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0. Introduction

Let M be a compact oriented Riemannian manifold of dimension n. Let
D:.C*®(M,S)— C>=(M,S)

be a first order elliptic differential operator on M which is formally self-adjoint (with
respect to some Hermitian fibre metric in S). For the moment suppose that M has no
boundary. Then D is essentially self-adjoint in LZ(M, S) and the eta invariant is a non-
local spectral invariant of D. It was introduced by Atiyah, Patodi and Singer [APS1]. We
recall its definition. Let A; run over the eigenvalues of D. Then the eta function of D is
defined as '

(0.1) n(s,D) = Z Ten ;\j, Re(s) > n.
2o Ml
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The series is absolutely converging in the half-plane Re(s) > n and admits a meromor-
phic continuation to the whole complex plane. The analytic continuation is based on the
following alternative expression for the eta function

(02) 2(s,D) = —o e

(%)

It is a nontrivial result that (s, D) is regular at s = 0 [APS3], [Gi2]. Then the eta invariant
is defined to be n(0, D). The eta invariant is a measure of the spectral asymmetry of D. It
arises naturally as the boundary correction term in the index theorem for manifolds with
boundary proved by Atiyah, Patodi and Singer [APS1]. We note that this index theorem
can be recovered in many different ways. For example, one may glue a half-cylinder or a
cone to the boundary of the manifold in question and work in the L?-setting [Chl], [Me],
[Mii]. This means that the spectral boundary conditions used in [APS1] are replaced by
the L?—conditions. It turns out that the L?-index of the naturally extended operator is
closely related to the index of the original boundary value problem.

oo 2
/ tle-1)/2 Tr(De'tD ) dt.
o :

In this paper we shall study eta invariants for manifolds with boundary. Thus, we
assume that M has a nonempty boundary Y. There are various posibilities to define eta
invariants for manifolds with boundary. One way is to introduce boundary conditions.
In [GS), Gilkey and Smith have studied eta invariants for a certain restricted class of
elliptic boundary value problems. The associated closed extensions are, in general, non-
self-adjoint. For first order operators, however, there exists a natural choice of boundary
conditions which gives rise to a self-adjoint extension. These are the spectral boundary
conditions of Atiyah, Patodi and Singer [APS1]. For compatible Dirac type operators this
approach was used in [DW]

Instead of imposing boundary conditions one may, for example, glue a cone or a
half-cylinder to the boundary of M and consider the corresponding eta invariant in the
L?%-setting. This may be also viewed as a global boundary condition. Eta invariants for
manifolds with conical singularities were studied by Cheeger [Ch1], {Ch2] for the operator
associated to the signature operator and by Bismut and Cheeger [BC] for Dirac operators.
In this paper, we shall consider the case were a half-cylinder is attached to the boundary.

We suppose that the Riemannian metric of M is a product in a neighborhood I xY
of the boundary. Furthermore, we assume that, on this neighborhood, D takes the form

a
(0.3) D= 7(-5; +4)
where v and A satisfy the conditions (1.2), (1.3). In particular, A is symmetric. Then
we introduce spectral boundary conditions as in [APS1]. We use the negative spectral
projection II_ of A. If Ker A # {0}, the corresponding extension of D is not self-adjoint.
In this case we proceed as in [DW,pp.162] and pick a unitary involution ¢ : Ker A — Ker A
such that oy = —vo. Under the given assumptions, such an involution always exists. Let

P_ denote the orthogonal projection onto Ker(o + Id).The boundary conditions are then
defined by (II- + P_)(¢|Y) = 0, ¢ € C*®°(M, S). The associated closed extension D, is
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self-adjoint and has pure point spectrum. A similar phenomena occurs also in the case
of conical singularities [Chl], [Ch2]. One has to impose ideal boundary conditions which
corresponds exactly to the choice of a Lagrangian subspace of Ker A. In this context,
Cheeger was the first to consider this type of boundary conditions.

In §1 we study the spectrum of D, more closely. It has essentially the same formal
properties as the spectrum of D on a closed manifold. In particular, Weyl’s law holds for
the counting function of the eigenvalues A; of D, that is,

Vol(M)
(4m)*/2T(nf2+1)

n

F#{A 1A <A}~

as A — oo (Corollary 1.22). This enables us to introduce the eta function n(s,D,) by
the same formula (0.1). The study of the heat equation implies in the same way as in
the closed case that n(s, D, ) has a meromorphic continuation to the whole complex plane.
The case of a compatible Dirac type operator (cf. §1 for the definition) was treated in
[DW]. In thiscase 5(s, D, ) is regular in the half-plane Re(s) > —1. In particular, the eta
invariant of D, is given by

n(0,D,) = 71—; /0 t=1/2 Tr(D,e_'Dz) dt.

The question of regularity of n(s, D,) at s = 0 is not completely answered in this paper. In
§2 we study the behaviour of the eta invariant under variations which stay constant near
the boundary. It follows that, for such variations, the residue is a homotopy invariant. This
implies, in particular, that n(s, D,) is regular at s = 0 for all Dirac type operators. We
also investigate the dependence of the eta invariant on the choice of the unitary involution

o. If gy, 0, are two unitary involutions of Ker A anticommuting with v, then we show in
Theorem 2.21 that

71(0,Dq,) — 7(0,Dy,) = —% log det(g901|Ker(y —i)) mod Z.

This result was proved independently by Lesch and Wojciechowski [LW].

In anology with the closed case one may expect that eta invariants for manifolds with
boundary shall arise as boundary correction terms in an index theorem for manifolds with
corners. We do not know yet if there exists an appropriate boundary value problem for a
manifold with corners generalizing the APS boundary conditions in the case of a smooth
boundary. One may, however, use the L?-approach to derive such an index formula. For
this purpose we need to study eta invariants within the L?~framework. This means that
we enlarge M by gluing the half-cylinder R x Y to the boundary ¥ of M. If we equip
R* x Y with the product metric, then the resulting manifold Z becomes a complete
Riemannian manifold. The operator D has a natural extension to Z and its closure in L2
will be denoted by D. It is easy to see that D is self-adjoint. Since D has a nontrivial
continuous spectrum, the eta invariant of D can not be defined in the same way as for
D,. Instead we consider the kernel E(z,y,t) of Dexp —tD?. In §3 we study this kernel
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and prove that tr E(z,z,t) is absolutely integrable on Z. The integral [, tr E(z,z,t) dz

will be the substitute for Tr(De~*?”) in (0.2). It has also an interpretation as relative
trace. Namely, consider Dy = 4(8/0u + A) as operator in C®(R* x Y, S). We impose
spectral boundary conditions at the bottom of the cylinder. The corresponding closure Dy
is self-adjoint. Moreover, for t > 0, Dexp —tD? — Dy exp —tD? is of the trace class and
the following relative trace formula holds

(0.4) Tr(De“l’D’ _ 'Dne_mg)=/trE(:c,a:,t) dz.
Z

In order to be able to define the eta function of D using (0.4), we have to study the
asymptotic behaviour of (0.4) as t — 0 and t — co. The small time asymptotic follows
essentially from the corresponding local heat expansion on a closed manifold and the
explicit description of the heat kernel on the cylinder. To obtain the large time asymptotic
we need some results about the spectral decomposition of D which we recall in §4. To study
the continuous spectrum we may regard D as a perturbation of Dy and apply standard
techniques of scattering theory. It follows that the wave operators Wi (D, Dy) (cf. (4.8)
for their definition) exist and are complete. Thus, the absolutely continuous part of D
is unitarily equivalent to Dy. Moreover, the scattering operator C' = W} o W_ is well-
defined. Let C()A), A € R, be the corresponding scattering matrix determined by the
spectral decomposition of C with respect to the spectral measure of Dy. Let y; run over
the eigenvalues of A and denote by £(ut;) the pu;—eigenspace of A. For A € R, C(}) is a
unitary operator in 69#?()\:5(/5). Let p; > 0 be the smallest positive eigenvalue of A. If

|A] < p1, then C()) acts in Ker A. It admits an analytic continuation to a meromorphic
function of A € £; = C — ((—o0, —p1] U [p1,00)) with values in the linear operators in
Ker A. Moreover, C()) satisfies the following functional equation

(0.5) C(-N)C(\) =1d, yC(\)=-C(\)vy, v€.

In §5 we determine the large time asymptotic of (0.4). The main result is Corollary 5.16
which states that

(0.6) /ZtrE(m,:c,t) dr = —2% /:1 re~ Tr(yC(=A)C'(V)) dX + O(e™ ")

for t > 1. Here C'(z) = (8/02z)C(z). In fact, we expect a more general formula to be true.
Observe that the scattering matrix C()) is real analytic at all real points A which do not
belong to Spec(A4). Denote by C’()) the derivative of C(A) at A ¢ Spec(A). We claim that
the following relative trace formula holds

Te(De™®" — Dpe™P0) = XN -~ L / Ae™ N Tr(yC(=N)C'(V)) dA.
™ 27 Jy

Here the \}s are running over the eigenvalues of D. Formula (0.6) would then be an
immediate consequence of this trace formula.
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Since C(A) is analytic, this formula leads to an asymptotic expansion of fz tr E(z,z,t) dz
as t — oo. The coefficients of this expansion are determined by the scattering matrix.
They are nonlocal in contrast to the coefficients occurring in the asymptotic expansion for
t— 0.

Based on these results, we introduce in §6 the eta function n(s, D). If D is a compatible
Dirac type operator, then 7(s, D) is regular at s = 0 and the eta invariant is given by

(0.7) 17(0,13)=%/0 t_I/ZLtrE(m,w,t)dmdt.

One of our main goals is to compare the two types of eta invariants studied in this paper.
First note that, by (0.5), 7 = C(0) is a unitary involution of Ker A which anticommutes
with 4. In particular, we may use 7 to define the boundary conditions for D. There is
also an equivalent description in terms of Lagrangian subspaces of Ker A. Observe that
Ker A has a natural symplectic structure defined by &(z,y) = (yz,y) where (z,y) denotes
the L? inner product of z,y € Ker A. Then L = Ker(C(0) — Id) is a Lagrangian subspace,
that is, it satisfies L @ vL = Ker 4 and ®(L, L) = 0. Furthermore, given ¢ € Ker A, there
is associated a generalized eigensection E(¢,A) of D (cf. §4). If ¢ € L then ¢ = 1 E(¢,0)
satisfies Dy = 0 and, on R* x Y, it has the form ¢ + ¥ where 1 is square integrable. In
particular, ¢ # 0. In other words, ¢ is the limiting value of an extended L?-solution of
Dy = 0 in the sense of [APS1]. It follows from Lemma 8.5 that L is precisely the subspace
of all limiting values of extended solutions. Thus, the continuous spectrum of D gives rise
to a distinguished choice of an involution ¢ of Ker A — the on-shell scattering matrix C(0)
— or, equivalently, to a distinguished Lagrangian subspace of Ker A. Our main result can
then be stated as follows

Theorem 0.1. Let D : C*°(M,S) — C>®(M,S) be a compatible Dirac type operator
which, on a neighborhood I x Y of Y, takes the form (0.3). Let C(A): Ker A — Ker A be
the associated scattering matrix in the range |A\| < p; and put 7 = C(0). Then we have

n(0, D;) = (0, D).

In part II we shall employ this formula to prove a splitting formula for eta invariants.

To prove Theorem 0.1, we pick a > 0 and consider the manifold M, = MU([0,a] xY).
The operator D has a natural extension D{a) to a compatible Dirac type operator on M,. It
follows from the variational formulas of §2 that (0, D(a), ) is independent of a. Therefore,
it is sufficient to show that lim,—.. 7(0, D(a);} = 7(0,D). To establish this result, we
follow partially the approach used by Douglas and Wojciechowski [DW]. Namely, we start
out with formula (0.2) and split the integral as follows

Va oo

Lo+l

0 Va
In §7 we prove that, as a — oo, the first integral converges to n(0,D). To deal with
the second integral, we write Tr(D(a),.e“D(“)i) as Si(a,t) + Sa2(a,t) where S is the
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contribution to the trace given by all eigenvalues A(a) satisfying |A(a)] > a™* for some
0 < k < 1. Then it is easy to see that fj% S1(a,t) dt tends to zero as a — oo. It remains to

study the behaviour of f; Sz(a,t) dt as a — oo. This is done in §8. If Ker A = {0}, then

the continuous spectrum of D has a gap at 0 which implies that the nonzero eigenvalues
of D(a)i1_ stay bounded away from zero and the proof is finished. This case was studied
in [DW]. The difficult part is the case when Ker A # {0}. Then the continuous spectrum
of D has no gap at zero and eigenvalues of D(a), will cluster at zero if @ — 0o. The crux
of the argument is to show that the nonzero spectrum of D(a), becomes asymptotically
symmetric near zero and therefore, cancels out in the limit a — oo. Let ¢ 0 be an
eigensection of D(a), with eigenvalue A. On [0,a] X Y, ¢ takes the following form

p=e" MYy + el + g

where ¥4 € Ker 4, y¢+ = *i11 and (v, ) is orthogonal to Ker A for each u € [0, al.
We call

Qo = e—i,\u¢+ + C;.A"”l,[)__

the constant term of ¢. In Proposition 8.14 we show that there exist ag, 6 > 0 such that, for
a > ag and 0 < |A| < 8, the constant term of ¢ is nonzero. Thus, the eigensections of D(a),
with sufficiently small nonzero eigenvalues are determined by their constant terms. We
continue by investigating the properties of the constant terms. Write ¢4 as ¥4 = ¢ — 1y¢
where ¢ € Ker{C(0)—Id). Associated to ¢ there is a generalized eigensection E(¢, z) of D
with eigenvalue z € R. The main observation is that the constant term of ¢ differs from
the constant term of E(¢, A) by a term whose norm is exponentially small as a — co. The
constant term of E(¢, A) has the form

e-—:',\ud)+ + e;‘)\u C(/\)‘l,b+
Therefore, the constant term of ¢ satisfies
(0.8) |- = COs IS €™, a2 ar.

Let L_ = Ker(C(0) + Id) and denote by P_ the orthogonal projection of Ker A onto L_.
Let I : L_ — Ker(y — i) be defined by I(¢) = ¢ — iv¢. Then we consider the linear

operator
S(A)=P_oC(A)oI

acting in L_. It follows from (0.8) that the function of z, det(e?**S(2)+1d), has a real zero
p such that |p— A| < e™®. Moreover, the multiplicity of the eigenvalue A can be estimated
by the multiplicity of p. Then we study more closely the real zeros of det(e?'**S(z) + Id)
near z = 0. The final result, Theorem 8.32, shows that, up to exponentially small terms,
we may replace the small eigenvalues by the real zeros of det(e?**S(z) + Id) near z = 0.
Since S(A) satisfies

S(=A)SA) =1d+0(?), |M<e,

it follows then that the nonzero spectrum of D(a), is indeed asymptotically symmetric
near zero.



1. Eta Invariants for Manifolds with Boundary

Let M be a compact oriented C* Riemannanian manifold of dimension n with smooth
boundary OM =Y. We shall assume that the Riemannian metric of M is a product near
the boundary.

Let S — M be a complex vector bundle over M equipped with a Hermitian fibre
metric which is also a product near the boundary. Let C*°(M, S) denote the space of
smooth sections of S and C§°(M, §) the subspace of C°(M,S) consisting of all sections
with support contained in the interior of M. Given 3,8’ € C®(M,S), let (s,s') denote
the inner product of s, s’ defined by the fibre metric of § and the Riemannian metric of
M. By L*M, S) we shall denote the completion of C§°(M, S) with respect to this inner
product. Let

D:C®(M,S)— C>=(M,S)
be a linear first order differential operator on M which is formally self-adjoint, that is,

D satisfies (Ds,s') = (s,Ds') for all 5,3’ € C§°(M,S). We assume that, in a collar
neighborhood (—1,0] X Y of the boundary, D takes the form

(1.1) D=7(%+A)

where v : S§|Y — S|Y is a bundle isomorphism and
A C®(Y,S|Y) = C=(Y, S|Y)

is an elliptic operator on Y satisfying

(1.2) 7' =-ld, y'=-—v
and , ‘
(1.3) Ay=—A, A" =A.

Here A* means the formal adjoint of A. Thus, A is symmetric. Examples of such operators
are Dirac type operators.

Since Y is closed, A is essentially self-adjoint and has pure point spectrum. Let ¢
be an eigensection of A with eigenvalue u. By (1.3), v¢ is also an eigensection of A with
eigenvalue —yu. Thus, the non-zero spectrum of A is symmetric.

If we regard D as an unbounded operator in L2(M, §) with domain C$(M, S), then
D is symmetric. To obtain a self-adjoint extension of D : C¢°(M,S) — L?(M,S) one
has to introduce boundary conditions. Appropriate boundary conditions are the spectral
boundary conditions introduced by Atiyah, Patodi and Singer [APS1]. Let M, (resp.
II_) denote the orthogonal projection of L2(Y, S|Y) onto the subspace spanned by the
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eigensections of A with positive (resp. negative) eigenvalues. Note that the following
equality holds:

If Ker A # {0}, then the boundary conditions defined by I+ are not self-adjoint. In this
case we proceed as in [DW,pp.162]. By (1.3), v induces a map of Ker A into itself which
we also denote by v. We make the following

Assumption. There ezists a unitary involution

(1.5) o:KerA — KerA with oy = —vo.

As we shall see in Proposition 4.26, this assumption is always satisfied. Let Ly denote
the +1-eigenspaces of 0. Then we have an orthogonal splitting

(1.6) KerA=L,®L_
with
(1.7) v(Lt) = L.

In particular, Ker A is even—dimensional. We consider a special case. Let S|Y = St & S~
be the splitting of S|Y into the +i-eigenspaces of 4. In view of (1.3), we obtain operators

Ay : C=(Y,5%) = C=(Y,SF) with A} = A_.

If D is a Dirac type operator, it follows from Theorem 3 of [Pa, Chap. XVII] that Ind A} =
0. Thus, we get an orthogonal splitting

KerA=KerAd; §KerA_

and dim Ker A4 = dim Ker A_. Using this spitting one may construct involutions o as in
(1.5).

Let o be such an involution and let PZ denote the orthogonal projection of L(Y, S|Y)
onto L. Put

(1.8) Mg =11y 4+ PY

Note that the following equality holds

(1.9) M5y =1d— 1% =TI°.

Let H'(M,S) denote the first Sobolev space. Put

(1.10) dom(D,) = {p € H'(M,S) | I? (p|Y) = 0}
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and define D, : dom(D,) — L*(M,S) by D, = Dy where, on the right hand side,
derivations are taken in the sense of distributions. If KerA = {0}, there is only one
involution. In this case we shall write Dyy_ in place of D,.

Lemma 1.11. The operator D, is essentially self-adjoint.
Proof. Let

(1.12) C®(M,S;T17) = {p € C(M,S) | 17 (¢]Y) = 0}.
Then we may construct a two-sided parametrix
R:C®(M,S)— C®(M,S;117)

for D, in the same way as in [APS1,p.54]. Thus DR — Id and RD — Id are smoothing
operators and the lemma follows by standard arguments. Q.E.D.

Now we shall study the heat operator exp —tD?. For this purpose we first consider the
heat equation on the half-cylinder X = R*xY. Let 7 : X — Y be the canonical projection
and Sx = 7*(S|Y). Let DX : C®(Sx) = C>®(Sx) be defined by DX = +(8/0u + A).
Then DX : C&°(Sx) — L*(Sx) is symmetric and, if we impose boundary conditions by
17 ((0,-)) = 0, we obtain a self-adjpoint extension DX. Let e, , be the kernel of the
heat operator exp —t(DZ )?. Then e, , is a smooth kernel which satisfies

6 _ o A2 t)=0, 1 “t)=§
(E—*a—u:'f' z)el,a((u:x)1(v:y)& )— ’ t__%el,ﬂ(z’z’ )_ z,2'

d

% (e1,,((0,), z,t)) = 0, T2 (ﬁel,,((o, ), z,t)|u=0) =0.

It can be given by an explicit formula. Let ¢ ;7 € N, be an orthonormal basis for Ran(II{ )
consisting of eigensections of A with eigenvalues 0 < yt; < 2 < -, Then we have

ey, o((u,2),(v,y),1) = E{i/—:;_t(exp{_(u ;—t‘v) }-{-exp{—(u -Lv) })

i=1

u+v

2Vt
+ i{ i’/_‘% (exp{—(igt—u)i} - exp{—(u%ﬁ})v%(w) ® 14;(¥)

where erfc is the complementary error function defined by

2 ® 2
erfe(z) = ﬁ e du,

9

(1.13) ~ pijeti(uto) elft:( +,uj\/£)}¢j(«'ﬂ) ® $;(v)




Let M = M U —M be the double of M. Then S extends to a bundle S over I\;I Because
of (1.1), D has a natural extension to an elliptic operator D : C>(8) — C=(3). Let e,
denote the restriction to M of the fundamental solution of 8/t 4+ D?. Then a parametrix
e, for the kernel K, of exp —tD? is obtained by patching together ¢; , and e; as in [APS1,
p.55]. More precisely, let p(a, b) denote an increasing C'® function of the real variable u,

such that p = 0 for v < a and p =1 for u > b. Suppose the metric of M is a product on
the collar neighborhood (—1,0] x Y of Y. We define four C* functions ¢,, ¢2,%1,%, by

¢1 = p(—-1,-5/6), 1 = p(—4/6,-3/6)

(1.14) $y=1-— p(—2/6,—1/6), Yo =1—1.

We regard these functions of u as functions on the cylinder [-1,0] x Y and then extend
them to M in the obvious way. Then we put

(1.15) e = ¢1e1,0%1 + P2e2%2.

This is a parametrix for the heat kernel K, and K, is obtained from e, as usually by a
convergent series of the form

(1.16) K, =€, + Z( 1), * €4,

m=1

where * denotes convolution of kernels, ¢; = (8/0t + D*)e, and ¢,y = €p—y * €1, m > 2.
It follows from (1.16) that, for t > 0, K, is a C™ kernel which differs from e, by an
exponentially small term as t — 0.

Lemma 1.17. (i) The operators exp —tD? and D, exp —tD? are of the trace class for
t>0.

(ii) As t — 0, there exist asymptotic expansions

(1.18) Tr(e "‘D° z i(Dy) =™
j=0

and

(1.19) Tr(Dye _m= Zb(D ) t=n=1)/2,

(i11) There exist local densities a;(D,)(z) and bj(Ds)(z) such that

4;(Dy) = / a;(Do)(z) and bi(D,) = /Mb,-(Da)(z).
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The local densities aj(Dg)(x), bj(Ds)(z) are polynomials in the jets of the total symbol
of D, with coefficients which are smooth functions of the leading symbol. Moreover,
bj(D,)=01if j is even.

Proof. Since, for t > 0, K,(z,y,t) is a smooth kernel, it follows that exp —tDZ and
D, exp —tD? are Hilbert-Schmidt operators. Employing the semi~group property, we get
(i). Furthermore, we have

(1.20) Tr(e"tD:) =/ tr Ko(z,z,t) dz
M
and
(1.21) Tr(D,e-‘D?r)zf tr (D Ko(z,y,1)|,_, ) dz.
. M

For the asymptotic expansion, we may replace K, by its parametrix e,. The asymptotic
behaviour of f[_l 0]xY tre,(z,z,t) dr can be studied explicitely by using (1.13). For the

interior parametrix we use the local heat expansion. This implies (1.18). Furthermore,
(1.15) implies that

f tr(,r(% + A)er((19), (0, 9),1)]_ ) dy =0
Y

and, by Lemma 1.7.7. of [Gil], there exists a local expansion of the form

oo
tr(Dzex(w,y, t)|:=y) ~ Z ¢;(z) tli—n=1/2
j=0

as t — 0. This proves (1.19). Q.E.D.

By Lemma 1.17, (i), D, has pure point spectrum. Let --- < A; < Aj4;1 < --- be the
eigenvalues of D, where each eigenvalue is repeated according to its multiplicity. Consider
the counting function

NQA)=#{ [\l <A), Az0.

Applying a standard Tauberian theorem to (1.18), we get

Corollary 1.22. As A — oo, one has

Vol(M)

Y= @yprrg

A" 4+ o(A™).

Therefore, we can introduce the corresponding zeta and eta function. Let

(1.23) (s, Dg) = Y IN17°,

Aj#O
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and

(1.24) n(s,Dg) = > sign);|A;~".
AjF0

By Corollary 1.22, both sides are absolutely converging in the half-plane Re(s) > n. Let
h = dim Ker(D,). Then, by Mellin transform, we obtain

(1.25) ((s,Dq) = P_ls. / 42/2-1 (Tl_(e—tDz) _ h) dt
(5) *
and
(1.26) Wi Do) = =g [ HOTI (D, P .
r(=5-)

By Lemma 1.17, these integrals are absolutely convergent for Re(s) > n and admit mero-
morphic continuations to C. For compatible Dirac type operators (see below) this was
established in [DW]. Thus, ((s,D,) and 5(s,D,) are meromorphic functions of s € C.
The poles can be determined from the corresponding asymptotic expansions (1.18) and
(1.19). Of particular interest is the behaviour at s = 0. The zeta function {(s, D,) is
always regular at s = 0 and ((0,D,) = a,(D,) — h. The eta function n(s,D,) has a
simple pole at s = 0 with
2

(1.27) : E{fg (s, Dg) = 7—7; ba(Dy).

By Lemma 1.17, (iii), the residue is zero for n even. Now suppose that n is odd. We shall
not study the behaviour of the residue in general, but only discuss this question for the
case of an operator of Dirac type. We briefly recall the definition of such an operator (cf.

[GL], [BG)).

Let Clif(M) = Clif(TM) be the complexified Clifford algebra bundle over M. The
Riemannian metric and connection of TM can be naturally extended to CLif(M). Let S
be a complex vector bundle over M. A Clif(M) module structure on S is a unital algebra
morphism

v : Clif(M) — End(S).

A vector bundle § with a Clif(M) module structure is called a Clifford bundle over M if
it is equipped with a Hermitian fibre metric and a unitary connection V such that
(1) For each unit vector e € T, M, the module multiplication e : §; — S, is an isometry.
(i1) Vv =0.
A connection on S which satisfies (11} is called compatible. Note that V is compatible
iff for all ¢ € C°(ChLf(M)) and ¢ € C(S) the following relation holds

V(¢y) = ¢V (¥) + (V).

12



We shall assume that the fibre metric and the connection of S are also products near the
boundary.

If S is a Clifford bundle there is a natural first order elliptic differential operator
D : C>=(S) — C=(S) associated to S which is defined as the composition

C=(S) S C®(S®T* M) — C=(S @ TM) — C=(5).

Here the second arrow is defined by the Riemannian metric of M and the third arrow
by the Clif(M) module structure of S. This is the Dirac operator attached to S and,
following [BG], we call D a compatible Dirac type operator. Let X, ..., X, denote a local
orthonormal frame field. Then D can be written as

D=3 Xi Vx,.

k=1

Let ¥ € C°(End(S)). Then we call
D¥=D+4

an operator of Dirac type. First consider a compatible operator D of Dirac type. Recall
that the coefficients of the asymptotic expansion (1.19) are completely determined by the
interior parametrix e;. Therefore, we can apply Theorem 3.4 of [BG] and get

Proposition 1.28. Let D be a compatible operator of Dirac type.
(a) If j is even, then bj(D,) = 0.

(b) If n is even, then b;(D,) = 0 for all j.

(c) If § < n, then b;(D,) = 0.

By (1.26), this implies

Corollary 1.29. Let D be a compatible operator of Dirac type. Then n(s,D,) is holo-
morphic in the half-plane Re(s) > —2. Moreover, the eta invariant n(0,D,) is given
by

(1.30) 7(0,D,) = --\/1: / t=1/2 Tr(D,,e"Dg)dt.
T Jo

This result was also proved in [DW]. In the next section we shall continue with the
investigation of the residues of the eta function for general Dirac type operators.

Suppose that n = 2k, k € N, and D is a compatible Dirac type operator. Consider
the standard involution 7 : S — S defined by

k

T=1:‘6]"'62k

13



where ey, ..., e2x is a local tangent frame field. Then we have
(1.31) D =—-D7r and 74 = Ar.

Hence, T commutes with the spectral projections II+ and induces a map 7 : Ker A — Ker A.
Suppose that the involution (1.5) satisfies 70 = o7. Then 7 also commutes with II.
Therefore, by (1.31), we obtain 7D, = —D,r. This implies that the spectrum of D, is
symmetric and, hence, the eta function vanishes identically. In particular, this is the case
if Ker A = {0}. Thus, the interesting case is the odd-dimensional one.

14



o

2. Variation of Eta Invariants

In this section we shall study the behaviour of the eta invariant under variation of the
operator and the boundary conditions. We first study the case where the boundary condi-
tions are held fixed. This means that the operator D remains constant near the boundary
and the involution o of Ker A is not varied. As above, we assume that all metrics and
connections are products near the boundary.

Proposition 2.1. Let D, be a C* one-parameter family of formally self-adjoint elliptic
first order differential operators on M. Suppose that, on a collar neighborhood (—1,0] x Y,
D, is given by

d
D, ='T(a +A)

with v and A independent of v and satisfying (1.2), (1.3). Let o be a unitary involution
of Ker A as in (1.5). Let B, = (D,)s be the self-adjoint extension of D, defined by o and
put B, =(d/dv)B,. Then

a% Tr(Bye™ %) = (1 + 21%) Tr(B,e™*).

Proof. The operators D, act on smooth sections of a fixed vector bundle §. However,
the fibre metric of S and the Riemannian metric of M may depend on v and, therefore,
the inner product in C°°(M, S) may depent on v. In any case, the corresponding Hilbert
spaces L¥(M, S), have equivalent norms. Hence, the trace functional is independent of
v [La, p.161]. Moreover, by our assumptions, the domains of the operators B, agree
as topological vector spaces. Hence, we may regard B, as a one-parameter family of
linear operators in a fixed Hilbert space L?*(M,S), with domain independent of v. Thus,
B, = dB, /dv is well-defined and

i) —_B? O . _up . i O _.p
(2.2) 5, Tr(Boe B.) =Tr(5;(B,,e t8.)) = Tv(B,e 'Bu)+fn~(31,73;e tB.).

To determine the derivative of the heat operator with respect to the parameter v, we
proceed as in [Me]. We use the identity

d d . .
(2.3) (5 +B2) 5oe ™% = —(BuBy + BuB) 5.

Since the initial condition is independent of v, we can use Duhamel’s principle to solve

(2.3). This leads to

t
ie_‘B: = —f C-U-r)B: (Bva + Bva) 6—r33 dr.
0

(2.4) o
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Using (2.4) and the trace identities, we get

'I‘l'(B.,'-a%e_tB‘:’) = —2tTr(Bsze_tB'3) = 2t%’]_’r(3ve—133).

Q.E.D.

Let K,(z,y,t) be the kernel of exp —tB?. Then it follows in the same way as in the
proof of Lemma 1.17 that

(B, ) = [ ((Bu)eKulant),,) ds

where D, = (d/dv)D, is a first order differential operator. If we employ Lemma 1.7.7 of
[Gi1], it follows that, as t — 0, there exists an asymptotic expansion of the form

(25) Tl‘(B,,e_th) ~ ZCJ(U) t(j"‘ﬂ—l)/z.
—0

The coefficients c;(v) are again local in the sense that there exist densities c;(v,z) such
that cj(v) = [, cj(v, ).

Proposition 2.6. Let the assumptions be the same as in Proposition 2.1. Moreover,
suppose that dim Ker(B,) is constant. Then, for Re(s) > n, we have

7, s

oo
(27) -6—7](3, Bv) = - / t(a—l)/? Tr(Bve—-tB:) dv.
v

r(5)

The integral is absolutely converging.

Proof. We follow the proof of Proposition 8.39 in [Me]. Let Re(s) > n and T > 0. Using
Proposition 2.1, (2.5) and integration by parts, we obtain

;] T N T 9 . .
5-/ t("‘l)/zTr(B,,e“Bv)dtz/ t("l)/2(1+2t§)Tr(B,,c"Bv)dt
(28) 7 ° .

= 2TCHD/2 Ty (B,eTEY) — s/ =D T (Be™B0) dt.

0

Let H, be the orthogonal projection of L*(M,S), onto Ker B,. Since dim Ker(B,) is
constant, H, depends smoothly on v. By the self-adjointness of B,, we have B, H, =
H,B, = 0 and, therefore,

B,=(1d - H,)B,(1d - H,).

This implies
B,=-H,B,(ld—H,) + (ld- H,)B,(Id - H,) — (1d — H,)B,H,.
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Since || (Id — H,)exp —tB? ||< €~*¢ for some ¢ = ¢(v) > 0, it follows that

|’I‘1‘(B,,e"”33) < Cypeter,

If we pass to the limit T — oo, the first term on the right hand side of (2.8) vanishes and
the proposition follows. Q.E.D.

By (2.5), the integral on the right hand side of (2.7) admits a meromorphic continua-
tion to C. At s = 0 it has a simple pole with residue equal to 2¢,(v). This implies

Corollary 2.9. Let the assumptions be as in Proposition 2.6. Then (9/0v)n(s, B,) is
holomorphic at s = 0 with

0

2
kN (SaBt’)| = ——=¢ca(v)

a=0 \/TF

where ¢, (v) is the n—th coefficient in the asymptotic expansion (2.5).

Now observe that the poles of 5(s, B,) are located at s =n — j, 7 € N. In particular,
poles stay separated during a deformation. Since (0/0v)n(s, B, ) is holomorphic near s = 0,
it follows that Res,=¢7(s, B,) is independent of v. We shall now extend this result to the
case when dim Ker(B,) is not necessarily constant.

To study n(s, B,) near v = 0 we pick ¢ € R not an eigenvalue of +B,. By continuity
it is not an eigenvalue of any +B, for |v| < €. Let P, denote the orthogonal projection
of L*(M, S), onto the subspace spanned by all eigensections with eigenvalue ) satisfying
|| < c. Put

(2.10) B, =B,(Id-P.) + P..

Then, for |v| < €, B), is invertible and depends smoothly on v. Since P, has finite rank,
the eta function is also defined for B) and

n(s,By) =n(s,B,) + > signd;|A;|™* — Tx(P.).
[Ajl<e

Thus 7(s, B,) and 7(s, BY) differ by an entire function. In particular, 5(s, B, ) and (s, B})
have the same residue at s = 0. Furthermore, the proofs of Propositions 2.1 and 2.6 work
for B! as well. In fact, the proof of (2.7) simplifies because B! is invertible. Thus

oo
(2.11) %1;(5,BL)= .__;.':__._1_/(; t(s—l)/2Tr(B:Je—t(Bu) )dv
r(—~)

for Re(s) > n. Since P, is a finite rank operator, it is easy to see that

Tr(B,e " B)*) = Tr(B,e™*52) + O(1)
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as t — 0. Together with (2.5) it follows that the integral on the right hand side of (2.11)
admits a meromorphic continuation to Re(s) > —1. Moreover, it has a simple pole at

s = 0 with residue 2¢,(v) where ¢,(v) is the corresponding coefficient in (2.5). Therefore,
(8/8v)n(s, B;) is holomorphic at s = 0 and

9 '
%n(‘gi BU)L:O - \/T_F- Cn(U)-
This implies

Corollary 2.12. Let the assumptions be the same as in Proposition 2.1. Then the residue
of n(s, B,) at s = 0 does not depend on v.

Proof. As explained above, we have

Res n(s, By) = R_eg n(s, B.).

Moreover, poles of 7(s, B,) may only occur at s =n—j, 7 € N. Let ¥ C C be the circle of
radius 1/2 with center at 0. Then (3/0v)n(s, B.) is holomorphic in the interior of v and,
therefore,

) 1 [0 o
70 R (s By) = o La”(S’Bv)ds =0
Q.E.D.

Thus Res,=¢ 7(s, D) is a homotopy invariant of D,.

As an application we consider a compatible Dirac type operator D : C*(M,S) —
C>®(M,S) which, on (—1,0] x Y, takes the form (1.1). Let 3 € C°(End(S)) be such
that ¥* = 1. Moreover suppose that, on (—1,0] x Y, ¢ satisfies (0/0u)y(u,y) = 0 and
v = —py. Put D¥ = D + 1. Then DV is formally self-adjoint and, near Y, it takes the
form (1.1). Let x € C*°(R) be such that x(u) = 0 for u < —1 and x(u) =1 for u > —1/2.
We regard x as a function on (—1,0] x Y in the obvious way and then extend it by zero
to a smooth function on M. For v € R, put

DY = D +v(1—x)¥ + x¥.

Then DY is a one-parameter family of Dirac type operators which satisfy the assumptions
of Proposition 2.1. Let ¢ be a unitary involution of Ker A as in (1.5). In view of Corollary
2.12, the residue at s = 0 of (s, (D¥),) equals the residue at s = 0 of (s, (DY ),) which is
determined by the coefficient b,((DY),) of the asymptotic expansion (1.19). Since D is a
compatible Dirac type operator the corresponding local density b (z, (DY ),) has support
in (—1,0] x Y. Therefore, in order to determine b,,, we may replace M by the half-cylinder
R-xY. Let § be the pullback of S|Y to R~ xY and let D = ~v(0/du+ A)+ x1p regarded as
operator in C®(R~ x Y, S). Here v(0/0u + A) is the expression for D on (—1,0] x Y. Let
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€ C(End(S)) be defined by %(u,y) = 1(0,v), y € Y. Note that ¢ satisfies v = —i)y.
For v € R, put X i i

D, =D +v(1— x)¢.
Thus Dy = D. Moreover, on (—1,0] x Y, we have D, = v(8/0u + A). We use II7,
defined with respect to A, to introduce spectral boundary conditions. Let (D,), be the

corresponding self-adjoint extension in L?. Now we observe that Lemma 3.9, Proposition
3.11 and 3.12 apply in the present case as well. This implies that the integral

f tr((Dy)oe ™" PV (2, 2)) dx
Z

is absolutely convergent and has an asymptotic expansion as t — 0. For v = 0, the
coefficient of t~1/% equals our b, above. Furthermore, if we proceed as in the proof of
Proposition 2.1, it follows that

%fztr((f)v),g—z(bu)i(m,m)) dz = (1 +2t%) -[Ztr((l — x(@)d(z) e PV (2, 7)) da.

Since v, anticommutes with 1,!3(:1:) and v; o exp —t(f)u)ﬁ(m,x) = exp —t(D,
it follows that the right hand side vanishes. This implies that (8/9v)b,(v
b.(1) = 0. Thus b, = 0 and we proved

)a(z,2) 07z
}) = 0. But

Proposition 2.13. Let D : C®(M,S) — C®(M,S) be any Dirac type operator which
satisfies (1.1). Let D, be a self-adjoint extension defined by some unitary involution (1.5).
Then 1(s, Dy) is regular at s = 0.

Let D, be a smooth one-parameter family of Dirac type operators such that, on
(-1,0} x Y, D, = v(9/0u + A) with v, A independent of v and satisfying (1.2), (1.3).
Let o be any unitary involution of Ker A as in (1.5). Put B, = (D,),. Then (s, By) is
holomorphic at s = 0. However, if eigenvalues cross zero, n(0, B,) is not smooth in v, but
has integer jumps. Let

(2.14) 7(0,B,) = n(0,B,) mod Z

be the reduced eta invariant which takes values in R/Z. If B; is defined as in (2.10), it is
clear that 7(0, B,) = (0, B.). Using our results above, we get

Proposition 2.15. (i) The reduced eta invariant 7(0, B,) is a smooth function of v and

70, B) = ~—= ea(0)

(i1) If dim Ker(B,) is constant, then (0, B,) is smooth and

d 2
E ?](0, B,,) = _ﬁ cn(v).
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Here c,(v) is determined by the asymptotic expansion (2.5). Moreover, there exists a
density c,(z;v) which is locally computable from the jets of the complete symbole of D,
such that cp(v) = f,, cn(z;0).

We shall now discuss two applications of our variational formulas. Let D be a Dirac
type operator on M which satisfies (1.1)-(1.3). Let a > 0 and set

M, = MU ([0,a] x V).

The bundle S can be extended in the obvious way to a vector bundle S, over M, and D
has a natural extension to a Dirac type operator D(a) acting in C*(M,, S,) which has
the same properties as D = D(0). Let o be a unitary involution of Ker A as in (1.5). Let
D(a)s be the self-adjoint extension of D(a) : C$°(Ma, Sa) = L*(M,, S.) defined above.

Proposition 2.16. The eta invariant n(0, D(a),) is independent of a.

Proof. First we shall show that dim KerD(a), is independent of a. Let ¢ € Ker D(a),.
This is equivalent to say that p € C°(S,) satisfies

(2.17) D(a)p =0 and N7 (pl({a} xY)) =0.

Let ¢;, 7 € N, be an orthonormal basis for Ran(II%) consisting of eigensections of A with
eigenvalues 0 < 1 < pp < -+, In view of (2.17), we may expand ¢|([0,a] x Y') in terms of
the qﬁj:

oo

plu,y) =) e ¢i(y).

i=1
Let o' > a. Then ¢ can be extended in the obvious way to ¢ € KerD(a'), and the
map ¢ — ¢ defines an isomorphism of Ker D(a), onto Ker D(a'),. Next, observe that
there exists a smooth family of diffeomorphisms f, : (—1,0] — (—1, a] which satisfies the
following properties

fo(u)=u for we(-1,-2/3) and f,(u)=u+a for u€(-1/3,0].

Let 1, : (=1,0] x ¥ — (=1,a] x Y be defined by 4(x,y) = (fa(u),y) and extend 1,
to a diffeomorphism ¥, : M — M, in the canonical way, i.e., 1, is the identity on
M —((-1,0] x Y)). There is also a bundle isomorphism ;La : § — 5, which covers ¥,. This
induces an isomorphism ¥} : C®(M,,5,) = C*(M,S). Let D(a) = ¢ o D(a) o (2)~L.
Then D(a) is a family of Dirac type operators on M and D(a) = ¥(8/0u + A) near Y.
Furthermore, D(a), = ¥ 0 D(a), o (2)~*. Hence

1(s, D(a)g ) = 1(s,D(a),) and 4 (Ker D(a),) = Ker D(a),.

In particular, dim Ker D(a), is constant and we can apply Proposition 2.15, (i), which

gives
2

%L (0, D{a)s) = —\/—; cnla).
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Now let S! be the circle of radius 2a, w :ASi X Y — Y the natural projection and Sa =
7*(S|Y). We define D, : C™(S,) = C°°(S,s) by D, = ¥(8/0u + A). Since c,(a) is locally

computable, it follows in the same way as above that
9 :
ﬁ cn(a).

But a direct computation shows that the spectrum of D, is symmetric. Hence 5(s,D,) =0
and, therefore, c,(a) = 0. Q.E.D.

d R
%T’(OiDﬂ) =-

Next we shall study the dependence of the eta invariant (0, D,) on the choice of . This
question was independently settled by Lesch and Wojciechowski [LW]. Following [LW], we
pick a self-adjoint endomorphism T of Ker(y —Id) such that e2™7 = oy0, |Ker(y—1d) and
—n < T £ 7 ie., T = 5= log(opo; |Ker(y — 1d)). We extend T to Ker A by putting T' = 0
on Ker(y + Id). Let p, = e*™**T and put

Oy = psdopPe, 0L v <1

This is a one-parameter family of unitary involutions of Ker A which anticommute with ¥
and connects oy to ¢;. In order to study the variation of the eta invariant of D, we have
~ to transform the family D, into one with fixed domain. This can be done as follows. Let

f € C*®(R) be such that f(u) =1 for —1/3 < v and f(u) = 0 for u < —2/3. Note that, by
Fubini’s theorem, we may identify L%([-1,0] x Y, S) with L?([-1,0]; L%(S|Y)). Therefore,
we may regard L2([—1,0]; Ker A) as a closed subspace of L?(M, S). With respect to this
identification, we define a one-parameter family U,, 0 < v < 1, of unitary operators in
L*(M,S) as follows: Set U, = Id on L?*([0, 1]; Ker A)* and

(Up) () = 2™ 1T (o)), ¢ € L2([-1,0]; Ker A).

Let II% be the orthogonal projection (1.8) defined with respect to ¢,, 0 < v < 1. Then,
by definition, we have

(2.18) Uyoll, =%, 0<v <1
Put
(2.19) D, =U,D,,U;, 0<v<1.

By (2.18), we get
dom D, = dom D,,.

Hence D,, , 0 <v < 1, is a smooth family of self-adjoint operators in L*(M, S) with fixed
domain. Moreover, it follows from the definition of U, that U,(C§°(M, S)) = C§°(M, S).
Put D), = U,DU}. Then D, : C®(M,S) — L*(M,S) is symmetric and D) is the
self-adjoint extension of D! defined by the boundary conditions I1% (p|0M) = 0. This
implies

(2.20) D, =Dy, — 27ivf'yT, 0<v<1
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By (2.18), Dy, and D; have the same spectrum. Hence, the eta function 7(s, Dy ) is
well-defined and equals (s, D,,). Note that D) is not a differential operator, but our
results above can be easily extended to D . In particular, this applies to Proposition
2.15. Thus 4

£ 7(0.D0.) = ~—=cu(v)

where c,(v) is the coefficient of t=!/2 in the asymptotic expansion of Tr(D/, exp —t(D,,, )%).
By (2.19) and (2.20), the trace equals

Te(D,, Use P2 U2) = Te(U; D), Upe™P%0) = —2miTx(f'yTe™*Pev).

Since the support of f' is contained in (—1,0), we may replace exp —tD? by its
parametrix on [—1,0] X ¥ which can be taken to be

1 (u—u')?

_ —tA?
\/4? exp{ 4t }6 (:c,y).

This shows that

2 1
Te(f'yTe™*Pov) = \/—4—?T1-(7T) + O(e~c/t)

as t — 0 and, therefore,

2r 1
cn(v) = T To(T) = O log det(ogo; |[Ker(y — Id)).

Thus we have proved

Theorem 2.21. Let D : C*(M,S) — C®(M,S) be a Dirac type operator which, on
(-1,0] x Y, takes the formn D = v(0/0u + A) with conditions (1.2), (1.3) satisfied. Let
0u,01 be two unitary involutions of Ker A such that 0,4 = —vo;,1 =0,1. Then

7(0,D,,) — 1(0,Dg,) = —-’% log det(ogoy |Ker(y — 7)) mod Z.

This result was proved independently by Lesch and Wojciechowski [LW].



3. Heat Kernels on Manifolds with Cylindrical Ends

Let the setting be the same as in section 1. We introduce the non—compact manifold
Z=MU(Rt xY)

by gluing the half-cylinder Rt x Y to the boundary Y of M. We equip R* x Y with the
canonical product metric. Together with the given metric on M we get a smooth metric on
Z. Then Z becomes a complete Riemannian manifold of infinite volume. We extend the
bundle S with its fibre metric and the operator D to Z in the obvious way. The extended
bundle and operator will be also denoted by S and D, respectively. Thus, on Rt x ¥,

our( 4

where v, A satisfy (1.2), (1.3).

Let C§°(Z, S) be the space of compactly supported smooth sections of S over Z and
L*(Z,S) the completion of C$(Z, S) with respect to the natural inner product defined by
the fibre metric of S and the metric of Z. Then

(3.1) - D:C{(z,5)— L*Z,S)
is symmetric.

Lemma 3.1. The operator (3.1) is essentially self-adjoint.

Proof. It suffices to show that (D £ :)C$®(Z,S) is dense in L%*(Z,S). Suppose that
¥ € L*(Z,S) is orthogonal to (D £ {)C§(Z,S). By elliptic regularity, 3 is smooth and
satisfies Dy = Fip. If we expand ¥ on Rt X Y in terms of the eigensections of vA, it
follows that i satisfies an estimate of the form

| ¥(u,y) IS Ce™*, (u,y) € RT x Y,

for some constants C,c > 0. Applying Green’s formula, we get (Dy,v¥) = (¢, D¢) and,
therefore, 1 = 0. Q.E.D.

Let D denote the unique self-adjoint extension of D. In this section we shall investigate
the kernel K(z,v,t) of the heat operator exp —tD?. We construct a parametrix for K as
. follows. Let Q; be the restriction to M of the fundamental solution of 9/8t + D? on
the double M of M, i.e., Q; = ez in the notation of (1.15). Furthermore, let @; be the
fundamental solution of 3/t — 8*/du? + A on R x Y. Thus

1 (u—v)2 —tA2
Ql ((u,:c),(v,y),t) = \/m BXI){—T}C 4 (:I:,y)
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where e"“Az(:c,y) is the kernel of exp —tA?. Let the functions ¢y, @2, 91,12 be defined by
(1.14) and put

(3.3) Q=¢:1Q¥1 + $2Q29:.

Then @Q is a parametrix for K and K is obtained by a convergent series similar to (1.16).

(3.4) E=Q+ Y (-)"Qm=Q

m=1

where Q) = (8/8t + D})Q, Q. = Qm-1 * @ for m > 2 and * denotes convolution of
kernels. For t > 0, K is a C* kernel which represents exp —~tD?. In particular, it satisfies
(0/0t + D2)K(z,y,t) = 0. Moreover, for each zo € Z and m € N, there exist constants
C,c¢ > 0 such that

(35) || DED} (K (w,y,t) — Q(z,y,1)) |I< C exp (—-c(d(:c,:zo )2 + d(y, z0)? + 1) /t) ect

forallm;yeZ,k,l§1na.ndt>0.

Let Dy = v(9/du + A) regarded as operator in C°(R* x Y, S). Suppose that there
exists a unitary involution ¢ of Ker A such that yo = —o7. Let II{ be the orthogonal
projection (1.8) with respect to ¢ and put

CR(R* x Y, 8117) = {p € C®(RY x Y, 5) | T1Z (0, -)) = 0}.
Denote by CS°(R* x Y S;11%) the subspace of C®(R* x Y, §; T %) consisting of sections
which vanish for u > 0. Then Dy : CP(RY x Y, 5;11%) — LQ(R+ x Y, S) is essentially
self-adjoint. Let Dy be the unique self-adjoint extens1on We observe that the kernel K

of exp —tD} is given by formula (1.13) with the roles of ¢; and v¢; switched. From this
formula for Ky follows immediately that, for each m € N, there exist Cy,c; > 0 such that

(3g)k o
|5 57 4% AL (Ko((w, 1), (0,0),8) = @i ((w,9), (0,3),0)) IS Cr exp(=er(u +%)/2)

fory,y' € Y, u,v > 1 and k,I,;p,q < m. We extend exp —tDZ by zero to an opera.tor in
L*Z,S).

Theorem 3.7. Fort > 0, the operators
exp —tD? — exp—tD} and Dexp—tD? — Dyexp—tD?

are of the trace class.

Proof. Pick x € C*®(Z) such that 0 < x <1, x(2) = 1for z € M and x(u,y) = (1+u?)™!
for (u,y) € [1,00) X Y. Denote by Uy the operator in L*(Z,S) defined by multiplication
by x. Then we may write

t t _ t
exp —tD? — exp —tD} =(exp —§D2 — exp —EDﬁ) oUZ' oU, oexp ——2—’D2
1 t t
+ exp —EDK oUyo Uyt o (exp —EDZ — exp —E‘Dg).
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It follows from (3.5) that (exp—3D? — exp—£DZ) o UZ! and U! o (exp —£D?
exp —3D}) are Hilbert-Schmidt operators. Furthermore, the function

(z,2') € (RT x ¥) x (R* x ¥) = x(2') || Qu(z,2', 1) |

belongs to L?((R* x Y) x (R* x Y)). Together with (3.6) this shows that exp —¢D2 o U,
is Hilbert-Schmidt. By (3.5), it also follows that U, o exp —tD? is a Hilbert-Schmidt
operator. Thus exp —tD? — exp —tD? can be written as a product of Hilbert-Schmidt
operators and, therefore, is of the trace class. The remaining case is similar. Q.E.D.

Put
(3.8) E(l‘,y,t) = D, K(z,y,1).
This is the kernel of D exp —tD?.

Lemma 3.9. For eacht > 0, the function z v— tr E(z, z,t) is absolutely integrable on Z.

Proof. It follows from (3.5) that
tr{De(K(z,0,t) — Qa,u,1),_, )

is absolutely integrable on Z and the integrated absolute value is O(e~¢/*) as t — 0.
Furthermore, by definition of @,

d 1

(g, T A4w)@ (W w), (00, 8)] ey, = Z=yAue™ (0,0,

Since yA = — Ay and ¥ acts fibrewise, it follows that
tl'(D::Ql(:L‘,y,t)lz=y) =0.
Thus
(3.10) t(DaQe,y, 1)) = (D2 (62(2) Qalo,us )] ).
The right hand side has compact support which implies the lemma. Q.E.D.

Proposition 3.11. Fort > 0, we have
Tr(Dc-!D’ _ ‘Due"mg) = / tr E(z,z,t)dz.
z
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Proof. Let Ey(z,z',t) be the kernel of Dy exp —tD¢. Then Ey(z,2',t) = (Do), Ko(z,2',1).
Using the explicit description of Ky similar to (1.13), we get

tr Ey ((U, y), (u,y), t)
e hit

- ; Vant {"f(l —e )+ 3:-6‘"’/’} ((v8; (), 6 (¥)) + ($;(v), 79 (v))) = 0.

The last equality follows because v; = —v,, y € Y. Since E — E is the kernel of
Dexp —tD? — Dyexp —tD?, the Proposition follows from Lemma 3.9 by standard ar-
guments. Q.E.D.

Proposition 3.12. (a) Ast — 0, there exists an asymptotic expansion of the form

(= =]

/Z tr E(z,z,t)dz ~ Z a;(D) tli-n-1)/2

§=0

Moreover, there exist local densities a;(D)(z) with support contained in M such that
a;(D) = [z a;(D)(z).

(b) If D is a compatible Dirac type operator, then aj(D) =0 for j < n and ax(D) = 0 for
k even.

Proof. It follows from (3.5) and (3.10) that

/“’E(Z’z?t) dz:/ tr(D($2(2)Qa(2,2',1)|,_ ) dz + O(e™°").
z z

The integral on the right hand side equals

(3.13) /Z¢2(z)tr(D,Q2(z,z',t)lzzz,) dz + /-1 ¢'2(u)'/;tr('ng((u,y),(u,y),t)) dy du.

If we employ Theorem 0.2 of [BG], we obtain an asymptotic expansion of the first inte-
gral. This expansion has the properties claimed by the proposition. To deal with the
second integral we may replace Q; on [~1,0] x ¥ by an appropriate parametrix, say
(4mt)~1/? exp(—(u — v)?/4t)exp —tA%. Hence, up to an exponentially small term, the

second integral equals
1

Vviart

Let S|Y = 5, ® S_ be the splitting into the +i-eigenspaces of v and A, the restriction
of A to C*(S4). Then

Tl'('ye_m,).

Tr(ye™4") = i{ Tu(e™4-4+) - Te(e~*4+4-) } = ind 4.
this proves (a). If D is a compatible Dirac type operator, then Ind A4+ = 0 by Theorem 3

of {Pa, Ch. XVII]. Moreover, by Theorem 3.4 of [BG], the coefficients b; in the asymptotic
expansion of the first integral of (3.13) vanish if either j <n or j = 2k, k € N. Q.E.D.

26



4. The Spectral Decomposition

In this section we summarize some results about the spectral decomposition of the self-
adjoint operators D introduced in the previous section.

Theorem 4.1. The point spectrum of D consists of a sequence -+ < A; £ Ajp1 < -+
of eigenvalues of finite multiplicity with £oo as the only possible points of accumulation.
There exists C > 0 such that

#1151 €A <0+ 2, A0

Proof. It is sufficient to prove that the spectrum of D? consists of eigenvalues 0 < A <
Az € --- of finite multiplicity and

#3151+, A0,

for some constant C > 0. If D? is the Laplacian of Z acting on functions, then this has

been proved by Donnelly [Do]. His method extends without difficulties to the present case.
Q.E.D. '

Let L%(Z,S) be the subspace of L?*(Z, S) spanned by all eigensections of D. This is
also the discrete subspace for D?. Let Dy denote the restriction of D to L%(Z, S).

Corollary 4.2. Fort > 0, exp —tD? is of the trace class and we have

Tr(exp —tD3) = Z e~ N,

j

The proof can be derived from Theorem 4.1 by standard arguments.

Next we study the behaviour of the eigensections of D at infinity. Let ¢;, 7 € N,
be an orthonormal basis of Ran(II7) consisting of eigensections of A with eigenvalues
0 <y < pg £ ---. Then v, 7 € N, is an orthonormal basis for Ran(II7) with
eigenvalues —pu;. Since L*(Z,S) is the direct sum of Ran(II§) and Ran(II7), we get in
this way an orthonormal basis for L?(Z,S). Put

(4.3) yE = -\}—5(46,« +7¢;), j€N.

Then 1,1;;-" and ¥ are eigensections of 7A with eigenvalues j; and —p;, respectively. More-
over, we have

(4.4) ¥; = —vdf
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and {1,11;-",1,1)]-_} is an orthonormal basis of eigensections of yA. Suppose that ¢ € L*(Z, S)
satisfies Dy = Ap, A € R. Then, on Rt x Y, we may expand ¢ in terms of the basis just
constructed:

(u,y) = Z{f,(u)t,b*(y) + g;(w)¥; (v)}.

The coefficients f;, g; satisfy

—0/0u  —p; 95

()

Using the square integrability of ¢, we obtain

(45)  p(uy) = TR R y)
u;‘Z>I:'\I { \/#E—/\

In particular, if A = 0, then (4.5) can be written as

(4.6) pluy)= 3 et g(y).

nj>0

\/'F‘_*’:p(e}

. Let pj, > 0 be the smallest positive eigenvalue of A such that y;, > |A|. Then (4.5) implies

| (u,y) < CemVHo™2 e/

for some constant C' > 0. Thus we have proved

u 2 0,

]

Proposition 4.7. Let ¢ € L*(Z,S) be an eigensection of D. There exist C,c > 0 such
that, on R* x Y, we have

le(u,y) < Ce™

We turn now to the study of the continuous spectrum of D. First we note that

the operator Dy defined in section 3 has no point spectrum. Indeed, suppose that ¢ €
C>(R* x Y, S) satisfies Dy = 0 and TI5 (¢(0,)) = 0. Then ¢ has an expansion of the

form
p(u,y) = Y cje"i* vé;(y)
n; 20

so that ¢ can not be square integrable unless ¢ = 0. Thus Dy has pure absolutely contin-
uous spectrum.

Let J be the canonical inclusion of L*(R* x Y, S) into L*(Z, S). Consider the wave
operators

(4.8) Wi(D,Do) = s — lim e''? J e~ HPo,

— 00
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Theorem 3.7 together with the Kato-Rosenblum theory [K1] and the Birman—Kato invari-
ance principle of the wave operators [K2] imply .

Proposition 4.9. The wave operators Wi (D, D,) exist and are complete.

Thus Wi(D,Dy) establishes a unitary equivalence of Dy and the absolutely continuous
part D, of D.

Another method to establish the existence and completeness of the wave operators is
based on the method of Enf8 (cf. [Gu]). As a byproduct one obtains that the singularly
continuous spectrum of D is empty. Thus we have

Theorem 4.10. (a) D has no singularly continuous spectrum.
(b) The absolutely continuous part Dg, of D is unitarily equivalent to Dy.

The wave operators can be described more explicitly in terms of generalized eigen-

sections (cf. [Gu]). Let w be the set of all non-negative eigenvalues of 4. Let 4 € w. If -

u >0, let £(u) denote the u—eigenspace. If p = 0, put E(u) = Ker(o — 1). Let T* be the
Riemann surface associated to the functions /X £ x, 4 € w, such that /A £ x has positive
imaginary part for p sufficiently large. Thus £° is a ramified double covering 7* : £° — C
with ramification locus {+u | 4 € w}. To each u € w and ¢ € £(u) there is associated a
smooth section E(@,A) of § which is a meromorphic function of A € £° and satisfies

D E(¢,A) = m°(A)E($,A), A€Z.

(cf. [Gu] for details). The half-plane Im()) > 0 can be identified with an open subset FP*
of ¥*, the physical sheet. Each section E(¢,A) is regular on FP* = R. In particular,
E(¢, )) is regular for A € (—oo, —u] U i1, 00). This is the generalized eigensection attached
to ¢. If ¢;, 7 € N, is the basis of Ran(II{) chosen above, then the E(¢;,A) form a
complete system of generalized eigensections of D. More precisely, this statement means
the following. Let ¢ € C§°(Z, S). Put

60 = [ B@0 )o@ ds, G EN,
For p € w define the measure dr, by
JZ - ;2
dr,(\) = %&"I‘" dA.

Then, for any m € N, the function A — {1 + A%)™3;()) belongs to L*([i},00);d7,;) as
well as to L2((—oo, —p;]; d7,;) and the orthogonal projection ¢, of ¢ onto the absolutely

continuous subspace L2,(Z,S) of D has the following expansion

(4.11) @ac(z) = Z{fm E(8;,\2)$;(A) dr,, (A) + mE(qu,—,\,z)gaj(—/\) dr,,,.(x)}.
=1 Hj

Hj
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We shall now consider more closely the generalized eigensections E(¢, A) attached to ¢ €
Ker(o — 1). Let ¢ € Ker A and define h(¥),A) € C®(R* x Y, S) by

h(3p, A, (u,9)) = e 9(y), AeC.

Let x € C*(R) such that x(u) = 0 for © £ 1 and x(u) =1 for u > 2. We regard x as a
function'on R* x Y in the obvious way and then extend it by zero to a smooth function
on Z. Observe that (D? — A2)(xh(¢,A)) is a smooth section with compact support. In
particular, it is contained in L%(Z, S). Put

(412)  F($,A) = xe™p — (D = \)71((D? = X¥)(xh(¥,)))), Im(A)> 0.
Then F(3, A} belongs to C*(Z, S) and satisfies
DzF(¢!A) = ’\2 F(lleA)! Im(A) > 0.

The function A — F(3, A) admits also a meromorphic continuation to * [Gu]. Let gy > 0
be the smallest positive eigenvalue of A and put

(4.13) Ty = C = {(—00, — 1] U [pt1,00)}.

Then, in particular, F(¢, A) is a meromorphic function of A € £;. We explain this in more
detail. Let H'(Z, S) denote the 1*! Sobolev space. Let 3y, ...,%2, be an orthonormal basis
for Ker A. For any b > 0 we introduce a closed subspace of H'(Z, S) by

(414) H{(Z,5)={p e H(Z,9) | (p(u,"),;) =0 for u>b and j=1,..,2r}.
Consider the quadratic form
(4.15) o(e) =l Do |?, » € Hy(Z,S).

Let H, be the closure of H}(Z,S) in L%(Z,S). Then the quadratic form (4.15) is rep-
resented by a positive self-adjoint operator H in Hjy. This operator is analogous to the
pseudo-Laplacian used by Colin de Verdiere [Co}. Similarly to Theorem 1 of [Co], the
domain of Hj can be described as follows. For j, 1 < j < 2r, we define the distribution T}
by :

T} () = (b(b,-),¥5), ¢ € C3°(Z,5)
where 9 denotes the restriction of ) to R* xY. Then ¢ € H } (Z ,S) belongs to the domain

of Hy iff there exist C,...,C5, € C such that D?p — E,‘ C; T} belongs to L*(Z, S). Here

D%y is taken in the sense of distributions. If ¢ is in the domain of H,, then Hyp =

Lemma 4.16. The essential spectrum of Hy equals [u?, 00) where 1 > 0 is the smallest
positive eigenvalue of A.

Proof. We introduce Dirichlet boundary conditions on {b} x Y. This gives rise to a
self-adjoint operator Hy . Since Y is compact, it follows that exp —tHy, — exp—tH o
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is of the trace class for ¢ > 0. Hence, Hy and H o have the same essential spectrum.
By definition, we have Hyo = Hy int ® Hp,oo Where Hy ine acts in L2(M,, S) and Hp oo
in L*(R* x ¥,S). The operator Hp ;,; is obtained from D?, acting in C*®°(M,,S), by
imposing Dirichlet boundary conditions. Therefore, Hy ;n¢ has pure point spectrum. The
operator Hj o, can be analyzed by applying separation of variables. This shows that the
essential spectrum of Hy o equals [1%,00). Q.E.D.

In particular, H, has pure point spectrum in [0,z%). Therefore, (Hy — A?)~! is a
meromorphic function of A € £,. Now we may proceed in the same way as in the proof of
Theorem 4 in [Co]. Fix b > 2 and put

G($,A) = xe™ My — (Hy = X)7(D* = A)(x h(¥, 1)), Im(X) > 0.

This is a meromorphic function of A € £;. On Rt x Y, it has the form Go + G, where Gy
is smooth and square integrable and

- _ e—i’\u‘l‘b, u 2 b1
Go(1,A) = {e-"*" Ci(0) + X Co(N, u<b.

Here C1(X),C5(A) : Ker A — Ker A are linear operators which depend meromorphically
on A € &;. Let f; denote the characteristic function of [b,00) x Y. Put

G, \) = G, \) + file™™  Ci(\Y + e Co(A0p — e~ ).

Then G is in C*(Z, S) and satisfies DG = A?G. Moreover, it is easy to see that C1(}) is
invertible and

(4.17) O F@,N) = GG ).
The right hand side provides the meromorphic continnation of F(1,A) to I;. Put
(4.18) C(A) =Ca(N)o C1(A)™!, A€z,

This is a linear operator in Ker A which is a meromorphic function of A € ;. For HE w,
it > 0, there exist also linear operators

(4.19) T,(A) :Ker A — E(p) ® E(—p)
which depend meromorphically on A € ; such that, on Rt x Y, we have

(4.20) F($,A) = e + 2O\ + Y e V¥ 1,0y, el

$2>0

For A € R, the operator C'(}) is regular and unitary. It equals the “scattering matrix” for
|A| < p1. Furthermore, the following functional equations hold

(4.21) CANC(-\)=1d, AeT,
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(4.22) F(CO\)$, =) = F(i,X), 1 € Ker A.

There are also functional equations for the T}, (cf. [Gu]).
Let ¢ € Ker(o — 1). Put

(423)  E($,N)=F(4,)) + 1 DF($,)) = F($—iré,}), A€ 5.

Then E(¢, A) satisfies .
DE(¢,A) = AE(¢, A).

This is the generalized eigensection of D attached to ¢. If we apply (4.20) to F(¢—iv¢, A),
it follows that, on R* x Y, we have

(4.24) E(¢,N) = e (¢ —ivd) + e C(M)(¢p —ivd) + (4, 2), A€ X,

where 6 is square integrable and 8(¢, A, (u,-)) orthogonal to Ker A. If we compare (4.24)
with the expansion of F(#,)) + A™'DF(4, ), we obtain

(4.25) C(AN)y=—-vC(}), A€,
Together with the functional equation (4.21) we get

Proposition 4.26. The operator C(0) : Ker A — Ker A is unitary and satisfies
C(0)2 =1Id and C(0)y = —vC(0).

Thus there exists always a distinguished unitary involution o of Ker A — the on-shell
scattering matrix C(0) — which anticommutes with 4. This involution is determined by
the operator D.

We remark that the on-shell scattering matrix C(0) is closely related to the so—called
- limiting values of extended L2-sections ¢ of S satisfying D = 0 (cf. [APS1,p.58]). Let Ly
denote the x1-eigenspaces of C(0). It follows from Proposition 4.26 that v switches L
and L_. Thus Ly @ vyLy = Ker A4 is an orthogonal splitting of Ker A. By the prescription
(11, 92) = {(v11,¥2), ¥1,92 € Ker A, we get a canonical symplectic structure on Ker A.
' Then an equivalent statement is that L4 and L_ are Lagrangian subspaces of Ker A. Let
¢ € L,. It follows from (4.24) that, on R* x Y, we have E(¢$,0) = 2¢ + 6 where 8 is
square integrable%Put ¢ = 1E(¢,0). Then ¢ # 0 and it satisfies Dy = 0. If we use the
notation of [APS1]p.58], th1s means that ¢ is the limiting value of the extended solution ¢
of Dy = 0. Using Lemma 8.5, it follows that every limiting value arises in this way, that
is, L, is precisely the space of all limiting values of L*—extended sections ¢ of S satisfying
Dy =0.

Finally, we recall a specxal case of the Maafl—Selberg relations. We define the constant
term Ey(¢,2) € CP(R* x Y,S) by

(4.27) Eo(6,0) = e (¢ —ivd) + e C(N\) (¢ — 1vd).
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For a > 0 let x, denote the characteristic function of [¢,00) X Y C Z. Set
(4.28) E,(¢,)) = E($,)) = xa Eo(¢,)), A€y

By (4.24), Ea(¢,A_)_is square integrable . Its norm can be computed as follows. Pick
A € ) such that A’ # A. Then

(Ea($,2), Ea($, ) = ﬁ{wm, N, Ea($, V) = (Ea(@, ), DEa(, X)) }.

Now apply Green’s formula together with (4.20) and take the limit A’ — A. this gives
(4.29) || Ea(4,2) IP=4a || ¢ 1> = {C(=2)C'(A)($ —174),¢ —i74), A€ (~p1,m),

where C'(z) = (d/dz)C(z). This is a special case of the MaaB-Selberg relations.
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5. The Large Time Asymptotic

In this section we shall study the behaviour of [, tr E(z,z,t)dz as t — oo. The main dif-
ficulty arises from the continuous spectrum of D; in particular, if the continuous spectrum
has no gap at zero. By Theorem 4.10, this case occurs iff Ker A # {0}.

We start with some auxiliary result. Let

oo

G={f:R-R|feL andf FON L+ 1A dA < oo ).

We denote the trace norm of a trace class operator T in some Hilbert space by || T ||; -

Lemma 5.1. Let T1,T, be self-adjoint operators in a Hilbert space. Suppose that Ty — T,
is trace class. Then, for every f € G, f(T1) — f(T2) is trace class and

@)= 5 s = [ DI IT =T

For the proof see [Th, p.161]. Note that C$*(R) C G.

' Proposition 5.2. Let ¢ € C§°(R). Then ¢(D) — ¢(Dy) is of the trace class.

Proof. Let o € C§°(R). Then, by Theorem 3.7 and Lemma 5.1,
(5.3) a(De—"Dz) — a(Due_mg) is of the trace class for ¢ > 0.

Given ¢ € C(R), choose t > 0 such that supp ¢ is contained in (—1/+/2¢,1/+/2t). The
map f(A) = X exp —tA? is a diffeomorphism of the interval (—1/v/2¢,1/+/2t) onto the inter-
val (—e1/2/\/2t,e71/2 [\/2t). Let a(u) = ¢(f~2(u)). Then a € C{°(R) with support con-
tained in (—e~/2/\/2t,e~1/2 [\/2t). Moreover a(’De-t’D’) = #(D) and a(Doe_mg) =
#(Dy). By (5.3) our result follows. Q.E.D.

Corollary 5.4. Let a € C°(R) and suppose that a(\) =1 for |A| > C. Then

2

a(D)e~ P — a(Dy)e™*P and a(D)De™P* — a(Dy)Dye~tP8

are of the trace class for t > 0.

Proof. Let ¢ = 1 — a, ¢1(N) = ¢>(/\)e_"\2 and ¢2()) = ¢~(A)/\e"”‘2, t > 0. Then
$1,¢2 € C§°(R) and, by Proposition 5.2, ¢;(D)— ¢:(Do ), i = 1,2, are trace class operators.
Moreover

a(D) ™" — a(Dy)e™Ps =P — 7P — ($4(D) — $1(Dy))
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which is trace class by Theorem 3.7. The second case is similar. Q.E.D.

Proposition 5.5. Let o € C°(R). Suppose that there exist 0 < a < b such that a(A) =0
for |A\| £ a and a{A) =1 for |A| > b. Then there exist C,c¢ > 0 such that

- (5.6) | (D)e=" = a(Do)e™*P3 |1< C et
and
(5.7) | (D)De~P" — a(Do)Doe="P8 ||, < C e~
fort > 1.

Proof. The function « can be written as @ = a4 + a— where a4(A) = 0 for A < a and
a—{(A) =0for A > —a, a > 0. Suppose that & = a4. For ¢t > 0 put

_ cr(d——logu)u", 0<u<l;
o) = {O

, otherwise.
Then we have
(5.8) $:(e™P") = a(D)e*?" and ¢,(e” %) = a(Dy)e™*Ps.

Moreover, ¢, is smooth on R — {0} with support contained in (0,1). For ¢t > 3, ¢, belongs
to C3(R). Therefore

/m I‘;Bt()\), (14 [A)dr <o for t>3.

— 00 ’

By Theorem 3.7, Lemma 5.1 and (5.8) we get
- —D? 1 RN -p? _ _
oD ™" = (D)™ i< [ PN e - e
<c [ pamia
for ¢ > 3. To estimate the integral we split it as follows
1 -1 oo
Lol )
-1 —00 1

For the first integral we obtain

/ 11 pas [ 11 hoarse [ wla
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If A#0andt > 3, integration by parts gives
3 1 = & iAu
=g [ amte

which can be used to estimate the second and the third integral. Putting our estimates
together, we get

00 N o0 o0 d3
[ néians [Tl 2 [T |aew)]du
By definition of «, we have supp ¢; C (—¢,¢) for some € < 1. Hence

/ |Ag(A)| dA < C etllosel

If o =a_, we set f(u) = a_(—u) and then proceed as above. This establishes (5.6). The
proof of (5.7) is analogous. For @ = a4 we put

de(u) = {g(\/—logu)\/—logu,u‘, 0<u<l;

, otherwise.

If ¢ > 4, this function is three times continuously differentiable with support contained in
(0,1), and (5.7) follows in the same way as above. Q.E.D.

If Ker A # {0}, the continuous spectrum of D fills the whole real line. Qur next goal
is to isolate the contribution to [, tr E(z,z,t) dz given by the continuous spectrum near
Z€ero.

 Proposition 5.9. Let yy > 0 be the smallest positive eigenvalue of A. Let a € CP(R)
be even and suppose that supp o« C (—yuy, p¢1). Furthermore, let D,. denote the absolutely
continuous part of D. Then we have

2 2 H1
Tr(a(Dac)Dace™Pec — a(Dy)Dye™'P0) = —ziﬁ a(MNAe™ Te(y C(=A) C'(N)) dA
g

where C()) is the scattering operator (4.18), C'(z) = (d/dz)C(z) and = is defined by (1.1).

Proof. Let E5°(z,y,t) be the kernel of a('Dac)Dace""D:c and EJ(z,y,t) the kernel of
a('D(,)’Doe""Dg. Let ¢1,...,¢, be an orthonormal basis for Ker(¢ — 1) and E(¢;,A), j =
1,...,7, the corresponding generalized eigensections. It follows from (4.11) that the kernel
E%° has the following expansion in terms of generalized eigensections.

(5.10)
1 — 31 2 _
Exeunt) = 3= 2o{ [ a0 B9, 0, 0) 8 TG R u)

i=1

31 2 —
= [ e 56, -1.0) 0 BE, R u .
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A similar formula holds for the kernel E2(z,y,t). Let

e(¢5, A (1, v)) = sin(Au) ¢;(y) + cos(Au)v¢,(y), (u,y) € RT xY.
Then

r

Eo(z,y,t) = 4L Z{/M oM™ (8,4, 7) @ e(d;, X, y) dA
(5.11) Tt

#1
- / af(/\))\e—t)\3 e(¢j,—A ) ®e(dj,— A, y) d/\}.
0
Let Ho = L*(R*) @ Ker A C L*(R* x Y, S) and H, the orthogonal complement of Ho in
L¥(Z,S). Let E(¢;,A) = Eo(¢;,A) be the generalized eigensection E(¢;, A) truncated at
level 0 (cf. (4.24)). Furthermore, let ¢ € C§°(Z, S) and suppose that ¢ 1L H,. then we have
(512) (E(quv)‘)stp) = (E(q&p A),(P) and <e(¢j1)\)s {P) =0

Put \ )
T = a(Dyc)Dace™Pac — a(Dy)Dye~"Po.

Using (5.10) — (5.12), we obtain

613 (Tpg)= = Y [ ane (B 0,00~ (B, -2, i

_r"l

Observe that E(¢;,A) € H;. Hence, by continuity, (5.13) holds for all ¢ € H;. Let ¢;,
J € N, be an orthonormal basis for H;. Then (5.13) implies

oo 1

(5.14) Y (Tej ;) = Z/

i=1

are™ {1l Bg;, 1P — Il B(g5,-3) |17} .
Now let ¢ € C°(RY) @ Ker A. Then we get
1 «— [ 2
(To ) = - Z/O (A {[(Ea(@, 1), 9} = 1(Bold5,—\),0)*
=1

= (e, ) ) = Iels, =), 9)I) } dr

where Ey(;, A) is the constant term of E(¢;, A) defined by (4.27). Using the unitarity of
C(A) for A real together with (4.25), a direct computation shows that {Tp,¢) = 0. By
(5.14) and (4.29) we finally get

r

BT =5 [ a0 S{C-NC 0 - iv6i), 8 - iv6))

=1

— (COVC(=N)(@5 = i85), 8 — i785) } dA
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Since @1, ..., ¢r, 781, ..., 7$s is an orthonormal basis for Ker 4, the sum equals
Tr(C(=)) C'(N)) — Tr(C(A)C'(=A)) + iTr(yC(A)C(=N)) — iTr(yC(=A)C'(N).

By the functional equation (4.21) we have

(5.15) C'(A)C(=A) — C(V)C'(=A) =0.

Therefore the first two traces cancel. If we employ (4.25) and (5.15) to rewrite the remain-
ing terms, we get the equality claimed by the Proposition. Q.E.D.

Corollary 5.16. Let ) > 0 be the smallest positive eigenvalue of A. There exists ¢ > 0
such that

[
/ tr E(z,z,t)dr = —% / et Tr(y C(=A)C'(A) dX + O(e™)
Z 0
fort > 1.

Proof. Let a € C§°(R) be an even real valued function such that suppa C (—p;, 1) and
a(u) =1 for ju| < §. Put 8 =1— . Then, by Proposition 3.11, we get

/ tr E(z,z,t)dz =) a(A;)A e + Tr(a(Dac)Dace™ P — a(Do)Doe™*%)
Z ;
J

+ Tr(B(DYDe~P* — B(Dy)Doe™'P%).

Note that the sum over the eigenvalues is finite. By Proposition 5.5, the second trace on
the right hand side decays exponentialy as t — oo. Then we apply Proposition 5.9 to the
first trace. For the asymptotic expansion we may replace a by 1. Q.E.D.

Corollary 5.17. Suppose that Ker A = {0}. Then there exist constants C,c > 0 such
that

‘/trE(m,:ﬁ,?‘.)dw <Ce ™™, t2>1.
zZ

Observe that, by (4.25), ¥ commutes with C(—A)C’(X). Therefore, the integral on
the right hand side of the equality of Corollary 5.16 can be rewritten as

R {frr(c*(—n C'(V)[Ker(y = 1)) = Tr(C(=A) C'(N)]Ker(y + z‘))} dA

2771 o

Furthermore, recall that C()) is real analytic for A € (—pq,11). Moreover, using (4.25)
and (5.15), it follows that

Te(y O(=A) C'(N)) = ~Tx(y C(3) C'(=N),
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In particular, this function vanishes at A = 0. Using this observation, we get an asymptotic
expansion, as t — oo, of the form

M 2 g
Ae™ N Tr(y C(=X) C'(A)) dA ~ Yt~ (D12
0 k=1
where
L(k/241) &
k! dXk
Therefore, Corollary 5.16 leads to

ck = é— Tr{v C(=A) C'(N) |-,

Corollary 5.19. Ast — oo, there exists an asymptotic expansion of the form

1 (e ]
tr E(z,z,t)de ~ —— o $—(k+2)/2
/Z ( ) 2m ;_] k

and the coeficients ¢ are given by (5.18).

Remark. In contrast to the asymptotic expansion at t = 0, the coefficients c; are nonlocal.
They are determined by global properties of the continuous spectrum at A = 0.
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6. Eta Ivariants for Manifolds with Cylindrical Ends

We are now ready to define the eta function of D. Let a > 0. For Re(s) > n put

1 a
(6.1) n“(s,D)=—S+T—/O t(’—l)lthrE(x,x,t) dz dt.
()

2

By Proposition 3.12, the integral is absolutely converging in the half-plane Re(s) > n and
admits a meromorphic continuation to the whole complex plane. Similarly, for Re(s) < 2,
we put

1 oo
(6.2) Na(5,D) = ———— =02 [ 41 E(x, z,t) dz dt.
5+ 1) . z

r(5

By Corollary 5.19, the ¢ ~integral is absolutely converging for Re(s) < 2 and admits also a
meromorphic continuation to C. Now observe that the meromorphic function 7%(s, D) +
1a(8, D) is independent of a > 0 and, therefore, we may define the eta function of D by

(6.3) n(s,D) =n%(s,D) + na(s,D).

Then n(s, D) is a meromorphic function with simple poles at s = 7, 7 € Z. The poles at
s =3, ] 2 2, may not be given as the integral of a local density.
Remark. In view of Theorem 3.11 we may regard 7(s, D) also as a relative eta function
n(s; D, Dy) attached to D, Dy.

If (s, D) is regular at s = 0, we define the eta invariant of D to be n(0, D). There are
two special cases
(a) Ker A = {0}. Then [, tr E(z,z,t) dz decays exponentially as t — oo and 5(s, D) can
be defined in the half-plane Re(s) > n by

o0
(6.4) n(s, D) =%1)/0 i("—l)ﬂ‘/ZtrE(m,m,t) dz dt.

r(5

(b) Suppose that D is a compatible Dirac type operator and dim Z is odd. By Proposition
3.12, we have [, tr E(z,,t)dz = O(t'/?) as t — 0 and 7(s, D) can be defined by formula
(6.4) in the strip 2 > Re(s) > —2. In particular, 5(s, D) is regular at s = 0 and the eta
invariant of D is given by

1 oo
6.5 0,D =—/ rlﬁj tr B(z, z,t) dz dt.
(6.5) 17(0,D) 7= . g ( )

The case where (a) and (b) are both satisfied has been studied also by Klimek and
Wojciechowski [KW]. In this paper we shall not attempt to answer the question of the
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regularity of n(s,D) at s = 0 in general. Next we derive a variational formula for com-
pactly supported perturbations. Let D, be a smooth one-parameter family of first order
elliptic differential operators on Z which satisfies the same assumptions as in section 2. In

particular, D, = v(8/8u + A) on Rt x Y. Let D, = dD,/dv.

Lemma 6.6. Fort > 0, the operator D,e~'P+ is of the trace class.

Proof. Let U, be the operator defined in the proof of Theorem 3.7. Then we may write
D,,e_w3 = D,,e“/w: 0 U;l oUyo e~ t/273,

In the course of the proof of Theorem 3.7 it was shown that U, oexp —t/2D? is a Hilbert-

Schmidt operator. By assumption, D, = 0 on R* x Y. If we use (3.5) it is easy to see
that D, exp —t/2D} o U7 is Hilbert-Schmidt too. Q.E.D.

Let E,(z,y,t) be the kernel of D,exp—tD2. Using (3.10), it is easy to see that
Jztr Ey(z,x,t)dz is a smooth function of v. If we employ Proposition 3.11 and then
proceed as in the proof of Proposition 2.1, we obtain

Lemma 6.7. Fort > 0, we have

9 - O\ To(D.e-tP?
30 /Ztr Eyz,z,t)dz = (1 + 2t5t—) Tr(Dve )

To continue we have to determine the asymptotic behaviour of Tr(D.,e“D3 ) ast— 0

and t — co. Since D, = 0 on R* x ¥, the small time asymptotic is reduced to the compact
case. Using (3.5) and Lemma 1.7.7 of [Gil], we get an asymptotic expansion of the form

6.8 Tr(D,e~P) ~ 3 (D, ) ti=n=1/2
7
j=0

ast - 0.

Now we come to the large time behaviour. Let P, be the orthogonal projection of
L*(Z,S) onto KerD,. Since 0 may not be an isolated point of the spectrum of D,, the
following Lemma is non-trivial.

Lemma 6.9. Suppose that dim(Ker D,) is constant. Then P, depends smoothly on v.

Proof. For b > 0, let Hy(v) be the operator which represents the quadratic form (4.15)
defined by D,. By Lemma 4.16, H,(v) has pure point spectrum in [0, u?} where u; > 0
is the smallest positive eigenvalue of A. By Proposition 8.7, we have Ker Hy(v) = Ker D2.
Moreover, it is clear that Ker D2 = KerD,. Using the definition of Hy(v), it is easy to
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see that Hy(v) depends smoothly on v. Since dim(Ker Hy(v)) is constant and 0 is an
isolated point in the spectrum of Hy(v), the orthogonal projection of H, onto Ker Hy(v)
depends smoothly on v. Now observe that Ker D, is contained in H; and the orthogonal
complement of H, in L?(Z, S) is independent of v. This proves our claim. Q.E.D.

Assume that dim(Ker D,) is constant. Then P, is smooth in v. Since D, P, = 0, it
- follows that

(6.10) D,P, = —D,P,.

- To begin with we consider the contribution of the eigenvalues first. Let D, 4 be the

restriction of D, to the subspace of L?(Z, S) spanned by the eigensections of D,. Since P,
has finite rank and || D, exp —tD? ; ||< Ce™¢, it follows from (6.10) that

|T1'(D,, exp —tDﬁ‘d)I <Ce™

for some constants C,c > 0.

To estimate the contribution of the continuous spectrum, we pick a € C§°(R) as in
Proposition 5.9. Put 8 =1 — a. Since f(u) = 0 for |u| < §, the spectral theorem implies
that || B(D)exp —tD? ||[< e, ¢t > 0. Hence, for t > 1, we get

(6.11) Tr(D,B(Dy)e P )| <|| Doe™ |, - || B(Du)e="1P0 |< Ce.

Let D, (v) denote the absolutely continuous part of D,. We use (4.11) to construct the
~ kernel of Dya(Dac(v))exp —tD,c(v)?. It is given by an expression similar to (5.10). Using
this kernel, we get

Te(Dua(Dac(v))e= ") = 11; > /0 " (Ve {(DEL(8;,0), Eu(85, )

+ (DyBu($5, =), Bo(65, M) } X,

where E,(#, ) denotes the generalized eigensection of D, attached to ¢ € Ker(o—1). Since
dim(Ker Hy(v)) is constant, it follows that (Hy(v) — A?)™! is smooth for |A| sufficiently
small. Using the construction of the analytic continuation of E,(¢,A), A € Ly, it follows
that E,(¢, ) depends smoothly on v for |A| sufficiently small. More precisely, for each u,
there exists § > 0 such that, for |A| < §, E,(¢, A) is a smooth function of v for [v —vg| < 6.
Differentiating the equation D, E, (¢, ) = AE (¢, A) with respect to v, we get

. 0
D,E.(¢$,A) = —(D, — A)%E‘U(q&, A), Al <.

If we use Green’s formula together with (4.20) and (4.24), we get

(Dva(¢j: A)rEtf(qSJ': ’\))Ma = (756;;Cv()‘)(¢ - i7¢)a Cv(’\)(¢‘ - i7¢)) + O(e—ca)
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for some ¢ > 0. Choose a such that suppa C (—6,6). Then

Tr (D,,a(’Dac(v))e_m"(")z)
1 r*
- i

a(M)e™ {Tr(3 Cu(=3) 3 ColN)) + Tr(y Co(A) 2=Col(=A)

: 0 : 0
— iT(Cy(-2) 5-Co(V) — iTr(Cu(A) 5-Co(-A)) } i
The functional equation (4.21) implies

(6.12) (a—ic.,(,\)) Cu(=2) + Cu(N) (—(%Ct,(—/\)) =0.

Therefore, the right hand side equals

N b ar()«)e"t’\2 Tr(y Cy(=A) iC' (X)) dA
27 Jo Al ov "° ’
: 0 . : : :
Since Tr(y Cy(—A) %Cu(/\)) is an analytic function near A = 0, we get an asymptotic

expansion

Te(Dye=Ph) ~ 3 by 312
i=1

as t — oo. The first coefficient is given by

b = —%Tr('y C.(0) a%C.,(O)).
Put .
51(3,1)0):—81—“/ =D/ T (Dye= i) dt, Re(s) > n
(=) ™
and

1
(5, D0) = — 7o

()

Then & (s, Dy ) and £2(s, D, ) admit meromorphic continuations to the whole complex plane.
Summarizing our results, we have proved

/ te=D/12Ty(D,e~'P4) dt, Re(s) < 0.
1

Proposition 6.13. Let D, be a smootl one-parameter family of first order differential
' operators on Z satisfying the assumptions above. Suppose that dim(KerD,) is constant.
Then n(s,D,) is differentiable with respect to v and

%T}(S,Dv) = —S(El(S,Du) + 52(3?1)”))'
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Corollary 6.14. Suppose that dim(Ker D, ) is constant. Then the residue of 7(s,D,) at
8 = 0 is independent of v.

Since D, has continuous spectrum, we can not procced as in the proof of Corollary
2.12 to eliminate the condition on KerD,. Eigenvalues embedded into the continuous
spectrum are usually unstable under perturbations. We have to understand how this is
compensated by the continuous spectrum. We claim without proof that Corollary 6.14
remains true without any assumption on Ker D,,.

Corollary 6.15. Assume that dim(KerD,) is constant and (s, D,) is regular at s = 0.
Then 5 5

2, —= (Do) + 5= Te(1 Cu(0) 75C4(0)

where cn{D,) is the n—th coefficient in the asymptotic expansion (6.8).

(0,D,) = —

Using (4.25) and (6.12), we get
Te(y Co(0) 5-Cu(0)) = 2 Tr(Cu(0) 5= Cu(0)Kex(y — ).

If we compare the variational formulas given by Corollary 2.9, Theorem 2.21 and Corollary
6.15, we get

Proposition 6.16. Let D, be a smooth one-parameter family of compatible Dirac type
operators as above. Suppose that dim(KerD,) is constant. Let 7, = Cy(0). Then
7(0,(Dy),,) and n(0,D,) are smooth functions of v and

0 d
=—7(0, (Dv)ru ) = 7=1(0,D,).
Jv v

If the kernel of D, is not constant, n(0,D,) will have discontinuities which we are
going to study next. Let T > 0 be given. It follows from (3.10) and Proposition 3.12 that

fUTt‘1/2 [, tr E(z,z,t) dz dt is a smooth function of v. Now consider the integral from T
to oo. Since we vary D, on a compact set, it follows that the constants occurring on the
right hand side of (3.5) can be chosen to be uniform for v € (—¢,€). This implies

(6.17) e — e D5 |,< ¢
for some constant Cy > 0 and |v| < €. Let 8 be as in (6.11). Then (6.17) implies that
/ =12 Te(D,B(Dy)e*Ph — Dof(Dy)e=tP8) dt
T

depends smoothly on v.



Next we have to consider the contribution of the continuous spectrum near zero. It
follows from Proposition 5.9 that this contribution is given by

M1
(6.18) —2% / a(A) signA Tr(y Cu(=A) CL(A)) dA
0
where supp « is contained in (—pq, p1).

Lemma 6.19. There exists ¢ > 0 such that Tr(y C,(—)) C!(})) is a smooth function of
vfor|v| <e, [A <e.

Proof. Using the functional equation {(4.21) it follows that the singularities of the mero-
morphic matrix valued function C,(—2)C/(z) are simple poles with residues of the form
—mld, m € N. Since Tr(y) = 0, it follows that Tr(y C,(—A) C())) is an entire function
of z. Let T’ C C be a circle with center at the origin such that all poles# 0 of Co(—2)Cy(2)
are contained in the domain exterior to I'. It follows from the construction of the analytic
continuation of the generalized eigenfunctions that C,(—z)C,(z) will be a smooth function
of z € " and v, |v] < g, for € > 0 sufficiently small. Our claim follows now from Cauchy’s
theorem. Q.E.D.

If we choose a with support sufficiently small, it follows from Lemma 6.19 that (6.18)
is a smooth function of v for |v| < €. Combining our results, we see that the only possible
discontinuities of 7(0,D,) may arise from the small eigenvalues. There are two possibil-
ities. Either eigenvalues disappear and become resonances, i.e., poles of the scattering
matrix, or they remain eigenvalues but cross zero. In the former case eigenvalues must
disappear in pairs of positive and negative eigenvalues. Indeed, the definition of the gener-
alized eigenfunctions immediately implies that the scattering matrix satisfies the following
relation:

m‘—' C(—X), AE L.

Thus, poles of C(\) appear in pairs {z, —z}. Hence, disappearing eigenvalues do not cause
discontinuities. Next observe that (4.25) implies that C,(0) has exactly 1 dim(Ker 4) eigen-
values equal to 1. Hence, by Proposition 8.10, we have dim Ker((Du),.ﬁ = dim Ker(D, ) +
3 dim Ker(A). This implies

Proposition 6.20. Let D, be a smooth one-parameter family of compatible Dirac type
operators satisfying the properties above. Then n{(0,(D,),) — n(0,D,) is a continuous
function of v.
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' 7. Convergence Results for Eta Invariants

Throughout this section we shall assume that D is a compatible Dirac type operator on Z
satisfying the assumptions above. Then the various eta invariants are well-defined. Let o

be a unitary involution of Ker A as in (1.5). Our main purpose is to relate the eta invariant
7(0, D,) to the eta invariant (0, D). If Ker A = {0}, this problem was studied in [DW].

For a > 0, consider the restriction of D(a) of D to the compact manifold M, =
M U ([0,a] x Y). By Proposition 2.16, we have n(0, D,) = (0, D(a),), a > 0. We shall
now study the behaviour of n(0,D(a),) as a — oo. Since D is a compatible Dirac type
operator, (0, D{a),) is given by (1.30). Then we may write

Ve )
n(O,D(a),,) =%/ t—l/ZTr(D(a)ae_tD(a),)dt
(7.1) U 10
* / t=1/2 Tx(D(a),e D7) dt.

\/7? va ( ( ) )

. The first integral can be treated in essentially the same way as in §7 of [DW]. For our
purpose we shall use a slightly different approach. Let e; , be the kernel (1.13) and e
the restriction of the heat kernel I of 3/8t + D? to M,. We change coordinates so that
M, = M U ([—a,0] x V) where the boundary of M is identified with {—a} x Y. Let
é1, $2,%1, ¥ be the functions defined by (1.14) and put

¢ (u) = di(u/a) and Y7 (u) = ¢i(ufa), 1=1,2.

Again we regard these functions as functions on the cylinder {—¢,0] X ¥ and then extend
them to M, in the obvious way. Put

(7.2) ' €y = $1e1a 1 + 93 €293

This is the parametrix for the kernel K¢ of exp —tD(a)? and K? is obtained from e2 by a
convergent series of the form

K=et + Y (-1)"ch xel
m==]

where the notation is similar to (1.16). Using (1.13) and (3.5), it is easy to see that, for
m € Z, there exist Cy, C,,C3 > 0 such that

2
(7.3) I D3 (K5 (e, y,t) = eg(w,y,))],—, 1< Crexp(Cat — Caaj)

for k <m, z € M,, t € R*. If we use (3.10) and follow the proof of Proposition 3.12, it
18 easy to see that

|/ trE(m,a:,t)da:| < Ctl/?
M,
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for 0 £t <1 and some constant C > 0 independent of a. Together with (7.3) this implies
that the first integral on the right hand side of (7.1) equals

Ve
(7.5) 2 / ¢ /2 / tr E(z,z,t)dz dt + O(exp(—Cya®/?))
v Jo M,
for some Cy > 0 and a — oo.

Proposition 7.6. We have

-
lim — [ 172 / tr E(z, 5,t) dz dt = (0, D).
0 a

o= OC T’

Proof. It follows from Corollary 5.19 that
lim —— ﬁt_llz tr E(z,z,t) dz dt = 5(0,D)
. T = .
“B:n°° \/7_r 0 z o e e
Therefore, it is sufficient to prove that
1 Vva
lim —= t=1/2
asvoo VT ./d

Let b > 0. Note that the support of th right hand side of (3.10) is contained in M = M,.
Hence, by (3.5), it follows that

/ trE((u,y),(u,y),t) dy du|dt = 0.
[a,00)xY

a— oo

b
(7.7) lim ¢=1/2 / tr E(z,z,t)dz dt = 0.
: 0 [a,00)xY

Pick a € C§°(R) such that a(u) = a(—u),0 < a < 1, a(u) = 1 for |u| < p1/4and a(u) =0
for |[u| 2 p1/2. Set B =1— a. Let E, (resp. Eg) denote the kernel of o(D)D exp —tD?
" (resp. B(D)Dexp —tD?). Then

E=E, + Eﬁ.

Let x, denote the characteristic function of [a,00) X ¥ in Z. By following the proof of
Proposition 3.11, one can show thaat

/ tr Eg(z,z,t)dc =/ Xatr Eg(z,z,t) dz
[a,00)xY zZ
= Tr(xa(A(D)De™P" = B(Dy)Dye='P0)).

Let 1 < b < /a. Then Proposition 5.5 implies

Va
(7.9) / =1/ / tr Eg(z,z,t) dz
b [2,00)xY
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p3/2”

oo
dt < c/ t=V2ectdt < C
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Now we turn to the kernel E,. First, observe that

Eo(z,y,t)= . a(\)he ™ 0i(2) @ p;(y) + Ea(z,y,t)
|Aj1<pr /2

where E5° is the absolutely continuous part of E,, A; runs over the eigenvalues of D and ¢;

are the corresponding orthonormalized eigensections. By Proposition 4.7, the contribution
of the discrete part to the integral in question can be estimated by

oo
Z |A,’|/ 172 e_"\zdt/ ]t,oj(u,y)|2dyduSCc_“‘.
0 [a,00) %Y

|2 1<pr/2

The kernel ES°¢ is given by (5.10). If we use this formula, we obtain
(7.10)

/ tr E3° ((u, y), (v, y), t) dy
Y

_L - ma et ) u 2 _ A (u 2
-4w;/0 e [ {1 B ) I = | B2, () |} dy

Now we use (4.24) to compute the integral over Y. Note that ¢; — iy¢; belongs to the
+i-eigenspace of v and, in view of (4.25), C(A)(é; — 17¢;) belongs to the —i—eigenspace
of 7. Hence ¢; — iv¢; is orthogonal to C(A)(¢; — iv¢;). Moreover, recall that C(A) is
unitary for A real. Therefore, we get

JIEGA @M I dy=ali 612 + [ 116662 (1) I* d.
Y Y

By (4.20), it follows that

[ 1660, ) I dy < € exp(-2/1f = 32,

If we apply this to (7.10), we get

va
/ ¢~1/2 / tr E5%(z, z,t) dz
b [a,00)xY

Putting our estimates together, it follows that there exist C, ¢ > 0 such that

Va
/ t=1/? / tr E(z,z,t)dz
b {a,00)xY

for 0 < b < \/a. Combined with (7.7) this proves our claim. Q.E.D.

dt <Ce ™1,

dt < C(e™® + e~ )
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It remains to study the second integral in (7.1). First note that, for ¢ > 0, one has

(7.11) / t"lnp.e_"‘2 = 2/ e~ dz < 9K VE,

‘mllq

a

Let A; = Aj(a) run over the eigenvalues of D(a),. Let 0 < x < 1/4. Then we may split
the trace as follows

(7.12) Te(D(a)ee™P@e) = S nem™ + 3 e
[Aj[Za—= |Ajl<a—*

Using (7.11), it follows that

oo
(713) / t-1/2 Z Aj c-b\} dt < Ce_allz-:x T1-(e_D(°)3)
VA iz

(cf. (7.2) in [DW]). Using Theorem 4.1 of [DW] (which holds without any restriction on
A), we see that Tr(exp —D(a)%) can be estimated by C Vol(M,) < C; a where C; > 0 is
independent of a. Hence (7.13) can be estimated by C; a exp —a'/?~2* which tends to zero
as a — 0o.

It remains to study the contribution made by the eigenvalues A; which satisfy ;| <
a™". If Ker A = {0} it was proved in [DW], Theorem 6.1, that the non-zero spectrum of
D(a)n_ has a positive lower bound as a — oo. In this case it follows from our estimates
that n(0, D(a)n_) converges to 7(0,D) as ¢ — oco. Combined with Proposition 2.16 we
obtain

(7'14) 77(01 D(a)ﬂ- ) = (0, D)
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8. The Small Eigenvalues

Suppose that Ker A # 0. The scattering matrix C(A) acts in this vector space and, for
A = 0, we get a unitary involution 7 = C(0) of Ker A which anticommutes with v (cf.
Proposition 4.26). In this section we shall use T to define the boundary conditions. Thus

(8.1) Ly = Ker(C(0) ¥ Id).

We shall employ the following notation. Let Py denote the orthogonal projection of Ker A
onto Ly. Let ¢;, 7 € N be an orthonormal basis for Ran(II) consisting of eigensections
of A with eigenvalues u; > 0.

Our main purpose is to investigate the small eigenvalues of D(a),. More precisely, we
pick 0 < k < 1 and study the eigenvalues A of D{a), which satisfy |A] < a~™*. We shall
employ the self-adjoint operator Hy defined by the quadratic form (4.15). Recall that H,
has pure point spectrum in [0,4%). The description of the spectrum of Hj in [0, u3) is
analogous to Theorem 5 in [Co]. Here we shall discuss only the kernel of Hy. For this
purpose we need some preparation. If we put A = 0 in (5.15), it follows that

(8.2) C'(0) C(0) = C(0) C'(0)

and, therefore, Ker A admits a decomposition into common eigenspaces of C(0), C'(0).
Given b € R, put

(8.3) Vi = {¢ € Ker A | C(0)¢ = —4, C'(0)¢ = 2ibs}.

Lemma 8.4. If V, # {0}, then b < 0.

Proof. Suppose that V, # {0} and b > 0. Let ¢ € V;, ¢ # 0. Consider the generalized
eigensection E(v¢, A) of D attached to y¢ € Ly. Let Ey(y4, A) be the truncated section
(4.28). Employing (4.29), we get

| Es(74,0) |*=4b || ¢ |I* —#{(C(0)C'(0) (v +i¢),7¢ +id) =4(b—d) || 6 [|*=0.
But Ey(v¢,0) # 0. Q.E.D.

Lemma 8.5. Let ¢ € C*®(Z,S) be a solution of D*p = 0 and suppose that, on RT x Y,
@ takes the form ¢ = ¢ + ¢, where v, € L? and ¢ € Ker A. Then ¢ satisfies C(0)¢ = ¢.

Proof. Since ¢; is square integrable and satisfies D%, = 0, we have

(8.6) @1 = Z c;je v ;.

B;j >0
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This implies Dy = 0 on RT x Y. If we apply Green’s formula to M,, it follows that
Dy =0 on Z. Thus ¢ € Ker A is the limiting value of ¢ in the sense of [APS1]. We may
write ¢ as ¢ = ¢4 + ¢_ where C(0)¢+ = 4. Now consider the generalized eigensection
E(v¢é_, ) of D attached to y¢_ € L. Put ¢ = %—E(‘rda_,O). Then 1 is a smooth section
of S and satisfies Dy = 0. Using (4.24), it follows that, on R* x Y, ¢ = yé_ + 8, § € L .
Moreover, 6 is smooth and satisfies || 8(u,y) |< Ce™*. Using Green’s formula and (8.6),
we get

0= (Do b, = [ (r(@u)bla,) dy + o Db)us, =1 16- I +0(e™).
Hence ¢_ = 0. Q.E.D.

Proposition 8.7. For b > 0, we have Ker Hy = Ker D3,

Proof. If p € L*(Z, S) satisfies D?¢ = 0, then, on R* xY, ¢ has an expansion of the form
(8.6). This expansion shows that ¢ belongs to the domain of Hy and satisfies Hyp = 0. To
establish equality, consider ¢ € Ker H,. From the description of the domain of Hy given in
§4, it follows that ¢ is smooth in the complement of {5} x Y and there it satisfies Dy = 0.
Hence, on Rt x Y, ¢ can be written as follows

Y =wo + Z e™HY ¢

;i >0

where (
_ J2i(u - b)p, u<b;
cpo(u,y)—{o  u>b

for some ¢ € Ker A. Let x; be the characteristic function of [b, ) x ¥ and set
=9 + xs2i(u—0b)e.

Then ¢ € C*(Z,5), D*$ =0 and, on R* x Y, we have

(8.8) b =2i(u—b) ¢+

where ¢ € L?. We may write ¢ as ¢ = ¢4 + ¢_ where C(0)¢d4 = £¢+. Let F(dx, ) be
the corresponding eigensection and put

. i)
Y =@+ 1bF(dy, )+—‘F ¢’—”\)|,\—-0

Then ¢ € C*=(Z,5), D*3 =0 and, on R* x Y, we have

(8.9) ¥ =2iugy + C'(0)p_ — 2ibg_ + t,
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" 41 € L?. Now consider Dv. By (8.9), we have Dy = 2iy¢4 + Dy, Dy € L2, on Rt x Y
and Lemma 8.5 implies y¢4 = 0. Since C'(0)¢_ — 2:b¢_ belongs to the —l-eigenspace
of C(0), Lemma 8.5 implies also that C'(0)¢_ = 2ib¢_. Thus ¢ = ¢_ is contained in Vj.
By Lemma 8.4, ¢ = 0 and, therefore, ¢ = ¢ is square integrable and satisfies D?¢p = 0.
Q.E.D.

Now we can start the investigation of the small eigenvalues. First, consider the eigen-
value A = 0. Let ¢ € Ker D(a),. On [0,a] x Y, ¢ satifies 7(8/0u+ A)p = 0 and, therefore,
it can be written in the form

p=¢+ Y cjeMvy;

#;j >0

where ¢ € L;. We may use this expansion to extend ¢ to a smooth section ¢ on Z
satisfying D@ = 0. Let E{¢, A) be the generalized eigensection attached to ¢. In view of
(4.24), p— 1 E(4,0) is square integrable and D($—1E(¢,0)) = 0, i.e.,, — 3 E(¢,0) € KerD.
This proves

Proposition 8.10. There is a natural isomorphism

Ker D(a), = KerD & Ker(C(0) — Id).

Now suppose that A, |)\| < p1, 1s an eigenvalue of D(a), with eigensection . On
[0,4] x Y, ¢ has an expansion of the following form

®11) |
¢ =6—1Au !,bl + enAu¢2

+ iaj()\){ (ch( pt =2 (u—a)) - . - sh(y/p2 — A2 (u - a)))qSJ-

]t? — A2
A

— —==——=sl G =X (u- ¢-}
m“( 1] (v = a))74;

where ¢, € Ker(y — 1), ¥3 € Ker(y + ¢) and

(8.12) P_ipy = —e~HXp_o.
Set
(8.13) wo = e Py + ey

We call ¢¢ the constant term of .
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Proposition 8.14. There exist § > 0, ag > 0, such that, for a > ay, any eigensection
¢ # 0 of D(a), with eigenvalue A satisfying 0 < |A| < § has non-vanishing constant term

¥o-

Proof. Let ¢ be an eigensection of D(a), with eigenvalue A, 0 < |A| < u1/2. Suppose
that the constant term g of ¢ vanishes, i.e., ¥; = ¥ = 0 in (8.11). We assume that
|| # ||I= 1. There is a constant C > 0, independent of a, such that

Z |la;(V)|*eric < €

where a;()) are the coefficients occurring in (8.11). We extend ¢ to a section ¢ of S over
Z by '

[l . zE M,

¢(z) = { Z;‘ aje—#i(“"“) ¢i, z=(u,y) €[a,00) xY.
Then ¢ is continuous on Z and smooth on Z - ({a} x Y). Moreover, it is easy to see that
@ belongs to H}(Z,S) for every b > 0 and satisfies | &l —1| < Ce~°¢. By Proposition

8.7, any 9 € Ker H, is smooth, satisfies Dy = 0 and, on R* x Y, it takes the form (8.6).
In particular, ¢ satisfies Hi(z,b(u, )) = 0 for u > 0. Using Green'’s formula, we get

(0, ¥) M. = A" (Dy, ) pt, = A", D) pr, = 0.

Furthermore, by definition of @, we get

o0 .
- e Hic
(@), ¥(z))dz =) aj;b; <Ce ™
/[’a,oo)xY ) ( ) ; 7 2/“1'
for some constants C,c > 0. Hence, ¢ satisfies
(8.15) |(¢,¢)| SC | p| e for 2 € Ker Hy.

Now we shall apply the mini-max principle. Recall that by the second representation

theorem for quadratic forms (Theorem 2.23 of [K,V1,§2.6]), the domain of H ;/ ? equals
H}(Z,S). Let

1/2
I P il
W= min ——
venlizs) || 9|2
vLilKer “.

It follows from Lemma 4.16 that 0 < @ < u?. Using again Theorem 2.23 of [K,VI,§2.6],
we get

(8.16) | Hy¢ |*=|l D& |*=|| Dy |I3,= A*.
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Let w5 denote the orthogonal projection of H, onto Ker Hy. Put ¢ = ¢ — mpp. Employing
(8.15) and (8.16), we get

@12 -1{<Ce™* and ||| H,/*¢ [? =22 < Ce.

This impies @ <|| H;ﬁ@ 12/ 1l @ 1°< (1 + Ce**)A? and, therefore, we can find a5 > 0
such that A? > @/2 for a > ay. Put § = (@/2)!/%. Q.E.D.

The Proposition shows that, for a > ao, the eigensections of D{a), with sufficiently
small nonzero eigenvalues are determined by their constant terms. We shall now investigate
the constant terms more closely. Pick § > 0 and ag > 0 as in Proposition 8.14. Suppose
that A with 0 < |A| < é is an eigenvalue of D(a),, a > ag, and ¢ an eigensection for A
normalized by || ¢ ||= 1. Then the constant term (8.13) of ¢ does not vanish. We may
write 1y as ¥; = ¢ — iy¢; for a uniquely determined ¢, € L. Put

G=§0—E(¢1:’\)‘

Then G is smooth and satisfies DG = AG. On [0,a] x Y, it has an expansion of the
following form

G =eiAu(¢2 _ C(’\)d)]) + z {Cj(A)e\/Pf—A’u + d](’\) B—V#,?-A’ u}¢j

#j>0
R RV i N v vl pi—H A e
+Z{cm> VT ) VT s
#j>0

The coefficients ¢;(A) and d;(A) are determined by the expansions (8.11) and (4.20). Using
(8.11), (4.20) and (4.29), it follows that these coeflicients satisfy

Y laj(MP e« <C and |b;(N) < C

2

for some constants C > 0 independent of @ and 7. By Green’s formula, we obtain
0=(DG,G)m, — (G.DGlw, = | (16(a,v), Gla,p) dy
=—i || C\)1 — %2 || +O(e™*).
Hence, we have
(8.17) | (N1 ~ s |IP< e
Let I: L_ — Ker(y — t) be defined by I(¢) = ¢ — iy¢. Put
S(AY=P_oC(AN)olI, MeZX.
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Observe that there exists a unique ¢ € L_ such that ¢4 = ¢ — iv¢. Then, together with
(8.12), inequality (8.17) can be rewritten as

(8.18) | e222S(A)¢ + ¢ |I2< ™.

Lemma 8.19. The operator S()\) : L — L_ is unitary for A € (—u1, 1)

This is an easy consequence of the unitarity of C(\) for A € (—p1, p1)-

Since S(A) is unitary, the eigenvalues of the linear operator e e S() + 1d are of the
form e®+1, 6 € R. Let 0 < ¢ be the smallest eigenvalue of (¢2*22 S(\)+1d)(e?**2 S(A)+1d)*.
Then si . :

tAd A
(= i LESO) L1 P
veL- %l
Combined with (8.18), it follows that { < e™°*. Hence, €?*25()1) + Id has an eigenvalue
e'? satisfying

|1+ cosf| < e~

Therefore, there exists k € Z such that
|k — 6] < e™°°.

Let m(A) be the multiplicity of the eigenvalue A. By Proposition 8.14, we get m(A) linearly
independent vectors 1, ..., ¢m(r) € L which satisfy (8.18). Summarizing, we get

Proposition 8.20. Let §,a¢ be chosen according to Proposition 8.14. Let a > a¢ and
suppose that A, 0 < |A| < §, is an eigenvalue of D(a), of multiplicity m. Then there exist
m eigenvalues e'%, ..., e of €222 §()\) such that

e +1]<e™, j=1,..,m.

Next we shall study the zeros of det(e?**S(A) + Id) near A = 0. By (8.2), C'(0)
preserves the eigenspace decomposition (8.1). Let C’(0) denote the restriction of C'(0) to
L_. Then S'(0) = C'(0) and we have
(8.21) Sy = ~Id + S'(0)x + O(A%).

In view of Lemma 8.19, we can apply Rellich’'s Theorem [Ba, p. 142] to study S()). By
choosing § > 0 sufficiently small, the punctured disc 0 < |z| < é consists of simple points
of S(z) only. Then there exist r = dim L_ mutually distinct eigenvalues of 5(z):

vi(z) = =1+ ajz+azt+--, |z| <&
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The eigenprojectors P;(z) associated to vj(z) are also holomorphic at z = 0 and S(z) takes

the form .

S(z) =Y vi(z) Pi(z), 0<|z| <8

i=1

Let 1;(z) be the eigenvectors corresponding to A;(z). We may assume that ;(z) is
holomorphic at z = 0. Differentiating the equation S(z)¢;(z) = v;{z)¥;(z), we obtain

§(0)%;(0) + S(0)¢;(0) = v;(0)¥;(0) + v;(0)¢;(0).
Since 5(0) = —Id and v;(0) = —1, we get
(8.22) S5'(0);(0) = v;(0)¢;(0).

Recall that S(A) is unitary for A € (—puy, #1). Therefore, it follows that there exist real
analytic real valued functions 8;(A) of A € (=6, 6) such that :

vi(A) = =% X e (=66 and B;(0)=0.
Moreover, each 3;(A) has an expansion of the form
(8.23) BN =apdtapdi4 A <6
By (8.22), it follows that the eigenvalues of S'(0) are equal to
vi(0) =da;, j=1,..,r7
Fix é;, 0 < é; < 4, and let

!
. ;= .
(8.24) mj = max 150

Then the function f(A) = 2aX + §;(}) is strictly increasing for |A| < é;, a > m;. Choose
ag > max(m;, 611/“). For a > ¢y and k € Z, there exists at most one solution pi’) of

(8.25) 2a) + B;(A) = 27k, |\ <a”".

Let kjmaz = kj mac(a) be the maximal & for which (8.25) has a solution. Then

(8.26) k5 maz| < %al_" +C <6 for a>ap

Furthermore, if pij) is a solution of (8.25) for some k € Z, then
rk

. (1)
27 = —
(8 ) Pi a4+ aj /2

+ O(a™(1+2%),
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Together with (8.26), we get

(8.28) pij) = %k + O(a"(H"‘)).

Lemma 8.29. Let a 2 ag and |k| < kj naz(a). Then the solutions pij) and p(_’l of (8.25)
exist and satisfy

3, ) C
kaJ +p2] < a1+3n

for some C > 0 independent of a.

This can be easily derived from (8.23) and (8.27).

Given a > 0, we introduce
(8.30) Q(a) = {p € R— {0} | det(c?*S(p) +1d) =0 and |p| <a~"}.
For p € Q(a), let m(p) denote the order of the zero p.

Theorem 8.31. Let 0 < k < 1. There exists ag > 0 such that, for a > ay, we have _
(3) The zeros p € a) are of the form p = p(,cj) for some j,1 < j <r, and |k| £ kj maz(a).
(i1} There exist n € N and C > 0 such that, for any two zeros py, p; € §(a) satisfying
p1 # Lp2, we have |py £ po| 2 C/a".

(ii1) There exists a subset Q'(a) C Q(a) of cardinality < 2r with the following property:
For any p € (a) — Q'(a), p > 0 (resp. p < 0), there exists a unique p’' € Q(a), p' <0
(resp. p' > 0), such that

C
o+ 0| < glizx

and m(p) = m(p'). Here C' > 0 is independent of a.

Proof. Let p € Q(a). Then there exist j,1 < j < r, and k € Z, |k| < kj maz{a), such that
p= p%’). Hence, pij), regarded as solution of (8.25), has multiplicity 1 and satisfies (8.27).
This proves (i). .

To prove (ii), consider two zeros p, p' € }(a) and suppose that p = pij), g = pij'). If
k # xk', it follows from (8.28) that

Ik + k|

a

loLp'| 2 >

=N

for a > ay.

Assume that k = &', §;; £ §;. f k = k' =0, it follows from (8.23) that p = p’ = 0. Hence,
we may assume that k = k' # 0. Then we have 2ap + §;(p) = 2ap' + B;:(p'). Suppose
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that the corresponding Taylor coefficients in (8.23) satisfy a;; = aj; for I < m — 1 and
@j'.;m ¥ Gj,m. Then we get

o0 [0 o]
2a(p - p') + Y aj(p' = p") =D (ajii—a;i) p".
i=1

i=m
Put ¢ = a;1 — a;;. By assumption, ¢ # 0. Moreover, |p|,|p'| < a™". This implies
lp — p'l(2a + O(1)) = || |c + O(a™")I.

Since k' # 0, it follows from (8.28) that |p'| > a~! for a > ay. Hence, we obtain

lp—p12=a~ (™) g >a.

—_— 4 3
Furthermore, by (8.28), we have |p+ p'| 2> a~!. The case k = —k', 8;; # f;, can be treated
in much the same way. It remains to consider the case k' = —k and 3’ = B;,1.e.,p = pi")
and p' = p(_"z, k #£0. Then |p—p'| 2 a7!. If p # —p', there exists n € N such that

@j2n # 0. Otherwise the function 8;()) is odd which implies p{”) = —p¥). Let m € N
such that mx > 2n. By assumption, we have

2a(p + p') + B;(p) + B;(p") = 0.

We rewrite this as follows

m
2a(p +£') + Y a1 (PP + p1H)
=1

o0 oo
== Z aj,‘lp(P2p +pP) — Z erj,21+1(PzH'1 + o).
p=1 I=m+1
This implies
o+ 0'1(2a + 0(a™2%)) 2 |aj20|(p" + p"") + O(a™*").
Since k # 0, we have |p|, |p'| > a~! by (8.28). Hence

C

1 —4n
P+ P12 lajanl =57 + O@™") 2 5

This proves (ii). Finally, the first part of (iii) follows from (i) and Lemma 8.29. The
multiplicity m(p) of any p € (a) equals the number of j's, 1 < j £ r, such that pis a
solution of (8.25). This shows immediately that m(p) = m(p’). Q.E.D.

We are now ready to prove our main result concerning the small eigenvalues.

Theorem 8.32. Let 0 < « < 1 and a > 0. Let Aj(a) £ Mfa) < .-+ < A, (a) be
the nonzero eigenvalues, counted to multiplicity, of D(a), which satisfy |Aj(a)] < a™"
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and let p1(a) < p2(a) < -+ < pm,(a) run over the zeros# 0, counted to multiplicity, of
det(e****S()) +1d) satisfying |p;(a)| < a™*.There exists a; > 0 and ¢ > 0, independent of
a, such that, for a > a,, p, = m, and

[Aj(a) — pi(a)l <e7°%, j=1,..,mq.
Proof. Let a > ap and let A, 0 < |A| < a™*%, be an eigenvalue of D{a), of multiplicity
m(A). It follows from Proposition 8.20 that there exist £ € Z, 1 < 37 < r, such that
(8.33) |2Aa + B;(A) — 2rk| < e7°%.

Let p% be the unique solution of (8.25). Then (8.33) implies
(8.34) A —pf| < e
If m(A) > 1, there exist pairwise distinct branches g8;,, ..., 8; ,, such that (8.33) holds with

the same k. Let ap > 0 be chosen according to Theorem 8.31. Together with Theorem
8.31 we obtain

Lemma 8.35. Let a > ag and let A, 0 < |A| < a™%, be an eigenvalue of D(a), of
multiplicity m{A). Then there exists a unique p € §(a) such that

A—pl<ee and m(p) = m())

where m(p) denotes the multiplicity of the zero p.

By Lemma 8.35, it remains to show that

Yo omp) = Y mO)

A
pEN(a) 0<iA|<am "

where A runs over the eigenvalues of D(a),.
Let a > ap and p € Q(a). Let ¢ € L_, || ¢ ||= 1, such that

(8.36) 9P S(\)p = — 4.

Consider the generalized eigensection E(#, A) attached to ¢. Using (4.20), (8.36) and the
definition of S(A), it follows that the constant term Eq(¢, p) of E(¢, p) satisfies

(8.37) P_ (E0(¢1 p(a, )) =0 and Py (a_iED(anﬁ(”! '))|u=a) =0.
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Let p' € Qa), p # p'. Choose ¢' € L_, || ¢' ||= 1, such that e2*/'S(p")¢' = —¢'. By

Green’s formula, we get
[ (EGp2),B@ 5,0 do
Mg
638)  =—== [ {{DE(p2),B@\0\2)) = (B(6,p,2), DE(#, ') do
p—r" Ju,
1 ! !
= pr, /‘,<7E(¢,P,(G,')),E(¢ ' P :(av'))>dy-

To compute the right hand side, we need the complete expansion of E(¢,)) on Rt x Y.
Note that the section 8(¢, ) occurring in (4.24) is square integrable and satisfies D8(¢, ) =
A8(¢, A). Therefore, it can be expanded in terms of the eigensections (4.3). Let A € L.
Together with (4.24), we get
E($,2) =" (¢ —ivg) + e C(A)(¢ — irg)
_ 2_ )2 u y — )\ -— 4 u —
w0 o i)

7
2 _ )2
#; >0 H; A

Using (4.29), it is easy to see that the coefficients a;(A) satisfy 3°,|a;(A)}? < C for X €
(=#1/2,121/2) and some C > 0. We apply this formula to compute the right hand side of
(8.38). Because of (8.37), the constant term makes no contribution and, by Theorem 8.31,
(i1), we get

(8.40) (E(¢,p), E(¢',p" ) pm.] S Ce™%/%, a0,

Using the description of Ker D(a), given by Proposition 8.10, one can show in the same
way that

(8.41) [(E($,p),¥)m.| S Ce™?, a0, $ € Ker D(a)s.

Now let ¢' € L_, || ¢' |= 1, be a second solution of (8.36). Let h > 0 and apply the
method above to compute (E(¢, p), E(¢', p+ih)} s, . If we pass to the limit A — 0, we get

(E(¢,0), E(¢',p)) M, = 4a($,¢") — i(C(=p)C'(p)($ —17¢),¢' —iv¢')

8.42
( ) +O(e—.u10/2), a> 0.

The constant in the remainder term is independent of a, p. If ¢ = ¢/, we get a formula for

B8, 0) 134, -

Lemma 8.43. Let p € §)(a) be given and suppose that ¢o,¢1 € L_ are two solutions of
(8.36). If (¢o, ¢1) =0, then

(C(=p) C'(p)(d0 — ivd0), ¢1 — iv¢1) = 0.
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Proof. First, observe that C(p)(¢; —iv¢;) belongs to the (—i)—eigenspace of 4. Therefore,
(8.36) can be rewritten as

(8.44) C(p)(¢; —iv8;) = —e 2P (4; +i4;), =01

and, we have to show that

(8.45) {C'(p) (b0 — ivdo), 41 +1761) = 0.

Let ¢, € L_, |u| < ¢, be a smooth one-parameter family of eigenvectors of S(p + u) with
eigenvalues u(u) such that u(0) = —e~217%. As above, this is equivalent to

. Clp+ u)(¢u - iYPy) = F(u)(¢u + ivdy).

Differentiating this equality, we get

C'(p)(do = i7d0) = 1 (0)(do + ivdo) + u(0)(bo +ivdo) — C(p)(do — i7do).
Hence . .
(C'(p)(B0 — i7¢0), $1 + 1761) = —e~ P2 (o + 1760, 1 + i761)
— (o — i760, C(—p)($1 + i741))-
Using the functional equation (4.21) and (8.44), we get

C(=p)(¢1 +i7$1) = —€*%(1 — i7$1).

Finally, since ¢.>0, ¢, € L_, we have
(o — ivdo, 61 — ivd) = (b0 +ivd0, 61 +ivé1).
Combining our results, we obtain (8.45). Q.E.D.

Now return to (8.42). Suppose that (¢, ¢’} = 0. Then, using Lemma 8.43, we get

(8.46) (E($,p), E(8',0)) M, = O(e™#1°/?).

Let f € C°(R) satisfying 0 < f <1, f(u) =1 for v £ 1/2 and f(u) = 0 for u > 1.
Put f,(u) = f(u/a). We regard f, as a function on M, in the obvious way. Furthérmore,
- let x, denote the characteristic function of [0,a] x Y C M,. Let py < p; < - < ppa,
be the zeros in Q(a) where each zero is repeated according to its multiplicity. For each j,
1 £ ; £ m,, we pick ¢; € L_ satisfying the following properties

(1) €¥%i%S(p;)¢; = —4;.
(2) Whenever pj; = pj41 =+ = pj+k, then ¢, d;4+1, ..., §j4+& form an orthonormal system
of vectors in L_.

Put
¥; = fa (E($5,05) — XaEo(8j,07)) + XaEo($;,p5)
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and

From the definition follows that each ; is a smooth section of 5 over M, and satisfies
7 (3;|0M,) = 0. Thus 3; belongs to the domain of D(a),. Furthermore, employing
(8.40) - (8.42) and (8.46), it follows that there exist ag,C, ¢ > 0 such that, for a > a,,

(8.47) [(i, ;)| S Ce™®, i, 4i=1,..,m,
and
(8.48) |(¢g,1,b)| <Ce™*, o€ KerD(a)s, i=1,..,m,.

Let 7, denote the orthogonal projection of L*(M,,S) onto Ker D(a),. Put
;=1 — Taj, j=1,..,ms.

Since dim(Ker D(a),) is independent of a, it follows from (8.47) and (8.48) that

(8.49) (i, ;) = &;| SCe™™, i#3,4,5=1,...,mq, a>0.

By (8.26), we have m, < ral™* for a 3 0. Together with (8.49), it follows that

(8.50) $1,...,00m, are linearly independent for a > 0.

Nowlet0 < Ay <Xy <--- < :\p- denote the nonzero eigenvalues, counted with multiplicity,
of D(a)? which are less than a=2*. Let m = m, and let kq,...,kn be a permutation of
{1,...,m} such that 0 < p} < pi <---<p} . By the mini-max principle, we have

- D 2
A; = min max 1 D(a)-e I (a),g: I
kA Y

where W runs over all j-dimensional subspaces of dom(D(a),) which are orthogonal to
Ker D(a), (cf. [R-S, p.82]). Let W; be the subspace of dom(D(a), ) spanned by Dieysoons 11;;,,..
By (8.50), we have dim W; = j for a > 0. Moreover, by construction, W; is orthogonal
to Ker D(a),. Hence, using (8.47), (8.48) and the definition of ;, we get

1 II L (a)"':f" II‘2 2 -
. T A TN < cia
(8 51) AJ néali ” |l2 pk:. (1 + Clc k _‘)

for some constants Cy,c; > 0. In particular, this shows that m, < p,. Using Lemma 8.35,
we get m, = p,. Combined with Lemma 8.35 this completes the proof. Q.E.D.

Let 0 < & < 1. We can now investigate the behaviour of

oo
(8.52) f V2N et
va

[Aj]|La="
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as t — co. By Theorem 8.32, we may as well sum over p € §2(a). Let Q'(a) be defined as
in Theorem 8.31, (ii1). Let p € Q(a) — '(a), p > 0. By Theorem 8.31, (iii), there exists a
unique p' € Q(a), p' < 0, such that |p+ p'| < Ca~1+2%), Suppose that p > —p'. Then

pall*

p/ t—1/2 e—tﬂa dt + pl/ t—l/'z e-—tp'n dt:f e—z? dx
Va a —p'alld

Thus, (8.52) can be estimated by
C1 #a)ra™3/472",

By Theorem 8.31, (i), and (8.26), we have #Q(a) < ra'™*; and (8.49) can be estimated
by Cza'/4=3%, Pick « such that 1/12 < & < 1/4. Then (8.49) tends to zero as a — oo.
Together with (7.5), Proposition 7.6 and the final estimate for (7.13), we have proved that

lim 2(0, D(a)-) = (0, D).

Combined with Proposition 2.16, we get our main result, Theorem 0.1.

We conclude this section by discussing an example — the Dirac operator in dimension
one. Consider the following differential operator

0 9/0u
e
~-9/0u 0

-01 (1]) and C? is equipped with the standard

symplectic structure ®(z,w) = 2,W; — 2,W, where z = (21,23), w = (w;,w;). Let « € R
and consider the complex line L, C C? spanned by (1,—e'®). Then L,, o € R, are
Lagrangian subspaces of C?. Let P, be the orthogonal projection of C? onto L,. Denote
by D{a), the operator D(a) with domain

. acting in C*°([0, a); C?), @ > 0. Theny = (

dom D(a)a = { € C%([0,a}; C*) | Po(¢(0)) = 0, Pu(p(a)) = 0}.

Then D(a) is symmetric with self-adjoint closure. A direct computation shows that the
eigenvalues of D(a), are given by




It follows from [APS2,p.411] that
(8.53) 7(0,D(a)e) =2b—1= 2%; -1, 0<a<2r, and 5(0,D(a))=0.

In particular, the eta invariant is independent of a as claimed by Proposition 2.16. Now
consider D = D(o0) acting in L%([0, 00); C?) with domain

dom D = {p € C™([0,00); C?) | Po(¢(0)) =0 and ¢(u) =0 for u > 0}.
o=(f9) f,g € C>(0,00)) then the boundary conditions mean that f(0) = ¢(0). Let

D be the closure of D in L%, Then D is self-adjoint. It is easy to see that the kernel of
exp —tD? is given by

1 e—(u—u’)’/u e—(utu')?/4t
k(u,v',t) = .
( ) vinrt e—(u+u')2/4t e—(u—u')2/4t

This implies that tr(Dyk(u,u',t)|u=u') = 0. Hence n(0,D) = 0. From (8.53) we get

n(0,D(a)o) = 7(0,D) and n(0,D(a).) = n(0,D).
Next we determine the scattering matrix associated to D. Let ¢; = (1,0) and ¢, = (0,1).

Then it is easy to see that the corresponding generalized eigenfunctions of D? are the
following one

F(d’laA)u) = e—i)\uqﬁ] + eiku¢2 and F((ﬁg,/\,u) = e,_'-)w'(ﬁz + ei)‘"¢l‘

This implies that the on-shell scattering matrix C()) : C2 — C? is given by

C(\) = (fl’ é)

In particular, the +1-eigenspaces of C(0) are equal to Ly and Ly, respectively. Thus, the
possible boundary conditions for which (0, D(a),) equals n{(0, D) are determined by the
eigenspaces of C(0).
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