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ENUMERATIVE COMBINATORICS OF INVARIANTS

OF CERTAIN COMPLEX THREEFOLDS

WITH TRIVIAL CANONICAL BUNDLE

D.I. DAIS*

ABSTRACT. Minimal Calahi-Yau models' ean be roughly classified by studying the
behaviour of the linear form being indueed by their second Chern class on their nef
eone. Strict positivity of [C2]X on Amp(X) leads to CY models X of general type. \Ve
eonsider a wide class of such models, namely 3-dimensional well-formed quasismooth
eomplete intersections of hypersurfaces X =Xd =X(d

1
.....d/c} in a weighted projec­

tive spaee JFm-l(w) with vanishing amplitude. We give explicit formulae for various
invarian!s depending on two types of functions in the variables wand d. Functions
defined by the residua of some symmetrie polynomial expressions of wand d on the
one hand, and enumerating functions of weighted partitions on the other. Ir X ad­
mits non-pathologieal stratifieations, these formulae enable us to determine the delta
genus ll(X, Lx) arising from the natural polarization with respect to Lx. \Ve give
a partial generalization of results of Oguiso whenever ll(X, Lx) ~ 2, aod present,
for k = 1, the "geographieal ehart" of the pairs (L~, [C2] X (LX )) even in the case in
whieh .6.(X, Lx) ~ 3.

Moreover, we deseribe the eonstruetion and some basic properties of the toroidal
crepant desingularizations of X's and compute their invariants by using certain
"loeal-global principles" eoncerning the combinatorially controllable contributions of
the exeeptional divisors to the eorresponding invariants of the starting point models.
FinallYI [C2] -formst "triple eouplings" and "testing bilinear forms" pave the way for
the development of a formal algorithm, by means of whieh one ean mostly decide
if two distinct toroidal erepant desingularizations have definitely different diffeomor­
phism (resp. homotopy) types or not.

*Max-Planek-Institut rur Mathematik, Gottfried-Claren-Str. 26, 53225 Bonn, Federal Republie
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Introduction

There are at least two reasons which have made the study of Calabi- Yau man­
ifolds so attractive during the last decade. The fornler is that they represent the
high dimensional analogues of [(3-surfaces and are naturally expected to inhabit in
some very interesting "moduli space landscapes" , both from algebraic geometrical
and from differential geollletrical point of view. The latter is their pivotalroie in
the framework of the development of certain conformal field theories, like those
corresponding to the so called one-loop semiclassical non-linear sigma models, (CY
manifolds are used as the best candidates for being fibers of the "target spaces" of
these sigma models. For an introduction to these thenles we refer to the book of
Hübsch [65J.)

In algebraic geometry, threefolds with trivial canonical bundle occupy a very spe­
cial place within the "3-dimensiollal cosmography" and one hopes that the methods
which will be required for the solution of a number of important open problems
regarcling period maps, cliffeolllorphism types, possible bounds of Betti 01' Hodge
numbers, existence and possible "enUllleration" of rational curves etc., will consid­
erably promote the whole classification progralllme of higher dimensional algebraic
varieties. For a wonderful survey article written under this perspective, see Fried­
man [42].

In theoretical physics, on the other hand, where certain COllcrete constructiollS
are needed, astring propagation in a Calabi-Yau background can be expressed ge­
ometrically in a convenient way, only in connection with predetenllinating Landau­
Ginzburg effective Langrangians. By V·/ it ten 's generalized "LG/ CY-correspondence"
[129, §5], one concludes that the most "favourable" CY nlanifolds have to be either
hypersurfaces 01' complete intersections embedded in projective spaces, in weighted
projective spaces 01' products thereof, in general toric varities 01' even in Grassman­
nlans.

The case of cOlnplete intersections in a product of usual projective spaces is dis­
cussed in great detail in the above mentioned book of Hübsch [65]. The next
CY threefolds coming into question, nalnely quasismooth hyperS'lLrjaces in a 4­
dimensional weighted projective space (01', more general, in a 4-dimensional Fano
torie variety), together with their crepant desingularizations, have been the foeal
point of many researches elnring the past few years. Experimental observation at
the beginning [15], showing a renlarkable "dualisrn" between the non-trivial Hodge
numbers hI,I and hI,z of the clesingularized models, tnrned out later not to be an
irony of fate, but the revelation of an exciting symmetry with a deep geometri­
cal interpretation and inestinlable, up to now, futuristic consequences. For a first
mathematical approach to this symmetry the reader is referred to the artic1es of
Roan [102], Morrison [91] anel Batyrev [7] and to the collected papers in [131].

However, very little is known for the corresponding complete intersection case.
In our work we attempt to enlighten that part of enumerative com,binatorics which
is necessary for the description of the invariants allel of other important llumbers
eharacterizing the desingularized complete intersections in a weighted projective
space. Although our results eould be vali cl (with Ininor l11odifieations) in a more
general setting, we prefer to restrict ourselves to weighted projective spaces, as
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these lead directly to problems on linear diophantine eq'Uatio1~s 01', if you wish, on
linear programming depending on systems of certain "weights".

More precisely, the organization of the paper is as follows. After reviewing some
basic facts from Wilson's classification theory of rninimal GY models in § 1, we
explain all the essential details of our construction in §2, give the fonuulae for the
corresponding invariants, ancl show how the delta genera distribution depends on the
denumerants 01 weighted partitions. (\;Ve should notice that most of the results of §2
are actually independent of the dimension anel of the amplitude of X's, although in
the end we focus attention on the CY threefold/model case. For certain interesting
new aspects of applications ofhigher dimensional complete intersections in weighted
projective spaces with negative anlplitude for the realization of some useful, suitably
modified (i.e. "non-cIassical") Landau- Ginzburg theories, see Schillllnrigk {1 05].)

Using toric geometry in § 3, we describe the distinctive features of the TNa­

equivariant crepant resolutions of 2- and 3-dimensional Gorenstein cyclic quotient
singularities Z(Nc, L:o), such as the nature of the occuring exceptional prime di­
visors, their enumeration by their types, their intersection nUlubers, and the ele­
lnentary transfonnation m'echanisln. Globalizing this resolution process along the
components of the singular Iod of our X's in §4, we define "toroidal" crepant desin­
gularizations and compute their non-trivial Hodge numbers in two different ways.
Intrinsically, with the step by step recognition of the singularity types, and, when
possible, explicitly (in terlllS ofw and cl) by lnaking use ofrelative Milnor fibrations,
eventually after arearrangement of the elefining polynomials. (hI,I equals obviously
the Picard number anel h 1,2 "counts" the moduli number 01 complex structures.)

Section 5 deals with [C2] -fo,m,s and intersection trilinear form3 (01', in other
words, "topological triple couplings") of the desingularized lnodels Y. Their eval­
uations at the lllelubers of the canonical Q-bases of the Picard group of Y are
encoded partially in the local infonnations cOlllillg from the data of the "toric tri­
angles" lying over the dissident points of X, and partially in the global geometry
of the exceptional divisors and of the pull-back divisor Ly on 1~~. These evaluations
lend to the various desingularization spaces y~'s a significant topological character­
ization, which, in connection with classification results of Wall, Jupp, Zubr and
Sullivan, allows us to distinguish (in IUOSt of the cases) diffeomorphisrn (resp. ho­
motopy) types. This lnethod is indicated in §6, where an arithmetical example is
examined thoroughly. On the other hand, the fornlttlae of our lllain theorems of
§5 seeln to have direct applications to physically iIllportant CY threefolds, as they
describe the "unquantized" part ofthe (1,1) -level Yukawa co'nplings, and they have
been already used for C0111putatiolls of some special examples in [64].

Finally, the appendix of §7 is entirely devoted to the pure combinatorial ingredi­
ents of our fornlulae, namely to the pt-functions which date back to the monumental
work of Euler on the "Partitio NUluerorum". Apart from some historical remarks,
we manifest here their ilumediate interpretation aB Ehrhart quasipolynomials of a
dilated special rational convex polyhedron. In addition, in the case where this (01'
a closely relateel to it) polyhedron is integral, we give formulae which express the
pt-functions by nIeans of the vohunes of appropriate polyhedral faces.
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Basic notations and definitions

(i) We denote by N, No, Z, Q, IR;::o, IR and C the set of natural, non-negative integer,
integer, rational, non-negative real, real and complex numbers respectively.
(ii) "gcd" and "lern" are abbreviations for greater common divisor and lower com­
mon multiple.
For 1 E N and mEZ, we denote by [m], the integer which satisfies 0 :::; [m], < 1
and m =[m],(modl). Furthermore, for n, k E No, n ~ k, we set:

(
n) ._ n[k] where n[k]:= n(n - 1) ... (n - k + 1).
k .- k!'

(iii) Z/(nZ), n E N, will denote the cyclic group of order n and (n := exp( 211"0)
the "first" n - th primitive root of unity.
(iv) ISI or ü(5) are used to express the number of elements of a finite set S. For
S c No, tJs denotes the characteristic /unction 0/ S, i.e.

{
1,

tJS(8) =
0,

for 8 E S

otherwise

On the other hand, Öp,q denotes the usual Kronecker symbol.
(v) Let A be a local ring with maximal ideal 911. A is called regular (resp. nor­
maQ if dim(A) = dim(911/9112 ) (resp. if its localizations are integrally closed do­
mains). A sequence {ab'" .a,,} of elements of A is called regular sequence if
A =f. (al, ... ,a,,)A and iffor all i E {O, ... ,8 -I}, ai+l is not a zero divisor in
A/ (al, ... ,ai )A. The depth of A is defined to be the maximum of the lengths of
regular sequences {al,'" ,a,,} with ai E 9J1, Vi, 1 :::; i :::; 8. A is called Cohen­
Macaulay if dim(A) = depth(A). If A is Cahen-:Nlacaulay, then A is called Goren-

stein whenever Ext~m(A)(A/m1, A) 'V A/fJJt.·
(vi) In section 2 we shall consider certain graded commutative rings A = E9d>O Ad
with Ao = C the field of complex numbers and A finitely generated as Calgebra.
We denote by 9J1 := A+ := EBd>O Ad the unique maximal ideal of such a ring A. A
graded A-module is an A-module M, tagether with a decomposition IvI = EBdEZ Md
such that A d . Me C Md+e. For any graded A-module !vI, and for any n E Z, we
define the twisted module M(n) by shifting n places to the left, i.e. M(n)d = Md+n.
(vii) For q E No, let Ext~ denote the derived functors of RamA within the category
QM(A) of graded A-modules. H6n : QM(A) -t QM(A) is defined to be the functor
which sends a graded A-module M to the q - th algebraic loeal cohomology group

H:Jn(M) := lim Ext~ (A/9111, M)
-t

I

0/ M supported at 911 (cf. [55], [56]).
(viii) Let A be a graded ring and M a graded A-rriodule as in (vi).

x = Proj(A) := {p E Spec(A)lp homogeneous and p i A+}

will denote, as usual, the projective scheme associated to A, M the 0 x-module
sheaf associated to M on X, Ox(n) := A(n)"", n E Z, lvI(n)"" the twisted sheaf
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associated to M(n) and M(n) := !VI 00x Ox(n) (cf. [53, Ch. 11, §2.5 - §2.6.]
or [61, Ch. 11, §5]). Note that, if A is generated as a Calgebra by AI, then
M (n )'" :: Sr (n ), but in general this is ~ot true.
(ix) The Poincare-series of a Z-graded vector space A = EBvEZ A v with finite­
dimensional homogeneous components is defined as the formal Laurent series

P(A;x) := L(dimAv)xV

vEZ

Correspondingly, the Poincare series of a projective scheme X is the formal series

P(X,x) := L(dim(HO(X, Ox(n)))x n

nEZ

(x) Let A be again a graded C~algebra. n~ := n~/c denotes the A~module of

Kähler C-differentials of A and n~ := APn~, Vp, p E No. Furthermore, if for a
homogeneous h E A+, A(h) is the subring of elements of degree 0 in the localized
ring Ah, then {Spec(A(h))lh homogeneous element of A+} is a basis of X =
Proj(A) and the Ox-module sheaf of germs of p- forms n~ cau be defined by
globalizatioll, so that

n~ISpec(A(h») rv n~pec(A(h») rv (n~(h))"""

(By (n~) v := Homo x (n~, 0 x) and (n~)vv .we shall denote the dual and the
bidual of the sheaf of p-fonns on X respectively.)
(xi) By a eomplex variety we mean an integral, separated algebraic scheme over C.
A complex variety is complete if its structural morphism to Spec(C) is proper. If X
is a complex variety, then a point x E X (resp. the whole space X) will be called
regular, normal, Cohen-Maeaulay or Gorenstein if the local ring OX,x (resp. all
loeal rings OX,x, Vx E X) is (resp. are) of this type. In partieular, we set

Reg(X) := {x EX: OX,x regular} and Sing(X):=)( \ Reg(X)

for the regular and the singular loeus of X respectively. A (closed) subvariety Y of
X is a cIosed integral subscheme of X. A subvariety Y of X with codimx (Y) = 1
is especially called a prime divisor of X. A Weil divisor is an element of the free
abelian group which is generated by the prime divisors of X.
(xii) Let X be anormal r-dimensional complex variety. If D is a Weil divisor of
X, let 0 x (D) denote the corresponding divisorial sheaf (cf. [98, App. to §1]). a
is called Cartier divisor if Ox(D) is invertible. For r Cartier divisors D1 , ••• ,Dr,
for which W := n~=l supp(Dd is complete, one defines their interseetion number
as (D l . D2 ... Dr ) := degw(Dl ... Dr ) E Z (see e.g. [46, eh. 2]). 1\'10 reover, if
j : Reg(X) y. X is the natural incIusion of the regular locus of X into)(, we define
fix := j. (!1Reg(X)) = j.(j·nx)· wx := fix is called the canonical or dualizing

sheaf of X . Note that: X is Gorenstein <===} X is Cohen-rvIacaulay and wx is
invertible. On the other hand, we define fix := 7I'.ny, where 7I' : Y' ---+ X is an
arbitrary desingularization of X. We have an inclusion n~ y. n~, and X has at
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most rational singularities <=> X is Cohen-Macaulay and f2x~ !1x.
(xiii) A complex variety is called V -variety (or rather Q- varie ty) if it has at most
quotient singularities. If X is a projective V -variety, then

nx ~!1x ~ (f!x)VV

because any quotient singularity is rational and X is normal.
(xiv) For a complex variety X of dimension T, we denote by bi(X) := diIIlQHi(X, Q),
o ::; i ::; 2r, e(X) := L:i:o( -l)ibi(X), hi(X,:F) := dimcHi(X, :F), X(X,:F) :=
L:~o(-l)hi(X, :F), the i - th Betti number of X, the topological Euler-Poincare
characteristic of X, the dimension of the i - th cohomology group of a coherent
sheaf :F over X and the corresponding Euler-Poincare characteristic of :F over X
respectively. Pic(X) will denote the Picard group of X, i.e. the group of isomor­
phism classes of invertible sheaves (or line bundles) over X. (Line bundles will be
identified with linear equivalence classes of Cartier divisors.)
(xv) A pair (X, L) consisting of anormal complete complex variety and an ample
(resp. nef and big) bundle Lover X is called a polarized (resp. quasi.polarized)
variety. Fujita's delta genus of an r-dimensional polarized variety (X, L) is defined
by

and turns out to be a very powerful invariant of (X, L) as it leads to a partial (ür,
sometimes, complete) classification of such pairs, when it takes values which are
small enough. (Für an introduction to the corresponding classification theories and
adjunction techniques we refer to Fujita's monograph (45].)
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§ 1. Calabi-Yau nlodels

This section is introductory and serves as areminder of certain fundamental prop­
erties of CY threefolds and of their singular analogues.

Definition 1.1. By a Calabi- Yan threefold (GY threefold) we illean 3-dinlensional
complete, projective, smooth cOluplex variety Y with trivial canonical dass ancl
h 1 (Y, Oy) = O. (Note that hZ(y, 01") = hZ,O(y) = 0 by Serre and Hodge duality).

Thanks to Yau's verification of Calabi's conjecture [130], the representative of any
such threefold Y in the analytic category adruits a Ricci-flat metric. The topological
Euler-Poincare characteristic of y~ is given by

(1.1 )

From the exponential cohomology sequence we get Pic(Y) ~ HZ (Y, Z) and p(Y) =
h1 ,1 (Y) = bz(Y), where p(Y) denotes the Picard number of Y. On the other hand,
the second non-trivial Hodge numbel' h1,2 (Y) of Y express the number of parameters
for the complex structure on y~ in the following sense:

Theorenl1.2. (Bogomolov [12J, TiaJl [118), Todorov [119}) The first order deEor­
mations oE a GY threeEold Y are unobstrueted, and the eorresponding loeal moduli
spaee oE y~ is smooth and has dilnension h1,2(y~) = 11.1(Y, 8y).

Moreover, general structure theorerus, clue to Beauville, Bogonl010v, 1(0bayashi and
Michelson, inform us that a CY threefold y~ has finite fundamental group unless
sorne finite unraInified covering of it is either an abelian threefold 01' is decomposable
into a product of a 1(-3 surface with an elliptic curve (see [8], [9]). Up to these two
cases, in which e(Y) = 0, Y has the whole SU(3) as holonomy group.

Definition 1.3. Let Y be a cOl1lplete, s11100th (but not necessarily projective)
cornplex threefold with h1 (Y, VI") = 17. 2 (Y, VI") = °and trivial canonical dass. We
define:

[C2]Y : Pic(Y) :1 Oy(D) t----+ (C2(Y) ~ cl(Oy(D)))[Y] E Z,

qy : (PiC(y))3 :1 (Oy(Dt},Oy(Dz),Oy(D3 )) t----+ (D 1 . Dz · D3 ) =
(cl(Vy(D 1 )) ~ cl(Oy(D2 )) -.- cl(Oy(D3 )))[Y] E Z

the linear form on Pic(Y) induced by the second Chern dass of Y anel the trilin­
ear symrnetric form induced by intersection numbers respectively. In the physics
literature, in the case in which Y is a CY threefold, the latter is usually called the
unquantized topological Yukawa coupling form. (Remark: We shall use the nota­
tions [cz]$ and q~ (resp. [C2]~ anel q~) if we work with PicQ(Y) := Pic(Y) 0z Q
(resp. PiclR (Y)) instead of Pic(Y).)
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As it is known froln the dassification theory of SilUply connected, compact,
oriented, 6-dimensional Cco-clifferentiable luanifolds with vanishing second Stiefel­
Whitney dass·, developed by Wall [122], Zubr [132J and Sullivan [114], the diffeo­
morphism type of silnply cqnnected complex threefolds Y satisfying the proper­
ties of 1.3. is deternlinecl, up to finite possibilities, by means of the quadruple
(H2(Y, Z), b3(Y), -2[C2]Y, qy). In particular, if H3(y, Z) is asslll1led to be torsion­
free, this quadruple classifies y~ (up to a diffeolll0rphism) uniquely. (For analogous
classification theorelus up to an orientation-preserving homotopy equivalence or up
to a homeomorphisnl, see .lupp [68] and Zubr [132), [133].)

Unfortunately, these theorell1S cannot be applied directly in concrete eXaJl1ples,
because
(i) there is no satisfactory way to check whether two synuuetric trilineaJ' fornlS aJ'e
equivalent up to change of basis 01' not,
(ii) it is often very difficult to find explici tinteger bases of H 2 (Y, Z), aJld
(iii) there is not always adequate infonnation available about the torsion part of
H 3 (y, Z).

In practice, one tries to develop methods to distinguish, if possible, diffeomor­
phism (resp. homotopy) types, just by keeping necessary conditions of the above
theorems and by introducing further cOlltrollable nUlllerical invariants, which could
hopefully be different for the regarded threefolds. Motivated by siluilar consid­
erations of Green and Hübsch ([49, p. 314], [65, p. 174]), we give the following
defini tion:

Definition 1.4. Let y~ be a cOll1plex threefolcl as in 1.3. We define

epy: (PiC(y))4:3 (C)y(Dd,Oy(D2 ),Oy(D3 ),Oy(D4 ))~

(qy(Oy(D 1 ), Oy(D2 ), Oy(D3 )) . [c2]y(D4 ) + cydie pennutations) E Z

'P)'" is asymmetrie quac!r'ilinear form, which induces abilinear form:

(1.2)

(Vve just define the ill1age of a pair of decoluposable elelnents of Syn12 (Pie(Y))
under ßy to be the evaluation of CPy at its members and we extend linearly.) ßy
will be called the testing biline(Lr form of Y.

The negation direction of the stateluent of the next lelunla will be very useful.

Lelulua 1.5. Let Yj, Y2 be two simply connected cOlnplex threefolds satisfying the
properties mentioned in 1.3. A necessary condition, under which Yl and Y2 have
the same diffeomorphisln (resp. homotopy) type, is t11e identification of their Betti

numbers and the existence of 8011 isomorphism f : H 2 (Yl ,Z) -=r H 2 (Y2 , Z), such that
[C2]Y1 (') = [C2]Y2 (!(')) a11d qy1 (-,"') = qy'l(!(-)'!('),!('))'
111 particular, in this case, ßYi (resp. ß~i' ß~i)' i = 1,2, will be equivaJent as Z­
(resp. Q-, IR-) bilinear fornls.

Proof. It follows fronl the vanishing of the second Stiefel-vVhitney dass. 0
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\\Te shall come back to it with an example in section 6.

Let us now turn our attention to the singular models.

Definition 1.6. ([126], [127]) A complete, projective, normal 3-dimensional com­
plex variety X with trivial dualizing sheaf and h1 (X, 0 x) = h2 (X, Ox) = 0 is
called GY rn.odel if it allows at most rational Gorenstein singularities (i.e. canonical
singularities of index 1 in Reid's terminology [98], [99]) and if there is a (necessarily
crepant) desingularization 7r : Y· -+ X of X with Y a GY threefold. A GY con­
traction of a CY model ,:X'l is defined to be abirational morphism f : Xl -+ X 2 to
another GY model )(2, such that p(X2 ) < p(..Yd. A GY model is called minimal if
it does not admit any GY contraction.

Definition 1.7. Let )[ be a GY model and 7T : Y -+ X a crepant desingulariza­
tion of X. \\Te define the linear form [C2]X : Pic(..Y) -+ Z by [c2]x(Ox(D)) :=

[c2]Y(7r·Ox(D)), for all Cartier divisors D on X. (Note that [C2]X is essentially
independent of the concrete choice of 7T.)

If we now denote by Amp(..X) the ample cone of X in Piq~(X), generated by
the real classes of ample Gartier divisors, its closure Amp(X) parametrizes the real
classes of nef Gartier divisors and is dual to Mori 's cone NE(X) consisting of the
real classes of effective 1-cycles. \\Te call Amp(X) the nef cone of .)[. By a result of
IvIiyaoka [87, thm. 6.6., p. 468] we deduce:

Theoreln 1.8. Tbe linear form [C2]~' wbicb is associated to a CY model X, ta,kes

non-negative values on the nef cone Amp(..Y) C Piq~(X) of X.

\'arious properties of the nef cone Amp(X) of CY models ..Y have heen studied
extensively by \\Tilson [126], [127], [128], who proposed to use [C2]~ in a role parallel
to the one played by the canonical divisor in the classification theory of compact
complex surfaces, in order to achieve a first type separation for X's. \\Tilson's rough
classification of minimal GY models is outlined in the following table:

Behaviour of [C2]~ on Amp(X) Type of X

(a) [C2)~ is trivial on Amp(X) abelian quotient type

(b) non-trivial hut not strictly positive nbering type ('?)

(c) strictly positive on Amp(X) general type

Shepherd-Barron and \\Tilson [107) proved that the threefolds (a) can always be
represented as. quotients of abelian threefolds by (not necessarily freely acting)
finite groups'. \\Tilson [128] investigated certain models helonging t.o case (b) and
conjectured the existence of fiber space structure for any such ..Y. In fact, cases
(a) and (b) include minimal GY models of "special type" and there should be a
complete "fine" classification for them, whereas (c) constitutes the "general case"
in which, analogously to the surfaces of general type, there are still a lot of open
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questions arising from "geographical problems". For instance, a minimal CY model
of general type X is equipped with a canonical polarization coming from C2 in a
natural way. If L is an ampIe line bundle on X and ß (X, L) the corresponding deIta
genus, what kind of lattice regions should be expected to be covered by its values?
In which regions do L3 and [c2]x(L) reside? Finally, if ß(X, L) ~ 3, what kind of
relationships are there between them (and eventually the topological invariants of
X) besides the standard RR-inequality [c2]x(L) ~ 10 L3 ? (Is it possible to get
any absolute or relative new bounds?)
In the present paper we construct minimal CY models of general type by considering
certain quasismooth complete intersections X in a weighted projective space with
vanishing amplitude. Especially, we emphasize the combinatorial complexity of the
above mentioned numbers, and we study the farms qy and [C2]Y of some natural
crepant desingularizatians Y of X in detail.

11



§ 2. Complete interseetions in weighted projective spaces

In this section we recall briefly some basic facts from the theory of eomplete in­
terseetions in a weighted projeetive spaee, we prove a Lefsehetz-type theorem for
dimensions 2:: 3 and we give combinatorial formulae which enable the determination
of all the interesting invariants and of the delta genera. For an introduction to the
theory of weighted projective spaees, the reader is referred to the expository articles
of Delorme [28], Dolgachev [32] and Beltrametti-Robbiano [10].

Definition 2.1. For m E N, let IPm-l = r m - 1(1) denote the usual eomplex (rn-I)
-dimensional projective space. Ir w = (Wl,. .. ,wm) E Nm, we define S(w) to be
the polynomial algebra C[Zl, ... ,zm] over C, graded by the -condition deg(zd =
Wi, Vi, 1 ~ i ~ m. The (m - 1) -dimensional weighted projective space (w.p.s.)
IPm - 1(w) is defined as the irreducible normal projective variety

IPm
-

1(w) := Proj(S(w)).

m

pm-l(w) is isomorphie to IPm-l/ TI (Z/WiZ), and the canonical projeetion
i=l

p(w) : pm-l --t pm-l(w)

corresponds to the canonical ramified covering:

m

with Galois group TI (Z/w{Il). Equivalently, one defines rm-1(w) as the geometrie
i=l

quotient (cm \ {o} )/C , where C* acts by:

Its associated projection map will be denoted by

7r(w) : (em \ {o}) --t pm-l(w).

We shall say that w is reduced (resp. normalized) if gcd(Wl, ... 1 w m ) = 1 (resp. if
gcd(w), ... ,Wi, ... ,Wm ) = 1, Vi, 1 ~ i ~ m). pm-l(w) is called well-formed if w is
normalized.

Definition 2.2. For m E N and w = (Wb ... ,Wm ) E Nm an arbitrary m-tuple of
weights, we define

_ Wi
w··--------

I .- gcd(w), ... ,wm )'

and

12



1._ Wj
W i .- for all t, 1 ~ i ~ m.

lcm(pl (w), ... ,Pi(W), ,Pm(W))

W := (Wb." ,W m ) (resp. w l := (wi, ,w~)) will be called the reduction (resp.
the normalization) 0/ w.

Proposition 2.3. ({lO,3.A.3, 3. C.5J) There exist natural isomorphisms:

Remark 2.4. In contrast to the case of a usual projective space, the twisted
sheaves 0JFm-l (w)(n) = S(w)(n)'" on a weighted projective space JFm-l(w) are, in
general, not so "well-behaved". For instance:

(a) It may happen that 0r-1 (nI) ~ 0r-1 (n2) with nl i= n2.
(w) (w)

(b) Even ifw =W/,Opm-l(w)(n) is not always invertible.
(c) A sheaf Opm-l(w)(n),n > 0, could be invertible but not ample if w i= w /.
(cl) The canonical homomorphism

Opm-l (w) (nI) 0 Opm-l (w) (n2) --+ Opm-l (w) (nI +n2)

induced by the natural multiplication

may be not an isomorphism.

For counterexamples and further discussion see [32, § 1.5J and [la, 3D]. The patholo­
gies of this kind are mainly due to the number theoretical relations between the
weights and to the existence of singularities on IPm- l (w). Mori [90J studied the
largest open subset, for which most of the nice properties of the twisted sheaves,
which are valid for unweighted spaces, can be preserved unchanged. Finally, Dimca
and Dimiev [31] proved that this open set is nothing but the regular locus
Reg(JPm-l(w)) of JPm-l(w).

Theorem 2.5. ((31]) rm-I(w) is a V -variety with only cyc1ic quotient singulari­
ties, and its singular locus can be written as a union

Sing(pm-I(W)) = U {~I(W) I c(w, I) -> I},
IC{I,2, ... Im}

where

and

c(w, I) := CI := gcd(Wj I j E {I, ... ,m} \ I).
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(2.1)

Definition 2.6. Let W E Nm be an nl-tuple of \veights, VI its reduction, w' its
normalization and Pi(W), 1 :S i :S 111" clefined as in 2.2. Since gcd(Wi, Pi(W)) = 1,
there exist two unique integers fi(n; w) and ci(n; w) with

n = fi(n; W)Wi + ci(n; W)Pi(W), °:s 1'i(n; w) < Pi(W) for all l, 1:S i :s 1n,

and for all n E Z. We define

8( )
n - L::l lVifi(n; w)n' W .= --.....;,;:";,,,.:-.--=-------

, . lcm(pdw), ... ,pm (w))

It is easy to see that B(n; w) E Z, for all n E Z.

Proposition 2.7. ([10,3.C.1, 3.C.7.]) For all n E Z, we have:

Ofrnl-1(w)(gcd(wI, ... ,wm ), n) ~ Opn-l(w)(n) rv Opm-1(w l )(B(n;w))

Proposition 2.8. ([10, 4.B.7], [104, Th.2.7]) Let 1'11. E N, W E ~Fn anel prn-l(w)
be the corresponding W.p.s. Then:

(i) 0JFm -1 (w) (n) is coherent and Cühen-Macaulay, for all n E Z.
(ii) The sheaf 0JFm-l (w) (lcnl(Wl, ... 1 W rn )) is an1ple.
(iii) In the case, in which W = w', Pic(IPrn-l(w)) is generated by the dass

[Opm-1 (w) (lcm(Wl, ... ,wrn ))].

For general ampleness criteria of twisted sheaves, see [28, §2] or [10, §4 B].

Proposition 2.9. ({32, §1.4]) A w.p.s. JPm-l(w) has the following properties:
(i) The Serre homomor]Jhism S(w) --t EB71>O HO(JPrn-l (w), OJ?t7l-1 (w) (n)) is a

graded isonl0rphisln. -
(ii) H.9(JP m - 1 (w), Opm-l(w)(n)) = 0, for 1 :S s :S m, - 2 und far a11 nE Z.
(iii) For n E No, tl1e 11atura,l lllap

m

HO(IPm-l(w), Opm-1 (w)(n)) XH m
-

1 (prn-l(w), Opm-l (w)(-n - L Wi)) --t

i=l
771

H m -1 (JP m -1 ( W ), Opm -1 (w) (- L W d) ::: C
i=l

is a pelfect pairing.

Definition 2.10. Let){ t~? JPm-l(w) be a closed subvariety of JPm-l(w) and

p(w) ; JPm-l --t JPm-l(w), 1r(w): (Cm
\ {o}) --t JPm-l(w)

the maps introeluced in 2.1. )(COV := p(W)-l(..-Y) is definecl to be the variety which
sits over X via the covering 111ap p(w). CAT*(){) := rr(w)-l(J:) is called the
punctured affine quasicone otJer X. The affine q'll,asicone CN(X) otJer X is the
scheme-theoretic closure of CN* (X) in Cm. The interrelation of these objects to
each other can be described by n1eans of two cubes built of cOll1lnutative diagrams:
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Dm-lX CO\! '-c --Jl>. Il

x c

...

7r(W)
CN'(X COV ) 1:. .,. (em \ {Oll

'.

~ 1 ",~
CN.(X)~c .,.....'__-.. (Cm\{O})

....
C N (X CO\!) Co - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - • - - ~ cm

~ " '"
CN(X) c'-- -.. cm

X is said to be q'Uas~mooth (q.s.) if CN*{X) is overall smooth.

Remark 2.11. vVe should note here that X can be identified with the geometrie
quotient CN*{X)/C* with respect ta the action, which was introduced in 2.l.
Furthennore, the quasismoothness of X does not, in general, offer any guarantee
far the smoothness of XCov. Of course, wide classes of quasismooth subvarieties X
of JPm-l(w), as for example the class of BP-like complete interseetions (see 2.16.)
being defined by means of sufficiently general polynomials, have always smooth
XCov's.

Proposition 2.12. (cf. [32, 3.1.6J) All quasismooth c10sed subvarieties X of
JPm-l(w) are V -varieties.

Proof. Let X be the zero locus of the w-homogeneous polynomials 11, ... ,Ik,

the standard cover of JPm-1(w) and

Vi:= {(Zl, ... ,zm) E Cm I Zi = I} n CN(X), Vi, 1 ~ i ~ m.

Then
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Vi = {(Zl, ... ,zi-l,l,Zi+l, ... ,Zm) E em I
li(zl,'" ,Zi-l,l,Zi+I, ... ,zm) = O,Vj,l S:j S: k}.

If we would assurne that there were a singular point

o _( ° ° 1 0 0)z(i) - zl"" ,zi-l' ,zi+l"" ,zm

on Vi, then the Euler forrnula

would imply

eontradieting to the quasismoothness of X. Thus, Vi is srnooth' and the ehart X nUi
of X ean be represented via 11'"(w) IVi : Vi -1 X n Ui as the quotient of Vi by the
finite group (Z/WiZ) C C· . 0

Definitions 2.13. (i) A closed subvariety of eodimension k in JPm-l(w) is ealled
well-/ormed (or in general position with respect to Sing(pm-l(w)) ) if pm-l(w) is
well-fonned and X eontains no eodimension k + 1 singular stratum of pm-l(w),
i.e. eodimx(X n Sing(rm-1(w))) 2: 2.
(ii) If I is a homogeneous ideal of the graded ring S(w),

x = Proj(S(w)/I) c rm-1(w)

and I is generated by a regular sequenee {li 11 S: j S: k} of homogeneous elements
of S(w), then X is ealled a weighted projective (m - k - l)-dimensional (striet)
complete intersection 0/ the hypersur/aces {li = O} (c.i., for short) with multidegree
d:= (d}, ... ,dk), where cleg(li) = di ,Vj,l S: j S: k. We shall denote S(w)/I by
A(X). A(X) = ffin~o A(X)n is a graded C-algebra with

A(X)n := S(W)n/(S(w)n n I) and Spee(A(X)) = CN(X).

Moreover we shall make use of the notation

to express a sufficiently general element of the family of all w.e.i. of multidegree d.
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Proposition 2.14. (Bertini-type quasismoothness criterion).
Let){ = Xd C JFm-l(Wl, .. ' ,wm ) be a c.i. with defining polynolnials 11, ... ,Ik.
Then X is quasismooth for 11, ... ,Ik general enougb (i.e. for polynomials, the
coefflcient systems of Wllic11 are paralnetrized by appropriate Zariski-dense open
subsets of certain C~ 's) if and only if for a11 possible non-elnpty index-sets Ir :=

{i 1 , ••. ,ir} C M:= {1,2, ... ,rn.}, thereexists an integer $ = s(Ir), 0::; $::; k, and
a spli t ting oE tbe index-set {I, . .. ,k} in to:

{

0,
Jo. =. .

{J}, ... ,J,,},

if s = 0

if 1::; s ::; k

if 0::; s ::; k - 1

if s = k

satisfying the following property: In tlle monomial decolnposition of 11, ... , fk
(i) If Ja =1= 0, there are at least S IDonolnials of type

with degree dja ((a~~a), ... , a~:a») E (No)r \ {(O, ... , O)}), Va, 1 ::; 0' ::; s.
(ii) If Jb -I 0, and if for a11 ß, s + 1 ::; ß ::; k, we set

N~jß) ;= {n E Al \ IrI3(b~~ß),n, . .. , b~~'ß),n) E (Nor :

b~jßLntv' + +b~jß),nlV' +w =d'}
11 11' • • 1,. 1,. n }ß'

( ') ~(N(jß») d l\TUß) {U!3) (jß) } . . t' f NUß) thv Jp := ~ r an r = Yl , ... , YII(jß) lS an enumera Ion 0 r , en

there exist v(jß) monomials of degree djß
. Ußl . Uß)

b~Jß),JI>. b~Jß),JI>.

(namely tbat oftype Zi;1 ",zi;" . Z (ißl, 1::; A::; v(jß)) witb
v>.

r lI(jt q )

I{U U y~tq)}1~1'-s+T-l, fora11subsets {tJ, ... ,tr}C{s+l, ... ,k}
".=1 ,\-}

consisting of T elements, 1 ::; T ::; k - s.

Sketch 0/ prooj. We generalize sinülar results of Fletcher [41, §1.5.] heing valid for
k = 1 and k = 2. In fact, one has to show that for a "generic choice" of the clefining

1 'al f f th k f tl J b' t' (B(b, ... ,!k) I ) valpo ynonu SI, ... , k, e ran pOle aco lan llla fIX B(ZI,'" ,Zrn) z=zo e u-

atecl at a point Zo E CN(X) cannot be < k, except possibly for Zo = O. Assume that
(i) and (ii) hold for each Ir =1= 0. By Bertini's theorem, the singulari ties of CN (X)
can occur only within C1V(){) n P,>, where Pr ;= {(ZI"" ,zm) E Cm IZi,.+1 = ... =
Zim = O} and {i r+l, ... ,im} = {1, ,1n} \ {i1l ... ,ir}'
Let Pr be the stratum Pr ;= {(Zl, , zm) E PrlZi 1 =1= 0, ... , Zi,. =1= O}. vVe expand
our polynomials in terms of the variables Zi,.+I' ... ,Zirn ;
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m {_ . . . i,. . higher order terms
fo(z) -gO(Z11"" ,ZII')+ L zl/ho(Zlll'" ,ZII') + . }

ln Zil'+l' ... , Zil=r+l m

I ( ) = ~ . h i , ( . . ) + { higher order terms}
ß Z L...J Zlj ß ZI1"" ,ZII' .

ln Zil'+l"'" Ziml=r+l

for 1 ~ Q ~ r, S + 1 ~ ß ~ k, with 90' h~, h~ suitable polynomials in the variables
Zi 1 , ••• , Zil' .

(a) Suppose first s = k. Pr is not apart of the base loci Bs(Lj) of the linear systems

A j := {(aI, ... ,am) E (N'O)mll:::laiWi = dj },l ~ j ~ k, parametrizingall
quasihomogeneous polynomials of degree dj w.r.t. the weights (w), ... ,w m ). Thus
(li = 0) is non-singular along Pr, Vj, 1 ~ j ~ k. Since (go = 0), 1 ~ Q ~ r,
determine free linear systems on i\, {d go (ZO) 11 ~ Q ~ r} are linearly indepen­
dent for zO E Pr n CN*(X). Hence, the transversality condition is fulfilled and
(n:=l (go = 0) n Pr) \ {o} = Pr n C N* (X) is non-singular.

(b) Suppose now that s =1= k. By Bertini's theorem, (10: = 0), 1 < Q ~ r, are
non-singular along Pr. This means that
Sing(CN(X)) = (n:=l (go = 0)) n (ni+l:5ß:5k(h~ = 0)).

r+l<l<m
It is an exercise of linear algebra to verify (from the above decompositions of /0
and Iß) that (i) and (ii) are equivalent to dirnc(Sing(CN(X))) = 0, i.e. that the
locus of CN(X) consisting of that points, at which the Jacobian matrix has rank
~ k - 1, is zero-dimensional. As CN*(X) is C· -invariant (cf. 2.11.), we get
Sing(CN(X)) C {O}. The converse can be proven similarly. 0

Proposition 2.15. ({32, pr.2], [41, I.3.12, I.3.13j) A c.i. Xd C pm-l(w) is well
formed if and only if Xd satisnes one of the following equivalent conditions:
(i)

(a) pm-l(w) is well-formed and
(b) for all p = 1, ... ,k, the gcd of any (m - k - 2 + p) of the Wi'S divides at

least p of the dj 'so

Oi) m - k - Ü{i E {1, ... ,m} : qlwi} + Ü{j E {1, ... , k} : qldj } ~ 2, for all integers
q ~ 2. (In particular, if Xd is quasismooth, then Xd is well-formed if and only if
the above inequality is true (ar all prime numbers q ~ 2.)

Definition 2.16. A c.i. of the form

m

(2.2) Xd =X(d1, ... ,d k ) = {[Zl, ... ,zml E IPm-l(w)IL'\ijZ~ij = 0,Vj,1 ~j:::; k}
i=l
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is called c.i. of Brieskorn-Pham type (BP c.i., for short). Especially, if either k = 1
or d1 = ... = dk, k ~ 2, X d is called c.i. of Fermat type. A BP-like c.i. is defined
to be a c.i. Xd C JPm-l(w), for which 1cm(wl"" , wm)!dj, Vj, 1 ~ j ~ k.

Using Prop. 2.15, we can easily verify, that any q.S. BP-like c.i., embedded in
a well-formed W.p.s., is itself well-formed. The property of well-formedness of a
q.s.c.i. turns out to be very important, hut it was eluded by the authors of [32]
and (10J. In fact, the following theorem, due to Dimca and Fletcher, reduces the
examination of the validity of this property to dimension ~ 2.

Theorem 2.17. Let Xd C jpm-l(w) be a q.s.c.i. of dimension ~ 3. Then either
X d is well-formed, or X d is .the interseetion of a linear cone with other hypersurfaces
(i.e. dj = Wi for some j and i). In the second case, Xd is isomorphie eitber to a
q.s.c.i. of lower eodimension or to a W.p.s.

Proposition 2.18. ([30, prop. 8]) The singular locus of a well-formed q.s.c.i.
X d C JPm-l(w) is given by the intersection Sing(Xd) = Xd n Sing(lFm- 1(w)), i.e.
Sing(Xd) = UIC{l, ... ,m}{Xd (I)Ic] > 1}, where Xd(I) := Xd n Ir] in the notation
of2.5.

Definition 2.19. Let Xd C JPm-l(w) be a q.s.c.i. The number

k m

am(Xd ) := am(wj cl) := L dj - L Wi

j=l i=l

\vill be called the amplitude of X d .

Proposition 2.20. (Generalized adjunction formula, [10, 6.B9]) Let Xd be a well­
formed q.s.c.i. Then tbere exists an isomorpbism between its dualizing sbeaf and
its strueture sheaf twisted am(w; cl) times, i.e.

(2.3)

(Examples in [41, 1.3.15) show that we cannot drop the assumption ofwell-formedness
of X d !)

If X = Xd C pm-l(w) is a q.s.c.i. of dimension r := 7n - k -1, the degeneration
of the spectral sequence Ei,q(X) = Hq(X, fix) ==> E{p+q.(X, fix) = Hp+q(X, C) of
hypercohomology (with respect to the complex fix ) at the term EI gives rise to
a filtration on the spaces Hp+q(X, C), which coincides with that one of the usual
Hodge structure. Hence, X admits a pure Hodge structure,

Hodge decomposition HlI(X C) ~ ffi Hq(X fiP.)
, Wp+q=" '.X '

Hodge numbers hp,q(X):= dirncHq(X, ni) and Serre duality isomorphisms:

Hq(X, n~) ~ HT-q(X, n~-q), Vp,q, 0 ~ p, q ~ r

(cf. [112, § 1]). On the other hand, according to the hard Lefschetz theorem for
V -varieties, the maps
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induced by the dass of an ample line bundle Lover X, are isomorphisms, such
that:

H 8 (X,C) ~ EB u(q; s - 2q)(H~~;q(X,C)), \/s,O ::; s ::; 2r - 2,
q~O

where

denote the so called primitive cohomology groups 0/ X. As a consequence of the
compatibility of the Hodge and Lefschetz decompositions we get:

H;rim(X,C) f"V E9 H~;rm(X,C),
p+q=~

where

NIoreover, if we set h~~1m (X) := dirne H~;rm (X, C), we 0 btain:

(2.4)
p

hp,q(X) = L h~ri~q-i(X)

i=O

and the application of the Lefschetz theorem for hyperplane sections gives the
following:

Proposition 2.21. For a g.s.c.i. X = Xd C f'm-l(w) oE dimension r = m - k -1,
we have:

(2.5)

(2.6)

The above invariants (2.5) of X are called the trivialones. The remaining, non
trivial and most interesting, invariants of X, and their combinatorial expressions by
means of the weights Wl, ... ,Wm and of the degrees of the defining w-homogeneous
polynomials of X, have been studied by Hamm [59], [60] and Aleksandrov [2]. For
the presentation of their formulae we need to introduce some special notations. Let
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(2.7) Wo := 1, W>'(Yl,··· ,Ym):= L Yi 1 ···Yi>.
l~il <... <h ~m

denote the elementary symmetrie polynomials in the variables Yl, ... , Ym with
weight A E No,

(2.8) D>'(Yl,'" ,Yk):= L y{l···ytk
il +···+ik=>'
h I'" lik;:::O

the symmetrie polynomials in Yl, . .. ,Yk of degree A, and

D>.,k(Yl, .. ' ,Yk):= (-l)>'Yl···Yk D>.(Yl, ... ,Yk)

with Do,o := 1 and D>'IO := 0, VA, A E N.

Theorem 2.22. (Aleksandrov [lJ, [2, p.447J)
Let X = X(d

1
, ... ,d,.) C JIDm-l(Wl, .. . ,wm ) be a quasismootb c.i., A(X) its graded

coordinate ring and 9J1 tbe maximal ideal oE A(X) corresponding to tbe zero point
o E CN(X). Suppose that tbe indices oE tbe degrees oE its defining polynomials
are enumerated in order of size

d1 = ... = dk 1 < dkl+1 = ... = dkr _ 1 < dkr_l+1 = ... = dkr ,

so tbat kr = k, ko = 0, and set 9u := ku - ku - 1 - 1, Va, 1 ~ a ~ T.

Then the Poincare-series of the graded A(X)-module H;-k- q
(n~(X») is given, for

q = 1, ... , m - k, by the following formula:

(2.9)
r

p(H;-k-q(n~(.x:»)j x) = (_l)q+l L x(q+l)dk rr X

u=1
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where J.lO'(x; W), vO'(x; cl) abbreviate the rational function vectors:

respectively.

Sketch 0/ prooj. Let 11, ... ,Ik be the defining polynomials of X,

m al
and alp := L -p

. 8Zi
1=1

(w.r.t. a loeal eoordinate system {Z1" .. , zm} of 0), Vp, 1 :::; p :::; k. Furthermore,
let

{D.hn alp"") D.~1 ,j E Z}

denote the Koszul-eocomplex defined by means of the left exterior multiplication
byalp ,

and n~p := n~N(X{p-l»/a!p1\ n~-~(X(P-l»)' Vp, 1 :::; p ::; k, Vj,j E Z. By general
de Rham-type lemma (see (50, Prop. 1.7. and Prop. 1.11.(i), pp. 241-242]) the
sequences

(2.10)

(2.11 ) O (')j "Ip (')j (')j 0
--t .H fp ----=-+ .H I p -+ .HCN(X(p) -+

are exaet, Vj, 0 :::; j ~ m - p. The applieation of the functor H{O} (-) to (2.10) and
(2.11), combined with Greuel's vanishing theorems ([51, pp.165-166]):

for
{

j+q~{m-k,m-k+l},

(j, q) ~ { (i, m - k) 10 ~ i ::; m - k} U {(i, 0) Im - k ~ i ~ m}
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and

for {
j + q i:- m - k - 1)

(j) q) rt. {(i, m - k - 1)I0 ~ i ~ m - k} U {( i, 0) [m - k + 1 ~ i ~ m}

respectively, leads to four-term exact sequences of cohomology groups supported
at {O}. The corresponding Poincare-series must therefore satisfy the following
recursive equations:

(2 12) P(Hq (nm
-

p
-

q+1
). x) ­. {o} fp ,-

-dp'11(HQ-l (r'\m-p - q+2). ) '11(HQ (r'\m-k- p .)) p(Hq-l (r'\m-k-q+l .))x r {o} H fp )x + r {o} H CN(X("-p+l)' x - {o} H cN(xek-p+l)' x
for 1 ~ p :::; k, 1 ~ q ::; m - p

(2.13) P(H{O} (n;;~(~rk-p)); x) =

p(H{~}l(n;;~(~r~lp));x) +(1- xdp)P(H{o}(n/:-p
-

q
+1 );x)

for 1::; p ~ k, 1 ::; q ~ m - p - 1

The system of (2.12) and (2.13) has as solution:

for 0 ::; p ::; k, 1 ::;; q ::; m - p - 1. The theorem is completed by using Grothendieck's
local duality theorem [55, thm. 6.3.]' which gives aperfeet pairing

H{~-}k-q (n~N(X(k») x Exth (n~N(X(k»'WCN(X(k)) --+ C,
CN(X("))

and enables the eomputation of the Poineare-series of the desired local eohomology
groups, Greuel's and Hamm's computation of P(H{o}(O;;;;1~1k-j»);X) in (2.14)
(see [52, Satz 3.1.]), simple duality for the highest dimension q = m - p, and
"residue-acrobaties" with the symmetrie polynomials (2.7), (2.8) (see [52, 3.9]),
eombined with

p(H;-k-q
(n~(X»); x) = p(H{:.}k-

q
(OhN(X»); x).

o
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LelUlua 2.23. Let 111, E N, w = (Wl, ... ,wm ) E r~pl1, and pm-l(w) = Proj(S(w))
be the corresponding w.p.S. lvith weights w. Then:

(2.15)
1

P(S(w);x) = TIm ( ,)
i=l 1 - X

W
,

Proof. It follows directly from Prop. 2.9.

Leluma 2.24. For a q.s.c.i X = .IYd C pm-l(w) we have:

o

(2.16)

Proof. If we set So := S(w), Si .- S(W)/(fl'''' ,fj), Vj, 1 < J < k, where
11 , . .. ,fkare the clefining polynonüals of X, then

o-+ Sj-l (-dj) ./j) Sj-l -+ sj -+ 0

is exact as eoming frolll an S(w) -regular sequence. Thus,

l.e.

P(sj;x) = (1- x dj )p(Sj-l;X).

Substituting (2.15) for P( So; x), we get (2.16). o
As it has turned out, using either the Hodge filtration [60] 01' a Gysin-type exact

sequence between loeal coholuology groups [2] and further vanishing theorelus, the
primitive parts of the non-trivial Hodge numbers of such an .IY are given by means
of residue caleulus on the rational functions (2.9) and (2.16):

Theorenl 2.25. (Formulae 0/ Hamm and Aleksandrov)
Let X = X d C f'm-l(w) be a. q.s.c.i. of dimension l' = m - k - 1. Then its non­
trivial primitive Hodge llulnbers aTe COlllputed by the following fOrlllUlae, depellding
onl'yon wand cl:

(2.17)

hP,q (X) - hq,P (X) - R 1P(Hm-k-q (nq )..)prim - prim - esx=o; 9J1 \:,l, A(X) ,x , for 1::; q < r, p+q = 1~

(2.18)

The forthcoming llluubers, which are of ftuldaIuental importance and charac­
terize q.s.c. intersections X, are the diluensions of their coholuology groups with
coefficients taken fron1 the twis ted sheaves 0 x (11.) .
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Definition 2.26. Let m E N and w = (WI, .. . ,wm ) an m-tuple of positive inte­
gers. vVe denote by pt(n; w), n E No, the generating function determined by

(2.19)
1 00

Ir ( - Wi) = I>t(n;w)x
n

1=1 1 x n=O

(For reasons of convention we extend it to the whole Z by setting

pt(n; w) = 0, Vn, n E Z \ No).

Obviously, pt(n; w) = dirnc(S(w)n) = h°(Ipm-l(w), Opm-l (w)(n)).

Theorem 2.27. Let X = X d C pm-l(w) be a well-formed q.s.c.i. of dimension
r = m - k -1, whose ideal I is generated by a regular S(w) -sequence {/I,··· ,Ik}
with deg(fj) = dj, cl = (d1 , ... ,dk ), and A(X) = S(w)/I. Then its cohomology
groups with coefficients taken from the twisted sheaves Vx(n) are related to the
graded parts of A(X) by tbe isomorphisms

for i = °
for 1 :::; i :::; r - 1

for i = r

or i=/=O,r

Moreover, the dimensions of the non-vanishing of them are computed by the fol­
lowing formulae, depending only on w and cl:

k j

(2.20) hO(X, Ox(n)) = pt(n; w) +L(-l)j L pt(n - L dv>,; w)
j=1 1:S;Vl <v2< ...<vj:S;k ),,=1

(2.21) hr(X, Ox(n)) = hO(X, Ox(am(w, cl) - n)), Vn, n E Z.

Proof. For the proof of the first assertion we follow Dolgachev [32, §3.2.]. \\Te
consider at first the long exact sequence

... -+ Hto} (CN(X), OCN(X») -+ H i
(CN(X), VCN(X»)

-+ Hi(CN*(X), OCN(X)lCN.(X») I'V Hi(CN*(X), OCN0(X»)

-+ H{6} (CN(X), OCN(X») -+ H i+1 (CN(X), OCN(X») -+ ...

which is associated to the cohomology groups of CN(X) with support {o} ­
CN(X) \ CN*(X) (see [55, Cor. 1.9., p.9], [56, Exp. II, Cor. 2.9., p.16]). Since
CN(X) is an affine variety, we have: Hi(CN(X); OCN(X») = 0, Vi, i > 0 (see [61,

III.3.5]). Thus, for all i > °:Hi
( C N*(X), OCN. P\)) I'V H{~} (CN(X), 0CN(X»).
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This group vanishes whenever H~I(OCN(X») ::: H~~}(CN(X), 6cN(x») is 0. As

CN(X) is an affine c.i., its structure sheafis Cohen-Macaulay and H~I(OCN(X»)=
0, for i + 1 < dirn CN(X) = r + 1 (cf. [56, Exp. VII, prop. 1.2., cor. 1.4, pp.
78-80]). Furthermore,

Hi(CN*(X),OCN-(X») f'.J Hi(CN*(X),Ox QSlOFm-l(w) O(Ü"\{O}») =

=Hi(X, Ox 00ll'rn-l(w) 1r(w)*O(C"'\{O») =
= EB Hi(X, Ox 0oFm - l(w) Opm-l(w)(n)) ~ EB Hi(X, Ox(n)).

nEZ nEZ

This means that Hi(X,Ox(n)) = 0, Vi, 1 :s i :s r - 1. Now since A(X) is
integrally closed, the Serre homomorphism A(X) --+ ffi n EZ HO (X,°X (n )), as in
the unweighted case ([61, p. 188]), is a graded isomorphism, and therefore by
(2.16)

We write

k k 00

II(l- xdi ) = II(l:(o{o}(n) - O{d;}(n))x n
) =

j=1 j=1 n=O

00

= l:[(o{O}(n) - o{dd(n)) * ... *(o{O}(n) - 8{dlt}(n))]x n

n=O

where * denotes here the usual Cauchy multiplication. One checks directly that

1, for n = 0

-1, for n = dill +... +dll;, 1 :s; VI < ... < Vj :s; k, j odd
-

1, for n = dlll + ... + dVi ' 1 :s; VI < .. , < Vj ::; k, j even

0, otherwise

After rnultiplication by n~1 (1 - X
Wj )-1 we get (2.20).

Final1y, the last isomorphism and (2.21) follow from Serre duality. 0

Corollary 2.28. For a well-formed q.s.c.i. X = Xd C r m
-

1(w) of dimension
r = m - k - 1 we get:

. { 'hO(X, Ox(am(w, cl) + n)), for i =°
(2.22) h1 (X, wx(n)) = 0, for 1 :s; i ~ r - 1

hO(X, Ox( -n)), for i = r
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Proof. Obvious by the-generalized adjunction formula (2.3) of prop. 2.20. 0

Definition 2.29. Let X = Xd C JPm-1(w) be a q.s.c.i and w be the reduction of
the weights w (as in 2.2). If 11, .. . ,Ik are the defining w-homogeneous polynomials
of X, we shall say that X = Xa C pm-1(w), defined by the w-homogeneous

polynomials 11, ... ,Ik with degrees deg(fj) = dj:= cl( dj )' is the reductiongc Wl, ••• lW m

0/ X. Furthermore, if we suppose that X is not contained in any hyperplane
{Zi = O}, for 1 ::; i ~ m, then we can determine a third q.s.c.i X' = X~I C JPm-1(w')
coming from the normalization w' of w (in the notation of 2.2.) with defining w'­
homogeneous polynomials I~, ... ,f~ of degrees

(j.
deg(lj) = d'· := J )' Vj, 1 ::; j ::; k.

J lcm(P1 (w), ... ,Pm(w)

(cf. (3D, p. 186]).

Proposition 2.30. ([30, pp. 186-187}). Let X = Xd C JPm-1(w) be a q.s.c.i and
X its reduction. Assume that X is not contained in any hyperplane {Zi = O}, for
1 ::; i ::; ffi, and let X' denote tbe q.s.c.i coming from tlle normalization w' ofw.
Then X, X and X' are isomorphie to each other.

Remark 2.31. The above mentioned proposition informs us that under these
relatively weak assumptions, we can eonsider the weights of q.S.C. intersections
being normalized. Of course, this does not mean that the eorresponding germs
(CN(X), 0), (CN(X), 0), (CN(X'), 0) will have to be necessarily isomorphie.

Definition 2.32. A q.s.c.i X = Xd C JPm-1(w) will be called nondegenerate if it
has the following properties:
(a) its reduetion X is not contained in any hyperplane {z i = O}, for 1 ::; i ::; m, and
(b) X' fulfills, in addition, the condition (i) (b) ofProp. 2.15., i.e. X' is well-formed.

Proposition 2.33. The degree ofthe twisted sheafOx(n), which is defined over a
nondegenerate one dimensional q.s.e.i X = Xd C JPm-1(w), is given by the formula:

(2.23) deg(Ox(n)) =

d( 1 ) {hO(X', Ox.(9(n; w))-ho(X', Ox.(am(cl', w')-9(n; w)))+g(X')-l}
gc W}, ... ,Wm

where X' denotes the space eoming from the nonnalization w' of w, 8(nj w) the
funetion (2.1) introduced in 2.6., and g(X') := h1 (X', 0 x') = hO(){' , 0 XI (am(d', w')))
its genus.

Proof. By prop. 2.7.,

1 1
deg(Ox(n)) = d( )deg(Ox(n)) = d( )deg(Ox,(B(n; w))).

gc Wb"" W m gc W1,· .. , W m
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Since X' is well-formed and smooth, the usual Riemann-Roch formula for curves
gives:

The proof is completed by using the Serre duality equation

o

Let us now go into the description of the nature of the Picard groups of q.S.C.

intersections. Since we are mainly interested in threefolds, we omit the consid­
eration of the surface case referring the reader to Steenbrink [113], Cox [22] and
Jong-Steenbrink [67) instead.

Theorem 2.34. {Mori's weighted version of the classical Noether.Lefschetz theo­
rem, (gO, Th. 3.7.]) The Picard group Pic(X) of a smooth, well-formed e.i.
X = Xd C pm-lew) of dimension ~ 3 is isomorphie to Z and is generated by the
class [<9x (1)].

Theorem 2.35. (Dolgachev's generalization (32, 3.2.40), 3.2.5]) The Picard group
Pie(X-) of a quasismooth, well-formed e.i. X = Xd C pm-lew) of dimension ~ 3
is isomorphie to Z and is generated by the dass of an Lx := OX(7]x), for some
7]x E N.

Definition 2.36. Let X = Xd be a q.s.c.i. in pm-lew), I C {I, ... ,m} a (oon­
empty) index set and XCI) the eorresponding stratum on X (as in 2.18). We
define:

V(I) := ~{polynomialswhieh vanish identieally on XCI)}

X will be ealled well·stratified if
(a) XCI) is a (m - 1 - [lI) - (k - V(I))-dimensional q.s.c.i. for all I with

III :::; (m - 1) - (k - V(I)) ..

(h) for all I with (m - 1 - II[) - k - V(I)) = 0, XCI) eonsists of finitely many
points.
(e) XCI) = 0 for all I with 111 > (m - 1) - (k - V(I)).

(Note that condition (e) is not superfluous! For instanee, the interseetion of two
zero-dimensional hypersurfaces in a W.p.s. need not be ernpty.)

Next theorem strengthens Dolgachev's result in the well-stratifiedness ease, gives a
partial answer to a question of Beltrametti and Robbiano for dimension 2:: 3 [la, p.
155], and generalizes prop. 2.8. (iii).
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Theorem 2.37. Let X = Xd C pm-l(W) be a' well-formed, w~ll-stratified, q.s.c.i
of dimension 2:: 3. Then Pie(X) is generated by the c1as~ of the ample bundle
Lx := Ox(tJx) with .

(2.24)
tJx = lern({ged(wili E 1)11 C {l"" ,m}, 111 ;::: k + 1 - V( {I, ,m} \ 1)}) =

= lern({gcd(wdi E 1)11 C {I, ... ,m}, 111 ~ k + 1 - V( {I, , m} \ l)})

Proof. By prop. 2.8. (iii), Pie(pm-l(w)) is generated by [O!P"'-l (w)(lern(Wb' .. ,wm ) )].

Now 1 although X co v is a not neeessarily srnooth e.i. (see 2.11.), Pie(X coV) is gen­
erated by [Oxcotl(I)],p(w)*, (p(w)lx)* ,l,(w)* are injective and L(l)* is an isomor­
phism by Grothendieck's version of Noether-Lefschetz theorem ([56, Exp. XII, Cor.
3.6. and 3.7., p. 153]).

1 p(wr 1
Z = Pic(rm-) ( Pic(lPm- (w)) = lern(Wl, ... ,wm)Z

'(1)*1 1,(W)*

Z = Pic(XCOV) «p(w)lx)* Pic(X) = 1]XZ

Thus, Pie(X) is generated by the dass of the ample line bundle Lx = OX(1]x),
where 1]x denotes the minimal positive integer whieh divides lern(Wl,' .. ,wm ) and
for which (p(w)lx )*(OX(T7.X)) = Oxcou(7Jx). In other words, 1]x is the minimal
divisor of lern(Wl, ... ,wm ) for whieh

forms a free A(X)(h)-module of rank 1, for aU h E A(X)~ aod for aU sEN. For the
detern:ünation of 1]x we identify X with CN*(X)/C*. Note that Pic(CN(X)) ~
Pie(C N* (X)) is trivial ((56, Exp. XI, Cor. 3.10., p.130], [32, p.52]). The projection
map rr(w)lx induces a rnonomorphism

QX : Pic(CN*(X)/C*) Y Picc* (CN*(X))

to the group of isomorphism classes of C*-line bundles over CN*(X). By the exact
sequences

{l}

1
Pic(X) =Pic(CN*(X)/C·)

'x ! \ zerer map
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we deduce that the image of qx consists of those C* -line bundles 12 over CN*(X),
for which the isotropy groups {(C* )z, z E CN*(X)} act triviallyon the fiber Lz
(cf. [75, §4, §5]). As these C* -linearizations Ln of the trivialline bundle

are parametrized by n E Z:

.cnIC* X (CN *(X) X C) 3 (t, (z, A))~ (t . z, tnA) E C lV*(X) X C,

for z = (Zl, ... ,zm) E CN*(X), t· z = (tWIZI, ... ,tWmzm),
we have (C*)z I'V Zjgcd(wili E 1z)Z, where
1z := {i E {1, ... ,m}lzi =I O} with 11z 12: k+ 1- V({1, ... ,m} \lz ) 2: 1.
(The latter inequality comes from the well-stratifiedness of X.) Hence, if we set

Qx(z) := {t E C* : tWj = 1, Vi, i E 1z },

we get:

7Jx = min{n E Nlt n = 1, for all t E n Qx(z)}.
zECN·(X)

o
Corollary 2.38. Jf X = X d is a well-formed q.s. hypersurface in pm-l(w) of
dimension ~ 3 and its defining polynomial is general enough, then:

(2.25)
TJx = lcm({gcd(Wi1 ' wi:2)11 ~ i 1 < i 2 S; m} U {Wi' 1 S; i S; m, with tui t d}).

Proof. Let X = (/ = 0). If the coefficients of / are sufficiently general w.r.t.
each stratum (cf. proof of prop. 2.14), then X is well-stratified. For an index set
I C {1, ,m} with 111 = m -1 and {1, ... ,m} \ 1= {i}, PI consists only of the
point [0, ,0,1,0, ... ,0] with the 1 in the i - th position. X contains this point,
Le. X(I) =I 0 and V(I) = 1, if and only if in the monomial decomposition of its
defining polynomial there is no monomial involving only Zi. But this is equivalent
to d not being a multiple of Wi. 0

Corollary 2.39. Jf X is a BP q.s.c.i. (2.2) of dimension 2: 3, with Q:ij 2: 2,
Vi, 1 ~ i ~ m, Vj, 1 ~ j ~ k, and a11 (p X p)-subdeterminants of the matrix
(Aijh~i~m,l~j~k are non-zero, Vp, 1 ~ p ~ k, tben:

(2.26)
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Lemma 2.40. Let X = X d C pm-1(W) be a well-formed, well-stratined, q.s.c.i.
of dimension r '2: 3 and Lx = OX(1]x) the generator of its Picard group. Then we
have:

(2.27)
(TI ~ d·) r

L T _ )=1) 7]x
X- m

ni=l Wi

Proof. It follows directly from the fact, that (Oxeov(7]x)Y - 7Jx(Oxeov(1))T ­
ryX(I1~=l dj) and (Oxeov(ryx)Y = deg(p(w)Ix )Lx,because

m

Oxeov (7]X) = (p(w)lx)*(Lx) and deg(p(w)lx) = rr wi·
i=l

o
Theorem 2.41. The ß-genus of a well-formed, well-stratifi.ed, q.s.c.i.
X = Xd C f'm-1(w) of dimension r '2: 3 with respect to Lx is given by the formula:

(2.28) ß(X,Lx ) =

Proof. Obvious by the formulae (2.20) and (2.27). 0

Remarks 2.42. (i) All well-formed q.S.c. intersections X = Xd C pm-1(w) with
r = m - k - 1 = 3 and am(X) = 0 are minimal GY models 0/ geneml type,
because they have always (full) crepant desingularizations (see §4), their Picard
number equals 1, and ([C2]X IAmp(x)) > O. These models arose first in the physics
literature in connection with the so called "Landau-Ginzburg potentials" (see [15],
[74], [120], [129]). It should be mentioned, that the conditions of quasismoothness,
well-formedness (cf. prop. 2.14 and 2.15) and of the vanishing amplitude are
in fact very restrictive. This is the reason for which the expected degrees cl =
(d1 , . .. ,dk) and weights w = (W1,'" , wm ) for these X's have to move within
bounded axithmetical regions and to be, in paxticular, finitely many. For example,
there is no CY model of the regaxded type with codimension k '2: 5, while only the
intersection of four quadrics in the usual 7-dimensional projective space appears in
codimension 4. For 1 :::; k :::; 3, however, there are several thousands of allowable
combinations (cl; w), the number of which decreases as long as we increase k.
In the case where k = 1, Klemm and Schimmrigk [74] and, independently, Kreuzer
and Skaxke [79], gave a computer aided classification of all possible combinations
for (d; W1, . •• ,W5)' They fauod 7555 combinations, the table of which covers a lot
of pages (see preprint version of [74]). Recently I(lemm [73] showed that there exist
over 4200 (resp. 300) combinations corresponding ta such models of codimension 2
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(resp. 3) with d1 , d2 :::; 100 (resp. d1 , d2 , d3 :::; 30).
(ii) In {94, §5] Oguiso studied polarized CY threefolds by means of their delta
genera and came to the remarkable result, that all the polarized CY threefolds
with .b. :::; 2 have to be complete intersections of codimension :::; 2 in a W.p.S. In the
first step of his method, he makes use of the following Bertini-type theorem due to
Fujita:

Theorem 2.43. (Fujita [44J, [45]) Let (X, L) be a polarized smooth eomplex
variety of dimension r 2:: 3. Suppose that .b.(X, L) :::; 2 and Lr 2:: 2. Then
dimBs(ILI) :::; 1 and a1l general members of ILI are smooth.

If (X, L) is a polarized CY threefold with .b.(X, L) :::; 2 and L3 = 1, then obviously
hO(X, L) E {2,3}. If L3 2:: 2, then by 2.43. any general member S of lLI is
smooth with ample canonical divisor Ks = Lls . This means that S is a minimal
surface of general type with geometrie genus Pg(S) = hO(X, L) - 1 and 1(~ = L3 2::
2pg(S) - 4 = 2hO(X, L) - 6 (cf. [5, eh. VII, thm. 3.1., p. 210]). Thus, for
.b.(X,L) = 1, it is neeessarily (hO(X,L),L3

) E {(3,1),(4,2)}, and for .b.(X,L) = 2,
(hO(X,L),L3 ) E {(2,1),(3,2),(4,3),(5,4)}.

Oguiso's analysis on the corresponding graded rings El1n~oHO(X,nL) for the above
6 possible values of (hO(X, L), L 3 ) lead to the following:

Theorem 2.44. (Oguiso's (~ :::; 2)-classification [94, thm. 5.1.)} Let (X,L) be a
polarized GY threefold with delta genus:::; 2. Then X is a eomplete interseetion of
codimension ~ 2 in W.p.s. and L = Lx = Ox(1). More precisely, for ~(X, L) =
1, X is isomorphie either to an X s C JF4(1, 1, 1, 1,4) or to an X 10 C r 4(1, 1, 1,2,5).
For ~(X, L) = 2, X can be one of the following: X 6 C JP4(1, 1,1,1,2),
X(2,6) C JF5(1, 1, 1, 1, 1,3), X(3 ,6) C JP5(1, 1, 1, 1,2,3), X(4 ,6) C JF5(1, 1, 1,2,2,3) or
X(6,6) C JF15(l, 1,2,2,3,3).

Theorems 2.43 and 2.44 are not true if one drops the assumption of the smoothness
of X. Nevertheless, having formula (2.28) in hand, we can give the corresponding
tables of CY models expressing well-formed, well-stratified q.s.e. intersections of
codimension ::; 2 in a W.p.s. with ~(X,Lx) :::; 2, by using the "big classification
tables" which were mentioned in 2.42. (i). Moreover, in the hypersurface case
(k = 1), where the table of (d; w)'s is complete, we can win the whole picture of
the "geographical placing" of the pairs (L~, (c2]x(Lx)) which is in fact due to the
numerical behaviour of 7Jx and of the pt -summands of hO(X, CJ(7]x)) in (2.20) (cf.
comments at the end of §1). The author is indebted to R. Schimmrigk for various
computer eheckings and for valuable remarks on the arising diagrams.

Proposition 2.45. (i) The number [e2]x(Lx) within the dass of minimal GY
models X = Xd C JF4(w), being realized as hypersurfaces (with sufflciently general
defining polynomials) in a four-dimensional W.p.S. and (d; w) 's running through
the list of the above mentioned 7555 combinations, grows like:

(2.29)
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(2.30)

In logarithmic scales, the pairs (L~\", [c2lx(Lx)) are given by the following dia­
gram. (Tbe line, which is indicated by faint dots, is tbe limiting (~ = 3) -line.)

n dats.r2~ ;
10*x .

10*3.14*x**(3~14/10) ­
2*3.14*.x**(3.14/10) ....

10*3.14~.3.r4*x**(3.14/10)-

11I ........... .

1e+11 ....------.---,..------.--__._--...----r-----,.--...,--.,----.

1e+10

1e+09

1e+08

1e+07

1e+06

100000

10000

1000

100

10

11-----'---'-_--'-_-L-_--'-_-'--_....L--_...J...-_.&..-.-----'

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+l0

(ii) The above dass contains exactly 11 GY models "ivitb delta genus ~( ..Y, Lx) ::; 2.
They are given by tbe following table:

J\Tr. Model X = Xd L~ 6(X, Lx) e(X)

(1) )(6 C P4(1,1,I,l,2) 3 42 2 - 204

(2) X8 C P4(1,1,1,1,4) 2 44 1 - 296

(3) )(10 C p4(I, 1, 1,2,5) 1 34 1 - 288

(4) )[12 C p4(1, 2, 2, 3, 4) 2 32 2 - 138

(5) )(12 C r 4(1,1,2,2,6) 4 52 2 - 250

(6) "'Y14 C p4(l,2, 2,2,7) 2 44 1 - 212

(7) ..Y15 C p4 (1, 3, 3, 3, 5) 3 42 2 - 124

(8) X 18 C p4(l, 1, 1,6,9) 9 102 2 - 542

(9) X 18 C p 4 (1, 2, 3, 3,9) 3 42 2 - 188

(10) "''\"24 C P4(I, 1,2,8, 12) 8 92 2 - 482

(11) )[36 C P4(1, 2,3,12, 18) 6 72 2 - 362
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Note that each of them ean be defined bya Fermat polynomial.

(iii) Only 5 models lie on the (~ = 3) -line: [c2lx(Lx) = 10 Li, namely X 5 C 1P4,
X 16 C JP4(1, 1,3,3,8), X20 C JP4(1, 4,5,5,5), X 26 c P4(2, 2, 3, 6,13) and
Xao C P4(1, 2, 6,6, 15).
(iv) Except for the cases, when X is isomorphie to either X 10 C 1P4(1, 1,1,2,5) or
X 12 C JP4(l,2,2,3,4) and L\ = ~(X,Lx), we have:

(2.31 )
a 6

Lx > 5L\(X,Lx).

Proof. Apply the formulae (2.25), (2.27), [c2lx(Lx) = 12 hO(X, Lx) - 2L~ (cf.
(5.3)) and (2.28) to the table of the 7555 combinations of degrees and weights given
in [74]. 0

Similar results cau be achieved for codimension k = 2.

Proposition 2.46. There exist exactly 6 well-formed, well-stratified q.s.e. inter­
sections X = X(d l ,d2 ) C 1P5

(WI, ... ,W6) with am(X) = 0 and ~(X, Lx) ::; 2:

Nr. Model X = X(dl,d 2 ) L~ [c2lx(Lx) ~(X,Lx)

(1) X{2,6) C JP5(l, 1,1,1,1,3) 4 52 2

(2) X(3,6) C JP5(l, 1,1,1,2,3) 3 42 2

(3) X(4,6) C }p5(l, 1,1,2,2,3) 2 32 2

(4) X(6,6) C JP5( 1, 1,2,2,3,3) 1 22 2

(5) X(6,lO) C p5(2, 2, 2, 2, 3, 5) 2 44 1

(6) X(6,12) C JP5(2, 3, 3,3,3,4) 3 42 2

Moreover, 5 models of this kind lie on the (.6. = 3) -line, namely
X(4,4) C JP5(1,1,l,l,2,2), X(6,8) C JP5(l,2,2,2,3,4), X(lO,12) C JP5(1,3,3,4,5,6),
X(lO,15) C 1P5(2, 3,5,5,5,5) and X(14,18) C JP5(2, 2, 6, 6,7,9).

Proof. If X is a 2·dimensional well-formed, well-stratified q.s.c.i. in JP5(W), then
Pic(X) is generated by the dass of Lx = CJ X (1]X ), where 7Jx, similarly to the
hypersurface case of cor. 2.38., is given by 7Jx = 1cm{Wl U W2 U Wa}, with

W1 := {gcd(Wi l , Wb, Wi 3 ) 11 ::; i 1 < i 2 < i a :s; 6}

W2 := {gcd(Wi l , Wi 2 ) 11 ::; i 1 < i 2 ::; 6 with either gcd( Wi l , Wi 2 ) f d1

or gcd(Will Wi 2 ) f d2 }

Wa := {will :s; i :s; 6 such that Wi f d1 and Wi t d2 }.
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Applying the formula (2.28) for trus "IX to the combinations of (cl; w)'s which were
found by [73], and taking into account that Ö. grows rapidly after the first steps of
a search procedure, we get only the above cases fulfilling the requirement Ö. :::; 3.0

Remark 2.47. Using elementary number theory, one can verify that, up to per­
mutations of weights and degrees and up to different coefficients of the defining
polynomials, there exist exactly 171 BP q.S.C. intersections of dimension 3 and
of vanishing amplitude satisfying the assumptions of cor. 2.39. Namely 147 with
codimension k = 1, 19 with k = 2,4 with k = 3 and one with k = 4. In particular,
by (2.26) and (2.28), we deduce that the minimal delta genus for such an X with
k E {2, 3,4} occurs when X = X(6,6) C P5(1, 2, 2, 2, 2, 3) and Ö. = 4.
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§3. Toric crepant resolutions of 2- and 3-dimensional
Gorenstein cyclic quotient singularities

As it was mentioned in prop. 2.5. and 2.18., well-formed q.S.C. intersections have
singular Iod consisting of cyclic quotient singularities (c.q.s.) In particular, when
the amplitude vanishes, the occuring C.q.S. are Gorenstein. To resolve them locally
by crepant morphisms, we shall make use of the language of toric geometry as it is
presented by Danilov [25], Oda [93] and Fulton [47].

Let us first review some preliminary definitions and facts and fix certain useful
notations.

(i) For a lattice N of rank r, M = Homz(N, Z) denotes its duallattice and NR :=
N ~zIR., MfR. := M (9zIR. their scalar extensions to the field of real numbers. A subset
a of NR is said to be a strongly convex rational polyedral cone (SCRPC, for short) if
an( -a) = {o} and if there exist n), ... ,nil E N, S.t. a = IR~onl +... +IR~onlJ" Its
dim ension dim(a) is that of the smallest IR-subspace a+(- a) = IR a of NR containing
a and its relative interior int(a) (resp. its relative boundary 8a ) is defined to be the
usual interior (resp. the usual boundary) of a regarded as a subset of the IR-vector
space Ra. Such a a is called simplicial if nl, ... ,nil are linearly independent over R.
The dual cone a of a is defined by a := {x E M~l < x, y > 2:: 0, Vy E a} and turns
out to be an r-dimensional SCRPC in M~. (Here< , >: MfR. x NR --t IR. denotes the
natural IR.-bilinear pairing). A subset T of a SCRP C a is called a face of a (notation:
T -{ a) if it can be expressed as T = an {mo}l. := {y E al < mo, y >= O} for some
mo E a.

(ii) For a j.L-tuple (nI,' .. ,nJl) E NP consisting of R-linearly independent vectors,
we define
s(n1" .. ,np) := {y E NRIY = I:r=l Aini with I:r=l Ai = 1and Al, . .. ,Ap E IR~o}
to be the usual closed, affine simplex with vertices n1, ... ,nil' and, for a given
s = s(n1l'" ,np), we set a(s) := IR.~onl + ... + R~onJJ to indicate the simplicial
SCRPC arising from it after omitting of the affinity condition for its defining linear
combinations.

(iii) If (J c NR is a SCRP C, then the intersection M nä generates M as a group,
is saturated, and is a finitely generated additive subsemigroup of M containing 0,
Le. there exist ml, ... ,mk E M, S.t. Mn a = NOml + ... + NOmk. If T -< ()" with
T = an {mo}l., then Mn f = Mn a+ No(-mo).

(iv) Let now TN ~ (c·)r be the r-dimensional algebraic torus defined by TN :=

Homz(M, C*) = N (9z C*. Every m E M (resp. n E N) assigns a character
e(m) : TN 3 t J---t t(m) E C* (resp. al-parameter subgroup rn : C* 3 A J---t

In(A) E TN, In(A)(m) = A<m,n>, Vm E M ) of TN. This means that, after
having chosen a Z-basis {nI, ... ,nr } of N and its dual basis {mI, ... ,m r }, we shall
always get an isomorphism TN 3 t J---t (Ul(t), ... ,ur(t)) E (C* t for Uj := e(mj),
1 ~ j ~ r, and that {Ul" .. ,ur} can therefore be considered as a coordinate system
of TN. On the other hand, for a SCRPC a with Mn a = NOm l + ... + NOmk,
we associate to the finitely generated, normal C-algebra C[M n a] an affine variety
Uq := Spec(C[M n a]), which can be written

Uq = {u : M n ä --t Clu(0) = 1, u (m +m') = u(m )u(m'), \Im, m' E M n ir }

36



with e(m)(u) := u(m), Vm E Mn 17 and Vu E Uu . In the analytic category, Uu ,

identified with its image under (e(m1), ... ,e(mk)) : Uu --t Ck, can be regarded as
an analytic set determined by a system of equations of the form: (monomial) =
(monomial). This complex analytic structure induced on Uu is independent of the
semigroup generators {mI, ... ,mk} and each polynomial function e(m) on Uu is
holomorphic W.r.t. it. In particular, for r -< a, Ur is an open subset of Ucr •

(v) A fan in N rv zr is a collection E of SCRPCs in NT,R, s.t.(a) any face r of
u E E belongs to E and (b) for 0'1, f72 E E, the intersection U1 n U2 is a face of both
a1 and a2. The union lEI := U{alu E E} is called the support of E. Furthermore,
we define E(i) := {a E Eldim(0') = i}, 0 ::; i ::; r.

H p E E(l), then there exists a unique primitive vector n(p) E N n p with
p = IR;:::on(p) and each cone.a E E can be therefore written as

a = L IR.;:::on(p).
pEE(lLp-<cr

The set Sk1(u) := {n(p)lp E E(l),p -< a} is called the first skeleton of er. The toric
variety associated to a fan (N, E) is the identification space
Z(N,E):= ((llcrEE U cr )/ rv) with Ucr1 3 U1 rv·U2 E Ucr'J:~

(3r -< U1 n (J2 : Ui E Ur C Ucr ;, for i = 1,2, and U1 = U2 within Ur).
Z(N, E) admits a canonical TN-action, which extends the group multiplication of
TN = U{O} : TN X Z(N, E) 3 (t, u) ....-r t· u E Z(N, E),
where, for u E Ucr , (t· u)(m) := t(m) . u(m), \Im E NI n 17.

(vi) If we denote by orb(er) (resp. V(a) := orb(f7)) the orbit (resp. the closure
of the orbit) of f7 E E under this action, then

E 3 q I----t orb(a) = {u : M n a.L --t C* lu group homomorphism}

E {TN - orbits in Z(N, E)}

establishes an 1-1 correspondence. The TN-orbits have the following properties:

(a) orb({O}) = U{Q} = TN and dim(orb(a)) = r - dim(a), Va E E.
(b) r -< a~ orb(a) C V(r).
(c) For a E E, ,orb(a) is the unique closed TN-orbit in Uu and

Ucr = Il{orb(r)l-< a}.
(d) For r E E, we have V(r) = II{orb(a)la E E, r -< a}.
(e) For r E E, V(r) = Z(N(r), Star(r)) is itself a toric vaxiety \V.r.t. N(r) :=

N/'Z(r n N), Star(r) := {alu E E, r -< a}, where a := (0" + IRr)/lRr denotes
the image of u in N(r)R = NR/JRr.

(vii) Let Z(N, E) be the toric variety associated to a fan E and N rv zr. Then:
(a) for er E E, Uu is nonsingular~ (3 Z - basis{n1, ... ,n r } of N and k ::; r with

a = 2:7=1 IR;:::oni) and Z(N, E) is nonsingular~ (Ucr is nonsingular, Va E E).
(b) Z(N, E) is compact~ E is finite and lEI = Na.

(viii) A map of fans I..p : (N', E') --t (N, E) is a Z-linear homomorphism I..p : N' --t

N whose scalar extension t.p : Na --t NR satisfies the property: (\lu' E E', 3a E
E : t.p(a') Cu). Such a cp induces an holomorphic map tp* : Z(N', E') --t Z(N, E)
which is equivariant w.r.t. the action of TN' and TN. Nloreover, <fJ* is proper
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<==::} (Va E E, E~ := {a' E E'Jcp(a') c a} is finite and cp-1(a) = IE~I). In
partieular, if N' = N, cp = id and E' is a locally finite nonsingular subdivision of
E, then id* is proper and birational and gives an equivariant desingularization of
Z(N, E).

(ix) For the group TNDiv(Z) of Weil divisors on a torie variety Z = Z(N, E) we
have TN Div(Z) ~ EB pEE(l) Z V(p). (For another approach via support functions
see [93, §2.1].)

Let us now come back to our c.q.s. and see how are they describable in terms of
the above given toric glossary (i)-(ix). Suppose that r ;::: 2 and G C GL(r, C) is
a finite eydie group of order 1 containing no pseudoreflexions and being generated
by diag((r 1 , • •• ,(rr ), for sui table integers 0 :::; al, .. . ,ar < 1. If (er / G, [0]) is the
germ of the corresponding quotient singularity, its underlying space er /G cau be
identified with a toric variety Z(NG,Eo) 0/ type (l; al, ... ,ar) as follows: TNG :=

(c*)r /G is an r-dimensional algebraic torus with I-parameter group NG and with
group of characters Mo = Homz(.1VG, Z). Let {eI = (1, ... ,0), ... ,er = (0, ... )1)}
be the standard basis of zr. Then

N - 7\T +~ Z ([jal]t [jar]t)
G - HO LJ l' ... , 1

j=l

r

with No := L Zei and
i=l

1-1 r

Mo = nMj with lvIj := {(mI, ... ,mr ) E Zrl L mi[jai], == O(mod l)}
j=l i=1

Vj, 1 ~ j :::; 1- 1.

Defining 0"0 := I:~=1 IR~oei, Eo := {rlr -< O"o}, and using the exact sequence

o--t G ~ NG/No --t TNo --t TNG --t 0

we get as projection map: er = Z(No, Eo) --t Z(No, Eo) = er /G.
Proposition 3.1. For Z(NG, Eo) the following conditions are equivalent:
(i) Z(NG, Eo) is Gorenstein.
(ii) WZ(NG,Eo) is trivial.
(iii) 3 ! mo E M : (mo, ei) = 1, Vi, 1 ~ i :::; r.

Proof. If follows from [98, footnote of p. 294] and Ishida's criteria [93, p. 126]. 0

If cp = id* : Z(No, Eb) --t Z(No, Eo) = er /G is a TNG·equivariant desingulariza­
tion of Z (NG, Eo), then a cone R 2:on(p'), p' E Eb (1), determines a prime divisor
Dn(pl) := V(IR2:on(p')) = Z(Star(lR.;:::on(p'))) on Z(No,Eb). So we have an 1-1
correspondence:

{exceptional prime divisors w.r. t. 7r} '---t U{Sk1(er') ler' E Eb} \ {eI, ... ,er}.

Dei corresponds to the strict trans/orm of {(Zl , ... ,Zr) E er Izi = O} / G w.r. t.
7r, Vi, 1 ~ i ~ r.

38



Proposition 3.2. A TNa -equivariant resolution 7r : Z(Na , Eb) -t Z(lVo , Eo) =
er /G of a Gorenstein C.q.S. Z(Na, Eo) is crepant if and only iE

r

U{Sk 1(0"')10"' E E~} C'H := {(Xll'" ,xr ) E IRrl LXi = 1}.
i=l

In this case we get e(Z(Na, Eb)) = IGI.
Proof. Let 0"' E Eb and ,." E HO(U~I W Iu' ) be ,." = f du~ /\ ... /\ du~, w.r.t.

'Z(Na,E~) (11

Iocal coordinates u~, ... ,u~ of U~" Then the zero order of f along any exceptional
prime divisor D n( pi), p' E Eb (1), p' -< u', equals (trace (n (p') )) - 1. So 7r is crepant
if and only if the total union U{Sk 1(u')lu' E Eb(r)} lies in the hyperplane 11..
Moreover, e(Z(Na, Eb)) = ü(Eb(r)), which is equal to the multiplicity [Na: No] =
IGI of uo, because uo = u{O"'lu' E Eb(r)}. 0

For r 2:: 4 it is not always possible to construct such crepant resolutions. Neverthe­
less, in dimension 2 and 3, relatively simple principles of the corresponding lattice
geometry lead to the desired constructions.

Proposition 3.3. For r = 2 and Z(Na, Eo) a Gorenstein c.q.S. of type (l; Cr1, Cr2),
there is a unique crepant desingularization 1r : Z(Na, EÖ) -t Z(No , Bo) with

Eb = {{IR.~0(~, [j~2li )11 :::; j :::; I - 1}, IR~oe1, R~oe2 and their faces}, being
provided with 1- 1 exceptional prime divisors rv IFt, whicb compose a Hirzebrucb­
Jung string.

Let now r = 3 and Z(Nc, Eo) = C3 /G be of type (li Cr1, 0'2, Cr3). We define So :=
S (ell e2 , e3) and

..l'". • __ {([jO'1]1 (jO'2], (jO'3]1) ~[j ] . I }
"J!C • I' 1 'l ~ Cri I = 1, 1:::; J::; - 1

(If G C SL(3, C), we can always assume, up to a generator change, that
0'1 + Cr2 + 0'3 = I.)

Proposition 3.4. All todc crepant resolutions of a Gorenstein C.q.S. Z(Na, Bo) =
Cl /G are of the form 1r : Z(Na, Bb(S)) -t Z(Na, Bo), where S denotes a triangu­
lation of Bo n'H = {r n 'Hlr -< uo} with So n Na = <I>a Il{eI, e2, e3} as the sets of
its vertices and Eb(S) = {{O}, {u(s)ls E S}}. More0 ver, tbey fulfill the following
properties.·
(i)

(3.1)
1 3

~(int(so) n Na) = -(1- L gcd(Cri, I)) + 1
2 .

t=l

(ii) Let D n := V(u( {n})) denote the prime divisor corresponding to an n E So nNa.

(a) We have {exc. pr. divisors w.r.t. 1r} = U{Dnln E <Pa}.
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(b) IE n E int(so) n Na, tben D n is a rational surfaee eoming Erom linitely many
T N G (O'( {n} )) -equivariant blow-ups ei ther of IF2 or oE a Hirzebru eh surfaee
IFa := P(Opt El1 OlPl (a)), a ~ O.
(e) IE aso n <Pa is non-empty and none of its members lying on s( eil' ei2), where
1 ~ i l , i2 ::; 3, i l =f:. i2 and {i3} = {1, 2, 3} \ {il, i 2}, tben Dn represents a ruled
libration over the i3-axis. Its Ebers over the "punetured" i3-axis are isomorphie to
pI.

Proof. That the TNG -equivariant desingularizations of Z(Na, ~o) are parametrized
by the above triangulations is abvious from prop. 3.1. and 3.2.
(i) It is easy to verify that ~cI>a = t(l + L:~=I ged(ai, 1)) - 2 and ~(aso n cI>a) =
L:~=I gcd(ai,l) - 3.
(ii) (a) and (c) are clear from the construction. (b) follows froin [93, thm. 1.28]. 0

Remarks 3.5.
(i) Ta each 1-simplex s(nl, n2) of an S corresponds a curve C(nl, n2) := V( a(s(ni , n2))'
C(nl, n2) is compact <=> int(s(nl, n2)) C int(so). In this case C(nl, n2) "J pI.
(ii) If n is as in 3.5. (ii) (c), SpJl(S)(n) denotes all 1-simplices of S which are
connected wi th n having their second vertex in <P a \ {n} and b(n) := ~ (Spli (S) (n )),
then the fiber of D n -+ {i3 -axis} over the zero point consists of a tree-configuration
of b(n) rational curves {C(n, nd, ... ,C(n, nb(n))} with

_ { {a point}, far Ih - t21 = 1, 1 ::; t l , t2 ~ b(n)
C(n, ntl) nC(n, nt2) - h'

0, ot erWlse

where Spll(S)(n) = {s(n,ndI1::; t::; b(n)}.

Proposition 3.6. Let Z(Na, ~o) = C3/G be a Gorenstein e.q.s. and
Z(Na, ~~(S)) -+ Z(Na, ~o) be a erepant resolution w.r.t. S.
(i) For three distinet vertices oE nl, n2, n3 oE 5 we have (D n1 . Dn2 • Dn3 ) =f=. 0 -{:=>

s(nl, n2, n3) is a 2-simplex of S. In this case (Dnl • Dn2 • Dna ) = 1.
(ii) Ifnl,n2 E So, s(nl,n2) is an l-simplex of 5, but no both ni and n2 belong to
the same face of aso, then there exist exactly two vertices n3, n4 of S, such that
s(nl, n2, n3) and s(nl, n2, n4) are 2-simplices of 5, and the corresponding intersec­
tion numbers are related by

(3.2)

(iii) IEn E int(so) is a vertex oES, then:

(3.3) D~ = 12 - ~(Star(IR~on)(2))

Proof. Für (i) and (ii) apply the general techniques of [47, §5].
(iii) Noether's formula gives X(Dn,OD n ) = 1 => wb

n
= 12 - e(Dn). Since

WZ(NG,E~(S)) "J OZ(NG,Eo(S))l we have wb
n

= D~ by adjunction. On the other hand
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the topological Euler-Poincarecharacteristic is nothing hut e(Dn ) = e(V(O"({n} ))) =
e(V(IR.~on)) = e(Star(IR.~on)) = ~(Star(lR~on)(2)) (cf. [47, p. 59]). 0

Definition 3.7. Let Z(N, E) he a 3-dimensional nonsingular toric variety, assoei­
ated to a fan E (w.r.t. N rv Z3), {nt,n2,n3}, {nl,n2,n4} two Z-bases of N and

0"1,0"2 E E(3) two eones 0"1 = IR. ~on 1+IR.~On2+IR.~on3, 0"2 = IR.~Onl +IR. ;;:::On2 +IR~on4

adjaeent along 71,2 = IR.~onl + IR.;;:::on2. If nl, n2, n3 are eoplanar and nl + n2 =
n3 + n4, then 0"3 = IR~onl + IR.~on3 + R.~on4, 0"4 = IR~on2 + IR.?;On3 + IR~on4 are

"'"
adjaeent along the 2-dimensional eone 73,4 = lR~on3 + lR~on4 and Z(N, E), with-E := (E \ {0"1, 0"2, 71,2} ) U {0"3, 0"4, 73,4}, is a nonsingular tode variety. In this ease,
"'"
E is ealled elementary tmnsformation of E w.r.t. 0"1,0"2 and 71,2' (See Fig. 1.)

elementary

------.;:>
o

transformation

Fig. 1

Proposition 3.8. Let L\, E2 be two nonsingular fans in N rv Z3 with IE11 = IE21.

Jf we assume tbe existence of an mo in M = Homz(N, Z), for which (mo, n(Pl)) =
(mo, n(P2)) = 1 for a11 PI E E1 (l) and all P2 E E2(l), tben E2 is obtained from EI
by a finite succession of elementary transformations.

Proof. See Danilov [26, prop. 2] or Oda [93, prop. 1.30. (ii)]. o
Corollary 3.9. The fans Eö(Sd, i = 1,2, which corresponds to two crepant res­
olutions 1f'i : Z(NG, Eö(Sd) -t Z(NG, Eo), i = 1,2, of a Gorenstein 3-dimensional
cyclic quotient singularity, differ from each other by finitely many elementary trans­
formations.

Proof. Obvious by propositions 3.2. and 3.8.
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§ 4. Global toroidal crepant desingularizations

Let W = (WI, ... ,wm ) be a system of weights, cl = (dl , . .. ,dk ) E Nk , and

a well-formed q.s.c.i. of dimension 3 (i.e. m - k = 4) with am(X) = 0. Using the
notations of §2, we define:

r a := {I c {1, ... ,m} : 111 = 3 +V(1), CI> 1 and CI 1 = 1, Vl' , l' ~ 1},

ra := {1 C {I, ... ,m} : 111 = 3 + V(l) with CI > 1, CI\{i} > 1 for at least one

i E 1 and CI> CI\ {i} for all that i's satisfying this property},

and r l := {1 C {I, ... ,m} : 111 = 2 + V(l) and CI > I}.

Since X is normal and well-formed, we have codimx(Sing(X)) ~ 2, and Sing(X)
can therefore have at most I-dimensional components. We write Sing(X) as the
union of 0- and I-dimensional singular strata

(4.1)

where SStP(X) := u{X(l)ll E r p}, p = 0,1 (cf. prop. 2.18). Furthermore, we
define INP(X) := U{X(l)]I Eta}. Without loss of generality, we shall treat
here only the case in which none of the above strata is empty. We first fix an
enumeration r l = {1I, ... ,IK } of the index sets of r l . Each Cj := X(lj ) is an
irreducible smooth curve and

(4.2)

In addition, we introduce the enumerations

(4.3) {t{, ... ,t~_IIjl}:={l, ... ,m} \Ij

(4.4) {si, ... ,s{-V(Ij)}:= {1, ... ,k} \ {p E {l, ... ,k}: fp]Ij =O}

to be used in the following:
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Lemma 4.1. For the eurve Ci and any point Q E Ci \INP(X) there exist integers
(c·) (c·) (c·) (c·)

lCj and a 1 J ,a2 J ~ 1 \vith 0'1 ) +0'2) = lCj' depending on the weigbts with
indices in Ii and on the defining polynomials of X, such tbat:
(i) the germ (X, Q) of X at Q is isomorphie to

(4.5)

where (Cl IGcj' [0]) is a e.q.s. of type (lcj j O'iCj ), O'~Cj)), and
(ii) X near Ci looks like:

(4.6)

Proof. (i) Since X is well-stratified and Q f/; INP(X) (i.e. it is not possible for Q
to contain more than 2 + V(Ij) coordinates equal to zero), we have:

(
8(/~jlCj"" ,/~j ICj))

1 k-V(1j)

rank 8(' .) IQ = k - V(Ij ) and
z~ , ... ,ZtJ

1 rn-I/jl

rank (8(/1
'" • ,Ik) I

Q
) = k.

8(zl,' .. ,zm)

Thus, by implicit function theorem, a local chart of the V -variety X centered at
Q will have as coordinates Z q{ , Z~, where {q:, q~} C I j , together with a third one

z~ expressing the restriction on Ci (trl E {ti,· .. ,t~-IIi I})' Note that the complex
plane determined by zq{' z~ is equipped with the action

[wort)c/. [Wqi]c/.
(Z..i, Z..i) I---t ((Cf. 1 J Zqj, (c/. 2 ) Z i).

'll '12 J 1 J q'J

We end the proof just by setting lCj := elj = c(w,Ij) = gcd(wtj, ... ,Wti ),
1 rn-I/il

aiCj ) := [w..,; lCI' a;Cj) := [W..J lc/., and taking into account that am(X) = O.
'11 J '12 J

(ii) We can use the above description or, alternatively, apply the tubular neighbour­
hood theorem to the affine quasicones over Cj and X. For the punctured quasicones
we have (CN*(X), CN*(Ci)) s:: (CN*(Cj) x ([J IGCj' CN*(Ci))' Letting C* act
on them in the usual way (cf. 2.11.) we get (4.6). 0

Let us now give enumerations to the points of the singular locus of X. We set:

(4.7)

(4.8)

(4.9)

SStO(X) = {Pd1 ::; i ::; A} and

INP(X) = {Q L 11 ::; L ::; J.L} as weIl as

INP(X) n C· = {Q(~)ll < v· < c.} 1 < J' < K
) VJ -) - \")' - -
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to indicate an enumeration of the points of INP(X) sitting on Ci' It should be
mentioned here that max{~iI1 ::; j ::; K} ::; /-1. ::; 2:j=l ~i' because (for K ;::: 2) it may

happen that there are indices 1 ::; j, j' ::; K, j i- j', such that QL = Q~~) = Q~:),
for certain 1 ::; i ::; J.l and 1 ::; vi ::; ~h 1 ::; vi' ::; ~i" (This is exactly the case, in
which Ci and Ci' have at least one intersection point.)

Lemma 4.2. For any Pi E X(I), I E f o, there exist integers lpi and aiPi) , a~Pd,

a;Pd ;::: 1 with aiPd + a~Pi) + a;Pd = lpp such that

(4.10) (X, Pi) rv (~ jGPi' [0])

i.e. thegerm ofX at Pi is isomorphie to that ofa e.q.s. oftype (lPi; aiPd
1 a~Pi), a;Pi»).

(Tbe same holds true if \ve eonsider a QL instead of Pi).

Proof. Exactly as in the proof of 4.1. one finds indices {ql, q2, q3} Cl, such that
Zql1 Zq2' Zq3 represent local coordinates of X centered at Pi with respect to the
action:

Since the acting cyclic group lies in SL(3, C), we set lpi := CI and make use of the
"normalization" of the exponents

o

The points of SStO(X) are the isolated points of Sing(X). The points of INP(X)
will be called individual. The justification of the choice of this name comes from
the fact, that for a Q~~) E INP(X) n eh the group GQ~j,> has order strictly bigger

J

than that one of the group GCj' The union SStO(X) 11 INP(X) of isolated and
individual points of Sing(X) constitutes the set of the so called dissident points
in Reid's terminology (see [98, Cor. 1.14., p. 281]), Le. the set of points of the
threefold X which are not of compound Du Val type. In other words, the compound
Du Vallocus, in our case, is composed of the points of SSt1(X) \ INP(X), and each
point Q E Ci \ INP(X) is by lemma 4.1. of type CA,c-_1'

J

Let us now consider appropriate open neighbourhoods UPi' resp. UQl of Pi, resp.
of QL, 1 ::; i ::; A, 1 ::; i ::; /-1., such that UPi ~ Z(Ncp., ~o) = (:3 jGPi and

I

UQ, rv Z(NcQ,' ~o) = C3 jGQl respectively. Since QL = Q~) for some
1 ::; vi ~ ~i' 1 ::; j ~ K., we can take a tubular neighbourhood UCj of Ci, such that

(4.11)
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Fig. 2 shows these neighbourhoods of two eurves of SSt1(X) having ,an individual
interseetion point.

Co,
J

Fig. 2

Using prop. 3.4 we eonstruet tode crepant resolutions
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(4.12) 1rPj (SpJ : (Z(NOPi ' E~(SpJ), EpJ -+ (Z(Nop ;, Eo), Pd
(4.13) 'FrQ, (SQI) : (Z(NoQ" E~(SQ, )), EQ,) -+ (Z(NoQI ' Eo), Q,)

with CPj := {D~Pdln E int(so) n NoPi }, CQI := {D~Q')ln E int(so) n NCQ,}' (All
the above divisors are assumed to be endowed with the reduced space structure.)
Analogously, we construct uniquely determined crepant resolutions

(4.14) 'FrCj : Z(Ncc .' E~) x Cj -+ UCj ~ Z(Ncc.' Eo) x Cj
J )

by applying prop. 3.3. along the normal sheaf Ncj /x of Cj in X. (4.11) give rise
to the compatibility conditions

(4.15) 'FrCj IUcjnuQ(j) = 1rQy.> (SQy.dlucj nUQ(j)
Vj )) Vj

and enable us to glue (4.12), (4.13) and (4.14) together in order to define a total
number of

A p

(TI ~ {triangulations S Pj })(TI ~ {triangulations S Q I } )

i=l t=l

global resolutions

(4.16) 1r: (Y = Y(Sl, ... ,SP>.,SQl' .. ' ,SQ~),c(X)) -+ (X,Sing(X))

of the singularities of X, with Y's obtained from X by replacing Sing(X) by c(X).
Their exceptional loei can be written as

where CCj = {D~7j) 11 ::; r j ::; lCj - 1} express the union of the lCj - 1 prime divisors

lying over Cj. All rrl (Cj) : D~7j) -+ Cj are smooth ruled fibrations provided
DJ"j

with two sections ~ Cj and allowing, in general, exceptional fibers. Indeed, if

Q(j) . . d· 'd al . f C 't . (D(Cj)) nU (D)Vj IS an In lVI u pOInt 0 j, 1 IS supp rj Q~j) = supp n(Vj ,J"j) ,
)

i.e. the support of a non-compact divisor, realized in the corresponding triangle
So = s (eI, e2, e3) by the vertex n (Vj Irj) of SQV)' and if (in the notation of 3.5. (ii))

)

(4.17)

then

Spll(SQv.>)(n(Vj,rj )) = {C(n(Vj,rj ), n~~!jI7/))11 ~ t(vj,rj) S; b(n(Pj,rj ))}

)
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Die 1r

1·
•
~I

J

Fig. 3

Proposition 4.3. The global desingularizations (4.16) of X are 811 crepant, and
each of them differs from another one by finitely many simple flops, being realized
by elementary transformations which take place within the fans
{E~(SpJ, E~(SQ')11 ~ i ~ A, 1 ~ l, ~ p}.

Proof. The verification of the first assertion follows from the construction and [99,
thm. 1.14., p. 142]. Now every rational curve C = C(nl' n2) representing an
I-simplex in one of the above triangulations SPi' SQ., which is a diagonal of a
convex quadrilateral (determined by lattice points), has normal bundle Nc / y I"'V

Oc( -1) EB Oc( -1) and can therefore be flopped (see [78,2.3.2.1]). Simple flopping,
in our case, means the replacement of the one diagonal of a regarded convex lattice
quadrilateral by the other, Le. the application of an elementary transformation.
Hence, the second assertion follows from cor. 3.9. 0
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(4.19)

(4.20)

Definition 4.4. Although X and Y's axe not themselves toric varieties, we shall
eall (4.16) the toroidal crepant desingularizations 01 X, sinee they ean be eompletely
deseribed by means of their loeal torie data.

Remarks 4.5. (i) Most of Y's are projective, but, in general, there is no guarantee
that all of them will be projective. This is why we shall deal here with both pos­
sibili ties. (Of course, all projeetive ones are CY threefolds.) For the eonstruetion
of pathologieal triangulations for erepant torie resolutions of abelian quotient sin·
gulaxities whieh lead, after gluing together, to nonprojeetive threefolds with trivial
eanonieal bundle, as weIl as for a combinatorial method of how one discribes the
projeetive ones, we refer to [24].
(ii) In both eases, Y's admit Hodge decomposition aecording to a theorem of Deligne
(see [27, prop. 5.3., p. 121]). Moreover, aU Y's have the same Hodge nwnbers,
because the surgery of uflopping type" does not have any influence upon them (cf.
[77, §4] or [78, §5]).
(iii) X can have crepant desingularizations other than the toroidal ones. Never­
theless, a general theorem of I{awamata-Matsuki [70] and Kollar [77, Cor. 5.6.]
informs us that the number of all projective crepant desingularizations has to be
always finite. The toroidal crepant desingularizations are, so to say, the ones which
can be eharaeterized, from the combinatorial point of view, in the best possible
manner, because the corresponding "flopping Iod" are easily controllable.

Before proceeding to the determination of the Hodge numbers of Y's, we have
to introduce some more useful notations. We set a(Pd := ~(&pJ, a(Q,) := ~(&QJ

and we fix the enumerations

(4.18) &Pi = {D~~;/11 ~ Pi ~ a(Pd}, &Q. = {D~~:)11 ~ q, ~ a(Q,)}

By Prop. 3.4. (i) we get

1 3

a(Pd = "2(lpi - L gcd(a~Pj), lpJ) + 1
p=l

1 3

and a(Q,) = 2"(lQ. - L gcd(a~Q·), lQJ) + 1
p=l

Theorem 4.6. The Hodge numbers of the toroidal crepant desingularization spaces
Y of X are the following:

(4.21)

(4.22)

A JJ K

h1,1(y) = L a(Pd + L a(Q,) + L lCj - (K - 1)
i=l ,=1 j=l

K

h1,2(y) = h1,2(X) + L(lCj -1)ho(Cj,Ocj(am(Cj)))
j=l
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(h l ,2(X) = h~~~m(X) and hO(Cj, OCj (am(Cj))) areknown from the formulae (2.17)
and (2.20).)

Proof. By (2.5) we know that hp,q(X) = 1, Vp, 0 :s: p :s: 3 and hp,q(X) = 0,
for p + q i= 3, p i= q. Since am(X) = 0, formulae (2.6), (2.16) and (2.18) give
h3,O(X) = hO ,3 (X) = 1. The desingularization process alters only the remain­
ing non-trivial Hodge numbers hI,I = h2,2 and h l ,2 = h2 ,1." Making use of the
Mayer-Vietoris homology (or cohomology) sequences (see [24], [101)), we deduce
the following additive splitting for the Betti numbers coming into question:

(4.23) b2(Y) = b2(X) + ~ (exceptional prime divisors w.r. t. 7r)

(4.24)

,..

b3 (Y) = b3 (X) +L(lCj - l)b l (Cj)
j=l

The number of the exceptional prime divisors being located only over Pi (resp. Q(.)
is a(Pd (resp. a(Q(.)), while over Cj lie exactly ICj - 1 ruled fibrations. Summing
them up and setting ~(Y) = h1,l(y), ~(X) = 1, we get (4.21) by (4.23). Finally,
(4.22) follows from (4.24), because hl ,2(y) = ! b3(Y) - 1, b3(X) = 2(1 +hl ,2(X))
and b1 (Cj) = 2h l (Cj,OCj) = 2hO(Cj,OCj(am(Cj))). D

Remarks 4.7. (i) By [32,3.2.4. (ii)' ] X is simply connected. Thus, Y's are also
simply connected, because the fibers of 7r : Y -t X are simply connected.
(ii) The above formulae depend, of course, on the defining polynomials of X. How­
ever, they turn out to be very efficient if one examines polynomials with special
prescribed monomial decompositions, without demanding the satisfaction of any
other extra conditions.

On the other hand, in certain cases, if each stratum X(I) is assumed to be defined
by polynomials, which are general enough, and if 11, ... ,fk can be rearranged in
such a way that (/1 = ... = fp = 0) is quasismooth, Vp, 1 :s: p :s: k, then one
can use a "gluing technique" of the so called relative Milnor fibers, in order to get
explicit formulae for hl,1 and h l ,2, depending only on w and d. This computational
method will be applied below. Previous results concerning the hypersurface case
(i.e. when k = 1) are due to Vafa [120] and Roan [101].

Another computation method for the case "of hypersurfaces, which are embedded
in a Gorenstein toric Fano variety, was recently presented by Batyrev [7]. Batyrev's
approach is mainly based on the study of the ambient space and its associated poly­
hedran and it is also applicable to partial crepant resolutions of arbitrary dimension.
The regarded Hodge numbers are expressible by the numbers of the integral points
of certain polyhedron faces. Moreover, for sorne families of hypersurfaces in spaces
corresponding to reflexive polyhedra, the classical involutive duality of convex sets
leads to a first precise mathematical interpretation of the so called mirror phenom­
ena, which had been initially observed by the physicists within the framework of
investigations of special conformal field theories.

Definition 4.8. For p, 1 ~ P ~ k, let XP be a w.c.i.

(4.25)
{[Zl, ... , zml E pm-l(WI, ... ,wm)lfl (Zl, .. . ,zm) = ... = fp(ZI,,, . ,zm) = O}
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with deg(fp) = dp and X := X k := X(d l ,'" ,dll)' XO := IP m - l (w). X will be called
overall well-stratified (w. r. t. the above enumeration of its defining polynomials) if
XP is well-stratified (see 2.36) for all p's.

Definition 4.9. Let X = X(d11 ... ,dll) be an overall well-stratified w.c.i. with a fixed
enumeration (4.25) of its defining polynomials. For all p, 1 :::; p :::; k, (CN(XP), 0)
is the zero locus of the holomorphic function germ f P : (CN (X P-1 ), 0) -t (C, 0).
For a sufficiently small E > 0 we consider the open ball

B~(O) := {z E cm :11 z 11< E}.

CN(XP) naB~ (0) is a (m - p - 2) -connected (2(m - p) -1) -dimensional orientable
C00 - differentiable manifold and CN (X P) n B ~ (0) is homeomorphic to the cone
{tzlO :::; t :::; 1, Z E CN(XP) n aB~(O)} over Lk(p) := CN(XP) n aB~(O). Lk(p) is
called the relative link of the origin in CN(XP) w.r.t. CN(XP-l). Byassumption,
the set of critical points of fp!CN(XP-I) consists only of the zero point. We can
therefore choose E >> c' small enough in order to construct two fibrations

and

<pp:= J! :Lk(p -1) \ Lk(p) -t SI.
li/p 11

The inclusion aB Ssi (0) Y (B~, (0) \ {O}) is an homotopy equivalence and conse­

quently all topological properties of the first fibration are preserved (up to homo­
topy) by its restriction over the circle aB~ (0). Ey identifying aB~ (0) with the

unit circle SI via the map T r-t ~~, we regard this new restricted fibration over

SI, which we shall denote again by jp. jp and <pp are (in "this sense) fiberwise
diffeomorphic in the category of the locally trivial fibrations over SI and define
the relative Milnor fibration of C N(XP) w.r.t. CN(X p

-
1). The fibers FP are

homotopic to a bouquet sm-p V ... V sm-p of (m - p) -spheres (see [58]). The
number of these spheres is called the relative Milnor number mil(FP) of CN(XP)
w.r.t. (X P- l ). It is easy to see that the topological Euler-Poincare characteristic
of FP is given by e(FP) = 1 + (-l)m-Pmil(FP) and mil(FP) = rk(Hm_p(FP 1 Z)).
FP is furthermore diffeomorphic to {(Zl,'" ,zm) E cm 1/1 (Zl,' .. ,Zm) = ... =
Ip-l(Zl,'" ,Zm) = 0, fp(Zl"" ,Zm) = I} and its associated characteristic auto·
morphism lJp : FP -t pP, coming from the fiber transport via the standard generator
Of1rl(Sl,{l}),isgiven by~p(zl, ... ,zm) :=(dp·(Zl, ... ,zm) = ((;[1, ... , (;[rn zm ).

p p

For an X as above and indices 0 ~ r p ~ dp - 1, 0 ~ sp ~ dp - 1, 1 ~ p ~ k, we
introduce the following index-sets and enumerate them increasingly:
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{rkI1:S;rk:S;dk-l with Qk(rk)-ßk(rk)=2}, if j=k

{rjll :s; rj ::; dj - 1 with Qk(rj) - ßk(rj) = 2 and

Nj(rj) f. NI(r,), V l, j + 1 ::; I ::; k and

V'r"O:S;rl::;dl-l}, if jf.k

where the j in the last expression is bounded by 1 :s; j ::; k and
{j : 1 :::; j :s; kI~(j) f. !2'} = {j1, . .. ,jq}. Furthermore we need the following
abbreviations:

defined by means of the summetric polynomials (2.7), (2.8), with
e(p):= fp(rp,sp) - c;p(rp,sp),

and

with

( . ) { 0,(!)]).:= .
rh, "'JA -1 _(0")

LJO"=l gr(1 ,
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{

O' if ,ll rO', 0 ~ rO' ~ du - 1, with NO'(rO') = Ni>. (rh..)
-(0') .- (0') ·f 3" . h "d cl
9r. . - 9r. '. 1_ r u ~ r u WJt 0 ~ ~(T ~ (T - 1 an

NO'(rO') - N)>. (r;>.), Va, 1 ::; a ~ JA - 1

for 1 ~ a ~ j,.\ - 1 and 1 ~ A~ q.

Lemma 4.10. Let FP(rp) := (FP)~;P denote tbe fixed point set oE ~;p. Suppose
FP(r p ) i= 0. Then

FP(Tp ) = {(Z}, ... ,zm) E Cm
Ifj(z}, ••• , Zm) = 0, Vj, 1 ~ j ~ p - 1, j E =:p(rp),

fp(z}, ••• ,zm) = 1 and Zi = 0, Vi, 1 ::; i ~ m, i ~ Np(r p )}

is an affine complete intersection oE dimension O'p(T p ) - ßp(rp ) w.r.t. the weights
{w (rp),.'. ,W (rp) } in the O'p(r p ) variables Z (r p), ••• ,Z (rp) \vitb no singular

VI Vap( .. p) VI vop("p)

points other than the origin. FP(r p ) is also diffeomorphic to the relative Milnor
fiber w.r. t.

fp: ({(z (rp),' •• ,Z (rp) ) E COp(rp)lfj(z (rp), ••• ,Z (rp) ) = 0,
VI Vop(rp) VI Vop(rp)

Vj, 1 ~ j ~ p - 1, jE=: p( r p ) }, 0) --t (C, 0).

Proof. Let t := (;P and consider the maps 1/Jp := (!1, ... ,!p) : Cm --t CP, resp.
p

Cm 3 z t--+ t1/Jp(z) := 7f;p(t . z) E CP, where t . z := (tWl ZI, • •• ,tWrn zm). the chain
rule gives

For z E FP(r p ) we have t . z = z and therefore

t Wj afj _ tdj a!j \.j" 1 < . < \J' 1 < . <
a - a' Vl, - Z - m, vJ, - J - p.

Zi Zi

This means that

afj • {either
- =0 If
BZi or

i ~ Np(r p ) and j E 3 p (r p )

i E Np(r p ) and j ~ 3 p (r p ).

On the other hand the functions {/ilj ~ 3 p (r p )} are constant on

{z E Cmlt· z = z} = {z E (;filzi = 0, Vi, 1 ~ i::; m, i ~ Np(rp)}

and therefore vanish. Thus, FP(rp ) has the above form. Moreover, for every point
zO E (FP(rp ) \ {O}), we get for the Jacobian block matrix:
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rk (~ Iz=zo ) iENp(r-p) = ßp(rp)
I iE=p(rp)

and FP(r p) cannot have ZO as a singular point.

Now ~p induces the automorphism:

o

and the cyc1ic group (~p(rp)) generated by ~p(rp) has the order

- d
d .- p

r
p
.- gcd {Wi li E Np(rp)}

For 0 ::; rp ::; dp - 1, 0 ::; sp ::; dp - 1, we get FP(rp)~p(rp)'p = FP(rp ) n FP(sp) =:

"FP(r s) and FP(r )~p(rp)'p = FP(r )~p(rp) p if 0 < s' < d - 1 with s =p, p p p - p - p p -
s~(mod(drp))' As in the previous lemma, we can conclude that FP(rp,sp) is an
affine c.i. of dimension e(p) with 0 as the only singular point (for e(p) ~ 0). From
the Lefschetz fixed point formula we deduce:

(4.26)

TheorelTI 4.11. Let X = X(d
1

, ••• ,dk) C JPm-l(w) be a well-formed, overall well­
stratiBed c.i. with m - k = 4, am(X) = O. Then the non-trivial Hodge numbers of
the toroidal crepant desingularizations 1r : Y ~ X of X are given by:

(4.27)

(4.28)

(4.29)

1
hl,1 (Y) = -e(Y) + hl ,2(y), where

2
k dp-I

e(Y) = L L g~:) and
p=1 rp=O

h1 ,2(y) = h1 ,2(X) - ~ (t L (<5~1~) + g~{~)))
'\=1 rh, EcCJ.d

Proof. (4.27) is obvious. By prop. 3.2. we can see that for all strata XI of X and
I ~ !vI c {I, ... ,m},

1r : (1r-I (XI \ U{XM : I ~ NI})) ~ X I \ U{X M : I ~ NI}
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is a fibration with e(fiber) == CI (cf. 2.5., 2.18.). The stratification of Y gives

(4.30) e(Y) == L (L(-l)III+IJl e(XJ)) CI·
I Ie]

By assumption, X'j := XP n Ir I (in the notation of 2.5.) is a q.s.c.i. Since Xf
appears as the support of a subcomplex in a topological triangulation of Xj-l (see
[83]), the exact cohomology sequence concerning the complements U'j :== X'j-l \X'j
([13, p. 52]):

yields: e(Uf) = e(Xf-l) - e(X'j), Vp, 1 ::; P ::; k. Stunming these k equations
together, we get for X I := X; :

(4.31)
k

e(XI) = e(IP I) - L e(Uj)
p=l

If we set I p := {I C {I, ... ,m}fUf =f:. 0}, then e(Y), according to (4.30) and
(4.31), can be written as:

k

(4.32) e(Y) == L[e(lPI)-e(u{rJl1 ~ J} )]CI-L L [e(U'j)-e(U{UjII ~ J} )]CI
I p=l IEIp

{
I if 111 == m - 1

Combining this with e(IP I) - e(U{IP JII S J}) == '
..... 0, otherwise

we have:

m k

(4.33) e(Y) = L tvj - L L [e(Uf) - e(U{UjII ~ J})]
i=l p=l IE'Ip

Defining U? :== U'j \ U{UjII ~ J}, we show similarly

(4.34)

e(U?) = e(Uj) - e(U{Uj]I ~ J}) and

e(Uj) == L e(U,/), VI E I p •

Ie]

The transition from the local to the global data can be achieved via the relative
Milnor fibers FP, by identifying FP j{lJp} and UP == X p- 1

\ XP by means of the
projection
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qp:FP 3(Zl",.,Zm)t---+[ZI, ... ,Zm]EUP, forall p, l~p~k.

Moreover, for I E I P1 q;l (Ur) is ~p -invariant and

(4.35)

ü{rplO ~ T p ~ dp - 1 : FP(rp)/(~p) :> Ur} =

~{rpIO ~ rp ~ dp - 1 : ~~p = id on q;l(Uj)} =
d

= ~{rpIO ~ rp ~ dp - 1 : ~Irp} = CI.
CI

Hence (4.33), (4.34) give:

e(Y) =t [d p - L e(U?)CI] (since f Wi = t dp )

p=l IEIp i-I p=l

(4~5) ~ [dp - :~(L{e(Uj)IFP(rp)/(~p):::> um]

(4.34) ~ [dp - :~: e(FP(rp)/(~p))]
k dp-l

= L L [1 - e(FP(rp)/(~p))]
p=l Tp=O

k dp-l

(4;;6) '" '" (p)L.t L.t 9Tp ,

p=l Tp=O

because e(FP(rp,sp)) = 1 + (-l)t(p)mil(FP(r p,sp)) = e(rp,sp) by the formulae of
Greuel and Ramm in [52, Cor. 3.8. (b), p. 76]. So (4.28) is proven. Now if we
define JTj ), := {1, ... , m} \ Nj), (ri>.), V'A, 1 ~ 'A ::; q, we have

SSt l (X) = {X lj).11 :::; 'A ~ q}.

(vVarning (*) ! )(lj). represents the same curve for all Tj>.'S of the form rj). =
d·

tj). . ~, 1 :::; tj). :::; ClF"' .)
"j). J).

On the other hand, for all 'A, 1 ~ 'A ~ q, 1 :::; rj). ~ dj >. - 1, we get:

j).

b1(X j. ) = 2 - e()( j. ) = 2 - e (IP j. ) + "" e(U j
P

) =
F"J>. "J). F"J>. L...J F"j>.

p=l

j>.

= 2 - {(m - 1) - [(m - 2) - ßj>. (rj>. )] + I} + "" e(U j. ) =
~ F"J>.
p=l
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(Note that exactly jA - ßj>. (ri>.) of the Uj. 's are empty !)
r) >.

( (r;>.) (rh)
by the identification of U}u ) with Feu (r (r; )) / (1) (r; )) and for all r (r; )'s

r (r;>.) eu >. eu >. eu >.
eu

for which Ne~ri>.) (rj>.) = Ni>. (rh.) holds.

If C is an irreducible curve in SSt1(X) with C = XJr . for some A E {I, ... ,q},
)>.

we have exactly CJr . - 1 exceptional prime divisors of Y lying over C. To express
)>.

E{(lc -1)b1(C)lC E SSt1(X)} in terms of cl and w, it is sufficient (by (*)) to surn
our b1(X J,.. ) 's over 811 A's and ri>. 's included in t,U>.). The representatives of the

)>.,

required additional summands, which occur w.r.t. each stratum, can be obviously
abbreviated by ~~t~). Hence, the above sum equals

and (4.29) follows directly from (4.24).
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§5. Intersection farms and (c2J-linear farms

Let X be a well·farmed, well-stratified q.s.c.i.
X =Xd = {[Zll'" ,zmJ E JPm-l(w)l!l(Zl,'" ,zm) = ... = !k(Zl, ... ,zm) = O} of
dimension 3 with am(X) = 0, such that all curves Cj in SSt1(X) are nondegenerate
in the sense of 2.32. (We shall keep here the notations, which were introduced
at the beginning of §4, in order to avoid lenghty repetitions.) Ey theorem 2.37.,
Pic(X) is generated by the dass of Lx = OX(T]x) (with T]X given by (2.24)), and
(X, Lx) is polarized. In this section, we shall study the forms q~ and [C2J~, which
are associated to the crepant toroidal desingularizations 1r : Y -+ X of X (cf. 1.3.),
by using their evaluations at the members of the natural Q-basis

8y:= {cl(Ly), {cl(Oy(D))IDexc. prime divisor E E(X)}}

of PiCQ(Y), where Ly := 1r*Lx .

Theorem 5.1. Let 1r : Y -+ X be a crepant toroidal desingularization oE);. Then:

(i)

(5.1)

(ii)

(iii)

qy(Ly,Ly,Ly) = L~ = L~

(Y, Ly) is a quasi-polarized threefold

(5.2) . { 0,h l YL -( , y) - hO(X,Lx),
for i > 0

for i = 0

(i v)

(5.3) [c2Jy(Ly) =: (C2(Y)' Ly) = (C2(X), Lx) = 12hO(X,Lx) - 2L~'(

(L~ and hO(X, Lx) = hO(X, OX(T]x)) are given by (2.27) and (2.20).)

Proof. (i) Obvious by L~ = deg( 7i')L~ and deg(1r) = 1.
(ii) For an arbitrary curve C on Y the projection formula gives: (Ly· C) =
(Lx' (1r*C)) 2:: 0 and therefore Ly inherits its numerical effectiveness from that
of Lx. Ly is also big, since Lt = L~ > 0 by (2.27).
(iii) 1st case: Let us first consider the case where Y is projective. Applying
Kawamata-Viehweg vanishing theorem to Ly (cf. [76, 1.8.}) we get
hi(y,wy ~ Ly) = hi(y, Ly) = 0, Vi, i > O.
2nd case: Let now Y be arbitrary. We shall show that, even in this case, the above
equality remains valid. Since X contains only quotient singularities, Le. special
rational singularities, we have
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· { 0 x, for i = 0
R~rr.Oy ~

0, for i > 0

which means that, by the projection formula for direct image sheaves (see [47,
12.2.3.2, p. 402]), one obtains:

On the other hand, the Leray spectral sequence {Er = ffii,i;:::o E~,i}, which is as­

sociated to rr : Y --r X, converges to the term E 2 = ... = Eoo \vith E~,i =
Hi(X,Rirr.Ly) abuting to Hi+i(y, Ly). Thus, for all i > 0 : Hi(X,Lx) ::
Hi(X, ROrr.Ly) :: Hi(y, Ly) (camp. [61], Exc. III 8.1., p. 252), and it is suf­
ficient to prove that Hi(X, Lx) = 0, Vi, i > O. This can be done by applying
a suitable version of Grauert-Rlemenschneider vanishing theorem (see [l08, thm.
7.80. (f), pp. 157-158]) and taking into account the ampleness of Lx and the
triviality of wx .
Finally, from the connectedness of the fibers of 1T and the projection formula, we
obtain HO(y, Ly) ~ HO(X, Lx). q.e.d.
(iv) Since wy :: Oy, Atiyah-Singer-Hirzebruch version of Riemann-Roch theorem
(cf. [5, p. 20], [63, p. 155 and p. 187)) express the Euler-Poincare characteristic

3

x(Y, Ly ) = 'L) _1)ihi (y, Ly)
i=O

of the sheaf of holomorphic sections of Ly as follaws:

(5.4) (y L ) = L} (C2(Y)' Ly)
X ,y 6 + 12

Hence, (5.4), combined with (5.1) and (5.2), implies

o

Lemnla 5.2. For a prime divisor D of a smooth, compact complex threefold Y
with trivial canonical bundle we have:

(5.5)

(5.6)
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Proof. (a) The adjunction formula and Wy i'V Oy give

(b) IfTD, resp. Ty is the tangent bundle of D, resp. ofY, then the normal bundle
sequence 0 --t TD --t TYI V --t NV/y --t 0, combined with Noether's forrnula and
(5.5), implies

c(TYI D) = C(TD)C(Nv / y ) = c(D)c(wv) =}

(1 + (C2(Y).· Oy(D))) = (1 + cl(D) + c2(D))(1 - cl(D)) =>

(C2(Y)' Oy(D)) = -](h + e(D) = 12X(D, CJv) - 2D3
.

o

We start the computation of the intersection numbers containing exceptional di­
visors from c(X) by considering firstly the case of a D sitting over a dissident
point of X. (The computation will be done for a fixed Y, Le. for a fixed choice of
triangulationsSpl"" ,SPJj,SQ1"" ,SQ>.')

Theorem 5.3. The intersection numbers oE an exceptional prime divisor D within
(IJ7='1 CPi) ll(IJ~=l cQ,) with elements oE c(X) U {Ly} are given by the following
Eonnulae:
(i) IE D = D~~:) E CPi (resp. D = D~~:) E cQ,) with npi (resp. n q,) denoting a
vertex oE 4>oPj (resp. oE <I>oQ,)' then:

(5.7) D3 = 12 - HStar(IR.~onpi )(2)) (resp. D3 = 12 - tt(Star(IR~onq. )(2)))

(5.8)
(c2(Y)·D) = 2tt(Star(IR.~onpi )(2))-12 (resp. (c2(Y)·D) = 2tt(Star(IR.~onq, )(2))-12)

(ii) For D = D~~i/ E CPi and D1 = D~~:.) E CPi with 1 :::; Pi, pi ::; a{Pd, Pi =I pi, ane

computes (D2 . D') and (D· D'2) by me~s of a single vectorial Z-linear dependence
equation:

where n(pi' pi), n(p~, Pi) denote the unique vertices oE 4>Gp . II{e}, e2, e3} for wbich
s(n pn npi' n(Pi, pi)) and s(npi' npi' n(p~, pd) form two distinct 2-simplices oE S Pi'
(The intersection numbers (D2 ·D'), (D·D'2) can be computed by the same method,
if D and D' correspond ta vertices of <I>oQ, II{eI, e2, e3} and QL is an individual
point. vVe da not exc1ude the case in which both D and D' correspond to points oE
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aso \ {eI, e2, e3}, i.e. (D, D') E (ECj)2, where Q, = Q~~) E Cj for some j.)
(iii) The intersection numbers involving Ly vanish, i.e.

(5.10)

(iv) All the other possible triples lead to vanishing intersection numbers.

Proof. (i) The equality (5.7) is a reformulation of (3.3) applied to the c.q. S.

Z(NGPi ' Eo) (resp. Z(NGQ.' Eo)). Since X(D, OD) = 1, (5.6) and (5.7) give (5.8).
(ii) is an immediate consequence of prop. 3.6. (ii).
(iii) As Lx is ample, nLx will be very ample for some n »0. If D E [Pi (resp.
D E EQ.) and if we choose a general member M of the linear system lnL x I, such
that Pi ~ M (resp. Q, f/:. M), then sUPP(1r*M) n supp(D) i= 0, 1r*M[D I'V 0 =>
n2(L} . D) = ((1r*(nLx))2 . D) = ((1r*M)2 . D) = (1r*MID)2 = 0 and n(Ly . D2 ) =
((1r*(nLx )' D2

) = ((1r*M)· D2
) = ((1r*MID)' (D1D)) = 0, i.e.

(L} . D) = (Ly . D 2
) = O.

(iv) is obvi6us. o

Dur next step will be the description of the intersection numbers which contain a
divisor p located over a curve Cj E SSt l (X), 1 :::; j :::; K. At first we shall need
some technicallemmata.

Lemma 5.4. For each 1 :::; j :::; K, 1 :::; Tj :::; lCj - 1, one contracts all

(-1)-curves of D~7j) bya birational morphism !p~~) : D~7j) -t fJ~7j), which factors

into a composite OfI:;j=l (b(n(l1j ,rj ») -1) blow-downs. Each f>~7j) is endowed with

the structure of a minimal (i.e. geometrica1ly) ruled surface by jf~{) : f>~7j) -t Cj,

tb t - (j) (j) - I Mso a 1rrj 0 <prj - 1r (C j) • oreover,
D rj

(5.11)

Proof. We consider the pull-back

of the divisor [Q~)], 1 ::; Vj :::; ~j, under 1I"ID~~j) : D~7j) -t Cj (cf. (4.17)), where
J

[t(l'j.rj) E N.
It should be first mentioned that gcd([t(l'j,rj)11 ::; t(lJj,rj) :::; b(n(lJj,rj »)) = 1. (In­
deed, if the corresponding fiber were multiple, then by [5, eh. 111, Lemma 8.3.,
p. 91] one could conclude that 0 (fiber) would be a torsion bundle and therefore
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that H 1 (fiber, Z) i=- O. But this would be not true, because the fiber is simply
connected.) Now since

-2 == (I(D~~j) . (generic fiber)) == (I(D~~j) . ((1rID~~j»)*([Q~~)])))
J J J

there exists at least one index l( Vj ,rj) E {I, ... ,b(n(Vj ,rj »)}, such that

(KD(Cj) . C(n(Vj,rj), n~~!.'~:.\)) < O. Making use of Zariski's fibration lemma [5,
rj t J J

III. 8.2. (9), (10), p. 90], we deduce that (C(n(Vj,rj ), n~~!j'~!/)))2 < O. Thus

(C(n(Vj,rj ), n~~!j'~:/)))2 == -1 (see [5, III.2.2., p. 72]). vVe blow it smoothly down

by Castelnuovo-Enriques contractibility criterion [5, III. 4.1., p. 78), play again the
same game for the new fibration, and proceed succesively. After I::j=l (b(n(Vj ,rj »)_

1) steps we obtain ir~1) :D~7j) -7 Ci' (5.11) is obvious. 0

Lemma 5.5. For a curve Ci == X(Ii) E SSt1(X) 1 ~ j ~ k, and an n E Z, we
bave:

(5.12)

deg(Ocj(n)) == -11 {hO(Cj,Oc~(B(n;Wtj, ... ,Wtj . )))-
Cj J 1 m-Iajl

-hO(Cj,Oc~(am(Cj)-B(njw~,... ,Wtj )))+
) 1 m-I/jl

+ hO(Cj,Ocj(am(Cj))) - I}

where Cj is the q.s.c.i.

weights Wtj,· .. ,Wtj
1 m-I/jl

'.r. h al' t' I ,comlng !rom t enorm 1za 10n W ~ , . .. ,Wt j
1 m-lIjl

(cf. 2.29).

of the

Proof. Apply (2.23) with lCj == gcd(W~ , ... ,Wtj ).
1 m-I/j I

o

Lemma 5.6. For the union [Cj of the exceptional prime divisors lying over a curve
Cj == X(Ij) E SSt1 (X), 1 ~ j ~ k and indices 2 ~ Tj ~ lCj - 1, we have:

(5.13)

(5.14)

respectively. (The numbers aiCj
) and a~Cj) are determined by lemma 4.1.)

Proo/. The application of resolutions (4.14) to the singularities occuring along
NCj I X and (4.6) give rise to the following relations (cf. [103, thm. 1)):
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Ta get (5.13) and (5.14), we make use af rjaiCj ) + (rj -lCj )Q~Cj) = lCj (rj _ o~Cj»),

(1 - rj )oiCj ) + (lcj - rj + l)o~Cj) = lCj (1- Tj +Q~Cj») and of the isomorphisms of
prop. 2.7. 0

Theorem 5.7. The intersection numbers of an exceptionaJ prime divisor within
[Cj with elements of ECj U{Ly} (resp. of E(X) U{Ly }) are given by tbe following
formulae:
(i) For 1 ::; rj ::; lCj - 1 and g(Cj) = h1 (Ch OCj) the genus of the curve Cj, we
bave:

(5.15)
ej

(D~7j»)3 = 8(1 - g(Cj)) - L (b(n(&Jj,rj ») - 1)
Vj=l

(5.16)
ej

(C2(Y) . Oy(D~7j»)) = -4(1 - g(Cj)) + 2( L (b(n(&Jj,rj ») - 1))
Vj =1

(5.17)

(5.18)

(The latter is computable by (5.12)).

(ii) For group orders jGCj I = lCj ~ 3 and indices 2 ::; Tj ~ lCj - 1, we get:

(5.19)

(5.20)

((D(Cj»)2 D(Cj») - cl (P1 1(8(1 + (Cj).. . )))
r' • r'-l - eg vc. -Tj O 2 ,We,'" lWe

J J J 1 rn-I/jl

(5.21 )

(iii) The intersection numbers involving D~7j) and other divisors of

(Il~l [p;) Il(Ur=l EQ;) are aJready given by thm. 5.3. (ii). lvIoreover, if
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K > 2 1 < j j' < K j ..J. j' C' nC " ..J. 0 C' nC 'I = {QU,jl) QU,i') } denotes- , -, - , I 'J J I 'J J l' . .., «j ,j 1 )

an enumeration of tbeir common individual points and D~7j) (resp. D~~j,) ) is

realized in the triangulation SQV,j!) by D~~j) (resp. by D~)rj'»)' Vp, 1 ::; p::; eU,i')'
then

tu,jl)

(( D('?j»)2 . D(~jl») = '"""' ((D(p) )2. D(P) )
r; r;, L.J n(rj) n(rjl)

p:::::l

(U,;/)

(D(Cj) . (D( Cj l})2) = ""'" (D(p) (D(p) )2)
rj rjl L.J n(rj) . n(rj')

p=l

(wbicb are again known from thm. 5.3. (ii)).

(iv) All tbe otber intersection numbers are zero.

Proof We shall examine each case separately.
(i) (a) (5.15) follows from (5.5), (5.11), and from the fact, that the self-intersection

number of the geometrically ruled surface tJ~7j), which was defined by lemma 5.4,
is giyen by K 2

(Cj) = 8(1 - 9 (Cj )) (see [61, ch. V, cor. 2.11., p. 374]).
tJ"j

(b) Since 12x(D~7j),OD(Cj»)-2(D~7j»)3 = 12(1-g(Cj))-2I(2 (c.), (5.6) combined
"j D,./

with (5.11) gives (5.16).
(c) As Lx is ample, nLx will be very ample for same n >> O. If we consider two
general members MI, M 2 of linear system [nLx Lsuch that

supp(M1 ) n supp(M2 ) n Cj = 0, then

sUPP(7r*M1 ) n supp(rr*M2 ) n supp(D~7j») = 0

for all 1 :s; Tj ::; lCj - 1 and

n2 (L} . D~,?j») = ((rr*(nLx)) . (7r*(nLx)) . D~,?j») =
J ;

= ((7r*Md . (1f*M2 ) . D~,?j») = 0,
J

. (L2 D(c,») 0l.e. y' r' J = .
;

(cl) ((D ~7j ) )
2 . Ly) cannot, in general, vanish, because it contains many informations

coming from the underlying curve Cj, as we get:

(5.22)

((D~7j»)2. Ly ) = (wD~~j)' LyID~~j») = (OD~~j)(I(D~~j»)(1flD~~j»)*(Lxlcj)) =
J J J J J

= (OD~:j)(I(D~~j»)' (7rID~~j»)*(OCj(G))) = (I(D~~j) . ((7rID~~j»)*(G))),
J J J J J
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where G = Ei=ll)i Gi, l)i E Z, 1 ::; i ::; 7, denotes the divisor of Cj which is
associated to the line bundle Lxlcj = OCj(ryx). 5uppose that b(n(Vj,rj ») > 1 for
all 1 ::; Vj ::; ~j.

(The case in which b(n(Vj,rj ») = 1, for some v/s, can be treated similarly.) If we
assume, without loss of generality, that the set of curves, which are contracted by
(,,(~) is {C(n(Vj,rj ) n(Vj:rj? )12 < t(vj,rj) < b(n(Vj,rj »)} then we can describe the
rrJ , 't(vJ,rJ ) - - ,

relationship between the canonical divisors of D~7j) and f>~7j) as follows:

(5.23)

Note that

(5.24) KlJ(cj) I"V (-2) (a seetion of 1T~~») + (7f~~»)*(Kcj + E~~»)IF(j)
rj J J J rj

where E~1) is a divisor of Cj with deg(E~1») = Cl and F$j) a fiber of

1T~~) : jj~?j) --+ CJ> (cf. [61, eh. V, lemma 2.10., p. 373]).
J J

Lx ICj is ample. 50 there is again an n >> 0 for whieh n(Lx ICj) is very ample. If
N j is a general mernber of In(Lx ICj )Lsuch that

=0

(5.25) (J(D~?)' ((1l"ID~~j))'(G))) = ((cp~~))'(J(D~?))) . ((1l"ID~?))*(G))

Combining now (5.22), (5.24) and (5.25) we get:

((D~?j))2 . Ly) =
J

((tp~~)) * ( - 2Cj + (jf~1))* ([(Cj + E~f») IF;~»)) .(tp~~))* (t lli (rr~;) )'(G;))) =
J i=l

= -2 (~lli(Cj . (rr~1»)*(G;))) +~ lli(((rrW )*(J(Cj + E~1») IF!;) ) . (rr~1))' (G;)) =

= -2 (~lli) = -2deg(G) = -2deg(Lxlcj) = -2deg(Ocj(l'/x)),
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b cl ( (j)) - 1 (-(j))*(G) F(j) V· 1 < . < (r;t(j))2 0 clecause eg 'Prj - ,'Trrj i I'"V rj' t, _ t _ T, .L'rj = an

(Cj . F~l)) = 1.

(ii) (5.19) and (5.20) follow directly from (5.13) and (5.14). On the other hand,

(iii) and (iv) are obvious. o

Recapitulating, one can verify that the formulae of theorems 5.1., 5.3. and 5.7.,

(
hl,l(Y) +2)

which have been proved above, cover all 3 triples that can be formed

from elements of 8y. We shall now mention two additional arithmetical relations
which are fulfilled by the intersection numbers. (See Oguiso and Peternell [95,
(1.1.)].)

Proposition 5.8. Let 'Tr : Y -t X be a toroidal crepant desingularization oE X
and D E E(X). Tben

(5.26)

(5.27)

(D. L~)2 ~ (D2
• Ly)(Lt)

(D . L}) =(D2
• Ly )(mod 2)

Proof. ([95]) Let m be a large odd number and S a general element of ImLy I. By
the base-point-freeness theorem, we can choose m in such a way, that S is a smooth
irreducible surface. Hodge-index theorem implies:

On the other hand, by Riemann-Roch theorem for smooth surfaces and by adjunc­
tion formula 1(s = Sls, we get:

which means that (D . L}) == (D 2
• Ly )(mod 2), because m =l(mod 2). 0

Remark 5.9. Basically, Oguiso and Peternell showed that the above proof remains
valid, even if (X, Lx) is an arbitrary polarized CY model, (Y, Ly) a quasipolarized
CY model and 'Tr : Y -t X a partial crepant desingularization of X. Note that the
congruence (D~ . D 2 ) == (D] . D~)(mod2) holds true for any divisor D] and D 2 of a
smooth simply connected 3-dimensional variety Y with trivial canonical bundle and
torsion-free cohomology groups, and that it was already known by C.T.C. Wall [122,
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thm. 5, p. 361]. Furthermore, for such a yP we have: [c2]y(D) - -2D3 (lllOd 12),
for all divisors D, because the first Pontrjagin dass equals - 2C2.

Up to now we have calculatecl the evaluations of q~- and [C2]~- forms with
respect to fixecl triangulations Spt , • •• , SPI!' SQl" .. ,SQ>.. As we know from prop.
4.3., two distinct toroidal crepant desingularizations of X differ frOll1 each other
by finitely 11lany (simple) flops. Hence, up to an "arrangement algorithln" for the
1-simplices within our triangle subdivisions, the alteration of q~ and (C2]~ due to
the choice of other triangulations will be clear if we clescribe just the "single-flop"
case.

TheoreUl 5.10. Let){ = .Yd C pm-l(w) be a well-formed, 'well-stratified q.s.c.i.
with am(.Y) = 0 and din1C(.Y) = 3, allel let 7T"1 : y~l ---7 .Y be a toroidal crepant
desingularization ofX with SSto(.y) i- 0. Suppose that Pi E SStO(.Y) is an isolated
point of Sing(X), for which ~(<pcp.) 2 4, alld that the corresponding triangulation
S Pi satisfies the following propertles:
(i) There exist vertices n1, 11.2, 11.3,n4 from So n Ncp., such tbat 8(n1,n2,n3) and
8 ( nl , n2, n4) are two twisted 2-siInplices of S Pi' aJld ·
(ii) 8(n1, n2, n3, n4) forms a cOllvex Cjuaelrilateral of SPi'
If 1f2 : Y2 ---7 X is the toroidal crepant desillgularization ofX wi tll Y2 obtained by Yi
after Ropping the curve C(n 1, 11, 2) (i. e: a.fter applying tbe €lernen tal"Y traJlsformation

'E~(SPj) ofEb(Sg) w.r.t. 0"(s(n1,n2,11.3)), 0"(s(n1,n2,n4)) and 0"(s(n1,712))) Md
'f D (Sp. ) D (Sp. ) d 1 . 1 . d" . d .

1 nj', resp. nj" enote t le cxcept10na prllne 1Vlsors aSsoclate to nj 1n

SPp resp. in SPi' 'Vj, 1 :s; j :s; 4, tllen their intersection numbers and tlleir images
under tbe [c2]-form are related as follows:

( ( D(~Pi»)2 . D(SPj») _ ((D(~Pi »)2 . D(SPi») = (D(~Pi) . (D(~Pi»)2) _ D(~Pi) . (D(SPi»)2)
n) nj n) nj n) n)1 n J nj

{

-I, for (j,j') E {(I, 2), (2, I)}

(5.28) = 1, for (j,j') E {(3,4),(4,3)}

0, otherwise

'Vj,j', 1 :s; j,j':S; 4. In particular, for all j E {1,2,3,4}, for which
nj E int(so) n Ncp., we have:

I

(5.29)

Moreover,

iE J E {I, 2}

if JE{3,4}
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(Note tbat if we assurne tbat INP(X) =1= 0, QL is an individual point of Sing(X),
and Y2 comes from Y1 just by an e1ementary transFormation ~Ö(Sq.) of 'EÖ(Sq.)
as above, then the formula (5.28) remains true whenever one replaces Pi by QL'
Analogously (5.29) and (5.30) remain valid For a1l j E {1, 2, 3, 4}, tor which
nj E (so n NGq.) \ {eI, e2, e3}.)

Proof. (5.28) follows from nl +n2 = n3 +n4 and (3.2) or (5.9). Similarly, one gets
(5.29) and (5.3) by using the formulae (5.7) and (5.8) (resp. (5.15) and (5.16)). 0

Remark 5.11. Formulae (5.28), (5.29) and (5.30) can be viewed not only as re­
alizations of our computational algorithm for this concrete construction, but also
as special cases of more general formulae holding true for any flop along a rational
(-1, -1) -curve of an arbitraxy smooth complex threefold. For such an approach,
see Friedman {42, 7.4. and 7.5., p. 123].

Remark 5.12. It should be noted that, after having given the description of the
strata of Sing(X), the main part of the desingulaxization method which was devel­
oped in §4, does not depend intrinsically on the embedding of X's in f'm-l(w),
and cau be actually applied to any CY model being a V -variety wi th cyclic (or,
more general, abelian) quotient singularities and globally known singular locus {24].
If, however, one considers the special case, in which our Y's can be represented as
strict transforms of appropriate crepant desingularizations of rm-1(w), then it is
possible to determine not only the evaluations of {C2]~ at a member of By, but also

the second rational Chern dass c~(Y) E H 4 (Y, Q) itself.
Let us explain this more dosely. We can conceive the space pm-l(w) itself as a
toric complete variety f'm-l(w) = Z(N(w), ~(w)) (in the notation of §3) by set­
ting N(w) := No/Zwo, No = ~~l Zei, Wo := ~~lWiei (ei := (0, ... , 1, ... ,0) with
1 in the i-th place), 'E(w) := {{CTiI1 ::; i ::; m}, together with their faces }, where

{

R>on(w2) + + IR>on(wm ), i = 1

O"i := IR.~on(Wl) + + IR ~on(Wi-l) +~~on(Wi+l) +... +IR~on(w m ), 2 ::; i ::; m - 1

R.~on(wl) + + IR.~on(wm-d, t = m

and n(wd := ei + Zwo, Vi, 1 ::; i ::; m. If we assume that JPm-l(w) is Gorenstein,
Le. lcm(wI, ... ,wm)IE~lwi (cf. [10, cor. 6.B.10 (a)]), then, following Batyrev [7],
we can always construct a projective maximal crepant (in general partial) TN(w)

-equivariant resolution

ir : JPm-l(w) := Z(N(w), E(w)) -t pm-l(w)

of singularities of JPm-l(w) (by means of suitable projective subdivisions of the
SCRPC's of E(w) gluing together to give E(w)) such that

i!y = 7r : Y -t X,

i.e. such that our Y appears as strict transform of X under 7r. Under these
assumptions we get:

67



Proposition 5.13. Let E(w)(l) = {Pb'" ,Pv}, v 2:: HE(w)(l)) = m, be the set
of l-dimensional SCRPC's of the fan t(w). Then:

(5.31) c~(y) = L {c?(OY(V(piJ)) ~ c?(Oy(V(pi:J))}
l~il <i2~V

Proof. 1st case: If pm-l(w) is smooth, we use the normal bundle sequence

(5.32)

which gives cQ(y). cQ(Ny/pm_l (w)) = CQ(Tpm_l (w) Iy)· Denoting the inclusion map

of Y in pm-l(w) by j : Y y pm-l(w) and making use of

(5.33)
v

cQ(pm-l(w)) == 11(1 + c?(Opm-l(w)(V(pd)))
i=l

(see [71, p. 131]), c?(Y) = c~(Y)(NY/JFtm-l(W)) == 0,

cQ(TJPm-1(w)IY) = cQ(j*(Tpm-l(w))) == j*(CQ(Tpm-l(w))) and of the usual multipli­
eation rule, we get (5.31).

!!nd case: If JPm-l(w) is singular, then it admits at most Gorenstein Q -faetorial
terminal singularities and therefore eodimJPm - 1 (w) (Sing(pm-l (w))) > 3 (see [7]).

Consequently, pm-l(w) is smooth in a neighbourhood of Y and (5.32) remains
exaet (see [46, B.7.2., p. 438]). Furthermore, sinee ft'm-l(w) is a "Q-homology"
variety, as eoming from JPm-l(w) after simplicial subdivisions, it respeets Poineare
duality aver Q ([13, eh. V]). Thus (5.33) is true tao.

o
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§6. Topology change after flopping

As it follows from rem 4.5.(ii) and thm. 5.10., two distinet toroidal crepant desin­
gularizations Y1 , Yz of an X do not respect, in general, the topological "tripie cou­
plings" and the [cz] -forms, although they have identical Hodge diamonds. This
"typieal phenomenon" leads to the conjecture that most of the pairs (Yl , Yz ) will be
eqwpped with different topologies. (A geometrical method for the determination of
the number of all possible projective toroidal erepant desingularizations is described
in [24].) We shall illustrate here just an indicative example and explain how the
testing bilinear forms (cf. 1.4.) cao be used in order to distinguish diffeomorphism
(resp. homotopy) types aecording to lemma 1.5.

Let X = X 36 = {[Zl, Zz, Z3, Z4, zs] E JP4(1, 2,3,12, 18) Iz~6 +zis+zlz +z~+zg = o}
be the Fermat hypersurface of degree 36 (with delta genus ~(X, Lx) = 2). It is
Pic(X) = ([Lx]), Lx = OX(7]x), with 1}x = lcm(l,2,3,6) = 6, L~y = 6, hl,l(X) =
~(X) = 1, hl,Z(X) = 182 (by (2.17)) and e(X) = 2(1 - hl,Z(X)) = -362. The
singular locus of X cao be written as the union Sing(X) == Cl U Cz of two curves
Cl :== X{1,3} and Cz :== X{1,Z} having the individual point Q :== [0,0,0, -1,1] as
their intersection locus Cl n Cz == X{1,Z,3} = {Q}. By prop. 2.30., we have the
isomorphisms:

Cl = (X36 C JPZ(2, 12, 18)) ~ (XIS C JPZ(l, 6, 9)) ~ (X6 C IFZ(1, 2,3)) == C~,

beeause, in the notation of 2.2., (2, 12, 18) == (1,6,9), pd2, 12, 18) == gcd(6, 9) = 3,
pz(2, 12, 18) == p3(2, 12, 18) == 1 and therefore (2',12',18') == (1,2,3). Sirrce lCt == 2
and am( Ci) == 0, the genus g(Cd = g(cn of Cl equals hO(CI, Oct ) == 1 and
by (5.12): deg(OCt (6)) == khO( C~, Oc~ (8(6; 2,12,18)). Using the notation of 2.6.,
we get: 11 (6; 2,12,18) = ,z(6; 2,12,18) == ')'3(6; 2, 12, 18) == 0, 61 (6; 2,12,18) == 2,
6Z (6; 2,12,18) = 6, 63 (6; 2, 12, 18) == 6. Thus, 8(6; 2,12,18) == k(6 - 0) = 2 and
deg(Oet (6)) = t(pt(2; 1,2,3) - pt( -4; 1,2,3)) == ~(2 - 0) = 1. Similarly we have:

(3, 12, 18) == (1,4,6), PI (3,12,18) = 2, pz(3, 12, 18) == P3(3, 12,18) == 1,

(3',12', 18') == (1,2, 3),lc2 == 3, g(Cz) == g( C~) == 1, 11 (6; 3, 12, 18) == '"'lz(6; 3,12, 18) ==

13(6;3,12,18) == 0,61(6;3,12,18) = 3,6z(6;3,12,18) = c3(6;3,12,18) = 6,

1 1
8(6; 3,12,18) == 2(6 - 0) . 3, deg(Oc2 (6)) = 3(pt(3; 1,2,3) - pt( -3; 1,2,3)) =

1
3(3 - 0) = 1.

Now the germ of a point P E Sing(X) is isomorphie to:

{

((CZ j(diag((z, (z))) x C, [0] x {O}),

(X,P) ~ ((CZ /(diag((3,(i))) xC, [0] x {O}),

(C3j(diag((6, (l, (g)), [0]),
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We resolve an open neighbourhood of Q by means of one of the five toric crepant
morphisms Z(NGQ' ~b(Sd) --t Z(NGQ' ~o), GQ ~ (Z/6Z), corresponding to one
of the five possible triangulations Si, 1 ::; i ::; 5, of So, as they are drawn in
figure 4. Since these morphisms are compatible with the usual blow-ups along
NetIx, NG2/x, we can construct five (global) toroidal crepant desingularizations
'Tri : Yi --t X of X with a(Q) = 1, h1,l(}i) = 1 + (2 + 3) - 1 = 5, h1,2(Yd =
h1,2(X)+(2-1)·I+(3-1)·1 = 182+3 = 185 (cf. (4.21), (4.22)) and topological
Euler-Poincare characteristic e(Yi) = 2(h1,l(Yd - hl ,2(Yi)) = 2 . (5 -185) == -360.
Over Cl, C2 and Q are placed the exceptional prime divisors Dii

), {D~i), D~i)} and

D~i) respectively. (In the "toric picture" they are realized by Dnl' {Dn2 , D ns }

and Dn4 , Vi, 1 ::; i ::; 5, with nl = (t,o, t), n2 = (~, ~,o), n3 = (~, t,O), ~4 =
(i, ~, ~), el = (1,0,0), e2 = (0,1,0), e3 = (0,0,1).)

Fig.4
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Thus,

Moreover, it is easy to see that all five desingularization spaces are projective, i.e.
that Yi is a CY threefold, Vi, 1 ::; i ::; 5. Note that Y2 , Y3 and Y4 are obtained from
YI after a single flop along the curves C(nl , n3 ), C(n 1 , n4) and C(n3 , n4) respectively.
Ys is nothing but Y4 being flopped along C(n2, n4).

Proposition 6.1. Yi and}i, da not have tbe same diffeomorpbism (resp. homo­
topy) type, Vi, il

, 1 ::; i, i' :::; 5, i # i'.

Proof. At first we compute the 5· (~) = 175 interseetion numbers which can be

formed by tripies of {BYi 11 ::; i ::; 5}, as weH as the images of the elements of these
bases under [C2]Yp 1 ::; i ::; 5, by using the formulae of theorems 5.1., 5.3., 5.7., and
5.10. All formulae, up to (5.19) and (5.20) for C2, are now directly applicable if
one takes account of the toric data of figure 4 and of the discussion preceding the
formulation of prop. 6.1. For (5.19) and (5.20) we need, in addition, to compute

deg(Oc~(t~(2-a~C::d;3,12,18))) and deg(Oc~(l~(_1+a~C2); 3,12,18))) respectively.

Since (aiC2 ), a~C2») = (1,2),
8(Oj 3, 12, 18) = 0, 11 (1; 3,12,18) = 1, 12(1; 3, 12, 18) = 13(1; 3,12,18) = 0,
Cl (1; 3, 12, 18) = 0, C2 (1; 3,12,18) = c3(1; 3,12,18) = 1, we get 8(1; 3,12,18) ­
t(1 - 1) = 0,
which means that both of the regarded degrees vanish (cf. (5.12)).

The intersection numbers are given by the following table:

Nr. int. numbers/i 1 2 3 4 5

(1) (Di i »)3 -1 0 0 -2 -3

(2) ((Di i »)2 . D~i») 0 0 0 -1 0

(3) ((D~i»)2 . D;i») -1 0 -2 0 0

(4) ((Di i »)2 . D~i») -1 -2 0 0 1

(5) (D~i)? 0 0 0 -1 0

(6) ((D~i»)2 . D~i») 0 0 0 -1 -2

(7) ((D~i) . D;i») 0 0 0 0 0

(8) ((D~i»)2 . D~i») -2 -2 -2 -1 0
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(9) (D~i) )3 -1 0 -2 0 0

(10) ((D~i))2 . Dii)) -1 0 0 -2 -2

(11) ((D~i))2 . D~i)) 0 0 0 0 0

(12) ((D~i)F .D~i)) -1 -2 0 0 0

(13) (D~i))3 7 6 8 8 9

(14) ((D~i»)2 . Dii») -1 0 0 -2 -3

(15) ((D~i»)2 . D~i») 0 0 0 -1 0

(16) ((D~i»)2 . D~i») -1 0 -2 0 0

(17) L3 6 6 6 6 6Yj

(18) ((LYi)2 . Dii») 0 0 0 0 0

(19) ((LyJ2 . D~i») 0 0 0 0 0

(20) ((LYj)2 . D~i») 0 0 0 0 0

(21) ((LYi)2 . D~i») 0 0 0 0 0

(22) (LYi . (Di i»)2) -2 -2 -2 -2 -2

(23) (LYi . (D~i))2) -2 -2 -2 -2 -2

(24) (LYj . (D;i»)2) -2 -2 -2 -2 -2

(25) (LYi . (D~i)?) 0 0 0 0 0

(26) (D(i) . D(i) . D(i») 0 0 0 1 11 2 3

(27) (D(i) D(i). D(i») 0 0 0 1 01 • 2 4

(28) (D(i) . D(i) . D(i») 1 0 0 0 0
1 3 4

(29) (D~i) . D;i) . D~i») 1 1 1 0 0

(30) (LYi . Dii) . D~i») 0 0 0 0 0

(31) (LYi . nii) . D;i») 0 0 0 0 0
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(32) (LYi . D~i) . D~i») 0 0 0 0 0

(33) (LYi . D~i) . D;i») 1 1 1 1 1

(34) (LYi . D;i) . D~i») 0 0 0 0 0

(35) (LYi . D;i) . D~i)) 0 0 0 0 0

Correspondingly, the images of the elements of the bases {BYil 1 :s; i ::; 5} under
[C2]Yi are given by the table:

Nr. images/i 1 2 3 4 5

(1) (') '2 0 0 4 6[C2] Yi (DI
I

)

(2) (') 0 0 0 2 0[C2]Yi (D2' )

(3) (') 2 0 4 0 0[C2]Yi (D 3' )

(4) (') -2 0 -4 -4 -6[C2] Yi (D4
1

)

(5) [c2]Yi(LYj) 72 72 72 72 72

In the next step we eonsider the testing bilinear forms of Yi

2 h 1, 1 ( -y:, ) ( h 1 , 1 ( -y:- )+1 ) 5 6
Sym (PiCQ(Yi)) has dimension I 2 I = T = 15.

Let Mi denote the symmetrie matrix {ß~i (b~i), b~i»)ll :s; S, t ::; 15} defined by the
ordered basis

{
(i) (i) (i) (i) (i) (i) (i)

b 1 := (LYi' LYi), b2 := (LYi' D1 ), b3 := (LYi' D2 ), b4 := (LYi' D3 ),

b ei) ._ (L D(i») bei) .- (D(i) D(i») b(i).- (D(i) D(i») b(i).- (D(i) D(i»)
5'- Yi' 4 , 6'- l' 1 , 7'- l' 2 , 8'- l' 3 ,

bei) ._ (D{i) D(i)) bei) '= (D(i) D(i») bei) '= (D{i) D(i») b(i).- (D(i) D(i»)
9'- l' 4 , 10 . 2' 2 , 11 . 2' 3 , 12'- 2' 4 ,

b ei) ._ (D{i) D(i») b(i).- (D(i) D(i») b(i).- (D(i) D{i»)}
13'- 3' 3 , 14'- 3' 4 , 15'- 4' 4

of Sym2 (PiCQ(Yi)). We eompute M/s by the above tables. For typographieal
reasons we write the entries of eaeh of their lines between eommas:
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[1728,12,0, 12, -12, -288,0,0,0, -288,144,0, -288,0,0],
[12, -288,0,0,0, -84,0, -76, -68, -4,2,0, -76, 72, -72],

[0,0, -288, 144,0,0, -4,2,0, -6, -4, -140,4,70,0],
[12,0,144, -288,0, -76,2, -76,72, -4,4,70, -84, -68, -72],

[-12,0,0,0,0, -68,0, 72, -72, -140, 70,0, -68, -72,504],
[-288, -84,0, -76, -68, -8,0, -8, -4,0,0,0, -8,4,0],

[0,0, -4,2,0,0,0,0,0,0,0, -4,0,2,0]
MI = [0, -76,2, -76, 72, -8,0, -8,4,0,0,2, -8,4, -8],

[0, -68,0, 72, -72, -4, 0,4,0, -4,2,0,4, -8, 11]
[-288, -4, -6, -4, -140,0,0,0, -4,0,0,0,0, -4,6],

[144,2, -4,4, 70, 0, 0,0,2,0,0, -4,0,4, -4],
[0,0, -140, 70,0,0, -4, 2, 0,0, -4, 6,4, -4,0]

[-288, -76,4, -84, -68, -8,0, -8,4,0,0,4, -8, -4,0],
[0, 72, 70, -68, -72,4,2,4, -8, -4,4, -4, -4, 0, 20],
[0, -72,0, -72,504,0,0, -8,11,6, -4,0,0,20, -56]

[1728,0,0,0,0, -288, 0, 0, 0, -288,144,0, -288,0,0],
[0, -288,0,0,0, -6,0,0, -144,0,0,0,0,0,0],

[0,0, -288, 144,0,0,0,0,0, -6,0, -144,0,72,0],
[0,0, 144, -288,0,0,0,0,0,0,0, 72, 0, -144,0],
[0,0,0,0,0,0,0,0,0, -144, 72,0,144,0,432],

[-288, -6, 0, 0, 0, 0, 0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],

M 2 = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
[0, -144,0,0,0,0,0,0,0,0,0,0,0,0,0],

[-288,0, -6,0, -144,0,0,0,0,0,0,0,0,0,0],
[144,0,0,0,72,0,0,0,0,0,0,0,0,0,0],

[0,0, -144, 72,0,0,0,0,0,0,0,0,0,0,0],
[-288,0,0,0, -144,0,0,0,0,0,0,0,0,0,0],

[0,0, 72, -144,0,0,0,0,0,0,0,0,0,0,0],
[0,0,0,0,432,0,0,0,0,0,0,0,0,0,0]

[1728,0,0,24, -24, -288,0,0,0, -288,144,0, -288,0,0],
[0, -288,0,0,0, -6,0, -152,8,0,0,0,0,0,0],

[0,0, -288,144,0,0,0,0,0, -6, -8, -136,8,68,0],
[24,0,144, -288,0, -152,0,0,0, -8, 8, 68~ -168,8, -144],

[-24,0,0,0,0,8,0,0,0, -136,68,0,8, -144,576],
[-288, -6,0, -152,8,0,0,0,0,0,0,0, -16,8,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
M 3 = [0, -152,0,0,0,0,0, -16, 8, 0,0,0,0,0,0],

[0,8,0,0,0,0,0,8,0,0,0,0,0,0,0],
[-288,0, -6, -8, -136,0,0,0,0,0,0,0,0, -8, 16],

[144,0, -8,8,68,0,0,0,0,0,0, -8,0,8, -8],
[0,0, -136,68,0,0,0,0,0,0, -8, 16,8, -8,0],

[-288,0,8, -168,8, -16,0,0,0,0,0,8, -32,8, -16],
[0,0,68,8, -144,8,0,0,0, -8,8, -8,8, -16,56],

[0,0,0, -144,576,0,0,0,0, 16, -8,0, -16,56, -128]
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[1728,24, 12,0, -24, -288,0,0,0, -288,144,0, -288,0,0],
[24, -288,0,0,0, -168, -76,0,8, -80, 76, 72, -152,0, -144],

[12,0, -288, 144,0, -76, -80, 76, 72, -84,4, -64, -4, -4, -72J,
[0,0, 144, -288,0,0, 76, -152,0,4, -4, -4,0,8, OJ,

[-24,0,0,0,0,8, 72, 0, -144, -64, -4, -72,8,0,576],
[-288, -168, -76,0,8, -32, -16,0,8, -12,8,12, -16,0, -16],

[0, -76, -80, 76, 72, -16, -12,8, 12, -10,4,4, -4, -4, -6],
M 4 = [0,0,76,-152,0,0,8, -16, 0,4, -4, -4,0,8, OJ,

[0,8, 72, 0, -144,8, 12,0, -16,4, -4, -6,8,0,26],
[-288, -80,-84,4, -64,-12,-10,4,4,-8,0, -2,0,0,4],

[144, 76,4, -4, -4,8,4, -4, -4,0,0,0,0,0,0],
[0, 72, -64, -4, -72, 12,4, -4, -6, - 2,0,4,0,0,28],
[-288, -152, -4, 0, 8, -16, -4,0,8,0,0,0,0,0,0],

[0,0, -4,8,0,0, -4,8,0,0,0,0,0,0,0],
[0, -144, -72, 0, 576, -16, -6,0,26,4,0,28,0,0, -128]

[1728,36,0,0, -36, -288,0,0,0, -288, 144,0, -288,0,0],
[36, -288,0,0,0, -252, 0,0,84, -156, 78, 0, -156,0, -216],

[0,0, -288, 144,0,0, -156, 78,0, -6, 0, 12,0, -6,0],
[0,0,144, -288,0,0,78, -156, 0,0,0, -6,0,12,0],
[-36,0,0,0,0,84,0,0, -216,12, -6,0,12,0,648],

[-288, -252,0,0,84, -72,0,0,36, -24, 12,0, -24,0, -48],
[0,0, -156, 78,0,0, -24, 12,0,0,0, 12,0, -6,0],

M s = [0,0,78, -156,0,0,12, -24,0,0,0, -6,0,12,0],
[0,84,0,0, -216,36,0,0, -48, 12, -6,0, 12,0,45],
[-288, -156, -6,0, 12, -24, 0, 0, 12,0,0,0,0,0, O},

[144, 78,0,0, -6, 12,0,0, -6, 0, 0,0,0,0,0],
[0,0, 12, -6, 0, 0, 12, -6,0,0,0,0,0,0,0],

[-288, -156,0,0, 12, -24,0,0, 12,0,0,0,0,0,0],
[0,0, -6, 12,0,0, -6, 12,0,0,0,0,0,0,0],

[0, -216,0,0,648, -48,0,0,45,0,0,0,0,0, -216]

Using the computer programme MAPLE, we find their ranks:

rk(M 1 ) = rk(M3 ) = 14, rk(M2 ) = 10, rk(M 4 ) = rk(Ms) = 13.

For i E {I, ... ,5}, let ni denote the quadratie form being associated to Mi,
(n~), n~), ~i») the signature data of ni, ehPi{x) = E}~oJ.LY)xj the eharaeteristie

polynomial of Mi and .xii), ... ,.xi2 the corresponding eigenvalues. Obviously,
n~l) = n~3) = 1, n~2) = 5, ~4) = n~S) = 2. Sinee Mi, 1 :0:; i :0:; 5, are real sym­
metrie matriees, they have only real eigenvalues. Furthermore, aceording to the
speetral theorem, the tripies (n~), n~), ~i») give the numbers of positive, negative
and vanishing eigenvalues of Mi respectively.

Let now Ai~), Ai~), Ai~) and .xi~) be the vanishing eigenvalues of M 4 and M s.
By Viete's root theorem, we get /-l~4) = -.xi4

) ••• Ai~) and /-l~S) = -.xiS) ... .xi~). If
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(n~) , n~)) = (n~) , n~)), then we should have sgn(p~4)) == (-1 )n~)+1 == (-1) n~)+l ==
sgn(p~5)), which would contradict MAPLE's computations:

p~4) == -576198190423640899584000 < °
p~5) == 58528305311105828782080 > °

Hence Ü4 and 0 5 (resp. ß~4 and ß~b' ß$4 and ß~b) are inequivalent. Unfor­

tunately, (n~),n~),~l)) == (n~),n~),~3)) == (7,7,1) and the above trick can­
not be applied to MI and M 3 • Nevertheless, we can write Sym2 (PiCQ(YI )) ==
VI EB Wb Sym2 (PiCQ(Y3)) == Va EB W3 , where W1 and Wa denote the kerneis of
the linear maps corresponding to MI and M 3, and VI, Va the nondegeneraey
lad, and eompare the so arising nondegenerate quadratie forms Öl :== 011vI and
Ö3 :== .o31va of rank 14 over Q. Note that

WI == ((0,0,0,0,0,1, -4, -2, 0,0,4,0, 1,0,0)) and

Wa == ((0,0,0,0,0,0,1,0,0,0,0,0,0)).

In fact, Ö3 eorresponds to the symmetrie (14 x 14) -matrix M3 eoming from M 3

after deletion of the 7- th eolumn and of the 7- th row. If we regard {eI,... ,e6,
the generator of w1 , es, . .. , e15} as a new basis for Ql5, then the matrix of the
quadratic form Öl w.r.t. it will be STMIS, where S denotes the change of basis
matrix. Deleting again the zero 7-th column and 7-th row we get the matrix:

(1728,12,0,12, -12, -288,0,0, -288, 144,0, -288,0,0),
[12, -288,0,0,0, -84, -76, -68, -4, 2, 0, -76, 72, -72],

[0,0, -288, 144,0,0,2,0, -6, -4, -140,4, 70, 0],
[12,0, 144, -288,0, -76, -76, 72, -4,4, 70, -84, -68, -72],

(-12,0,0,0,0, -68, 72, -72, -140, 70, 0, -68, -72,504],
(-288, -84,0, -76, -68, -8, -8, -4,0,0,0, -8,4, 0],

[0, -76,2, -76, 72, -8, -8,4,0,0,2, -8,4, -8],
[0, -68,0,72, -72, -4,4,0, -4, 2, 0,4, -8,11],

{-288, -4, -6, -4, -140,0,0, -4,0,0,0,0, -4,6],
[144,2, -4,4, 70, 0, 0,2,0,0, -4,0,4, -4],
[0,0, -140, 70,0,0,2,0,0, -4,6,4, -4,0],

[-288, -76,4, -84, -68, -8,-8,4,0,0,4, -8, -4,0],
[0, 72, 70, -68, -72,4,4, -8, -4,4, -4, -4,0,20],
(0, -72, 0, -72,504,0, -8, 11,6, -4,0,0,20, -56]

If Öl and D3 were equivalent as Q-quadratie forms, then det(M 1) and det(M3)
would be equal up to muliplieation by the square of a number E (Q \ {o}). Luckily,
by MAPLE we get

det(Md == -14286537432760320000,

det(M 3 ) == -136139852325977063424,
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and

which leads to the desirable contradiction. D

Reluarks 6.2. (i) We should lnention here, that if we wish (e.g. in another exam­
pIe) to compare two nondegenerate rational quadratic fonns with identical signature
data, whose ratio of cleterminants of their structure matrices w.r.t. our hases has
rational square root, then we havc to lnake use of additionallocal invariants involv­
ing the Hilbert symbol of nlll11bers taken froln the field Qp of p-adic numbers. See
Serre [109, Cor. of p. 44].

(ii) It is now obvious froln the above that for a givell c.i. X = ..'{cl c r m - 1(w) (as in
§5) with at least two distinct toroidal CrepRJlt desingularizations, one can develop
a formal companso1l algorithrn (01', so to say, a weak COO -classification algorithm)
for a11 Y's. Let us describe it in broad outline:

Step 1: Find the nun1ber 7]x by (2.24) and the singular locus Sing(X) of X by
(4.1), as weIl as the type of the c.q. s. of each of its dissident points using lemma
4.2.

Step 2: Draw a picture for the "toric triangles" corresponeling to the dissident points
of X and determine on theIn all the "new" fixed vertices which are due to our group
actions (cf. §3). After that cons truct a11 the possible distinct subdivisions of these
trial1gles with respect to these new vertices. (For linear time algorithms for the
sorting of subdivisions of a plane triangle 0[, lnore general, of a simple polygon into
smaller triangles with prescribed vertices, see Clarkson et 301. [19], Chaze11e [18] anel
further references given in these articles.)

Step 9: Consider an arbi trary pair (Y1 , Y2 ) consisting of two distinct toroidal crepant
desingularizations (4.16) of X. Use step 1, the first part of stef 2 and the formulae
of §5, in order to specify the entries of the syInInetric ( h

1
,1(h ,1+1) X h

1
,1(h

1
,1+1 ) )

-matrices, say M 1 and M z, cOlning froln the evaluations 01 the testing 6ilinear
forms ß~l' ß~2 at the pairs fonnecl by melnbers of the natural orelered bases of

SymZ(PiCQ(Y'i)), i = 1,2. If Jvtl, A12 have different ranks or different signature
data or - in the nondegenerate case - different discriminants, then Y1 and Y2 will
be non diffeolllorphic. In the case, where the above invariants are identical, try
to use the "determinant tri ck" 01' p-adics (as it is explained in (i)). If this is still
not enough to distinguish the diffeon10rphism types of Y1 and Y2 , then try to make
use of another testing (real 01' rational) quadratic fonn anel con1pare again the
corresponding invariants.

Step 4: If none of the criteria being introduced in step 3 is ahle to give a definitive
answer to the question, if Y1 and 1"'2 are of different type or not, then throw (Y}, Y2 )

into the "basket" of the "undecidecl cases". (We do not know any example of a pair
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(Y1 , Y2 ) belonging to the undecided cases, and we conjecture that the above basket
is probably empty !)

Step 5: Repeat for all pairs (Y1 , Y2 ) of the second part of step 2 the procedures of
the other steps and dose the flow chart of our algorithm.
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§7. Appendix: On the COlllbinatorics concerning.the Weighted
Partitions and the Counting of Integral Points of a Polyhedron.
Froln Euler's "Partitio N Ulnerorunl" to Ehrhart Polynomials.

Let w = ('WI, ... , w m ) E Nm be again a system of "weights". For a fixed n E No
we define:

In

PT(n;w):= {()q, ... ,Am) E N~ILAitvi = n}
;=1

In

PT+(n; W) := {(Al,'" , /\m) E Nm IL AiWi = n}
i=1

and pt(n; w) := ~(PT(n;w)), pt+(n; w) := ~(PT+(n;w)). Obviously, pt+(n; w) =
pt(n - I:;:1 Wi; w).

The elements of PT(n; w) anel PT+(n; w) can always be found by means of stan­
dard polynomial time algoritlul1s within the framework of the theory of integer
linear programming (see Schrijver {106]) . Nevertheless, the precise detennination
of pt(n; w) 01' pt+(n; w) as a "closed" functional expression of 11. anel w is indeed a
very subtle problem. pt(n; w) has the following equivalent interpretations:

(a) arithmetical·comhinatorial interpretation: pt(11.; w) equals the number of non­
negative integral solutions of a linear diophantine equation and expresses the de­
numerant of the weighted IJartitiolls of 11. W.1'. t. Wl, ... ,10m ,

(b) geometrical-comhinatorial interpretation: pt(n; w) gives the nUluber of the in­
tegral points of the rational polyhedron

m

(7.1) P(n;w) := {(x!, ... ,xm ) E IRml L WiXi = n, Xi 2: 0, Vi, i::; i::; m}
i=1

with vertices (....!!...., 0, ... ,0), ... ,(0,0, ... ,O,....!!....). Note that P(n; w) can be repre-
Wl W m

sented as the dilation P(n; w) = 11. • II(w) of the palyhedron I1(w) by the factar 11.,

where:

In

(7.2) II(w):= {(Yll'" ,Ym) E IRmlLwiYi = 1, Yi 2: 0, Vi, 1::; i::; m}
i=1

with vertices (_1 ,0, ... ,0), ... ,(0, ... ,0, _1_).
Wt W m

Since (1 - X Wj )-1 = L:~o X WjV
, pt(n; w) is exactly the n-th coefficient of the gen­

erating function of F(x) := TI;:] (1 - X Wj
)-] which was introduced by the fonnula
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(7.3)

(2.19) in §2. If we define Pt(n; w) to be pt(nj w) for n E No, and to be given via
the combinatorial identity ([111, p. 206])

00

L Pt( -ni w)x n = -F(x- 1
), for n E N,

n=1

(which means that we choose an extension of pt(n; w) on the whole Z different from
the one introduced in 2.26.), then we get the reciprocity relation:

(7.4) pt+(n; w) = (_l)m-l Pt(-ni w) (cf. [35]).

We are basically interested in the pt-functions, because they constitute the "com­
binatorial cornerstones" ofour formulae (2.20), (4.22), (5.2), (5.3), (5.12), (5.18),
(5.19), (5.20) and (5.21). (Furthermore, PT(d; w) \ {O} is nothing but the param­
eter space of all quasihomogeneous monomials of degree d w.r.t. w.) The purpose
of this appendix is to emphasize the complexity of pt's, to make some brief histori­
cal remarks, to remind certain (mostly forgotten) combinatorial formulae for their
computation, and to eonneet them with recent developments of the modern theory
of geometrie invariants.

Let us regard the above interpretation (a) as our starting-point. The pt-funetions
were first considered 1748 by Euler in his famous work [40]. He plaeed pt's among
the most central themes of his "Partitio Numerorum" . Euler himself studied the
case where Wi = i, Vi, 1 ~ i ~ m (and which, from now on, will be referred as
Eulerian case) and gave some preliminary eomputational rules. During the 19th
century, the investigations of these functions played a crucial role in number theory
and in invariant and partition theory. (For extensive historical comments for this
period the reader is referred to Dickson's renowned treatment [29], eh. III. Books
which devote substantial extracts to pt's or related functions, from the point of
view not only of the classical but also of the modern partition theory, are, among
others, those of Riordan [100], Comtet [20], Andrews [3] and Stanley [111].)

Euler's researches were mainly continued by Cayley [17] (1856), Sylvester [115],
[116] (1857, 1882), Laguerre [80] (1876-7), Weihrauch [123], [124] (1875, 1877) and
Glaisher [48] (1909). One of their very firs t results is that pt (n; w) (resp. pt+ (n; w) )
can be written as a quasipolynomial of degree m - 1:

m-l

(7.5) pt(n; w) = L Cm -l-k(nj w)n m
-

1
-

k
,

k=1

which means that the coefficients Cm -l-k(n, w) are periodic functions (with integers
periods) or) equivalently, that there exists an n E N and polynomials 10,/1, ... ,fN -1,

such that pt(n; w) = Ij(n; w) whenever n == j(modN).
They also used the splitting

(7.6) pt(n; w) = <P(n'; w) +W(n; w)

where 4>(n l
; w) denotes a polynomial in the variable n l := n - t L:::~1 Wi (with

constant coefficients) and w(n; w) the purely periodie part of pt(n; w).
The asymptotics of pi's are described by the following:
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Theorenl 7.1. (Laguerre, Schur) The pt-function behaves asYlnptotica11y like:

(7.7)
. pt(nj w) 1

11m -I = Cm-I (n; w) = ( )'(TI,n )
n-+oo 11.»1 711, - 1. i=1 'Wi

TheorelTI 7.2. (Erdös-Lell1ler [3D}, Szekeres [117}) In the Eulerian case, for big n 's
and m = o( {Yn) (01' even for 111. = Dun)), we llave:

(7.8) ? 1 (n - 1 ) nm
-

1

pt (11.; 1, ..... , . .. ,7n) '" -, 1 '" ( ), 17n. rn - m - 1 .rn.

+
(
n-1)pt (n'l) = .

l n - rn

In special eases, one can COlupute pt(n; w) 01' pt+(n; w) vcry easily. For example,
if Wl = ... = W m = 1, we get clirectly the bino111ial eoefficients:

pt (n; 1) = (n + 1n - 1) l

n

On the other hand for 11. = 111" we have:

Proposition 7.3. (Fonnula oE Fergola (1863) and Sardi (1865)). JE n = rrl, the
number pt+ (nj w) is given by tlle Eormula:

(7.9)
1

pt+(11.; w) = 1" det(lvf),
n.

where M denotes the (n - 1) x (n - 1) -matrix:

Sl Sn-1 + Sn -SI -S2 -83 -Sn-3 -Sn-2

Sl Sn-2 + Sn-l n-1 -SI -82 -Sn-4 -Sn-3

81 8 n-3 +S,,-2 0 11.-2 -S1 -Sn-5 -8n -4

SI S n-4 + S,,-3 0 0 n-3 -Sn-6 -Sn-5

8182 + 83 0 0 0 3 -SI

si + S2 0 0 0 0 2

while Si is the sum of those divisors of i which occur among Wl, . .. ,Wn . (In tlle
Eulerian case, Si becomes tlle sum of a11 divisors oE i, 1 ~ i ~ n).

The first general computational nlethod for the pi'S, due to Cayley, Sylvester
and Glaisher , is based on thc decolllposi tion of F (x) into partial fractions. pt (n j w)
is written as a surn of "waves" giving the coefficients of ; in the development (in
ascending powers of x) of certain fractions depending on various roots of unity. The
purely periodic part 'lt(nj w) of pt(n; w) in (7.6) is described in terms of "circulating
functions", whieh have been introduced by Hersehel in [62]. The "calculus" with
these eirculators seems to be extremely conlplicated and belongs without doubt to
the (partially undeeoded) "19-th century Inystics". For an introduction to it we
refer to the "Lehrbuch der COlnbinatorik" of Netto [92, §84-95, pp. 140-158].

Weihrauch's computational technique [123], when w;'s are pairwise coprirne, was
somehow different and was c01l1plemented 90 years later by Ehrhart [35], [37], who
discovered son1e beautiful trogonolnetrie expressions for \lJ (n; w).
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Theorem 7.4. (Formulae of vVeihrau~hand Ebrhart). Let Wl, ... ,Wm be pairwise
coprime. Then the first summand cI>(n'; w) of pt(n; w) in the expression (7.6) is a
polynomial of degree m - 1. In particular, if2 ::; m ::; 6, we have:

For m=2:

For m=3:

For m = 4:

cI>(n'; w) = (Wl W2)-l n'

3

cI>(n';w) = (2W1W2W3)-1(n/2 - 1
2
(L wr))

1 .
t=l

4

<I>(n'jw) = (6W IW2 W3W4)-1(n,3 - ~(L w;)n')
l=l

For m = 5 : cI>(n l
; w) =

(24gw;)-l { n,4 - (~ ~ w;)n'2 + 2~ [~(~ W~)2 +~(~ Wt )] }

For m = 6 : cI>(n'; w) =

(120gWi)-l { n'5 - (~ ~ w;)n'3 + 2
5
4 [~(~ w~? + ~(~ wtJ] n'}

Moreover, the second summand in (7.6) can be written as

m

W(n;w) = L1,Vw i(n),
i=l

where

,e W i-1)

L ~(p) (for Wi ocid)
p=l

!(Wj-2)

L ~(p)
p=l

(for Wi even)

are functions oE period Wi and

K(p) := cos [( m - 1 _ ~(2n +f Wj)p )1r] [TI sin( 1rWj P)] -1
2 W, . 1 . 1 W l

J= J=
i#l j=;6.i

On tbe other hand, pt+(nj w) obeys to the reciprocity law:

m

pt+(nj w) = (_1)m-1 cI>(L Wi - nl
; w) + (_1)m-1 '1J( -ni w).

i=l
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Unfortunately, the above condition which has to be satisfied by the weights is
very restrictive as it covers, for instance, only the case in which we compute
hO(X,Ox(n)) (cf. (2.20)) for smooth complete intersections X.

In the most general case, where wi's are arbitrary, one has to take into consid·
eration the divisibility relations between them. Csorba [23], following aremark of
Weihrauch concerning the dependence of the coeffieients Cm -1-k(n; w) of pt(n; w)
(cf. (7.5)) on the Bernoulli numbers, gave fonnulae for this general case, whieh re­
duce the computation of Cm -1-k(n; w)'s to the solutions of finitely many systems
of linear congruenee equations with at most m - 1 unknowns. (Similar formulae
for pt+(n; w) were found independently by Vahlen [121].) To present them, let us
first introduce some useful notations.

(i) For 1 ~ k ~ rn-I, 1 ::; 1 ::; k and an index-set {il, ... ,i,} C {I, ... ,m} of
"length 1" we set:

e(i1 , . .. ,iI} := ged(wjl1 ::; j ::; m, j ~ {i 1 , .. . ,i,})

e(€)(i 1 , • .• ,iI} := e(i 1 , •• • ,i€-l, i€+l,' .. ,im), Ve, 1 ::; e ::; l

J1(/;i l , .•. ,il) :- (ft e«)(i l , ... ,il)) (e(i l , ... ,iL))I-1

,
T(k; il, ... ,iI) := {(tit' ... ,tit )[1 ::; ti. ::; k, Vs, 1 ~ s ::; 1, and z= ti, = k}

..=1

...... (€)(. ').::. t1, ..• , tl :=

{ ( . ') , }(€) (€) e 11,··· ,tl (€) - d' .. , <, . : w '. ,= n mo e t .. , 1.(" ... ,.,10 - ~.'"",.' < e«)(i l , ... ,il) ~ •• ~.'"",.' ( (I, , I))

Furthermore, we define 1(1) as the set of the following index-sets:

1(1) := {(il, ... ,iI}11 ::; i .. ::; m, Vs, 1 ::; s ::; 1 and, i1 < i 2 < ... < i,},

(We shall notice that ij(T(k; i l , ... , iL)) = (~ -= ~ ) ,
( ( ' "»1-1 (m)

~(3(€)(i1,'" ,i,)) = tt_:l~(:.),(t~;:... ,il) and ~(I(I)) = 1 .)

(ii) The Bernoulli numbers are defined by the series

x X B 1x 2 B 2 x4 B 3x 6

eX-1 =1-2+~-~+-m-'"

and are easily computable, as we have BI = ~, B 2 = 3
1
0' B 3

B s = 6
5
6 and, in general, for j ~ 1:

83



(iii) For 1 ~ k ~ m - 1, 1 ~ I ~ k, a fixed index-set (iI, ... ,i,) E 1(1), and

(til' ... ,til ) E T(k; i1 , ••• ,i,), ~~~~... ,il E 3(i1 , ••• ,iI), we define the function:

(
e(il, ... ,i,) )v(t. .)tic-v

e(€)(; ; ) t.:.ll, ••• ,11
"1, ... ,"I

where

1 { 0, if v = 2v + 1, v > 0
Go := 1, GI := --, G v := ( v-I

2 -1) B zv - 1 , ifv = 2v, v> 0

Theorem 7.5. (Formulae of Csorba (1914))
The coefflcients Cm -1-k(n; w) of pt(n; w) in (7.5), for k > 0, are glven by the
following formulae:

(7.10)
Cm-l-k(nj w) =

k

L
1=1

L p(l;il,'" ,iI)
(it, ... ,idEI(I)

In the following years, Israilov [66] was eventually the only one who carried on the
tradition of "Cayley-Sylvester era". Combining the expansion of F(x) into partial
fractions with Möbius inversion law, he derived a "mammoth algorithmic formula"
consisting of subroutine summations, which reduces the computation of pt(n; w) to
the determination of elements of certain PT's corresponding to the Eulerian case.
To write it down in a "compact form", let us introduce some special extra notations.

(i) For 1 ~ 1~ m and an index-set {jl"" ,j,} C {1, ... ,m} let e(jl"" ,j,) denote
again

For 1 ~ i ~ m, 1 ~ v ::; m, we define successively:

84



Rii
) := {{1, e(j1 )}11 ~ j1 ~ m, j1 i= i}

R(i) R(i) {(' . )11 <. . < . ci {' '}}~"'2 := 1 U e J1,J2 _ J1 < J2 _ m, t"F J1,J2

m

and R '= UR(i)/.I • /.I •

i=l

(ii) For 1 ~ i ~ m, v E N, k E No, {jl, .... ,j,} C {1, ... ,m}, and SUb'" ,j,) a
divisor of e(j1,' .. ,j,), we define:

if i ~ {jl, ... ,j,}

if k = 0 and i E {j}, ,j,}

if k > Q and i E {j}, ,j,}

and for 1 ~ p ~ m - 1,

r(Pi Vj S(j1,'" ,j,)) :=

(_l)P-l~ (-1)rr! (nm V( .'. Q. (' . ))) -1 (Pn-1(U(t j Vi S(jl"" ,jI))) r
t

)
L..,; I I lJ,'l" ,S Jl, .. · ,JI l'

rl'" .rp -1. . t.
1=1 t=l

where the summation runs over all (r1,' .. ,rp-l) E PT(p - 1j 1,2, ... 1 P - 1) and
r := rl +... + rp •

(iii) Correspondingly, for 1 ~ i ~ m, 1 ~ t ~ i - 1, we set:

Y(t) := ~ t! W{Pi+1] w(Pm+ 1]
L..,; ( )1 ( I 1 • • • m ,PI + 1 .... pm + 1).

O$Pi , ... ,Pm::;t
Pi +···+Pm=t

and

where the surn runs again over all (rb" . ,ri-l) E PT(i - 1j 1,2, ... ,i - 1) and
r:= rl + ... +ri-l.
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Theorem 7.6. (Formulae of Israilov (1981))
(i) If the weights Wl, ••• ,Wm are pairwise coprime, then we have:

(7.11 )

{ ()-I}m , [m-i] wj-l m

pt(nj W) = L Ai (n +(:=~~! + L (f:,7w ;1 TI (1 - C;iWj
)

1=1 p=1 J=1
i#i

(ii) In the general case (in which we may assume that w is reduced), tbe number
of the \veighted partitions of n is given by the formula:

(7.12)
rn (n +m _ i)[m-i]

pt(n;w)=LAi (_')1 +, m z.
1=1

m e~1 ~1 ( ( ')) (n + m _ p _ 1)[m-p -l] Jljn

+ f; v7;:1 ~ r pj Vj; eJ (rn - p - 1)! (e(j)+

m-2

+L L
1=2 l$it <.. ,<i,:5m

"'L L
(1) (2)

rn-I (n +m -l- p)[m-I-p]

~f(pjvje(sj,,'" ,Sj,)) (rn-i-p)! (:r'J". .. ,j,)+

m

+L L
i=1 (3)

By 2:(1) we mean the sum running over a11 divisors (jl,'" ,j,) of e(jl, . .. ,j,) with
S(jl"" ,jI) tRI-I' 2=(2) denotes the sum of a1l 1 ~ v ~ s(jI,'" ,j,), for which
gcd(v, S(jl"" ,jI)) = 1. 2:(3) denotes the sum of all divisors s(i) of the weight

Wj \vith s(i) t R~)_2' Finally, by 2:(4) is meant the summation over all indices
1 ::; O'j ::; s(i), for \vhich gcd(ai' s(i)) = 1.

Remarks 7.7. (i) As the right hand sides of the formulae of theorems 7.4 and
7.6. eontain trigonometrie and transeendental functions in their periodic parts,
the eomputation of the denumerants has to be made by using suitable approxima­
tion proeedures. Sometimes it is enough to consider the "nearest integer function"
or other standard inequalities, but in general the rninimization of possible errors
demands more sophisticated arithmetical methods. For some simple concrete ex­
amples see [20, pp. 109-115], [34], [38], [66, pp. 268-272], [111, p. 211] and [100,
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pp. 117 -123J.
(ii) For the Eulerian case, Gupta [57] gave the following denunlerant bounds:

(7.13) 1 (11. - 1). 1 (n + !1n(1n - 1))-, 1:::; pt(n, 1, 2, . .. ,1n) :::; -, 1
m. 111. - m. 1n-

For the general case, Lambe [81] derived the upper bound:

(7.14)

. (n+u(1'n;w)) TIm 1pt(n, w) ::; 1 gcd(Wl"" ,Wrn ) -,
1n- w·i=l t

(
. )._ WlW2 ~ [Wi . gCd(Wl"" ,lVi-I)]

U 1'n, W .- 111. + - 2 + L.J '
gCd(Wl,W2) i=3 2gccl(WI, ... ,'lVi)

where [ .] denotes here the truncation to the nearest integer.' (Note that u(1n; w)
depends on the enulneration of the weights and that the above bound makes strange
"jumps" .)

Remark 7.8. Lee proved in [82] that, in fact, PT's are enough to describe eom­
pletely the power series expansion of any rational function in one variable. For
related topics see Stanley [111, eh. 4].

Remark 7.9. Another reason which ll1ade the oeeupation with pt-functions very
popular, not only alnong the 111athelnatieians hut also alnong the bank clerks and
cashiers, was that these funetiol1s gave the answer to the money changing prob­
lem. (See Wilf [125, p. 87]). pt(n; w) represents namely the l1umber of the ways
one ean change an aInount of lnoney, say n, into coins 01' banknotes of denolni­
nations Wl,'" ,Wm . An inclieative eXaIllple is that one given by Luckey [84] in
1933, who defends the introduetion of the "4-Pfennig" eoin (100 Pfennig = 1 ger­
man Mark) by using the arglunent that, for instanee, 30 Pfennig ean be ehanged
in pt(30; 1,2,4,5,10) = 285 ways, if one makes use of the "4-Pfennig" eoin, and in
only pt(30; 1,2,5,10) = 98 ways if not.

Let us now proceed to the interpretation (b) of pt 's, whieh was 111entioned at the
beginning of this section. By 1875 \iVeihrauch had already pointed out [123, pp. 99­
100J that the enumeration of non-negative solutiol1s of linear diophantine equations
can be made "auf geoilletrisehenl Wege". Duril1g the period 1955-1975 Ehrhart
([34], [35], [36], [37], [38]) developed a whole theory dealing with polyhedral enu­
merators.

Let P c IRm be a q-dimensional rational polyhedron. (By a polyhedron we mean,
as before, a bounded convex polyhedron, i.e. a convex polytope, whieh ean always
be represented as the convex hull of finitely maJ1Y points.) We define:
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and the Ehrhart senes:

co

Ep(x) := L E(n; P)x n
, with E(O; P) = 1, and

n=O
co

Et(x) := L E+(n; P)x n
, with E(O; P) = 0, respectively.

n=O

Theorem 7.10. (Ebrhart (1967)) JE q > 0, then:
(i) Ep(x) is a rational function and there is a quasipolynomial f of degree q with

E(n; P) = f(n), for a11 n E No.

(ii) It is E+(n; P) = (-l)qE( -nj P), for all n E N, where E( -ni P) := f( -n), and
Et(x) = (_l)q+l Ep(x- 1 ).

Remarks 7.11. (i) f is called the Ehrhart quasipolynomial of P. In particular, if
P is an integral polyhedron (i.e. if all the coordinates of its vertices are integers),
then f has constant (rational) coefficients and we call it the Ehrhart polynomial of
P.
(ii) In the notation of (7.1) and (7.2) we have obviously q = m - 1, pt(nj w) =
E(n; 1r(w)) and pt+(n; w) = E+(nj 1r(w)), "In E No, while Pt(n; w) = E(n; 1r(w)),
Vn E Z (cf. (7.4)).

Ehrhart's work was extended to various directions by Macdonald [85], [86], Stan­
ley (see [110], [111] and the other references given there), Frumkin [43J and Betke­
McMullen [11]. They did not only consider quasipolynomials arising from arbitrary
systems of linear diophantine equations, hut they also made use of techniques which
allow a precise study of the properties of general E(n; P)'s.
Especially Stanley connected E(n, P)'s with "magic labelings" of certain graphs
and with a whole "corpus" of interesting invariants appearing in the abstract com­
mutative algebra.

Even more recently, and parallel to algorithmic investigations of the counting of
integer points in polyhedra, like those of Dyer [33], Cook et al. [21], Banary et al.
[4] and Barvinok [6], combinatorialists and algebraic geometers attempted to find
expressions for the coefficients aj of the Ehrhart polynomials

(7.15)

of a q-dimensional integral polyhedron P in terms of the geometry of P by means
of the theory of toric varieties.

It is well-known (see (25, §5.8]) that one can associate every integral polyhedron
P in a q-dimensionallattice M with a complete toric variety Z(N, 'Ep) (w.r.t. to
its duallattice N) by defining the corresponding fan Ep as follows: If F is a face
of P, let CTF in M denote the cone consisting of all vectors A . (x - x'), where A is a
nonnegative rational number, x E P and x' E F. Then (in the notation of §3) we
set 'Ep := {äFIF is a face of P}.
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Applying Hirzebruch's version of Riemann-Roch theorem [63, p. 155], [46, p.
288], to the line bundle OZ(N,Ep)(D) of a TN- Cartier divisor D being generated
by its seetions [47, p. 110], we get:

(7.16)

and consequently

X(Z(N, Ep ), OZ(N,Ep)(nD)) = E(njP)

(7.17)
1 .

aj(P) = -=f deg(Dl ..- Tdj(Z(N, Ep )))
J.

where Td(Z(N, L;p)) denotes the homology Todd dass of Z(N, L;p).

In fact, (7.17) is enough to show that aj(P) is nothing but a linear combination
of the volumes of the intersection of P with the corresponding translations of the
subspaces which are perpendicular to the j-codimensional cones of Ep ([25, pp. 134­
135], [47, pp. 112-113]). Therefore, what one needs, is a geometric characterization
of the rational (not always uniquely defined) coefficients of this linear combination.

The last two coefficients of E(n; P) are actually easily computable, because by
the classical Pick's theorem [96] (1870) we get:
(i) aq(P) = Vol(P),
(ii) aq-1 (P) equals half the SUfi of volumes of the (q - 1) -dimensional faces (By
the volume of a j-dimensional face of P is meant the relative volume w.r.t. the
j-dimensionallattice in the j-plane containing it.)

For q ~ 3, however, the description of a1 (P), ... ,aq-2 (P) by means of the "local
geometry" of L;p (resp. of P) turned out to be much more complicated. (Even for
q = 3, a1 (P) cannot be given by only using the I-dimensional faces of P.) The
determination of these remaining coefficients of E(nj P) became possible only aSter
the proof of "finer" versions of combinatorial Riemann-Roch theorem and after
further analysis of the corresponding Todd dasses, due to Brion [14], I<havanskii­
Pukhlikov [71] [72], Pommersheim [97], I(antor-I(havanskii [69], Morelli [89] and
Capell-Shaneson [16). For q = 3, Pommersheim derived a formula far a1 (P) in
terms of the lattice volumes of 1- and 2-dimensional faces of P and of functions
depending on certain Dedekind sums. He generalized in this way a beautiful fonnula
due to Mordell [88) (1951). I(antor aod I{hovanskii discussed the 4-dimensional
case. For another approach to the most general case, see Morelli [89, p. 208].

Completing this appendix, we shall recall the formulae of Capell and Shaneson
[16] as they lead to concrete computations and they connect, in a certain sense,
Sylvester's "waves" with the "RR-arithmetics". The latter was originally intro­
duced by Hirzebruch in his "Grundlehren" -monograph [63, eh. I, §1, and eh. 11,
§9] and involved many useful properties of hyperbolic tangent and cotangent func­
tions relating the Todd classes with the L-dasses. Some extra notations \vill be
again unavoidable.

Let P be a q-simplex with vertices in M rv zq and N be the duallattice of !vI.
For each face R of P we set: :FR := {faces of P of codimensian one containing R}
and 'HR := :Fa \ :FR. For a simplicial q-dimensional cone a in N, generated by
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nl, ... , n q , let n~, . .. ,n~ be the unique primitive elelnents of N with n~ . nj = °
for i =1= j, and ~i := n~ . ni > 0, N' := ~1=1 Zn~, G(7 := N/ N'. Furthermore, for a
9 = no + N', let Anj (g) be the nUlnber

~ := {g E G(7!A nj (g) =1= 1, Vj, 1 :::; j :::; q}

(~ consists of the elelnents of (ia having the fonn 110 + N' with 110 lying in the
interior of the cone spanned by ll~, ... , 11~.)

I(eeping now these notations, as well as their "relative" analogues for all the cones
of ~P, in mind, we have:

Theorenl 7.12. (Formulae of Capell 811d Shaneson (1994)).
Let P be a q-siInplex witll 'vertices in t}le lattice lvI. For °~ j ~ q let r j denote
the coefficient oE x j in the palver series

'""" 1 { '""" rr (Vol( H)x) } '"
L.J IG. I L.J y(F) tanh(Vol(H)x) L..,.; t(R;g),

R-<P an F-<R HE1iF gEG~R

where y(F) := IGUFI· DhEFF(Vol(H)x) allel

t(R;g):= rr coth{rr R ,;;(g) +Vol(H)x}.
HE:FR

(yl} 's are "nleasured" agrull via tlle sublattices corrcsponding to H 's.) Furthermore,
for any R -< P with diIn(R) = j, let

Vol(R)
Sj := 2q - j IGüR ]. DHEF

R
Vol(H).

Then the Ehrhart polynolnial oE P is given by

(7.18)
q

E(n; P) = I: rjsjn j
.

j=O

Applications 7.13. The fonnulae of Capell and Shaneson can be applied for spe­
cial n's in our specific cases. Let w := (tut, ... ,10 m ) be a system of weights.
(i) Iflcm(wl,'" ,10111 )111" i.e. ifn = k·lcm(1Ot, ... ,wrn ) for same k E N, then

(7.19) pt(n; w) = E(k; P'(w)),

where P/(w) := {(Xl, , X m ) E IR rnl 2::::1 WiXi = lcm(WI, ... ,Wm )} with vertices
(-llcm(wl, ... ,wm),O, ,0), ... ,(0, ... ,0,-1-lcln(Wl"" ,10m)),

Wl W m
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(ii) For an n E N, let Ti := n + 2:;:1 Wi. If lcm(Wl, ... ,Wm ) In, i.e. if n =
A·lcm(wl"" ,Wm ) for some AE N, and if for a weight, say W m , we have W m = 1,
then:

(7.20)
pt(nj w) = pt+(ii; w) = E+(n; II(wl'''' ,Wm -l, 1)) = E+(.X; P(Wl"" ,wm-t}),

where P(Wl, ,Wm -l) denotes the convex huH of the points (0, ... ,0),
(~llcm(wI, ,Wm -l)'O, ... ,0), ... ,(0, ... ,O'w~_llcm(wl"" ,wm-t}). Thus,
pt(n; w) can be found by the reciprocity law of theorem 7.10. (ii) and the formula
(7.18) of Capell and Shaneson.
(iii) If X = Xd C pm-l (w) is a well-formed BP-like (cf. 2.16.) quasismooth
hypersurface, then (2.20) gives:

(7.21 )
m

hO(X, Ox(am(X))) = pt(d - L Wi; w) = pt+(d; w)
i=l

If one of the weights happens to be 1, (7.21) can be computed by (7.20).
(iv) In the special case in which m = 4, W4 = 1, gcd(Wl, W2, W3) = 1, ii := n +
Wl + W2 + W3 and ii = A·lcm(wI,w2'W3) for some A E N, one obtains (7.20) via
Pommersheim's formula for the tetrahedron P(WI,W2,W3) ([97, thm. 5, p. 17])
after having substracted the lattice points on its faces. The result is the following:

(7.22)

pt(n; Wl, W2, W3, 1) = E+(A; P(Wl' W2, W3)) =

1 2 2 2 3) 3 1[ ( ) 2] 2=fi(W1WzW3T A -4"WIW2W3Wl+W2+W3+1T A+

+ {~(wi + W~ +w~ + 1)T + ~[(WIW2 + W2 w3 + w3wt}T + w~ +W; +wil
12 4

- w~· DS(wI,gcd(W2lW3)) - w;· DS(W2,gcd(Wl,W3))

- wi .DS(W3, gCd(WI' W2)) } A - 1

In (7.22) we use the abbreviations:

1 ~ i ~ 3.

Moreover, by DS(p, v) we denote the Dedekind sum of two coprime integers J.L and
v being defined by

(7.23) DS(p, v):= ~ (G)) ((:i))
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where for an x E Q :

((x)) := { x -lxJ - t, x ~ z
0, xE Z

and lxJ is the greatest integer :::; x.
(v) Formulae similar to (7.22), when m = 5, can be derived by the results of Kantor
and Khovanskii [69].
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