_s; \ldots; a_0, j_0) = \chi_{i, b_s, \ldots, a_0}(\tau) u(i, j_s, b_s; \ldots; a_0, j_0),$$

where $\chi_{i,b_{\bullet},...,a_{0}}$ is a character of $s(\Gamma_{tr})$ with invariant

$$r(\chi_{i,b_s,\ldots,a_0}) = r_{j_0}(i-b_s+a_{s-1}-\cdots-b_1+a_0);$$

4) $v_p(u(i, j_0)) = 0$ and for $s \ge 1$

$$v_p(u(i, j_s, b_s; \ldots; a_0, j_0) \ge n_M^*(r_{j_{s-1}}(a_{s-1}), r_{j_s}(b_s)) + \cdots + n_M^*(r_{j_0}(a_0), r_{j_1}(b_1)).$$

Proof.

Let $1 \leq j_0 \leq m$ and consider the projective system \mathcal{L}_{j_0} from n.3.3. We want to construct a compatible system

$$u^*(j_s, b_s; \ldots; a_0, j_0) \in U^*(j_s, b_s; \ldots; a_0, j_0),$$

such that $u^*(j_0) \in U^*(j_0) \setminus pU^*(j_0)$ (c.f. n.3.4), and if

$$u^*(i, j_s, b_s; \dots; a_0, j_0) = m(i, j_s, b_s; \dots; a_0, j_0)(u^*(j_s, b_s; \dots; a_0, j_0)) \in A_{cris},$$

then for any $\tau \in s(\Gamma_{tr})$ one has

$$\tau u^*(i, j_s, b_s; \ldots; a_0, j_0) = \chi_{i, b_s, \ldots, a_0}(\tau) u^*(i, j_s, b_s; \ldots; a_0, j_0).$$

In fact, the case s = 0 was considered in n.3.4.

By induction we can assume, that these points are constructed for all l < s. Take $\hat{u}(j_s, b_s; \ldots; a_0, j_0) \in U^*(j_s, b_s; \ldots; a_0, j_0)$ such that

$$\hat{u}(j_s, b_s; \ldots; a_0, j_0) \mapsto u^*(j_{s-1}, b_{s-1}; \ldots; a_0, j_0)$$

under epimorphism $U^*(j_s, b_s; \ldots; a_0, j_0) \longrightarrow U^*(j_{s-1}, b_{s-1}; \ldots; a_0, j_0).$

Let $\hat{u}(i, j_s, b_s; ...; a_0, j_0) = m(i, j_s, b_s; ...; a_0, j_0) (\hat{u}(j_s, b_s; ...; a_0, j_0)) \in A_{cris}$. Then

$$\hat{u}(i, j_s, b_s; \dots; a_0, j_0) \in A^{l_i(r_{j_s})}_{\mathrm{cris}}$$

 and

(*)

$$\phi_{l_{i-1}(r_{j_s})}(\hat{u}(i-1,j_s,b_s;\ldots;a_0,j_0)) = \hat{u}(i,j_s,b_s;\ldots;a_0,j_0) + \\ +\delta(i,b_s)\beta^*_{(r_{j_s},b_s),(r_{j_{s-1}},a_{s-1})}u^*(j_{s-1},b_{s-1};\ldots;a_0,j_0).$$

Take decomposition by
$$\chi$$
-components

$$\hat{u}(i, j_s, b_s; \ldots; a_0, j_0) = \sum_{\chi} \hat{u}(i, j_s, b_s; \ldots; a_0, j_0)_{\chi},$$

where χ runs over the set of characters of the group $s(\Gamma_{tr})$. Clearly, non-zero components can appear only for characters χ , such that $r(\chi) \in S$ (in particular, one has for such characters $\sigma^N \chi = \chi$).

 \mathbf{Set}

$$u^*(i, j_s, b_s; \ldots; a_0, j_0) = u(i, j_s, b_s; \ldots; a_0, j_0)_{\chi_{i, b_s, \ldots, a_0}}.$$

Then comparison of χ -components of the above equality (*) gives

$$\phi_{l_{i-1}(r_{j_s})}(u^*(i-1,j_s,b_s;\ldots;a_0,j_0)) = u^*(i,j_s,b_s;\ldots;a_0,j_0) +$$

$$+\delta(i,b_s)\beta^*_{(r_{j_s},b_s),(r_{j_{s-1}},a_{s-1})}u^*(j_{s-1},b_{s-1};\ldots;a_0,j_0).$$

Therefore, there exists $u^*(j_s, b_s; \ldots; a_0, j_0) \in U^*(j_s, b_s; \ldots; a_0, j_0)$, such that

$$m(i, j_s, b_s; \ldots; a_0, j_0)(u^*(j_s, b_s; \ldots; a_0, j_0)) = u^*(i, j_s, b_s; \ldots; a_0, j_0).$$

It is easy to see, that $u^*(j_s, b_s; \ldots; a_0, j_0) \mapsto u^*(j_{s-1}, b_{s-1}; \ldots; a_0, j_0)$, and by construction these points satisfy properties from the beginning of this proof.

Now, the relation

$$u(i, j_s, b_s; \dots; a_0, j_0) =$$

= $p^{n_M^*(r_{j_{s-1}}(a_{s-1}), r_{j_s}(b_s)) + \dots + n_M^*(r_{j_0}(a_0), r_{j_1}(b_1))} u^*(i, j_s, b_s; \dots; a_0, j_0),$

gives the family of elements of A_{cris} , which satisfy the properties of our proposition.

3.6. For $1 \leq j_0 \leq m$ consider the collection

$$u^{(j_0)} = (u^{(j_0)}_{(r_j,i)}) \in \bigoplus_{\substack{1 \leq j \leq m \\ i \in \mathbb{Z}/N\mathbb{Z}}} (A_{\operatorname{cris}})_{(r_j,i)},$$

where

$$u_{(r_j,i)}^{(j_0)} = \sum u(i,j,b_s;a_{s-1},j_{s-1},b_{s-1};\ldots;a_0,j_0),$$

and the above sum is taken for all $s \ge 0, 1 \le j_1, \ldots j_{s-1} \le m$ and $b_s, a_{s-1}, \ldots, b_1, a_0 \in a_{s-1}$ $\mathbb{Z}/N\mathbb{Z}.$

One can easily check up, that

$$u^{(j_0)} \in \kappa(\mathcal{U}(M^*)).$$

for any $1 \leq j_0 \leq m$.

More generally, if $w \in W(\mathbb{F}_q), q = p^N$, let

$$w * u^{(j_0)} = (w * u^{(j_0)}_{(r_j,i)})_{1 \le j \le m, i \in \mathbb{Z}/N\mathbb{Z}},$$

where

$$w * u_{(r_j,i)}^{(j_0)} = \sum (\sigma^{\alpha(i,b_s,\ldots,a_0)} w) u(i,j,b_s;\ldots;a_0,j_0)$$

and the above sum is taken for all $s \ge 0, 1 \le j_1, \ldots, j_{s-1} \le m, b_s, a_{s-1}, \ldots, b_1, a_0 \in$ $\mathbb{Z}/N\mathbb{Z}$ and $\alpha(i, b_s, \ldots, a_0) = i - b_s + a_{s-1} - \cdots - b_1 + a_0$.

Then

$$\kappa(\mathcal{U}(M^*)) = \{ \sum_{1 \leq j_0 \leq m} w_{j_0} * u^{(j_0)} \mid w_1, \ldots, w_m \in W(\mathbb{F}_q) \}.$$

For $1 \leq j_0, j \leq m, i_0, i \in \mathbb{Z}/N\mathbb{Z}$, set

$$u_{(j,i)}^{(j_0,i_0)} = \sum u(i, j_s, b_s; \ldots; a_0, j_0),$$

where the above sum is taken for all collections $(i, j_s, b_s; \ldots; a_0, j_0)$, such that $j_s = j$ and $i - i_0 = b_s - a_{s-1} + \dots + b_1 - a_0$.

Then

$$u_{(r_j,i)}^{(j_0)} = \sum_{i_0 \in \mathbf{Z}/N\mathbf{Z}} u_{(j,i)}^{(j_0,i_0)},$$

one has for any $w \in W(\mathbb{F}_q)$

$$w * u_{(r_j,i)}^{(j_0)} = \sum_{i_0 \in \mathbf{Z}/N\mathbf{Z}} (\sigma^{i_0} w) u_{(j,i)}^{(j_0,i_0)},$$

and for any $\tau \in s(\Gamma_{tr})$

$$\tau u_{(r_j,i)}^{(j_0)} = \sum_{i_0 \in \mathbb{Z}/N\mathbb{Z}} \chi_{j_0,i_0}(\tau) u_{(j,i)}^{(j_0,i_0)},$$

where χ_{j_0,i_0} is the character of $s(\Gamma_{tr})$ with invariant $r(\chi_{j_0,i_0}) = r_{j_0}(i_0)$.

In the above notation $\kappa(\mathcal{U}(M^*))$ is Γ -module of collections

$$(u_{(j,i)}^*) \in \bigoplus_{\substack{1 \leq j \leq m \\ i \in \mathbb{Z}/N\mathbb{Z}}} (A_{\mathrm{cris}})_{(r_j,i)},$$

such that

$$u_{(j,i)}^* = \sum_{\substack{i_0 \in \mathbb{Z}/N\mathbb{Z} \\ 1 \leqslant j_0 \leqslant m}} (\sigma^{i_0} w_{j_0}) u_{(j,i)}^{(j_0,i_0)}$$

where w_1, \ldots, w_m run over $W(\mathbb{F}_q)$.

Let χ be a character of $s(\Gamma_{tr})$, such that $r(\chi) \in S$. Then there exist unique $1 \leq 1$ $j_{\chi} \leq m$ and $i_{\chi} \in \mathbb{Z}/h_{j_{\chi}}\mathbb{Z}$, such that $r(\chi) = r_{j_{\chi}}(i_{\chi})$. In these terms $\kappa_{W(k)}$ identifies $\mathcal{U}(M^*)_{\chi}$ with W(k)-submodule of $\bigoplus_{j,i}(A_{cris})_{(r_j,i)}$, which consists of $(u^*_{\chi,(j,i)})$, such \mathbf{that}

$$u_{\chi,(j,i)}^* = \sum_{i_0 \bmod h_{j_{\chi}} = i_{\chi}} (\sigma^{i_0} w_{j_{\chi}}) u_{(j,i)}^{(j_{\chi},i_0)}$$

(here $w_{j_{\chi}}$ runs over $W(\mathbb{F}_q)$). This module also is generated by $N/h_{j_{\chi}}$ elements

$$u_{\chi}^{*(i_0)} = (u_{(j,i)}^{(j_{\chi},i_0)})_{\substack{1 \leq j \leq m, \\ i \in \mathbb{Z}/N\mathbb{Z}}},$$

where $i_0 \in \mathbb{Z}/N\mathbb{Z}$ is such that $i_0 \mod h_{j_{\chi}} = i_{\chi}$. Use description of the epimorphism $\mathcal{U}(i_{M,M^*})_{\chi} : \mathcal{U}(M^*)_{\chi} \longrightarrow \mathcal{U}(M)_{\chi}$ from n.3.2. This gives generators $u_{\chi}^{(i_0)}$ of W(k)-module $(\kappa_{W(k)}\mathcal{U}(M))_{\chi}$ in a form

$$u_{\chi}^{(i_0)} = (u_r^{(i_0)})_{r \in S} \in \bigoplus_{r \in S} (A_{\operatorname{cris}})_r,$$

where $i_0 \in \mathbb{Z}/N\mathbb{Z}$, $i_0 \mod h_{j_{\chi}} = i_{\chi}$ and

(*)
$$u_r^{(i_0)} = \sum_{r_j(i)=r} u_{(j,i)}^{(j_\chi,i_0)}$$

for any $r \in S$.

3.7. Let $1 \leq j_0 \leq m, \tau \in \Gamma$. Then for any $i \in \mathbb{Z}/N\mathbb{Z}$ we have

$$\tau u(i, j_0) = w_{(j_0), \tau} * u(i, j_0) (= \sigma^* w_{(j_0), \tau} u(i, j_0)),$$

where $w_{(j_0),\tau} \in W(\mathbb{F}_q)^*$, c.f. n.3.4.

The following lemma can be easily proved by induction on $s \ge 0$.

Lemma. For $1 \leq j_0, j_1, \ldots, j_s, \cdots \leq m, a_0, b_1, \ldots, a_{s-1}, b_s, \cdots \in \mathbb{Z}/N\mathbb{Z}$ and $\tau \in \Gamma$, there exist $w_{(j_s, b_s; \ldots; a_0, j_0), \tau} \in W(\mathbb{F}_q)$, such that

1) for any $i \in \mathbb{Z}/N\mathbb{Z}$ one has

$$\tau u(i, j_s, b_s; \dots; a_0, j_0) = w_{(j_0),\tau} * u(i, j_s, b_s; \dots; a_0, j_0) + \dots + \\ + w_{(j_l, b_l; \dots; a_0, j_0),\tau} * u(i, j_s, b_s; \dots; a_l, j_l) + \dots + \\ + w_{(j_s, b_s; \dots; a_0, j_0),\tau} * u(i, j_s);$$

2)
$$v_p(w_{(j_s,b_s;\ldots;a_0,j_0),\tau}) \ge n_M^*(r_{j_{s-1}}(a_{s-1}),r_{j_s}(b_s)) + \cdots + n_M^*(r_{j_0}(a_0),r_{j_1}(b_1)).$$

Remark. As in the above n.3.6 we use the notation

$$w * u(i, j_s, b_s; \ldots; a_l, j_l) = (\sigma^{i-b_s+\cdots+a_l}w)u(i, j_s, b_s; \ldots; a_l, j_l).$$

Use this statement to set

$$w_{(j_{\bullet},i_{0}),\tau}^{(j_{0},i_{0})} = \sum w_{(j_{\bullet},b_{\bullet};...;a_{0},j_{0}),\tau},$$

where the above sum is taken for all collections $(j_s, b_s; \ldots; a_0, j_0)$, such that $j_s = j$ and $i - i_0 = b_s - a_{s-1} + \cdots + b_1 - a_0$.

In this notation the above lemma gives the following proposition.

Proposition. For any $1 \leq j_0, j \leq m, i_0, i \in \mathbb{Z}/N\mathbb{Z}$ and $\tau \in \Gamma$ there exist $w_{(j,i),\tau}^{(j_0,i_0)} \in W(\mathbb{F}_q)$, such that

(1)
$$\tau u_{(j,i)}^{(j_0,i_0)} = \sum_{\substack{1 \leq j_1 \leq m \\ i_1 \in \mathbb{Z}/N\mathbb{Z}}} (\sigma^{i_1} w_{(j_1,i_1),\tau}^{(j_0,i_0)}) u_{(j,i)}^{(j_1,i_1)};$$

(2)
$$v_p(w_{(j,i),\tau}^{(j_0,i_0)}) \ge A_{(j,i)}^{(j_0,i_0)},$$

where $A_{(j,i)}^{(j_0,i_0)}$ is the minimal value of sums

$$n_M^*(r_{j_{s-1}}(a_{s-1}), r_{j_s}(b_s)) + \dots + n_M^*(r_{j_0}(a_0), r_{j_1}(b_1))$$

under restrictions $j_s = j$ and $i - i_0 = b_s - a_{s-1} + \cdots + b_1 - a_0$.

Let $u_{\chi}^{(i_0)}$ be generators of $(\kappa_{W(k)}\mathcal{U}(M))_{\chi}$ from n.3.6. Then the formula (*) of n.3.6 gives the following corollary.

Corollary. For every $\tau \in \Gamma$, character χ of the group $s(\Gamma_{tr})$, such that $r(\chi) = r_{j_{\chi}}(i_{\chi})$, and $i_0 \in \mathbb{Z}/N\mathbb{Z}$ one has

$$\tau u_{\chi}^{(i_0)} = \sum_{\chi_1, i_1} w_{(j_{\chi_1}, i_1), \tau}^{(j_{\chi}, i_0)} * u_{\chi_1}^{(i_1)},$$

where χ_1 runs over all characters of $s(\Gamma_{tr})$, such that $r(\chi_1) \in S$, and i_1 runs over $\mathbb{Z}/N\mathbb{Z}$, such that $r_{j_{\chi_1}}(i_1) = r(\chi_1)$.

3.8. Consider the function $n = n_U : S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$ for $\mathbb{Z}_p[\Gamma]$ -module $U = \mathcal{U}(M)$, which was defined in n.1.2 (we use identification of characters of the group $s(H_1)$ with characters of $s(\Gamma_{tr})$, which are given by their invariants $r(\chi) \in S$). Let $n_M : S \times S \longrightarrow \mathbb{Z}_{\geq 0} \cup \{+\infty\}$ be the function from n.2.3.

Proposition. For any $r, r_0 \in S$ one has

$$n_U(r,r_0) \ge n_M(r,r_0).$$

Proof. If $r = r_0$, then

$$n_U(r,r) = \min\{ n_U(r,r_1) + n_U(r_1,r) \mid r_1 \in S, r_1 \neq r \}$$

by definition, and

$$n_M(r,r) = \min\{ n_M(r,r_1) + n_M(r_1,r) \mid r_1 \in S, r_1 \neq r \},\$$

because $n_M^*(r,r) = +\infty$. So, we can assume $r \neq r_0$.

If $r = r_j(i), r_0 = r_{j_0}(i_0)$, where $1 \le j, j_0 \le m, i, i_0 \in \mathbb{Z}/N\mathbb{Z}$, then corollary of n.3.7 gives

$$n_U(r_0, r) \ge \min\{ v_p(w_{(j,i),\tau}^{(j_0,i_0)}) \mid r_0 = r_{j_0}(i_0), r = r_j(i) \}.$$

Now proposition of n.3.7 implies, that $n_U(r_0, r)$ is not less, than the minimal value of

(*)
$$n_M^*(r_{j_{s-1}}(a_{s-1}), r_{j_s}(b_s)) + \dots + n_M^*(r_{j_0}(a_0), r_{j_1}(b_1)),$$

where $(j_s, b_s; \ldots; a_0, j_0)$ is arbitrary collection, such that $j_s = j$ and $i - i_0 = b_s - a_{s-1} + \cdots + b_1 - a_0$.

Assume, that the collection $(j_s, b_s; \ldots; a_0, j_0)$ with the above restrictions gives the minimal value of the sum (*). Then the property $n_M^*(r_1(1), r_2(1)) = n_M^*(r_1, r_2)$ implies the following equalities

$$n_{M}^{*}(r_{j_{s-1}}(a_{s-1}), r_{j_{s}}(b_{s})) = n_{M}^{*}(r^{(1)}, r),$$

$$n_{M}^{*}(r_{j_{s-2}}(a_{s-2}), r_{j_{s-1}}(b_{s-1})) = n_{M}^{*}(r^{(2)}, r^{(1)}),$$

.

$$n_{M}^{*}(r_{j_{0}}(a_{0}), r_{j_{1}}(b_{1})) = n_{M}^{*}(r^{(s)}, r^{(s-1)}),$$

where $r^{(1)} = r_{j_{s-1}}(i_{0} + a_{s-1} - b_{s}), r^{(2)} = r_{j_{s-2}}(i_{0} + a_{s-2} + a_{s-1} - b_{s-1} + b_{s}),$
 $\dots, r^{(s-1)} = r_{j_{1}}(i_{0} + a_{1} + \dots + a_{s-2} - b_{2} - \dots - b_{s-1}),$
 $r^{(s)} = r_{j_{0}}(i_{0} + a_{0} + \dots + a_{s-1} - b_{1} - \dots - b_{s}) = r_{j_{0}}(i_{0}) = r_{0}.$

Therefore,

$$n_U(r_0,r) \ge n_M^*(r^{(1)},r) + n_M^*(r^{(2)},r^{(1)}) + \dots + n_M^*(r_0,r^{(s-1)}) \ge n_M(r_0,r)$$

by definition of the function n_M .

Proposition is proved.

3.9. Consider the graph $v_M \in \mathcal{V}_S$ of the function n_M , c.f. n.2.4.

Suppose $(r^0, r^1) \in S_{v_M} \subset S \times S$. By proposition of n.2.4.4, $r^0 \neq r^1$. By the definition of the map $\pi : \mathcal{F}_S \longrightarrow \mathcal{V}_S$, we have $v_M(r^0, r^1) = n_M(r^0, r^1)$ and, obviously,

$$v_M(r^0, r^1) = n_M^*(r^0, r^1) = \min\{ v_p(\beta_{r^1(i)r^0(i)}) \mid i \in \mathbb{Z} \}.$$

Let $S(r^0) = \{r^0(i) \mid i \in \mathbb{Z}\} \subset S$ and $S(r^1) = \{r^1(i) \mid i \in \mathbb{Z}\} \subset S$.

Denote by j^0, j^1 uniquely defined indices from [1, m], such that $r_{j^0} \in S(r^0)$ and $r_{j^1} \in S(r^0)$.

Introduce $M(r^1, r^0) \in MF_f$, such that a) $M(r^1, r^0)$ is a free W(k)-module with basis

$$\{ m_r^0 \mid r \in S(r^0) \} \cup \{ m_r^1 \mid r \in S(r^1) \};$$

b) for $0 \leq l < p$ its filtration submodule $M(r^1, r^0)^l$ is generated by

$$\{ m_r^0 \mid r \in S(r^0), l_0(r) \ge l \} \cup \{ m_r^1 \mid r \in S(r^1), l_0(r) \ge l \};$$

c) σ -linear morphisms ϕ_l , $0 \leq l < p$, are (uniquelly) defined by relations

$$\phi_{l_0(r(-1))} m^0_{r(-1)} = m^0_r, \text{ for } r \in S(r^0),$$

$$\phi_{l_0(r(-1))} m^1_{r(-1)} = m^1_r + \sum_{(r',r) \in S_{(r^0,r^1)}} \beta^*_{rr'} m^0_{r'},$$

for $r \in S(r^1)$, where

$$S_{(r^{0},r^{1})} = \{ (r^{0}(i), r^{1}(i)) \mid i \in \mathbb{Z} \} \subset S(r^{0}) \times S(r^{1}) \subset S \times S,$$

 $\beta_{rr'}^* = p^{-v_M(r^0, r^1)} \beta_{rr'}$, if $(r', r) \in S_{(r^0, r^1)}$, and $\beta_{rr'}^* = 0$, otherwise.

3.10. Let χ^1, χ^0 be characters of the group Γ_{tr} , such that $r(\chi^1) = r^1$ and $r(\chi^0) = r^0$. Clearly, $\chi^1 \neq \chi^0$.

Proposition. In notation and assumption of n.3.9 the following conditions are equivalent

a) $n_U(r^0, r^1) \le v_M(r^0, r^1);$

i⁰

b) there exists $u \in \mathcal{U}(M(r^1, r^0))$ and $\tau_0 \in \Gamma$, such that

$$(\tau_0 u_{\chi^0})_{\chi^1} \notin p\mathcal{U}(M(r^1, r^0))_{\chi^1};$$

c) for some $w_0 \in W(\mathbb{F}_q)$ and $\tau_0 \in \Gamma$

$$\sum_{i^1,b_1,a_0} (\sigma^{i^0} w_0) (\sigma^{i^1} w_{(j^1,b_1;a_0,j^0),\tau_0}) u(i^1,j^1) \notin p^{v_M(r^0,r^1)+1} A_{\operatorname{cris}},$$

where the sum is taken for all $i^0, i^1, b_1, a_0 \in \mathbb{Z}/N\mathbb{Z}$, such that $i^1 - i^0 = b_1 - a_0$, $r_{j^0}(i^0) = r^0, r_{j^1}(i^1) = r^1$.

Proof.

3.10.1. The condition a) is equivalent to existence of $u \in U = \mathcal{U}(M)$ and $\tau_0 \in \Gamma$, such that

$$(\tau_0 u_{\chi^0})_{\chi^1} \notin p^{v_M(r^0,r^1)+1} U_{\chi^1}.$$

In notation of n.3.6 this is equivalent to existence of

$$u^* = \sum_{1 \le j_0 \le m} w_{j_0} u^{(j_0)} \in \mathcal{U}(M^*),$$

such that the image of $(\tau_0 u_{\chi^0}^*)_{\chi^1}$ in U_{χ^1} does not belong to $p^{\nu_M(r^0,r^1)+1}U_{\chi^1}$.

In notation of nn. 3.6-3.7 we have 1) $u^* = (u^*)^*$ where

1) $u_{\chi^0}^* = (u_{\chi^0,(j,i)}^*)$, where

$$u_{\chi^0,(j,i)}^* = \sum_{i^0} (\sigma^{i^0} w_{j_0}) u_{(j,i)}^{(j^0,i^0)},$$

and the sum is taken for all $i^0 \in \mathbb{Z}/N\mathbb{Z}$, such that $r_{j^0}(i^0) = r^0$.

2) $\tau_0 u_{\chi^0}^* = (\tau_0 u_{\chi^0,(j,i)}^*)$, where

$$\tau_0 u_{\chi^0,(j,i)}^* = \sum_{i^0,j_1,i_1} (\sigma^{i^0} w_0) (\sigma^{i_1} w_{(j_1,i_1),\tau_0}^{(j^0,i^0)}) u_{(j,i)}^{(j_1,i_1)},$$

and the sum is taken for all $1 \leq j_1 \leq m$, $i_1 \in \mathbb{Z}/N\mathbb{Z}$ and all $i^0 \in \mathbb{Z}/N\mathbb{Z}$, such that $r_{j^0}(i^0) = r^0$.

3)
$$(\tau_0 u_{\chi^0}^*)_{\chi^1} = (u_{\chi^0,\chi^1,(j,i)}^*),$$
 where
 $u_{\chi^0,\chi^1,(j,i)}^* = \sum_{i^0,i^1} (\sigma^{i^0} w_0) (\sigma^{i^1} w_{(j^1,i^1),\tau_0}^{(j^0,i^0)}) u_{(j,i)}^{(j^1,i^1)},$

and the sum is taken for all $i^0, i^1 \in \mathbb{Z}/N\mathbb{Z}$, such that $r_{j^0}(i^0) = r^0$ and $r_{j^1}(i^1) = r^1$.

Let $w_{(j_*,b_*;\ldots;a_0,j_0),\tau_0}$ be some summand from the expression for $w_{(j^1,i^1),\tau_0}^{(j^0,i^0)}$ from n.3.7. Because of $(r^0,r^1) \in S_{v_M}$ and of the part 2) of lemma of n.3.7, we have:

$$w_{(j_{\bullet},b_{\bullet};\ldots;a_{0},j_{0}),\tau_{0}} \in p^{v_{M}(r^{0},r^{1})}W(\mathbb{F}_{q})$$

and, if $s \geq 2$, then

$$w_{(j_s,b_s;...;a_0,j_0),\tau_0} \in p^{v_M(r^0,r^1)+1}W(\mathbb{F}_q).$$

Therefore,

$$w_{(j^{1},i^{1}),\tau_{0}}^{(j^{0},i^{0})} \equiv \sum_{\substack{b_{1},a_{0} \in \mathbb{Z}/N\mathbb{Z} \\ b_{1}-a_{0}=i^{1}-i^{0}}} w_{(j^{1},b_{1};a_{0},j^{0}),\tau_{0}} \mod p^{\nu_{M}(r^{0},r^{1})+1}.$$

From the property $n_M(r,r) \geq 1$ and construction of elements $u_{(j,i)}^{(j^1,i^1)}$ it follows, that

$$u_{(j^1,i)}^{(j^1,i^1)} \equiv u(i,j^1)\delta(i,i^1) \operatorname{mod} pA_{\operatorname{cris}}.$$

By these arguments we obtain from the above formula 3), that

$$u^*_{\chi^0,\chi^1,(j^1,i)}\equiv$$

$$\equiv \sum_{i^0, i^1, b_1, a_0} (\sigma^{i^0} w_{j^0}) (\sigma^{i^1} w_{(j^1, b_1; a_0, j^0), \tau_0}) u(i, j^1) \delta(i, i^1) \mod p^{v_M(r^0, r^1) + 1} A_{\operatorname{cris}},$$

where the sum is taken for all $i^0, i^1, b_1, a_0 \in \mathbb{Z}/N\mathbb{Z}$, such that $i^1 - i^0 = b_1 - a_0$, $r_{j^0}(i^0) = r^0, r_{j^1}(i^1) = r^1$.

Now use formulae from n.3.2 to obtain, that the value of $m_r \in M$ on the image of $(\tau_0 u_{\chi^0}^*)_{\chi^1}$ in $\mathcal{U}(M)_{\chi^1}$ is 0, if $r \neq r^1$, and coincides with the expression of the part c) of our proposition, if $r = r^1$. So, a) and c) are equivalent.

3.10.2. Consider the elements

$$u(i,j^0), u(i,j^1), u^*(i,j^1,b_1;a_0,j^0) = p^{-n^*_M(r^0,r^1)}u(i,j^1,b_1;a_0,j^0) \in A_{cris}$$

from n.3.5. Proceeding as in n.3.6, we obtain the following description of elements of the Γ -module $\mathcal{U}(M(r^0, r^1))$.

For any $u \in \mathcal{U}(M(r^1, r^0))$ there exist $w_0, w_1 \in W(\mathbb{F}_q)$, such that

if $r \in S(r^0)$, then

$$m_r^0(u) = \sum_{\substack{i \in \mathbf{Z}/N\mathbf{Z} \\ r_{j^0}(i) = r}} (\sigma^i w_0) u(i, j^0);$$

if $r \in S(r^1)$, then $m_r^1(u) = \sum_{\substack{i \in \mathbb{Z}/N\mathbb{Z} \\ r_{i,1}(i) = r}} (\sigma^i w_1) u(i, j^1) + \sum_{i, a_0, b_1} (\sigma^{i-b_1+a_0} w_0) u^*(i, j^1, b_1; a_0, j^0),$

where the last sum is taken for all $i, a_0, b_1 \in \mathbb{Z}/N\mathbb{Z}$, such that $r_{j^1}(i) = r$ and

$$(r_{j^0}(a_0), r_{j^1}(b_1)) \in S_{(r^0, r^1)}.$$

For the χ^0 -component u_{χ^0} of the point u we have if $r \in S(r^0)$, then

$$m_{r}^{0}(u_{\chi^{0}}) = \delta(r, r^{0}) \sum_{\substack{i \in \mathbb{Z}/N\mathbb{Z} \\ r_{j^{0}}(i) = r}} (\sigma^{i} w_{0}) u(i, j^{0});$$

if $r \in S(r^1)$, then

$$m_r^1(u_{\chi^0}) = \delta(r, r^0) \sum_{\substack{i \in \mathbb{Z}/N\mathbb{Z} \\ r_{j^1}(i) = r}} (\sigma^i w_1) u(i, j^1) + \sum_{\substack{i^0, i, a_0, b_1}} (\sigma^{i_0} w_0) u^*(i, j^1; a_0, j^0),$$

where the last sum is taken for all $i^0, i, a_0, b_1 \in \mathbb{Z}/N\mathbb{Z}$, such that $i^0 = i - b_1 + a_0, r_{j^0}(i^0) = r^0, r_{j^1}(i) = r$ and $(r_{j^0}(a_0), r_{j^1}(b_1)) \in S_{(r^0, r^1)}$.

Now we can use, that $\chi^0 \neq \chi^1$ and $\tau_0 u^*(i, j^1, b_1; a_0, j^0) =$

$$= (\sigma^{i-b_1+a_0}w_{(j^0),\tau_0})u^*(i,j^1,b_1;a_0,j^0) + (\sigma^i w^*_{(j^1,b_1;a_0,j^0),\tau_0})u(i,j^1),$$

where $\tau_0 \in \Gamma$ and

(*)
$$w^*_{(j^1,b_1;a_0,j^0),\tau_0} = p^{-n^*_M(r^0,r^1)} w_{(j^1,b_1;a_0,j^0),\tau_0},$$

to obtain the following description of the point $(\tau_0 u_{\chi^0})_{\chi^1}$:

if
$$r \in S(r^0)$$
, then $m_r^0((\tau_0 u_{\chi^0})_{\chi^1}) = 0$;
if $r \in S(r^1)$, then

$$(**) \qquad m_r^1((\tau_0 u_{\chi^0})_{\chi^1}) = \delta(r, r^1) \sum_{i^0, i^1, a_0, b_1} (\sigma^{i^0} w_0) (\sigma^{i^1} w^*_{(j^1, b_1; a_0, j^0), \tau_0}) u(i^1, j^1),$$

where the sum is taken for all $i^0, i^1, a_0, b_1 \in \mathbb{Z}/N\mathbb{Z}$, such that $i^0 = i^1 - b_1 + a_0, r_{j^0}(i^0) = r^0, r_{j^1}(i^1) = r^1$ (we use, that the condition $(r_{j^0}(a_0), r_{j^1}(b_1)) \in S_{(r^0, r^1)}$ is now a consequence of other ones, because $r_{j^1}(b_1) = r^1(b_1 - i^1), r_{j^0}(a_0) = r^0(a_0 - i^0)$ and $b_1 - i^1 = a_0 - i^0$).

So, the part b) of our proposition is equivalent to existence of $w_0 \in W(\mathbb{F}_q)$ and of $\tau_0 \in \Gamma$, such that the right hand side of (**) does not belong to pA_{cris} for $r = r^1$. But this is equivalent to the part c) of our proposition because of the above relation (*).

Proposition is proved.

3.11. In notation and assumptions of n.3.9 we have the following proposition.

Proposition. The statement of the part b) of proposition 3.10 is valid.

Clearly, the above proposition and propositions of nn.3.8 and 2.4.3 imply our theorem.

Proof of proposition.

This statement uses only the structure of $\mathbb{F}_p[\Gamma]$ -module $\mathcal{U}(M(r^1, r^0)) \otimes \mathbb{F}_p = U_1(r^1, r^0)$. Galois modules of this kind were studied in details (as important step in description of all annihilated by p subquotients of Fontaine-Laffaille modules) in [Ab2]. So, we give only a sketch of the proof.

3.11.1. In the category MF we have a natural exact sequence

$$(*) \qquad \qquad 0 \longrightarrow M(r^0) \longrightarrow M(r^1, r^0) \otimes k \longrightarrow M(r^1) \longrightarrow 0,$$

where $M(r^1), M(r^0)$ are simple objects of MF, c.f. n.2.2. This gives exact sequence of $\mathbb{F}_p[\Gamma]$ -modules

$$(**) 0 \longrightarrow H^1 \longrightarrow U_1(r^1, r^0) \longrightarrow H^0 \longrightarrow 0,$$

where H^1 and H^0 are simple $\mathbb{F}_p[\Gamma]$ -modules with sets of characters $S(r^1)$ and $S(r^0)$, respectfully. The extension (**) is not trivial, because the above extension (**) is not trivial in the category MF.

The class of extension (**) is given by nonzero element $e(r^1, r^0)$ of the group

$$\begin{aligned} \operatorname{Ext}_{\mathbf{F}_{p}[\Gamma]}(H^{0},H^{1}) &= \operatorname{H}^{1}(\Gamma,\operatorname{Hom}(H^{0},H^{1})) = \\ &= \operatorname{Hom}^{\Gamma_{\operatorname{tr}}}(I,\operatorname{Hom}(H^{0},H^{1})) \subset \bigoplus_{\substack{\chi_{1} \in S(r^{1}) \\ \chi_{0} \in S(r^{0})}} \operatorname{Hom}^{\Gamma_{\operatorname{tr}}}(I,\operatorname{Hom}(H^{0}_{\chi_{0}},H^{1}_{\chi_{1}})) \end{aligned}$$

(here I is the subgroup of higher ramification in Γ).

Conjugacy condition gives, if

$$e(r^1, r^0)_{\chi_0, \chi_1} \in \operatorname{Hom}^{\Gamma_{\operatorname{tr}}}(I, \operatorname{Hom}(H^0_{\chi_0}, H^1_{\chi_1}))$$

is not trivial, then $e(r^1, r^0)_{\sigma\chi_0, \sigma\chi_1}$ also is not trivial (here σ is absolute Frobenius and $r(\sigma\chi_0) = r(\chi_0)(1), r(\sigma\chi_1) = r(\chi_1)(1)$).

3.11.2. For any $r \in R_p \setminus \{0\} = \{ r \in \mathbb{Q} \cap (0,1] \mid v_p(r) \ge 0 \}$ define the subfield K(r) of K as follows. K(r) is composite of fields

$$\{ K_{tr}(T_{\beta}) \mid \beta \in W(k) \},\$$

where $T^p_{\beta} - T_{\beta} = \beta \theta_b^{-a}$, r = a/b, $a, b \in \mathbb{Z}$, $v_p(b) = 0$ and $\theta_b \in K_{tr}$ is such that $\theta_b^b = p$.

We have the following properties

a) K(r)/K is Galois extension;

b) $I(r) = \text{Gal}(K(r)/K_{\text{tr}})$ is abelian group of exponent p;

c) I(r) is isotypical $\mathbb{F}_p[\Gamma_{tr}]$ -module, where action of Γ_{tr} is given by the set of characters conjugated to the character χ , such that $r(\chi) = r$;

d) if $r = k/(p^{N_1}-1)$ for some $N_1 \in \mathbb{N}, k \in \mathbb{N}$, then K(r) coincides with composite of fields from the set

$$\{ K_{tr}(T_{\beta,N_1}) \mid \beta \in W(k) \},\$$

where $T_{\beta,N_1}^{p^{N_1}} - T_{\beta,N_1} = \beta \pi_{N_1}^{-k}$ and $\pi_{N_1}^{p^{N_1}-1} = -p$.

3.11.3. Use construction of modified Fontaine-Laffaille functor, c.f. the end of n.2.2. Elements of the Galois module $U_1(r^1, r^0)$ can be identified with residues modulo $p\bar{O}$ of solutions

$$\{ (X_r \mid r \in S(r^0)), (Y_r \mid r \in S(r^1)) \}$$

in \bar{K} of the system of equations

$$\left(-\frac{1}{p}\right)^{l_0(r(-1))} X^p_{r(-1)} = X_r, \text{ where } r \in S(r^0);$$
$$\left(-\frac{1}{p}\right)^{l_0(r(-1))} Y^p_{r(-1)} = Y_r + \sum_{(r',r)\in S_{(r^0,r^1)}} \beta^*_{rr'} X_{r'},$$

where $r \in S(r^1)$.

Over K_{tr} all solutions of this system can be expressed via solutions of equations

$$T^q - T = \beta^*_{\tau\tau'} \pi_N^{-k+k'},$$

where $q = p^N$, $\pi_N^{q-1} = -p$, r = k/(q-1), r' = k'/(q-1).

Now the property d) of n.3.11.2 gives, that all points of $\mathbb{F}_p[\Gamma]$ -module $U_1(r^1, r^0)$ are defined over composite of fields K(r - r'), where

$$(r',r) \in S_{(r^0,r^1)} = \{ (r^0(i),r^1(i)) \mid i \in \mathbb{Z} \}.$$

3.11.4. Take $\chi_0 \in S(r^0), \chi_1 \in S(r^1)$, such that $e(r^1, r^0)_{\chi_0, \chi_1} \neq 0$. Then

$$e(r^1, r^0)_{\chi_0, \chi_1} \in \bigoplus_{(r', r) \in S_{(r^0, r^1)}} \operatorname{Hom}^{\Gamma_{\operatorname{tr}}}(I(r - r'), \operatorname{Hom}(H^0_{\chi_0}, H^1_{\chi_1})).$$

There exists $(r'_0, r_0) \in S_{(r^0, r^1)}$, such that the projection of $e(r^1, r^0)_{\chi_0, \chi_1}$ to

$$\operatorname{Hom}^{\Gamma_{\operatorname{tr}}}(I(-r+r'),\operatorname{Hom}(H^0_{\chi_0},H^1_{\chi_1}))$$

is not trivial. Therefore, the character $\chi_0^{-1}\chi_1$ acts nontrivially on $I(r_0 - r'_0)$ and for some $i \in \mathbb{Z}$ we have $r(\sigma^i(\chi_0^{-1}\chi_1)) = r_0 - r'_0$ (because $I(r_0 - r'_0)$ is isotypical Γ_{tr} -module). This gives

$$-r(\chi_0)(i)+r(\chi_1)(i)\equiv r_0-r_0' \operatorname{mod} \mathbb{Z}.$$

Clearly, $(r'_0, r_0) \in S_{(r^0, r^1)}$ implies $r_0 \neq r'_0$, and by the property C5 of the set S we have $r_0 = r(\chi_1)(i)$ and $r'_0 = r(\chi_0)(i)$, i.e. $(r(\chi_0), r(\chi_1)) \in S_{(r^0, r^1)}$.

Therefore, by conjugacy condition the (χ^0, χ^1) -component $e(r^1, r^0)_{\chi^0, \chi^1}$ is also nontrivial.

Proposition and theorem A are proved.

3.12. Remark. Suppose the set S satisfies the condition C4 of n.1, i.e. $S = \{r, \ldots, r(h-1)\}$, where h = h(r). In this case $n_{\mathcal{U}(M)} = n_M$ takes values in $\mathbb{N} \cup \{+\infty\}$, and we can use its analogue

$$n_{\mathcal{U}(M),\chi}:\mathbb{Z}/h\mathbb{Z}\longrightarrow\mathbb{N}\cup\{+\infty\}$$

from n.1.3 (where $\chi \in \operatorname{Char} \Gamma_{\operatorname{tr}}$ is such that $r(\chi) = r$).

Consider the following property

C6. The polynomes $(l_0(r)X^{p^{h-1}} + \cdots + l_{h-1}(r)X) \mod p$ and $X^{p^{h-1}} - 1$ are relatively prime in $\mathbb{F}_p[X]$.

If our set S satisfies this additional assumption, we can prove, that $\mathcal{H}_0(\chi) = pW(\mathbb{F}_{p^h})e_{00}$, i.e. the second invariant of the image of the Galois group (c.f. n.1.3) takes maximal value.

Indeed, relate notation of n.1.3 with constructions of this section by taking $m = 1, r_1 = r, N = h_1 = h, M = M^*$ and U = U(M). We can take $e_0 = u_{\chi}^{(1)}$, then

$$m_r(e_0) \equiv u(0,1) \operatorname{mod} p^2 A_{\operatorname{cris}},$$

and for any $\tau \in \Gamma$

$$m_r(\tau e_0) \equiv w_{(1),\tau} u(0,1) \equiv m_r(w_{(1),\tau} e_0) \operatorname{mod} p^2 A_{\operatorname{cris}}.$$

By lemma of n.3.4

$$w_{(1),\tau} = \prod_{0 \le i < h} (\sigma^{-i} \eta_{LT}(\tau))^{l_i(\tau)}.$$

Now remark, that if τ runs over subgroup of higher ramification I of Γ , then its image in $\operatorname{Aut}_{\mathbb{Z}_p} U$ runs over pro-*p*-group H^1 , $\eta_{LT}(\tau)$ runs over the subgroup of principal units of $W(\mathbb{F}_{p^h})$ and, therefore, $w_{(1),\tau} \mod p^2 W(\mathbb{F}_{p^h})$ runs over the set

$$\mathcal{B}_r = \{ 1 + p \sum_{0 \le i < h} (\sigma^{-i} \alpha) l_i(r) \mod p^2 \mid \alpha \in \mathbb{F}_{p^h} \}.$$

This gives

$$\mathcal{H}_0(\chi) \mod p^2 W(\mathbb{F}_{p^h}) e_{00} = \mathcal{B}_r e_{00}.$$

The correspondence

$$\alpha \mapsto \sum_{0 \leq i < h} (\sigma^{-i} \alpha) l_i(r)$$

defines \mathbb{F}_p -linear morphism $b_r : \mathbb{F}_{p^h} \longrightarrow \mathbb{F}_{p^h}$. Clearly, assumption C6 implies, that Ker $b_r = 0$ and, therefore, $\operatorname{Im} b_r = \mathbb{F}_{p^h}$. Therefore, $\mathcal{H}_0(\chi) \mod p^2 W(\mathbb{F}_{p^h}) e_{00} = pW(\mathbb{F}_{p^h}) e_{00}$ and we obtain $\mathcal{H}_0(\chi) = pW(\mathbb{F}_{p^h}) e_{00}$.

References

- [Ab1] V.A. Abrashkin, Modification of the Fontaine-Laffaille functor, Math. USSR Izvestiya 34 (1990), no. 3.
- [Ab2] V.A. Abrashkin, Modular representations of the Galois group of a local field, and a generalization of the Shafarevich conjecture, Math. USSR Izvestiya 35 (1990), no. 3.
- [Fo1] J.-M. Fontaine, Points d'ordre fini d'un groupe formel sur une extension non ramifie de \mathbb{Z}_p , Memoire 37, 1974, p. 75-79.
- [Fo2] J.-M. Fontaine, Groupes p-divisibles sur les corps locaux, Asterisque 47-48 (1977), Paris.
- [F-L] J.-M. Fontaine, G. Laffaille, Construction de representations p-adiques, Ann. Sci. E.N.S. 4 serie 15 (1982), 547-608.
- [Na] T. Nakamura, On torsion points of formal groups over a ring of Witt vectors, Math. Z. 193 (1986), 397-404.
- [Wtb] J.-P. Wintenberger, Un scindage de la filtration de Hodge pour certaines varietes algebriques sur le corps locaux, Annals of Math. 119 (1984), 511-548.