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LARGE TORSION SUBGROUPS OF SPLIT JACOBIANS OF CURVES OF
GENUS TWO OR THREE

EVERETT W. HOWE, FRANCK LEPREVOST, AND BJORN POONEN

ABSTRACT. We construct examples of families of curves of genus 2 or 3 over Q whose Jacobians

split completely and have various large rational torsion subgroups. For example, the rational points

on a certain elliptic surface over P! of positive rank parameterize a family of genus-2 curves over

Q whose Jacobians each have 128 rational torsion points. Also, we find the genus-3 curve
15625(X* + Y* + 2%) — 96914(X*Y? + X22* 4+ Y22%) =0

whose Jacobian has 864 rational torsion points.

1. INTRODUCTION

Nearly twenty years ago Mazur settled the question of which groups can occur as the group of
rational torsion points on an elliptic curve over Q, but the analogous question for Jacobian varieties
of curves over Q of genus greater than 1 remains open. Most of the work that has been done on this
question has centered on the problem of finding groups that do occur as rational torsion subgroups
of Jacobians. Several researchers have produced families of genus-2 curves whose Jacobians contain
various given groups in their rational torsion (see [19], [20], [23], [24], [31], and the summary in [27])
while others have constructed families of curves in which the size of the rational torsion subgroup
of the Jacobian increases as the genus of the curve increases (see 7], [8], [21], [22], [25], [26]). The
largest group of rational torsion heretofore known to exist on the Jacobian of a curve of genus 2
was a group of order 30; for genus-3 curves, the largest group had order 64.

In this paper we present many explicit families of curves of genus 2 and 3 whose Jacobians possess
large rational torsion subgroups. The strategy behind our constructions is to take a preduct of
elliptic curves, each with large rational torsion, and to find a curve whose Jacobian is isogenous to
the given product. Thus it is no surprise that the groups we list occur as torsion groups of abelian
varieties; rather, the point of interest is that they occur as torsion groups of Jacobian varieties.

For curves of genus 2, we have the following result:

Theorem 1. For every abstract group G listed in the first column of Table 1, there exists a family of
curves over Q of genus 2, parameterized by the rational points on a non-empty Zariski-open subset
of a variety of the type listed in the third column, whose Jucobians contain a group of rational points
isomorphic to G.

When we say that a family is parameterized by the rational points in a non-empty Zariski open
subset U of a variety X, we mean in particular that the closure of the image of U in the moduli
space of genus-2 curves is of the same dimension as X. Also, by “positive rank elliptic surface”
we mean an elliptic surface over P! with positive rank. Note that a family parameterized by the
rational points in a non-empty open subset of P consists of a single curve. We will often refer to
families parameterized by P! and P2 as 1- and 2-parameter families.

A similar table expresses our results for curves of genus 3.
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| G | |G| |  Parameterizing varicty
7./20Z 20 P?
Z/21Z 21 P?
Z/3Z x Z/9Z 27 p?
Z/30Z 30 P?
Z/35Z 35 | positive rank elliptic curve
Z/6Z x Z/6Z 36 p?
d 7/3Z x Z./]12Z 36 P2
Z/40Z 40 | positive rank elliptic surface
7/457 45 | positive rank elliptic curve
Z/2Z x Z]24Z 48 P?
272 x Z]7Z 49 po
Z/5Z x Z/10Z 50 | positive rank elliptic surface
Z/607Z 60 | positive rank elliptic curve
7./637 63 PO
Z/8Z x Z/8Z 64 p?
Z/2Z xZ2/4Z x Z/8Z 64 P?
Z/6Z x Z/12Z 72 | positive rank elliptic surface
Z/2Z xZ/6Z x Z/6Z 72 | positive rank elliptic surface
Z/2Z X Z[2Z x Z/24Z 96 | positive rank elliptic curve
Z/2Z x Z/27 x Z/AZ x Z/8Z | 128 | positive rank elliptic surface

TABLE 1. Families of curves over Q of genus 2 such that G is contained in the
torsion subgroup of the Jacobian.

Theorem 2. For every abstract group G listed in the first column of Table 2, there exists a family of
curves over Q of genus 3, parameterized by the rational points on a non-empty Zariski-open subset
of a variety of the type listed in the third column, whose Jacobians contain a group of rational
points isomorphic to G. The fourth column of the table indicates whether or not the family consists
entirely of hyperelliptic curves.

In Part 2 of the paper we review the results on elliptic curves that we will need to prove these the-
orems. In Part 3 we show how, given a pair of non-isomorphic elliptic curves whose Galois modules
of 2-torsion points are isomorphic, one can construct explicitly a curve of genus 2 whose Jacobian
is isogenous to the product of the given elliptic curves. After giving some quick applications of
the construction to the problems of finding genus-2 curves of low conductor and of high rank, we
give a modular interpretation of our construction in Section 3.3. The rest of Part 3 is taken up
with the proof of Theorem 1. In Part 4 we begin with another explicit construction: We show in
Section 4.1 how one can construct a curve of genus 3 whose Jacobian is isogenous to a product of
three given elliptic curves, provided that each of the elliptic curves has a rational 2-torsion point,
that the product of their discriminants is a square, and that a certain explicitly calculable number
depending on the curves is a square. The remainder of Part 4 contains the proof of Theorem 2.
The reader should note that our verifications of the many entries in Tables 1 and 2 are organized
not by the sequence of the entries in the tables but rather by the type of argument the verifications
require. Consequently, the proofs of the theorems are distributed among several sections.

Throughout the paper, and often without further mention, we will make use of van Hoeij’s
Maple package IntBasis for computing Weierstrass models for genus-1 curves with a rational
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G | |G| | Parameterizing varicty All hyp.? |
Z/2Z x Z/30Z 60 | positive rank elliptic curve yes
Z/10Z x Z/10Z 100 P! yes
Z/2Z x Z/8Z x Z/8Z 128 | positive rank elliptic surface yes
Z/4Z x 2/4Z x Z/8Z 128 P! yes
Z/4Z x Z/40Z 160 | positive rank elliptic curve no
Z/2Z x Z/4Z x Z[/24Z 192 { positive rank elliptic curve no
Z/2Z x /27 x Z/2Z x Z/24Z 192 | positive rank elliptic surface yes
7/10Z x 2,/207Z 200 P2 1o
Z/6Z x Z/6Z x Z/6Z 216 | positive rank elliptic curve no
Z/47Z x Z/60Z 240 | positive rank elliptic curve no
Z/47Z x Z/8Z x Z/8Z 256 | positive rank elliptic curve no
2/27 x Z]2Z x Z/87 x Z]8Z 256 P2 no
Z/2Z % ZJAZ x Z/4Z % Z/8Z 256 p? no
Z/2Z x Z]2Z x Z]2Z x Z]AZ x Z]8Z 256 p? yes
Z/2Z x Z/12Z x Z./127Z 288 p? no
Z/22 x Z/2Z x Z/6Z x Z/12Z 288 | positive rank elliptic surface yes
Z/27 x Z/2Z x Z/4Z x Z/47 x Z/8Z 512 | positive rank elliptic curve no
Z/2Z x Z/2Z x Z/2Z x Z/2Z x Z/4Z x Z/8Z | 512 P! yes
Z/6Z x Z/12Z x Z/12Z 864 p? no

TABLE 2. Families of curves over Q of genus 3 such that G is contained in the
torsion subgroup of the Jacobian. The final column indicates whether or not the
family consists entirely of hyperelliptic curves.

point; Cremona’s programs findinf and mwrank for finding points on, and computing ranks of,
elliptic curves over QQ; Mathematica; and especially PARI.

2. GENUS ONE

In this section we record facts about torsion of elliptic curves over Q that we will need later.
Mazur’s theorem [28] states that if £ is an elliptic curve over Q, then the group of rational torsion
points on E is isomorphic to Z/NZ with N < 10 or N = 12, or isomorphic to Z/2Z x Z/2NZ with
N < 4. For each possibility where the group is not killed by 2, the elliptic curves having that group
as torsion subgroup form a l-parameter family. We will need to have an explicit equation for the
universal curve for each family. For N = 3, this universal elliptic curve is y% = 23 + (z 4 £)2/4 and
a 3-torsion point is (0,%/2). For the other cases, we copy! Table 3 in [17] to our Table 3.

Let E% denote the elliptic curve with a rational N-torsion point with parameter ¢, and similarly
define Eéﬂ ~- We will need to know something about the ficld of definition of the 2-torsion points
on the curves E% . Therefore we record the discriminant Ay(t) of B modulo squares in Q(t) in
Table 4. If N is odd, the discriminant Ay(t) is equal (modulo squares) to the discriminant of the
cubic field obtained by adjoining the coordinates of one 2-torsion point; if N is even, An(t) is equal
(modulo squares) to the discriminant of the quadratic field obtained by adjoining the coordinates
of a non-rational 2-torsion point.

! Actually, we have done a tiny bit more than copy: we have expanded the implicit expressions for the parameters
b and ¢ in [17] to express b and ¢ in terms of a single parameter ¢.
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N or (2,2N) b c
4 ¢ 0
5 i t
6 2+t t
7 32 t2—1¢
7
8 242~ 3¢ 41 goxrl
9 15— ot 423 — 2 13— 42
10 20 — 3t1 4¢3 =23 4 3t2 — ¢
(2 — 3t + 1)2 t2—3t+1
Lo 1265 — 308° + 34t? — 2183 + 712 — ¢t | —641 + 93 — 5¢2 + ¢
(t — 1) (t—1)3
1
2.4 [ p—
(2:4) .16 0
(2.6) —2t3 4+ 1482 — 22t + 10 —2t+ 10
’ (t2 — 9)2 t2-9
(2.8) 1683 + 1682 + 6t + 1 1683 + 1612 + 6t + 1
’ (8t2 — 1)2 2t(4t + 1)(8t2 — 1)

TABLE 3. Parameters b, ¢ for the universal elliptic curve y?+(1—c)zy—by = z° —bs?
over X)(N) or X,(2,2N). In each case, (0,0) is a torsion point of maximal order.

| N | Discriminant An(¢) modulo squares |

3 t(1 — 27¢)

4 16¢ + 1

5 t(t? — 11t - 1)

6 (t+1)(9t+1)

7 t(t — 1)(22 — 812 + 5t + 1)

8 812 ~ 8t +1

9 | tt— )2 —t+ )13 — 662+ 3t + 1)
10 (2t — 1)(4t? = 2t = 1)

12 (2% — 2t + 1)(6t2 — 6t + 1)

TABLE 4. Discriminant (modulo squares) of the elliptic curve Ef,.

We will need to know the z-coordinates of the nonzero 2-torsion points on E;E;,N, at least for
N =3 and N = 4. These are given in Table 5. For N = 4, the point T3 is the one that is 4 times
a rational 8-torsion point. Note that these z-coordinates are also valid for the model

y? =% - bz? + [(1 — ¢)z — b)*/4

obtained by completing the square in y.

For our work with genus-3 curves, we will require different models of the universal elliptic curves
E! for N = 4,6,8,10,12 and E5,2N for N = 2,3,4; in particular, we will want to have each curve
written in the form y? = z(z?+ Az + B), where x = y = 0 is a specified 2-torsion point. Table 6 lists
the values of 4 and B for the curves we will need, as well as the value of the number A = A2 — 4B,
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| Curve || z(T1) | z{T3) z(T3) |
B —2t + 10 —3 + T2 - 114 +5 —2t* + 4t — 2
20 t2 -9 4(t + 3)(t — 3)? (t+3)2(t - 3)
- 166% + 1262 + 2¢ | 32¢% +24¢2 + 8¢ + 1 | —32¢7 — 3243 — 12¢% — 2t
28 (8t2 — 1)2 16£2(8t2 — 1) (4t +1)2(8t2 - 1)

TABLE 5. The z-coordinates of the 2-torsion points on Ef .

which differs from the discriminant of the elliptic curve by a factor of 16 82%. The entries in the table
were calculated by completing the square in y for the models of the Eé n and Eé on Eiven above,
moving a rational 2-torsion point to = 0, scaling with respect to = to clear dehominators, and
making a linear change of variables in ¢ so as to simplify the resulting polynomials. We will refer to
these models as Fy and Fé,z ~ depending on which universal elliptic curve they model. However,
there are two essentially different ways of putting the curves E'é‘,. and EE’B into the desired form,
because one of the 2-torsion points on these curves is a multiple of a point of order 4 while the
others are not. We denote the models in which the 2-torsion point at z = 0 is a multiple of a
4-torsion point by Fj 4 and F2t,8’ and we denote the other models by Ff, and F},.

For convenience, we list in Table 7 the coordinates of a torsion poiﬁt of maximal order on the
curves Fyy, Fy,y, and Fiy,. Also, in Table 8 we give the z-coordinates of the 2-torsion points
other than (0,0) on the curves whose 2-torsion points are all rational. In the entries for F‘fﬂ and
Fg‘,z, the point labeled T} is twice a rational 4-torsion point.

Finally, we note that while there is no universal elliptic curve over the modular curve X (2) there
is a replacement that will suffice for our purposes. If & is a ficld of characteristic different from 2,
then every elliptic curve over &k that has all of its 2-torsion defined over k is isomorphic to a twist
of a specialization of the curve Fy, over k(t) defined by y* = x(2? + Az + B), where A = —1 — ¢
and B =t.

3. GENUS TWO

3.1. Conventions. All curves are supposed to be nonsingular and irreducible unless we specifically
mention that they might not be. The modular curves we consider in section 3.3 are possibly singular.
If A is a variety over a field & and if K is an extension field of k, we will denote by A the K-schemne
A xgpeck Spec K. If A is an abelian variety over a field k and N is a positive integer, we will denote
by A[N] the k-group scheme that is the kernel of the multiplication-by-N map on A.

3.2. Jacobians (2,2)-isogenous to a product of elliptic curves. In this section we will show
how one can construct a curve of genus 2 whose Jacobian is (2, 2)-isogenous to a product of two
given elliptic curves, provided one has an isomorphism of their 2-torsion groups that does not come
from an isomorphism of elliptic curves. Related results, some of them constructive, have appeared
in the literature — see for example [9], [10], (12], {14], [18].

Suppose E and F are elliptic curves over a separably closed field K, and let N be a positive
integer not divisible by the characteristic of K. The product of the canonical polarizations on E
and F is a principal polarization A on the product variety A = E x F', and by combining the Weil
pairings on E[N] and F[N] we get a non-degenerate alternating pairing ey from the N-torsion
of A to the group-scheme of Nth roots of unity over K. Suppose G is a sub-group-scheme of
A[N) that is isotropic with respect to the pairing ey and that is maximal with respect to this
property. Then the polarization NA of A reduces to a principal polarization p on the quotient
abelian variety B = A/G (see [30], Proposition 16.8, p. 135). The polarized variety (B, ;) will be
either the polarized Jacobian of a curve over K or the product of two polarized elliptic curves over
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| 2N, (2,2N), or (2N,2) || A, B, and A = A2 — 4B

A=2t+1
4 B =1t
A=4t+1
A=2t2+2
(2,4) B = (t—1)%(t-1)?
A = 16¢2
A=—t2—6t—1
(4,2) B = 4t(t + 1)?
A=(t-1)"
A=-3t24+6t+1
6 B = —16t°
A=(9t+1)(t+1)°
A= -2t" +12t°+ 6
(2,6) B=(t+3)(t-3)(t+1)°%t-1)°
A = 2561°
A=+ 442 -2
8 B=(t+1)4t-1)*
A = 16(2t2 — 1)t
A=1t8— 4% 4+ 22¢4 — 412 41
(2,8) B =16t4(t + 1)*(t — 1)*
A= (2 -2t -1)2(t* + 2t — )2 (2 + 1)*
A= —2t% + 8% 4 441 4 8% ~ 2
(8,2) B=(#-2t—-1)(t*+2t -2+ D%t + 1)1 - 1)
A = 25612
A= —(2t2 — 2t + 1)(4t? — 123 + 682 + 2t — 1)
10 B =16(t2 — 3t + 1)(t — 1)
A= (482 -2t —1)(2t —1)5
A =24t8 — 9617 + 2161° — 312t° + 288t1 — 168¢% + 60#2 — 12 + 1
12 B = 16(3t% — 3t + 1)2(¢t — 1)5¢°
A= (612 — 6t 4 1)(2t% — 2t +1)3(2t — 1)8

TABLE 6. Parameters A, B for the universal elliptic curve y? = z(z? + Az + B) over
X1(2N) or X1(2,2N). The 2-torsion point {0,0) is twice a rational 4-torsion point
for the entries marked (2,4) and (2, 8}, and is not for the entries marked (4,2) and
(8,2).

K. Suppose N = 2; in this case it is easy to show that if (B, u) is a Jacobian then G must be
the graph of an isomorphism E[N](K) — F[N](K). Our first result is that the converse of this
statement is almost true.

Proposition 3. Let E and F be elliptic curves over a field k whose characteristic s not 2, let K
be a separable closure of k, let A be the polarized abelian surface E x F, and let G C A[2](K) be the
graph of a group isomorphism v E[2)(K) — F[2)(K). Then G is a mazimal isotropic subgroup of
AR)(K). Purthermore, the quotient polarized abelian variety Ax /G is isomorphic to the polarized
Jacobian of a curve C over K, unless i is the restriction to E[2)(K) of an isomorphism Ex — Fg.
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| N, (2,2N), or (2N, 2) || (z,y)-coordinates

4 T =—t
y=1
(2,4) z=—(t+1){t-1)
y=2(t+1)(t -1}
(4,2) z=2(t+1)
y=2(t+1)(t-1)
6 r = —4t
y =4t + 1)
(2,6) z=({E~-3)t+3)(-1)(+1)
y=4(t - 3)(t+3)(t — 1)t +1)
8 z=-—(t+1)*(t-1)
y=2(t+1)3(t —1)¢
(2,8) = —4(t —1)t(t +1)3
y =4t — )t(t + 132 + D2 -2t - 1)
(8,2) a,-=(t'~’+1)(t2—2t—1)(t—1)(t+1)
y = 4(t2 + 1)(¢? %—1M#-U@+1P
10 z=4(t—1)(t? -3t + 1)
y=4(t — 1)(t? - 3t + 1)3(2t — 1)
12 z = —4(t — 1)(3t? — 3t + 1)t
y = 4(t — 1)(3t? — 3t + 1)#>(2t? — 2t + 1)(2¢ — 1)

TABLE 7. Coordinates of a torsion point of maximal order on the universal curves
t ot ¢
Fy, Fyopn, and Foy .

| (2,2N), or (2N, 2) ” z(Th) | z(T3)
(2,4) —(t-1)? —(t+1)2
(4,2) (t +1)2 4t
(2,6) (t+3)(t—1)3 (t—3)(t+1)°
(2,8) -16t4 —(t = 1)t + 1)4
(8,2) (=14t + 1) | (12 +2t — 1)(¢? — 2t — 1)(#% +1)?

TABLE 8. The z-coordinates of the 2-torsion points on F2t,2 N and F{ng other than (0, 0).

If i gives rise to a curve C, then C and the isomorphism JacC = Ak /G can be defined over k if
and only if G can be defined over k, if and only if ¢ is an isomorphism of Galois modules.

Proof. All of the proposition except for the final sentence is the special case N = 2 of the results
of [14]). The final statement of the proposition follows from standard descent arguments that make
use of the fact that the automorphism group of C is naturally isomorphic to that of the polarized
variety Ax/G. O

Let k and K be as in Proposition 3 and let E and F be the elliptic curves over k defined by the
equations y2 = f and y? = ¢, respectively, where f and g arc separable monic cubic polynomials in
k[z] with discriminants Ay and A,. Suppose ¥ is a Galois-module isomorphism E[2](K) — F[2](K)
that does not come from an isomorphism Ex — Fjc. Our next proposition shows how we can use
f, g, and 3 to find a model for the curve C over k£ that appears in Proposition 3.
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Proposition 4. With notation as above, let oy, ay, and as be the roots of [ in K and let By,
Ba, and 33 be the roots of g in K. Suppose the roots are indezed so that {(c;,0)) = (5;,0). The
numbers a1, b, ay, and by defined by

a1 = (a3 — 2)?/(Bs — B2) + (az — 01)? /(B2 = B1) + (a1 — @3)*/(B1 — )
by = (B3 — B2)*/ (s — az) + (B2 — B1)* /(2 — 1) + (Br — B3)?/ (a1 — ax3)
az = a1 (B3 — Bo) + az2(By — Bs) + as(B2 — Br)
by = Bi(ag — ag) + ol — as) + fFa(az — a1)

are nonzero, and the ratios aj/ay and by /by are in k. Let A = Agay/ag and let B = Agby/by. Then
the polynomial h defined by

h=~(A(ag — ar)(c1 — as)a? + B(Ba — 1) (61 — B3))
(Alas — )2 — a1)a® + B(B3 ~ £2) (B2 — 1))
(Al — ea) (1 — az)z® + B(Bs — B2)(B1 — B3))

is a separable sextic in k[z], and the polarized Jacobian of the curve C over k defined by y? = h is
isomorphic to the quotient of E x F by the graph of ¢.

Proof. Simple algebra shows that if either a; or ap were zero we would have
By =aaﬁ2*ﬁ1 + Prog = B

y — Qg Gy —

But then the automorphism

Bo — B + Prag — faory

¥y = (] ay —

U: 292

of P}( would take ¢; to §; for ¢ = 1,2,3 and would also take oo to 0o, and this would mean that
1 came from the isomorphism Ex — Fg obtained from ¥, contrary to our hypotheses. Therefore
a1 and a9 are nonzero. It is easy to check that the ratio a;/ag is fixed by the action of S3 that
permutes the indices of the as and 8s. But the Galois equivariance of the map ¢ shows that the
action of Gal(K/k) on a,/as factors through this action of S3, so a1/ay is an element of k. A
similar argument shows that by and b are nonzero and that b, /b2 € k.

The group Gal(K/k) acts on h by permuting its factors, so h is an element of k[z]. The coeflicient
of z2 in each factor is nonzero, so h is a sextic. To show that h is separable it will be enough to
show that the polynomial g € k[u] defined by

7=—(Aoz — a1){oq — az)u+ BBz — £1) (B — B3))
- (Alas — ag)(e2 — ar)u + B(fBs — B2) (B2 — 1))
- (A(az — ag)(ey — az)u+ B(B3 — 52)(B1 — B3))
is separable, because h{z) = §(z?) and the roots of § are nonzero. Let ¢ = —(A/B)(by/b1) and let

to be the element

to

_1 (ﬁ1(ﬁ3 - B2)° + Ba(61 — Bs) n B3 (B2 — ﬁ1)2)
bl a3 — (9 ] — (3 g — (x]

of k. The reader may verify that the automorphism 2 — £z + {2 of P} takes the roots of 7 to the
roots of g. The roots of ¢ are distinct by assumption, so the roots of g must also be distinct, so §
is separable.

Now we turn to the final statement of the proposition. Let F be the elliptic curve over k defined
by v? = §. Once one knows that z +— ¢z +t5 takes the roots of g to those of g, it is a simple matter
to verify that the map

(uw,v) = (tiu + t2, (Ay/B)v)
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provides an isomorphism between F and F. Thus we can define a morphism y: C — F of degree 2
by
(z,y) = (t1® + 1, (Af/B*)y).
The involution 7 of C' defined by this double cover is given by (z,y) — ( z, v).
Let E be the clliptic curve over k defined by v? = f, where f € k[u] is glven by

—(Alaz — o)1 — ) + B(Bz2 — £1)(B1 — fa)ii).
- (Al — a)(z — 1) + B(Bs ~ B2) (B2 — Br)u)
(Ao — a2)(ay — a3) + B(B3 — B2)(B1 — Bs)u).
The o~ symmetry in our equations shows that there is an isomorphism E — E given by
(¥,v) > (s7u + s9, (Ag/A3)v),

where s; and sz are the elements of k defined by exchanging as and (s in the definitions of ¢; and
t2. Thus we get a k-morphism ¢: C' — E of degree 2 defined by

(@,y) = (s1/2% + 52, (84/A%) (y/2?)).
The involution o of C defined by this double cover is given by (z,y) — (—z,—y).

Let A= FE x F, let J be the Jacobian of C, and let w: A — J be the morphism ¢* x x*. Note
that the image of ¢* in J is fixed by o*, while the inage of x* is fixed by 7*; since o*7* = —1, we
see that w is an isogeny. Let p be the canonical polarization of J. The fact that ¢ has degree 2
iuplies that ’(,l;[.t(p' is the multiplication-by-2 map on E, and similarly ?p,x* is the multiplication-
by-2 map on F; here ™ indicates the dual morphism. If we let A be the product polarization on A
obtained from the canonical polarizations on £ and F, then we have a commutative diagram

A2 7
e o
J X 7

The diagram shows that w must have degree four, and its kernel lies in the 2-torsion of A. By using
the explicit representation of 2-torsion elements of F, F, and .J as degree-zero K-divisors on E, F,
and C that are supported only on Weierstrass points, one may check easily that the graph G of
is contained in ker w, and since #G = # ker w, we must have G = ker w. -

Below we give a few quick applications of Proposition 4. First, we exhibit a curve of genus 2
over Q whose Jacobian has a very small conductor. Mestre [29] proved under standard conjectures
that the conductor of a g-dimensional abelian variety over Q must be greater than {10.32)9, so for
a 2-dimensional variety a conductor of 121 is close to the minimum of 107.

Corollary 5. The conductor of the Jacobian of the curve y? = —215 — 10z + 2622 + 242 is 121.

Proof. Take FE and F to be the modular curves X;(11) and Xy(11) over Q. The Q-rational 5-
isogeny E — F gives us a Galois-module isomorphism 4: E[2)(Q) — F[2)(Q), and % does not
come from an isomorphism Eg — Fg because Eg and Fg are not isomorphic to one another.
Applying Proposition 4 to convenient models of E and F and simplifying the resulting equation
gives us the curve in the statement of the corollary. a

Remark. The curve in Corollary 5 is none other than Xp(22). An isomorphism from the model
V2= (X% 4+2X% —4X 4+ 8)(X3 ~ 2X? +4X - 4)
for Xo(22) given in [11] to our curve
y? = =245 — 102 + 2622 + 242
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is given by (z,y) = (1 - 4/X,16Y/X?3).

Corollary 6. Let E be an elliptic curve over a field k of characteristic not 2, and suppose End E =
Z. If E has a k-rational cyclic subgroup of some order N > 2, then there exists a genus-2 curve
over k whose Jacobian is isogenous over k to E X E.

Proof. We may assume N is prime. If N = 2, then there is a nonzero k-rational point of order 2,
and we may use in Proposition 3 the isomorphism ¢ : E[2](K) — F[2)(K) interchanging the other
2-torsion points. If N is an odd prime, then the isogeny to the elliptic curve F' over k& obtained
by dividing E by the cyclic subgroup defines an isomorphism of Galois-modules ¥ : E[2](K) —
F[2)(K). The condition End E = Z ensures that E and F' are not isomorphic, so the result again
follows from Proposition 3. [

Remark. If E is an elliptic curve in characteristic p > 2 with j-invariant not in Fp, then End K =2
and E[p](K) is a k-rational cyclic subgroup of order p, so the hypotheses of Corollary 6 are satisfied.

Remark. The conclusion of Corollary 6 holds for some elliptic curves F that do not satisfy the
condition that End E = Z. For example, if E is any elliptic curve over Fpa, p > 2, with j(E) ¢ Fp,
and one considers the cyclic subgroup E[p])(F,), then the proof of Corollary 6 still goes through:
the condition j(E£) € F, guarantees that E will not be isomorphic to its p-isogenous curve F', since
J(F) = j(B)/P.

Here is another example, this time in characteristic 0: Let £ be the elliptic curve

E:y? =% - 169z + 845.

The cubic on the right is irreducible, and has square discriminant 134, so its Galois group is As.
Therefore any isomorphism 7 : E[2](Q) — E[2)(Q) that rotates the three non-trivial 2-torsion
points will be defined over Q. Since 7(E) 3 0, such a rotation cannot be the restriction of an
automorphism of E, so by Proposition 3, we obtain a genus-2 curve over Q whose Jacobian is
(2, 2)-isogenous over Q to F x E. On the other hand, E is curve §76D1 in [4], which has no
Q-rational cyclic subgroups.

We can use Corollary 6 to construct genus-2 curves over Q whose Jacobians have high rank, as
was also noticed by Stéfane Fermigier.

Corollary 7. The Jacobian of the curve

y? = —1707131824107329945 - (z? 4 55871769054504519799033274614104129)
- (z* — 1086862437115841494920959046499163042>
+ 3121654577279888882305769763628790308995888274656243920700573254848641)
has rank 28 over Q.
Proof. According to {6], the elliptic curve
E :y? = z(z? + 2429469980725060z + 275130703388172136833647756388)

has rank 14, and (0,0) is a rational 2-torsion point on E. The j-invariant is

483941743120924000812123996730853715578647268051688786879688
5250870830712351132421548861849566889806152906127048721  °
which is not an integer, so E cannot have complex multiplication. Using Corollary 6 and the

formulas of Proposition 4, we obtain the desired genus-2 curve over Q whose Jacobian is (2,2)-
isogenous to E x E. O
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3.3. A modular interpretation. One of our goals in this paper is to construct curves over Q
of genus 2 whose Jacobians have large rational torsion subgroups, and our strategy will be to
use Proposition 4 to “tie together” two elliptic curves that each have large torsion subgroups. In
particular, every curve C we construct will come equipped with a (2,2)-isogeny E x F — JacC,
where £ and F have some particular rational torsion structure. We would like to construct the
moduli space of curves equipped with such isogenies.

Suppose k is a field and K is a separable closure of k. Pick a set of elements {{yr : M € Zs¢}
of K such that (s generates the group of Mth roots of unity in K and (a = ¢f,, for all integers
M,k > 0. By a full level-M structure on an elliptic curve E/K we mean a pair of points (P, Q)
in E(K) that form a Drinfeld basis for E[M] (see [15], Chapter 1) and such that P and Q pair
to ¢as under the Weil pairing on E[M]. This corresponds to the moduli problem denoted in [15]
by [['(M)]®*" (see [15], Sections 3.1 and 9.1), but only because we are working over a field — we
would have to be more careful with the roots of unity otherwise. There is an obvious right action
of the group SLy(Z/MZ) on the set of full level-M structurcs on a given curve E. Suppose G is
a subgroup of SLy(Z/MZ); by a partial level-M structure of type G on a curve E/K we mean a
G-orbit of full level-M structures on E. If N is a positive divisor of M, then an (N, M)-structure
on an elliptic curve E/K is a pair (P,Q) of points on E(K) such that @@ has “exact order M”
(see [15], Chapter 1) and such that P and (M/N)Q form a full level-N structure on FE; this is an
example of a partial level-M structure. If £ is an elliptic curve over k, then by a partial level-M
structure of type G on E we mean a partial level-M structure of type G on Ex that is stable under
the action of Gal(K/k).

We let X (M) denote the usual compactified coarse moduli space of elliptic curves with full level-

M structure; we view X (M) as a curve over k((as). Note that if char k£ divides M then X (M) will
have several components. For every subgroup G of SLy(Z/MZ) there is also a modular curve, which
we will denote by X (M; G), that parametcerizes elliptic curves with partial level-M structure of type
G. The curve X(M;G) is a k((},)-scheme, where ¢ € (Z/MZ)* is a generator of the subgroup
det G C (Z/MZ)*. Finally, we denote by X;(N, M) the modular curve that paramecterizes elliptic
curves with (N, M)-structure. The curve X;(N, M) is a scheme over k{Cn).
- Suppose the characteristic of the base field k is not 2, and suppose we arc given two integers
M and N and subgroups G C SLy(Z/MZ) and H C SLo(Z/NZ). Let ¢ be the smallest field
containing the fields of definition of X{M;G) and X (N; H). We are interested in the functor F
from the category of fields over £ to the category of sets defined as follows: If » D £ is a field with
separable closure R, then F(r) is the set of all R-isomorphism classes of triples ((F, <), (F, 8), ),
where F is an elliptic curve with partial level-M structure « of type G over r, where F is an
elliptic curve with partial level-N structure 8 of type H over r, and where 1 is a Galois-module
isomorphism E[2](It) — F[2|(R); here we say that ((¥, a), (F, 5),4) and ((E', &), (F',§'),9') are
R-isomorphic if there are isomorphisms : (E,a)gp — (E',o')g and x: (F,f)r — (F',B')r such
that ¢’ o @ = x o on E[2](R). We will show that this functor is represented by the £-scheme Y
defined in the next paragraph.

The modular curve X (2) is defined over k, and since char k # 2 it has only one component. The
covering X (2) = X (1) is Galois with group S = SL2(Z/2Z), and the action of an element s € §
on a point X(2) is determined by its action on the triple {E, P, Q) corresponding to that point.
Let Z, = X(2) X x(1) X(M;G)¢ and let Zy = X(2)¢ X x(1) X(N; H)g, where X x(1) means the fiber
product over X(1),. The covers Z; — X(M;G), and Z; — X(N; H), are Galois with group S.
Let Z be the 2-dimensional £-scheme Z; X Zo, where X means the fiber product over Specé, let §
act on the cover Z — X(M,;G)y x X(N; H), diagonally, and let Y be the quotient surface of Z
by this action. Finally, let Y? be the open subvariety of Y that lies over the open subvariety of
X (1)s x X (1) where neither factor is co.

Proposition 8. The scheme Y? represents F.
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Proof. First let us determine how to describe the r-valued points on Y°. Let y be such a point.
Then y corresponds to a Gal{R/r)-stable S-orbit of elements of Z(R) that lie over the finite part of
X(1)r x X(1)g. Let z be one of the points in this orbit. According to the modular interpretation
of Z, the point z corresponds to the R-isomorphism class of a quadruple

(B, P,Q),(E, ), (F,U, V), (F,B)),

where E and F' are elliptic curves over R, where P and @ are independent 2-torsion points in E(R)
and U and V are independent 2-torsion points in F(R), where « is a partial level-M structure
of type G on FE, and where § is a partial level-N structure of type H on F. When an element
of § is applied to this quadruple, the only things that get changed are the points P, @, U, and
V, so the fact that the S-orbit containing z is defined over » means that (E,«) is isomorphic to
all of its Galois conjugates and (F, 3) is isomorphic to all of its Galois conjugates. According to
Proposition 3.2 (p. 274) of [5], this means that (E,«) and (F,() can be defined over r. If we
think of £ and F as curves over r, then the fact that the S-orbit of z is defined over » means
exactly that the group isomorphism : E[2](R) — F[2](R) defined by sending P to U and Q to
V is Galois equivariant. Thus, a point y € Y°(r) gives us a triple ({(E, &), (F, 8),%) -— but only
up to fR-isomorphism. And clearly the R-isomorphism class of such a triple will give us a point on
Y0, This gives us a bijection between F(r) and Hom(Specr, Y°) for every r, and this collection of
bijections is casily seen to provide a natural equivalence F < Hom( - ,Y?), O

Let W be the open subscheme of Y° whose r-valued points correspond to R-isomorphism classes
of triples ((E, a}, (F, 3), 1) such that ¢ does not come from an isomorphism between Eg and Fj.
From Proposition 3 we see that the r-valued points of W correspond to R-isomorphism classes of
triples (C, (E, «), (F, 8)), where (E, ) is an elliptic curve with partial level-M structure of type
G over r, where (F, /) is an elliptic curve with partial level-N structure of type H over r, and
where C is a curve of genus 2 over r provided with a (2, 2)-isogeny E x F' — Jac C that takes twice
the canonical polarization of E x F to the canonical polarization of Jac C. We abbreviate this by
saying that W is the moduli space for such triples.

Corollary 9. Let M’ be the least common multiple of 2 and M and let N' be the least common

multiple of 2 and N. Every geometric component of W iz an open subvariety of a quotient surface
of X(M')gx x X(N')k.

Proof. Let Zy and Z3 be as in the construction of Y above and let ¢ and ¢ be the natural quotient
maps from X (M) g to X(2)x and to X(M; G)g, respectively. For every s in the covering group S
of X(2)/X(1) we get a morphism ®,: X(M')x — (Z,)k by combining the morphisms sp and .
It is clear from the modular interpretation of these schemes that the maps ¢, provide a surjective
morphism from the sum of six copies of X (M')k to (Z1) k. Similarly we find a surjective morphism
from the sum’of six copies of X (N')g to (Z2) k. Therefore every component of Zx = Z1x X Zok
is a quotient surface of X(M')x X X(N')k, and every component of Wy is an open subvariety of
a quotient surface of X(M")g x X(N')k. O

We will be interested in finding genus-2 curves over Q whose Jacobians are equipped with (2, 2)-
isogenies from a product of elliptic curves with specified rational torsion structures. Thus we will
want to look at the Q-rational points on the moduli space W, and it would be particularly nice to
find subvarieties of W whose Q-rational points are Zariski dense. In the next few sections we will
find such subvarieties for several different choices of torsion structures, although we will not phrase
our arguments in terms of moduli spaces.

Ezample. Suppose we are interested in tying together an elliptic curve with (2, M)-structure and
an elliptic curve with (2, N)-structure, where M and N are even integers. It is easy to check that
X{(2) x x(1y X1(2, M) is the sum of six copies of X, (2, M), and X (2} x x(;) X1(2, N} is the sum of
six copies of X1(2, N). The group S acts on each of these varieties by permuting the summands,
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and the quotient surface Y is the sum of six copies of X;(2, M} x X;(2, N}. Thus in this case W
has a very simple structure. The reader is encouraged to work out the structure of W for other
pairs of partial level structures and to keep the results in mind when reading the following sections.

3.4. Building Jacobians from elliptic curves E with #E(Q)[2] = 4. If two elliptic curves over
Q are to have 2-torsion subgroups isomorphic as Galois-modules, it i8 necessary that they have the
same number of rational 2-torsion points! In this section we consider the case where this number is 4,
so we are concerned with the families of elliptic curves over Q with torsion subgroup containing
Z/2Z x Z/2NZ, for N < 4. Any member of the family with N = N; can be paired with any
member of the family with N = Ny, since the 2-torsion subgroups are automatically isomorphic
as (trivial) Galois-modules. Moreover the generic members of each family (choosing a different
indeterminate parameter for each) are clearly not isomorphic to each other, so by Proposition 3,
we get 2-parameter families of genus-2 curves whose Jacobians map via a (2, 2)-isogeny to E; x Fa.
In other words, we have shown that the corresponding moduli space is a union of rational surfaces
over Q. (This also follows immediately from the example at the end of the preceding section.) That
these families really have two parameters can be seen from the fact that over C, one can specify
the j-invariants of the two elliptic curves arbitrarily and independently?. Similar arguments apply
later in this paper; we leave the details to the reader.

The product of the rational torsion in the two elliptic curves does not map injectively to the
rational torsion points of the Jacobian, but only a (2,2)-subgroup is killed. The group structure
of the image of this product in the Jacobian depends on N; and N3, but also on the choice of
isomorphism between the 2-torsion of the two curves if N; and Ny are even, since in this case
cach elliptic curve has a 2-torsion point which is distinguished by the property of being N; times
another rational torsion point. For instance, if Ny = Ny = 4, elementary calculations with abelian
groups show that this group has structure Z/27Z x Z/4Z x Z/8Z if these special 2-torsion points
are identified under ¢, and Z/8Z x Z/8Z otherwise. If Ny = 3 and N, = 4, then we obtain
Z/2Z x Z/24Z. If Ny = Ny = 3, then we obtain Z/6Z x Z/6Z. We have not considered the cases
where N; < 2, since these cases lead to subgroups of the above.

Although some rational 2-power torsion is lost upon passing from E x F' to the Jacobian, there is
also the possibility that some 2-power torsion can be gained: a non-rational point on £ x F might
map to a rational point on J. This phenomenon will be explored in Scction 3.7. )

3.5. Building Jacobians from elliptic curves E with #E(Q)[2] = 2. We now consider elliptic
curves E and F having torsion subgroups Z/NZ and Z/N'Z with even N, N’ < 12. An isomorphism
of Galois-modules from E[2)(Q) to F[2](Q) must map the rational 2-torsion point to the rational
2-torsion point, so we see that such an isomorphism exists if and only if the quadratic field over
which the non-rational 2-torsion points of E are defined equals the quadratic field for F', and this
holds if and only if the discriminants of E and F' are equal modulo squares. We are thus led to the
problem of finding the rational solutions to

(1) An(t)y* = An(u)

outside the 1-dimensional closed subset corresponding to cases where E or F degenerates or where
J(E) = j(F). Each such solution gives rise to a Jacobian of a genus-2 curve over Q whose torsion
subgroup contains the quotient of Z/NZ x Z/N'Z by the identification of the points of order 2 in
cach factor.

If N' =4, then (1) is

An(t)y? = 16u+ 1,

2 Actually, one should choose the j-invariants to be different, so that the elliptic curves are guarantecd not to be
isomorphic, but this is an open condition, so the number of parameters is not reduced by this constraint.
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which is a rational surface over Q, since we can solve for u in terms of ¢t and y. In particular,
for N = 10, we obtain a 2-parameter family of Jacobians whose torsion subgroups contain Z/20Z.
(The other N will give results which are subsumed in our other results.)

If N =6, then (1) is

(2) An()y? = (u+1)(9u + 1).

This can be considered as a conic over Q(t) with a Q(¢)-rational point, namely (u,y) = (—1,0),
and it is easy to see that this makes {2) a rational surface. In particular, for N = 10 or N = 12, we
obtain a 2-parameter family of Jacobians whose torsion subgroups contain Z/30Z or Z/3Z x Z /122,
respectively.

If N =10 and N = 8, then (1) is

(8% — 8t + 1)y? = (2u - 1)(du? — 2u — 1).

If we set ¢ = (32 — 25 + 3}/(4s% +4), we obtain a split elliptic surface over the s-line, and the Q(s)-

rational point (u,y) = (—1/2,(25% + 2)/(s? — 25 — 1)) is of infinite order, since its specialization at

s = 0 is of infinite order on the resulting elliptic ¢curve over QQ. Thus we have an elliptic surface

over P! of positive rank, and the Q-rational points on this surface outside of the 1-dimensional set

of degenerate solutions parameterize Jacobians over Q whose torsion subgroups contain Z/40Z.
If N'= N =10, then (1) is

(2t — 1) (4t — 2t — 1)y? = (2u — 1)(du® — 2u — 1)

which is an elliptic surface over the ¢-line, and (u,y) = (t,1) is a Q(f)-rational point of infinite
order, since under the obvious isomorphism over Q(t)(/(2t — 1}(4#2 — 2¢ — 1)) to the elliptic curve

vt = (2u — D){4u? -~ 2u—1)

it maps to a point with non-constant u-coordinate. Hence we obtain a positive rank elliptic surface
whose points (outside a 1-dimensional set) parameterize Jacobians whose torsion subgroups contain
Z/5Z x Z/107Z.

Similarly, if N' = N =12, then (1) is

(262 — 2t + 1)(61% — 6t + 1)y = (2u? — 2u + 1)(6u? — 6u + 1),

which again is an elliptic surface over the t-line if we choose (u,y) = (£,1) as the zero section. We

then have the Q(¢)-rational point (u,y) = (¢, —1), which is of infinite order, for the same reason

as in the previous case. Hence we obtain a family of Jacobians, parameterized by the points on an

open subset of a positive rank elliptic surface, whose torsion subgroups contain Z/6Z x Z/12Z.
Finally, if N =10 and N = 12, then (1) is

(3) (262 — 2t + 1)(64% — 6t + 1)y = (2u — 1)(40? — 2u — 1).

If we choose ¢t = 1/3, the resulting elliptic curve is curve 900A1 of [4], which has rank 1. There are
only finitely many rational points on this elliptic curve that give « such that E}j;, degenerates or is
isomorphic to Ell'zls, so we obtain a family of Jacobians, parameterized by the points on an open
subset of a positive rank elliptic curve, whose torsion subgroups contain Z/60Z.

Remark. In fact, there are infinitely many other specializations of ¢ for which (3) becomes an elliptic
curve of positive rank.

3.6. Building Jacobians from elliptic curves E with #F(Q)[2] = 1. Here we consider elliptic
curves E and F having torsion subgroups Z/NZ and Z/N'Z, respectively, with N, N’ odd (and at
most 9). For an elliptic curve y* = f(z) with trivial rational 2-torsion, each non-trivial 2-torsion
point is defined over a cubic extension, namely the extension obtained by adjoining a root of f(z).
The Galois-modules E[2)(Q) and F[2](Q) are isomorphic if and only if the corresponding cubic
fields are isomorphic. In this case, the discriminants of the elliptic curves must be equal modulo
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squares. The converse is not quite true (cubic fields having the same discriminant modulo squares
are not necessarily isomorphic), but it will turn out that the discriminants often contain enough
information for our purposes.

A short search for solutions to A7(t) = Ag(u) modulo squares (and such that the discriminants do
not vanish) leads to the solution ¢ = —16/3, © = 4. PARI shows that the corresponding cubic fields
are both isomorphic to the unique cubic field of discriminant —2964. (Uniqueness can be seen from
the tables obtainable by ftp at megrez.math.u-bordeaux.fr in directory /pub/numberfields.)
Hence we find a genus-2 curve whose Jacobian has a rational torsion point of order 63. Following the
recipe given by Proposition 4 gives an explicit model for this genus-2 curve. After a few simplifying
changes of variable, we obtain the model

(4) C :y? = 897z% — 1975705 + 7913635322 — 146398496.
Let D be the divisor (R) + (R') — (0c01) ~ (007) on C, where

—69 + /4369
R= (——J“T—-— 4515015 — 68241\/4369) ,

where R' is the Galois conjugate of R, and where cot and oo™ are the two points at infinity on a
desingularized model of C. One can check that D maps to a 9-torsion point on one of the elliptic
quotients of C and to a 7-torsion point on the other elliptic quotient (see [13]), so D represents
a divisor of order at least 63 on C. Since C has good reduction at 3, and since there is only one
positive multiple of 63 less than the Hasse-Weil bound (1 + v/5)! for #(Jac C)(F5), we must have
#{(Jac C)(F5) = 63, and hence the torsion subgroup of (Jac C)(Q) is isomorphic to Z/63Z and is
generated by the class of D. It seems likely that there will be only finitely many genus-2 curves
over Q whose Jacobians possess a rational 63-torsion point. It is perhaps even the case that the
curve (4) is the only one.

Similarly, we find the solution ¢t = 7, u = —14/13 to A7(t) = A7(u) modulo squares. (We must
be careful to exclude solutions where v = ¢, u = 1/(1 — t), or w = (t — 1)/t, since these correspond
to taking the same elliptic curve but with one 7-torsion point a multiple of the other.) For these
values of ¢ and u, the corresponding cubic fields turn out to be isomorphic, so we indeed obtain a
curve C whose Jacobian contains a subgroup of rational points isomorphic to Z/7Z x Z/7Z. Using
Proposition 4, we find the model

C :y? = 2%+ 3025z* + 323298722 + 869675859

for this curve. The Jacobian of the reduction of C nodulo 5 is isogenous to the product of two
elliptic curves each with exactly 7 points {7 being the only multiple of 7 less than the Weil bound),
80 the Jacobian of the reduction has exactly 49 points. Thus we find that the rational torsion on
the Jacobian of C is in fact isomorphic to Z/7Z x Z/7Z.

To handle some of the other cases {in particular those with N = 3} we will use the following
lemma. The restrictions on E are not necessary, but we only need the result under these restrictions.

Lemma 10. If E is an elliptic curve over a field k of characteristic not 2 such that E[2](k) is
trivial and j(E) # 0,1728, then there is a 1-parameter family of elliptic curves E' over k such that
E' has a k-rational 3-torsion point and E'[2) = E[2] as Gal(k/k)-modules.

Proof. Write E in Weierstrass form as y? = z% 4+ Az + B (so A, B # 0), and let r be a root of
23+ Az+ B. We claim that specializing t to —B2/A? in the universal elliptic curve y? = 23 +(z +1)?
over X1(3) gives one E' with the desired propertics. A calculation shows that s = —(B/Ar)? is a
root of z® + (z — B2/A%)? in k(r), and s caunot be in k, since r is at most quadratic over k(s).
Thus k(r) and k(s) are the same cubic extension of k, and hence the curves

w=2+Az+B and  y®=z2°+ (z — B?/A%)?
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have isomorphic 2-torsion as Galois-modules.

The set of all E' with the desired properties correspond to the k-rational points of a twist of the
modular curve X(2,6) classifying elliptic curves with a 3-torsion point and full level-2 structure.
But this modular curve is rational, and the previous paragraph shows that our twist of it has a
k-rational point, so our twist is a rational curve over k, and we obtain the desired 1-parameter
family. O

Applying the lemma with k¥ = Q(¢) and F as the universal elliptic curve with a 7-torsion point
yields a 2-parameter family of pairs of elliptic curves with a 3-torsion point and a 7-torsion point
respectively, and having isomorphic 2-torsion as Galois-modules, so by Proposition 3, we obtain a
2-parameter family of genus-2 curves over Q whose Jacobians possess a rational 21-torsion point.
Similarly, if we take E = Ef, we obtain a 2-parameter family of genus-2 curves over Q@ whose
Jacobians have torsion subgroup containing Z/3Z x Z/9Z.

Next we construct infinitely many genus-2 curves with a rational 35-torsion point. Let E be
the elliptic curve E7 ! with a rational 7-torsion point. The elliptic curves E' over Q equipped
with a rational 5-torsion point and a Galois-module isomorphism E'[2] — E[2] correspond to the
rational points on a twist X' of X(2,10). Now X,(2,10) is a covering of X;(5) with Galois
group GLo(Z/2Z) = S3, and the subgroup Aj corresponds by Galois theory to an intermediate
covering whose function field is the quadratic extension of Q(¢) (where ¢ is the parameter on X;(5))
obtained by adjoining the square root of the discriminant of the cubic fi(z) if Ef is written in the
form y% = fy(z). This function field is of genus 1, since from Table 4, As(¢) = t(¢2 — 11¢ — 1). But
X1(2,10) is an elliptic curve as well (see [16]), so its map down to the intermediate covering must
be an isogeny (in fact, a 3-isogeny). Similarly our twist X' of X(2,10) is a genus-1 curve with a
degree-3 map to the unique intermediate covering X" of degree 2 over X (5). The curve X" classifies
elliptic curves E’ with a 5-torsion point and a Galois-stable As-orbit of isomorphisms E'[2] — E[2].
There are two Ag-orbits, and they are defined over Q{(\/A7(—1)Aj5(¢)), since an automorphism of
this field over Q(¢) is trivial on Q(\/A7(—1)) if and only if it is trivial on Q{Aj5(t}), which means
the signatures of its permutation actions on the nonzero 2-torsion points of E and Ef must be the
same. Thus X" is the genus-1 curve 3% = A7(—1)As(t), ie.,

y? = —26t(t2 — 11¢ — 1).

This is an elliptic curve of conductor 54080, which is too large for it to be listed in the tables
of [4], but Cremona’s rank-computing program shows that it has rank 2; the points (-2/13,22/13)
and (—26,806) arc independent of one another and have infinite order. The genus-1 twist X' of
X1(2,10) has a rational point, because a PARI search finds an elliptic curve Bf, with t = 1/26,
such that the cubic field (of discriminant —104) obtained by adjoining a 2-torsion point is the same
as that obtained by adjoining a 2-torsion point of E. Thus X’ is an elliptic curve 3-isogenous to
X". In particular, X’ has rank 2, so it has infinitely many rational points, all but finitely many of
which give rise to genus-2 curves whose Jacobians possess a subgroup Z/5Z x Z/7Z = Z /35Z.
Similarly the elliptic curve E = Ej ® with a rational 9-torsion point has 2-torsion subgroup

isomorphic as Galois-module to that of the elliptic curve Eg:s/ 10’ and the elliptic curve
y? = Dg(=5)t(t? — 11t — 1)

of conductor 13838400 (!} has rank 2 again according to Cremona’s program, with (—10/93,6970/93)
and (—640/27,5860240/81) as independent points of infinite order. Thus we obtain infinitely many
genus-2 curves whose Jacobians possess a rational 45-torsion point.

3.7. Gaining 2-power torsion. Let k be a field of characteristic not 2, let K = k%P be a separable
closure of k, and let G = Gal(K/k). If E is an elliptic curve over k, then E[2]\ {0} = SpecL
where L is a separable k-algebra of dimension 3. Explicitly, if E is in the form y? = f(z) with
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f(z) € k[z] a cubic polynomial, then L = k[T]/(f(T')). As is well known (see [1}, [2], [33]),
HY(Gy, E[2]) & ker (L* J L2 Mo v /k*z)
and the composition
E(k)/2E(k) — H'(Gy, E[2]) = ker (L‘ L2 e g /k‘Q)

is a map ¢ sending a rational non-2-torsion point P with z-coordinate zp to the image of zp — T
When P is a non-trivial rational 2-torsion point, zp — T vanishes in exactly one component of
L, and «(P) equals the image of zp — T is all but this component; the image of P in this last
component (which is a copy of k) can be deduced up to squares from knowing that ¢(/?} is in the
kernel of the norm.

Proposition 11. Let f(z) and g(z) be cubic polynomials in k[z| such that
E:y* = f(z) and  F:9% = g(x)

are elliptic curves admitting an isomorphism of Gy-modules v : E[2)(K) — F(2|(K). Define L
and ¢ as above for E, and similarly define L' and V' for F. The map v induces an isomorphism
¥ : L' = L. Let A be the quotient of E x F by the graph of 1.

(a) If a point (Py, Qo) of (B x F)(K) maps to a k-rational point on A, then 2Py € E(k)} and
2Qq € F(k).

(b) Given P € E(k) and Q € F(k), there exists a point (Py, Qo) of (E x F)(K) that maps to
a k-rational point on A and such that 2Py = P and 2Qq = Q, if and only if J/(Q) corresponds to

t(P) (up to squares) under the isomorphism .

Proof. Let A be the principal polarization of A derived from the principal polarization on F x F.
If we compose the isogeny £ x F' — A with A and the dual isogeny A Ex F', the result is
multiplication-by-2 on E x F', so part (a) is clear.

Now let P € E(k) and Q € F(k). Suppose that there exists (P, Qo) € (E x F)(K) that maps to
a k-rational point on A and such that 2Py = P and 2Q¢ = Q. This means that (P, Qo) — (P, Qo)
is in the graph of ¢ for all ¢ € G¢. In particular, under the map induced by %, the class of
& = P — Py in H'(Gy, E[2]) is mapped to the class of &, := QF — Qp. In other words, 1 takes
/(@) to u(P) i

Conversely suppose that 1 takes o/(Q)) to ¢(P). This means that the map induced by 1 takes
the image of P in H'(Gy, E[2]) (under the coboundary map) to the image of Q in H'(Gy, F[2]).
Fix P, € E(K) such that 2P, = P and @, € F(K) such that 2Q, = Q. Then there exist 2-torsion
points R € E[2](K) and S € F[2](K) such that

WP —P+R -R)=Q]{ -1 +5°-85
forall 0 € Gg. Let Py = P+ Rand Qg = @, + R. Then 2P = P, 2Q = @, and
(Po, Qo) — (Fo, Qo)
is in the graph of 9 for all o, s0 (P, Qo) maps to a rational point on A. J

For elliptic curves E over Q with all 2-torsion points rational, L is simply Q x Q x Q, the factors
corresponding to the non-trivial torsion points Ty, T3, T3. Now assume that £ = Eé,g. Then
W(T3) € L is (zp, — 1y, *, T1, — T1y ), Where * is determined by the condition that the product of all
three components equal 1 (modulo squares). By the formulas in Table 5, we have (modulo squares)

UTy) = (=1, ~(8t% — 1)(8t2 + 8t + 1), (8t° — 1)(8t* + 8t + 1)) € (Q'/Q?)°.
Now if F = E}g with non-trivial 2-torsion points 77, T3, T3 and corresponding map ¢/, then

J(Ty) = (=1, —(8u? — 1)(8u® + 8u + 1), (8u? —1)(8u® +8u+1)) € (Q"/Q’a)3 .
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If 9 is the isomorphism E[2] — F[2] taking T} to 77, then the map 1 of Proposition 11 is simply
the identity Q x Q x Q — Q x Q x Q. Thus by Proposition 11, if there exists y such that

(5) (8t2 — 1)(8t% + 8t + 1)y = (8u? — 1)(8u® + 8u + 1),

then there exists (FPy, Qo) on E x F with double (T3,T3) such that {Py, Qo) maps to a rational
point on the quotient A of E x F' by the graph of 4. In this case, (Fy, Qo) maps to a new rational
2-torsion point on A, not in the image of E(Q) x F{Q).

We can consider (5) as a genus-1 curve over Q(t), and we make it an elliptic curve by choosing
(u,y) = (¢,1) as the origin. Then the point (u,y) = (¢,—1) has infinite order, since the divisor
(t,—1) — (¢,1) corresponds to a non-constant point on the Jacobian of

y? = (8u? — 1)(8u? + 8u + 1),

which is isomorphic to (5) over Q(£)(\/(8t2 — 1)(8t2 + 8¢ + 1)). Hence (5) is a positive rank elliptic
surface whose points (outside a 1-dimensional set) parameterize a family of genus-2 curves whose
Jacobians have torsion subgroup over Q containing Z/2Z x Z/27 x Z/4Z x Z/8Z.

Let us now try to do the same for E = Ef; and F = E3. In this case, from Table 5 we compute

oT1) = (20t — 3)(t +3)(t — 5), (¢ + 3)(¢ - 5), 2t — 3)) € (Q*/Q"2)°.

This time in order to get an extra 2-torsion point on A coming from a half of (T, TY), we need to
find rational solutions to the system

(6) 2(t - 3) = 2(u - 3)y”
(t4+3)(t —5) = (u+3)(u—5)2%

(Note that the third condition
2(t = 3)(t+ 3)(t —5) = 2(u — 3)(u + 3){u — 5) (modulo squares)

would then be automatic.) If we solve for ¢ in the first equation and substitute into the second, we
obtain the equation

((u = 3}y +6) ((u = 3)y* = 2) = (u+3)(u— 5)7*,

which defines a genus-1 curve over Q(u). We make it an elliptic curve by choosing (y,2) = (1,1)
as origin, and then note that (y,z) = (—1,1) is a point of infinite order, since it is of infinite order
for the specialization © = 0. Thus the system (6) provides us with a positive rank elliptic surface
whose points parameterize a family of genus-2 curves whose Jacobians have torsion subgroup over
Q containing Z/2Z x Z/6Z x Z/6Z.

Next we investigate the possibility of gaining 2-power torsion when E = E.S’G and F' = Ejg. Let
T1,Ty, T3 and T}, T3, T3 be the nontrivial 2-torsion points on E and F, respectively, as in Table 5.
We have

* * 3
WT) = (20t = 3)(t+3)(t = 5), (t + 3)(t — 5),2(t — 3)) € (Q*/Q**)",
J(T8) = (=1, —(8u® — 1)(8u? + Bu + 1), (82 — 1)(8u? + 8u + 1)) € (Q/Q"%)*.
In an attempt to obtain simpler cquations than we would by mapping T; to T} for cach i, we leis
1 : E[2) = F[2] be the isomorphism such that ¥(T}) = T, ¥(T2) = T3, and (T3) = T{. Hence ¢
is the isomorphism Q x Q x Q = Q x Q x Q acting on the factors as the permutation (1 3 2). By

Proposition 11, a point on E x F with double (T1,7T;) maps to a new rational point on the quotient
A if and only if we can find rational numbers y and z such that

2(t - 3) = (-1)y?,
(t+3)(t — 5) = (8u? — 1)(8u® + 8u -+ 1)z°
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If we solve the first equation for ¢, substitute into the second, and multiply both sides by 4, we
obtain
(¥* —12) (3 + 4) = 4(8u? — 1)(8u? + 8u + 1)z
For y = 2/9, the resulting genus-1 curve has a rational point (u,2) = (1/3,44/9), and is birational
to the elliptic curve
Y?=Xx3%-1681X

of conductor 53792 and rank 2. The new rational point on A is a 2-torsion point, since its double
is the image of (77,73), which is in the graph of 1. Hence we have produced a family of genus-2

curves, parameterized by the points on a positive rank elliptic curve, whose Jacobians have torsion
subgroup over Q containing Z/2Z x Z/2Z x Z/24Z.

4. GENUS THREE

4.1. Jacobians (2,2,2)-isogenous to a product of elliptic curves. In this section we will show
how one can find a curve of genus 3 whose Jacobian is isogenous over a quadratic extension of the
base field to a product of three given elliptic curves. Genus-3 curves of the sort we will see were
used in [3].

We maintain the conventions of Section 3.1.

Suppose E}, E», and Ej3 are elliptic curves over a separably closed field K, and let N be a positive
integer not divisible by the characteristic of K. The product of the canonical polarizations on the
E; is a principal polarization A on the abelian variety A = E| x E9 x E3, and the Weil pairings on
the n-torsion subgroups of the E; combine to give us a non-degenerate alternating pairing ey from
A[N] to the group scheme of Nth roots of unity over K. Suppose G is a sub-group-scheme of A[N]
that is maximal isotropic with respect to the pairing ey. As in the similar situation we saw in
Section 3.2, the polarization N A on A reduces to a principal polarization i on the quotient variety
B = A/G. A result of Oort and Ueno [32] shows that the polarized variety (B, u) either breaks
up as a product of lower-dimensional polarized varieties or is the canonically polarized Jacobian
of a curve C over K of genus 3. We would like to see what group-schemes G lead to curves in
the case where N = 2. Since we will be working over a separably closed field, we will identify
sub-group-schemes of A[2] with subgroups of A[2)(K).

Lemma 12. Let A = E; x Ey X E3 and ey be as above. There are ezactly 135 maximal isotropic
subgroups G of A[2|(K). Ezactly 81 of these group-schemes are of the form G x Gq, where G
is a mazimal isotropic subgroup of E;[2}(K) for some i and Gy is 6 mazimal isotropic subgroup of
l_[#i E;[2)(K); for these G, the polarized variety (B, i) splits into a product of lower-dimensional
polarized varieties. If G is one of the remaining 54 groups, then for each i we may label the nonzero
elements of E;[2](K) by the symbols P;, Qi, end R; in such a way so that G is the group

{(01 0) 0)1(01 Q2) Q3)7 (Ql)O) Q3)1 (Ql: QQ:O)i
(P11P23P3)$ (Pla.R23R3)! (RI,-P‘ZaREI)) (R13R25P3)}-

Remark. In fact, our constructions below will show that every group of the last type gives rise to a
curve. This fact can also be proven by assuming that a G of the given type is the kernel of a map
A — Ay X As of polarized varieties and obtaining a contradiction. In anticipation of this result, we
will call maximal isotropic subgroups of A[2}(K) (or sub-group-schemes of A[2]) non-split if they
are of the latter type.

Proof. In any group isomorphic to (Z/2Z)® with a non-degeneratc alternating pairing, there are
(26 — 1)(2% — 2)(2* — 22) ways of choosing an ordered triple (v1,vz,v3) that generate a maximal

3The analogous statement is not necessarily true over a field that is not separably closed. See the remark following
the proof of Proposition 14.
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isotropic subgroup, and each maximal isotropic subgroup has (2% — 1)(23 — 2)(23 — 22) such bases,
s0 there are

(25 —1)(2° — 2)(2% — 2%)
(2% —1)(23 - 2)(23 - 22)

=135

such subgroups.

For i« = 1,2,3 let S; denote the set of maximal isotropic subgroups of A[2](K) that can be
written Gy x G2, with Gy C E;j[2)(K) and G2 C [, 4 B;[2](K). There are 3 choices for Gy and
(2% — 1)(23 — 2)/(2% = 1)(2% - 2) = 15 choices for G, so #S; = 45. The intersection of any two of
the S; is the set S of subgroups of A[2](K) that can be written G X G2 X G3, with G; C Ei[2)(K);
clearly #5 = 27. Thus there are #95 + #52 + #53 — 2#S = 81 subgroups that split as in the
statement of the lemma.

We are left with 135 — 81 = 54 subgroups to account for, and it is easy to see that there are
exactly this many subgroups of the form described in the final sentence of the lemma: There are 3
choices for each of the (};, and given P; and P,, there are 2 choices for Ps. O

Suppose now that k is a field of characteristic not 2 with separable closure K, and let Fy, Es,
and Ej3 be elliptic curves over k. It is clear that a non-split sub-group-scheme of E) ¢ X Fox x E3p
will come from a sub-group-scheme of E; x Ey x Ej if and only if we have both that all of the
points @); are defined over k and that every k-automorphism of K that moves any of the F; moves
" exactly two of them. Given the first condition, the second condition will hold if and only if the
product of the discriminants of the curves F; is a square in k.

So suppose E; is the elliptic curve over k given by the equation y? = z(z? + A;z + B;) where
B; # 0, and let @; be the rational 2-torsion point (0,0). The discriminant of E; differs by a square
factor from the number A; = A? — 4B, so0 let us assume that A1AsAj is a square in k. For each <
let P; be a nonzero element of E;[2}(K) different from Q;. Let G be the non-split sub-group-scheme
of the product A = E; x Ey x E3 corresponding to this choice of P’s and Q’s. We are led to the
question: Is the quotient polarized variety A/G the Jacobian of a curve over k, and if so, what
equations define the curve?

Before we answer this question, we must define some numbers. For each 1, we let d; = —(A; +
2zp,), where zp, denotes the z-coordinate of the point P;. Note that d> = A;. The product
R = dydad; is an element of k& because A;A;A3 was assumed to be a squarc. We let A; denote
A;/d;, and we define the twisting factor (associated to the given E;, P, and @);) to be the number

2 2 2
T:R(ﬁ+ﬁ+ﬁ— )—2A1A2A3

=dydady (N2 4+ 23+ 22— 200 — 1)

(The twisting factor is so named because it determines a quadratic cxtension of &k over which A/G
becomes isomorphic to a Jacobian; see Proposition 14.)

Proposition 13. With notation as above, suppose T = 0. Then each of the products BBy, By Ba,
and By Bs is a square, and AJ/G is isomorphic (over k) to the polarized Jacobian of the hyperelliptic
curve C over k defined by the homogeneous equations

W2722% = aX* +bY* + 24
0=dX%+eY?+ f22



TORSION SUBGROUPS OF JACOBIANS 21

where a, b, and ¢ are given by

B B B
AR T A

|
)(2-2.

2
By
2 A, Ay Al
()38 8)
2 Ay Ay Az)]

where d, e, and f are determined up to sign by the relations

ByBad? =1

BiBse? =1

BiByf* =1,
and where the signs of d, e, and f are chosen so that we have Ay = —aef and Ay = —bdf and
A3z = —cde.
Proof. The statement that T' = 0 is equivalent to the statement that )\% +/\% + Xg —2XA223—1=0.
Solving this equation for A3 in terms of A; and Ay leads to .

Mo = dde /(M2 - D) - 1),
and dividing this last equality by d3 gives
Ay A1Arx4VB1 By

Aj R
Thus BB, is a square in k. By symmetry, the numbers B, B3 and By33 are squares as well,

We leave it to the reader to verify that the signs of d, e, and f can be chosen so that the relations
A1 = —aef and A = —bdf and A3z = —cde hold; this can be seen by noting that the squares of
the desired relations, as well as the product of the desired relations, follow from the formulas given
and the condition that T' = 0.

Note that the coefficients d, e, and f are all nonzero. Furthermore, the fact that none of the B;
is zero implies that at most one of the cocfficients a, b, and ¢ can be zero. We leave it to the reader
to show that these last two facts imply that the curve C' is nonsingular.

It will suffice to prove that JacC' = A/G in the special case where k£ has characteristic 0, for
if k£ has positive characteristic we can simply lift all of the coefficients 4; and B; up to the ring
W of Witt vectors over k; to see that this can be done in such a way that T lifts to 0, we argue
as follows. First we lift each A; up to W in such a way that the product of the lifted values is a
square in W, and we lift R to a square root of this product. Now we view T as a function of the
three variables A;. We will be able to use Hensel’s lemma to lift the 4; up to W so as to make
T = 0 if any one of the partial derivatives 8T /9 A; i1s nonzero. We claim that at least one of these
derivatives is nonzero. To prove this, let us assume that all three of the partial derivatives are zero
and obtain a contradiction. From our assumption we find that RA; = A; Hj# A; for each ¢. If
any one of the A; were zero, these threc equalities would imply that all of the A; were zero, which
would contradict the assumption that T = 0. But if all of the A; were nonzero, then by multiplying
the three equalities together we would find that R = A;AyA3, and this formula for R, combined
with RA; = A; H#l A;, would show that A2 A;, which would lead to the impossibility B; = 0.
This proves our claim.

To prove that JacC = A/G in characteristic zero we need only consider the universal case, in
which we let the d; and the A; be indeterminates, we let £ be the quotient field of the domain

Qldy, da, ds, A1, Az, As]/ (A3 + A3+ A3 — 201 d0A3 — 1),
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we take

A = Md;

B; = (A - &?)/4

Qi = (0,0)

P = (—(di + 4;)/2,0)
R = didads,

and we let & be the subfield Q(A;, Az, A3, By, B2, B3, R) of £. (Note that k is fixed by the involution
of £ that acts on Ay, Ag, d), and ds by multiplication by ~1, so k is a proper subfield of £ and contains
(by symmetry) none of the d;.) So let us assume that we are in the universal case.

Let tx be the involution on C defined by X — —X. The involution ¢x gives us a double
cover pyx: C — Fy of curves over k, and we would like to find equations for the curve Fy. If we
dehomogenize the equations for C with respect to Z by lettingw = W/Z, 2 = X/Z, and y = Y/Z,
and if we then divide by tx by defining u = 2%, we find that the quotient curve Fy is given by

w? = au? + byt + ¢
0 = du + ey? + f.
This pair of equations can be combined to get the single equation
(7) v? = (ae® + bd®)y* + 2aefy® + (af? + cd?),

where v = dw. Using Example 3.7 (pp. 293-294) in Section X of [34], we see that the Jacobian of
the genus-1 curve Fy is the elliptic curve Ex over & defined by

(8) y® = z(z? + Axz + By)

where Ay = —aef and 4Bx = (aef)? — (ae? + bd?)(af? + cd?). Clearly we have Ax = Aj, and by
using a little algebra and the fact that 7 = 0 we can see that By = B;. Thus the double cover pyx
gives us a map ¢’y from Ej to the Jacobian J of C.

Similarly, the involution ty on C defined by Y — —Y gives us a degree-2 cover ¢y from C to
the curve Fy over k given by the equation

= (ae® + bd®)z? + 2bdfz* + (bf% + ce?).

The Jacobian of Fy is isomorphic to Es, so we get a map 3. from E5 to J.

Lastly, the involution vz defined by Z +— —Z gives us a degree-2 cover pz: C — Fz to a curve
Fz over k whose Jacobian is isomorphic to Fs3, so we get a map ¢} from E3 to J. (When dividing
C by tz, the reader may find it helpful to recast the first defining equation of C into the form
V2Y? = X' 4-bY*4 4+ CZ* by letting V = WZ/Y'; this will make it possible to dehomogenize with
respect to Y and get equations similar to the ones obtained when dividing by ¢x .}

Let I denote the subgroup of the automorphism group of J generated by %, ¢}, and 7, and
let C denote the category of abelian varieties over the separable closure K of k up to isogeny. The
semisimple group ring Q[I] acts on the class {J] of J in €, and [J] splits into the direct sum of its
eigenspaces. The class of the image of ¢’ consists of the sum of the eigenspaces on which v acts
as 1, while the class of the image of ¢}, consists of the sum of the eigenspaces on which ¢}, acts
as 1. However, the eigenspaces on which both +% and ¢j, act as 1 are trivial, because their sum is
the class of the Jacobian of the quotient of C by the group {¢x,¢y), and this quotient has genus
0. Thus the classes of the images of ¢% and ¢} have trivial intersection. Similarly, we find that
the class of the image of (p*z shares no nonzero eigenspaces with the classes of ¢% or ¢},. It follows
that the morphism ®* = % x ¢} X ¢} from A to J is an isogeny.

Let p denote the canonical polarization of J. The fact that x h has degree 2 implies that cp Oy

is the multiplication-by-2 map on £;, and similarly <,0Yu<py and (pzpnpz are the multiplication-by-2
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maps on F; and Fj3; here ~ indicates the dual morphism. We find that we have a commutative
diagram

.

A2 4
o e
J T

We see that ®* has degree eight and its kernel G' is a maximal isotropic sub-group-scheme of A[2].
The group-scheme G' must be non-split. To complete the proof of the proposition we must show
that it is equal to the given group-scheime G.

Since G’ is non-split, there must be nonzero elements Q; € E;[2](K) such that G'(K) contains
the three elements (0, Q5, Q%), (Q),0,Q%), and (@}, @%,0). As we noted before the statement of
the proposition, the points ¢; must actually be defined over k. However, because d; is not in k,
the curve E; has only one nonzero k-defined 2-torsion point, namely Q;. Therefore Q; = Q;. There
are exactly two non-split maximal isotropic subgroups of A[2](K) that contain the subgroup

H= {(07070)1 (0: Q21 Q3)1 (Qh Oa Q3)! (Ql’ Q2; 0)}’

and the intersection of these two groups is H. So to show that G'(K) = G(K), all we must do
is show that the two groups contain a common element that is not in H. To show this, we can
specialize our universal example to a particular case, and show that the specialized groups G and
G’ contain a common element not in H.

Consider the specialization map £ — C that takes each d; to —4 and each \; to —1/2; we will
abuse notation by saying that d; = —4, and so on. We see that each A; = 2, each B; = —3, each
A; = 16, each P; = (1,0), and the curve C is defined by the two equations W2Z% = —18(X* +
Y4+ Z%) and 0 = (1/3)(X? +Y? + Z2).

Let @, denote the map @x. X 0y, X @z, from J to A and recall that ®* denotes the map
P% X ¢} x 5 from A to J. An easy computation shows that ®*®, is multiplication by 2 on J.
Thus the image under @, of a 2-torsion element of J is in the kernel of ®*. To complete the proof,
we will show that (P, P;, P3) € A(K) is the image under ®, of a 2-torsion point of J.

Let U; and U be the Weierstrass points on C' given in homogeneous coordinates [W : X : Y : Z]
by [0:¢:¢%:1] and [0:¢%: ¢ : 1], respectively, where ¢ = ¢™*/3. Note that U, — Uy represents
a 2-torsion element of J. Under the specialization we have made, equation (7), which defines
Fx, becomes v? = —4y* — 4y? — 4, and in these (y,v) coordinates we have ¢x(U;) = (¢2,0) and
wx(Uz) = (¢,0). The curve Ey, defined by equation (8), is given by y* = z3 + 22?2 — 3z, and under
the isomorphism

. 2 .2 .
w—y?—2 —2v— 2y —41)
3“ I‘_) )
(y,v) ( ) 7

from Fy to Ex these two points on Fy map to (iv/3,2¢/3) and (~iv/3,2¢%V/3), respectively. The
difference of these two points on the elliptic curve Ex is equal to the 2-torsion point (1,0). Thus
©wx«(Uy —Up) = P. By symmetry, we find that @y.(U; = Uz) = P2 and @z.(U; — Uy) = P3 as well,
s0 (Py, Py, P3) is in the image of J[2](K) under ®, and hence in G'(K). It is in G(K) as well, so

" = @G and the proposition is proved. a

Proposition 14. Let notation be as before Proposition 19, and suppose T # 0. Let C be the plane
quartic over k defined by

BiXY 4+ BoY  + B3Zt + dX2Y? + X222 + Y222 =0,
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where
d= % (-A1A2 + ‘E—f)
.
= % (~A2A3 + %) .

Let k' be the field k(V/T). Then the polarized Jacobian of Cys is isomorphic to the polarized variety
Ap |Gy

Proof. We leave it to the reader to show that an equation of the form
X 40Vt 42 + dXPY? + X222 4 fY?22 =0

defines a non-singular curve if and only if the seven numbers a, b, ¢, d* — 4ab, e? — dac, f? — 4be,
and af?+ be? + cd? — dabc — def are nonzero. In our case, these numbers are By, B, By, TR/4A;,
TR/409, TR/4A1, and T?/16, which are all nonzero. Thus our C is a non-singular curve of genus 3.

As in the proof of Proposition 13, we quickly reduce to the universal case. This time, that means
that the d; and the A; are indeterminates, that £ is the field

Q(dhd?ad:iv )\11 ’\2)’\3)7

that.
A; = \d;
B;= (A} -d})/4
Qi =(0,0)
P = (~(di + 4;)/2,0)
R = dydady,

and that k is the proper subfield Q(A;, Ag, As, By, By, B3, R) of £. Let £ = €(/T); note that
k' = k(V/T) is a proper subfield of £ because it contains none of the d;.

Let ¢y be the involution X — —X of Cy and let px: Cx — Fyx be the double cover induced
by tx. To find a model for the curve Fyx over k', we dehomogenize the equation for C' by letting
= X/Z and y = Y/Z; then, sctting © = 22, we find the model

Biu? + Boy* + By +duy® + eu+ fy? =0
for Fx. If we let v = 2B u + dy® + e and simplify, we get the model
v? = (d? — 4B By)y! + (2de — 4B, f)y? + (e? — 4B, B3).

Example 3.7 (pp. 293-294) of [34] shows that the Jacobian Ex of Fy is the elliptic curve over k'
defined by y? = 23+ Axz?+ By, where Ax = 2B, f —de and By = B{(B) f?+ Bye? + B3d? —def —
4By By Bs). Using the formulas for d, e, and f given in the proposition, we find that Ay = A;T/4
and By = ByT?/16. Thus we see that Ex 2 Eyy, and the double cover px: Cy — Fy gives us a
map ¢’ from E; to the Jacobian J of Cy.

If we define two more involutions ¢ty and ¢z of Cp in the obvious way, we get double covers
wy: Cy — Fy and pz: Cy — Fz that give rise to homomorphisms ¢}, : Eopr — J and @3 : Egpr —
J.
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Let 2 be the canonical polarization of J and let A be the product polarizationon A = E| x E; x F3.
As in the proof of Proposition 13, we get a commutative diagram

2/\ ———
Akl — Akt

E

J AT
where ®* = % X ¢} X @7 is an isogeny of degree 8 whose kernel G’ is a non-split maximal isotropic
sub-group-scheme of Ay(2]. Our task is to show that G' = Gy.

Let K be an algebraic closure of £'. Rationality arguments as in the proof of Proposition 13 show
that G'(K) contains the subgroup '

H= {(0, 0, 0); (0: Q?) Q3)l (QhO: Q3)1 (Q11Q21 0)}’

and, as before, to show that G'(K) = G(K) all we must do is show that the two groups contain a
common element that is not in H. To show this, we once again specialize our universal example to
a particular example.

Consider the specialization map £ — C that takes each d; to 4 and each A; to —1/2; we will abuse
notation by saying that d; = 4, and so on. We see that each A; = 2, cach B; = -3, each A; = 16,
each P; = (—3,0), and T = —32. For each i, let R; be the 2-torsion point (1,0) of E;. Note that
the E; are the same as in the specialization at the end of the proof of Proposition 13. From that
proof, we know that the polarized quotient of A by the subgroup generated by H and (R:, Rz, R3)
is the Jacobian of a hyperelliptic curve. Since A/G’ is the Jacobian of a plane quartic, Torelli’s
theorem shows that G’'(K) cannot possibly contain (R, Ry, R3). The only possibility remaining is
that G'(K) contains (P, P, P3), which shows that G’ = G and completes the proof. O

Remark. One might ask whether the base field extension to k(v/T) is necessary for the proposition
to be true. Indeed it is necessary. To see this, consider an arbitrary plane quartic C over k, let J
be its polarized Jacobian, and let K be a separable closurc of k. Since C is not hyperelliptic, we
have an isomorphism AutJ = Aut C x {£1} of Galois modules (where the Galois action on {£1}
is trivial). Taking Galois cohomology, we find

H'(Aut J) = H'(Aut C) x Hom(Gal(K/k), {£1}).

The two H's catalog the twists of J and C, respectively, and the Hom catalogs field extensions of k
of degree at most 2. Suppose J' is a quadratic twist of J corresponding to an element of H!(Aut J)
that is trivial in H'(Aut C) but nontrivial in the Hom. The curve over k that one obtains from J’
is none other than C, and it takes a quadratic extension to makc Jac C isomorphic to J'.

We can use Proposition 14 to give an example of a Jacobian of a curve over Q whose conductor,
while not exactly small, is at least not so big. Recall that Mestre’s result [29] implies that under
standard conjectures the conductor of a 3-dimensional abelian variety over Q is at least 1100.

Corollary 15. The conductor of the Jacobian of the curve
2X* 4 2yY* 41521 + 3X2Y? - 11X222 - 11Y?Z% =0
1s 2940.

Proof. Take E; and Ey to be the curve 42 = £3 — 1122 4 32z, which is isomorphic to the curve 14A4
of [4] and has conductor 14. Take Ej to be the curve y? = 23 — 3122 + 240z, which is isomorphic to
the curve 15A3 of {4] and has conductor 15. If we take P, = P to be a nonzero 2-torsion point on
E; other than (0,0), and if we take Pj to be (15,0), then we find that the twisting factor is T = 322
Applying Proposition 14 to these curves gives the curve in the statement of the corollary. 0



26 EVERETT W. HOWE, FRANCK LEPREVOST, AND BJORN POONEN

4.2. Building hyperelliptic Jacobians — introduction. In the next few sections we will find
triples (E,, E;, E3) of elliptic curves over Q that have large rational torsion subgroups and for
which we can choose 2-torsion points F; and @); that make the twisting factor equal to zero. Our
strategy will be to specify the rational torsion structure on E3 and determine the corresponding
conditions on E; and F; that will make the twisting factor zero. We will not exhaust the possible
combinations of torsion structures; the equations that arise become very messy very quickly, so we
will only look at the cases where it seems likely that the solutions to the equations will be easy to
find.

Suppose we have three elliptic curves Fy, Fy, and Ej3 over a field k£ with each E; defined by an
equation y?2 = z(z? 4+ A;z + B;) and such that the product AjAsAs is a square in k. For each 4
let @; be the point (0,0) on F; and let P; be some other 2-torsion point on Ej;, corresponding as in
Section 4.1 to a square root d; of A;. We noted in the proof of Proposition 13 that the condition
that the twisting factor be 0 is equivalent to the condition that

(9) \ Ns =g /(08— 1) - 1),
where \; = A;/d;. We can rewrite this equation in the equally useful form

(10) A _ AiAr 4V BBy
d3 N dl dg )
The fact that these equations hold precisely when 7' = 0 will be the basis of all of our constructions

of genus-3 hyperelliptic curves with large torsion subgroups.

4.3. Building hyperelliptic Jacobians with E3 of type (2,2). Suppose E3 = th’z, so that
A3 = —t —1 and B3 = t. We have Az = (¢t — 1), so let us choose d3 to be 1 —¢. If E; and Ej
are any elliptic curves over Q such that B)Bs and A;Aj; are both squares, say A1y = r? and
BBy = s?, then equation (10) becomes

t+1 _ AlAg +4s

t-1 ro
This will have a rational nonzero solution for ¢ as long as the right-hand side is neither 1 nor —1.
Thus, we need only search for pairs (E;, E») such that B1By and Ay A, are both squares.

Take By = F2, and E; = F¥. Then B; = —2% and A = 11 - 3%, and up to squares in Q(u) we

have

BlBg = 2u
A1Ap = 330+ 1) /(u +1).

Thus we would like to find rational solutions to the pair of equations u = 2v% and (9u+1)/(u+1) =
33w?. Solving the second equation for u gives u = (33w? — 1)/(9 — 33w?), and inserting this in the
first equation and setting z = 2(9 — 33w?)v gives us

z? = 2(33w? — 1)(9 — 33w?).

This curve of genus 1 has a rational point (w,z) = (1/3,16/3), and a calculation shows that it is
birational with the elliptic curve

y? = x(x + 66)(z — 198).

This elliptic curve has rank 2; its group of rational points is generated by its 2-torsion and the
points (—44,484) and (—2,160). Suppose C is the curve associated to one of these rational points
via Proposition 13 and our choice of the curves £;. We leave it to the reader to show that the image
of the rational torsion of Ey X Fy x E3 in the Jacobian of C is a group of the form Z/2Z x Z/30Z.
Thus we have a family of hyperelliptic curves of genus 3, parameterized by the points on a positive
rank elliptic curve, whose Jacobians contain a rational subgroup of the form Z/2Z x Z/30Z.
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Suppose we take E) to be equal to Ey. Then BBy and A)A; are automatically squares. In
particular, if we take E; = Ff;, we find a 1-parameter family of hyperelliptic genus-3 curves whose
Jacobians contain Z/10Z x Z/10Z. ‘

Suppose we take By = Fg'; and E; = Fg,. Then A and Az are each squares in Q(u,v). To
find values of u and v that make the product B, B3 a square, we must find rational solutions to the
equation

(1? = 2u — 1)(u? + 2u - 1)w? = (0¥ = 2v = 1)}(v? + 20 - 1).
This equation defines an elliptic surface over Q(u) if we take the zero section to be (v, w) = (u, 1).
Then the section (v, w) = (—u, 1) has infinite order. Thus we find a family of hyperelliptic genus-3
curves, parameterized by the points on a positive rank elliptic surface, whose Jacobians contain a
rational subgroup of the form Z/2Z x Z/8Z x Z/8Z.

The groups we can obtain from other choices of E; and E; are subgroups of the groups we build
in the next few sections.

4.4, Building hyperelliptic Jacobians with E; of type (2,4). Suppose now we take F3 = FQ"A,
so that Az = 2% + 2, B3 = (t — 1)%(¢t + 1)?, and A3z = 16t2. If we take d3 = 4¢, then equation (10)

becomes
241  AAy 4B B,
2t VAR,

Solving this quadratic equation for ¢, we find

,_ (A1£2VB1) (4 £2VBy)
VA1 A, '

Thus, if By, By, and Ay Ay are all squares in Q, we can find a specialization of F2‘|4 that will give
us a twisting factor of 0. (Note that A; # +2/B; since E; is nonsingular, so the bad value t = 0
in Fy , is automatically avoided.)

Suppose we take Ey = F§ and Ep = F5. We check from Table 6 that B; and B3 are squares in
Q(u,v), so all we must do is find values of u and v such that A;A, is a square. Finding such w
and v reduces to finding rational points on the surface S defined by

(2u? — 1w? = (6v* — 6v + 1)(20% = 20 +1).
Let Y be the genus-0 curve 2t — 1 = 4122, and let E be the genus-1 curve
41y? = (6v% — 6v 4+ 1)(20% — 20 + 1).

We have a rational map Y x E — § over Q mapping (¢, z), (v,y) to (u,v,w) = (¢t,v,y/z). Since
Y has the rational point (t,z) = (9/11,1/11), Y is isomorphic to P! over Q. Since E has the
rational point (v,y) = (5,11), it is an elliptic curve over Q, and in fact it is isomorphic to y* =
2% — 4122 + 1681z. Moreover E has positive rank, since z = 729/121 gives a point of infinite order.
Hence Y x E is a split elliptic surface over P}Q of positive rank, and the points on this surface
parameterize a family of hyperelliptic curves of genus 3 whose Jacobians contain groups isomorphic
to Z/2Z x Z/2Z x Z/2Z x Z[/24Z.

Next we take F| = qu,B and Fy = F&’ls. We check that B, Ba, A1, and Aj are all squares in
Q(u,v), so every pair of rational values of u and v will give us a rational values of ¢. This gives us
a 2-parameter family of hyperelliptic curves of genus 3 whose Jacobians contain groups isomorphic
to Z/2Z x Z/2Z x Z/27 x Z[4Z x Z/8Z.

Finally, if we take Ey, = F}% and Ep = F{5, we sce that By and Bj are squares. The condition
that A;A, be a square leads us to find rational solutions to the equation

(61 — 6u + 1)(2u® — 2u + Dw? = (6v% — 6v + 1)(20% ~ 2v + 1).

This equation defines an elliptic surface over Q(u) if we take the zero section to be (v, w) = (u, 1),
and then the section (v,w) = (—u + 1, 1) has infinite order. Thus we find a positive rank elliptic
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surface whose points parameterize a family of hyperelliptic curves of genus 3 whose Jacobians
contain groups isomorphic to Z/2Z x Z/27 x Z/6Z x Z/12Z.

4.5. Building hyperelliptic Jacobians with E5 of type (4,2). Building hyperelliptic Jacobians
by taking E3 = F*it,E is much more difficult than doing so by taking E3 = Ff,m but it is possible.

Here we have A3 = —t% — 6t — 1 and we may take d3 = (t — 1)?, so equation (10) becomes
(11) —t?—6t—1 A1Ay +4VBi By
2-2t+1 dydsy '

Suppose we have chosen elliptic curves E} and F, and have calculated the right hand side of
equation (11) to get a number r. Solving for ¢, we find that we must have (r+1)t24+(2—6r)t+(r+1) =
0, and for ¢t to be a rational number the discriminant of this quadratic must be a square, which
reduces to the condition that 2(1 — r) be a square.

If we set E; and F9 equal to some of our universal elliptic curves, the condition that 2(1 —r) be
a square turns into an absolute mess that the reader should be thankful we do not go into here.
However, in the special case where £} = E; and we take the plus sign in equation (11), we have
r=2A% — 1, so 2(1 — r) is a square preciscly when 1 — Xf is a square. A little algebra shows that
this will be the case when —B;A; is a square.

Suppose we take Ey = F§. Finding ¢ such that —B;A, is a square is equivalent to solving the
equation w? = 1 — 2¢2. This equation defines a rational curve, so we obtain a 1-parameter family of
hyperelliptic curves, and we compute that the rational torsion subgroups of their Jacobians contain
a group isomorphic to Z/4Z x Z/4Z x Z/8Z.

We can take E| to be any of the other universal curves, but for most of the choices it is not
possible to have —B)A; be a square, and for the others the groups we get are subgroups of groups
that we have already obtained.

4.6. Gaining 2-power torsion. We noted in Section 3.7 that the rational torsion subgroup of
a quotient of an abelian variety is sometimes larger than the image of the rational torsion of the
original variety. As in the genus-2 case, we can use this fact to increase the size of the torsion
subgroups we can make. In order to do this, it will be useful to have some of the ideas used in
Section 3.7 spelled out in more detail.

Let k be a field with separable closure K and suppose E is an elliptic curve over k with #E[2](k) =
4. Let 4% = f(z) = (z—x5)(z —27) (2 — 2y) be a model for E, and let S, T, and U be the 2-torsion
points on E with z-coordinates zg, x7, and zy, respectively.

Lemma 16. Let notation be as above, and suppose W is an element of E(K) such that 2W = S.
Then W can be defined over the field € = k(\/ts — z7,/zs — zy). Furthermore, the action of
an element o of Gal{K/k) on W can be determined by its action on \/zg — 2T and /x5 — Ty as
follows:

(a) If o fizes neither J/z5 — zr nor Jzs —ay, then W9 —W = §S.
(b) If o fizes /T3 — zp but not \Jrs —zy, then W9 — W =T,
(c) If o fizes \/xs — zy but not \Jzs —xp, then We — W =U.

Proof. Under our assumptions, the k-algebra L of Section 3.7 is isomorphic to k x k x k. The lemma
then follows from the fact that the isomorphism

H'(Gy, E[2]) = ker (L* JLx2 Nerm g /k*z)
from [33] sends the image of S in H'(Gy, E[2]) to the class of the element

((zs — zr)(zs — zv), (5 - z71), (85 — T0))-
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Coefficients of model A=2(s*+1)
y? = z(z? + Az + B) B = (s +1)%(s+ 1)%(s — 1)?
of universal curve A = 16s*
z-coordinates of zs=—(5—1)(s + 1)*
2-torsion points zr =0
ST, U Ty = —(s? + 1)?
z- and y-coordinates of a zy = ~(s2+1)(s+1){(s = 1)
4-torsion point V with 2V =T |yy =2(s? + 1)(s +1)(s — 1)
z- and y-coordinates of a Tw = —(s — 1)(s + 1)(s —1)?
4-torsion point W with 2W = § |y = —23(s — 1)(s + 1)(s — 1)?

TABLE 9. Data for the universal elliptic curve F3,,. Here 7 denotes a square root
of —1. If o is a non-trivial element of Gal(k(i)/k), then W7 — W =U.

Using Lemma 16 we can write down families of elliptic curves with specific rational torsion
subgroups and extra 4-torsion over an extension that is at most quadratic. For instance, suppose
we take E to be the universal curve Fj,, with zg = —(1 + )2 and zp = 0 and oy = —(1 — )2,
We see that zg — zp = —(1 + t)? and zg — zy = —4t. If we take ¢t = —s? then z5 — zy will be
a square and zg — zp will be —1, up to squares, so for this choice of ¢ there will be a point W of
E defined over £ = k(y/—1) such that 2W = § and such that W — W = U for every non-trivial
k-automorphism o of £. With a little calculation we can find the coordinates for W. Putting this
together with the information we have about F¥ 4 from Tables 6, 7, and 8 gives us the information
summarized in Table 9. We will refer to the universal curve we have thus constructed as F3 ta-

We can use the curve F2 4o 0 build Jacobians. Suppose we take By = By, F3 = Fj 40> d1 = dy,
and d3 = 4s%. Then equation (9) gives us two possibilities: cither A3 = 1, or A3 = 2X? — 1. The
former is impossible, because in that case z(z? + A3z + Bs) would have a double root at 0. The
latter becomes

st+1 2
E?‘— = 2/\1 - ].,

which can be solved to obtain s = £A; £ /A7 — 1, or
A X 2B

VAL

So suppose we take Ey = By = Fj'g over k = Q(u). For this curve the numbers B; and A, are
both squares in &, so we can set s to be an element of k£ that makes the twisting factor equal to
zero. Thus we find a hyperelliptic curve C over & = Q(u) whose Jacobian is (2, 2, 2)-isogenous to
E, x Ey x E5. Given the choice of points €); implicit in the above expressions, it is easy to calculate
that the image of the known k-rational torsion of Ey x E; x F3 in the Jacobian J of C is a group
of the form Z/2Z x Z/2Z x Z/27 x Z/4Z x Z/8Z. Now we will show that in fact J(k) contains a
torsion group larger than this.

Let P; be the point on E; with £ = —16u? and let R; be the point with z = —(u — 1)*(u + 1)*
(see Table 8). If we apply Lemma 16 to the curve E;, with § = P and T = @ and U = Ry, we
find that there is a point W) € E (K defined over an (at worst) biquadratic extension £ of k with
9W, = P,. Note that zg — #7 = —16u" differs from —1 by a square, so k(i) C £ and the action of
a o € Gal(¢/k) on \/Tp, — Zg, is the same as its action on 1.

Let P; be the point on E3 with £ = —(s% 4 1)? (see Table 9) and let W5 be the point labeled W
in Table 9. Let us consider how an element o of Gal{¢/k) acts upon the element (W, W, W3) of
(E1 x By x E3)(£). If o is not the identity and yet fixes 1, then (W, Wi, W3)? — (W, W, W3) =



30 “ “EVERETT W. HOWE, FRANCK LEPREVOST, AND BJORN POONEN

(@1,@Q1,0). If o does not fix 7, then W¢{ —~ W3 = P and we see that (W, Wi, W3)? — (W, W1, W3)
is either (P, Py, P3) or (R1, Ry, P3). Thus we see that (Wy, Wy, W3)° — (W, W1, W3) is an element
of the kernel G of By X By x E3 = J for every o, so the image Z of (W, W, W3) in J is defined
over k. Since 2(W;, W, W3) = (P, P1, P3) is in G, the point Z is a 2-torsion point. Finally, we
note that (Wq, Wi, W) does not differ by an element of G from any of the known rational torsion
points of B x E; x E3, so Z is not in the image of the known rational torsion of E; x F; x Ej.
Thus, the k-rational torsion of the Jacobian of C contains a group isomorphic to Z/2Z x Z/2Z x
Z/2Z x Z/2Z x Z/4Z x Z/8Z. Since k is a rational function field over Q, we get a l-parameter
family of hyperelliptic curves of genus 3 having this group in their rational torsion subgroups.

4.7. Building Jacobians of plane quartics — introduction. Now we turn our attention to
the task of building plane quartics whose Jacobians have large rational torsion subgroups. Most
of the families we will construct will be produced by fixing the torsion structure of the curve Ej
and analyzing the twisting factor as a function of the coefficients of £y and Es, but one interesting
class of examples will arise by setting 1 = E; = F3. Instead of trying to get the twisting factor to
be zero, as we did in the last few sections, we will try to get the twisting factor to be a square, so
that (by the final statement of Proposition 14) the product of the E; will be isogenous over Q to
the Jacobian of a curve. It will be convenient to use the second expression for the twisting factor,
namely

(12) T = didads (A2 + A2 + A2 — 20 Ao)g — 1),

where A\; = A;/d;.
As in the hyperelliptic case, we will not examine all possible comnbinations of torsion structures
on the curves F1, Fy, and E3 here because of the complexity of the equations that arise.

4.8. Building Jacobians of plane quartics with E; of type (4,2). In this section we will take
E3 = Ff,, so that A3 = —t? ~ 6t — 1 and Az = (¢ — 1)*. We will take d3 = (¢ — 1)*.
Suppose we take E) = Fy and d) = dy. Then Ay = Ag, and the twisting factor is
T = d?d3(2)% + A2 — 2)2)3 - 1)
= Aydz(A3 — 1)(A3 — 222 + 1)
= Ay(A3 — 1)(Az — (222 — 1)d3)
= (A3 — 1)(A1 A3 — (242 — A))d3).

A quick calculation shows that Az — 1 = —2(t 4+ 1)?/(t — 1)?, so up to squares in Q(t) the twisting
factor is

4A4%dy — 20 (A3 + d3) = 4(t — 1) A2 + 16tA,.
To get the twisting factor to be a square, we need to find rational solutions to the equation
w? = 4(t — 1)2A4% 4 16tA,.

For fixed A, and Ay, this last equation defines a curve of genus 0 in the (¢, w)-plane, and since it
has a rational point (namely (f,w) = (0,24,)) it is isomorphic to P!. We can parameterize the
curve by setting

t=(z+4B1)(z - A1)/(A2),
w = 2(2% + 4B1 A1) /(A1 2).
Suppose in particular we take F; = Fii. Then we get a 2-parameter family (the parameters
being u and z) of plane quartics whose Jacobians are isogenous to E; x Ey x E3, and a simple

computation with abelian groups shows that these Jacobians have a rational subgroup isomorphic
to Z/10Z x Z/20Z.
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If we take Ey = Fj'y we get a 2-parameter family of plane quartics whose Jacobians contain a
rational subgroup isomorphic to Z/2Z x Z/4Z x Z/4Z x Z/8Z. If we take E; = Fg', we get a
2-parameter family of plane quartics whose Jacobians contain a rational subgroup isomorphic to
Z/2Z x Z/2Z x Z/8Z x Z/8Z. And if we take B} = Fj4 we get a 2-parameter family of plane
quartics whose Jacobians contain a rational subgroup isomorphic to Z/2Z x Z/12Z x Z/12Z.

Without the assumption that £y = E; it is not as easy to make the twisting factor a square.
But suppose we take B = Fl_l/2 and Fy = Fgﬁ. Then A? = ~625/2048 and A3 = —49/32, and
we can choose d; and dj so that did; =4 and A Ay = 175/256. Then the twisting factor is

625 49 AZ 175 A 1)

T'=ddy (‘M‘ETU.\S 128 ds
_ —1922¢* + 1180243 4 29940¢* + 118024¢ — 1922
- 2100t —1)2 ’
so in order to make the twisting factor a square we must find rational solutions to the equation

w? = —1922t% 4 118024¢% + 29940¢% + 118024t — 1922.

This last equation defines a curve of genus 1, and it has a rational point, namely (¢,w) = (1,512).
A calculation then shows that the curve is birational with the elliptic curve defined by 3? =
z3 + 2565z — 15606. This happens to be the curve 528A2 in [4], which has rank 1. (The point
(33,324) is of infinite order.) We see that there is a family of plane quartics, parameterized by the
points on a positive rank elliptic curve, whose Jacobians contain a rational subgroup isomorphic to
Z/AZ x Z/40Z.

Now let us try taking B, = F,i? and Ey = Fﬁly/z‘t‘ If we take d, = 256 and dy = 4 then we have
Ay = 47/128 and Ay = 863/512. The twisting factor is

2209 744769 A2 40561 A3 )

= 1024d ak: St RO |
T = 1024ds (16384 to6o1ad T A, 32768 4y

_ 1104601¢" + 2371804¢® + 9824406¢* + 2371804 + 1104601
- 28(t — 1)2 ’

so in order to make the twisting factor a square we must find rational solutions to the equation

w? = 1104601t + 2371804¢% + 982440612 + 2371804¢ -+ 1104601.

The genus-1 curve defined by this equation has a rational point — namely, (¢,w) = (1,4096) —
so it is an elliptic curve. A calculation shows that it is birational with the elliptic curve y? =
z3 — 151563z + 10810438. Cremona’s rank-finding program calculates that this elliptic curve has
rank 2, and provides the two independent rational points (59, 1440) and (—157,5544). Thus we have
a positive rank elliptic curve whose points parameterize a family of plane quartics whose Jacobians
contain a rational subgroup isomorphic to Z/2Z x Z/4Z x Z/24Z.

Finally, let us take By = F;;"/* and By = FY® Then X2 = —485809/759375 and A2 =
—3721/375, and we can choose d; and dy so that didy = 625/59049 and A Ay = —42517/16875.
The twisting factor is

625 d( 485809 3721 A% 85034 Aj 1)
3

T'= t9000 a5

750375 375 | Dy | 16875 d
—177710460t* + 433908240t + 216604440t + 433908240t — 177710460
= 3165207 — 1)2 ’
so in order to make the twisting factor a square we must find rational solutions to the equation

w? = —177710460¢¢ + 4339082401 + 216604440¢% + 433908240t — 177710460.
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This genus-1 curve has rational points — for instance, (¢,w) = (1,27000) — so it can be made
into an elliptic curve. A calculation shows that the elliptic curve we get is isomorphic to the curve
y? = 23 4+ 213z — 30566. Cremona’s rank-finding program says that this curve has rank 1, and gives
the non-torsion point (53,360). Thus we have found a positive rank elliptic curve whose points

parameterize a family of plane quartics whose Jacobians contain a rational subgroup isomorphic to
Z/4Z x Z/60Z.

4.9. Building Jacobians of plane quartics with F3 of type (2,4). In this section we will take
E3 = Fj 4, so that A3 = 2t2 4+ 2 and Az = 16t2. We will take ds = 4t.
As we saw in the preceding section, if we take E| = E and d; = dy then the twisting factor is

T = (A —1)(A1As — (247 — A)dy).
For our choice of E3 we have A3 — 1 = (¢ — 1)?/(2t), so up to squares in Q(t) the twisting factor is
(26)(A1(26% +2) — (247 — A1)(48)) = 4¢(D1 (¢ + 1)? — 44%).
Thus, we would like to find rational solutions to the equation
(13) w? = 4t(A(t + 1)? — 44%).

Suppose we take E, = Fsz,z, so that A; = 2-47 and A; = 2!, Equation (13) becomes w? =
4¢(2'8(t + 1)? — 2%47%¢), and by setting s = 4096t and z = 512w we get

2% = s34+ 598352 + 16777216s.

A search for points on this curve using Cremona’s programs comes up with the non-torsion point
(s,2) = (5929/64,20520885/512). Thus we find a family of plane guartics, parameterized by the
points on a positive rank elliptic curve, whose Jacobians contain a rational subgroup isomorphic to
Z/4Z x Z/8Z x Z/8Z.

Other choices for E; lead to groups we have already constructed, most of them in the sections
on hyperelliptic curves.

4.10. Building Jacobians of plane quartics with £, = E; = E3. Suppose we take £ = Eg =
E3 and d) = dy = d3. Since AjAyAz is supposed to be a square, we see that A, must be a square
and d; must an element of the base field. If we write A and d for A; and d, we find that the
twisting factor is
T=8303N-20-1) =~ ~-1)22)r+1).
Up to squares, then, the twisting factor is
—d(2)+1) = —(24 + d),

where we write A for A;.
Suppose we take By = Fjg. Then A = ~2t4 + 12t% + 6 and we can take d = 16t. The twisting
factor, up to squares, is t* — 612 — 4t — 3, so we would like to find rational solutions to

w? =t — 6t — 4t - 3.

The desingularization of this genus-1 curve has rational points at infinity, so it is an elliptic curve.
A calculation shows that it is isomorphic as an elliptic curve to y? = z3 — 48. This is the curve
243A1 in [4]; it has rank 1, and its group of rational points is generated by the point (4,4). Thus
we find a positive rank elliptic curve whose points parameterize a family of plane quartics whose
Jacobians contain a rational subgroup isomorphic to Z/6Z x Z/6Z x Z/6Z.

Taking F; to be FQtA or F:f,z gives us rational subgroups that we can get in other ways, and
taking E; to be Ef g or Ej , leads to equations with no rational solutions.
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Coefficients of model A=—(s?—-25-1)(s?+2s - 1)
y* = z(z* + Az + B) B = —45%(s — 1)%(s + 1)?
of universal curve A= (s*+1)*
z-coordinates of zs =10
2-torsion points T = (s 4+ 1)%3(s — 1)?
S, T, U Ty = -482
z- and y-coordinates of a zv=—-2(s+1)(s—1)
4-torsion point V with 2V =T |yy = 2(s? + I){(s + 1)(s — 1)
z- and y-coordinates of a zw = 2is(s + 1)(s — 1)
4-torsion point W with 2W = S |y = —2s(s + 1)(s — 1)}{s — 1)?

TABLE 10. Data for the universal elliptic curve Fy,,. Here 7 denotes a square root
of —1. If o is a non-trivial element of Gal(k(?)/k), then W7 — W = U.

4.11. Gaining 2-power torsion. In this section we will show how to further specialize two of the
families we wrote down in the last few sections to obtain larger rational torsion subgroups. For the
first example, we will need to write down the universal curve F3 4, in a slightly different form. All
we would like to do is make a change of variables in the equation for F3 4, so that the point labeled
S in Table 9 will have z-coordinate 0. After translating x by the proper amount to do this, we
obtain a curve that we will call F{,,. All the information we will need about this curve is listed in

Table 10. Note that Fy ,, is a specialization of Fj,g, as the notation suggests. In fact, Fj,, = F4_’2"2.
Now suppose we try to build a plane quartic by taking £y = Ey = Fjg and E3 = Fj,,. For
notational convenience, we denote by ¢ the number —s?, so that F3 = F4"2 as well. Let P, be
the 2-torsion point on E; with z = —16u? and let P; be the point labeled U in Table 10, so that
dy = (t—1)2 = (s + 1)
As we noted in Section 4.8, the twisting factor in this situation is equal to

4(t — 1)2A2 + 16tA; = 4(s? +1)242 - 16524,
up to squares, so we would like to find solutions to
. w? = (52 +1)24% — 452A,.
For fixed A, and Ay, this is a genus-1 curve in the (s, w)-plane whose desingularization has rational

points at infinity, so it is isomorphic to its Jacobian, which (according to the formulas in Example
3.7 (pp. 293-294) of [34]) is given by

y? = z(z + Ay)(z — 4B,).

If we take u = 2 then this curve is given by y% = x(z + 30625)(z — 82944) and has a non-torsion
point {—21600,4514400). Thus, for this choice of u there are infinitely many values of s € Q that
make the twisting factor a square.

Let C be the plane quartic associated to one of these choices. Let A be the abelian variety
E| x E1 x B3 and let G be the kernel of the homomorphism % from A to the Jacobian J of C. The
image under 9 of the known rational torsion of A is a rational torsion subgroup of J isomorphic
to Z/2Z x Z/AZ x Z/AZ x Z/8Z. Note that the number of independent (Z/4Z)-factors contained
in this group is as large as is allowed by the restrictions imposed by the Galois-equivariance of the
Weil pairing. However, there is more rational torsion on J than just this.

Let Ry be the 2-torsion point on By with z = —(u—1)*(u+1)* (see Table 8). Applying Lemma 16
to the curve E), taking S = P, and T = @ and U = Ry, we find that there is a point W, € E,(K)
defined over a Galois extension £ of Q with 2W; = P,. Since z5 — zr = —16u* we see that ¢
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contains Q(z); furthermore, if o is any automorphism of ¢ that fixes ¢ then W7 — W, is either 0 or
¢, while if o does not fix ¢ then W7 — W is either P, or R;.

Let W3 be the point on E3 labeled W in Table 10. The point W3 is defined over Q(7), and if
o is the non-trivial automorphism of Q(7) then Wy — W3 = P;. Knowing the Galois action on
W) and W3, one can check quite simply that {Wy, W, W3)? — (Wy, W\, W3) is an element of G for
every 0 € Gal{K/Q). Thus the image Z of (W, W), W3) in J is a rational point. It is certainly
not one of the points we already calculated because (Wy, W1, W3) does not differ from one of the
known rational points of A by an element of G. However, 2Z is one of the points we previously
calculated, and indeed 2Z is a 2-torsion point. As remarked before, the torsion subgroup cannot
contain (Z/4Z)™ for n > 3, so the only possibility 1s that J contains a rational torsion subgroup
isomorphic to Z/2Z x Z/2Z x Z/4Z x Z/4Z x Z/8Z. :

We end by trying to add 2-power torsion to the family of curves we obtained in the preceding
section by taking B} = Ey, = E3 = F2t,6' Since the three elliptic curves are isomorphic to one
another, we drop the subscripts. Recall that we chose d = 16¢. This corresponds to choosing P to
be the 2-torsion point on E with z-coordinate equal to (t—3)(t+1)3. Let R be the 2-torsion point
on E with z-coordinate (t + 3)(t — 1)*. Of course, Q is the point (0,0) on E.

Suppose we can find a value of t € Q that makes the twisting factor a square and that equals
(3 4+ 52)/(1 — s?) for some s € Q. Then the z-coordinate of P will be a square, and if we apply
Lemma 16 to E, taking S = P and T = Q and U = R, we find that there will be point W on E
defined over a quadratic extension £ of Q such that 2W = P and W7 — W = @ for the non-trivial
element of Gal(£/Q). Let C be the plane quartic corresponding to this hypothetical ¢, and let
¥: Ex Ex E — J be the map to the Jacobian of C with kernel G generated by (0, Q, @}, (@,0,Q),
and (P, P,P). The image under 1 of the rational torsion of £ x E x E is a group isomorphic
to Z/6Z x Z/6Z x Z/6Z, but there is still more rational torsion on .J. For consider the element
Y1 = (W, W,0) of £ x E x E: since Y7 — Y, = (@,Q,0) is in G, we see the image of ¥7 in J is
a rational point Z;. Similarly, the image Z5 of Yo = (W,0, W) is a rational point. Since neither
2Y] nor 2Y5 is in G, while both 4Y7 and 4Y; are zero, we see that Z; and Z, are 4-torsion points.
Moreover, they are independent 4-torsion points, because neither 2(Y; + Y2) nor 2(Y; + 3Y2) is in
G. Thus J contains a rational torsion subgroup isomorphic to Z/6Z x Z/12Z x Z /127Z.

To find such a curve C, we must find a value of s such that ¢t = (3 + s2)/(1 — s?) will make the
twisting factor a square. From the preceding section, we know that the twisting factor will be a
square if there is a w such that

w? = t* - 6% — 4t - 3.
Inserting our formula for ¢ into this equation and clearing denominators shows that we want to find
solutions to
y? = ~s® 4+ 65t + 5652 + 3,
with s # £1. Amazingly enough, there are such solutions to this equation: we can take (s,y} =
(£1/5,1432/625). These solutions give t = 19/6. Inserting the corresponding values for A, B, and
A into the formulas of Proposition 14 leads us to the plane quartic C defined by
15625(X* + Y + Z%) — 96914(X*Y? + X?2* 4+ Y?Z%) = 0.

The Jacobian of this curve contains a rational torsion subgroup of order 6-12-12 = 864. Both E
and C have good reduction modulo 7; since the reduction E' of E modulo 7 has 12 points (12 being
the only multiple of 12 lying within the Weil bounds), and since the reduction J' of the Jacobian of
C is isogenous to B’ x &' x E', we see that J' has 12° = 1728 points. Therefore the rational torsion
subgroup of J is isomorphic either to Z/6Z x Z/12Z x Z/12Z, to Z/12Z x Z/12Z x Z[/12Z, to
Z/2Z X Z[67 x Z[12Z x Z[12Z, or to Z/6Z x Z/12Z x Z[24Z. The second and third possibilities
can be ruled out by looking at the action of Galois on the 4-torsion of £ x £ x E. The fourth can
also be ruled out: the dual isogeny T* . J o E x E x E would take a 24-torsion point on J to a
point of order at least 12 on E x E x E, since T is multiplication-by-2 on J, but the torsion
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subgroup of E x E x E is of exponent only 6. Thus, we have found a single plane quartic C such
that the rational torsion subgroup of Jac C is isomorphic to Z/6Z x Z/12Z x Z/12Z.
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