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ABSTRACT. Minimal Calabi-Yau models can be roughly classified by studying the
behaviour of the linear form being induced by their second Chern class on their nef
cone. Strict positivity of [ea] x on Amp(X) leads to CY models X of general type. We
consider a wide class of such models, namely 3-dimensional well-formed quasismooth
complete intersections of hypersurfaces X = Xq = X(q4,,... ,4,) i 8 weighted projec-
tive space P™~}(w) with vanishing amplitude. We give explicit formulae for various
invarianis depending on two types of functions in the variables w and d. Functions
defined by the residua of some symmetric polynomial expressions of w and d on the
one hand, and enumerating functions of weighted partitions on the other. If X ad-
mits non-pathological stratifications, these formulae enable us to determine the delta
genus A{X,Ly) arising from the natural polarization with respect to Lx. We give
a partial generalization of results of Oguiso whenever A(X,Lx) < 2, and present,
for k = 1, the “geographical chart” of the pairs (L% ,[c2]x(Lx)) even in the case in
which A(X,Lx) > 3.

Moreover, we describe the construction and some basic properties of the toroidal
crepant destngularizations of X’s and compute their invariants by using certain
“local-global principles” concerning the combinaterially controllable contributions of
the exceptional divisors to the corresponding invariants of the starting point models.
Finally, [c2] -forms, “triple couplings” and “testing bilinear forms” pave the way for
the development of a formal algorithm, by means of which one can mostly decide
if two distinct toroidal crepant desingularizations have definitely different diffeomor-
phism (resp. homotopy) types or not.
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Introduction

There are at least two reasons which have made the study of Calabi- Yau man-
ifolds so attractive during the last decade. The former is that they represent the
high dimensional analogues of I'3-surfaces and are naturally expected to inhabit in
some very interesting “moduli space landscapes”, both from algebraic geometrical
and from differential geometrical point of view. The latter is their pivotal role in
the framework of the development of certain conformal field theories, like those
corresponding to the so called one-loop semiclassical non-linear sigma models, (CY
manifolds are used as the best candidates for being fibers of the “target spaces” of
these sigma models. For an introduction to these themes we refer to the book of
Hiibsch [65].)

In algebraic geometry, threefolds with trivial canonical bundle occupy a very spe-
cial place within the “3-dimensional cosmography” and one hopes that the methods
which will be required for the solution of a number of important open problems
regarding period maps, diffeomorphism types, possible bounds of Betti or Hodge
numbers, existence and possible “enumeration” of rational curves ete., will consid-
erably promote the whole classification programme of higher dimensional algebraic
varieties. For a wonderful survey article written under this perspective, see Fried-
man [42)].

In theoretical physics, on the other hand, where certain concrete constructions
are needed, a string propagation in a Calabi-Yau background can be expressed ge-
ometrically in a convenient way, only in connection with predeterminating Landau-
Ginzburg effective Langrangians. By Witten’s generalized “LG/CY-correspondence”
[129, § 5], one concludes that the most “favourable” CY manifolds have to be either
hypersurfaces or complete intersections embedded in projective spaces, in weighted
projective spaces or products thereof, in general toric varities or even in Grassman-
nians.

The case of complete intersections in a product of usual projective spaces is dis-
cussed in great detail in the above mentioned book of Hubsch [65]. The next
CY threefolds coming into question, namely gquasismooth hypersurfaces in a 4-
dimensional weighted projective space (or, more general, in a 4-dimensional Fano
toric variety), together with their crepant desingularizations, have been the focal
point of many researches during the past few years. Experimental observation at
the beginning [15], showing a remarkable “dualism” between the non-trivial Hodge
numbers h'*! and h!'? of the desingularized models, turned out later not to be an
irony of fate, but the revelation of an exciting symmetry with a deep geometri-
cal interpretation and inestimable, up to now, futuristic consequences. For a first
mathematical approach to this symmetry the reader is referred to the articles of
Roan [102], Morrison [91} and Batyrev (7] and to the collected papers in {131}].

However, very little is known for the corresponding complete intersection case.
In our work we attempt to enlighten that part of enumerative combinatorics which
is necessary for the description of the invariants and of other important numbers
characterizing the desingularized complete intersections in a weighted projective
space. Although our results could be valid (with minor modifications) in a more
general setting, we prefer to restrict ourselves to weighted projective spaces, as
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these lead directly to problems on linear diophantine equations or, if you wish, on
linear programming depending on systems of certain “weights”.

More precisely, the organization of the paper is as follows. After reviewing some
basic facts from Wilson’s classification theory of minimal CY models in §1, we
explain all the essential details of our construction in § 2, give the formulae for the
corresponding invariants, and show how the delta genera distribution depends on the
denumerants of wesghted partitions. (We should notice that most of the results of § 2
are actually independent of the dimension and of the amplitude of X’s, although in
the end we focus attention on the CY threefold/model case. For certain interesting
new aspects of applications of higher dimensional complete intersections in weighted
projective spaces with negative amplitude for the realization of some useful, suitably
modified (i.e. “non-classical”) Landau-Ginzburg theories, see Schimmrigk [105].)

Using toric geometry in §3, we describe the distinctive features of the Tn-
equivariant crepant resolutions of 2- and 3-dimensional Gorenstein cyclic quotient
singularities Z(Ng, Lo), such as the nature of the occuring exceptional prime di-
visors, their enumeration by their types, their intersection numbers, and the ele-
mentary transformation mechanism. Globalizing this resolution process along the
components of the singular loci of our X's in § 4, we define “toroidal” crepant desin-
gularizations and compute their non-trivial Hodge numbers in two different ways.
Intringically, with the step by step recognition of the singularity types, and, when
possible, ezplicitly (in terms of w and d) by making use of relative Milnor fibrations,
eventually after a rearrangement of the defining polynomials. (h!'! equals obviously
the Picard number and h''? “counts” the moduli number of complex structures.)

Section 5 deals with [c2] -forms and intersection trilinear forms (or, in other
words, “topological triple couplings”) of the desingularized models Y. Their eval-
uations at the members of the canonical -bases of the Picard group of Y are
encoded partially in the local informations coming from the data of the “toric tri-
angles” lying over the dissident points of X, and partially in the global geometry
of the exceptional divisors and of the pull-back divisor Ly on Y. These evaluations
lend to the various desingularization spaces Y’s a significant topological character-
ization, which, in comnection with classification results of Wall, Jupp, Zubr and
Sullivan, allows us to distinguish (in most of the cases) diffeomorphism (resp. ho-
motopy) types. This method is indicated in §6, where an arithmetical example is
examined thoroughly. On the other hand, the formulae of our main theorems of
§ 5 seem to have direct applications to physically important CY threefolds, as they
describe the “unquantized” part of the (1,1) -level Yukawa couplings, and they have
been already used for computations of some special examples in [64].

Finally, the appendix of § 7 is entirely devoted to the pure combinatorial ingredi-
ents of our formulae, namely to the pt-functions which date back to the monumental
work of Euler on the “Partitio Numerorum”. Apart from some historical remarks,
we manifest here their immediate interpretation as Ehrhart quasipolynomials of a
dilated special rational convex polyhedron. In addition, in the case where this (or
a closely related to it) polyhedron is integral, we give formulae which express the
pt-functions by means of the volumes of appropriate polyhedral faces.



Basic notations and definitions

(i) We denote by N, Ny, Z,Q, R>o, R and C the set of natural, non-negative integer,
integer, rational, non-negative real, real and complex numbers respectively.

(ii) “ged” and “lem” are abbreviations for greater common divisor and lower com-
mon multiple.

For | € N and m € Z, we denote by [m]; the integer which satisfies 0 < [m]; < !
and m = [m];(mod!). Furthermore, for n,k € Np, n > k, we set:

k
(n) = ﬂ, where nll:=nn-1)---(n =k +1).
k k!

(i) Z/(nZ), n € N, will denote the cyclic group of order n and (,, := exp(mn_ﬂ)
the “first” n — th primitive root of unity.

(iv) |S} or §(S) are used to express the number of elements of a finite set S. For
S C Ny, d5 denotes the characteristic function of S, i.e.

1, for s€S§

Ss(s) = { 0, otherwise

On the other hand, §, ; denotes the usual Kronecker symbol.

(v) Let A be a local ring with maximal ideal 9. A is called regular (resp. nor-
mal) if dim(A4) = dim(9/9M?) (resp. if its localizations are integrally closed do-
mains). A sequence {aj,....a,} of elements of A is called regular sequence if
A # (a1,...,a,)A and if for all ¢ € {0,...,s — 1}, ai4; is not a zero divisor in
A/(ai,...,a;)A. The depth of A is defined to be the maximum of the lengths of
regular sequences {aj,...,a,} with a; € M, Vi, 1 < i < s. A is called Cohen-
Macaulay if dim(A) = depth(A). If A is Cohen-Macaulay, then A is called Goren-
stein whenever Extf!;m(A)(A/fm, Ay = A/M.

(vi) In section 2 we shall consider certain graded commutative rings A = ;5 Ad
with Ag = C the field of complex numbers and A finitely generated as C-algebra.
We denote by M := A := @ 50 Ad the unique maximal ideal of such a ring 4. A
graded A-module is an A-module M, together with a decomposition M = dcz Md
such that Ag - M, C My4,. For any graded A-module M, and for any n € Z, we
define the twisted module M(n) by shifting n places to the left, i.e. M(n)a = Myyn.
(vii) For g € No, let Ext?, denote the derived functors of Hom 4 within the category
GM(A) of graded A-modules. H, : GM(A) = GM(A) is defined to be the functor
which sends a graded A-module M to the g — th algebraic local cohomology group

HL(M) = h_r)nExtfq(A/Dﬁ',M)
4

of M supported at M (cf. [53], [56]).
(viii) Let A be a graded ring and M a graded A-module as in (vi).

X = Proj(A) := {p € Spec(4)|p homogeneous and p 2 A4}

will denote, as usual, the projective scheme associated to A, M the Ox-module
sheaf associated to M on X, Ox(n) := A(n)~, n € Z, M(n)™~ the twisted sheaf
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associated to M(n) and M(n) := M ®oy Ox(n) (cf. [53, Ch. II, §2.5 - §2.6]
or {61, Ch. II, §5]). Note that, if A is generated as a C-algebra by A;, then
M(n)™ = M(n), but in general this is not true.

(ix) The Poincaré-series of a Z-graded vector space A = @, 5 A, with finite-
dimensional homogeneous components is defined as the formal Laurent series

P(A;z) = Z(dimAy):c”
veZ

Correspondingly, the Poincaré series of a projective scheme X is the formal series

P(X,z) ==Y (dim(H*(X,0x(n)))z"
neZ

(x) Let A be again a graded C-algebra. Q) := Q) ¢ denotes the A-module of

Kahler C-differentials of A and QF, := APQL, Vp, p € No. Furthermore, if for a
homogeneous h € Ay, A(y) is the subring of elements of degree 0 in the localized
ring Ap, then {Spec(A(s))|h homogeneous element of AL} is a basis of X =
Proj(A) and the Ox-module sheaf of germs of p- forms QF can be defined by
globalization, so that

Q}'Spec(A(h)) = Qgpec(A(;.)) = (Qf’l(h))N'

(By (%)Y := Homo, (2%,0x) and (%)VY we shall denote the dual and the
bidual of the sheaf of p-forms on X respectively.)

(xi) By a complez variety we mean an integral, separated algebraic scheme over C.
A complex variety is complete if its structural morphism to Spec(C) is proper. If X
is a complex variety, then a point z € X (resp. the whole space X) will be called
regular, normal, Cohen-Macaulay or Gorenstein if the local ring Ox ; (resp. all
local rings Ox z, Vz € X) is (resp. are) of this type. In particular, we set

Reg(X):={z € X : Ox, regular} and Sing(X):= X \ Reg(X)

for the regular and the singular locus of X respectively. A (closed) subvariety ¥ of
X is a closed integral subscheme of X. A subvariety ¥ of X with codimy(Y) =1
is especially called a prime divisor of X. A Weil divisor is an element of the free
abelian group which is generated by the prime divisors of X.

(xii) Let X be a normal r-dimensional complex variety. If D is a Weil divisor of
X, let Ox(D) denote the corresponding divisorial sheaf (cf. [98, App. to §1]). D,
is called Cartier divisor if Ox (D) is invertible. For r Cartier divisors Dy,..., Dy,
for which W := (Ni_, supp(D;) is complete, one defines their intersection number
as (Dy - Dy---D,) := degw(D; -+ D,) € Z (see e.g. [46, Ch. 2]). Moreover, if
7 : Reg(X) — X is the natural inclusion of the regular locus of X into X', we define
03 = Ie(QReg(x)) = J:(0°Q%). wx = Q% is called the canonical or dualizing
sheaf of X. Note that: X is Gorenstein <= X is Cohen-Macaulay and wx is
invertible. On the other hand, we define Q% := 7,0}, where 7 : ¥ = X is an
arbitrary desingularization of X. We have an inclusion Qf, — Q% , and X has at
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most rational singularities <= X is Cohen-Macaulay and 3, 2 Qj(
(xiii) A complex variety is called V-variety (or rather Q-variety) if it has at most
quotient singularities. If X is a projective V-variety, then

Q% 2= Q% = Q%)Y

because any quotient singularity is rational and X is normal.

(xiv) For a complex variety X of dimension r, we denote by b;(X) := dimgH! (X, Q),
0 <i<2re(X) = N0 (-1)hi(X), R(X,F) := dimcH (X, F), x(X,F) :=
Yooo(=1)A*(X, F), the i — th Betti number of X, the topological Euler-Poincaré
characteristic of X, the dimension of the : — th cohomology group of a coherent
sheaf F over X and the corresponding Euler-Poincaré characteristic of 7 over X
respectively. Pic(X) will denote the Picard group of X, i.e. the group of isomor-
phism classes of invertible sheaves (or line bundles) over X. (Line bundles will be
identified with linear equivalence classes of Cartier divisors.)

(xv) A pair (X, L) consisting of a normal complete complex variety and an ample
(resp. nef and big) bundle L over X is called a polarized (resp. quasi-polarized)

variety. Fujita’s delta genus of an r-dimensional polarized variety (X, L) is defined
by

A(X,L) :==r+L" - h%°(X,L)

and turns out to be a very powerful invariant of (X, L) as it leads to a partial (or,
sometimes, complete) classification of such pairs, when it takes values which are
small enough. (For an introduction to the corresponding classification theories and
adjunction techniques we refer to Fujita’s monograph {45).)
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§ 1. Calabi-Yau models

This section is introductory and serves as a reminder of certain fundamental prop-
erties of CY threefolds and of their singular analogues.

Definition 1.1. By a Calab:- Yau threefold (CY threefold) we mean 3-dimensional
complete, projective, smooth complex variety ¥ with trivial canonical class and
R1(Y,Oy) = 0. (Note that h%(Y,Oy) = h*?(Y) = 0 by Serre and Hodge duality).

Thanks to Yau’s verification of Calabi’s conjecture [130], the representative of any
such threefold Y in the analytic category admits a Ricci-flat metric. The topological
Euler-Poincaré characteristic of Y is given by

(1.1) e(Y) = 2RV (Y) = hY2(Y)) = 2(by(Y) + 1) — ba(Y)

From the exponential cohomology sequence we get Pic(Y) = H2(Y,Z) and p(Y') =
h11(Y) = b2(Y), where p(Y) denotes the Picard number of Y. On the other hand,
the second non-trivial Hodge number h'2(Y) of Y express the number of parameters
for the complex structure on ¥ in the following sense:

Theorem 1.2. (Bogomolov [12], Tian [118], Todorov [119]) The first order defor-
mations of a CY threefold Y are unobstructed, and the corresponding local moduli
space of Y is smooth and has dimension h!'*(Y') = h!(Y, Oy).

Moreover, general structure theorems, due to Beauville, Bogomolov, Kobayashi and
Michelson, inform us that a CY threefold ¥ has finite fundamental group unless
some finite unramified covering of it is either an abelian threefold or is decomposable
into a product of a K-3 surface with an elliptic curve (see 8], [9]). Up to these two
cases, in which e(Y') = 0,Y has the whole SU(3) as holonomy group.

Definition 1.3. Let Y be a complete, smooth (but not necessarily projective)
complex threefold with A!(Y,Oy) = h*(Y,Oy) = 0 and trivial canonical class. We
define: :

2]y : Pic(Y) 5 Oy (D) — (c2(Y) — 1 (Oy(D))[Y] € Z,
gy : (Pic(Y))* 3 (Oy(Dy), Oy (D2), Oy (D3)) — (D1 - D2 - D3) =
(c1(Oy(Dy)) ~ c1(Oy(D2)) ~ ar{Oy(Ds)))Y] € Z

the linear form on Pic(Y) induced by the second Chern class of Y and the trilin-
ear symmetric form induced by intersection numbers respectively. In the physics
literature, in the case in which Y is a CY threefold, the latter is usually called the
unquantized topological Yukawa coupling form. (Remark: We shall use the nota-
tions [cz]?} and qg (resp. [c2]® and ¢R) if we work with Picg(Y) := Pic(Y) ®z Q
(resp. Picg(Y)) instead of Pic(Y').)



As it is known from the classification theory of simply connected, compact,
oriented, 6-dimensional C*°-differentiable manifolds with vanishing second Stiefel-
Whitney class, developed by Wall [122], Zubr [132] and Sullivan [114], the diffeo-
morphism type of simply connected complex threefolds Y satisfying the proper-
ties of 1.3. is determined, up to finite possibilities, by means of the quadruple
(H3(Y,Z),b3(Y), —2[c2]y, qyv). In particular, if H3*(Y,Z) is assumed to be torsion-
free, this quadruple classifies Y (up to a diffeomorphism) uniquely. (For analogous
classification theorems up to an orientation-preserving homotopy equivalence or up
to a homeomorphism, see Jupp [68] and Zubr [132], [133].)

Unfortunately, these theorems cannot be applied directly in concrete examples,
because
(1) there is no satisfactory way to check whether two symmetric trilinear forms are
equivalent up to change of basis or not,

(i) it is often very difficult to find explicit integer bases of H*(Y,Z), and
(iii) there is not always adequate information available about the torsion part of
H3(Y,Z).

In practice, one tries to develop methods to distinguish, if possible, diffeomor-
phism (resp. homotopy) types, just by keeping necessary conditions of the above
theorems and by introducing further controllable numerical invariants, which could
hopefully be different for the regarded threefolds. Motivated by similar consid-
erations of Green and Hiibsch ([49, p. 314], [65, p. 174]), we give the following
definition:

Definition 1.4. Let Y be a complex threefold as in 1.3. We define

py : (Pic(Y))* 3 (Oy(D1), Oy (D2), Oy(D3), Oy (Dy)) —
(gv (Ov (D)), Oy (D2), 0y (Ds)) - [e2]ly (Da) + cyclic permutations) € Z

@y is a symmetric quadrilinear form, which induces a bilinear form:

(1.2) By : (Sym?(Pic(Y)))* — Z

(We just define the image of a pair of decomposable elements of Sym?*(Pic(Y"))
under Ay to be the evaluation of ¢y at its members and we extend linearly.) Sy
will be called the testing bilinear form of Y.

The negation direction of the statement of the next lemma will be very useful.

Lemma 1.5. Let Y;,Y; be two simply connected complex threefolds satisfying the
properties mentioned in 1.3. A necessary condition, under which Y7 and Y; have
the same diffeomorphism (resp. homotopy) type, is the identification of their Betti
numbers and the existence of an isomorphism f : H*(Y,,Z) 2 g2 (Y2,Z), such that

[e2]v, (1) = [ealvu (£(-)) and av, (-, ) = avo (F(), £(-), F())-
In particular, in this case, By, (resp. ﬁ%,ﬁ“ﬁ), 1 = 1,2, will be equivalent as Z-
(resp. Q—,R—) bilinear forms.

Proof. 1t follows from the vanishing of the second Stiefel-Whitney class. d
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We shall come back to it with an example in section 6.

Let us now turn our attention to the singular models.

Definition 1.6. ([126], [127]) A complete, projective, normal 3-dimensional com-
plex variety X with trivial dualizing sheaf and h!}(X,0x) = R%(X,0x) = 0 is
called CY model if it allows at most rational Gorenstein singularities (i.e. canonical
singularities of index 1 in Reid’s terminology {98], [99]) and if there is a (necessarily
crepant) desingularization 7 : ¥ — X of X with Y a CY threefold. A CY con-
traction of a CY model X; is defined to be a birational morphism f : X; — X, to
another CY model X3, such that p(X3;) < p(X;). A CY model is called minimal if
it does not admit any CY contraction.

Definition 1.7. Let X be a CY model and 7 : ¥ — X a crepant desingulariza-
tion of X. We define the linear form [c;)x : Pic(X) = Z by [e2]x(Ox (D)) :=
[e2)y (7* Ox (D)), for all Cartier divisors D on X. (Note that [c]x is essentially
independent of the concrete choice of 7.)

If we now denote by Amp(X) the ample cone of X in Picg(X), generated by
the real classes of ample Cartier divisors, its closure Amp(X) parametrizes the real
classes of nef Cartier divisors and is dual to Mori’s cone NE(X) consisting of the

real classes of effective 1-cycles. We call Amp(X) the nef cone of X. By a result of
Miyaoka [87, thm. 6.6., p. 468] we deduce:

Theorem 1.8. The linear form [c2|%, which is associated to a CY model X, takes
non-negative values on the nef cone Amp(X) C Picg(X) of X.

Various properties of the nef cone Amp(X) of CY models X have been studied
extensively by Wilson [126], [127], [128), who proposed to use [c2]% in a role parallel
to the one played by the canonical divisor in the classification theory of compact
complex surfaces, in order to achieve a first type separation for X’s. Wilson’s rough
classification of minimal CY models is outlined in the following table:

Behaviour of [c2]}% on Amp(X) | Typeof X

(a) [ca]¥ s trivial on  Amp(X) abelian quotient type
b) non-trivial but not strictly positive fibering type (7)

Pasmn

(c) strictly positive on Amp(X) general type

Shepherd-Barron and Wilson [107] proved that the threefolds (a) can always be
represented as quotients of abelian threefolds by (not necessarily freely acting)
finite groups. Wilson [128] investigated certain models belonging to case (b) and
conjectured the existence of fiber space structure for any such X. In fact, cases
(a) and (b) include minimal CY models of “special type” and there should be a
complete “fine” classification for them, whereas (c) constitutes the “general case”
in which, analogously to the surfaces of general type, there are still a lot of open
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questions arising from “geographical problems”. For instance, a minimal CY model
of general type X is equipped with a canonical polarization coming from ¢; in a
natural way. If L is an ample line bundle on X and A(X, L) the corresponding delta
genus, what kind of lattice regions should be expected to be covered by its values?
In which regions do L3 and [c2] x (L) reside? Finally, if A(X,L) > 3, what kind of
relationships are there between them (and eventually the topological invariants of
X) besides the standard RR-inequality [c2]x (L) < 10 L* ? (Is it possible to get
any absolute or relative new bounds?)

In the present paper we construct minimal CY models of general type by considering
certain quasismooth complete intersections X in a weighted projective space with
vanishing amplitude. Especially, we emphasize the combinatorial complexity of the
above mentioned numbers, and we study the forms gy and [c2]y of some natural
crepant desingularizations Y of X in detail.

QN

11



§2. Complete intersections in weighted projective spaces

In this section we recall briefly some basic facts from the theory of complete in-
tersections in a weighted projective space, we prove a Lefschetz-type theorem for
dimensions > 3 and we give combinatorial formulae which enable the determination
of all the interesting invariants and of the delta genera. For an introduction to the
theory of weighted projective spaces, the reader is referred to the expository articles
of Delorme 28], Dolgachev [32] and Beltrametti-Robbiano {10].

Definition 2.1. Form € N, let P™~! = P™~1(1) denote the usual complex (m—1)
-dimensional projective space. If w = (wy,... ,wn) € N™, we define S(w) to be
the polynomial algebra C[z;,...,z2,] over C, graded by the condition deg(z;) =
w;,Vi,1 < 1 < m. The (m — 1) -dimensional weighted projective space (w.p.s.)
P™~1(w) is defined as the irreducible normal projective variety

[Pm—l(W) = PI‘O,](S(W))

P™~1(w) is isomorphic to P™~!/ H(Z/w,‘Z), and the canonical projection
i=1

p(w): prl Pm'](w)

corresponds to the canonical ramified covering:

=¥ Vi, 1<i<
b -— —
[Z1,..cyzm] = [21,.- s 2m], zit=2, Vi, 1<1<m,

with Galois group H(Z /w;Z). Equivalently, one defines P™~}(w) as the geometric

1=1
quotient (C™ \ {0})/C", where C* acts by:

C* x (C™"\{0}) > (t,(z1,--- y2m)) —> (#*' z1,... ,t¥™2p) € (C™ \ {0}).
Its associated projection map will be denoted by

m(w) : (C™ \ {0}) — P™~1(w).

We shall say that w is reduced (resp. normalized) if ged(wy,... ,wm) =1 (resp. if
ged(wy, ... , Wi,... ,wn) = 1,¥i,1 <1 <m). P™"Yw) is called well-formed if w is
normalized.

Definition 2.2. Form € N and w = (w,... ,w;n) € N® an arbitrary m-tuple of
weights, we define

T oged(wy, ... W)

w; : ,

-

pi(w) := ged(wWy,... ,Wiy... ,Wm),

and
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! w;

w; = — forall i, 1<i<m.
lcm(Pl (W), s ,P;’(W), K ,pm(W))
W= (Wy,... ,W,) (resp. W' := (wi,... ,w},)) will be called the reduction (resp.

the normalization) of w.

Proposition 2.3. ({10,3.A.3, 3.C.5]) There exist natural isomorphisms:

P™Yw) =2 P™}(w) 2 P™ }(w')

Remark 2.4. In contrast to the case of a usual projective space, the twisted
sheaves Opm-1(w)(n) = S(W)(n)™ on a weighted projective space P™~'(w) are, in
general, not so “well-behaved”. For instance:

(a) It may happen that Om_): (ny) = Ol?(nw—)l (ng) with n; # na.

(b) Even if w = w', Opm-1(w)(n) is not always invertible.
(c) A sheaf Opm—1(w)(n),n > 0, could be invertible but not ample if w % w'.
(d) The canonical homomorphism

Oprn-1(w)(n1) @ Opm-1 (w)(n2) = Opm-1(wy(n1 + n2)

induced by the natural multiplication

§(w)(n1) ® 5(w)(nz) =+ S(w)(n1 + n2)

may be not an isomorphism.

For counterexamples and further discussion see [32, § 1.5] and [10, 3D]. The patholo-
gies of this kind are mainly due to the number theoretical relations between the
weights and to the existence of singularities on P™~!(w). Mori [90] studied the
largest open subset, for which most of the nice properties of the twisted sheaves,
which are valid for unweighted spaces, can be preserved unchanged. Finally, Dimca
and Dimiev [31] proved that this open set is nothing but the regular locus
Reg(P™~}(w)) of P™~(w).

Theorem 2.5. ([31]) P™~}(w) is a V-variety with only cyclic quotient singulari-
ties, and its singular locus can be written as a union

Sing(P™'(w)) = |J  {Brw)|e(w,])> 1},
I1c{1,2,...,m}
where
Prw):=Pr:=P™ Yw)Nn{z;=0,Vi € I}
and

e(w,I):=cr:=ged(w; | j € {1,... ,m}\I).
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Definition 2.6. Let w € N be an m-tuple of weights, W its reduction, w’ its
normalization and p;(w),1 < ¢ < m, defined as in 2.2. Since ged(w@;, pi(w)) = 1,
there exist two unique integers v;(n; w) and ¢;(n; w) with

n =i(n; w)w; + €i(n; w)pi(w), 0 < yi(ny;w) < pi(w) forall ¢, 1<i<m,
and for all n € Z. We define

o = Wiy w)
(21) 9(11,“’) = lcm(pl(W),--- ,Pm(w))

It is easy to see that 8(n;w) € Z, for all n € Z.
Proposition 2.7. ([10,3.C.1, 3.C.7.]) For all n € Z, we have:

Opm-1(wy(ged(wy, ... ;wm) 1) = Opm-1(y)(n) = Opm-1(w)(8(n; W))

Proposition 2.8. ({10, 4.B.7], [104, Th.2.7]) Let m € N,w € N™ and P™~!(w)
be the corresponding w.p.s. Then:

(i) Opm-1(w)(n) is coherent and Cohen-Macaulay, for all n € Z.

(ii) The sheaf Opm-1(y)(lcm(wy,... ,wy)) is ample.

(iii) In the case, in which w = w' Pic(P™~!(w)) is generated by the class
[Opm-1 (wy(lem(wy, ... ,wm))].

For general ampleness criteria of twisted sheaves, see [28, §2] or [10, §4 B].
Proposition 2.9. (32, §1.4]) A w.p.s. P™~!(w) has the following properties:

(i) The Serre homomorphism S(w) = @, 50 HY(P™ 1 (W), Opn-1(wy(n)) is a
graded isomorphism. N

(ii) H*(P™ "1 (w), Opm~1(w)(n)) =0, for 1 < s <m —2 and for all n € Z.

(iii) For n € Ny, the natural map

HO (P (W), Opmoi (w) (1)) X H™ 7 (B (W), Oprimi (s (—1 = D wi)) =
i=1

Hm—l([Pm 1( Opm 1(w) Zwt >~ C

is a perfect pairing.

Definition 2.10. Let X < ") - !(w) be a closed subvariety of P™~!(w) and

p(w): P71 5 P Yw), =(w):(C™\{0}) = P™ Hw)

the maps introduced in 2.1. X% := p(w)~!(X) is defined to be the variety which
sits over X via the covering map p(w). CN*(X) := n(w) (X) is called the
punctured affine quasicone over X. The affine quasicone CN(X) over X is the
scheme-theoretic closure of CN*(X) in C™. The interrelation of these objects to
each other can be described by means of two cubes built of commutative diagrams:
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A \ o \p(:v)
X % y P™7l(w)
A (w) N
'. r(w)
CN* (XY oo e » (C™\{0})
0 \ n -
- e
: :
A\ ;
CN(X) Cuonommemnim e meceae > Cm
\ 4 A

Q
=
2

i
\ 4

9

X is said to be gquasismooth (g¢.s.) if CN*(X) is overall smooth.

Remark 2.11. We should note here that X can be identified with the geometric
quotient CN*(X)/C* with respect to the action, which was introduced in 2.1.
Furthermore, the quasismoothness of X does not, in general, offer any guarantee
for the smoothness of X°Y. Of course, wide classes of quasismooth subvarieties X
of P™~1(w), as for example the class of BP-like complete intersections (see 2.16.)

being defined by means of sufficiently general polynomials, have always smooth
Xeovs,

Proposition 2.12. (cf. [32, 3.1.6]) All quasismooth closed subvarieties X of
P™~1(w) are V-varieties.

Proof. Let X be the zero locus of the w-homogeneous polynomials fi,... , fi,

Ui={[z1,-.- ,2m) € P""Y(W) | z; # 0}

the standard cover of P™~}(w) and

Vii={(z1,... ,2m) €EC™ | z; = 1} NCN(X), Vi, 1 <i < m.
Then
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Vi={(z1,..-y2i-1,1, 241, .. ,2m) €C™ |
fj(Zl,-.- ,25_1,1,21'4.],... ,Zm) =0,V],1 SJ < k}

If we would assume that there were a singular point

Z?f) = (Z?"" !Z?-l’ 1,2?4.1,--- ;z?n)
on V;, then the Euler formula
afj(ZO)__Lm 0%(0
Oz; VGV Ty, waz’ D21 Z(i))
=1
1#1

would imply

6(f11"' :fk)
rank (3(21,... 1y Zi—19%5y Zi41y . - - ,Zm)

) < min(m — 1,k) — 1 < min(m, k),
(¥)
contradicting to the quasismoothness of X. Thus, V; is smooth and the chart X NU;

of X can be represented via m(w)|y; : V; = X NU; as the quotient of V; by the
finite group (Z/w;Z) C C*. O

Definitions 2.13. (i) A closed subvariety of codimension k in P™~1(w) is called
well-formed (or in general position with respect to Sing(P™~Y(w)) ) if P™~1(w) is
well-formed and X contains no codimension k + 1 singular stratum of P™~(w),
i.e. codimy (X N Sing(P™~!(w))) > 2.

(i) If 7 is a homogeneous ideal of the graded ring S(w),

X = Proj(S(w)/I) c P™Y(w)

and Z is generated by a regular sequence {f;|1 £ j < k} of homogeneous elements
of §(w), then X is called a weighted projective (m — k — 1)-dimensional (strict)
complete intersection of the hypersurfaces {f; = 0} (c.i., for short) with multidegree
d := (dy,...,dr), where deg(f;) = d;,V7,1 < 37 < k. We shall denote S(w)/Z by
A(X). A(X) = D,>9 A(X)n is a graded C-algebra with

A(X)n = S(W)n/(S(w)aNI) and Spec(A(X)) = CN(X).

Moreover we shall make use of the notation

Xq C P™ Y (w)

to express a sufficiently general element of the family of all w.c.i. of multidegree d.
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Proposition 2.14. (Bertini-type quasismoothness criterion).

Let X = Xg C P™ Ywy,... ,wn) be a c.i. with defining polynomials f1,... , fi.
Then X is quasismooth for f1,..., fr general enough (i.e. for polynomials, the
coefficient systems of which are parametrized by appropriate Zariski-dense open
subsets of certain C*’s) if and only if for all possible non-empty index-sets I, :=
{iy,... i} C M :={1,2,... ,m}, there exists an integer s = 3({,.), 0 < s <k, and
a splitting of the index-set {1,... |k} into:

g: Jf s = 0 {j8+1,...,jh}7 If 0 S S S k - 1
Ja = . . . and Jp = )
{j1s---Js}, If 1<s<k @, if s=k
satisfying the following property: In the monomial decomposition of fi,..., fx
(i) If Ja # @, there are at least s monomials of type
alie) alial
PR
with degree d;, ((a(J" (JC')) € (No)"\ {(0,...,0)}), Vo, 1 L < s.

(ii) If Jp # @, and1f1"oraﬂﬁ,s+1§ﬁ§k weset

(Jﬁ) — {TL c AI\I Ia(b(]ﬂ)yﬂ . ,bgfﬁ),n) € (NO)" :
B 5+, = ),

v(gg) == ﬂ(N.Ej’g)) and NU?) = {J(Jﬁ),. . ,yi‘zi;)} is an enumeration of NY?) | then
there exist v(jg) monomials of degree d;,
buﬁ)ygﬁ) 408 B
(namely that of type z;* -2 2 Gy 1 <A< v(jg)) with
r vy

r v(Jeg)

|{U U ygj‘“)}|21'—s+r—l, for all subsets {t;,...,t;} C {s+1,...,k}

=1 A-—1

consisting of T elements, 1 <7 <k —s.

Sketch of proof. We generalize similar results of Fletcher [41, §1.5.] being valid for
k =1 and k = 2. In fact, one has to show that for a “generic choice” of the defining

polynomials fi,..., fr, the rank of the Jacobian matrix (ag(_(;f_l_,;,&)_ |z=zo) evalu-

11ee-1Zm )}
ated at a point z° € CN(X) cannot be < k, except possibly for 2° = 0. Assume that
(i) and (ii) hold for each I, # @. By Bertini’s theorem, the singularities of CN(X)
can occur only within CN(X) N Py, where Py :={(z1,... ,2m) €C™ |24, = ... =
Z,m=_0} and {ir+1,...,—‘im}={l,... '.'n}\{ﬁ, . Z } .
Let P, be the stratum P, := {(21,... ,2m) € Prl|z;, # 0,...,z;, # 0}. We expand
our polynomials in terms of the vauables Zipgrre-r s Zi

m °
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fa(z) = gal(ziyy ... ,2i,) + Z zi,hf,',(z;l,.‘. zi) + {hlgher order terms}

it N Ziy e Zipg,
= higher order t
_ N lg €r order terms
foz) = Y zihj(zi, ... ,z,-,)+{. . . }
i M Zi 0%,

for 1 <a<r s+1<B <k, with ga, h¥, hg suitable polynomials in the variables
Zigyeer v 2.

(a) Suppose first s = k. P, is not a part of the base loci Bs(L;) of the linear systems

L; = {Fj(21,~- 2 Zmi Magyesam) = D Marsesam)Zet - 2575 May oo sam) € CY } ;

Aj = {(a1,... ,am) € (No)™| X2, a;w; = d;}, 1 < j < k, parametrizing all
quasihomogeneous polynomials of degree d; w.r.t. the weights (w;,... ,wm). Thus
(f; = 0) is non-singular along P,,Vj,1 < j < k. Since (go = 0),1 < a < 7,
determine free linear systems on Py, {dga(2z°)|1 < @ < r} are linearly indepen-
dent for z° € P, N CN*(X). Hence, the transversality condition is fulfilled and
(Nhei(ga =0)N P)\ {0} = P,NCN*(X) is non-singular.

(b) Suppose now that s # k. By Bertini’s theorem, (fo = 0),1 < a < r, are
non-singular along P,. This means that .

Sing(CN(X)) = (Ng=1(g0 =0)) N (ﬂiﬂgf(sﬁ(h}a‘ = 0)).

It is an exercise of linear algebra to veriny—(from the above decompositions of f,
and fg) that (i) and (ii) are equivalent to dimg(Sing(CN(X))) = 0, i.e. that the
locus of CN(X) consisting of that points, at which the Jacobian matrix has rank
< k — 1, is zero-dimensional. As CN*(X) is C* -invariant (cf. 2.11.), we get
Sing(CN(X)) € {0}. The converse can be proven similarly. a

Proposition 2.15. ([32, pr.2], [41, 1.3.12, 1.3.13]) A c.i. X4 C P™~}(w) is well
formed if and only if X4 satisfies one of the following equivalent conditions:
(i)

(a) P™~1(w) is well-formed and

(b) for all p=1,... ,k, the ged of any (m — k — 2 + p) of the w;’s divides at

least p of the d;’s.

()m—k—${1 € {1,... ,m}:qlwi} + §{7 € {1,... ,k} : g|ld;} > 2, for all integers
g 2 2. (In particular, if Xq is quasismooth, then Xq is well-formed if and only if
the above inequality is true for all prime numbers ¢ > 2.)

Definition 2.16. A c.i. of the form

(22) Xa =X,,....a0) = {[z1,- - 2m] € B HW)| D Nijzi™ = 0,V5,1 < j <k}
=1
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is called c.i. of Brieskorn-Pham type (BP c.i., for short). Especially, if either k = 1
ordy =...=di,k > 2,Xq is called c.i. of Fermat type. A BP-like c.i. is defined
to be a c.i. Xa C P™Y(w), for which lem(wy, ... ,wm)|d;,¥5,1 < j < k.

Using Prop. 2.15, we can easily verify, that any q.s. BP-like c.i., embedded in
a well-formed w.p.s., is itself well-formed. The property of well-formedness of a
g.s.c.i. turns out to be very important, but it was eluded by the authors of [32]
and [10]. In fact, the following theorem, due to Dimca and Fletcher, reduces the
examination of the validity of this property to dimension < 2.

Theorem 2.17. Let Xq C P™~!(w) be a q.s.c.i. of dimension > 3. Then either
X4 is well-formed, or X4 is the intersection of a linear cone with other hypersurfaces
(i.e. d; = w; for some j and i). In the second case, Xq is isomorphic either to a
g.s.c.i. of lower codimension or to a w.p.s.

Proposition 2.18. ({30, prop. 8]) The singular locus of a well-formed q.s.c.i.
Xa C P™~Y(w) is given by the intersection Sing(Xa) = X4 N Sing(P™~}(w)), i.e.
Sing(Xa) = Uscqu,... .my{Xa(D)ler > 1}, where Xq(I) := Xa NPy in the notation
of 2.5.

Definition 2.19. Let Xq C P™~}(w) be a q.s.c.i. The number

k m

am(Xq) 1= am(w;d) := de - Zwi

i=1 =1
will be called the amplitude of Xq.

Proposition 2.20. (Generalized adjunction formula, {10, 6.B9]) Let Xq be a well-
formed q.s.c.i. Then there exists an isomorphism between its dualizing sheaf and
its structure sheaf twisted am(w;d) times, i.e.

(2.3) wx, = Ox,(am(w;d))

(Examples in [41, 1.3.15] show that we cannot drop the assumption of well-formedness
of Xa !)

X =Xq CP"}w)isaqs.ci. of dimensionr :=m—k—1, the degeneration
of the spectral sequence Ef?(X) = H(X,Qx) = HP(X, Q%) = HPT4(X,C) of
hypercohomology (with respect to the complex Q% ) at the term E; gives rise to
a filtration on the spaces H?*9(X,C), which coincides with that one of the usual
Hodge structure. Hence, X admits a pure Hodge structure,

Hodge decomposition H*(X,C) =P, ., H(X, %),

Hodge numbers hP9(X) := dimcHI(X, %) and Serre duality isomorphisms:
HY(X, Q%) = H(X, 0% "), ¥p,q, 0< pg <

(cf. [112, §1]). On the other hand, according to the hard Lefschetz theorem for
V-varieties, the maps

19



u(g;p) : H*(X,C) 3 € — (L) — € € HP*(X,C),

induced by the class of an ample line bundle L over X, are isomorphisms, such
that:

H(X,C) = @u(q;s—Zq)( $~29(X,C)),Vs,0 < s < 2r — 2,

prim
q20

where

HY (X, C) = Ker(u(r — p+1;p) : H?(X,C) » H"7P**(X,C)), ¥p,0 < p <,

denote the so called primitive cohomology groups of X. As a consequence of the
compatibility of the Hodge and Lefschetz decompositions we get:

X
P”m @ Hpr]m

ptg=s
where

HPY (X, C) := HI(X, Q%) NnKer(u(r —s + 1;5)).

prim

Moreover, if we set h?"? (X)) := dimcH?!?

prim prim

(X,C), we obtain:

r

(2.4) RPUX) =Y REhTH(X)

1=0

and the application of the Lefschetz theorem for hyperplane sections gives the
following:

Proposition 2.21. Fora g.s.ci. X = Xg C P™"Y(w) of dimensionr =m —k—1,
we have:

(2.5) hPY(X)=10p,4, for pH+q#r

(2.6) h’;r'l’m(X) = hP¥X)—-46,,, for (p,q)#(0,0)

The above invariants (2.5) of X are called the trivial ones. The remaining, non
trivial and most interesting, invariants of X, and their combinatorial expressions by
means of the weights wy,... ,w,, and of the degrees of the defining w-homogeneous
polynomials of X, have been studied by Hamm [59], [60] and Aleksandrov [2]. For

the presentation of their formulae we need to introduce some special notations. Let
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(2.7) Wo:=1, Wilyr,... ,Ym):= Z Yiy - - - Yiy
1<i) <...<ix<m

denote the elementary symmetric polynomials in the variables yy,...,ym with
weight A € Np,

(28) D/\(yla'-' 1yk) = Z y{I "'y.l’:
it tia=A
jl yoon )j‘l 20

the symmetric polynomials in yy,... ,yx of degree A, and

Dak(yry--»uk) == (=1 y1...yx Dalyr, - k)
with Do, :=1 and Dy :=0, VA, A € N.

Theorem 2.22. (Aleksandrov (1], [2, p.447])

Let X = X4, .....a0) C P™ Hwy,... ,wm) be a quasismooth c.i., A(X) its graded
coordinate ring and MM the maximal ideal of A(X) corresponding to the zero point
0 € CN(X). Suppose that the indices of the degrees of its defining polynomials
are enumerated in order of size

dy =...=dk, <dk1+1=...=dk,_1 <dkr_1+1=-~=dk,,
so that kr =k, kg =0, and set g, :==ky — kg1 — 1, V0,1 <0 < 7.

Then the Poincaré-series of the graded A(X)-module Hgt"k“q(Qa( x)) is given, for
g=1,...,m—k, by the following formula:

(2.9) P(Hgt_k-q(ﬂﬂ(x));m) = (=1)" Z 2+ D dig o
o=1
m—k—q+Ai -1 g+ A2\ _—(moktAi+1)de,
* Z ( m—k—qg-1 ) ( q T X

At Az+Aat+Ai=g,
’\1 |A2)'\3|A420

X Win—xs (o (3 W)) Dy k—g, -1 (Vo(z;d))
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where i, (z; W), v,(z; d) abbreviate the rational function vectors:

d wy dy wm
. e [ T R —x z Mo —x
l“"ﬂ'(miw) A ( FWl—=1 1°°" ) rywWma—] ) a‘nd
v (.’EW) — 911 gho—1_1 ko +1_3 T4 —1
= ve N T T
LAGS] z%ke —xd1? ) zd"o —-xd*a—l ? .td"a Ok 1 ¥ 29k ik

respectively.

Sketch of proof. Let fi,..., fr be the defining polynomials of X,

XO= P w), XP =X, 4,

Ofp

fr = folen(xte-ny and 9f, := Z 2.

(w.r.t. a local coordinate system {z1,... ,2m} of 0),Vp,1 < p £ k. Furthermore,
let

(. Olpt —EL it jeZ)

denote the Koszul-cocomplex defined by means of the left exterior multiplication

by afpa

, .
j j i—1
QCN(X(P)) QSpec(A(X(P))) JC""/ (Z fIQJCm + afl A Qg:m ) iCN(X(P))

=1

and QJf‘P = QéN(x(p_l))/afp Q’C;(X(p_l)),Vp,l < p £ k,Vjj € Z. By general
de Rham-type lemma (see (50, Prop. 1.7. and Prop. 1.11.(i), pp. 241-242]) the
sequences

. 3fpA i4+1 i+1
(2.10) 0= Qf —= QL y-uy 2 U 20
(2.11) 0— QJ QJ — ch(x(p)) —0

are exact, V7,0 < 7 < m — p. The application of the functor Hfo}(—) to (2.10) and
(2.11), combined with Greuel’s vanishing theorems ([51, pp.165-166]):

Hgo}(QéN(x(p))) =0,

for j+‘1¢{m_k7m_k+l}’
(o0) ¢{(i,m — )0 S i < m—k}U{(i,0)fm—k <i <m)
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and
Hi’o}(Q‘}p) =0,

£ { j+qu£m_k_1)
60 i m—k—1)0<i <m—kYU{(,0)lm—k+1<i<m}

respectively, leads to four-term exact sequences of cohomology groups supported
at {0}. The corresponding Poincaré-series must therefore satisfy the following
recursive equations:

(2.12) P(H[y (777 )2) =
e~ P(HG (U772 2)+P(H o) (o xheriny T)—P(H o) (A0 R (ko ey @)
for 1<p<k1<¢g<m-p

(218) P(H{oy (Ut xleny)i®) =
P QG i2) + (1 = % PH ) (9777 )ia)
for 1<p<k,1<q<m-p-—1

The system of (2.12) and (2.13) has as solution:

(2.14) P(H] QL PE y;x) =

{0}V ICN (X (k=r))
k—1 —du—j k—p -di _ 1
—1)¢-1 0 (om-i—q ) - r =--

for0 < p <k,1 < ¢ < m—p—1. The theorem is completed by using Grothendieck’s
local duality theorem [55, thm. 6.3.], which gives a perfect pairing

—k~q /¢ q
HF(‘J} (QCN(X(H)) X EXt?DCN(x(,‘))(QCN(x(k)):wCN(X(*))) — Ca

and enables the computation of the Poincaré-series of the desired local cohomology
groups, Greuel’s and Hamm’s computation of P(Hfo}(Qgg,'(’;'f,,_j)));:c) in (2.14)
(see [52, Satz 3.1.]), simple duality for the highest dimension ¢ = m — p, and
“residue-acrobatics” with the symmetric polynomials (2.7), (2.8) (see [52, 3.9]),
combined with

'P(H;gt_k_q (QZ{(X)); T) = P(H&;k_q(Q%N(,Y)); z).
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Lemma 2.23. Let m € NNw = (wy,... ,wm) € N*, and P~ '(w) = Proj(S(w))
be the corresponding w.p.s. with weights w. Then:

(2.15) P(S(w);z) =

Proof. 1t follows directly from Prop. 2.9. a

Lemma 2.24. For a q.s.c.i X = Xg C P™ Y(w) we have:

’?_1 1 — g%
(2.16) P(A(X);z) = qu": ((1 — :1,‘”’";

Proof. If we set §° := S(w),S7 := S(W)/(fi,-..,fi),¥5,1 < j < k, where
fi,-.., fr are the defining polynomials of X, then
0 — Si71(=d;) £y 551 5 59 50

is exact as coming from an S(w) -regular sequence. Thus,

P(ST2) = P(S%;2) + 2% P(S7 7Y 2),

1.e.

P(S%z) = (1 —2%)P(SI™ Y 2).
Substituting (2.15) for P(S°; ), we get (2.186). a

As it has turned out, using either the Hodge filtration [60] or a Gysin-type exact
sequence between local cohomology groups 2] and further vanishing theorems, the
primitive parts of the non-trivial Hodge numbers of such an X are given by means
of residue calculus on the rational functions (2.9) and (2.16):

Theorem 2.25. (Formulae of Hamm and Aleksandrov)

Let X = Xg C P™"Yw) be a g.s.ci. of dimension » = m — k — 1. Then its non-
trivial primitive Hodge numbers are computed by the following formulae, depending
only on w and d:

(2.17)
1 m—~k—
Pprim(X) = Ayt (X) = Resz=o—P(Ha U xyhiw), for 1<q<rprg=r
T r T r ]‘ r
(2.18) hoom(X) = RO (X) = Rese=0 ——rmgye1 P(A(X); 2)

The forthcoming numbers, which are of fundamental importance and charac-
terize q.s.c. intersections X, are the dimensions of their cohomology groups with
coefficients taken from the twisted sheaves Ox(n).
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Definition 2.26. Let m € N and w = (w;,... ,wm) an m-tuple of positive inte-
gers. We denote by pt(n; w),n € Ny, the generating function determined by

1

(2.19) (= Z pt(n;w)z"

n=0

(For reasons of convention we extend it to the whole Z by setting

pt{n;w) =0,Vn,n € Z\ Np).
Obviously, pt(n; w) = dimg(S(W)n) = h°(P™ (W), Opm-1(w)(n)).

Theorem 2.27. Let X = X4 C P™~}(w) be a well-formed g.s.c.i. of dimension
r =m—k—1, whose ideal T is generated by a regular S(w) -sequence {fi,... , fr}
with deg(f;) = dj,d = (di,... ,di), and A(X) = S(w)/Z. Then its cohomology
groups with coefficients taken from the twisted sheaves Ox(n) are related to the
graded parts of A(X) by the isomorphisms

A(X)n, fori=0 '
Hi(X,0x(n)) = ¢ 0, for1<i<r—-1 or i#0,r
A(X)am(w,d)_m fori=r

Moreover, the dimensions of the non-vanishing of them are computed by the fol-
lowing formulae, depending only on w and d:

k J

(2.20) R%(X,0x(n)) = pt(n; w) + Z(—l)j z pt(n — Z dy, ;W)
j=1 1<y <va<...<v; <k ! A=1
(2.21) h™(X,0x(n)) = h°(X, Ox(am(w,d) — n)),¥n,n € Z.

Proof. For the proof of the first assertion we follow Dolgachev [32, §3.2]. We
consider at first the long exact sequence

ol = Hio}(CN(X)aOCN(X)) — Hf(CN(X),OCN(x))
— HY(CN*(X),0cn(x)ion+(x)) = H(CN*(X),0cn-(x))
—= HiF} (CN(X), Ocn(xy) = H* (CN(X), Ocnix)) =
which is associated to the cohomology groups of CN(X) with support {0} =
CN(X)\ CN*(X) (see [55, Cor. 1.9., p.9], [56, Exp. II, Cor. 2.9., p.16]). Since
CN(X) is an affine variety, we have: H'(CN(X); Ocn(x)) = 0,Vi,i > 0 (see [61,
11135]) Thus, forall: > 0: H'.(CN*(.X),OCN-(X)) = E-({;}I(CN( ) OCN(X))'
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This group vanishes whenever Hgl(OCN(X)) o HE;‘;(CN(X),@CN(X)) is 0. As
CN(X) is an affine c.i., its structure sheaf is Cohen-Macaulay and HSI(OCN(X)) =
0, for i +1 < dim CN(X) = r +1 (cf. [56, Exp. VII, prop. 1.2., cor. 1.4, pp.
78-80}). Furthermore,

HY{(CN*(X),00n-(x)) = H(CN*(X),0x ®0,m_s,, Qo \(0}) =
= H'(X,0x B0pmo1(y (W) Ocm (o)) =
= @ Hi(X, Ox ®orm_1(w) Opm-1(‘w)(n)) & @H‘(X, Ox(n)).
ncl ncZ

This means that H(X,0x(n)) = 0, Vi, 1 < i < r — 1. Now since A(X) is
integrally closed, the Serre homomorphism A(X) — @,z H*(X,0x(n)), as in
the unweighted case ([61, p. 188]), is a graded isomorphism, and therefore by
(2.16)

P(X;z) = P(A(X);7) = (H(l—m“f)) (H (1—:c"’-')) :

We write
k k oo
(1—2%) = [T 6101 (n) — 81453 (n))™) =
i=1 j=1 n=0
=Y [(6101(n) = §(a,}(n)) * ... * (6103 (n) = §(4,}(n))]"

where * denotes here the usual Cauchy multiplication. One checks directly that

(6g0)(n) = 64a,}(n)) * ... % (810 (n) — b(a,y(n)) =

1, forn=0

-1, forn=d, +...+d,;,1 < <...<v; <k, j odd
1, forn=dy, +...+d,;,1 <1 <...<y; <k, j even
0, otherwise

After multiplication by [/, (1 — z*)~! we get (2.20).

Finally, the last isomorphism and (2.21) follow from Serre duality. 0O

Corollary 2.28. For a well-formed g.s.ci. X = Xq C P™}(w) of dimension
r=m—k—1 we get:

h(X, Ox(am(w,d) + n)),fori =0
(2.22) hi(X,wx(n)) =¢ 0,for1<i<r—1
RO(X,0x(—n)),fori=r
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Proof. Obvious by the-generalized adjunction formula (2.3) of prop. 2.20. a

Definition 2.29. Let X = X4 C P™~}(w) be a q.s.c.i and W be the reduction of
the weights w (as in 2.2). If fi,..., fi are the defining w-homogeneous polynomials
of X, we shall say that X = X3 Cc P™ (W), defined by the W-homogeneous
polynomials f1,... , fx with degrees deg(f;) =d; := mgm,
of X. Furthermore, if we suppose that X is not contained in any hyperplane
{z; = 0}, for 1 <7 < m, then we can determine a third q.s.c.i X' = X}, ¢ P™"Y(w')
coming from the normalization w’ of w (in the notation of 2.2.) with defining w'-
homogeneous polynomials f,... , f of degrees

is the reduction

_ d;
T lem(pa(w),. .y pm(W))

deg(f;) =dj:

(cf. [30, p. 186]).

Proposition 2.30. ([30, pp. 186-187]). Let X = Xq C P™~!(w) be a g¢.s.c.i and
X its reduction. Assume that X is not contained in any hyperplane {zi = 0}, for
1 <1< m, and let X' denote the q.s.c.i coming from the normalization w' of w.
Then X, X and X' are isomorphic to each other.

, V5, 1S5 <k

Remark 2.31. The above mentioned proposition informs us that under these
relatively weak assumptions, we can consider the weights of q.s.c. intersections

being normalized. Of course, this does not mean that the corresponding germs
(CN(X),0),(CN(X),0),(CN(X'),0) will have to be necessarily isomorphic.

Definition 2.32. A g.s.ci X = Xg C P™7}(w) will be called nondegenerate if it
has the following properties:

(a) its reduction X is not contained in any hyperplane {z; = 0}, for 1 <i < m, and
(b) X' fulfills, in addition, the condition (i) (b) of Prop. 2.15.,i.e. X' is well-formed.

Proposition 2.33. The degree of the twisted sheaf O x(n), which is defined over a
nondegenerate one dimensional q.s.c.i X = Xq C P™~!(w), is given by the formula:

(2.23) deg(Ox(n)) =

1
ged{wy,. .. ,w

){h°(X': Ox(8(n; w))~h (X', Ox: (am(d’, w')—8(n; w)))+¢(X") -1}

where X' denotes the space coming from the normalization w' of w,8(n; w) the
function (2.1) introduced in 2.6., and g(X') := R} (X', Ox') = R®(X', Ox:(am(d’, w')))
its genus.

Proof. By prop. 2.7.,

1 1 .
deg(Ox (n)) = g3 deg(Ox () = g deg(Ox (6(n w)).
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Since X’ is well-formed and smooth, the usual Riemann-Roch formula for curves
gives:

deg(Ox:(8(n; w))) = h%(X', Ox:(6(n; w))) — K (X', Ox:(6(n; w))) + (9(X') — 1).
The proof is completed by using the Serre duality equation

KX, Ox:(8(n; w))) = RU(X', Ox (am(d’, w') — 8(n; w))).
O

Let us now go into the description of the nature of the Picard groups of q.s.c.
intersections. Since we are mainly interested in threefolds, we omit the consid-
eration of the surface case referring the reader to Steenbrink [113], Cox [22] and
Jong-Steenbrink [67) instead.

Theorem 2.34. (Mori’s weighted version of the classical Noether-Lefschetz theo-
rem, [90, Th. 3.7.]) The Picard group Pic(X) of a smooth, well-formed c.i.

X = Xq C P™""}(w) of dimension > 3 is isomorphic to Z and is generated by the
class [Ox(1)].

Theorem 2.35. (Dolgachev’s generalization [32, 3.2.4 (i), 3.2.5]) The Picard group
Pic(X) of a quasismooth, well-formed ci. X = Xq C P™~}(w) of dimension > 3
is isomorphic to Z and is generated by the class of an Lx := Ox(nx), for some
nx € N.

Definition 2.36. Let X = X4 be a q.s.c.i. in P™"}(w), I C {1,... ,m} a (non-
empty) index set and X(I) the corresponding stratum on X (as in 2.18). We
define:

V(I) := §{polynomials which vanish identically on X (I)}
X will be called well-stratified if
(a) X(I) isa (m —1—|I|) — (k — V(I))-dimensional g.s.c.i. for all I with
[} < (m-1) = (k- V(I)). -
(b) for all I with (m —1—|I|) =k —V(I)) = 0, X(I) consists of finitely many

points.

(c) X(I) = @ for all I with |[I| > (m —1) - (k- V().

(Note that condition (c) is not superfluous! For instance, the intersection of two
zero-dimensional hypersurfaces in a w.p.s. need not be empty.)

Next theorem strengthens Dolgachev’s result in the well-stratifiedness case, gives a
partial answer to a question of Beltrametti and Robbiano for dimension > 3 [10, p.
155], and generalizes prop. 2.8. (iii).
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Theorem 2.37. Let X = X4q C P™~}(w) be a'weH-formed, wél]-stratiﬁed, g.s.c.1
of dimension > 3. Then Pic(X) is generated by the class of the ample bundle
Lyx := Ox(nx) with ' '

(2.24)
nx =lem({ged(wili e NI C{1,... ,m}|I| 2k+1-V{L,..., m}\I)}) =
= lem({ged(w;|i € I)|I C {1,... ,m},|[| =k+1-V({1,...,m}\I)})

Proof. By prop. 2.8. (iii), Pic(P™~(w)) is generated by [Opn-1 (w)(lem(wy, ... ,wm))].
Now, although X" is a not necessarily smooth c.i. (see 2.11.), Pic(X°°?) is gen-
erated by [Ox<ov(1)],p(W)*, (p(W){x)*,¢(W)* are injective and ¢(1)* is an isomor-
phism by Grothendieck’s version of Noether-Lefschetz theorem ([56, Exp. XII, Cor.
3.6. and 3.7., p. 153)).

Z = Pic(P™1) E Pic(P™~}w)) = lem(w, ... ,wn)Z

t(l)'l ' ‘l't(w)'

Z = Pic(xeov) X Pic(X) = nxZ

Thus, Pic(X) is generated by the class of the ample line bundle Lx = Ox(nx),
where nx denotes the minimal positive integer which divides lem(w,,... ,wn,) and
for which (p(w)|x)*(Ox(nx)) = Ox<ov(nx). In other words, nx is the minimal
divisor of lem(w»,... ,wpm) for which

H°(Spec(A(X)(n)), Ox(nx)) = A(X)(nx )y = { Ig € A(X)vatnx}

forms a free A(X)(y)-module of rank 1, for all h € A(X), and for all s € N. For the
determination of nx we identify X with CN*(X)/C*. Note that Pic(CN(X)) =
Pic(CN*(X)) is trivial ({56, Exp. XI, Cor. 3.10., p.130], [32, p.52]). The projection
map m(w)|x induces a monomorphism

gx : Pic(CN*(X)/C*) — Picc- (CN* (X))

to the group of isomorphism classes of C*-line bundles over CN*(X). By the exact
sequences

{1}
Pic(X) = Pic(CN*(X)/C")
o [ \ Zero- map

{1} = H}, (C*, Aut(Ocn-(x))) a:,(C' C‘) = Z = Pice (CN*(X)) = Pie(CN* (X)) = {1}

oly
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we deduce that the image of gx consists of those C*-line bundles £ over CN *(X),
for which the isotropy groups {(C*)s,z € CN*(X)} act trivially on the fiber £,
(cf. [75, 84, §5]). As these C* -linearizations £, of the trivial line bundle

CN*(X) x C — CN*(X)

are parametrized by n € Z:

La]C* x (CN*(X) x C) 3 (£,(z, X)) — (¢ - 2,t")) € CN*(X) x C,

forz =(z1,... ,2m) € CN*(X), t- 2 = (1" 21,... ,t¥™2p,),

we have (C*); & Z/ged(w;|i € I3)Z, where

I:={ie{l,... ,m}z; #0} with |I,] > k+1-V({1,... , m}\ ;) > 1.

(The latter inequality comes from the well-stratifiedness of X.) Hence, if we set

Qx(z)={teC :t¥ =1 Vi, 1€ L},

we get:

nx =minfn e NE" =1, forall te (] Qx(z)}
2€ECN*(X)

O

Corollary 2.38. If X = X, is a well-formed q.s. hypersurface in P™ 7! (w) of
dimension > 3 and its defining polynomial is general enough, then:

(2.25)
nx = lem({ged(wi,,wi,)|l <1 <ia <Km}U{w;,1 <1 <m, with w;{d}).

Proof. Let X = (f = 0). If the coefficients of f are sufficiently general w.r.t.
each stratum (cf. proof of prop. 2.14), then X is well-stratified. For an index set
Ic{l,..., m}with|Il]=m—1and {1,...,m}\I={i}, P consists only of the
point [0,...,0,1,0,...,0] with the 1 in the i — th position. X contains this point,
ie. X(I) # @ and V(I) = 1, if and only if in the monomial decomposition of its
defining polynomial there is no monomial involving only z;. But this is equivalent
to d not being a multiple of w;. O

Corollary 2.39. If X is a BP q.s.ci. (2.2) of dimension > 3, with a;; > 2,
Vi, 1 <1 <m,Vj, 1< 3 <k, and all (p x p)-subdeterminants of the matrix
(’\ij)ISme'lﬁjSk are non-zero, Vp, 1 < p <k, then:

(2.26) nx = lem({ged(wi;,... ,wi, )]l i1 <i2 < ... <ipp1 Sm})
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Lemma 2.40. Let X = Xq C P™}(w) be a well-formed, well-stratified, q.s.c.i.
of dimension r > 3 and Lx = Ox(nx) the generator of its Picard group. Then we
have:

k r
(Hj:l dJ)nX

2.27 L% =
( ) X H:‘!!:l w;

Proof. 1t follows directly from the fact, that (Oxeov(nx))" = n%(Oxeev(1))" =
WE((HJ—1 d;) and (Oxeov(nx))" = deg(p(w)|x)L%, because

Oxeos(nx) = (p(w)|x)"(Lx) and  deg(p Hw,

O

Theorem 2.41. The A-genus of a well-formed, well-stratified, q.s.c.i.
X = X4 C P™~!(w) of dimensionr > 3 with respect to Lx is given by the formula:

(2.28) A(X,Lx) =

(IT5-, d;)n3 1
r+li[—,i%vf£~pt nx; W Yo ptax =) duiw)

i=1 "3 J=1 1<01<U2<...<U‘,'Sk =1

Ma-

Proof. Obvious by the formulae (2.20) and (2.27). O

Remarks 2.42. (i) All well-formed q.s.c. intersections X = X4 C P™~}(w) with
r=m-—k—1= 3 and am(X) = 0 are minimal CY models of general type,
because they have always (full) crepant desingularizations (see §4), their Picard
number equals 1, and ([ce]x |z55r%y) > 0. These models arose first in the physics

literature in connection with the so called “Landau-Ginzburg potentials” (see [15],
[74], [120], {129]). It should be mentioned, that the conditions of quasismoothness,
well-formedness (¢f. prop. 2.14 and 2.15) and of the vanishing amplitude are
in fact very restrictive. This is the reason for which the expected degrees d =
(dy,...,dr) and weights w = (wy,... ,wym) for these X’s have to move within
bounded arithmetical regions and to be, in particular, finitely many. For example,
there is no CY model of the regarded type with codimension k& > 5, while only the
intersection of four quadrics in the usual 7-dimensional projective space appears in
codimension 4. For 1 < k < 3, however, there are several thousands of allowable
combinations (d; w), the number of which decreases as long as we increase k.

In the case where k = 1, Klemm and Schimmrigk [74] and, independently, Kreuzer
and Skarke [79], gave a computer aided classification of all possible combinations
for (d;wy,... ,ws). They found 7555 combinations, the table of which covers a lot
of pages (see preprint version of [74]). Recently Klemm [73] showed that there exist
over 4200 (resp. 300) combinations corresponding to such models of codimension 2
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(resp. 3) with dy,d2 < 100 (resp. dy,d2,d; < 30).

(ii) In {94, §5] Oguiso studied polarized CY threefolds by means of their delta
genera and came to the remarkable result, that all the polarized CY threefolds
with A < 2 have to be complete intersections of codimension < 2 in a w.p.s. In the
first step of his method, he makes use of the following Bertini-type theorem due to
Fujita:

Theorem 2.43. (Fujita [44], [45]) Let (X,L) be a polarized smooth complex
variety of dimension r > 3. Suppose that A(X,L) < 2 and L™ > 2. Then
dimBs(|L|) € 1 and all general members of |L| are smooth.

If (X,L) is a polarized CY threefold with A(X,L) <2 and L*® = 1, then obviously
R%(X,L) € {2,3}. If L3 > 2, then by 2.43. any general member S of |L]| is
smooth with ample canonical divisor Ks = L|s. This means that $ is a minimal
surface of general type with geometric genus p,(S) = ~R%(X,L) — 1 and K% = L3 >
2p,(S) — 4 = 2h%(X,L) — 6 (cf. [5, ch. VII, thm. 3.1., p. 210]). Thus, for
A(X,L) = 1, it is necessarily (h°(X,L),L?) € {(3,1),(4,2)}, and for A(X,L) = 2,
(h°(X,L),L%) € {(2,1),(3,2),(4,3),(5,4)}.

Oguiso’s analysis on the corresponding graded rings ®,>0H°(X,nL) for the above
6 possible values of (h°(X,L),L?) lead to the following:

Theorem 2.44. (Oguiso’s (A < 2)-classification [94, thm. 5.1.]) Let (X,L) be a
polarized CY threefold with delta genus < 2. Then X is a complete intersection of
codimension < 2 in w.p.s. and L = Lx = Ox(1). More precisely, for A(X,L) =
1, X is isomorphic either to an Xz C P4(1,1,1,1,4) or to an X5 C P*(1,1,1,2,5).
For A(X,L) = 2, X can be one of the following: Xs C P*(1,1,1,1,2),

X6 C P¥(1,1,1,1,1,3), X35 C P5(1,1,1,1,2,3), X4y C P%(1,1,1,2,2,3) or
Xs5) C P5(1,1,2,2,3,3).

Theorems 2.43 and 2.44 are not true if one drops the assumption of the smoothness
of X. Nevertheless, having formula (2.28) in hand, we can give the corresponding
tables of CY models expressing well-formed, well-stratified q.s.c. intersections of
codimension < 2 in a w.p.s. with A(X,Lx) < 2, by using the “big classification
tables” which were mentioned in 2.42. (i). Moreover, in the hypersurface case
(k = 1), where the table of (d; w)’s is complete, we can win the whole picture of
the “geographical placing” of the pairs (L%, [c2] x(Lx)) which is in fact due to the
numerical behaviour of ny and of the pt -summands of (X, O(nx)) in (2.20) (cf.
comments at the end of §1). The author is indebted to R. Schimmrigk for various
computer checkings and for valuable remarks on the arising diagrams.

Proposition 2.45. (i) The number [¢;]x(Lx) within the class of minimal CY
models X = X4 C PY(w), being realized as hypersurfaces (with sufficiently general
defining polynomials) in a four-dimensional w.p.s. and (d;w)’s running through
the list of the above mentioned 7555 combinations, grows like:

(2.29) [c2)x(Lx) ~ 10m(L% )% and is bounded by
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(2.30) 27(L%) % < [ea]x(Lx) < 107 (L)%,

In logarithmic scales, the pairs (L%, [c2]x(Lx)) are given by the following dia-
gram. (The line, which is indicated by faint dots, is the limiting (A = 3) -line.)

le+l11 T T = T T T T T Y
le+10 |- "dats.r2” -t
lot .
le+09 - 10*3.14*x**(3.14/10) — -
i 2%3.14*x*%(3.14/10) -+ - - |
le+08 10%3.14%314%**(3.14/10) —
1le+07 - "
le+06 | T -
100000 a -

10000

1000

100 -
10 |-

1 ) 1 1 1 | 1 1 i A

1 10 100 1000 10000 100000 le-+06 le+07 le+08 le+09 le+10

(ii) The above class contains exactly 11 CY models with delta genus A(X,Lx) < 2.
They are given by the following table:

Nr. Model X =Xy Li» [ea]x(Lx) A(X,Lx) e(X)

(1)  XecP1,1,1,1,2) 3 42 2 — 204
(2)  Xs CP*1,1,1,1,4) 2 44 1 — 296
(3) X0 € P41,1,1,2,5) 1 34 1 — 288
(4) X, CP¥1,2,2,3,4) 2 32 2 - 138
(5) X2 C P, 1,-, 2,6) 4 52 2 — 250
(6) X C P, )2 44 1 - 212
(7)) XisC P“(l 3,3,3, 5) 3 42 2 — 124
(8) X3 CcPt,1,1,6,9) 9 102 2 — 542
(9) Xys CPY1,2,3,3,9) 3 42 2 - 188
(10) X4 C P(1,1,2,8,12) 8 92 2 — 482
(11) X6 C P4(1,2,3,12,18) 6 72 2 — 362
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Note that each of them can be defined by a Fermat polynomial.

(iii) Only 5 models lie on the (A = 3) -line: [c2]x(Lx) = 10L%, namely X5 C P4,
X16 C P4(1,1,3,3,8), X20 C P4(1,4,5,5,5), X6 C P4(2,2,3,6,13) and

X0 C P4(1,2,6,6,15).

(iv) Except for the cases, when X is isomorphic to either Xio C P%(1,1,1,2,5) or
X2 C P4(1,2,2,3,4) and L%, = A(X,Ly), we have:

(2.31) L% > -g-A(X, Lx).

Proof. Apply the formulae (2.25), (2.27), [c2]x(Lx) = 12h%(X,Lx) — 2L% (cf.
(5.3)) and (2.28) to the table of the 7555 combinations of degrees and weights given
in [74]. 0

Similar results can be achieved for codimension k = 2.

Proposition 2.46. There exist exactly 6 well-formed, well-stratified g.s.c. inter-
sections X = X(4, 4,) C P5(ws,... ,we) with am(X) =0 and A(X,Lx) < 2:

Nr. Model X = X(4,.45) L%  [eo)x(Lx) A(X,Lx)
(1) Xee CP(1,1,1,1,1,3) 4 52 2
(2) X@e CP(1,1,1,1,2,3) 3 42 2
(3) Xwue CP(1,1,1,2,2,3) 2 32 2
(4) X6 CP%(1,1,2,2,3,3) 1 22 2
(5) X0 CP%2,2,2,2,3,5) 2 44 1
(6) X2 CP%(2,3,8,3,3,4) 3 42 2

Moreover, 5 models of this kind lie on the (A = 3) -line, namely

X(4,4) - Ps(la 1,1,1,2 2); X(B,S) C Ps(la 2,2,2, 314): X(IO,]?) C P5(1337 3,4,9, 6))
X(10,15) C P5(23 3,5, 5: 515) and X(14,18) - P5(2a2:61 6,7, 9)

Proof. If X is a 2-dimensional well-formed, well-stratified q.s.c.i. in P3(w), then

Pic(X) is generated by the class of Lx = Ox(nx), where nx, similarly to the
hypersurface case of cor. 2.38., is given by nx = lem{W, U W, U W}, with

Wi = {ged(wi,, wiy, wis) |1 < 1) <1y <13 <6}

W = {ged(wi,, wiy) |1 <11 < i3 £ 6 with either ged(wi,,wi,) t da
or ged(wi,,wi,) {da}

Wi :={w;|]1 <1 <6 suchthat w;{d; and w;tda}.
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Applying the formula (2.28) for this nx to the combinations of (d; w)’s which were
found by [73], and taking into account that A grows rapidly after the first steps of
a search procedure, we get only the above cases fulfilling the requirement A < 3.0

Remark 2.47. Using elementary number theory, one can verify that, up to per-
mutations of weights and degrees and up to different coeflicients of the defining
polynomials, there exist exactly 171 BP q.s.c. intersections of dimension 3 and
of vanishing amplitude satisfying the assumptions of cor. 2.39. Namely 147 with
codimension k = 1, 19 with k = 2, 4 with k£ = 3 and one with k = 4. In particular,
by (2.26) and (2.28), we deduce that the minimal delta genus for such an X with
k € {2,3,4} occurs when X = X546 C P%(1,2,2,2,2,3) and A = 4.

QML)
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§ 3. Toric crepant resolutions of 2- and 3-dimensional
Gorenstein cyclic quotient singularities

As it was mentioned in prop. 2.5. and 2.18., well-formed q.s.c. intersections have
singular loci consisting of cyclic quotient singularities (c.g.s.) In particular, when
the amplitude vanishes, the occuring c.q.s. are Gorenstein. To resolve them locally
by crepant morphisms, we shall make use of the language of toric geometry as it is
presented by Danilov [25], Oda [93] and Fulton [47].

Let us first review some preliminary definitions and facts and fix certain useful
notations.

(1) For a lattice N of rank r, M = Homgz(N, Z) denotes its dual lattice and Ng :=
N®zR, Mg := M ®zR their scalar extensions to the field of real numbers. A subset
o of NR is said to be a strongly convez rational polyedral cone (SCRPC, for short) if
oN(—o) = {0} and if there exist ny,... ,n, € N,s.t. 0 = Ryoni+...+Ryon,. Its
dimension dim(c) is that of the smallest R-subspace c4(—0¢) = Ro of Nk containing
o and its relative interior int(o) (resp. its relative boundary 0o ) is defined to be the
usual interior (resp. the usual boundary) of ¢ regarded as a subset of the R-vector
space Ro. Such a o is called ssmplicial if ny,... ,n, are linearly independent over R.
The dual cone & of ¢ is defined by & := {z € Mgr| < z,y > > 0,Vy € o} and turns
out to be an r-dimensional SCRPC in Mg. (Here <, >: Mg x Ng = R denotes the
natural R-bilinear pairing). A subset 7 of a SCRPC o is called a face of o (notation:
T < 0) if it can be expressed as T = o N {mo}*+ := {y € o] < mo,y >= 0} for some
mo €d.

(ii) For a p-tuple (ny,... ,n,) € N¥ consisting of R-linearly independent vectors,
we define
s(n1,...,nu) = {y € Nrly = Yt Miniwith 4 A =1landA;,... , A, € Rxo}
to be the usual closed, affine simplex with vertices ny,... ,n,, and, for a given
s = 8(ny,... ,n,), we set o(s) := Ryony + ... + R>on, to indicate the simplicial
SCRPC arising from it after omitting of the affinity condition for its defining linear
combinations.

(ii) If ¢ C Np is a SCRPC, then the intersection M N& generates M as a group,
is saturated, and is a finitely generated additive subsemigroup of M containing 0,
i.e. there exist my,... ,mr € M, s.t. MN&=Nom; +...+Nomy. If 7 < o with
T =0N{mg}t, then M N# = M N & + No(—mnyo).

(iv) Let now Ty = (C*)" be the r-dimensional algebraic torus defined by Ty :=
Homz(M,C*) = N ®z C*. Every m € M (resp. n € N) assigns a character
e(m) : Ty 3 t — t(m) € C* (resp. a l-parameter subgroup v, : C* 3 A —>
Tn(A) € Tn, Ya(X)(m) = A<™™> Vm € M ) of Ty. This means that, after
having chosen a Z-basis {ny,... ,n.} of N and its dual basis {m,,... ,m.}, we shall
always get an isomorphism Ty 3 t —— (ui(t),... ,u-(t)) € (C*)" for u;j := e(m;),
1 € j €, and that {u1,... ,u,} can therefore be considered as a coordinate system
of Ty. On the other hand, for a SCRPC ¢ with M N & = Nomy + ... + Nomy,
we associate to the finitely generated, normal C-algebra C[M N&] an affine variety
U, := Spec(C[M N &]), which can be written

Uy ={u: MnNés— Cu0) = 1u(m+m') =u(mu(m’),Yym,m' € M Ns}
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with e(m)(u) := u(m),¥Ym € M N & and Yu € U,. In the analytic category, U,,
identified with its image under (e(m;),... ,e(my)) : U, = C*, can be regarded as
an analytic set determined by a system of equations of the form: (monomial) =
(monomial). This complex analytic structure induced on U, is independent of the
semigroup generators {my,... ,mx} and each polynomial function e(m) on U, is
holomorphic w.r.t. it. In particular, for 7 < ¢, U; is an open subset of U,.

(v) A fanin N = Z" is a collection ¥ of SCRPCs in Mg, s.t.(a) any face 7 of
o € T belongs to £ and (b) for 0y, 02 € ¥, the intersection o3 N oy is a face of both
oy and o2. The union |I| := U{c|c € ¥} is called the support of =. Furthermore,
we define (i) := {0 € L|dim(c) =1}, 0<i < r.

If p € Z(1), then there exists a unique primitive vector n{p) € NN p with
p = R>on(p) and each cone & € & can be therefore written as

o= ), Ry

PEZ(1),p<0

The set Sk!(o) := {n(p)|p € (1),p < o} is called the first skeleton of 0. The toric
variety associated to a fan (N, Z) is the identification space
Z(N,Z) :=((U,eg Us)/ ~) with Uy, 3 uy ~'uz € Uy, 1=
(3r < o1 Nog:u; € Ur C Uy, for ¢ = 1,2, and uy = uy within U,).
Z(N,Z) admits a canonical Tny-action, which extends the group multiplication of
Tn = U{o} : T X Z(N,E) 3 (tu)r—t-u€ Z(N,E),
where, for u € Uy, (t-u)(m) :=t(m) u(m), Vme MnN3s.

(vi) If we denote by orb(o) (resp. V(o) := orb(e)) the orbit (resp. the closure
of the orbit) of o € ¥ under this action, then

Y30+ orblo) ={u: MnNo+ = C|u group homomorphism}
€ {Tn —orbitsin  Z(N,%)}

establishes an 1-1 correspondence. The Tn-orbits have the following properties:

(a) orb({0}) = U0y = Ty and dim(orb(c)) = r — dim(s), Vo € .

(b) T < ¢ <= orb(s) C V(7).

(¢} For o € &, ,orb(c) is the unique closed Ty-orbit in U, and
Ue = [I{orb(r)| < o}.

(d) For r € T, we have V(7) = [[{orb(c)|c € ,7 < 7}.

(e) For 7 € £, V(r) = Z(N(r),Star(r)) is itself a toric variety w.r.t. N(7) :=
N/Z(rN N),Star(7) := {5|o € &, < o}, where ¢ := (¢ + R7)/R7 denotes
the image of ¢ in N(r)g = Nr/Rr.

(vii) Let Z(N, Z) be the toric variety associated to a fan ¥ and N = Z", Then:
(a) for ¢ € ,U, is nonsingular <= (3 Z — basis{ny,... ,n,} of N and k < r with
o= }:f:l R>oni) and Z(N,Z) is nonsingular <= (U, is nonsingular, Vo € I).
(b) Z(N,Z) is compact <= ¥ is finite and |Z| = Ng.

(viii) A map of fans ¢ : (N',£') > (N, X) is a Z-linear homomorphism ¢ : N’ —
N whose scalar extension ¢ : N — Np satisfies the property: (Vo' € £/, Jo €
L : ¢(0') C o). Such a ¢ induces an holomorphic map ¢, : Z(N',Z') = Z(N, L)
which is equivariant w.r.t. the action of Tyns and Tn. Moreover, ¢, is proper
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<= (Vo € L,Z, := {0’ € Z|p(¢') C o} is finite and ¢~ (o) = [Z/]). In
particular, if N' = N, ¢ =id and X' is a locally finite nonsingular subdivision of
T, then id, is proper and birational and gives an equivariant desingularization of
Z(N, ).

(ix) For the group TDiv(Z) of Weil divisors on a toric variety Z = Z(N, ) we
have TnDiv(Z) = @ ,cx)ZV(p). (For another approach via support functions
see [93, §2.1].)

Let us now come back to our c.q.s. and see how are they describable in terms of
the above given toric glossary (i)-(ix). Suppose that » > 2 and G € GL(r,C) is
a finite cyclic group of order ! containing no pseudoreflexions and being generated
by diag(¢[",... ,{]"), for suitable integers 0 < ay,... ,a, < I. If (C"/G,[0]) is the
germ of the corresponding quotient singularity, its underlying space C" /G can be
identified with a toric variety Z(Ng,Zo) of type (I;a1,... ,a,) as follows: T, :=
(C*)"/G is an r-dimensional algebraic torus with 1-parameter group Ng and with
group of characters Mg = Homz(Ng,Z). Let {e; = (1,...,0),...,e, =(0,...,1)}
be the standard basis of Z". Then

= Ng +ZZ([JQI]I ,@) with Ny := ZZe; and

i=1

-1 r
Mg = ﬂ MJ' with ]VIJ‘ = {(ml, - ,m,—) € Zr| Zmi[ja;]l = O(mod l)}
=1 1=1

Defining 09 := Y i, R>0ei, Zo := {7|7 < 00}, and using the exact sequence

0= G=Ng/Ny = Tn, = Tn, =0
we get as projection map: C" = Z{Ny, Zo) = Z(Ng,Lo) =C/G.

Proposition 3.1. For Z(Ng,Xo) the following conditions are equivalent:
(i) Z(Ng,Zo) is Gorenstein.

(11) WZ(Ng,Lo) is trivial.

(iii)3'mo € M : (mg,ei}) =1, Vi, 1 <t <.

Proof. If follows from [98, footnote of p. 294] and Ishida’s criteria [93, p. 126]. O

If p =id.: Z(Ng,Z{) = Z(Ng,Zo) = C/G is a Tng-equivariant desingulariza-
tion of Z(Ng, Zo), then a cone R>on(p'), p' € Ly(1), determines a prime divisor
Doy = V(Ryon(p')) = Z(Star(Ryon(p'))) on Z(Ng,Zg). So we have an 1-1
correspondence:

{exceptional prime divisors w.r.t. 7} +— U{Sk'(¢')|o’ € £} \ {e1,... ,er}.

D., corresponds to the strict transform of {(z1,...,2,) € C'|z; = 0}/G w.r.t.
T Vi, 1<i<r
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Proposition 3.2. A Ty, -equivariant resolution 7 : Z(Ng,Zj) — Z(Ng,Zo) =
C" /G of a Gorenstein c.q.s. Z(Ng,Zo) Is crepant if and only if

U{Sk(a")|o’ € 4} C H = {(z1,- .,:c,.)ERr|ia:,-=1}.

In this case we get e(Z(Ng, L5)) = |G|.
Proof. Let o’ € &} and ¢ € H(U!, 2N g.Th) lyr,) bew = fdul A...Adul, wr.t.

local coordinates uf,... ,ul of U.,. Then the zero order of f along any exceptional
prime divisor Dy, p' € L5(1), p’ < o', equals (trace (n(p'))) — 1. So = is crepant
if and only if the total union U{Sk!(c')|o’ € T{(r)} lies in the hyperplane H.
Moreover, e(Z(Ng, Z5)) = §(Z5(r)), which is equal to the multiplicity [Ng : No] =
|G| of o9, because oo = U{c'jo’ € Tp(r)}. O

For r > 4 it is not always possible to construct such crepant resolutions. Neverthe-
less, in dimension 2 and 3, relatively simple principles of the corresponding lattice
geometry lead to the desired constructions.

Proposition 3.3. Forr =2 and Z(Ng, Zo) a Gorenstein c.q.s. of type (I; a1, az),
there is a unique crepant desingularization = : Z(Ng,Ly) = Z(Ng,Zo) with
Sy = ({Ryo(l8tl i%2lty)1 < 5 <11}, Ryer, Ryoes and their faces}, being
provided with | — 1 exceptional prime divisors & P!, which compose a Hirzebruch-
Jung string.

Let now r = 3 and Z(Ng, Lo) = C*/G be of type (I;a1,az,a3). We define s :=
s(e1, ez, e3) and

P {({ac;m el Uaall)

(If G C SL(3,C), we can always assume, up to a generator change, that
ay+az +az=1.)

Z[]a,]z—l 1<J<z—1}

i=1

Proposition 3.4. All toric crepant resolutions of a Gorenstein c.q.s. Z(Ng,Zo) =
C3/G are of the form n : Z(Ng,Z4(S)) = Z(Ng,Zo), where S denotes a triangu-
lation of Lo N'H = {r NH|T < g0} with so N Ng = &g [[{e1,e2,e3} as the sets of
its vertices and £4(S) = {{0},{o(s)ls € S}}. Moreover, they fulfill the following
properties:

(i)

- (3.1) #(int(so) N Ng) = l - Z ged(ai, 1)) + 1

i=1

(ii) Let D, := V(o({n})) denote the prime divisor corresponding to an n € sopNNg.
(a) We have {exc. pr. divisors w.r.t. w} =U{Dn|n € ®¢}.
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(b) If n € int(so) N Ng, then D, is a rational surface coming from finitely many
TNg(o({n))) -equivariant blow-ups either of P? or of a Hirzebruch surface

F, :=P(Op & Op (a)), a > 0.

(c) If 8sg N ®¢ is non-empty and n one of its members lying on s(e;,, e;,), where
1 <iy,1p €3, 13 # 12 and {3} = {1,2,3}\ {41,172}, then D, represents a ruled
fibration over the 13-axis. Its fibers over the “punctured” i3-axis are isomorphic to
Pl

Proof. That the T, -equivariant desingularizations of Z(Ng, £o) are parametrized
by the above triangulations is obvious from prop. 3.1. and 3.2.

(i) It is easy to verify that §&¢ = (I + % ged(@i, 1)) — 2 and §(dso N ®g) =

Z?:l ged(es, [) — 3.
(ii) (a) and (c) are clear from the construction. (b) follows from {93, thm. 1.28]. O

Remarks 3.5.

(i) To each 1-simplex s(n1,n2) of an § corresponds a curve C(ny, n2) := V(a(s(ny,n2)).
C(n1,n2) is compact <= int(s(ny,n2)) C int(sp). In this case C(ny,nq) = P1.

(i) If n is as in 3.5. (i) (c), SpI’(S)(n) denotes all 1-simplices of S which are
connected with n having their second vertex in &g\ {n} and b(n) := §(Spl* (S)(n)),
then the fiber of D, — {i3 —axis} over the zero point consists of a tree-configuration
of b(n) rational curves {C(n,n1),...,C(n,npen))} with

{a point}, for {t; — tz] = 1, 1 £ t1,t2 < b(n)
@, otherwise

C(n,ns,) NC(n,n,) = {

where Spl!(S)(n) = {s(r,n:)|1 <t < b(n)}.

Proposition 3.6. Let Z(Ng, o) = C* /G be a Gorenstein c.q.s. and
Z(Ng,Z5(S)) = Z(Ng, Zo) be a crepant resolution w.r.t. S.

(i) For three distinct vertices of ny,ng,n3 of S we have (Dy, - Dy, - Dy,) # 0 <
s(ny1,n2,n3) is a 2-simplex of §. In this case (Dp, - Dy, - Dy,) = 1.

(i1} If ny,ny € sg, s(n1,n2) is an I-simplex of S, but no both ny and ny belong to
the same face of 0sg, then there exist exactly two vertices nz,ny4 of S, such that
8(ny1,n2,n3) and s(ny,na,ng) are 2-simplices of S, and the corresponding intersec-
tion numbers are related by

(3.2) (D2, - Du)ni+ (Da, D3 )na+n3 +ng =0

(iii) If n € int(so) Is a vertex of S, then:

(3.3) D? =12 - §(Star(R»on)(2))

Proof. For (i) and (ii) apply the general techniques of [47, § 5).
(iii) Noether’s formula gives x(Dn,0Op,) = 1 = wh = 12 — e(Dy,). Since

Wz(Ng,oy(s)) = Oz(Ng,5;(5)): We have wh = D? by adjunction. On the other hand
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the topological Euler-Poincaré characteristic is nothing but e(D,,) = e(V(c({n}))) =
e(V(Ryon)) = e(Star(Ryon)) = §(Star(R>on)(2)) (cf. [47, p. 59]). a

Definition 3.7. Let Z(N,X) be a 3-dimensional nonsingular toric variety, associ-
ated to a fan & (w.r.t. N = Z3), {ny,n2,n3}, {n1,n2,n4} two Z-bases of N and
01,02 € E(3) two cones 71 = Ryon1 +Ryon2+Ryons, 02 = Ryoni+Ryonz+R>on4
adjacent along 712 = Ryony + Ryonz. If ni,n2,n3 are coplanar and ny +ng =
n3 + ng, then o3 = Ryont + Ryons + Ryong, 04 = Ryonz + Ryons + Ryong are

adjacent along the 2-dimensional cone 734 = Ryon3 + Ryong and Z(N, 5), with

~

L= (E\{o1,02,71,2}) U{03,04,73.4}, is a nonsingular toric variety. In this case,

T is called elementary transformation of & w.r.t. 01,02 and 7 5. (See Fig. 1.)

transformation

Fig. 1

Proposition 3.8. Let £;,%; be two nonsingular fans in N & Z? with |Z,| = |Z,].
If we assume the existence of an mg in M = Homgz(N,Z), for which (mg,n(p1)) =

(mo,n{p2)) = 1 for all p; € L,(1) and all p € £3(1), then L, is obtained from ¥,
by a finite succession of elementary transformations.

Proof. See Danilov 26, prop. 2] or Oda [93, prop. 1.30. (ii}]. a

Corollary 3.9. The fans Z}(S;), ¢ = 1,2, which corresponds to two crepant res-
olutions m; : Z(Ng, Z§(Si)) = Z(Na, o), 1 = 1,2, of a Gorenstein 3-dimensional
cyclic quotient singularity, differ from each other by finitely many elementary trans-
formations.

Proof. Obvious by propositions 3.2. and 3.8. O
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§ 4. Global toroidal crepant desingularizations

Let w = (wy,... ,wm) be a system of weights, d = (dy,... ,d;) € N*¥ and

. X =Xq= {[Zla-'- 7zm] er_l(w)Ifl(zla‘“ ,Zm) =-- =fk(zla'-° ,Zm) __'0}

a well-formed q.s.c.i. of dimension 3 (i.e. m —k = 4) with am(X) = 0. Using the
notations of §2, we define:

Fo:={IC{1,...,m}:|I|=34+V(),ecr >1 and cp=1VI,TI g I},
To:={Ic{l,...,m}: | I|=3+V({I) with ¢/ >1, cr\iy > 1 for at least one
i€l and ¢y >ecpyy for all that i’s satisfying this property},

and Iy :={I Cc{1,... ,m}: |I|=2+V({I) and ¢y >1}.

Since X is normal and well-formed, we have codimx(Sing(X)) > 2, and Sing(X)
can therefore have at most 1-dimensional components. We write Sing(X) as the
union of 0- and 1-dimensional singular strata

(4.1) Sing(X) = SSt°(X) [] sst' (X

where SSt?(X) := U{X(I)|I € T,}, p = 0,1 (cf. prop. 2.18). Furthermore, we
define INP(X) := U{X(I)|I € Tv}. Without loss of generality, we shall treat
here only the case in which none of the above strata is empty. We first fix an

enumeration Ty = {I,... , I} of the index sets of I';. Each C; := X(J;) is an
irreducible smooth curve and

(4.2) SSE(X) = {1 < 5 < r}

In addition, we introduce the enumerations

(4.3) Byt b= AL m\

(4.4) {sl,-ssl_yupt =1L I\ {p € {L,... R} : folr; = 0}
to be used in the following:
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Lemma 4.1. For the curve C; and any point @ € C;\INP(X) there exist integers
lc; and agc,-) (Cy) > 1 with a(c’ + a(C’ = lg,;, depending on the weights with
indices in I; a.nd on the deﬁnmg ponnom:aIs of X, such that:

(i) the germ (X, Q) of X at Q is isomorphic to

(45) (X3 Q) = (CZ/GC,' X Ca [0] X {0})

where (C? /Gc;,[0}) is a c.q.s. of type (Ic; O‘ECJ) agc.r)) and
(ii) X near C; looks like:

(46) (X, 05) 2 ((0c, (i) © Oc, (o)) /G, C;)

Proof. (i) Since X is well-stratified and @ ¢ INP(X) (i.e. it is not possible for Q
to contain more than 2 4 V(I;) coordinates equal to zero), we have:

6(f,{|C,',--- ,fk v )|C,')
rank a(Zt{,”',ZtJ ) |Q =k -V(I;) and

m—|1;|

(f1,---, fx)
= =k.
rank (8(21,... o) 1@
Thus, by implicit function theorem, a local chart of the V-variety X centered at
@ will have as coordinates Zis Zgi s where {q],q3} C I;, together with a third one

2 j expressing the restriction on C; qJ € tj,. .. ,tj _ir.1})- Note that the complex
¢ €XP g i\g 1 m—|I;)
plane determined by z dr%d is equipped with the action
1

fw qucl [w J‘]=1
(zq{azqi) (Cc; Zgis Cc;J 2 zq;)
We end the proof just by setting l¢; := cf; = ¢(w, ;) = gcd(wt,',... YWy " I)
( ) = [w q,]c, az - [wq_,]c, and taking into account that am(X) = 0.

(iI) We can use the above description or, alternatively, apply the tubular neighbour-
hood theorem to the affine quasicones over C;j and X . For the punctured quasicones
we have (CN*(X),CN*(C;)) = (CN*(C;) x C*/G¢;, CN*(Cj)). Letting C* act
on them in the usual way (cf. 2.11.) we get (4.6). 0O

Let us now give enumerations to the points of the singular locus of X. We set:

(4.7) SSt%(X) = {P|1 <i< A} and
INP(X) ={Q.]1 <¢<u} aswellas
INP(X)NC; ={QPI1< v < g}, 1< <w
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to indicate an enumeration of the points of INP(X) sitting on C;. It should be
mentioned here that max{¢;|1 <j < s} <p <327 &, because (for « > 2) it may

happen that there are indices 1 < 7, 7' < x, 7 # j/, such that Q, = Qg) = Qfé:),

for certain 1 <t <pand 1 <v; €&, 1 vy <&, (This is exactly the case, in
which C; and Cj have at least one intersection point.)

Lemma 4.2. For any P; € X(I), I € Ty, there exist integers lp, and agp‘),agp")
CY:(;P;) 2 1 Wlth agP") + a'(zp") + a:(spi) = lp‘., SuCh that

¥

(4.10) (X, P) = (C’/Gp,[0))

i.e. the germ of X at P; is isomorphic to that of a c.q.s. of type (Ip;; agp‘), agp‘), agp‘)).

(The same holds true if we consider a @, instead of P;).

Proof. Exactly as in the proof of 4.1. one finds indices {q1,q2,¢3} C I, such that
Zq1, 2¢,2¢, Tepresent local coordinates of X centered at P; with respect to the
action:

["’cn]cr (wagley [wagles
(zquzq:azqa)' 5(61 Zq1y Ser Zqzy ey zfm)'

Since the acting cyclic group lies in SL(3,C), we set Ip, := ¢y and make use of the
“normalization” of the exponents

( (B (P) (P { (TwgyJers [waalers [waaler ), if zi:l[wq,o]c! =<
o) ",0g T, ) = ] 3
(er = [wq1]chI - [wq:]cncl - [wt)a]w)a if Ep:l[qu]CI = 2¢;

g

The points of SSt°(X) are the isolated points of Sing(X). The points of INP(X)
will be called individual. The justification of the choice of this name comes from

the fact, that for a Qg) € INP(X) N C;, the group GQ(j_) has order strictly bigger

than that one of the group Gg;. The union SSt%(X) []INP(X) of isolated and
individual points of Sing(X) constitutes the set of the so called dissident points
in Reid’s terminology (see [98, Cor. 1.14., p. 281]), i.e. the set of points of the
threefold X which are not of compound Du Val type. In other words, the compound
Du Val locus, in our case, is composed of the points of SSt!(X )\ INP(X), and each
point @ € C; \ INP(X) is by lemma 4.1. of type cA,_,.

Let us now consider appropriate open neighbourhoods Up,, resp. Ug, of P;, resp.
of @, 1 i< A 1 <<y, such that Up, & Z(Ngp,,Zo) = C*/Gp, and

Ug, = Z(Ng,, ,Lo) = C* /Gy, respectively. Since Q, = QL‘}) for some

1 <v; £€5,1< j <k, we can take a tubular neighbourhood Uc; of C;, such that

(4.11) ch arz)

o) = V(rY) = Z(NGQ%)(r(j)),Star(T(j)))
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with 70) = R, e,0 +Rxoe,0), 7,0} € {{1,2}, (2,3}, 3,1}}.

Fig. 2 shows these neighbourhoods of two curves of SSt'(X) having an individual
intersection point.

Fig. 2

Using prop. 3.4 we construct toric crepant resolutions
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(4.12) 7p:(Sp) : (Z(Nap,, Zo(SR)), €p;) = (Z(Ngp,, Zo), Fi)
(4.13) 7Q.(8a.) 1 (Z(Nag, , Z0(Sa.)), €q.) = (Z(Naq, » o), Q1)

with €p, := {D{|n € int(s0) N Nap }, €q, = {D”|n € int(s0) N Nag, }. (All
the above divisors are assumed to be endowed with the reduced space structure.)
Analogously, we construct uniquely determined crepant resolutions

(4.14) g Z(NGCJ.:E(’)) xC; — Uc; = Z(NGCJ.,EO) x C;

by applying prop. 3.3. along the normal sheaf N¢,/x of C; in X. (4.11) give rise
to the compatibility conditions

(4.15) 7c; lue, X = TTQS’,;)(SQI(;;)NUCJ. an(y?

and enable us to glue (4.12), (4.13) and (4.14) together in order to define a total
number of

A p
(H § {triangulations Sp.-})(]:[ § {triangulations Sgq, })

=1 t=1

global resolutions

(4.16) T (Y =Y(S1,...,8P8q15---»80,),E(X)) — (X, Sing(X))
of the singularities of X, with Y’s obtained from X by replacing Sing(X) by £(X).

Their ezceptional loct can be written as

E(X) = (];[1 sp,.) I ((JL;J1 Ec,.) U (EEQ,)) ,

where £¢; = {D,(-_?")|1 < rj <lg; —1} express the union of the I¢; —1 prime divisors

lying over C;. All w‘D(cJ-) : DS-?’) — C; are smooth ruled fibrations provided
s

with two sections = C; and allowing, in general, exceptional fibers. Indeed, if

QS/':) is an individual point of Cj, itis supp(DS-jC")) anffj) = supp(D_¢;.))s

i.e. the support of a non-compact divisor, realized in the corresponding triangle
so = s(e1,ez,e3) by the vertex n(¥iri) of SQ(,-), and if (in the notation of 3.5. (ii))
Vi

(417)  SpH(Sg)(n¥5™) = {C(nl™), )1 < t0m) < ()]

viers)

then

lcj -1 b(n(Vj-"j))

- ] i T ( f )
i I(Qg))ﬂfcj = U U C(n(”’ J)’nta‘?j))

r;j=1 Wil

(i.e. exceptional fibers occur whenever b(n(%'")) > 1, see fig. 3).
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Fig. 3

Proposition 4.3. The global desingularizations (4.16) of X are all crepant, and
each of them differs from another one by finitely many simple flops, being realized
by elementary transformations which take place within the fans

{Zo(Sp), To(Se )1 <1< A 1<e<pl.

Proof. The verification of the first assertion follows from the construction and [99,
thm. 1.14., p. 142]. Now every rational curve C = C(n;,n;) representing an
1-simplex in one of the above triangulations Sp;,Sq,, which is a diagonal of a
convex quadrilateral (determined by lattice points), has normal bundle N¢,y =
Oc(—1)® Oc¢(—1) and can therefore be flopped (see [78, 2.3.2.1]). Simple flopping,
in our case, means the replacement of the one diagonal of a regarded convex lattice
quadrilateral by the other, i.e. the application of an elementary transformation.
Hence, the second assertion follows from cor. 3.9. O
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Definition 4.4. Although X and Y’s are not themselves toric varieties, we shall
call (4.16) the torotdal crepant desingularizations of X, since they can be completely
described by means of their local toric data.

Remarks 4.5. (i) Most of Y''s are projective, but, in general, there is no guarantee
that all of them will be projective. This is why we shall deal here with both pos-
sibilities. (Of course, all projective ones are CY threefolds.) For the construction
of pathological triangulations for crepant toric resolutions of abelian quotient sin-
gularities which lead, after gluing together, to nonprojective threefolds with trivial
canonical bundle, as well as for a combinatorial method of how one discribes the
projective ones, we refer to [24].

(ii) In both cases, Y’s admit Hodge decomposition according to a theorem of Deligne
(see [27, prop. 5.3., p. 121]). Moreover, all Y’s have the same Hodge numbers,
because the surgery of “flopping type” does not have any influence upon them (cf.
(77, 4] or (78, §5)).

(1) X can have crepant desingularizations other than the toroidal ones. Never-
theless, a general theorem of Kawamata-Matsuki [70] and Kollar [77, Cor. 5.6.]
informs us that the number of all projective crepant desingularizations has to be
always finite. The toroidal crepant desingularizations are, so to say, the ones which
can be characterized, from the combinatorial point of view, in the best possible
manner, because the corresponding “flopping loci” are easily controllable.

Before proceeding to the determination of the Hodge numbers of Y’s, we have
to introduce some more useful notations. We set a(P;) := #§(€p;), a(Q.) := #(&q,)
and we fix the enumerations

(4.18) Ep, = {DPIL < pi < a(P)}, g, = {DIPI1 < 0, < a(Qu)}
By Prop. 3.4. (i) we get

3

(4.19) a(P;) = %(lp'. - chd(agp‘),lp_.)) +1
pt

(4.20) and a(Q,) = E 5o, - Z ged(a{@,1g,)) +1
=1

Theorem 4.6. The Hodge numbers of the toroidal crepant desingularization spaces
Y of X are the following:

ROO(Y) = RO3(Y) = h3O(Y) = B3 (Y) = L,h» YY) = 0,Vp,q,p # ¢, + ¢ # 3,

A
(4.21) RUL(Y) =ZaP)+Z +ZICJ (k —1)

=1 =1

(4.22) RU2(Y) = RUHX) + Z(zc,. - 1)R°(C;, Og; (am(C35)))

=1
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(R12(X) =h1? (X) and h%(C;,Oc;(am(C;))) are known from the formulae (2.17)

prim

and (2.20).)

Proof. By (2.5) we know that h?4(X) = 1,V¥p,0 < p < 3 and hP9(X) = 0,
for p+q # 3,p # ¢q. Since am(X) = 0, formulae (2.6), (2.16) and (2.18) give
h*%(X) = h%3(X) = 1. The desingularization process alters only the remain-
ing non-trivial Hodge numbers h'! = A%% and h'? = h%!. Making use of the
Mayer-Vietoris homology (or cohomology) sequences (see {24], [101]), we deduce
the following additive splitting for the Betti numbers coming into question:

(4.23) b2(Y) = b2(X) + f (exceptional prime divisors w.r.t. 7)
(424) bs(Y) = bs(X) +)_(lc; = 1)a(C;)
j=1

The number of the exceptional prime divisors being located only over P; (resp. Q,)
is a(F;) (resp. a(@.)), while over C; lie exactly lg; — 1 ruled fibrations. Summing
them up and setting b2(Y) = A1I(Y), ba(X) = 1, we get (4.21) by (4.23). Finally,
(4.22) follows from (4.24), because h12(Y) = 3 b3(Y) — 1, b3(X) = 2(1 + h13(X))
and by (C;) = 2h(C;, Oc;) = 2h°(Cj, Oc; (am(Cj))). ]

Remarks 4.7. (i) By [32, 3.2.4. (ii)’ ] X is simply connected. Thus, Y’s are also
simply connected, because the fibers of 7 : ¥ — X are simply connected.

(ii) The above formulae depend, of course, on the defining polynomials of X. How-
ever, they turn out to be very efficient if one examines polynomials with special
prescribed monomial decompositions, without demanding the satisfaction of any
other extra conditions.

On the other hand, in certain cases, if each stratum X (7) is assumed to be defined
by polynomials, which are general enough, and if fy,..., fy can be rearranged in
such a way that (fi = ... = f, = 0) is quasismooth, Vp,1 < p < k, then one
can use a “gluing technique” of the so called relative Milnor fibers, in order to get
ezplicit formulae for h!"' and h!'?, depending only on w and d. This computational
method will be applied below. Previous results concerning the hypersurface case
(i.e. when k = 1) are due to Vafa [120] and Roan [101].

Another computation method for the case of hypersurfaces, which are embedded
in a Gorenstein toric Fano variety, was recently presented by Batyrev [7]. Batyrev’s
approach is mainly based on the study of the ambient space and its associated poly-
hedron and it is also applicable to partial crepant resolutions of arbitrary dimension.
The regarded Hodge numbers are expressible by the numbers of the integral points
of certain polyhedron faces. Moreover, for some families of hypersurfaces in spaces
corresponding to reflexive polyhedra, the classical involutive duality of convex sets
leads to a first precise mathematical interpretation of the so called mirror phenom-
ena, which had been initially observed by the physicists within the framework of
investigations of special conformal field theories.

Definition 4.8. For p, 1 < p <k, let X? be a w.c.l.

(4.25)
{[z1,- - y2m] € P Hwr, .., wm)lfi(z1,e o y2m) = oo = fol21,.. 0 2m) = 0}
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with deg(f,) = d, and X := X* := X(4, . 4,)» X° 1= P™}(w). X will be called
overall well-stratified (w.r.t. the above enumeration of its defining polynomials) if
X7 is well-stratified (see 2.36) for all p’s.

Definition 4.9. Let X = X(4,, . 4,) be an overall well-stratified w.c.i. with a fixed
enumeration (4.25) of its defining polynomials. For all p, 1 < p <k, (CN(X?*),0)
is the zero locus of the holomorphic function germ f, : (CN(X?~1),0) — (C,0).
For a sufficiently small € > 0 we consider the open ball

B.(0) :={z € C" :[[ z || <e}.

CN(X?)NOB,(0) is a (m— p—2) -connected (2(m — p) — 1) -dimensional orientable
C* -differentiable manifold and CN(X?) N B,(0) is homeomorphic to the cone
{tz|0 <t < 1,z € CN(X?) N IB,(0)} over Lk(p) := CN(X?) N 8B.(0). Lk(p) is
called the relatwe link of the origin in CN(X?) w.r.t. CN(X*™1). By assumption,
the set of critical points of f,|cn(xr-1) consists only of the zero point. We can
therefore choose € >> ¢’ small enough in order to construct two fibrations

ot (folon(xe-1) (B« (0)) 0 B.(0) \ {0} = B..(0) \ {0}
and

~

Jo
Il fo

Yp = : Lk(p — 1) \ Lk(p) = S*.

The inclusion 0B, ,5_(0) < (Be(0) \ {0}) is an homotopy equivalence and conse-

quently all topological properties of the first fibration are preserved {up to homo-
topy) by its restriction over the circle 0B ,;_(0). By identifying 0B ,%(0) with the
unit circle $? via the map 7 — 27,
§1, which we shall denote again by f,. f, and ¢, are (in this sense) fiberwise
diffeomorphic in the category of the locally trivial fibrations over S! and define
the relative Milnor fibration of CN(X?) w.r.t. CN(X?~Y. The fibers F? are
homotopic to a bouquet S™P V...V S™? of (m — p) -spheres (see [58]). The
number of these spheres is called the relative Milnor number mil(F?) of CN(X?)
w.r.t. (XP71). It is easy to see that the topological Euler-Poincaré characteristic
of F? is given by e(F*) = 1 + (—1)™Pmil(F*) and mil(F?) = rk(Hm-,(F?,Z)).
F? is furthermore diffeomorphic to {(21,... ,zm) € C*|fi(z1,... y2m) = ... =
fo-1(z1,. -+ y2m) = 0, fo(z1,... ,2m) = 1} and its associated characteristic auto-
morphism fj, : F? — F?, coming from the fiber transport via the standard generator

of m1(S1,{1}), is given by bo(z1,... ,2m) := (4,  (z1,... yZm) = (Cé‘;‘,... ,Cdp Zm)-

we regard this new restricted fibration over

For an X as above and indices 0 < r, £d,—1,0< s, <dp,—~1,1 < p <k, we
introduce the following index-sets and enumerate them increasingly:
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Ny(r,) = {i|1§iSm2 r:,iwi €Z}={u§r”),... yre) },

., *Pop(rs)
= - . Tpde — {glre) (rs)
._.P(rp)'_ {e|ISeSP ‘dp ez}_{ 1p1-“, ﬂp?rp)},

SHW
T(rp,sp) = {tll <t<L a(rp) . .p_y‘(l € Z} — {Tl(rpusp)’ . T(T‘pyap) } ’

dp Y Y(T0,55)

3,d
V(Tp,sp) = {lll <ILB(rp): _pig'_’l € Z} - {vi‘l'pvﬂp)’. . v(rp,sp) }’

dp ? Vep(Tp18p)

{ri|l <rp <di—1 with ak('rk)—ﬂk(rk)=2}, if 7=k
{rjlt £7r; <dj —1 with ax(r;) —B(rj) =2 and

Ni(rj) # Ni(r), V1,7 +1 <1<k and

Vr,0<r <d -1}, if 7#k

£ .=

where the j in the last expression is bounded by 1 < 7 < k and
{7:1< 5 <kLO £ 3} = {5,...,5 )} Furthermore we need the following
abbreviations: ‘

-1

ep(7p,9,) Yo(rpo.8p)
3(TP15P) = H de("p) H W (rp) )
1 vi{rp.ap) Y (rpi0p)
=1 t=1 ™,
Dp(rp:8p) 1=
e(p)
= Z(—-l)'Di dE(rp) yee ,df(r,,) We(p)—i W rp)  yeee W (rp) R
i=0 vi(rp,ep) L(Terte) Lrp01p) Lrpiep)
- tp(rpiap) 1 Tplrpiep)}

defined by means of the summetric polynomials (2.7), (2.8), with
t(p) = '7p(rp,3p) - 5p(rpy Sp)a

( )_{0, if e¢(p) <0
AL T 3(rpsp) - Drpnsy)s I e(p) >0
) dp—1
g ”E,Z:o(l &(7pr$p))
and
(Jx) {0’ if ga=1
I WA A I NP
with
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0, if /B'ro‘) 0 S Teo S da’ - 1, with NU’(TU) = Ni*(rj'\)
.‘}5-:) = gg), if 37, =r, with 0<7,<d,—-1 and

N,(fa)=ij(rjA),Va,ISUSj,\-l
for1<oc<jiy—land1 <A <q

Lemma 4.10. Let F?(r,) := (F"’)";P denote the fixed point set of h,?. Suppose
F?(r,) # ©@. Then

FP(r,) ={(z1,. y2m) €C™|fj(z1,... y2m) =0,V5, 1 <7< p—1,5 € Z,(rp),
folz1,.-yzm) =1 and 2z;=0,Vi,1<i1<m,i¢ Ny(r,)}

is an affine complete intersection of dimension ap(r,) — B,(r,) w.r.t. the weights

{wyg,-,,),... ,wy(rp(; )} in the a,(r,) variables Z,tre)s ,zu(,,,() ) with no singular
apirp aplrp

points other than the origin. F*(r,) is also diffeomorphic to the relative Milnor
fiber w.r.t.

fo: ({(z,,('p)a--- 12 () ) € Cap(rp)lfj(Zy(rp),... V2 (rp) ) =0,
! 1

ap(rp) ap(rp)

Vja 1 SJ S P 1).7 € EP(T.O)})O) — (C)O)

Proof. Let t := C;: and consider the maps ¥, = (f1,...,f,) : C™ — C?, resp.
C™ 3z +— "P,(z) :=¢,(t-z) € C°, where t - 2 := (t¥'zy,... ,t¥™2z,,). the chain
rule gives

D(‘¢,(z)) = (Do(t - 2)) - diag(t™, ... ,t*m) = diag(t™, ... ,t%) - (D,(2)).
For z € F*(r,) we have t -z = z and therefore

%o i cicm i< <0
z; zi

This means that

af; 0 if { either i¢ Ny(rp) and j€Z,(r,)
—_— 1 . —

Oz; or i€ Ny(r,) and j €& Z,(r,).
On the other hand the functions {f;|j ¢ =,(r,)} are constant on

{zeCt-z=2}={2€C™|z;=0,Vi,1<i<m,1 ¢ N,y(r,)}

and therefore vanish. Thus, F?(r,) has the above form. Moreover, for every point
20 € (F*?(r,) \ {0}), we get for the Jacobian block matrix:
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rk ( g0 ) ievatey = Bplrp)

Je-p(rp
and F?(r,) cannot have 2° as a singular point. a
Now h, induces the automorphism:
Wi “ula)
Do(re) s F2(ro) 3 (20,rpy5ee 52,0000 ) (Ca, " 2,000 Gg, 2 Jon) ) € FPry)
°p rp °P Tp

and the cyclic group (h,(r,)) generated by h,(r,) has the order

— dﬂ
T ged {wili € Np(rp)}

For 0 <r,<d,~1,0<s, <d,—1, weget FP(r,)00(m)"" = Fo(r,) N F?(s,) =

Fo(r,,s,) and Fo(r,)0e(e)"® = Fe(r,)0e()' if 0 < s < d, — 1 with s, =
sp(mod(d,,)). As in the previous lemma, we can conclude that F*(r,,s,) is an
affine c.i. of dimension e(p) with 0 as the only singular point (for ¢(p) > 0). From
the Lefschetz fixed point formula we deduce:

d

dy—1
1—e(F?(rp)/(ho)) =1— ! e(F?(r,)0e(7e)"") =
Te 3,=0 .
| de =
(4.26) d_ Z ?(T0:55)) dp Z (1 — e(FP(rp,sp)))-
p=0 3,=0

Theorem 4.11. Let X = X(g4,,... 4,) C P"7Y(w) be a well-formed, overall well-
stratified c.i. with m —k = 4, am(X) = 0. Then the non-trivial Hodge numbers of
the toroidal crepant desingularizationsm:Y — X of X are given by:

(4.27) AU (Y) = %e(}’) +RI2(Y), where
r dp—1
(4.28) Z E g(") and
p=1 r,=0

@20)  BME) = KX - (z S @+ sz:»)

A=1 ry €LUN)

Proof. (4.27) is obvious. By prop. 3.2. we can see that for all strata X; of X and
IGMcC{1,...,m},

i (W-I(X]\U{XM : Igl\/f})) —}X;\U{XM : Igﬂ/f}
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is a fibration with e(fiber) = ¢y (cf. 2.5., 2.18.). The stratification of ¥ gives

(4.30) eY)=>_ (Z(_1)l”+“'e(x.,)) cr

I IcJ

By assumption, X := X? N P; (in the notation of 2.5.) is a g.s.c.i. Since Xf
appears as the support of a subcomplez in a topological triangulation of X[ -1 (see

ETB:];), the e]>§act cohomology sequence concerning the complements U# := X#~'\ X¢
13, p. 52|):

L= H(UL,Q) = HI(X!,Q) = HI(XS,Q) = HY (UL,Q) — ...

yields: e(U?) = e(Xf™') — e(X?),¥p,1 < p < k. Summing these k equations
together, we get for X := X ¥ :

k
(4.31) e(X1) =e(Pr)— Y _e(Uf)

p=1

If we set I, := {I C {1,... ,m}|U] # @}, then e(Y), according to (4.30) and
(4.31), can be written as:

(4.32) e(Y) = Z[e (Pr)—e(U{PJI G J}) ]cI—Z > [elUf)—e(VIUSII G TD]es

=1 I€1,

1, if [Il=m-1

0, otherwise

Combining this with e(Pr) — e(UW{P I G J}) = {

we have:

m k
(4.33) e(Y) =) wi—» Y [e(Uf)—e(U{USI G I}

i=1 p=1 I€T,

Defining U}’ := UJ \W{U4|I G J}, we show similarly

(UP) = e(UF) — e(UUSI G J}) and

(4.34) e(U) = > e(UF), VIEL,
ICcJ

The transition from the local to the global data can be achieved via the relative
Milnor fibers F*, by identifying F?/(h,) and U? = X?~1\ X by means of the
projection
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G F?3(21,...,2m)— [21,... ,2m]) €UP, forall p, 1<p<k.

Moreover, for I € Z,, q;*(UY) is b, -invariant and

(4.35)
Hrpl0 < rp <dp—1: F?(r,)/(h,) DUT} =
Hrol0<r,<dy—1:9% = id on q;}(UP)}=

d
=f{rpl0<r, <d, - 1: C—p|rp} =cy.
T

Hence (4.33), (4.34) give:

k m k
= Z I: Z e U;-” ] (since Zwi = de)

p=1 Iez,

r dp—
49 5 [dp S S rwIEe ) 5 U2 })}

p=1 rp=0

p=1 r,=0

k d,—1
(4L_§4) Z {dp — E G(Fp(rp)/(bp))]

ko dp—1
= > - e(Fo(r,) /(b))
p=1 rp=0
dy—1

(4,26) Z Z g2,

p=1 rp,=0

because e(F?(r,,s,)) = 1 + (=1)*Pmil(F?(r,,s,)) = e(r,,5,) by the formulae of
Greuel and Hamm in [52, Cor. 3.8. (b), p. 76]. So (4.28) is proven. Now if we
define J; :={1,...,m}\ Nj, (rj,), VA, 1 < A < g, we have

SSt(X) = {Xy, 1 S A< q).

(Warning (*) ! Xy;, represents the same curve for all r;,’s of the form ry,
d;
fj.\ . ﬁé—, 1< tj’\ < erjk )

ERY

On the other hand, for all A\, 1 < A <gq,1<r;, £dj, — 1, we get:

by(X,,

) =2 (X, ) =2 e(Py,, 3 (U5, )=
p_.

=2 - {(m - 1) - [(m _2) _'ﬁj.\.(rj,\)] + 1} + Ze(Uih)

p=1
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(Note that exactly ja — B8, (r;,) of the U5 ’s are empty !)
LY

Bisn(riy)
1 Ue( JA h . ( JA)
== ) (I—eUy = )= (hereis 70 =3
u=1 I
-SJA(TJ_\) ( J‘\ ﬁl;(r.'l';)—l r;
(Eu ) —_— (eu A ) (JA)
Z gr (u-“) Z 9r (r, ) T I
u=] p=1
(e7) i)
by the identification of U} "( | ) with Fé (rﬁ(rh))/(hf(rh)) and for all rg(r_,-x)’s
t Tia u u u

for which Ns(rj'\)(rj,\) = Nj, (rjA) holds.

If C is an irreducible curve in SSt!(X) with C = XjrjA for some A € {1,...,q},
we have exactly ¢ o~ 1 exceptional prime divisors of ¥ lying over C. To express
Z{(lc — 1)b;(C)|C € SSt(X)} in terms of d and w, it is sufficient (by (*)) to sum
our by (X_],J,A Y's over all A’s and r;, s included in £U*}. The representatives of the
required additional summands, which occur w.r.t. each stratum, can be obviously
abbreviated by Qif-f:) Hence, the above sum equals

S % (06 +o)

A=1 Tiy ecly)

and (4.29) follows directly from (4.24). a

QW
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§5. Intersection forms and [c;]-linear forms

Let X be a well-formed, well-stratified q.s.c.i.

X =Xa={[z1,-- yzm] € P Y W)|fi(21,.-. y2m) = ... = fi(z1,... ,2m) = 0} of
dimension 3 with am(X) = 0, such that all curves C; in SSt!(X) are nondegenerate
in the sense of 2.32. (We shall keep here the notations, which were introduced
at the beginning of §4, in order to avoid lenghty repetitions.) By theorem 2.37.,
Pic(X) is generated by the class of Lx = Ox(nx) (with nx given by (2.24)), and
(X,Lx) is polarized. In this section, we shall study the forms qg and [cz]?}, which
are associated to the crepant toroidal desingularizations # : Y — X of X (cf. 1.3.),
by using their evaluations at the members of the natural Q-basis

By := {c1(Ly),{c1(Oy(D))|D exc. prime divisor € £(X)}}
of Picg(Y'), where Ly := n*Lx.

Theorem 5.1. Let 7 : Y — X be a crepant toroidal desingularization of X. Then:
(i)
(5.1) gy (Ly,Ly,Ly) =L} =L%

(ii)

(Y,Ly) is a quasi-polarized threefold

(iii)

. 0, for1: >0
(5:2) R Ly) = { RO(X,Lx), fori : 0
(iv)
(5.3) [Cg]y(Ly) = (cz(Y) - Ly) = (e2(X) -Lx) = 12h0(X, Ly)- QL?\(

L3 and h%(X,Lx) = k%X, Ox(nx)) are given by (2.27) and (2.20).)
X

Proof. (i) Obvious by L}, = deg(r)L% and deg(x) = 1.

(i) For an arbitrary curve C on Y the projection formula gives: (Ly -C) =
(Lx - (7.C)) > 0 and therefore Ly inherits its numerical effectiveness from that
of Lx. Ly is also big, since L} = L3 > 0 by (2.27).

(iii) Ist case: Let us first consider the case where Y is projective. Applying
Kawamata-Viehweg vanishing theorem to Ly (cf. [76, 1.8.]) we get

h{(Y,wy ® Ly) = R*(Y,Ly) =0, ¥i,1 > 0.

2nd case: Let now Y be arbitrary. We shall show that, even in this case, the above
equality remains valid. Since X contains only quotient singularities, i.e. special
rational singularities, we have
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Ox, fort=0

0, forz >0

which means that, by the projection formula for direct image sheaves (see [47,
12.2.3.2, p. 402]), one obtains:

Rir,Ly = R'm,(7*Lx) = R'(m.(Oy ® m*Ly))
: Ly, fori=0

=~ (Rr,0y) @ Lx
(R'm.Ov) @ Lx {0, for i > 0

On the other hand, the Leray spectral sequence {E, = P, ;5 E#7}, which is as-

sociated to # : ¥ — X, converges to the term E; = ... = Eo with E;J
HY(X,Rin,Ly) abuting to H*/(Y,Ly). Thus, for all i > 0 : H'(X,Lx)
HY(X,R°m,Ly) = H(Y,Ly) (comp. [61], Exc. III 8.1., p. 252), and it is suf-
ficient to prove that H*(X,Lx) = 0, Vi, > 0. This can be done by applying
a suitable version of Grauert-Riemenschneider vanishing theorem (see [108, thm.
7.80. (f), pp. 157-158]) and taking into account the ampleness of Lx and the
triviality of wx.

Finally, from the connectedness of the fibers of m and the projection formula, we
obtain H°(Y,Ly) & H°(X,Lx). q.e.d.

(iv) Since wy = Oy, Atiyah-Singer-Hirzebruch version of Riemann-Roch theorem
(cf. [5, p. 20], [63, p. 155 and p. 187]) express the Euler-Poincaré characteristic

R

3

x(Y,Ly) =) (-1)'A*(Y,Ly)

=0

of the sheaf of holomorphic sections of Ly as follows:

Lgx; 4 () Ly)

(5.4) x(Y,Ly) = 5

Hence, (5.4), combined with (5.1) and (5.2), implies

(c2(Y) - Ly) = 12x(Y,Ly) — 2L} = 12h°(X,Lx) — 2L%.
0

Lemma 5.2. For a prime divisor D of a smooth, compact complex threefold Y
with trivial canonical bundle we have:

(5.5) K}y =D?

(5.6) (c2(Y) - Oy(D)) = 12x(D,Op) - 2D?
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Proof. (a) The adjunction formula and wy = Oy give

wp Ewy@0Oy(D)|p = Op(D) = Np;y = Kp = ci(wp)([D)) = }(Np,v)((D)]) =

(b) If Tp, resp. Ty is the tangent bundle of D, resp. of Y, then the normal bundle
sequence 0 — 7p = Ty|p — N p;y — 0, combined with Noether’s formula and
(5.5), implies

(Tyv|p) = «(Tp)c(Npv) = ¢(D)c(wp) =
(14 (c2(Y).- Oy(D))) = (1 + c1(D) + c2(D))(1 — e1(D)) =
(c2(Y) - Oy (D)) = =K} + ¢(D) = 12x(D, Op) — 2D°.

O

We start the computation of the intersection numbers containing exceptional di-
visors from £(X) by considering firstly the case of a D sitting over a dissident
point of X. (The computation will be done for a fixed Y, i.e. for a fixed choice of
triangulations Sp,,... ,8p,,8q,, .- »S@,-)

Theorem 5.3. The intersection numbers of an exceptional prime divisor D within
(I, €p) LI(ITE, £q.) with elements of £(X) U {Ly} are given by the following
formulae:

(1) If D = DS.I:';,) € Ep, (resp. D = D,(r,?:) € £g,) with ny, (resp. ng ) denoting a
vertex of @g,, (resp. of @g,, ), then:

(5.7)  D® =12 - §(Star(R>onp;)(2)) (resp.D® = 12 — §(Star(Ryong, )(2)))

(5.8)
(ca(Y')-D) = 24(Star(R0mp,)(2))=12  (resp. (ca(¥)-D) = 2f(Star(Rzom, )(2))~12)

(i) For D = DY € €p, and D' = D(P)Egp with 1 < p;,p} < a(P;), pi % p’, one

computes (D?.D') and (D-D"?) by means of a single vectorial Z-linear dependence
equation:

(5.9) (D? - D")np, + (D - D*)npe + n(pi, pi) + n(pi, pi) = 0

where n(p;, p}), n(p}, p;) denote the unique vertices of g, ][{e1,e2,€3} for which
s(np_.,np:_,,n(p,,pt)) and s(np,,ny,n(p}, pi)) form two distinct 2-simplices of Sp;.

(The intersection numbers (D?-D'), (D-D'?) can be computed by the same method,
if D and D' correspond to vertices of &g, [[{ei,e2,es} and Q, is an individual
point. We do not exclude the case in which both D and D' correspond to points of
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9so0 \ {e1,€2,e3}, Le. (D, D') € (Ec;)?, where Q, = Qf,f) € C; for some j.)

(iii) The intersection numbers involving Ly vanish, i.e.

(5.10) (L - D)= (Ly - DY) =

(iv) All the other possible triples lead to vanishing intersection numbers.

Proof. (i) The equality (5.7) is a reformulation of (3.3) applied to the c.q.s.
Z(Ngp,, Xo) (resp. Z(Nagq,, Xo)). Since x(D,0p) = 1, (5.6) and (5.7) give (5.8).
(ii) is an immediate consequence of prop. 3.6. (ii).

(3ii) As Lx is ample, nLx will be very ample for some n >> 0. If D € £p, (resp.
D € £g,) and if we choose a general member M of the linear system |nLx|, such
that P; ¢ M (resp. Q. ¢ M), then supp(7*M) N supp(D) # @, =*M|p ~ 0 =
n?(Lf - D) = ((n*(nLx))* - D) = ((x*"M)? - D) = (x*M|p)* = 0 and n(Ly - D?) =
(7* (nLx) - D?) = ((x*M) - D?) = ((x*Mp) - (DIp)) = 0, e

(L% - D) = (Ly - D*) =0.

iv) is obvious. O
(iv)

Our next step will be the description of the intersection numbers which contain a
divisor D located over a curve C; € SSt!}(X), 1 < j £ . At first we shall need
some technical lemmata.

Lemma 5.4. Foreach1<j <k, 1<r; <lg; — 1, one contracts all

(—1)-curves of'D( i) by a birational morphism cp(’) D(C ) D(c i) which factors
into a composite of 25’._ (b(nt¥i>73)) — 1) blow-downs. Each D( G | is endowed with
the structure of a minimal (i.e. geometrically) ruled surface by :rr(J ). fo‘ - Cj,

so that ﬂf.j) o gof.j) = 7r|D(cJ). Moreover,

ri

£
2 S ',r')
(511) I\Dslfj) = I\Df.fj) - Z(b(n(ul J ) — 1)

vi=1

Proof. We consider the pull-back

b(ni'"ih)

1Ty ( o )

(ﬂ'lp,(fi)) (@ (J)]) E : [ytws.r 1C(n n*s J)’n't(u::"r'.’.i))
i (vjride
£y =1

of the divisor [Qf,i)], 1 € vj <&, under ﬂ-IDSF") : D(r?j) — Cj (cf. (4.17)), where
J

L;ry € N

b AME R

It should be first mentioned that ged ([,w;.-»[1 < tviri) < b(nl¥imi))) = 1. (In-
deed, if the corresponding fiber were multiple, then by [5, Ch. III, Lemma 8.3,
p. 91] one could conclude that O (fiber) would be a torsion bundle and therefore
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that H!(fiber, Z) # 0. But this would be not true, because the fiber is simply
connected.) Now since

~2 = (K ;) - (generic fiber)) = (K c;) - (7] )" (1QY])))
P’J' I'J' I'J'

there exists at least one index £*1'7) € {1,... ,b(n(* "))}, such that

(K ey - C(ntm), n{i3))) < 0. Making use of Zariski’s fibration lemma [5,

III. 8.2. (9), (10), p. 90], we deduce that (C(n(%"), ngf,fj‘.?j))))z < 0. Thus
(C(nl5m), nlT))? = —1 (see [5, 11122, p. 72]). We blow it smoothly down
by Castelnuovo-Enriques contractibility criterion [3, III. 4.1, p. 78], play again the
same game for the new fibration, and proceed succesively. After Zij=1(b(n(”i"'i))—
1) steps we obtain 7‘1',({') : DI 5 €. (5.11) is obvious. g
Lemma 5.5. For a curve C; = X(I;) € SSt'(X)1 < j < k, and ann € Z, we
have:

(5.12)
1
deglOc, () = 1 {K9(C}, Oy i g )~
cj 1 m—||j|
- hO(CJIKOC} (a.m(C;) — (n; Weiye-- ,wt{n—““)))_'_
+ K(C}, Ogy (am(C)))) - 1}
where C; is the g.s.ci. coming from the normalization w’t,-,... ,w; of the
1 m—1I;]
weights w,j,... ,w,; . (cf. 2.29). ’
1 me— Ij
Proof. Apply (2.23) with I¢; = gcd(wt{, oW, ). 0O

m—|IJ'|

Lemma 5.6. For the union Ec¢; of the exceptional prime divisors lying over a curve
Cj = X(I;) € SSt'(X), 1 <j <k and indices 2 < rj < lg; — 1, we have:

(5.13)
O e apte (Pr21) = Oy (Blry = aa ™y vvog ) and
(5.14)
A~ Cj .
OD(C_;)InD(cJ')(DS-,-C’)) = OC}(G(l =T+ a(Z );wf’;"" it |I-I))
r;=1MPs; Y

?

(Cy)

respectively. (The numbers a; ?' and agcj )

are determined by lemma 4.1.)

Proof. The application of resolutions (4.14) to the singularities occuring along
Ne,;x and (4.6) give rise to the following relations (cf. (103, thm. 1]):
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Cily A C; C;
OD(Ci)lan'fj)(DE‘ji)l) = Oc;(rs - o) ® O, (15 — lc;) - o 77)
ri=
OD‘Ci)lnpﬁf"}(Dgfj)) = Oc;((1 = 1y)- )@ Oc;((lg; —rj +1)- o)
rie

To get (5.13) and (5.14), we make use of rja(lcj) +(rj —lcj)agc") =lg;(rj — agcj))
(1- rj)agcj) +(le; —rj + l)agcj) =lc;(1—-r; + agc")) and of the isomorphisms of

prop. 2.7. 0
Theorem 5.7. The intersection numbers of an exceptional prime divisor within

Ec; with elements of E¢; U{Ly} (resp. of £(X)U{Ly }) are given by the following

formulae:
(i) For 1 < rj < lg; — 1 and g(C;) = h'(C}, Oc;) the genus of the curve C;, we
have:

H

(5.15)
¢;

(DICIY =8(1 - g(Cy)) — D (b(nl9 ")) — 1)

(5.16) J
&;

(c2(¥) - Oy (DIED)) = —4(1 - g(C})) +2( D (b(n37)) — 1))
(5.17) ’

(L} - D) =0
(5.18)

(D{)? - Ly) = —2deg(Oc; (nx))
(The latter is computable by (5.12)).

(i) For group orders |Gc;| = lc; 2 3 and indices 2 < rj < l¢; — 1, we get:

(5.19)
of j G

((Df-j ,_)1)2 _ngc,)) — deg(Oc;.(G("‘j - a(2 J);wt{,... ’w“:n—u_,-;)))

(5.20)
. j Cj

((DSJCJ))2 . foi)l) = deg(OC;(G(I - Ty + Ctg );wt{s- .. ’wt{ﬂ-”jl)))
(5.21)

(Dfi)l - D{E) . Ly) = deg(Oc; (nx))

(iii) The intersection numbers involving Dfnf" ) and other divisors of
(H;\:1 Ep) 1114, €q;) are already given by thm. 5.3. (ii). Moreover, if
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K>22,1<7,3'<k,3#37,C;NCy £#8,C;NCj = {ng'j’),... ,Q(j'j’)} denotes

€G.i")
an enumeration of their common individual points and Dif" ) (resp. Dgﬁ"') ) is

realized in the triangulation S ;. ;1) by D'? ) (resp. by D'® ), Vo, 1 < p<eiin,

A Q%"-j n(r; n(r;r)
then
€.t
((D(Cj))Z . D(Cj‘)) _ i ((D(P) )2 D(P) )
r; Ty - n(r;) n(r;:)
=1
.37
(D) (D)) = 37 (DL, - (D))
=1

(which are again known from thm. 5.3. (ii)).

(iv) All the other intersection numbers are zero.

Proof. We shall examine each case separately.
(1) (a) (5.15) follows from (5.5), (5.11), and from the fact, that the self-intersection

number of the geometrically ruled surface D,(,_?j ), which was defined by lemma 5.4,
is given by K;(Cj) = 8(1 — g(C};)) (see [61, ch. V, cor. 2.11., p. 374]).

J
(b) Since 12x(D,(p_?’),OD(cJ-))—Z(DEf"))s = 12(1 —g(Cj))—.‘ZKf)(Cj), (5.6) combined
rj rj

with (5.11) gives (5.16).
(c) As Ly is ample, nLx will be very ample for some n >> 0. If we consider two
general members M;, My of linear system |[nLx|, such that .

supp(M;) Nsupp(M3)NCj = @, then
supp(m* M ) N supp(n*Mz) N supp(D{F)) = @

fOra.lllSTijcj—land

n}(Ly - DI?P) = ((n* (nLx)) - (v* (nLx)) - D) =
= (("Mi) - (x"Ma) - DIV = 0,
te. (LY -D(rjcj)) =0

(d) ((DS-_?" ))2-Ly) cannot, in general, vanish, because it contains many informations
coming from the underlying curve C;, as we get:

(5.22)
(DY) - Ly) = (wa_;?.i) 'L”'Diff’) = (ODS_‘;:')(I{Dﬁij))(wlpf.fi))‘(l‘xlCJ‘)) =

= (ODg:;n(KDgfn) ' (Trngfﬂ)"(OC,-(G))) = (I&'Dgfj) : ((Wngfﬂ)'(G)))a
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where G = £_,0;Gi,0; € Z,1 < 1 < 7, denotes the divisor of C; which is
associated to the line bundle Lx|¢;, = Oc;(nx). Suppose that b(n{*™)) > 1 for
all1 <v; <¢;.

(The case in which b(n(*>7)) = 1, for some v;’s, can be treated similarly.) If we

assume, without loss of generality, that the set of curves, which are contracted by

SOS-J), is {C(n¥imi), n(""”))|2 < 7)< p(n(¥7))}, then we can describe the

relationship between the canonical divisors of D( %) and Dfpj i) as follows:

§ b(nirti))
629) Koo ~ () (K +Z( 5 Ez':;'z’n)

VJ-I t(“; J) =72

Note that

(5.24) KDf:.:-") ~ (—2) (a section of ﬁf.j)) + ('Frgf))'(ch + ES}’))|F51)

where E,(pf) is a divisor of C; with deg(Eg)) =C? and F,gf) a fiber of

,—rg) ;D,(,J,Cn — C; (cf. [61, ch. V, lemma 2.10., p. 373)).

Lx|c; is ample. So there is again an n >> 0 for which n{Lx|c;) is very ample. If
N; is a general member of |n(Lx|c;)|, such that

supp(N;) N {Q{",..., 0’} =&, then

g b(nlimi))
Supp((7r|D(c) (N )ﬂ U U C( (vj,rs) , SVJ;"JJ )
i

vi=1 (v f_,)_2

and therefore (5.23) gives:

529)  (Kyen - (rle)'(©0) = (o) (e - ((xlen(©))

i i

Combining now (5.22), (5.24) and (5.25) we get:

((DSCPY - Ly) =

() (=2C; + (7D)" (Ec, + B ) - (o))" (Za(w‘” )

=1

=2 (iDi(Ci'("fﬁf))‘(G )+Z° (7)) (Ko, + B pp) - (7)) (G4)) =

i=1 =1

(ZD ) = —2deg(G) = —2deg(Lx|c;) = —2deg(Oc; (nx)),
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because deg(cp(rf:)) =1, (ﬁ',(nf))‘(G,-) ~ Fr(jj), Vi,1<i<, (F,E_fj))2 =0 and
(CJ' . F,gf)) =1,

(ii) (5.19) and (5.20) follow directly from (5.13) and (5.14). On the other hand,

C; : C;
(D2, -DiG) Ly ) = (D2 ey ap€i )Ly o) = deg(Lix|c;) = deg(Oc; (n1x))-
b £

rj—l

(iii) and (iv) are obvious. O

Recapitulating, one can verify that the formulae of theorems 5.1., 5.3. and 5.7.,
R} (Y) +2
3
from elements of By. We shall now mention two additional arithmetical relations
which are fulfilled by the intersection numbers. (See Oguiso and Peternell (95,

(1.1.)].)

Proposition 5.8. Let # : Y — X be a toroidal crepant desingularization of X
and D € E(X). Then

which have been proved above, cover all triples that can be formed

(5.26) (D-L¥)* > (D* - Ly)(Ly)
(5.27) (D-L%) = (D? - Ly)(mod 2)

Proof. ([95]) Let m be a large odd number and S a general element of {mLy|. By
the base-point-freeness theorem, we can choose m in such a way, that S is a smooth
irreducible surface. Hodge-index theorem implies:

(Dls - (Lyls))? > (Dls)*(Ly|s)® = (D - L})? > (D* - Ly )(LY).

On the other hand, by Riemann-Roch theorem for smooth surfaces and by adjunc-
tion formula Kg = S|s, we get:

1 1
X(S,05(D1$))~X(S, O},) = £(Dls~(Dls) Ks) = 3 (m(D* Ly )=m*(D-L}))
which means that (D - L%) = (D? - Ly )(mod 2), because m = 1(mod 2). a

Remark 5.9. Basically, Oguiso and Peternell showed that the above proof remains
valid, even if (X, L) is an arbitrary polarized CY model, (Y, Ly ) a quasipolarized
CY model and 7 : Y — X a partial crepant desingularization of X. Note that the
congruence (D? - Dy) = (D, - D%)(mod 2) holds true for any divisor Dy and D, of a
smooth simply connected 3-dimensional variety Y with trivial canonical bundle and
torsion-free cohomology groups, and that it was already known by C.T.C. Wall {122,
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thm. 5, p. 361]. Furthermore, for such a ¥ we have: [c2]y (D) = —2D3*(mod 12),
for all divisors D, because the first Pontrjagin class equals —2c,.

Up to now we have calculated the evaluations of q$~ and [cz]g— forms with
respect to fixed triangulations Sp,,... ,Sp,, Sg,,... ,Sg,. As we know from prop.
4.3., two distinct toroidal crepant desingularizations of X differ from each other
by finitely many (simple) flops. Hence, up to an “arrangement algorithm” for the
1-simplices within our triangle subdivisions, the alteration of qg and [cz]?, due to
the choice of other triangulations will be clear if we describe just the “single-flop”
case.

Theorem 5.10. Let X = Xq C P !(w) be a well-formed, well-stratified q.s.c.1.
with am(X) = 0 and dim¢(X) = 3, and let 7y : Y71 — X be a toroidal crepant
desingularization of X with SSt°(X) # @. Suppose that P; € SSt°(X) is an isolated
point of Sing(X), for which §(®c,,) 2> 4, and that the corresponding triangulation
Sp; satisfies the following properties:
(i) There exist vertices ny,ng,n3,nq from so N Ng,,, such tbat 8(ny,n2,n3) and
s(ny,ng,ng) are two twisted 2-simplices of Sp,, and
(ii) s(n1,ng,ng,n4) forms a convex quadrilateral of Sp,.
Ifmy : Yo — X Is the toroidal crepant desingularization of X with Y, obtained by Y,
after flopping the curve C(ny,ng) (i.e: after applying the elementary transformation
T0(Sp,) of Th(Sp,) w.rt. o(s(ny,na,n3)), o(s(n1,n,n4)) and o(s(ny,ny)) ) and
if DS;:P‘), resp. DE{?P"), denote the exceptional prime divisors associated to nj in
Sp,, resp. in Sp'., V9,1 < jy <4, then their intersection numbers and their images
under the [c;]-form are related as follows:

(Sp;) (Sp;) (Sp;) (Sp;) (Sp;) (Sp;) (Sp;) ($p;)
((Da;™")? - D ™) = (D) - D ™) = (D™ - (D)%) = D™ - (D, 7))
-1, for (j,5') € {(1,2),(2,1)}
(5.28) = 1, for (j,7') €1{(3,4),(4,3)}
0, otherwise

V1,7, 1 < 3,7 <4. In particular, for all j € {1,2,3,4}, for which
n; € int(so) N Ngp,, we have:

(Sp;)\3 (Sp;)\3 -1, if je{1,2}
529 Dn- ! - Dn‘ ! -
( ) (Dn;) (Dn; ™) { 1, if 7€ {3,4}

Moreover,

(2l (D)) = fealyy (D7) = —2(DS™) - Clnyy 1)) =
2, if je{L,2}

_ (SP.') . —
(530) = 2(Dnj C(TL3,TL4)) { _2, if _] c {3,4}
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(Note that if we assume that INP(X) # @, Q, is an individual point of Sing(X),
and Y, comes from Y) just by an elementary transformation £)(Sgq,) of £4(Sg, )
as above, then the formula (5.28) remains true whenever one replaces P; by Q,.
Analogously (5.29) and (5.30) remain valid for all j € {1,2,3,4}, for which

ny € (30 n NGQ,) \ {ela €2, 63}-)

Proof. (5.28) follows from ny + ny = n3z +ny and (3.2) or (5.9). Similarly, one gets
(5.29) and (5.3) by using the formulae (5.7) and (5.8) (resp. (5.15) and (5.16)). O

Remark 5.11. Formulae (5.28), (5.29) and (5.30) can be viewed not only as re-
alizations of our computational algorithm for this concrete construction, but also
as special cases of more general formulae holding true for any flop along a rational

(—1,—1) -curve of an arbitrary smooth complex threefold. For such an approach,
see Friedman [42, 7.4. and 7.5., p. 123].

Remark 5.12. It should be noted that, after having given the description of the
strata of Sing(X ), the main part of the desingularization method which was devel-
oped in §4, does not depend intrinsically on the embedding of X's in P™~1(w),
and can be actually applied to any CY model being a V-variety with cyclic (or,
more general, abelian) quotient singularities and globally known singular locus {24].
If, however, one considers the special case, in which our Y’s can be represented as
strict transforms of appropriate crepant desingularizations of P™~1(w), then it is
possible to determine not only the evaluations of [cz]?, at a member of By, but also
the second rational Chern class c?(Y) € HY(Y, Q) itself.

Let us explain this more closely. We can conceive the space P™~!(w) itself as a
toric complete variety P™~Y(w) = Z(N(w),Z(w)) (in the notation of §3) by set-
ting N(w) := No/Zwg, No = B2, Ze;, wo := L2 wie; (e; :=(0,...,1,...,0) with
1 in the i-th place), L(w) := {{0i|l <1 < m}, together with their faces }, where

Rzon(WQ) + ...+ Rzon(wm), i=1
g; = Rzon(wl) +...+ Rzon(w,‘_l) + Rzon(w,*+1) + ...+ Rzon(wm), 2<i1<m-1
Ryon(w1) + ...+ Ryon(wm-1),i=m

and n(w;) := e; + Zwo, Vi, 1 < i < m. If we assume that P"~!(w) is Gorenstein,
i.e. lem(wy,... ,wn}|E™ w; (cf. [10, cor. 6.B.10 (a)]), then, following Batyrev 7],
we can always construct a projective maximal crepant (in general partial) Th(w)
-equivariant resolution

#:P™Yw) = Z(N(w), S(w)) = P™}(w)

of singularities of P™~!(w) (by means of suitable projective subdivisions of the
SCRPC’s of £(w) gluing together to give ¥(w)) such that

fly=m:Y 2 X,

i.e. such that our Y appears as strict transform of X under #. Under these
assumptions we get:
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Proposition 5.13. Let 2(w)(1) = {h1,..., v}, v 2 H(B(w)(1)) = m, be the set
of 1-dimensional SCRPC’s of the fan ¥(w). Then:

(53) W)= Y {XOv(V(5)) - XOv V() }
1<i; <iz<w

Proof. 1st case: If ﬂa”"‘l(w) is smooth, we use the normal bundle sequence

(5.32) 0= Ty = Tomei (wyly = Ny jpmoi (1) = 0

which gives cQ(Y)- cQ(NY/ﬁ,m_l w)) = cQ(TPm_l(w)|y). Denoting the inclusion map
of Y in P™~1(w) by j : Y < #™~1(w) and making use of

v

(5.33) AP (w)) = [0+ Opons ) (V(5:)))
i=1
(see (71, p. 131]), ¥(V) = G (V) Wy -1 () = 0,
cQ(T]I-,,,,_I(w)|y) = cQ(j"(Tpm._l(w))) = j‘(cQ(Tpm_l(w))) and of the usual multipli-
cation rule, we get (5.31).

2nd case: If P™~1(w) is singular, then it admits at most Gorenstein Q -factorial
terminal singularities and therefore codimgm-1,,(Sing(P™~1(w))) > 3 (see [7]).

Consequently, ]f’m"l(w) is smooth in a neighbourhood of ¥ and (5.32) remains
exact (see [46, B.7.2., p. 438]). Furthermore, since P™~!(w) is a “Q-homology”
variety, as coming from P™~}(w) after simplicial subdivisions, it respects Poincaré
duality over Q ([13, ch. V]). Thus (5.33) is true too.

O

QNN
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§ 6. Topology change after flopping

As it follows from rem 4.5.(ii) and thm. 5.10., two distinct toroidal crepant desin-
gularizations Y7, Y, of an X do not respect, in general, the topological “triple cou-
plings” and the [cz] -forms, although they have identical Hodge diamonds. This
“typical phenomenon” leads to the conjecture that most of the pairs (Y7, Y2) will be
equipped with different topologies. (A geometrical method for the determination of
the number of all possible projective toroidal crepant desingularizations is described
in [24].) We shall illustrate here just an indicative example and explain how the
testing bilinear forms (cf. 1.4.) can be used in order to distinguish diffeomorphism
(resp. homotopy) types according to lemma 1.5.

Let X = X3 = {[21, 22, 23, 24, 25] € P(1,2,3,12,18)|236 42184212 + 23 +22 = 0}
be the Fermat hypersurface of degree 36 (with delta genus A(X,Lyx) = 2). It is
Pic(X) = ([Lx]), Lx = Ox(nx), with nx =1lem(1,2,3,6) =6, L% =6, A1 (X) =
bo(X) = 1, h13(X) = 182 (by (2.17)) and e(X) = 2(1 — R}?(X)) = ~362. The
singular locus of X can be written as the union Sing(X) = C; U C; of two curves
Cy 1= X{13) and C3 := X3 ) having the individual point @ := [0,0,0,-1,1] as
their intersection locus C; N Cy = Xy 93) = {Q@}. By prop. 2.30., we have the
isomorphisms:

C1 = (X36 C P%(2,12,18)) = (X15 C P*(1,6,9)) = (X C P?(1,2,3)) = Cy,

because, in the notation of 2.2., (2,12,18) = (1,6,9), p1(2,12,18) = ged(6,9) = 3,
p2(2,12,18) = p3(2,12,18) = 1 and therefore (2/,12',18') = (1,2,3). Since l¢, =2
and am(C}) = 0, the genus ¢(C;) = g(C}) of C; equals h°(C1,0¢,) = 1 and
by (5.12): deg(Oc, (6)) = $h°(Cy, Oc:(6(6;2,12,18)). Using the notation of 2.6.,
we get: 71(6;2,12,18) = 7(6;2,12,18) = 73(6;2,12,18) = 0, £,(6;2,12,18) = 2,
€2(6:2,12,18) = 6, €5(6;2,12,18) = 6. Thus, 6(6;2,12,18) = (6 — 0) = 2 and
deg(Oc, (6)) = 3(pt(2;1,2,3) — pt(—4;1,2,3)) = 3(2— 0) = 1. Similarly we have:

C; = (X3¢ C P%(3,12,18)) = (X2 C P¥(1,4,6)) = (X C P¥(1,2,3)) = C; = (Y,

(3,12,18) = (1,4,6), p1(3,12,18) = 2, p»(3,12,18) = p3(3,12,18) = 1,
(3, 12/, 18’) =(1,2,3),lc, = 3,9(Cy) = g(Cé) = 1,7(6;3,12,18) = v2(6; 3,12, 18) =
73(6;3,12,18) = 0,¢1(6;3,12,18) = 3,2(6;3,12,18) = £5(6;3,12,18) = 6,

1 1
9(6!3a 12? 18) = 5(6 - O) = 3,deg(002(6)) = g(Pt(3, l:2a3) - pf(—3; 13273)) =

1
—-(3-0)=1.
5(3-0)

Now the germ of a point P € Sing(X) is isomorphic to:

((C?/(diag(¢2,¢2)) x C, [0] x {0}), if P eCi\{Q}
(X,P) = { ((C*/(diag(Cs, ) x C, [0] x {0}), if PeCr\{Q}
(C*/(diag(es, ¢5. 63)), [O), if P=@Q
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We resolve an open neighbourhood of @ by means of one of the five toric crepant
morphisms Z(Ng,, L5(Si)) = Z(Ngg, Lo), Gg = (Z/6Z), corresponding to one
of the five possible triangulations &;, 1 < i < 5, of 3o, as they are drawn in
figure 4. Since these morphisms are compatible with the usual blow-ups along
Neyyx» Negyx, we can construct five (global) toroidal crepant desingularizations
m:Y; - X of X withe(Q) =1,AY) =1+(2+3)-1=5, hl3Y;) =
RU2(X)+(2-1)-14(3—1)-1 = 182+ 3 = 185 (cf. (4.21), (4.22)) and topological
Euler-Poincaré characteristic e(Y;) = 2(h*(Y;) — A13(¥;)) = 2 - (5 — 185) = —360.
Over C,,C; and @ are placed the exceptional prime divisors Dgi), {Dgi),Dgi)} and
Dg') respectively. (In the “toric picture” they are realized by D,,, {Dn,, Dns}
and D,,,¥:,1 <¢ <5, withn; = (%,0,%), ng = (%,%,0), ng = (%,%,0), ng =
(%,2,2), ¢, =(1,0,0), e2 = (0,1,0), e3 = (0,0,1).)




Thus,

Picg(Y:) = (Qe1(Ly,)) @ (&2, Qe1 (Oy; (D).

Moreover, it is easy to see that all five desingularization spaces are projective, i.e.
that ¥; is a CY threefold, Vi, 1 <7 < 5. Note that Y,Y; and Y; are obtained from
Y] after a single flop along the curves C(n;,n3), C(n1,n4) and C(n3, n4) respectively.
Ys is nothing but Yy being flopped along C(ns,ny4).

Proposition 6.1. Y; and Y;» do not have the same diffeomorphism (resp. homo-
topy) type, V1,1, 1 < 14,1 < 5,1 #1".

Proof. At first we compute the 5 - (;) = 175 intersection numbers which can be
formed by triples of {By;|1 < < 5}, as well as the images of the elements of these
bases under [c3]y;, 1 < 7 < 5, by using the formulae of theorems 5.1., 5.3., 5.7., and
5.10. All formulae, up to (5.19) and (5.20) for C;, are now directly applicable if
one takes account of the toric data of figure 4 and of the discussion preceding the
formulation of prop. 6.1. For (5.19) and (5.20) we need, in addition, to compute
deg(Ocy (8(2—as"?; 3,12,18))) and deg(Oy (8(—1+a5"; 3,12,18))) respectively.
Since (a&cg),agcﬂ) =(1,2),

6(0;3,12,18) =0, 71(1; 3,12,18) = 1, ¥2(1; 3,12,
£1(1;3,12,18) = 0, e5(1;3,12,18) = €3(1;3, 12,
which means that both of the regarded degrees vanish (cf. (5.12)).

The intersection numbers are given by the following table:

) =73(1;3,12,18) = 0,

1
18) = 1, we get 6(1;3,12,18) =

8
8

Nr. int. numbers/? 1 2 3 4 5
(1) (D)3 -1 0 0 -2 -3
@ (@0’ 0 0 0 -1 0
@ (@"M2.pfy -1 0 -2 0 0
@ (@20 -1 -2 0 0 1
(5) Py 0 0 0 -1 0
6 (D)2 DY) 0 0 0 -1 -2
M (DY DY) 0 0 0 0 0
8 ((@P» DY)y -2 -2 -2 -1 0
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(10)
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(32)
(33)
(34)

(35)

(Ly; - D5

. DY)

). DgY)

- DY)

D)

0 0
1 1
0 0
0 0

0 0
1 1
0 0
0 0

Correspondingly, the images of the elements of the bases {By;, 1 < i < 5} under
[c2]y; are given by the table:

Nr. images/1 1 2 3 4 5
1) lew@®) 2 0 0 4 6
@ [elw (D) 0o 0 0 2 0
3)  lealw(DS) 2 0 4 0 0
@) [elw(DP) -2 0 -4 -4 —6
(5) [e2)v: (Ly;) 720072 T2 72 72

In the next step we consider the testing bilinear forms of Y;

Sym?(Picg(Y;)) has dimension

AL : (Sym?(Pico(¥:)))? = Q, 1 <i < 5.

BN _ 58 )

Let M; denote the symmetric matrix {ﬂ%(bgi), bgi))|l < s, t < 15} defined by the

ordered basis

{ (') (LY)LY.) b(') (L "D(‘)) b(') (L ',D(l)) (') (L ”D('))

b(‘) (L l’_D(')) b(')

= (0, D), b =
i = (0%, D5),

6{ .= (DO, DY, 6 = (D, DY, b
by = (D§”, DY), 013 = (DFY, DY), b13) =

of Sym?(Picg(Y;)). We compute M;’s by the above tables.

P

(Dsl),D( )) b(') (D(l),D:(;)),
{7 := (D3, D§Y),

For typographical

reasons we write the entries of each of their lines between commas:
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[ [1728,12,0,12,-12,~288,0,0,0, ~288,144,0,~288,0,0, \

[12, -288,0,0,0, 84,0, —76, ~68, —4,2,0, —76, 72, —72],
0,0, —288,144,0,0, -4, 2,0, -6, —4, —140, 4, 70, 0],
(12,0, 144, —288,0, 76,2, — 76,72, —4, 4, 70, —84, 68, —72],
[-12,0,0,0,0,—68,0,72, ~72, —140, 70,0, —68, —72, 504,
[—288, —84,0, —76, —68, —8,0, -8, —4,0,0,0, -8, 4, 0],
[0,0,-4,2,0,0,0,0,0,0,0,—4,0,2,0]

[0,-76,2,-76,72,—8,0,-8,4,0,0,2, 8,4, —8],

[0, —68,0,72, ~72, —4,0,4,0,~4,2,0,4, —8, 11]
[-288, —4, —6, —4, —140,0,0,0,—4,0,0,0,0, —4, 6],
[144,2, —4,4,70,0,0,0,2,0,0,—4,0, 4, —4],

(0,0, —140,70,0,0, —4,2,0,0, ~4, 6,4, —4, 0]

[-288, —76,4, —84, —68, —8,0,—8,4,0,0,4, -8, —4, 0],

[0,72,70,—68,—72,4,2,4, -8, —4,4, —4, —4, 0, 20],
\ [0,—72,0,—72,504,0,0,—8,11,6, —4,0, 0, 20, —56]

/ [1728,0,0,0,0,~288,0,0,0, ~288, 144,0, ~288, 0,0\
[0, —288,0,0,0,—6,0,0,—144,0,0,0,0,0,0],
0,0, —288,144,0,0,0,0,0, —6,0, —144, 0, 72, 0),
[0,0, 144, —288,0,0,0,0,0,0,0,72,0, —144, 0],
0,0,0,0,0,0,0,0,0,—144, 72,0, 144, 0, 432],
[-288,-6,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
Mg = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0, —144,0,0,0,0,0,0,0,0,0,0,0,0,0],
(—288,0,—6,0,—144,0,0,0,0,0,0,0,0,0,0],
[144,0,0,0,72,0,0,0,0,0,0,0,0,0,0),
0,0, —144,72,0,0,0,0,0,0,0,0,0,0,0],
(-288,0,0,0,—144,0,0,0,0,0,0,0,0,0,0],
[0,0,72, —144,0,0,0,0,0,0,0,0,0,0,0],
\ [0,0,0,0,432,0,0,0,0,0,0,0,0,0,0) J

( [1728,0,0,24, —24, —288,0,0,0, —288, 144,0, ~288,0, 0], \
[0, —288,0,0,0,—6,0,—152,8,0,0,0,0,0,0],
(0,0, —288,144,0,0,0,0,0, -6, —8, —136, 8, 68, 0,
24,0, 144, —288,0, —152,0,0,0, -8, 8, 68, —168, 8, —144],
[-24,0,0,0,0,8,0,0,0,—136, 68,0, 8, —144, 576],
[-288, ~6,0, —152,8,0,0,0,0,0,0,0, 16,8, 0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
Ms = [0, —152,0,0,0,0,0,~16,8,0,0,0,0,0,0],
[0,8,0,0,0,0,0,8,0,0,0,0,0,0,0],
[-288,0, —6, 8, —136,0,0,0,0,0,0,0,0, —8, 16],
[144,0,-8,8,68,0,0,0,0,0,0,-8,0,8, —8],
0,0, -136,68,0,0,0,0,0,0, 8, 16,8, —8, 0},
[-288,0,8,—168,8,—16,0,0,0,0,0,8,—32,8, — 16],
k [0,0,68,8,—144,8,0,0,0,-8,8, 8,8, —16, 56],
[0,0,0, —144,576,0,0,0,0, 16, 8,0, —16, 56, —128] )

My
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/ [1728,24,12,0, —24, —288,0,0,0, —288, 144, 0, —288, 0, 0), \
[24,-288,0,0,0, 168, —76, 0,8, —80, 76, 72, —152, 0, —144],
[12,0,—288,144,0, —76, —80, 76,72, —84, 4, —64, —4, —4, —72),
[0,0,144, —288,0,0,76, —152,0,4, —4, —4,0,8, 0],
[-24,0,0,0,0,8,72,0, —144, —64, —4, —72, 8,0, 576),
[—288,—168,—76,0,8,—32, —16,0,8, —12,8,12, —16, 0, —16],
[0, —76,—80, 76,72, —16,—12,8,12, —10, 4,4, —4, —4, —6],
M, = [0,0,76,—152,0,0,8,—16,0,4, —4, —4,0,8, 0],
[0,8,72,0,-144,8,12,0, 16,4, —4, 6, 8,0, 26],
[—288, —80, —84,4, —64, —12, —10, 4,4, —8,0, -2, 0,0, 4],
[144,76,4, —4, —4, 8,4, —4, —4,0,0,0,0,0, 0],
0,72, —64, —4, ~72,12,4, -4, -6, -2, 0,4, 0,0, 28],
[-288, —152,—4,0,8,—16,—4,0,8,0,0,0,0,0, 0],
[0,0,-4,8,0,0,-4,8,0,0,0,0,0,0,0],
\ [0, —144,—72,0,576,—16,—6,0,26,4,0,28,0,0, —128] /

( (1728, 36,0,0, —36, —288,0,0,0, —288, 144, 0, —288, 0, 0], \
[36, —288,0,0,0,-252,0,0,84, ~156, 78,0, —156,0, 216},
0,0, —288, 144, 0,0, —156, 78,0, —6, 0, 12, 0, —6, 0],
[0,0, 144, —288,0,0, 78, —156,0,0,0, —6,0, 12, 0],
(=36,0,0,0,0,84,0,0, -216, 12, -6, 0, 12, 0, 648)],
[—288, —252,0,0,84, —72,0,0, 36, —24, 12, 0, —24, 0, —48],
[0,0,—156,78,0,0,—24,12,0,0,0,12, 0, —6,0],
[0,0,78,-156,0,0,12, —24,0,0,0,—6,0,12, 0],
[0,84,0,0,-216,36,0,0, —48, 12, —6,0, 12, 0, 45),
[-288, —156, 6,0, 12, —24, 0,0, 12,0,0,0,0,0, 0,
[144,78,0,0,-6,12,0,0,-6,0,0,0,0,0, 0],

|

Ms

[0,0,12,—6,0,0,12,—6,0,0,0,0,0,0,0],
[—288,—156,0,0,12, —24,0,0,12,0,0,0,0,0,0],
0,0, —6,12,0,0,—6,12,0,0,0,0,0,0,0],
\ [0, —216,0,0,648, —48,0,0,45,0,0,0,0,0, —216] ,

Using the computer programme MAPLE, we find their ranks:

I‘k(Ml) = rk(M:;) = 14, I‘k(Mg) = 10, rk(M4) = rk(M5) = 13.
For 1 G {1 ,5}, let Q; denote the quadratic form being agsociated to Mj,
(ns_), n. ,nt(;)) the signature data of £;, chpi(z) = Z}:"__O,ug-')zf the characteristic

polynomial of M; and /\(i) ,\52 the corresponding eigenvalues. Obviously,

(1) = nga) =1, n(2) = 5, ngi) = nés) = 2. Since M;, 1 <1 < 5, are real sym-

rnetrlc matrices, they have only real eigenvalues. Furthermore, according to the
spectral theorem, the triples (n T (_'), né‘)) give the numbers of positive, negative
and vanishing eigenvalues of M; respectively.

Let now )‘(1?,)‘5?» )\(5) /\(5) be the vanishing eigenvalues of M4 and Ms.

By Viéte’s root theorem, we get pm /\g'i) /\g'” and #(5) = )\55) /\553). If
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(ngf), n(_'i)) = (ngf),n(_s)), then we should have sgn(pg4 ) = (—1)“(-.')"'1 = (_1)“(-5)4'1 =
sgn(,ugs)), which would contradict MAPLE’s computations:

p$) = —576198190423640899584000 < 0

8% = 58528305311105828782080 > 0

Hence 04 and s (resp. [354 and ﬁ%, ﬁ% and ﬂ%) are inequivalent. Unfor-

tunately, (ng}),n(_l),n(()l)) = (nf),n(_s),nf)s)) = (7,7,1) and the above trick can-
not be applied to M; and Mj. Nevertheless, we can write Sym?(Picg(Y;)) =
Vi @ W1, Sym?(Picg(Ys)) = V3 ©® Wi, where Wi and W; denote the kernels of
the linear maps corresponding to M; and Mj;, and Vi, V3 the nondegeneracy
loci, and compare the so arising nondegenerate quadratic forms £; := Q, |y, and
3 := D3|y, of rank 14 over Q. Note that

Wi = ((0,0,0,0,0,1,—4,-2,0,0,4,0,1,0,0)) and
W; = ((0,0,0,0,0,0,1,0,0,0,0,0,0)).

In fact, £; corresponds to the symmetric (14 x 14) -matrix M3 coming from M;
after deletion of the 7-th column and of the 7-th row. If we regard {e,... ,es,
the generator of Wi, eg,...,e15} as a new basis for Q'5, then the matrix of the
quadratic form 9, w.r.t. it will be STM,S, where S denotes the change of basis
matrix. Deleting again the zero 7-th column and 7-th row we get the matrix:

/ (1728,12,0,12,-12,—288,0,0, —288, 144, 0, —288, 0, 0], \
(12,-288,0,0,0,—84,-76,—68,—4,2,0, 76,72, —72],
[0,0,-288,144,0,0,2,0,-6,—4, —140, 4, 70, 0],
[12,0,144,—288,0,—76,—76,72,—4,4, 70, —84, —68, - 72},
(-12,0,0,0,0,-68,72,—-72,~-140,70,0, —68, —72, 504],
[—288,-84,0,—-76,—68,—8,—8,—4,0,0,0,-8,4,0],
At [0,-76,2,-76,72,-8,-8,4,0,0,2,-8,4, —8],
1 [0, —68,0,72, —72, —4,4,0,—4,2,0,4, -8, 11],
[—288,-4,-6,—-4,-140,0,0,-4,0,0,0,0,—4, 6],
[1441 2: _4: 43 701 0, 0) 27 0) Oa _41 014: "—4]5
[0,0, —140,70,0,0,2,0,0,—4,6,4, —4,0],
[-288, 76,4, —84, 68, —8,-8,4,0,0,4, -8, —4, 0],
[0,72,70,-68,—72,4,4, -8, 4,4, -4, —4,0,20],
\ [0,~72,0,-72,504,0,-8,11,6,-4,0,0,20, —56] /

If 9, and Q3 were equivalent as Q-quadratic forms, then det(./’t;il) and det(./\:{3)
would be equal up to muliplication by the square of a number € (Q\ {0}). Luckily,
by MAPLE we get

det(M;) = —14286537432760320000,

det(M;) = —136139852325977063424,
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and

1

det(M;) 5_ 25 1 1
(Mdet(./‘;tg)) —788768(2119) (49298)2 ¢ Q,

which leads to the desirable contradiction. O

Remarks 6.2. (i) We should mention here, that if we wish (e.g. in another exam-
ple) to compare two nondegenerate rational quadratic forms with identical signature
data, whose ratio of determinants of their structure matrices w.r.t. our bases has
rational square root, then we have to make use of additional local tnvariants involv-
ing the Hilbert symbol of numbers taken from the field Q, of p-adic numbers. See
Serre [109, Cor. of p. 44].

(ii) It is now obvious from the above that for a given c.i. X = Xq C P™"!(w) (as in
§5) with at least two distinct toroidal crepant desingularizations, one can develop
a formal comparison algorithm (or, so to say, a weak C™ -classification algorithm)
for all Y’s. Let us describe it in broad outline:

Step 1: Find the number nx by (2.24) and the singular locus Sing(X) of X by
(4.1), as well as the type of the c.q.s. of each of its dissident points using lemma
4.2. :

Step 2: Draw a picture for the “toric triangles” corresponding to the dissident points
of X and determine on them all the “new” fixed vertices which are due to our group
actions (cf. §3). After that construct all the possible distinct subdivisions of these
triangles with respect to these new vertices. (For linear time algorithms for the
sorting of subdivisions of a plane triangle or, more general, of a simple polygon into
smaller triangles with prescribed vertices, see Clarkson et al. [19], Chazelle [18] and
further references given in these articles.)

Step §: Consider an arbitrary pair (Y7, Y2) consisting of two distinct toroidal crepant
desingularizations (4.16) of X. Use step 1, the first part of steli) 2 and the formulae
of §5, in order to specify the entries of the symmetric ( I i 33 B Sl (i 2V )
-matrices, say M; and Mj,, coming from the evaluations of the testing bilinear
forms [331, ﬁ% at the pairs formed by members of the natural ordered bases of
Sym?(Picg(Y;)), ¢ = 1,2. If M), M, have different ranks or different signature
data or - in the nondegenerate case - different discriminants, then Yj and Y; will
be non diffeomorphic. In the case, where the above invariants are identical, try
to use the “determinant trick” or p-adics (as it is explained in (i)). If this is still
not enough to distinguish the diffeomorphism types of Y7 and Yz, then try to make
use of another testing (real or rational) quadratic form and compare again the
corresponding invariants.

Step 4: If none of the criteria being introduced in step 3 is able to give a definitive
answer to the question, if Y7 and Y; are of different type or not, then throw (Y1, Y?)
into the “basket” of the “undecided cases”. (We do not know any example of a pair
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(Y1,Y2) belonging to the undecided cases, and we conjecture that the above basket
is probably empty !)

Step 5: Repeat for all pairs (Y7, Y2) of the second part of step 2 the procedures of
the other steps and close the flow chart of our algorithm.

NN
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§7. Appendix: On the Combinatorics concerning the Weighted
Partitions and the Counting of Integral Points of a Polyhedron.
From Euler’s “Partitio Numerorum” to Ehrhart Polynomials.

Let w = (w1,... ,wm) € N™ be again a system of “weights”. For a fixed n € Ny
we define:

PT(n;w):={(A1,... ,Am) € NET'IZ/\.-w,- = n}
=1
PT+(TL,W) = {(/\13 v yf\m) G le Z ’\l”wi = n}
=1

and pt(n; w) 1= §(PT(n;w)), ptT(n;w) := §{PT(n; w)). Obviously, pt*(n;w) =
pt(n — 2:7;1 wi; W),

The elements of PT(n; w) and PT (n; w) can always be found by means of stan-
dard polynomial time algorithms within the framework of the theory of integer
linear programming (see Schrijver {106]). Nevertheless, the precise determination
of pt(n; w) or ptt(n;w) as a “closed” functional expression of n and w is indeed a
very subtle problem. pt(n;w) has the following equivalent interpretations:

(a) arithmetical-combinatorial interpretation: pt(n;w) equals the number of non-
negative integral solutions of a linear diophantine equation and expresses the de-
numerant of the weighted partitions of n w.r.t. wy,... ,wy,.

(b) geometrical-combinatorial interpretation: pt(n;w) gives the number of the in-
tegral points of the rational polyhedron

(7.1)  P(nyw):={(z1,... ,2m) ER™| D wizmi =n, 2; 2 0, Vi, i <i <m}

i=1

with vertices (EﬂT’O’ ey 0)y .00, (0,0,...,0, ﬁ) Note that P(n;w) can be repre-
sented as the dilation P(n;w) = n - II(w) of the polyhedron II(w) by the factor n,
where:

(7.2) I(w) == {(y1,-. ,ym) ER™Y wiyi = 1,4 > 0,Vi,1 <i <m}

1=1

with vertices (;1)-1-,0,... ,0),...,(0,...,0,=%).

) Wy,

Since (1 — z™i)™! = 307 ¥, pt(n; w) is exactly the n-th coefficient of the gen-
erating function of F(z) := [[=,(1 — 2% )~! which was introduced by the formula
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(2.19) in §2. If we define pt(n; w) to be pt(n;w) for n € Ny, and to be given via
the combinatorial identity ([111, p. 206])

(7.3) > pt(—n;w)z" = -F(z7!), for neN,
n=1

(which means that we choose an extension of pt(n; w) on the whole Z different from
the one introduced in 2.26.), then we get the reciprocity relation:

(7.4 pt(nsw) = (1) 15(-n;w) (£ [35))

We are basically interested in the pt-functions, because they constitute the “com-
binatorial cornerstones” of our formulae (2.20), (4.22), (5.2), (5.3), (5.12), (5.18),
(5.19), (5.20) and (5.21). (Furthermore, PT(d; w) \ {0} is nothing but the param-
eter space of all quasihomogeneous monomials of degree d w.r.t. w.) The purpose
of this appendix is to emphasize the complexity of pt’s, to make some brief histori-
cal remarks, to remind certain {mostly forgotten) combinatorial formulae for their
computation, and to connect them with recent developments of the modern theory
of geometric invariants.

Let us regard the above interpretation (a) as our starting-point. The pt-functions
were first considered 1748 by Euler in his famous work [40]. He placed pt’s among
the most central themes of his “Partitio Numerorum”. Euler himself studied the
case where w; = 1, Vi, 1 < ¢ < m (and which, from now on, will be referred as
Eulerian case) and gave some preliminary computational rules. During the 19th
century, the investigations of these functions played a crucial role in number theory
and in invariant and partition theory. (For extensive historical comments for this
period the reader is referred to Dickson’s renowned treatment [29], Ch. III. Books
which devote substantial extracts to pt's or related functions, from the point of
view not only of the classical but also of the modern partition theory, are, among
others, those of Riordan [100], Comtet [20], Andrews [3] and Stanley [111].)

Euler’s researches were mainly continued by Cayley {17] (1856), Sylvester [115],
[116] (1857, 1882), Laguerre [80] (1876-7), Weihrauch [123], [124] (1875, 1877) and
Glaisher [48] (1909). One of their very first results is that pt(n; w) (resp. ptt(n; w))
can be written as a quasipolynomial of degree m — 1:

m—1
(7.5) pt(n;w) = Z cm_l_k(n;w)nm_l_k,
k=1
which means that the coefficients c,p—1-x{n, w) are periodic functions (with integers
periods) or, equivalently, that there exists an n € N and polynomials fo, f1,... , fn-1,
such that pt(n; w) = f;(n; w) whenever n = j(mod N).
They also used the splitting

(7.6) pt(n; w) = &(n'; w) + ¥(n; w)
where ®(n';w) denotes a polynomial in the variable n' := n — 237 w; (with
constant coefficients) and ¥(n; w) the purely periodic part of pt(n; w).

The asymptotics of pt’s are described by the following:
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Theorem 7.1. (Laguerre, Schur) The pt-function behaves asymptotically like:

. pt{n;w) 1
7.7 m = = Cm-1(nyw) =
( ) nl—»néo nm—1 ¢ 1(11, W) (m - 1)!(1-[?;1 wi)

Theorem 7.2. (Erdés-Lehner [39], Szekeres [117]) In the Eulerian case, for bign’s
and m = o(/n) (or even for m = of/n)), we have:

1 n—1 nm-!
. t(n;1,2,... ,m)~ — ~—_—
(78) pi(n; 1,2, om) m! (m - 1) (m — 1)Im!
In special cases, one can compute pt(n; w) or pt*(n; w) very easily. For example,
if wy =... =wy, =1, we get directly the binomial coefficients:
oy [ntm—1 4.4y [ n=1
w1y = (") ety = (121

On the other hand for n = m, we have:

Proposition 7.3. (Formula of Fergola (1863) and Sardi (1865)). If n = m, the
number pt*(n;w) is given by the formula:

(7.9) ptT(n;w) = l' det(M),
n!

where M denotes the (n — 1) X (n — 1) -matrix:

818n—1 + $n —S$1 —82 —S3 ... —8p-3 —8np-2 \
§18Sp—2 +8p—1 n—1 —8  —$2 ... —Su-4 —Sp-3
§18p—3 + Sp—2 0 n—2 =3 e —8p-5 —Sn—4
S18n—q4 + Sn-3 0 0 n-3 ... —Sp~g —Sn-5
$182 + 33 0 0 0 - 3 -81
\ 24, 0 0 0 ... 0 2/
while s; is the sum of those divisors of ¢ which occur among wy,... ,w,. (In the

Eulerian case, s; becomes the sum of all divisors of i, 1 <1 < n).

The first general computational method for the pt’s, due to Cayley, Sylvester
and Glaisher, is based on the decomposition of F(z) into partial fractions. pt(n;w)
is written as a sum of “waves” giving the coefficients of - in the development (in
ascending powers of &) of certain fractions depending on various roots of unity. The
purely periodic part U(n; w) of pt(n; w) in (7.6) is described in terms of “circulating
functions”, which have been introduced by Herschel in [62]. The “calculus” with
these circulators seems to be extremely complicated and belongs without doubt to
the (partially undecoded) “19-th century mystics”. For an introduction to it we
refer to the “Lehrbuch der Combinatorik” of Netto [92, § 84-95, pp. 140-158].

Weihrauch’s computational technique [123], when w;’s are pairwise coprime, was
somehow different and was complemented 90 years later by Ehrhart [35], [37], who
discovered some beautiful trogonometric expressions for ¥(n;w).
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Theorem 7.4. (Formulae of Weihrauch and Ehrhart). Let wy,... ,wm be pairwise
coprime. Then the first summand ®(n'; w) of pt(n; w) in the expression (7.6) is a
polynomial of degree m — 1. In particular, if 2 < m < 6, we have:

For m=2: &n';w)=(ww) 1n'

3
1
g "ow) — —1(2 2
For m=3: ®(n;w)=_2wiwws)” (n 12(2 w;))

=1

1
For m=4: &(n/;w)= (6wiwawswy)™ (n” - —(Zw?)n')

For m=5: &(n';w)=

5 5
1 1

-1 4 2N, 12
(24Hw,—) {n —(EZw‘-)n +ﬁ

=1 =

1 ° 252 1 ° 4
5(;%) +g(zwi ]}

=1

For m=6: &(n;jw)=

: -1 5 5 - 2y,,13 o 11 : 2\2 1 : 4 /
(1201_1101') {n _(Ezwi)n +§Z{§(Z]:wi) +g(;wi)}”}

i=1 1=

Moreover, the second summand in (7.6) can be written as

U(n;w) =Y dhuy(n),
i=1
1 $(wi—1)
where 1y, (n) = Smzg ; k(p) (for w; odd)
$(w;=2)
(=" 1 ,
busn) 1= i+ gy 2 ) (o i even)
are functions of period w; and
-1
m—1 1 = T W
K(p) = cos | (—5— = —(2n + Y _wj)p)r| | []sin(—>0)
=z

On the other hand, pt*(n;w) obeys to the reciprocity law:

ptt(n;w) = (—l)m_l@(z wi —n';w) 4+ (=1)" 71 (—n; w).
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Unfortunately, the above condition which has to be satisfied by the weights is
very restrictive as it covers, for instance, only the case in which we compute
R%(X,0x(n)) (cf. (2.20)) for smooth complete intersections X.

In the most general case, where w;’s are arbitrary, one has to take into consid-
eration the divisibility relations between them. Csorba [23], following a remark of
Weihrauch concerning the dependence of the coefficients ¢m—1—x(n; W) of pt(n;w)
(cf. (7.5)) on the Bernoulli numbers, gave formulae for this general case, which re-
duce the computation of ¢,—1-k(n; W)’s to the solutions of finitely many systems
of linear congruence equations with at most m — 1 unknowns. (Similar formulae
for pt*(n;w) were found independently by Vahlen [121].) To present them, let us
first introduce some useful notations.

(i) For 1 € k <m-—1,1<1< k and an index-set {#y,...,u} C {1,...,m} of
“length [” we set:

e(in, ..., 4) = ged(w;|1 £ 5 <m, j ¢ {i1,...,i1})
ey, .. i) = e(ir, ... yiem1,led1, - »im), V&, 1 S £ <

p(lin,. .. i) = (H e(’)(h,... ,i;)) (e(i1y..- ,il))lﬁl
{

!
T(ksir,... i) o= {(tiyy. - ti)[1 S8, Sk Vs, 1<s<L, and Y t;, =k}

2@y, ... 0) =

211 . . .
{Eff,’,l <€) i< RO Zw.,gff?___. n(mode(:l,...,z;))}

Furthermore, we define I(l) as the set of the following index-sets:

I(D) ;= {(i1,...,i)|1 €iy <m, V5,1 <s <! and ;<13 <...<74}

k=1
o ) e(iny... it))? m
ﬂ(:(’)(il, S x”)) = z(l,.(1 e(t)(sz,)---.il) and ﬂ(I(l)) - ( ! ) )

(ii) The Bernoulli numbers are defined by the series

(We shall notice that §(T'(k;21,...,4)) = (k — 1) ,

B;z? B,z! Bjz®
T _ L T + 127 Baz + 3T
et —1 2 2! 4! 6!
and a.re easily computable, as we have B; = %, B; = 35, Bs = 33, By = 35,
B; =% and in general, for 3 > 1:
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2j +1 j ‘ ~ :
( J; ) 22B1—(23;|' 1) 24132+(27;)r 1) 2°By—.. +(~1)"1(2j+1)2¥B; = 2;.

(ili) For 1 £ k £ m —1,1 <! <k, a fixed index-set (i1,...,14) € I{l), and
(Biyy.--tiy) € T(k;ir,... 1), ‘5:(‘)...,:', € =Z(¢1,... ,u), we define the function:

1,

6 =300 (5 () e

where

0, fo=2v+1,v>0
(_1)u_]B2u—1, fo=2v,v>0

Gp:=1, G := -——;—, G, := {

Theorem 7.5. (Formulae of Csorba (1914))
The coefficients ¢p—y—i(n;w) of pt(n;w) in (7.5), for k > 0, are given by the
following formulae:

(7.10)
Cm—l—k(n; W) =

(=D* : _ _
(m—1—k) [, w, Z pla,- 0 0) Z ......

=1 (i1,...,u)€I(I) g ezl®
i1 000t

!

...... > I1 zi', Fu (60 4)

(tiy oo i YJET (K3iy e i) £=1 <

In the following years, Israilov [66] was eventually the only one who carried on the
tradition of “Cayley-Sylvester era”. Combining the expansion of F(z) into partial
fractions with Mobius inversion law, he derived a “mammoth algorithmic formula”
consisting of subroutine summations, which reduces the computation of pt(n; w) to
the determination of elements of certain PT's corresponding to the Eulerian case.
To write it down in a “compact form”, let us introduce some special extra notations.

(i) For 1 <! < m and an index-set {j1,... ,71} C {1,... ,m} let e(j1,... , 1) denote
again

(i1, -y 1) = ged(will < i <my i ¢ {51,y 5i})
For1 <71 <m, 1< v <m, we define successively:
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R = {{Le(G)HL < 1 <m, 1 # i}
RY = RP U {e(f1,52)11 <51 < j2 <my i ¢ {51, j2})

.............................................

R R“’IU{e(ﬁ, L€ << <G <My i g e s du))

and R, := U R,

(i) For 1 <i<m,veNkeN, {j1,....5:} € {1,... ,m}, and s(ji,...,5!) a
divisor of e(j1,... ,Ji), we define:

FJHWE' + ifi ¢ {J,..., 51}
V(viiikis(h,oo5q0) o= { 1=GG g iR =0andi€ {5, .41}
—wllgzre o ik >0andi€ (... 0}

_ _ t! i . .
Ultivis(n, i) == ). 1753 (H V(i g kgs s ,;z)))
ko <t 1<+ Rm:
and for 1 <p<m-—1,

L(p;vis(iy, ... ,51) =

(_l)p_1z;;%ﬂl)r_ (HV v;1;0;8(71,. .. ,j,))) ( — ( (t; v; S(Jl, . ,j,))) ‘) )

Tp- i=1

where the summation runs over all (ry,... ,rp—y) € PT(p—-1;1,2,... ,p—1) and
ri=ry4...o 1.

(iii) Correspondingly, for 1 <1< m, 1<t <1i—1, we set:

0= coowpm T and
Y 0<p1,e. 1pm St (pr+ 1) (om + 1)
it Fpm=t
1—1 .
— i-1 E : (—=1)7r! 1 /Y@)\"
- (—1) (wl ves wm)"+1 (11 T-_J # )
=

where the sum runs again over all (ry,...,ri—y) € PT(1 - 1;1,2,...,1 — 1) and
ri=r1+...4+7i-1.
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Theorem 7.6. (Formulae of Israilov (1981))

(i) If the weights ws,... ,w,, are pairwise coprime, then we have:
(7.11)
-1
m . 1 wi—1 m
. _ (n+m'—1‘)[m~l] \ n_—1 w
pt(n;w) = Z At > (b [I0 =)
t=1 p=1 J:l
JFr

(ii} In the general case (in which we may assume that w is reduced), the number
of the weighted partitions of n is given by the formula:

(7.12)
(n 4+ m —q)lm-il
(m —1)!

m

pt(n; w) = ZA.'
1=1

m e(j)-1 m-1

m-—p-— [m— _]] vin

j=1 vy=1

=2 1<ii<..<ugm

m—1
(n+m—1—p)m=t-al
Z Z ZP(P; V;e(sju"- 75_f1)) (m—l—p)! Ca(jl,...,j;)'l-

(1) (2) p=1

Y Y S | TT0-

=1 (3) (4) g;}
By 2(1) we mean the sum running over all divisors (31,... ,71) of e(J1,... ,51) with

$(J1,--- 2 71) 1 Ri-1. Z(g) denotes the sum of all 1 < v < s(J1,... ,71), for which
ged(v, s(ju, ... ,j1)) = 1. 304 denotes the sum of all divisors s(i) of the weight

w; with s(z) ¢ R( —o- Finally, by 3,y is meant the summation over all indices
1 £ oi < s(1), for which ged(o;,s(1)) = 1.

Remarks 7.7. (i) As the right hand sides of the formulae of theorems 7.4 and
7.6. contain trigonometric and transcendental functions in their periodic parts,
the computation of the denumerants has to be made by using suitable approxima-
tion procedures. Sometimes it is enough to consider the “nearest integer function”
or other standard inequalities, but in general the minimization of possible errors

demands more sophisticated arithmetical methods. For some simple concrete ex-
amples see [20, pp. 109-115], [34], [38], [66, pp. 268-272], [111, p. 211] and (100,
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pp. 117 -123].
(ii) For the Eulerian case, Gupta [57] gave the following denumerant bounds:

ml \m—1 - m! m-—1

— 1 _
(7.13) ! (n 1) <pt(n;1,2,...,m) < 1 (""’ am(m 1))

For the general case, Lambe [81] derived the upper bound:

(7.14)

n + u(n; w) 71
-w) < [T1—
pt(n;w) < ( 1 )gcd(wl,... y W) Ll o
(R UL _2+i [w‘"ng(‘wh.., ,wl._l)] ’

u(m; w) i=m+ m 2ged(wn, ... ,w;)

1=3

where [-] denotes here the truncation to the nearest integer. (Note that u(m;w)
depends on the enumeration of the weights and that the above bound makes strange
[194 »

jumps”.)

Remark 7.8. Lee proved in [82] that, in fact, PT’s are enough to describe com-
pletely the power series expansion of any rational function in one variable. For
related topics see Stanley [111, Ch. 4].

Remark 7.9. Another reason which made the occupation with pt-functions very
popular, not only among the mathematicians but also among the bank clerks and
cashiers, was that these functions gave the answer to the money changing prob-
lem. (See Wilf [125, p. 87]). pt(n; w} represents namely the number of the ways
one can change an amount of money, say n, into coins or banknotes of denomi-
nations wi,... ,w,. An indicative example is that one given by Luckey [84] in
1933, who defends the introduction of the “4-Pfennig” coin (100 Pfennig = 1 ger-
man Mark) by using the argument that, for instance, 30 Pfennig can be changed
in pt(30;1,2,4,5,10) = 285 ways, if one makes use of the “4-Pfennig” coin, and in
only pt(30;1,2,5,10) = 98 ways if not.

Let us now proceed to the interpretation (b) of pt’s, which was mentioned at the
beginning of this section. By 1875 Weihrauch had already pointed out [123, pp. 99-
100] that the enumeration of non-negative solutions of linear diophantine equations
can be made “auf geometrischems Wege”. During the period 1955-1975 Ehrhart
([34], [35], [36], [37], [38]) developed a whole theory dealing with polyhedral enu-
merators.

Let P C R™ be a g-dimensional rational polyhedron. (By a polyhedron we mean,
as before, a bounded convez polyhedron, i.e. a convez polytope, which can always
be represented as the convex hull of finitely many points.) We define:

E(n;P):=HZ ™" NnP), ET(n;P):=§Z™Nint(nP))
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and the Ehrhart series:

Ep(z) : ZE )z®, with E(0;P)=1, and
n=0

Ef(z ZE+ (n;P)z", with E(0;P) =0, respectively.
n=0

Theorem 7.10. (Ehrhart (1967)) If ¢ > 0, then:
(i) Ep(z) is a rational function and there is a quasipolynomial f of degree q with

E(n;P) = f(n), forall ne€Np.

(ii) It is E*(n; P) = (=1)1E(—n; P), for all n € N, where E(—n;P) := f(—n), and
Ef(z) = (-1)™' Bp(z7?).

Remarks 7.11. (i) f is called the Ehrhart quasipolynomial of P. In particular, if
P is an integral polyhedron (i.e. if all the coordinates of its vertices are integers),
then f has constant (rational) coefficients and we call it the Ehrhart polynomial of
P.

(ii) In the notation of (7.1) and (7.2) we have obviously ¢ = m — 1, pt(n; w) =
E(n;n(w)) and ptt(n;w) = E*(n;7(w)), Vn € Ny, while pt(n;w) = E(n; n(w)),

Vn € Z (cf. (7.4)).

Ehrhart’s work was extended to various directions by Macdonald [85], [86], Stan-
ley (see [110}, [111] and the other references given there), Frumkin {43] and Betke-
McMullen [11]. They did not only consider quasipolynomials arising from arbitrary
systems of linear diophantine equations, but they also made use of techniques which
allow a precise study of the properties of general E(n;P)’s.

Especially Stanley connected E(n,P)’s with “magic labelings” of certain graphs
and with a whole “corpus” of interesting invariants appearing in the abstract com-
mutative algebra.

Even more recently, and parallel to algorithmic investigations of the counting of
integer points in polyhedra, like those of Dyer [33], Cook et al. [21], Banéry et al.
[4] and Barvinok [6], combinatorialists and algebraic geometers attempted to find
expressions for the coefficients a; of the Ehrhart polynomials

(7.15) E(nP)=1+a;(P)n+ax(P)n? + ...+ a,-1(P)n?™! + a,(P)n*

of a g-dimensional integral polyhedron P in terms of the geometry of P by means
of the theory of toric varieties.

It is well-known (see {25, §5.8]) that one can associate every integral polyhedron
P in a g-dimensional lattice M with a complete toric variety Z(N,Zp) (w.r.t. to
its dual lattice N) by defining the corresponding fan Ep as follows: If F' is a face
of P, let o in M denote the cone consisting of all vectors A - (z — '), where Ais a

nonnegative rational number, z € P and z' € F. Then (in the notation of §3) we
set Tp := {6p|F isaface of P}.
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Applying Hirzebruch’s version of Riemann-Roch theorem [63, p. 155], [46, p.
288], to the line bundle Oz(n £,.)(D) of a Ty- Cartier divisor D being generated
by its sections {47, p. 110], we get:

(7'16) X(Z(N, EP), OZ(N,EP)(nD)) =E(n1P)
and consequently

1
At
where Td(Z(N,Zp)) denot.es the homology Todd class of Z(N,Zp).

(7.17) a;(P) deg(D? ~ Td;(Z(N,Zp)))

In fact, (7.17) is enough to show that a;(P) is nothing but a linear combination
of the volumes of the intersection of P with the corresponding translations of the
subspaces which are perpendicular to the j-codimensional cones of Zp ([25, pp. 134-
135], [47, pp. 112-113]). Therefore, what one needs, is a geometric characterization
of the rational (not always uniquely defined) coefficients of this linear combination.

The last two coefficients of E(n;P) are actually easily computable, because by
the classical Pick’s theorem [96] (1870) we get:

(i) a4(P) = Vol(P),

(i1) ag—1(P) equals half the sum of volumes of the (¢ — 1) -dimensional faces (By
the volume of a j-dimensional face of P is meant the relative volume w.r.t. the
j-dimensional lattice in the j-plane containing it.)

For q > 3, however, the description of a;(P),... ,a,_2(P) by means of the “local
geometry” of Lp (resp. of P) turned out to be much more complicated. (Even for
q = 3, a;(P) cannot be given by only using the 1-dimensional faces of P.) The
determination of these remaining coefficients of E(n;P) became possible only after
the proof of “finer” versions of combinatorial Riemann-Roch theorem and after
further analysis of the corresponding Todd classes, due to Brion [14], Khovanskii-
Pukhlikov [71] [72], Pommersheim [97], Kantor-Khovanskii [69], Morelli [89] and
Capell-Shaneson [16]. For ¢ = 3, Pommersheim derived a formula for a;(P) in
terms of the lattice volumes of 1- and 2-dimensional faces of P and of functions
depending on certain Dedekind sums. He generalized in this way a beautiful formula
due to Mordell [88] (1951). Kantor and Khovanskii discussed the 4-dimensional
case. For another approach to the most general case, see Morelli [89, p. 208].

Completing this appendix, we shall recall the formulae of Capell and Shaneson
[16] as they lead to concrete computations and they connect, in a certain sense,
Sylvester’s “waves” with the “RR-arithmetics”. The latter was originally intro-
duced by Hirzebruch in his “Grundlehren”-monograph [63, ch. I, §1, and ch. II,
§9] and involved many useful properties of hyperbolic tangent and cotangent func-
tions relating the Todd classes with the L-classes. Some extra notations will be
again unavoidable.

Let P be a g-simplex with vertices in M = Z? and N be the dual lattice of M.
For each face R of P we set: Fr := {faces of P of codimension one containing R}
and Hg := Fg \ Fr. For a simplicial g-dimensional cone ¢ in N, generated by
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n1,... ,Ng, let ny,... ,ng be the unique primitive elements of N with n} - n; =0
for i # j, and & :=n}-n; > 0, N := £!_,Zn!, G, := N/N'. Furthermore, for a
g=mno+ N',let A,,;(g) be the number

/\n,'(g) :=exp(21r \/__]- ’Ynj(g))a

where v, (g) := —E,'ﬁ’ and

Gy :={g € Golhn;(9) #1,¥5,1 <5 < q}

(GY conmsists of the elements of G, having the form ng + N’ with ng lying in the
interior of the cone spanned by nj,... ,ng.)

Keeping now these notations, as well as their “relative” analogues for all the cones
of ¥p, in mind, we have:

Theorem 7.12. (Formulae of Capell and Shaneson (1994)).
Let P be a g-simplex with vertices in the lattice M. For 0 < j < q let rj denote
the coefficient of z’ in the power series

! (Vol(H)z) .
|Gsp| {E y(F) H ta.nh(Vol(H);g)}gZ t(R; 9),

F<R HeHr €6y,

R<P
where y(F) := |Gse| - [[1ex,.(Vol(H)z) and
t(R;g) := H coth{r V=1 ~E&(g) + Vol(H)z}.
HEFR

(7R’s are “measured” again via the sublattices corresponding to H’s.) Furthermore,
for any R < P with dim(R) = 7, let

. e Vol(R)
. 2973Gop| - [1er, VOl H)
Then the Ehrhart polynomial of P is given by

g
(7.18) E(n;P) = ersjnj.
—

Applications 7.13. The formulae of Capell and Shaneson can be applied for spe-
cial n’s in our specific cases. Let w := (wy,... ,wn) be a system of weights.

(1) If lem(wy, ... ,wn)|n, ie. if n =k lem(wy,... ,wn,) for some k € N, then
(7.19) pt(n; w) = E(k; P'(w)),

where P'(w) := {(z1,... ,2m) € R™| Y0, wiz; = lem(wy,... ,wm)} with vertices
(?UITICIH(UJ], cee 3 Wm),0,...,0), ... ,(0,...,0, ﬁlcm(wl peee s Wm)).
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(i) For an n € N, let 72 := n+ > 7 wi. If lem(wy,... ,wn)l}, ie. fa =
A-lem(wy,... ,wm) for some A € N, and if for a weight, say w,,, we have w,, = 1,
then:
(7.20)

pt(n;w) = ptT(7; w) = BY (7 Tl (wy, ... ,Wm-1,1)) = EX (N P(wy,... ,wm_1)),
where P(wy, ... ,wm—1) denotes the convex hull of the points (0,...,0),
(;—u]Tlcm(wl,... y Wm-1),0,...,0),...,(0,...,0, w:_llcm(wl,... yWm—1)). Thus,

pt(n; w) can be found by the reciprocity law of theorem 7.10. (ii) and the formula
(7.18) of Capell and Shaneson.
(i) f X = X4 € P™""Yw) is a well-formed BP-like (cf. 2.16.) quasismooth
hypersurface, then (2.20) gives:

(7.21) R (X, Ox(am(X))) = pt(d — Zw;;w) = pt*(d;w)

i=1

If one of the weights happens to be 1, (7.21) can be computed by (7.20).

(iv) In the special case in which m = 4, wy = 1, ged(wy, we,w3) =1, A4 1= n +
w) + we + w3 and & = A - lem(w;, w2, w3) for some A € N, one obtains (7.20) via
Pommersheim'’s formula for the tetrahedron P(w;,ws,ws) ([97, thm. 5, p. 17))
after having substracted the lattice points on its faces. The result is the following:

(7.22)
pt(ns un, Wz, Ws, 1) = E+(’\1 ls(wlaw2sw3)) =

1 1
= E(w?w%wg T3N3 — Z[wlwgwg(wl + wy 4wy + DTN+
1 1
+ {E(w% +wz +wy + 1T + Zl(wiwz + waws + wawy)T + wi + wj + wi]
— wy - DS(wy, ged(wa, w3)) — wy - DS(w2, ged(wy, ws))
— wjy - DS(ws, ged(wy, w2 )) } A-1

In (7.22) we use the abbreviations:

-1 -1
T:= (chd(w;,wj)) , Wl o=wy (chd(wg,wj)) , Vi, 1<i1<3.

i<J JF

Moreover, by DS(u, v) we denote the Dedekind sum of two coprime integers i and
v being defined by

= psten =3 (1) ()

i=1



where for an z € Q:

z—|z]-3%, z¢Z

@={; e

and |z] is the greatest integer < z.

(v) Formulae similar to (7.22), when m = 5, can be derived by the results of Kantor
and Khovanskii {69].

[N\
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