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Intr ion.. Since early stages of its developments, the theory of
transformation groups has relied on comparison of linear representations with
general group actions on manifolds from algebraic as well as geometric points of
view. If G is a finite group and W is an orthogonal linear representation space
of G, then it is an elementary fact that the unit sphere S(W) with the induced
linear G—action has more than one G—fixed point if S(W)G #¢ . The
generalization of this fact to arbitrary smooth G—manifolds is neither elementary
nor obvious. The first result in this direction is due to Conner—Floyd ([5] § 31)
who proved that for G = (Z/2)" acting smoothly on a closed manifold X , the
fixed point set XG cannot consist of one point. Conner and Floyd conjectured
({5] § 45) that the cyclic group Z/q", where q is an odd prime, cannot act on
a closed orientable manifold with only one fixed point. The example of Conner
and Floyd for a smooth 7Z/4 action on RP? shows that this fixed—point
property does not hold in general. The Conner—Floyd conjecture was proved by
Atiyah and Bott ([3] Theorem 7.1) using their version of the Lefschetz fixed
point formula for e]liptfc complexes (nowadays known as Atiyah—Bott—Lefschetz
formula). Conner and Floyd also established their conjecture using their work on
the cobordism of odd order periodic maps ([6] Theorem 8.3). They also
construced a smooth G—action on a Riemann surface with exactly one fixed point

for G a cyclic odd order group with at least two distinct primes dividing |G| .

A more general form of the Conner-Floyd conjecture for smooth odd order
abelian p—group actions is due to W. Browder ([4]) based on his fixed—point
Theorem and K—theoretic considerations. Browder ([4]) as well as Ewing and
Stong ( [8] ) showed that the abelian hypothesis is necessary. In fact, based on the
Atiyah—Bott and Conner—Floyd Theorem, Ewing and Stong ([8]) proved that if
G # (I/2)" is a compact Lie group, then G can act smoothly on a closed
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(possibly non—orientable) manifold with one fixed point and in the orientable
case, only abelian groups of odd prime power order cannot act with only one fixed
point. The generalization and interpretation of the Conner—Floyd conjecture in an
algebraic context was taken up by Assadi in [2] and [3]. Assadi’s generalization
to chain complexes and G-spaces with Poincaré duality provided an algebraic
proof of the Conner—Floyd conjecture for G = (Z/p)" . For infinite dimensional
Poincaré G-spaces and kG—Chain complexes satisfying Poincaré duality, the
Conner—Floyd conjecture may be formulated in terms of the associated varieties
[3]. Recently, W. Browder has extended his results in [5] to abelian p—group
actions on finite dimensional simplicial complexes which are (Z/p) — homology
manifolds [6], thus giving a further generalization of the Conner—Floyd

conjecture.

In this paper, we prove that the Conner-Floyd conjecture generalizes to
actions on complete non—singular algebraic varieties over an arbitrary

algebraically closed field k . In particular:

Theorem 2.1. Let X be a complete algebraic variety over an algebraically closed
field of characteristic p >0, and let G be a finite ablian group of order qd,
where q is a prime different from p, acting on X via automorphisms. If the

fixed point set consists of one point x € X, then X is singular at the point x.

In fact, the following scheme—theoretic generalization is proved:

Corollary 3.2. Let G be a finite group of prime power order acting on a

complete non—singular algebraic variety V defined over an algebraically closed
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field of arbitrary characteristic. Then VG cannot consist of an isolated point, i.e.

v # Spec(k) .

For varieties over €, the underlying topological space of X in the analytic
topology is triangulable according to Hironaka ([10]). Combining the above
theorem and the results of Browder [6] or Assadi [2] [3] one concludes that in
this case such an X does not satisfy Poincaré duality (even with

F p—coeﬂicients).

From the point of view of varieties, the condition p # q in Theorem 2.1 is

necessary, since the action of Z/p on I’l(tl_:p) given by (x0 ;
x;) — (x0 ) X + x;) has precigely one fixed point. On the other hand, it is
easily seen that this fixed point has multiplicity two, so that Corollary 3.2 applies
to this case. Finally, one may ask to what extent the non—singularity of X plays
a role for the truth of the Conner—Floyd conjecture. By means of examples
(Section 3) one can gee that there exists one—fixed point actions on projectively
normal subvarieties of pN which have only a normal singularity at the fixed
point. Moreover, for k =, the link of the singularity at XG could be quite

complicated (see Corollary 3.3).

In the next section we discuss some preliminary notions from algebraic
geometry which may not be well-known to researchers in topological
transformation groups. In Section 2 we give the proof of the main theorem . In
Section 3 we discuss some examples including the case of p—groups actions in

characteristic p .



Section One. Preliminaries.

In the sequel, k denotes an algebraically closed field of characteristic
p20,and G will be a finite group. If (|G| ,p)=1 (|G| =order of G),

then the element ﬁ- 2 g is an idempotent in kG . Consequently, all
Glg€eG

kG-modules are kG-—projective and the group algebra kG is semisimple, which
shows that all kG—modules are completely reducible (i.e. kG—isomorphic to a
direct sum of irreducible kG—submodules). This result (known as Maschke’s
Theorem, cf. Curtis—Reiner [7]), refines further when G is abelian. Namely,

any n—dimensional kG—module W is G—isomorphic to a direct sum of

n
one—dimensional (over k) kG—submodules: W @ L., dim L. =1. Further,
i=1
the representation of G on L. factors through G —— 7/ where Z/2 acts
on L. via an appropriate €—th root of unity. Similarly for infinite dimensional

representation the above idempotent may be used.

The standard reference for notation and definitions from algebraic geometry
is Hartshorne [9] and the reader will find the details in [9] as appropriatly re-
ferred to them. In particular, the term variety refers to an irreducible variety. Ba-
sic properties of projective varieties are adequately covered in [9] Chapter I
where the reader may replace "complete" by "projective”. Let G act effectively
on a projective k—variety X by automorphisms. Then the geometric orbit space
X/G exists and it is a projective variety as well. In the case k= C , this
coincides with the orbit space under the usual (Euclidean) topology. We will need
this fact only for curves in the positive characteristic where complete and
projective are equivalent (indeed for non—singular curves only). This case is

handled by the following elementary considerations. The G—action on X induces
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def
a G—action on the field of rational functions K(X) = K leaving the subfield k

fixed. In particular, the fixed field Ld;f KS is a finitely generated field
extension of k of transcendence degree one, and the extension L C K is Galois.
It is8 well-known that there is a unique (up to isomorphism) projective
non—singular curve X’ whose function field is isomorphic to L . Moreover, there
is a k—morphism #:X — X’ inducing the inclusion LCK (cf. [8] Ch. I
§6).

In the classical case, i.e. k = C, the map = is a ramified (i.e. branched)
covering, and ramification occurs over the orbits whose isotrop& subgroups are
non—trivial. Let g and g’ be the genera of X and X’ respectively. Then, the
Riemann—Hurwitz formula relates g and g’ when X and X’ are

non—singular:
" (GRH) 28—2=|G|(28" —2) +degR.
Here R is the ramification divisor ([9] Chapter IV, § 2).

The proof of this theorem for k=€ is an elementary Euler—Poincaré

characteristic count, and simplifies to the following:
(RE) 2%-2=|G|(2s' -2 + L (]G] - |G()])
x€X

where |G(x)| is the number of points in the orbit of x € X which is equal to
|G| except for finitely many x .



.

In the general case, the above formula (GRH) is valid, and the only delicate
point is the computation of deg R . However, when (|Gx| ,p) =1 for all points

x € X with non—trivial isotropy groups, the ramification is called tame, and
degR = 2 (|G| = |G(x)|) so that (RH) holds in the following discussion
x€X

(cf. [9] Ch. IV, § 2).

We will also need to consider desingularization of curves and an equivariant
analogue. Suppose X is a possibly singular projective curve on which G acts by
automorphisms. Then the set of singular points of X is a finite G—invariant set,
i.e. a G-set. Also, G acts on the function field K(X)=K by k—automorphisms

as above. Let Y ©be the unique non—singular projective curve such that

def
K(Y) =K. Then the G-action on K induces a G—action on the set of discrete

valuation rings of K (which is the underlying set of Y). Thus G actson Y by
isomorphisms. Every local ring dx,x , x € X, when regarded as a subring of K,
is dominated by a discrete valuation ring JY,y ([9] Ch. 1, § 6). The inclusions
0x,xC aY,y for various x€X and y€Y giverise toamap f: Y—X
which turns out to be a morphism. Clearly, f will be equivariant with respect to
the given G—actions. Further, Y is the normalization of X , and in the
f:.1 I(Xr eg

is a G—map of G—sets.

complement of the singular set, say xreg =X - Xsing ,

)— Ksing

) — xreg

. . . L1

is an isomorphism, and f:{ (xsing
Remark. Although we will not need the following, it is interesting to notice that
Y/G is the normalization of X/G , and the suitable generalization of the
Hurwitz formula for singular curves should agree with the standard one for

Y—Y/G.



Section Two.
We will keep the hypotheses and notation of the previous section.

2.1. Theorem. ILet X be a complete algebraic variety over an algebraically
closed field of characteristic p > 0, and let¢ G be a finite abelian group of order
qr , where q is a prime different from p . Suppose that G acts on X via
automorphisms, and XG consists of one point. Then XG is a singular point of
X.

As a corollary of this theorem we have the following analogue of the

Conner—Floyd conjecture and its generalitzation by Browder [5] [6].

2.2. Corollary. Let X be a complete non—singular variety over an algebraically
closed field of characteristic p > 0 . Suppose G is an abelian group of order qd,
where q is a prime different from p, and G acts on X via automorphisms.

Then xG cannot consist of one point.

Proof.: To get a contradiction, assume that xC = {x;} . X is smoothat x,,
and the action on X ~ {x,} is fixed—point free, i.e. for all x # X , the isotropy

subgroup Gx # G . Notice that T X isa G-representation. Choose a basis
0

n of eigenvectors of TIOX and let X5 o Xy be the corresponding

coordinate functions. Let s= be the maximal ideal of the local ring ax’xo at

TR

*
Xy - Then we have a projection m— m/m2g(Tx X) . Choose a
0

*
G—equivariant splitting (using semisimplicity) ¢: (TXOX) — o~ and let
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f=p(x)e @(’xo - Let V; CX be an open neighborhood of x, where all f

are defined, andlet V:= I gV, bea G-invariant open neighborhood. This
geG

induces a G-equivariant morphism #:V — TXOX : Y(v) = T fi(v)e; . Since
x, = f; (mod m?) , the differential d ¢ induces an isomorphism of the Zariski
cotangent spaces, which implies that ¢ is étale at Xy - Now let
C:={veV|iy(v)=..=1(v)=0} . C is smooth at x, by the Jacobian
criterion. Let X := component of C passing through X - Thus I, is a curve
passing through X, and non—singular at Xq - Moreover, L, is G—invariant and
E(g = {xo} . Let I, be the closure of X, in X, (i.e. add the finitely many
possibly missing closed points to EO to get a complete, possibly singular curve
L, ). It follows that E, is also non-singular at x, and the G—invariant finite
set of singular points of I, lies in the fixed—point free part of I, . Now let
IR y— )31 be the equivariant normalization of El a8 described in Section
One. Thus, L8} is a finite proper morphsim which restricts to a G—somorphism
onto the open subset of regular points of 21 , i.e. an open G—invariant

neighborhood of x . Hence, £ consists of one point, namely rIl(xO) .

To summerize, we have produced a nonsingular complete curve ¥ on which
g acts by automorphisms and EG consists of one point, call it Xy again. Let
'=%/G and «x:X—X/G be the projection onto the orbit space (cf.
Section One), and let x4 = n'(xo) . Since (|G|,p) =1, the ramifications of =
are all tame, and we may apply the Riemann—Hurwitz formula (RH) of Section
One. For each branch point x'# xj, x €X', and each ramification point
x € r_l(x’) lying above x’ , the ramification index is |G| # |G| . Let
g = genus(Z) and g’ = genus(X’) . Thus (RH) becomes
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%-2= |Gn(2g’—2)+x§x0|cl e e (-7

Hence 2g—2=-1(mod q) .

On the other hand, consider the space of differential one—forms 9513 [k
which is a g—dimensional k—vector space on which G acts linearly. From the
above conclusion of (RH) , we conclude that g#1.For g=0, T & lPl(k) and
it is well-known that the automorphism group of IPl(k) is. PGL(2,k) and as a
result, up to G—isomorphism, the G—action on Pl(k) is linear. It follows that

any such effective linear G—action on IPl(k) must have at least two fixed points.

g

Hence g> 2, and Qé [k # 0 . According to Section One, Qé [k o i: Li , where

1
dikai =1 and the G-action on Li factors through a projection

. 8. 8.
G2+ I/q Th < (i > , where Ci is a primitive q '—th root of unity. Thus, we

have a basis T = {tl, ,tg} of G—invariant differential one—forms on which

n, 8. 8,
(Cj,tj) — CjJ . tj where n #£0(mod qJ) and q'>1 since the action of G

on X is not trivial. At least one element of T , say t, , must not vanish at X, -
Since the degree of the divisor (t,) is2g—2>0, t, must vanish at some point

y# x; . Let ¢: Y —— Y be the isomorphism which represents the generator of
n
1

8
Z/q ' ¥6,(G) sothat pt;=¢ 't . Let y, =1 (y) e Gly) = orbit of y.

n

def
Then t,(y,) = tl(f_l(y)) = (f*tl)(y) ={ 1, t;(y) =0, and we conclude that

the order of vanishing of t, at all points of the orbit of y are the same. Hence,

the degree of the divisor (t,) is divisible by

gcd{|g—| t(y) = 0} =0 (modq). It follows that 2g—2=0 (modq),
y

contradicting the conclusion of the Hurwitz formula above. This contradiction

proves the theorem. o
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Section Three. In this section we discuss some consequences of the main theorem
as well as the case of p—group actions on varieties in characteristic p , where a
scheme—theoretic version of Corollary 2.2 is valid. As before, let k be
algebraically closed of characteristic p, and let X be an affine k—scheme with
coordinate ring k[X] . The fixed—point scheme X s the closed subscheme
defined by the ideal I= {f8—f|geG,fek[X]} . Thus, the k—algebra
R:=k[X]/I is the largest quotient of k[X] on which G acts trivially, and
xG = Spec(R) .

3.1. Theorem. Let X be an irreducible k—scheme of positive dimension on which
a finite p—group G acts by k—isomorphisms. Then the fixed—point scheme XG

cannot consist of an isolated point, i.e. XG # Spec(k) .

3.2 Corollary. Let G be a finite group of prime power order acting on a
complete non-singular algebraic variety V defined over an algebraically closed

field of arbitrary characteristic. Then VG cannot consist of an isolated point, i.e.
ve # Spec(k) .

The above corollary follows from 3.1 and Corollary 2.2.

Proof of 3.1. We may assume XG(k) $¢ . Let Xg € XG(k) ,and let U bean

affine open neighborhood of x, . Then Uj:= N gU is a G—invariant affine
geG

open neighborhood of Xg s and we may prove the theorem for U0 . Therefore, we
may assume that X is affine. Let m be the maximal ideal of the local ring

% , » and consider the finite dimensional k—vector space m/m2 on which G
0

acts linearly. Since G is a p—group and char(k) = p , there is a non—zero vector
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ag € (m/m2)* which is fixed under G . The pair consisting of the closed point
Xy and the non—zero tangent vector a, at x, which is fixed under G is
equivalent to a surjective k—homomorphism R -—k[e]/ (52) , where
Spec(R) = XG a5 discussed above. Therefore Spec(R) # Spec(k)  as
claimed. o

A version of 3.1 has been proved for unipotent actions in a different context
by Meyer—Oberst [13].

As pointed out in the Introduction, the case k=€ implies that if a
complete variety X has a G—action with XG = one point , then the link of the
singularity at the fixed point xC s not (mod q)-homology equivalent to a
sphere, provided that X — XG is regular.

3.3. Corollary. Suppose k =C and X is a complete variety on which G (as in
Theorem 2.1) acts with xC = {x} . Suppose that X is non—gingular in the
complement of Xg - Then the link of the singularity at X, 8 mnot

(mod q)-homology equivalent to a sphere.

Proof: According to Hironaka [10], X is triangulable, and we may choose x; to
be a vertex of an underlying symplicial structure. Further, by triangulating the
orbit space X/G, we may assume that G acts simplicialy on X . Passing to
the second barycentric subdivision, results. in a G-CW-structure for X.
Therefore the cellular chain complex Cy(X) becomes a finite—dimensional
permutation G—chain complex (cf. Assadi [1] Ch. I). If the link of the
singularity at x, is a (mod g)-homology sphere, then X becomes a
(mod q)-homology manifold, and consequently, the permutation G—chain
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complex Cu(X)®F q satisfies duality. According to the construction, in the
G-sets providing permutation bases for Ci(X) , only x, has isotropy subgroup
G . But this contradicts Browder’s Theorem [6] (see the Introduction).

In the same direction, the combination of Theorem 2.1 above, Browder [6],

and Hironaka’s triangulation Theorem [10] yields the following:

3.4. Corollary. Suppose k = €, and X is a complete variety and G actson X

as in Theorem 2.1 above with XC

= one point. Then the underlying topological
gpace of X in the analytic (i.e. Euclidean) topology does not satisfy Poincaré

duality with mod q coefficients (and hence Z—coefficients). o

Note: (1) When G= (Z/q)" , then we can also apply Assadi [2] [3] in
conjunction with Hironka’s result [10] to obtain this special case of Corollaries
3.3 and 3.4 above. This was the original form of 3.3 and 3.4 in the first version of
this paper. We would like to thank Bill Browder for communicating his results to
us, as well as bringing to our attention the following result of G. Bredon [14].
Bredon has shown that if G = Z/p acts on a connected finite Poincaré complex
X of positive formal dimension, then XG cannot be mod p acyclic. Thus, for

G =1 /p , Brendon’s Theorem also implies 3.3 and 3.4.

To point out a concrete example confirming the above results, we consider
an example of a complex projective surface X on which the group G = Z/p acts
with only one fixed point. The link of this point is a rational homology sphere, in
fact the 3—dimensional classical Lens space L3(H/5) , which is not a (Z/5) —
homology sphere.
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3.5. Example. Let X be the quintic hypersurface in [P3(C) given by the
equation xi + xg + xg + x1x2x3 =0 where (xl,x2,x3,x 4) are the homogeneous
coordinates of IP3(C) . The action of Z/5 on P2 i given by (ex,) eixi
where ¢ is a fifth root of unity generating Z/5 . As one computes easily, X is
invariant under Z/5 and of the four fixed points in iP3 , exactly one point lies in
X , namely P =(0,0,0,1) . At P, X is analytically isomorphic to the affine
hypersurface xy = z5 near the origin, by the Morse Lemma. This is a rational
double point of type A, and it is a quotient €2/(H/5) where Z/5 acts by
(&,(8,t)) — (ss,s4t) . Here, x = g , Y= £ , z =8t .On the other hand, X is
nonsingular at any point different from P . Thus, the link of the singularity is the
classical lens space L3(1,4) with fundamental group Z/5 which is a rational
homology sphere, but not a (mod 5) — homology sphere. In particular, X does
not satisfy Poincaré duality with (Z/5) — coefficients, although it is a rational

Poincaré complex.

Finally, it appears that the analogues of Corollary 2.3 and 2.4 for varieties
defined over fields of positive characteristic remain true when we formulate them

in terms of local cohomology.
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