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Abstract

rn-soliton solutions of (1 + 2) -dimensional Davey-Stewartson equa­
tion are constructed explicitly by means of known general solution of
two-dimensional matrix Toda chain [1]' These solitons are expressed
in terms of n-linear different solutions of the independent pair of lin­
ear matrix Schrodinger equations (each in (1 + 1) dilncnsion). Their
potentials are arbitrary hermitian ntatrix fllnctiollS of variables (t, x)
or (t, y) respectively.

1 Introduction

This paper is a continuation of Dur recent work (1] in which general solution
of equations of matrix Toda chain with fixed ends was rcpresented in ex­
plicit form. Here we apply this solution to construct multi-soliton solutions
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of (1 + 2) dimensional Inatrix Davey-Stewartsoll cquatioll. We have cho­
sen specially this nontrivial exaInple to deInonstrate the powerful method
of discrete transfonnation [3J, [4] and its applicabi lity indifferent cases such
as multidimensional integrable systems as weIl as integrable systems with
internal structures.

We define the matrix Davey-Stewartson equation as the system of two
equations for two matrix functions u, v of diInension s:

iUt + auxx + buyy - 2au! dy(vu)x - 2b Jdx(uv)yU = 0

(1.1)

-ivt + avxx + bvyy - 2a Jdy(vu)xv - 2bv ! dx(uv)y = 0

where a, bare arbitrary numerical paraIneters ( we will choose them below
as a = b = 1) alld x, y are the coordinates of two-dimcnsional space. In the
case s = 1, when the order of multipliers is not essential (1.1) is thc usual
Davey-Stcwartson equation for v = u* [2].

2 Discrete substitution

By direct hut tedious computations one can bccoIne convinced that the sys­
tem (1.1) is invariant with respect to the followillg change of thc unknown
(matrix) functions;

u = V-I, V = [vu - (vx v- 1)y]v - v[nv - (v- 1vy)x] (2.1)

The substitution (2.1) is the discrete transfonnation [3],[4] with respect to
which all the equations of thc matrix Davey-Stewartson hierarchy are in­
variant. In the case of a one-dimensional nlatrix Schrodinger equation this
substitution was mentioned in [5].

The substitution (2.1) is invertible anel thc "old" functions u, v may be
represented in terms of the new ones as:

(-)-1V = U l (2.2)

The substitution (2.1) may be rewritten in thc fonn of an infinite chain
of eqnations

(2.3)
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where by (vn-l, un-d is to be understoocl as thc result of thc n-times appli­
cation of the substitution (2.1) to some given rnatrix-functions (vo l Uo).

Generally the chain (2.3) is infinite in both directions, but it may be inter­
rupted by appropriate boundary conditions. The case when v=i = VN+l = 0
we shall call the matrix Toda chain with fixed ends.

In the scalar case s = 1 the general solution of tbc Toda chain witb fixed
ends was found in [6] for all series of semisiInple a,lgebras except for E7l Es. In
[7] this result was reproduced in ternls of invariant root techniques applicable
to all semisiInple series.

The general solution of the matrix Toda chain with fixed ends in ex­
plicit form was fonnd in [1]. In the present paper we will use this result for
construction the rnulti-soliton solution of Inatrix Davey-Stewartson equation
(1.1) .

3 General strategie

Now we formulate the problem; it is necessary to find solution of the sys­
tem (1.1) under additional condition of reality 'U = v* wherc z* means the
hermitian conjugation of matrix z.

System (1.1) obviously possesses solution for which 7.to = O. In this case
first equation is satisfied automatically ancI the second olle for unknown func­
tion Va may be rewritten as

where VI, '12 are arbitrary s x s matrix functions of their arguInents ( the aris­
ing of terms of such kind is connected with that circuIllstance that the inte­
grals Jdx(uv)y, Jdy(uv)x in the equations ofthe systelll (1.1) are determined
only up to arbitrary functions of (t, y) or (t, x) arguments correspondingly).

Gf course the condition of reality is not satisfied for this solution. But
after application to it successively times discrete transformation (2.1) it will
be possible to corne to solution for which condition of reality will be satisfied.

To clarify situation let us consider thc solution 1L, v for which condition of
reality is satisfied u = v*. Let us applicate direct (2.1) anel inverse (2.2) dis­
crete transformation to this solution anel denote results as Ul , VI and U-l l V-l

respectively. It is not difficult to check tbat 71,-1 = V*l and V-I = U*l·
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Continuing this procedure we obtain 1L-m = V*m anel V-m = 'll*m, where in­
dex ±m means m-tirnes application of elirect anel inverse transformation for
the initial solution for which condition of reality is satisfieel. So if we begin
from the solution with Uo = 0, va and after 2m -tirnes application of discrete
transformation obtain the solution of the form 1l2m = V*o, V2m = °then for
solution in the "mieldle" of the chain U m+l, Vm+l condition of reality will be
satisfied automatically.

Explicit fonn of solution of thc systelll (2.3) for which Uo = v=i = V2m = °
is known from our recent paper [1] ( we have called it there as tbe matrix
Toda chain with fixed end points). This solution bas tbc fonn

2m

Va = L Xr(:r)Yr(y)
r=l

(3.1)

where X, Y are arbitrary s x s -matrix functions of thcir arguments.
So for construction of the solution of thc problcln as it was formulated in

the beginning of this section it is necessary to discharge the following steps­
find explicit expression for U2m, find such the dependencc of lnatrix fuuctions
X, Y" on time argument that Vo woulcl be solution of the equation of the
beginning of this section anel at last satisfy condition of reality U2m = v*o.
After this U m +l, Vm+l will give HS SOlllC partial (rn-soliton) solution of the
problem.

4 Scalar case

To obtain some experience in ealculations at first we will eonsider the sealar
ease s=l, for which mueh of neeessary calculations steps are wellknown and
much simpler then in the general matrix ease.

Solution of equations of cliscrete transfonnation in this ease is coineided
\vith solution of Tada chain with fixed cnds anel has thc fann [4]
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where Detk are the principle minors of thc Inatrix

D
Vxx

D
V:r:xy

D
Vxxyy

and vD is determined by (3.1), where X r , Yr are arbitrary scalar functions of
their arguments.

From the formulae above it is not difficult to conclucle tbat if vD

E;~I Xr(x)Yr(Y) 1 then V2m = 0 anel U2m Inay bc represented in the form

where

2m

U2m = L f~(x)Xr(Y)
r=l

(4.2)

-r ( ) _ W2m-I(XI,X2, ... 'Xr-l,..tYr+I, ... ..ty2m)
X r X - W (V" Xr ,r)

2m ..r\. 1, 2,· .. . ..r\ 2m

and by W k we denote thc determinant of Vrosnki constructed from the func­
tions in tbe brackets. The same expressions take place for fl"r with obvious
change X -+ Y.

By help of (4.2) the conditions of reality n1ay be rewritten in the fOrIn

(4.3)

where under r' it is necessary to understand some of the possible (2m)!
permutations of 2171 indexes r.

Thc equation for Va of the last scction may be rewritten in terms of
X r , Y·r functions in following terms: each of tbe functions X r , y;. satisfy one­
dimensional Schrodinger type equatioIlS potenti als of whieh VI (t, x) 1 V2(t 1 Y)
are arbitrary functions of corresponding arguments:

Ta satisfy (4.3) and (4.4) in explicit form it will be suitable represent
funetions Xr(t, x), 1~(t, u) in Frobenious like fOrIn
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All functions X r are the solutions of thc same equation (4.4) which in terms
of functions cf>k nlay be rewritten as a system of equations

r-l

~r = (cf>r (1n cf>r TI cf>~),),
k=l

(4.6)

We have inc1uded imaginary unity i into tüne variable, which will be con­
sidered as pure imiganary from this mOlnent.

We will use permutation (2m, 2m - 1, ...2, 1) in the conditions of reality
( 4.3) ( for this case we can fulfill all calculations up to the end). In terms
of functions <Pk we have for this condition

cf>*r = c/>2m-r+2 (r = 2, 3, .. .2m), (4.7)

System (4.6) of course is invariant with rcspcct to such conditions of reality,
what can be easily checked independently.

In ternlS of the ncw unknown fllnctions Y" = n~=l q;k system (4.6) takes
the form

(. Yr) (Yr (1 )')'-- = -- UYrY,'-l
Yr-l Yr-l

Let us consider now the equation of this SYStClll with r = m + 1.
mind the condition of reality Y*m = _1_ we obtain

Ym+l

( 1 ) = ( 1 (In Ym I)'
YmY*m YmY*m Y*m

(4.8)

Keeping in

(4.9)

From the last relation we can conclude that function -.L is solution of onc-
Ym

dimensional Schrodinger equation potential of which W is arbitrary real func-
tion both times and spaces coordinates.

(. 1) (l)u 1- + - =i'V-,
Vm Vm Ym

(4.10)

Now let us consider equation from (4.8) with r = m

(. Ym) (Vm (I )')1-- = -- 11 VmYm-l
Ym-l Ym-l

6
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and partially resolve it

Ym 1--=z,
Ym-t

(lnYmYm-d'=':"
Zl

(4.12)

Excluding from the last system function Ym-l after some simple calculations
we corne to conclusion that function ....L satisfy cquation (4.10) exactly the

Um

same equation which function .1. satisfy. Denoting these solutions by Ul, U2
Un

we obtain

1
- =Ut,
Ym

1

Ym-l

z'
Ym

(4.13)

To continue further calculations it will be iInportant for us two relations
of equivalence both of which can be checked by help of weIl known Jacobi
identity for determinants. Let we have some semi-limitccl in up anel left
directions matrix T. Uncler Tn we will understand its principle minors of n­
th order counted from its left upper angle ( for the corresponding matrices of
this determinants we conserve the saIne notations without any confusions).
TS Illeans thc (sClni-liIniteei ) matrix T with crossing out its s-th column;
t TS means the Inatrix T with striking out its s-th row; t TS means the
matrix T with crossing out both s-th column anel row simllitaneously.

In this notations the Yacobi identity takes thc fornl

(4.14)

Vve want uo,,, to concretisize matrix T : let its first line consists from
different ( linear independent ) solutions of eqllation (4.10) Ul, U2, .... 1 the
secolld Olle from its derivatives of first oreler u~, u;, ... , the third one from the
derivatives of thc seconel order u~ 1 'll~ 1 ••• and so on ( in othcr words this is
constructioIl of matrix of Vronski determinant). For so ariseIl Inatrix we will
use notation U. Then as a elirect corollary of this definition anel (4.14) we
obtain two identities

Un+~~n-l = (U
u
-ny, (In Un+t )' = UniOn) - O'/Jn (4.15)

n n Un - l Un+1Un - 1

By help of the last identity general solution of the systems (4.8) and (4.6)
may be represented in the form

-1 Us+1 A.
Yn-s = -:u; lo/n+l = 1l}'ll*l

7



U~+IUS-l( )
1;n-8-1 = U2 0 ~ S ::; n - 3 1

S

5 Matrix case

A. _ Un- l
'f'1 - -­Un

(4.16)

The aim of this section to gencralize thc above results on the matrix case.
We emphasize that absolutely all fonnulae of last section adlnit such gcner­
alization but some times the known for us proofs are not sufficiently simple
and we will omit them keeping in mind that reader will be able to do this
bettel' us or check the corresponding expressions by thc methods of computer
mathematics.

Let us introduce the following notations

n-l

S~ _ 2::(8%-1 + Rk SZ- l
)

k=O

with abbreviations of derivatives with respect to space coordinates Fy ­

F, Fx =F'. As a direct corollary of (2.1) it arisen the recurrent relations for
introduced above values S%:

sq = [(SI )']-1 (Sq+1)'n n-l n-l

with boundary conditions

sr = Val (vo)yvv"y

In this notations the explicit expression for Vn+l takes thc form

Vn+l = Vn(S'~+I)' = vo(st)'(S~)' .... (S~+d'

(5.1)

(5.2)

and may be calculated by help of above (5.1) rccurrcnt relations.
In matrix cas~ formula (4.2) conserve its form but conncction of thc "fi­

nally" matrices .fYr with initial ones X r has SOllle Illore cOlnplicate structure

(5.3)

The functions Ts
1 introduced in (5.3) are partial case of thc set of functions

T~ which satisfy the following set of recurrcnt relations ( COlnpare with (5.1)):

T~ = [(T~_l )']-1 (T1i~i)' (5.4)
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with boundary conditions
T q X-lX

I = I q+l

All other functions Xr have to be obtained frOl11 (5.3) by help of of one of
2m circle permutations of the lower indexes of the initial functions X s '

Explicit expressions for Yr may be obtained [rom the corresponding ex­
pressions for matrices X r by the operation of formal transposition and chang­
ing the index of differentiation. For instance (5.3) takes the form

(5.5)

In whole analogue to (5.4) it take place the recurrent relations for functions

Q~
Q~ = [(Q~_I)·)-l(Q:~~\)'

with corresponding bounelary conditions

Representation of the initial functions X r in Frobenious like form ( with
taking into account of the order of multipliers)

allows üs by help of (5.3) find explicit expressions for finally fUllctions

Xr = Jdx4>2m-r+l'" Jdx4>2(4)14>2,lll4>2m)-I, (2::; s::; 2m),

(X2m)-1 = (4)14>2 .... 1>2m)

The fact that all functiolls X r are thc solution of thc same equatioll (4.4)
in terms of matrix 4>s functions takes the fonn of system of equations

Condition of reality ( also for the case of pcrrnutation of the previous
section), compatible with the last SyStClll contains their form (4.7)

1>; = 1>2m-r+2 (1' = 2,3, ... 21n),
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(5.10)

<P~~1 = (<P:n+l)-1 = (cPlcP2···tPm) * (tPltP2···tP)
From (m+ l)-th equation of sl'steIn (5.6) together with realitl' conditions

we can conclude that matrix function y;1 = (tPi tP2 ...q;m) is thc solution of
linear Schrodinger equation

(~) + (~)" = lIV~, IV = W* (5.8)
Ym Ym Ym

with Hermitian matrix potential W.
As in the previous section in terms of thc new functions Ym = tPl<P2 .... tPm

system (5.6) mal' be written in the fonn

- (Y;:!IYr)t = (Y;:~ 1Y~ - (Y;:!l)'Yr)' (5.9)

Partially resolving rn-th equation of thc sl'stcln (5.9) by thc obvious substi­
tution

-1 , -I' (-1)'Ym-1Ym = Z, Ym-IYm- Ym-l Ym = Zt

and excluding the function Ym-l from thc last equalitl' wc COIne to conclusion
that function zy;1 satisfl' the same eqllation (5.8) as thc function y;;/. De­
noting two linear independent solution of this eql1ation by Ul, U2 we obtain
finally

-1 ( -1)'Ym = Ul, Ym-l = 7l2U l 'lll

We represent now general solution of the sl'steIn (5.9) . For proving of
below formulae it is necessary to use thc saUle procedurc ( more exactly its
generalization on the matrix case) as in the scalar case

-1 (VI)' (Vi)"Ym - r = r .... 1 U 1

where matrix functions U~ are detennillcd by rccurrent relations

Uq = [(Ul )/]-1 (U Q+1)'n n-l n-l

with the boundary conditions

Ur -1
1 = U r+1Ul

and functions Ur satisfy Schrodinger likc equation (5.8).
Ta come to the finally result it is necessary to repeat all calculations with

respect to ~ functians, express them via solution of one-diInensional matrix
Schradinger equation potential of which is arbitrary Hennitian matrix of
arguments (t, V). Then bl' help of fonnlliae (5.2) rccanstrllct Vm+l by known
X r1 Yr . This will be solution of Davcy-Stewartson equation which satisfl'
reality condition Um+l = V~+I'

10



6 The simplest example of one soliton solu­
tion

In this case m = 1 and corresponding formulac of thc last section takes the
form

For explicit expression for Ul = V*l by which defined one-soliton solution we
have

Ul = (VO)-1 = '1/;11(1 + Jdx<pJ Jdy'l/;d-1cPi 1 (6.1)

Matrix functions <p(t, x), 'IjJ(t, y) are connected with solutions of one­
dimensional Schrodinger equations by relations

<PI = U, cP:;1 = U*U, 'l/Jl = V, 'I/J:;1 = VV*

Ut + Uxx + W1(t, x)U = 0, Vi + Vyy + VYV2 (t, y) = 0, l1V1 ,2 = W]*,2

7 Conclusion

The Inain result of the paper is explicit expressions for nl-soliton solutions
for (1 + 2) diInensional Inatrix Davey-Stewartson cquation. By means of
the corresponding formulae of sections 4-5 it is possible to represent them
via m linear independent solutions of the pair of one-diInensional (1 + 1)
Schrodinger equations with Hermitian Inatrix potentials.

On the group theoretical level this Ineans that we have fOllnd the re­
alization of the finite-diInensional reprcsentation of the group of integrable
mappings [4]. This viewpoint is beyond our concrete calculations.

We want to emphasize that the restriction to thc finite-dimensional matrix
case is absolutely nonessential. We have never used this fact and moreover,
the dimension doesn't contribute in any expression. Für illstance, in one soli­
ton solution, U, V can be considered as the second quantisized wave functions
of the one dilnensional Schrodinger eql1ation. Most likely it is the bridge to
the problem of quantum groups in two dimensions.

A.L. is grateful to the Max-Planck Institute for Mathelnatic in Bonn for
the hospitality, where this work was prepared partly.
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