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This paper is a continuation of our recent work 1] in which general solution
of equations of matrix Toda chain with fixed ends was represented in ex-
plicit form. Here we apply this solution to construct multi-soliton solutions
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Abstract

m-soliton solutions of (1+2) -dimensional Davey-Stewartson equa-
tion are constructed explicitly by means of known general solution of
two-dimensional matrix Toda chain [1]. These solitons are expressed
in terms of n-linear different solutions of the independent pair of lin-
ear matrix Schrodinger equations (each in (1 + 1) dimension). Their
potentials are arbitrary hermitian matrix functions of variables (¢, z)
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of (1 4+ 2) dimensional matrix Davey-Stewartson equation. We have cho-
sen specially this nontrivial example to demonstrate the powerful method
of discrete transformation [3],[4] and its applicability in different cases such
as multidimensional integrable systems as well as integrable systems with
internal structures.

We define the matrix Davey-Stewartson equation as the system of two
equations for two matrix functions u, v of dimension s:

iUy + Qg + biyy, — 2au f dy(vu), — Zb/d:r(uv)yu =0

(1.1)
— 1V + QUgy + DUy — 2a/dy(vu)mv — 2 /d:}:(uv)y =0

where a,b are arbitrary numerical parameters ( we will choose them below
as a = b = 1) and z,y are the coordinates of two-dimensional space. In the
case s = 1, when the order of multipliers is not essential (1.1) is the usual
Davey-Stewartson equation for v = ux [2].

2 Discrete substitution

By direct but tedious computations one can become convinced that the sys-
tem (1.1) is invariant with respect to the following change of the unknown
(matrix) functions;

d=v"" 9=[vu— (v ")y lv = v[uv — (v 'v,),] (2.1)
The substitution (2.1) is the discrete transformation (3],{4] with respect to
which all the equations of the matrix Davey-Stewartson hierarchy are in-
variant. In the case of a one-dimensional matrix Schrodinger equation this
substitution was mentioned in [5].
The substitution (2.1) is invertible and the "old” functions u,v may be
represented in terms of the new ones as:

v= ()7, u=[ad - (G4,a "))t = aldd — (T i)y (2.2)

The substitution (2.1) may be rewritten in the form of an infinite chain
of equations

(('Un)m“vzl)y = 'Uﬂvr:il — Upg1Vy 5 (Ungr = 'Uajl) (2.3)
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where by (vy—1,un-1) is to be understood as the result of the n-times appli-
cation of the substitution (2.1) to some given matrix-functions (vy, ug).

Generally the chain (2.3) is infinite in both directions, but it may be inter-
rupted by appropriate boundary conditions. The case when v2] = vy4q = 0
we shall call the matrix Toda chain with fixed ends.

In the scalar case s = 1 the general solution of the Toda chain with fixed
ends was found in [6] for all series of semisimple algebras except for E7, Fg. In
[7] this result was reproduced in terms of invariant root techniques applicable
to all semisimple series.

The general solution of the matrix Toda chain with fixed ends in ex-
plicit form was found in [1]. In the present paper we will use this result for
construction the multi-soliton solution of matrix Davey-Stewartson equation

(1.1).

3 General strategie

Now we formulate the problem; it is necessary to find solution of the sys-
tem (1.1) under additional condition of reality © = v+ where z* means the
hermitian conjugation of matrix z.

System (1.1) obviously possesses solution for which ug = 0. In this case
first equation is satisfied automatically and the second one for unknown func-
tion vy may be rewritten as

—1vg ('UO)::::: + ('UO)yy + Vl(ta -'L')'Un + 'UUVZ(ta y) =0

where V), V, are arbitrary s X s matrix functions of their arguments ( the aris-
ing of terms of such kind is connected with that circumstance that the inte-
grals [ dz(uv)y, [ dy(uv), in the equations of the system (1.1) are determined
only up to arbitrary functions of (¢,%) or (f,z) arguments correspondingly).

Of course the condition of reality is not satisfied for this solution. But
after application to it successively times discrete transformation (2.1) it will
be possible to come to solution for which condition of reality will be satisfied.

To clarify situation let us consider the solution w, v for which condition of
reality is satisfied u = v*. Let us applicate direct (2.1) and inverse (2.2) dis-
crete transformation to this solution and denote results as «, vy and u_;,v_
respectively. It is not difficult to check that u_, = v% and vo; = uxy.



Continuing this procedure we obtain u_,, = v*,, and v_,, = u%,,, where in-
dex £m means m-times application of direct and inverse transformation for
the initial solution for which condition of reality is satisfied. So if we begin
from the solution with uy = 0, vy and after 2m -times application of discrete
transformation obtain the solution of the form g, = v*g, vgm = 0 then for
solution in the "middle” of the chain t,,11, v;4 condition of reality will be
satisfied automatically.

Explicit form of solution of the system (2.3) for which ug = vZ] = vop, = 0
is known from our recent paper [1] { we have called it there as the matrix
Toda chain with fixed end points). This solution has the form

o = zzxr(mm(y) (3.1)

where X, Y are arbitrary s X s -matrix functions of their arguments.

So for construction of the solution of the problem as it was formulated in
the beginning of this section it is necessary to discharge the following steps-
find explicit expression for sy, find such the dependence of matrix functions
X,Y on time argument that vy would be solution of the equation of the
beginning of this section and at last satisfy condition of reality uom = v*q.
After this umy1, Umy1 Will give us some partial (m-soliton) solution of the
problem.

4 Scalar case

To obtain some experience in calculations at first we will consider the scalar
case s=1, for which much of necessary calculations steps are wellknown and
much simpler then in the general matrix case.

Solution of equations of discrete transformation in this case is coincided
with solution of Toda chain with fixed ends and has the form [4]

e = Detk_l Ve = Detk+1
g Detk k Detk ’

Det_l = O, Deto =1 (41)



where Dety are the principle minors of the matrix

0 0 0

vo Uom 0

Uy gy ory e
vy ’Uzyy TTYY 7T

.........................

and v® is determined by (3.1), where X,, Y, arc arbitrary scalar functions of
their arguments.
From the formulae above it is not difficult to conclude that if v° =
m X.(z)Y:(y) , then vy, = 0 and uy,, may be represented in the form

tam = zi":lﬁ(m))h(m (42)

where i ; ; .
_ Wom—1(X1, Xoy ooy Xooty, Xea1, --Xom)

X, (z) = e
() Wom (X1, X2,y .. Xomm)
and by W we denote the determinant of Vrosnki constructed from the func-
tions in the brackets. The same expressions take place for Y, with obvious

change X — Y.
By help of {4.2) the conditions of reality may be rewritten in the form

X, =X, Y,=Y (4.3)

r'

where under 7' it is necessary to understand some of the possible (2m)!
permutations of 2m indexes 7.

The equation for vy of the last section may be rewritten in terms of
X., Y, functions in following terms: each of the functions X,, Y, satisfy one-
dimensional Schrodinger type equations potentials of which Vi(¢, z), Va(t, y)
are arbitrary functions of corresponding arguments:

=Xy + (Xp)ez + Vi, 2) X, =0 — 1Y+ (Vy)ae + YoVa(t,9) =0 (4.4)

To satisfy (4.3) and (4.4) in explicit form it will be suitable represent
functions X, (t,z), Y;(¢,u) in Frobenious like form

Xi=d1, Xo= /dzqﬁg... [dz¢, (2 < s < 2m) (4.5)
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All functions X, are the solutions of the same equation (4.4) which in terms
of functions ¢, may be rewritten as a system of equations

b = ($,(n 4, H BYY (4.6)

We have included imaginary unity ¢ into time variable , which will be con-
sidered as pure imiganary from this moment.

We will use permutation (2m,2m — 1,...2,1) in the conditions of reality
( 4.3) ( for this case we can fulfill all calculations up to the end). In terms
of functions ¢; we have for this condition

1
[Tz Pede

System {4.6) of course is invariant with respect to such conditions of reality,
what can be easily checked independently.

In terms of the new unknown functions y, = [Ti_, ¢x system (4.6) takes
the form

P*r = Pom—ri2 (T =2,3, --'2m)’ Pint1 = PFipr = (4'7)

e Yr Yr e
= 1 Y 4.8
(yr—l) (yr—l(nyy k)) ( )

Let us consider now the equation of this system with r = m + 1. Keeping in
mind the condition of reality y*, = 5;1-5 we obtain

.1 ' 1 '
() = (—— (22 (4.9)
YmlY*m Yml*m Y*xm

From the last relation we can conclude that function yi is solution of one-

dimensional Schrodinger equation potential of which W is arbitrary real func-
tion both times and spaces coordinates.

1 1 1
—)+(—=)'=W—, W=W" 4.10
ym) (Zlm) ym ( )

(

Now let us consider equation from (4.8) with r =m

: Ym Ym "t
= In Yy Yin— 4.11
(ym_l) (ym_l( YmYm—-1)") ( )



and partially resolve it

Ym
UYm—1

Excluding from the last system function ¥,,,_; after some simple calculations

we come to conclusion that function _* satisfy equation (4.10) exactly the

1
Yn

z
= Z’, (111 ymym—l)’ = —Z—’ (412)

same equation which function
we obtain

satisfy. Denoting these solutions by uq, us

1 oy 1 2 wuy — upu)
Ym ug’ Ym—1 Ym U1
To continue further calculations it will be important for us two relations
of equivalence both of which can be checked by help of well known Jacobi
identity for determinants. Let we have some semi-limited in up and left
directions matrix T. Under T,, we will understand its principle minors of n-
th order counted from its left upper angle ( for the corresponding matrices of
this determinants we conserve the same notations without any confusions).
T* means the (semi-limited ) matrix 7' with crossing out its s-th column;
4 T° means the matrix T with striking out its s-th row; | T means the
matrix T with crossing out both s-th column and row simultaneously.
In this notations the Yacobi identity takes the form

T LT =T LT =Ty Ty (4.14)

(4.13)

We want now to concretisize matrix 7' : let its first line consists from
different { linear independent } solutions of equation (4.10) u,uq, ...., the
second one from its derivatives of first order u}, w5, ..., the third one from the
derivatives of the second order u},uj,... and so on ( in other words this is
construction of matrix of Vronski determinant). For so arisen matrix we will
use notation U. Then as a direct corollary of this definition and (4.14) we
obtain two identities

Un+lUn—1 ﬁn ! Un~+~l ] Un(ﬁu) - ﬁnUn
ol Iny ) = 4.15
Ug (Un) ( i Un—l) Un+1Un—1 ( )

By help of the last identity general solution of the systems (4.8) and (4.6)
may be represented in the form
Us-H

-1 _ _ )
Yn-s = :({bn+1 = U1U*,

Us



(4.16)
Us+1 Us—l
Ut

Pr—s—1 = 0<s<n=-3), ¢ =

5 Matrix case

The aim of this section to generalize the above results on the matrix case.
We emphasize that absolutely all formulae of last section admit such gener-
alization but some times the known for us proofs are not sufficiently simple
and we will omit them keeping in mind that reader will be able to do this
better us or check the corresponding expressions by the methods of computer
mathematics.

Let us introduce the following notations

n—1

Ry =v;ti,, S1=3(S{7'+ ReS{TH

k=0

with abbreviations of derivatives with respect to space coordinates F, =
F,F, = F'. As a direct corollary of {2.1) it arisen the recurrent relations for
introduced above values S§:

St =[(Sa )1 (S0 (5.1)
with boundary conditions
Si= ’Uo_l(vﬂ)yyy-.y
In this notations the explicit expression for v, takes the form
Un+1 = Un(Sflwl)’ = UO(S%)’(Szl)'----(Srlﬁﬂ' (5.2)

and may be calculated by help of above (5.1) recurrent relations.
In matrix case formula (4.2) conserve its form but connection of the ”fi-
nally” matrices X, with initial ones X, has some more complicate structure

(X)) = XM (1) .. (Toe)' (5.3)

The functions T} introduced in (5.3) are partial case of the set of functions
T4 which satisfy the following set of recurrent relations ( compare with (5.1)):

Ti = [(Tao) 1N (T (5.4)
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with boundary conditions
qu = Xl—qu+1

All other functions X, have to be obtained from (5.3) by help of of one of
2m circle permutations of the lower indexes of the initial functions X;.

Explicit expressions for Y, may be obtained from the corresponding ex-
pressions for matrices X, by the operation of formal transposition and chang-
ing the index of differentiation. For instance (5.3) takes the form

(Y1) = (@nr) (@Y, (5.5)
In whole analogue to (5.4) it take place the recurrent relations for functions
@ 1 1 1
Qn = [(@n_) 171 @)
with corresponding boundary conditions

8 __ =1
Ql - 3+1)1

Representation of the initial functions X, in Frobenious like form { with
taking into account of the order of multipliers)

Xi=d1, X, =0 [dagy.. [dvg., (2<s<2m)

allows us by help of (5.3) find explicit expressions for finally functions
A-;:r = /d$¢2m—r+l“- [d$¢2(¢1¢2: ) ,¢2m)_1: (2 S 8 S 2m)1
(Xom)™! = (¢102--P2m)

The fact that all functions X, are the solution of the same equation (4.4)
in terms of matrix ¢, functions takes the form of system of equations

—(¢s)e + (2192.-Ps1) T (P12 Ps-1) s + L) =0 (5.6)

Condition of reality ( also for the case of permutation of the previous
section), compatible with the last system contains their form (4.7)

At = Pom—rsz (1 =2,3,..2m),



;IEI-I = (¢:n+l)_l = (¢1¢2"-¢m) * (¢1¢2¢)

From (m--1)-th equation of system (5.6) together with reality conditions
we can conclude that matrix function y,' = (¢,¢s...¢,) is the solution of
linear Schrodinger equation

L+ =wld, w=wr (5.8)

ym m Jm
with Hermitian matrix potential W.
As in the previous section in terms of the new functions y,, = d1¢9....¢m
system (5.6) may be written in the form

=) = (0ot — () we)' (5.9)
Partially resolving m-th equation of the system (5.9) by the obvious substi-
tution

Y1 = 2y YmiiYm — (Uit Vm = 2
and excluding the function y,,_, from the last equality we come to conclusion
that function zy;,' satisfy the same equation (5.8) as the function y;!. De-
noting two linear independent solution of this equation by u;,u; we obtain
finally
y;;] =U, Ym-1 = ("2“;1)’“1

We represent now general solution of the system (5.9) . For proving of
below formulae it is necessary to use the same procedure ( more exactly its
generalization on the matrix case) as in the scalar case

Ymer = (U7) (U})'0 (5.10)
where matrix functions Uf are determined by recurrent relations
Ui = (U )T U
with the boundary conditions
Ul = u,uy’

and functions u, satisfy Schrodinger like equation (5.8).

To come to the finally result it is necessary to repeat all calculations with
respect to Y, functions, express them via solution of one-dimensional matrix
Schrodinger equation potential of which is arbitrary Hermitian matrix of
arguments (£,y). Then by help of formulae (5.2) rcconstruct v, by known
X, Y., This will be solution of Davey-Stewartson equation which satisfy
reality condition .1 = v}, 4.
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6 The simplest example of one soliton solu-
tion

In this case m = 1 and corresponding formulace of the last section takes the
form

w=XYitXoYo, Xi=o,Xo=6i([dagy) ,Yi=v0,Ys= ([ dubr)y

For explicit expression for %, = w¥; by which defined one-soliton solution we
have

u; = (vg) ! = 1“1(1+/da:¢1/dy¢1)'1¢:1'1 (6.1)

Matrix functions (¢, z),¥(t,y) are connected with solutions of one-
dimensional Schrodinger equations by relations

b=U, ¢'=UT, wi=V, o'=vv’

Ut -+ Uzﬂ: -+ W1 (t, I)U = 0, ‘/t + ‘/yy + ‘/I'Vz(t, y) = 0, I’VLQ = W]*,2

7 Conclusion

The main result of the paper is explicit expressions for m-soliton solutions
for (1 4+ 2) dimensional matrix Davey-Stewartson equation. By means of
the corresponding formulae of sections 4-5 it is possible to represent them
via m linear independent solutions of the pair of one-dimensional (1 + 1)
Schrodinger equations with Hermitian matrix potentials.

On the group theoretical level this means that we have found the re-
alization of the finite-dimensional representation of the group of integrable
mappings [4]. This viewpoint is beyond our concrete calculations.

We want to emphasize that the restriction to the finite-dimensional matrix
case is absolutely nonessential. We have never used this fact and moreover,
the dimension doesn’t contribute in any expression. For instance, in one soli-
ton solution, U, V can be considered as the second quantisized wave functions
of the one dimensional Schrodinger equation. Most likely it is the bridge to
the problem of quantum groups in two dimensions.

A.L. is grateful to the Max-Planck Institute for Mathematic in Bonn for
the hospitality, where this work was prepared partly.
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