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EQUIVARIANT CONTROL DATA AND NEIGHBORHOOD DEFORMATION

RETRACTIONS

MARKUS J. PFLAUM AND GRAEME WILKIN

In memory of John Mather

Abstract. In this article we study Whitney (B) regular stratified spaces with the action of a
compact Lie group G which preserves the strata. We prove an equivariant submersion theorem and
use it to show that such a G-stratified space carries a system of G-equivariant control data. As an
application, we show that if A Ă X is a closed G-stratified subspace which is a union of strata of
X, then the inclusion i : A ãÑ X is a G-equivariant cofibration. In particular, this theorem applies
whenever X is a G-invariant analytic subspace of an analytic G-manifold M and A ãÑ X is a closed
G-invariant analytic subspace of X.

1. Introduction

Mather’s concept of control data [10] has crystallized as an indispensible tool for the proof of

Thom’s first and second isotopy lemmata and more generally for the proof of the topological sta-

bility theorem which was originally conjectured by Thom [14] and finally proved by Mather [10]

Moreover, control data are a powerful tool in stratified Morse theory [4], to prove triangulability

of stratified spaces fulfilling Whitney’s condition (B) [5], and to verify de Rham theorems in in-

tersection homology theory [2]. A further topological application of the concept of control data is

that it allows for a transparent proof that every submersed stratified subspace A of a (B) regular

stratified space X is a neighborhood deformation retract (NDR) or equivalently that i : A ãÑ X is

a cofibration. The assumption that A is a closed submersed stratified subspace of X hereby means

that A is a union of connected components of strata of X; see Appendix A.

In this article we extend the existence of control data and the latter result to the G-equivariant

case, where G is a compact Lie group. More precisely, we show in Theorem 2.11 that if M is a

smooth G-manifold and X Ă M a (B) regular stratified subspace such that G leaves the strata

invariant, then there exists a system of G-equivariant control data on X. We use this observation

in Section 4 to prove that for every G-invariant closed submersed stratified subspace A Ă X the

inclusion i : A ãÑ X is a G-cofibration. More precisely, we prove the following which is the main

result of our paper.

Theorem 1.1. Let X be a G-invariant (B) regular stratified space in a G-manifold M and A

a G-invariant closed submersed stratified subspace of X. The there exists a G-invariant open
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neighborhood U of A in X and a stratified G-equivariant strong deformation retraction r : Xˆ I Ñ

X onto A such that Us :“ rpU, sq for each s P I “ r0, 1s satisfies

(a) Us is open in X for all s P r0, 1q,

(b) Ut Ă Us for all 0 ď s ă t ď 1, and

(c) Us “
Ť

sătď1 Ut and Us “
Ş

0ďtăs Ut for all s P p0, 1q.

In particular i : A ãÑ X is a G-equivariant cofibration.

We then consider the situation where X and A are G-invariant analytic subspaces of an analytic

G-manifold M with A Ă X being a closed subspace. Using methods by Wall [16] we show in

Theorem 3.1 that X possesses a G-invariant (B) regular stratification such that A is a union of

strata. Hence our main result applies to a such a G-invariant analytic pair pX,Aq.
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and an NSF Conference Grant, DMS-1543812. M.P. acknowledges hospitality by the National Uni-
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2. Control data compatible with a group action

Mather proved in [10] that every (B) regular stratified subspace of a smooth manifold carries a

system of control data. In this section we extend his result to the G-equivariant case. To this end we

first introduce G-equivariant versions of stratifications, tubular neighborhoods, their isomorphisms

and diffeotopies. Afterwards we prove a G-equivariant submersion theorem. This will be used to

derive uniqueness and existence results for equivariant tubular neighborhoods. These tools then

entail the main result of this section.

2.1. Equivariant versions of stratifications and tubular neighborhoods.

Definition 2.1. Suppose that a compact Lie group G acts on the total space X of a stratified space

pX, Sq. The stratification S is called a G-stratification or G-invariant and pX, Sq a G-stratified space

if for all g P G and x P X the set germs gSx and Sgx coincide and if for each open neighborhood

U with an S-inducing decomposition Z the map from a piece R P Z to gR given by the g-action

is a diffeomorphism of smooth manifolds. We also say in this situation that the G-action on X is

compatible with the stratification.

Example 2.2. The orbit type stratification of a G-manifold M is G-invariant since the group

action leaves the orbit types of the points of M invariant.

Proposition 2.3. Each stratum of a G-stratified space pX, Sq is preserved by the G-action. More-

over, G acts smoothly on the strata of X.
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Proof. Let x be a point of a stratum S of X. Choose a decomposition Z of an open neighborhood

U of x inducing the stratification S over U . Then gU is an open neighborhood of gx, and gZ a

decomposition of gU . Moreover, if y P U and Ry is the piece of Z through y, then gRy is the piece

of gZ through gy. Hence gZ induces the stratification S over gU . But that means that gx has the

same depth as x and that the dimension of the piece in which gx lies has the same dimension as

the piece of Z through x. So gx and x lie in the same stratum. So we have proved that G acts

on each stratum of X. This action is smooth since it is smooth locally by definition. The claim is

proved. �

Definition 2.4. By G-equivariant system of control data on a stratified space pX, Sq with a com-

patible G-action we understand a family T “ pTS , πS , %SqSPS of triples called tubes consisting for

each S P S of an open neighborhood TS of S, a continuous retraction πS : TS Ñ S called projection

and a continuous map %S : S Ñ r0,8q called tubular function such that the following control

conditions hold true:

(CC1) For any S P S the neighborhood TS is G-invariant, the projection πS is G-equivariant, and

the tubular function %S is G-invariant.

(CC2) For any S P S the tubular function %S satisfies S “ ρ´1
S p0q.

(CC3) For any R,S P S with R ă S, the map

pπR,S , ρR,Sq : TR,S Ñ Rˆ p0,8q

is a smooth submersion, where TR,S :“ TR X S, πR,S :“ πR|TR,S and ρR,S “ ρR|TR,S .

(CC4) For any Q,R, S P S with Q ă R ă S

πQ,R ˝ πR,S |TQ,R,S “ πQ,S |TQ,R,S and ρQ,R ˝ πR,S |TQ,R,S “ ρQ,S |TQ,R,S ,

where TQ,R,S “ π´1
R,SpTQ,Rq.

If G is the trivial group one recovers the original definition of a system of control data by Mather

[10]. A stratified space pX, Sq together with some control data T will be called a Thom-Mather

stratified space. If pX, Sq carries a compatible G-action and the control data are G-equivariant in

the sense defined above, we call pX, S,Tq a Thom-Mather stratified space with a compatible G-action

or briefly a Thom-Mather G-stratified space.

We will now introduce some further language where G always denotes a compact Lie group and

G a smooth G-manifold. Let S ĂM be a G-invariant smooth manifold. By a G-equivariant tubular

neighborhood of S in M we understand a triple T “ pE, ε, ϕq where πE : E Ñ S is a G-vector bundle

over S carrying a G-invariant inner product x´,´y : S Ñ E b E, ε : S Ñ p0,8q is a G-invariant

smooth map, and ϕ is a G-equivariant diffeomorphism from Bpε, Eq :“ tv P E | xv, vy ă εpπEpvqqu

onto an open neighborhood TS of S such that the composition of ϕ with the zero section of E

coincides with the identical embedding of S into M . Note that by the requirements TS is a G-

invariant open neighborhood of S in M .
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Following Mather [10] we define the projection πS : TS Ñ S as the composition πE ˝ϕ
´1 and the

tubular function %S : TS Ñ r0,8q as the function which maps a point x P TS to
@

ϕ´1pxq, ϕ´1pxq
D

.

If N is a a second G-manifold and f : M Ñ N a G-equivariant smooth map, then a tubular

neighborhood T “ pE, ε, ϕq is said to be compatible with f if f ˝ πS “ f |TS .

Example 2.5. Let η be a G-invariant riemannian metric on M and πN : N Ñ S the normal bundle

of S in M . Identify N with the orthogonal complement of TS in TSM via η. Then there exists

an open neighborhood U of the zero section of N such that the exponential function exp : U ÑM

is a G-equivariant diffeomeorphism onto an open neighborhood of S in M . Since G is compact

there exists a G-invariant continuous function ε such Bpε,Nq :“ tv P E | xv, vy ă εpπN pvqqu Ă U

The inner product x´,´y on N hereby is the one induced by the riemannian metric η. The triple

T “ pN, ε, exp |Bpε,Nqq now is a G-equivariant tubular neighborhood of S in M .

Given two tubular neighborhoods T “ pE, ε, ϕq and T1 “ pE1, ε1, ϕ1q an isomorphism between

T cand T1 consists of an isometric vector bundle isomorphism ψ : E Ñ E1 and a continuous map

δ : S Ñ p0,8q such that δ ď minpε, ε1q and such that ϕ1 ˝ ψ|Bpδ,Eq “ ϕ|Bpδ,Eq. We denote such an

isomorphism briefly by ψ : T „ T1.

In addition to isomorphisms of equivariant tubular neighborhoods there is a corresponding equi-

variant version of diffeotopies on a G-manifold M . By a G-equivariant diffeotopy on M we un-

derstand a smooth map H : M ˆ I Ñ M , where I denotes the interval r0, 1s, such that each of

the maps Ht : M Ñ M , x ÞÑ Hpx, tq with t P I is G-equivariant diffeomorphism and such that

H0 “ idM . If in addition a G-equivariant map f : M Ñ N is given, then a G-equivariant diffeotopy

H : M ˆ I Ñ M is said to be compatible with f if fpHpx, tqq “ fpxq for all x P M and t P I.

For every diffeotopy H : M ˆ I ÑM one calls the set suppH :“ tx PM | Dt P I : Hpx, tq ‰ xu the

support of H.

If h : pM,Sq Ñ pM 1, S1q is a G-equivariant diffeomorphism between pairs of G-manifolds and

G-submanifolds one defines the push-forward tubular neighborhood h˚T of S1 in M 1 of a tubular

neighborhood T “ pE, ε, ϕq of S in M by h˚T “
`

ph´1q˚E, ε ˝ h´1, h ˝ ϕ
˘

.

2.2. The Equivariant Submersion Theorem. Locally in charts, every submersion looks like a

linear projection. The following equivariant versions of this result appear to be folklore.

Proposition 2.6. Let f : M Ñ P be a G-equivariant submersion between G-manifolds M and P .

Let x P M be a point, H “ Gx be the isotropy group of x and K “ Gfpxq Ą H the one of fpxq.

Then there exist a finite dimensional orthogonal K-representation space N , a finite dimensional

orthogonal H-representation space W , a K-invariant open convex neighborhood of the origin B Ă

N , an H-invariant open convex neighborhood of the origin C ĂW , G-equivariant open embeddings

Θ : GˆH pBˆCq ãÑM and Ψ : GˆK B ãÑ P such that Θ
`

re, 0sGˆHpBˆCq
˘

“ x, Ψ
`

re, 0sGˆKB
˘

“

fpxq and such that the following diagram commutes, where π : B ˆ C Ñ C is projection onto the

first factor and idGˆπ maps rg, pv, wqsGˆHpBˆCq to rg, vsGˆHB.
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(2.1) GˆH pB ˆ Cq
idGˆπ //

Θ
��

GˆK B

Ψ
��

M
f

// P

Moreover, the dimensions of the manifolds and representation spaces fulfill the relations dimP “

dimG´ dimK ` dimN and dimM “ dimG´ dimH ` dimN ` dimW .

Proof. First choose a G-riemannian metric % on P , identify for every p P P the normal space

Np :“ TpP {TpGp with the orthogonal complement of TpGp in TpP , put N :“ Nfpxq and let B Ă N

be an open ball around the origin of radius smaller than the injectivity radius of the exponential

function exp% (with respect to %) over the orbit Gfpxq. Then, N is an orthogonal K-representation

space and, by the Slice Theorem [7, p. 139], [11], & [3, Sec. II.4], the subset Z “ exp%pBq Ă P is a

K-invariant submanifold and the map

Ψ : GˆK B Ñ P, rg, vsGˆKD ÞÑ g exp% v

a G-equivariant diffeomorphism onto an open neighborhood of Gfpxq in P . Following [3, Sec. II.4],

we call such a Z Ă P a slice through fpxq. Next choose a G-equivariant bundle H Ñ M com-

plementary to the vertical bundle V “ kerTf Ñ M in TM and call it the horizontal bundle. For

each v P B let rγv : r0, 1s Ñ M be the horizontal lift of the geodesic γv : r0, 1s Ñ P , t ÞÑ exp%ptvq

such that rγvp0q “ x. Let rZ “ trγvp1q | v P Bu. Then rZ is a submanifold of M with a chart given

by the inverse of B Ñ rZ, v ÞÑ rγvp1q. Moreover, rZ is H-invariant since the action by h P H maps

the geodesic γv for v P B to the geodesic γhv and the lift of γv to the lift of γhv. After possibly

shrinking B and with it Z and rZ the map GˆH rZ ÑM becomes a G-equivariant embedding and

the composition G ˆH rZ Ñ M
f
Ñ P a submersion. Now consider the fiber F Ă M of f through

the point x. Then F Ă M is a submanifold which is invariant under the action of K. Choose a

K-invariant riemannian metric η on F and let W :“ TxF {TxKx be the normal space at x and

identify it with the orthogonal complement of TxKx in TxF . Observe that W is an orthogonal H-

representation space since H “ Kx. For a suficiently small open ball C ĂW around the origin the

set Y :“ expηpCq is a slice of the K-manifold F through x. Now let rγy,v for each y P Y and v P B

be the horizontal lift of γv such that rγy,vp0q “ y. Then, after possibly shrinking B and C (together

with the corresponding slices) the map θ : B ˆ C ãÑ M , pv, wq ÞÑ rγexpη w,vp1q is an embedding

since T0θ is the linear injection N ˆW ãÑ Hx ˆ Vx – TxM which maps pv, wq to the unique pair

pvh, wq P Hx ˆ Vx such that Txpv
hq “ v. Moreover, the embedding θ is H-equivariant since the

horizontal lift is H-equivariant. Hence the set X “ trγy,vp1q | v P B, y P Y u is an H-invariant

submanifold of M transversal to the orbit Gx.

Consider now the G-manifold GˆH pB ˆ Cq and define

Θ : GˆH pB ˆ Cq ÑM, rg, pv, wqsGˆHpBˆCq ÞÑ gθpv, wq .
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This map is well-defined by equivariance of θ. The restriction of Θ to the zero section of G ˆH

pB ˆ Cq, which is canonically diffeomorphic to G{H, is a diffeomeorphism onto to the orbit Gx

since H “ Gx. Moreover, the image of teuˆ pBˆCq under Θ is the manifold X, so the image of Θ

equals GX. Now recall that the orbit Gx and X are transverse. By G-equivariance of Θ it follows

that TgxΘ is an isomorphism for all g P G. After possibly shrinking B and C the map Θ therefore

is a diffeomorphism onto an open neighborhood of the orbit Gx by the Implicit Function Theorem.

In other words, X is a slice of M at x.

Finally let ψ : B Ñ P be the embedding v ÞÑ exp% v. The image of ψ then is the slice Z, and

ψ´1 ˝ f ˝ θ “ π by definition of θ via horizontal lifts. This entails that the diagram commutes and

the proposition is proved. The dimension relation follows from the definition of N and W and the

Slice Theorem. �

Corollary 2.7. Let f : M Ñ P be a G-equivariant map between G-manifolds M and P , and

let S Ă M be a G-invariant submanifold such that the restriction f |S : S Ñ P is a submersion.

Let x P S be a point, H “ Gx be the isotropy group of x and K “ Gfpxq Ą H the one of fpxq.

Then there exist an orthogonal K-representation space N , orthogonal H-representation spaces W

and W 1, a K-invariant open convex neighborhood of the origin B Ă N , H-invariant open convex

neighborhoods of the origin C Ă W and D Ă W 1, and finally G-equivariant open embeddings

Φ : G ˆH pB ˆ C ˆ Dq ãÑ M and Ψ : G ˆK B ãÑ P such that Φ
`

re, 0sGˆHpBˆCˆDq
˘

“ x,

Φ
`

re, 0sGˆKB
˘

“ fpxq and such that the following two properties hold true.

(1) The map

Θ : GˆK pB ˆ Cq ÑM, rg, pv, wqsGˆKpBˆCq Ñ Ψ
`

rv, w, 0sGˆKpBˆCˆDq
˘

has image in S and comprises a G-equivariant diffeomorphism onto an open neighborhood of

the orbit Gx in S.

(2) With Π : BˆCˆD Ñ B denoting projection onto the first factor the diagram below commutes.

(2.2) GˆH pB ˆ C ˆDq
idGˆΠ //

Φ
��

GˆK B

Ψ
��

M
f

// P

Proof. Choose a G-invariant riemannian metric % on P and a G-equivariant horizontal bundle HÑ

P such that the restriction H|S is a G-equivariant subbundle of TS. Let N “ TfpxqP {TfpxqGfpxq

and choose B Ă N as in the proof of the proposition. Then Z “ exp%B is a slice and Ψ : GˆKB Ñ

B defined as above a G-equivariant diffeomorphism. Now let F ĂM be the fiber of the submersion

f through x. Then F is a K-invariant submanifold of M and F X S a K-invariant submanifold of

S. Choose a K-invariant riemannian metric η on F . Put W “ TxpF X Sq{TxKx and identify it

with the orthogonal complement of TxKx in TxpF X Sq. Let W 1 be the orthogonal complement of

TxpK X Sq in TxF and choose small enough open convex neighborhoods of the origin C Ă W and
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D Ă W 1. Then Y “ expηpC ˆDq is a slice through x of the K-manifold F . Let γv for v P B the

geodesics as in the proof of the proposition and denote for y P Y and v P B by rγy,v the horizontal

lift of γv in M which starts at y. Now define ϕ : B ˆC ˆD ÑM by pv, w, zq ÞÑ rγexpηpw,zq,v. Then

Φ : GˆH pB ˆ C ˆDq ãÑM, rg, pv, w, zqsGˆHpBˆCˆDq ÞÑ gϕpv, w, zq

is a G-invariant diffeomorphism onto an open neighborhood of Gx in M and the diagram (2.2)

commutes by the proof of the proposition. By assumptions on the horizontal bundle H and the

construction of Θ property (1) holds true. �

2.3. Uniqueness and existence of equivariant tubular neighborhoods. For the construction

of G-equivariant control data one needs stronger versions of existence and uniqueness results of G-

equivariant tubular neighborhoods. In the following we prove equivariant versions of [10, Prop. 6.1]

and [10, Prop. 6.2].

Theorem 2.8 (Uniqueness of equivariant tubular neighborhoods). Let M , P be smooth G-manifolds,

S ĂM a closed G-invariant smooth submanifold, and f : M Ñ P a G-equivariant smooth map such

that the restriction f |S : S Ñ P is a submersion. Assume that T0 and T1 are two G-equivariant

tubular neighborhoods of S in M and that they are compatible with f . Further assume that U Ă S is

a G-invariant relatively open subset and that ψ0 : T0|U Ñ T1|U is an isomorphism of G-equivariant

tubular neighborhhoods over U . Let A,Z Ă S be two G-invariant relatively closed subsets such

that A Ă U and let V Ă M be a G-invariant open neighborhood of Z in M . Then there exists

a G-equivariant diffeotopy H : M ˆ I Ñ M which leaves S invariant, is compatible with f and

has support in V zA such that the tubular neighborhoods pH1q˚
`

T0|AYZ
˘

and T1|AYZ are isomor-

phic. If O Ă M ˆM is a G-invariant neighborhood of the diagonal, one can choose H such that

pHtpxq, xq P O for all t P I and x P M . Finally, the isomorphism ψ : pH1q˚
`

T0|AYZ
˘

Ñ T1|AYZ is

G-equivariant and can be constructed so that ψ|A “ ψ0|A.

Proof. Our proof adapts Mather’s argument in [10, Proof of Prop. 6.1] to the G-equivariant case.

Step 1. We first consider the local G-equivariant case as stated in Corollary 2.7. So we assume

for now the following:

(1) P is of the form G ˆGfpsq B, where Gfpsq Ă G is the isotropy group of some point fpsq with

s P S and B is an open convex neighborhood of the origin of some euclidean space Rk carrying

an orthogonal Gfpsq-representation. The point fpsq is then identified with re, 0s P GˆGfpsq B.

(2) S is equivariantly diffeomorphic to an associated bundle of the form G ˆGs pB ˆ Cq, where

Gs Ă G is the isotropy group of s P S and C is an open convex neighborhood of the origin of

some euclidean space Rl carrying an orthogonal Gs-representation. Under the corresponding

diffeomorphism the point s can be identified with re, 0s P GˆGs pBˆCq. Note that Gs Ă Gfpsq.

(3) M is equivariantly diffeomorphic to an associated bundle of the form GˆGs pBˆCˆDq, where

D is an open convex neighborhood of the origin of a euclidean space Rm with an orthogonal

Gs-representation and where the Gs-action on B ˆ C ˆD is the diagonal action.
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(4) Under these identifications f : M Ñ P coincides with the G-equivariant map GˆGs pB ˆ C ˆ

Dq Ñ GˆGfpsq B which maps rg, pv, w, zqs to rg, vs. So for every x “ rg, pv, w, zqs PM the fiber

through x in M coincides with Fx :“
“

tgu ˆ tvu ˆ C ˆD
‰

, the image of tgu ˆ tvu ˆ C ˆD in

GˆGs pB ˆ C ˆDq.

In addition to this we also assume for the moment that Z is compact.

Since G is compact, there exists a bi-invariant riemannian metric µ on G. The spaces B,C,D

all carry natural invariant metrics induced by the ambient euclidean spaces. Denote by η and %

the induced G-invariant riemannian metrics on M and P , respectively. With these metrics, f then

becomes a riemannian submersion. Actually, the fibers of this riemannian submersion are even

totally geodesic by construction of η. Now assume that x and y are points of M which are both in

the same fiber Fx. Then x “ rg, pv, w, zqs and y “ rg, pv, w1, z1qs for some g P G, v P B, w,w1 P C

and z, z1 P D. The unique geodesic connecting x with y then is given by

γx,yptq “ rg, pv, p1´ tqw ` tw
1, p1´ tqz ` tz1qs for all t P I, where I “ r0, 1s.

Note for later that γx,y completely runs within the fiber Fx.

Denote by πN : N Ñ S the normal bundle of S in M that is Nx “ TxM{TxS – T0D – Rm for

all x P S. Via the riemannian metric η one can identify N with the subbundle of TSM orthogonal

to TS. By assumptions and construction of the riemannian metric η one has N Ă kerTSf .

Now observe that for i “ 0, 1 the map

αi : Ei Ñ N, v ÞÑ Tϕipvq ` TπEi pvq
S

is a vector bundle isomorphism. Hereby we have identified Ei with the vertical subbundle of

TEi restricted to the zero section. By assumptions αi is an isomorphism of G-bundles, hence

α :“ α´1
1 ˝ α0 : E0 Ñ E1 is one, too. Note that for x P U , αx : E0,x Ñ E1,x coincides with

ψ0,x : E0,x Ñ E1,x. By uniqueness of the polar decomposition there exists a unique G-equivariant

vector bundle automorphism β : E1 Ñ E1 such that for every x P S the linear map βx : E1,x Ñ E1,x

is positive definite and ψx :“ βx ˝ αx : E0,x Ñ E1,x an orthogonal transformation. Then

ξt :“ p1´ tqα` tψ : E0 Ñ E1

is an isomorphism for every t P I which over U coincides with ψ0. After possibly lessening ε1

and ε0, where both stay G-invariant and positive, the set T :“ T0,S X T1,S is a G-invariant open

neighborhood of S in M over which the maps

qt : T ÑM, x ÞÑ ϕ1 ˝ ξt ˝ ϕ
´1
0 pxq

are well-defined and open G-equivariant embeddings for every t P I. Note that over S each qt is

the identical embedding and that each qt acts as identity over some open G-invariant neighborhood

U 1 Ă T of A. Moreover, each qt is compatible with f since both T0 and T1 are compatible with f .

Put V1 “ T X V and observe that Z Ă V1. By compactness of Z there exists a G-invariant open

neighborhood V2 of Z which is relatively compact in V1 and which satisfies V2 Ă qtpV1q for all t P I.
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Next choose a smooth G-invariant function χ : M Ñ I with compact support in V2 such that χ is

identically 1 over a G-invariant neighborhood of Z in V2. Define Qs,t : M ÑM for s, t P I by

Qs,tpxq “

#

γx,qt˝q´1
s pxq

`

χpxq
˘

if x P V2,

x if x PMzV2,

Since the qt are compatible with f , the geodesic γx,qt˝q´1
s pxq is well-defined for every x P V2. Hence

the Qs,t are well-defined as well and also compatible with f . Next observe that by construction

Qt,t is the identity map for all t P I and that there is a compact G-invariant subset containing the

support of Qs,t for all s, t P I. Hence there is some δ ą 0 such that Qs,t is a diffeomorphism for

all s, t with |s ´ t| ă δ. From here on we can follow Mather’s treatment of the local case in [10,

Prop. 6.1] almost literally. Choose a positive integer n such that 1
n ă δ. Put

rHt “ Q0, t
n
˝Q t

n
, 2t
n
˝ . . . ˝Q pn´1qt

n
,t
.

Then rH is a G-equivariant diffeotopy, compatible with f , and leaves S fixed. Since the qt acts as

identity over U 1, rHt does so, too. Moreover, rH coincides by construction with q1 ˝ q
´1
0 over some

sufficiently small G-invariant open neighborhood of Z in V2. Hence rH coincides with q1 ˝ q
´1
0 over

U 1YV 1. Furthermore rH ˝q0 ˝ϕ0 “ q1 ˝ϕ0 “ ϕ1 ˝ψ over the G-invariant neighborhood ϕ´1
0 pU 1YV 1q

of A Y Z in E0. Therefore, ψ is an isomorphism between p rH1q0q˚T0|AYZ and T1|AYZ . Moreover,

the support of rH is contained in V2 Ă V by construction. Finally, by requiring that the cut-off

function χ has support in a sufficiently small G-invariant open neighborhood of Z one can achieve

that with regard to the compact-open topology rHt is uniformly in t P I as close to the identity map

as one wishes.

By the following step there exists, after possibly shrinking U 1 and V 1, a G-equivariant diffeotopy
pH of M which is compatible with f and leaves S invariant such that for all t P I the diffeomorphisms
pHt act as identity over U 1 and such that pHt “ q0 over V 1. The map H : M ˆ I Ñ M , px, tq ÞÑ
rHt ˝ pHtpxq then is a G-equivariant diffeotopy with all the required properties.

Step 2. Here we show that there exists a G-equivariant diffeotopy pH of M with compact sup-

port which is compatible with f , leaves S invariant, acts as identity over a sufficiently small open

G-invariant neighborhood U 1 of A and coincides over a sufficiently small open G-invariant neigh-

borhood V 1 of Z with q0. Note that for the non-equivariant case the existence of such a diffeotopy
pH has been claimed in the proof of [10, Prop. 6.1] with the argument left to the reader. Since the

equivariant case is more subtle, we present a proof here which obviously covers Mather’s claim, too.

Observe that for all x P T the image q0pxq lies in the fiber Fx by construction. Hence the geodesic

γx,q0pxq is well-defined and fully runs in Fx. Now put Kpx, tq “ γx,q0pxqptq for all x P T and t P I.

After possibly shrinking T , pK : T ˆ I ÑM ˆ I, px, tq ÞÑ
`

Kpx, tq, t
˘

is an open embedding since q0

acts as identity over S, one has Txq0 “ idTxM for all x P S and finally since I is compact. Moreover,

Kt acts as identity for all x P U 1 where U 1 is a G-invariant open neighborhood of A in T over which

q0 acts as identity. Finally, K is compatible with f since q0 is. Now define the time-dependent
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vector field XK : T ˆ I Ñ TM by

XKpx, tq “
B

Bs

ˇ

ˇ

ˇ

ˇ

s“0

Kpx, t` sq .

Note that over U 1 ˆ I the vector field XK vanishes and that XK is G-equivariant. Next choose

a sufficiently small relatively compact G-invariant open neighborhood V 1 of Z and a non-negative

G-invariant smooth function δ : M Ñ r0, 1s which is identical to 1 over V 1 and has compact support

in T . Define the time-dependent vector field X : M ˆ I Ñ TM by

px, tq ÞÑ

#

δpxqXKpx, tq for x P T ,

0 for x PMzT .

Then X is a time-dependent G-equivariant vector field on M with compact support. By [6, Chap. 8,

Thm. 1.1] it generates a diffeotopy pH : M ˆ I Ñ M . The diffeotopy is G-equivariant since X is,

and is compatible with f since X is tangent to the fibers of f by construction. Since δ has compact

support, pH has so too. Over V 1 the diffeotopy pH coincides with K, hence one obtains in particular

that pH1|V 1 “ q0|V 1 . Over U 1, each pHt acts as identity for every t P I. This finishes Step 2.

Step 3. Let us pass to the general case, now. Here we follow closely [10, Prop. 6.1]. By

the Equivariant Submersion Theorem and Corollary 2.7 there exists for every x P S an open

relatively compact G-invariant open neighborhood Wx of x in M together with G-equivariant open

embeddings called equivariant charts Φx : Wx ãÑ G ˆGx Rp`k`l and Ψx : fpWxq ãÑ G ˆGfpxq R
p,

where Rp carries an orthogonal Gfpxq-representation and Rk and Rl orthogonal Gx-representations,

such that the following conditions hold true:

(1) The image of Φx is of the form G ˆGx pB ˆ C ˆDq with B Ă Rp, C Ă Rk, and D Ă Rl open

convex neighborhoods of the origin, and Ψx

`

fpWxq
˘

“ GˆGfpxq B.

(2) One has Wx X S “ Φ´1
x

`

GˆGx pB ˆ C ˆ t0uq
˘

“ Φ´1
x

`

GˆGx Rp`k
˘

.

(3) The diagram

Wx
Φx //

f

��

GˆGx Rp`k`l

idGˆΠ

��
fpWxq

Ψx
// GˆGfpxq R

p

commutes, where Π is projection onto the first p coordinates.

After possibly shrinking the Wx one can achieve that

Wx XA ‰ H ùñ Wx Ă V

Wx X Z ‰ H ùñ Wx X S Ă U .
(2.3)

The family MzS Y tWxuxPS then is covering of M by G-invariant open subsets. Since the orbit

space M{G is separable and paracompact one can find a locally finite countable refinement MzSY

tWiuiPN˚ with each Wi being G-invariant, open in M and contained in Wxi for some xi P S.

Moreover, the Wi are so that there exist equivariant charts Φi : Wi Ñ G ˆGi Rp`k`l and Ψi :

fpWiq Ñ GˆGfpiq R
p fulfilling conditions (1) to (3). Following Mather we discard all Wi for which
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Wi X Z ‰ H or Wi X A “ H, and reindex the remaining Wi’s again by the positive integers. By

(2.3) we then have A Ă U Y
Ť

iPN˚Wi and Wi Ă V for all i P N˚. Next, choose G-invariant closed

subsets W 1
i Ă Wi X S such that A Ă U Y

Ť

iPN˚W
1
i . Since the Wx are relatively compact, all W 1

i

are compact. Finally put for all j P N

Uj “ ϕ0

`

π´1
E0
pUq XBpε0, E0q

˘

YW1 Y . . .YWj .

Note that the Uj are then G-invariant and open and that U0 X S “ U .

We now construct inductively G-equivariant diffeotopies H0, H1, H2, . . . of M together with a

sequence ψ0, ψ1, ψ2, . . . of G-equivariant isomorphims of tubular neighborhoods. We start with

defining H0
t to be the identity map for all t P I and let ψ0 be the ismorphism from the statement

of the theorem.

For the induction step we assume to be given diffeotopies H0, H1, . . . ,H i´1 of M together with

G-equivariant isomorphisms ψ0, . . . , ψi´1 of tubular neighborhoods having the following properties:

(a) The diffeotopies H0, H1, . . . ,H i´1 and isomorphisms ψ0, . . . , ψi´1 are G-equivariant and com-

patible with f .

(b) The diffeotopies H0, H1, . . . ,H i´1 leave S pointwise fixed.

(c) For each j “ 0, . . . , i´ 1 the diffeotopy Kj of M defined by Kj
t :“ Hj

t ˝H
j´1
t ˝ . . . ˝H0

t for t P I

has support in Uj X V .

(d) One has
`

Kj
t pxq, x

˘

P O for all x PM , t P I, and j “ 0, . . . , i´ 1.

(e) For each j “ 0, . . . , i´ 1 there exist G-invariant relatively compact open neighborhoods U˚j of

AYW 1
1Y. . .YW

1
j in S such that U

˚

j Ă U˚j´1YWj when j ą 0 and such that ψj is an isomorphism

of tubular neighborhoods kj˚T0|U
˚

j
Ñ T1|U

˚

j
, where kj : M ÑM is the diffeomorphism Kj

1 .

By the local G-equivariant case from Step 1 there exist a G-equivariant diffeotopy H i on M

together with an isomorphism of tubular neighborhoods ψi such that the conditions of the in-

duction are satisfied. Let us provide a detailed argument by adapting Mather’s argument to the

G-equivariant case. First choose a G-equivariant relatively compact open subset W 0
i of Wi with

W 1
i Ă W 0

i . Then let U˚i be a G-equivariant open neighborhood of A YW 1
1 Y . . . YW 1

i in S with

closure being compact and in U˚i´1 Y W 0
i . By the local G-equivariant case there exists a dif-

feotopy Hj of Wi which is G-equivariant and compatible with f , has support in W 0
i and leaves

S XWi invariant. Moreover, since Zi :“ U
˚

i ´U
˚
i´1 is a G-invariant and compact subset of Wi and

ki´1
˚ T0|U

˚

i´1XWi
„ T1|U

˚

i´1XWi
, the diffeotopy H i can be chosen so that there exists a G-equivariant

isomorphism of tubular neighborhoods

ψi : pH i
1q˚k

i´1
˚ T0|U

˚

i XWi
Ñ T1|U

˚

i XWi

which fulfills ψi|U˚i XWiXU
˚

i´1
“ ψi´1|U

˚

i XWiXU
˚

i´1
. Finally, one can even achieve that the H i

t with

t P I are arbitrarily and uniformly close to the identity. Since the support of the diffeotopy H i is a

compact G-invariant subset of Wi, one can extend H i by the identity outside Wi to a G-invariant

diffeotopy on M which has support in Wi and is compatible with f . By putting ψi|U˚i´1
“ ψi´1|U

˚

i´1
,
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the isomorphism ψi can be extended to U
˚

i and the thus extended isomorphism has all the desired

properties. This completes the induction step.

Since the Lie group G is compact, one can shrink the G-invariant open neighborhood O ĂMˆM

of the diagonal so that the projection pr2 : O ÑM onto the second factor is proper. The sequences
`

Ki
t

˘

iPN and
`

ψi
˘

iPN then eventually become locally constant. Hence the maps

H : M ˆ I ÑM, px, tq ÞÑ lim
iÑ8

Ki
tpxq and ψ : M Ñ HompE0, E1q, x ÞÑ lim

iÑ8
ψipxq

By construction, H then is aG-equivariant diffeotopy ofM compatible with f and ψ : pH1q˚T0 „ T1

a G-equivariant isomorphism of tubular neighborhoods compatible with f as well. Moreover, H

and ψ have the properties claimed in the theorem. �

Theorem 2.9 (Existence of equivariant tubular neighborhoods). Let M,N be G-manifolds, S Ă

M a G-invariant smooth submanifold, and f : M Ñ N a G-equivariant smooth map which is

submersive over S. Let U Ă S be relatively open G-invariant subset, and A Ă U relatively closed

and G-invariant. Assume that T0 is a G-equivariant tubular neighborhood of U in M compatible

with f |T0. Then there exists a G-equivariant tubular neighborhood T of S compatible with f such

that T|A and T0|A are G-equivariantly isomorphic.

Proof. Step 1. The Equivariant Submersion Theorem entails existence of tubular neighborhoods in

the local equivariant case. Let us explain this. The global case will be considered in the following

step. Assume that M is of the form GˆH pBˆCˆDq, P is equivariantly diffeomorphic to GˆKB,

and under these identifications S has the form GˆH pBˆCq and f the form idGˆΠ. Hereby, H Ă

K Ă G are closed subgroups, B Ă Rp, C Ă Rk, and D Ă Rl are open convex neighborhoods of the

origin, where Rp carries an orthogonal K-repersentation, and Rk, Rl orthogonal H-representations,

and Π is projection onto the third factor. Now let E be the bundle G ˆH pB ˆ C ˆ Rlq Ñ S –

G ˆH pB ˆ Cq, ε : S Ñ p0,8q a constant map such that the ball of radius ε in Rl is contained in

D, and ϕ : Bpε, Eq ãÑ M the identical embedding. Then T “ pE, ε, ϕq is a G-equivariant tubular

neighborhood compatible with f .

Step 2. We adapt Mather’s argument in the proof of [10, Prop. 6.2] to the equivariant case.

Without loss of generality we can assume that S is closed in M . Now choose G-invariant relatively

compact open neighborhoods Wi, i P N˚ together with equivariant charts Φi : Wi ãÑ GˆGi Rp`k`l

and Ψi : Wi ãÑ G ˆGi Rp`k`l fulfilling conditions (1) to (3) in Step 3 of the preceding proof such

that the family pWiqiPN˚ is a locally finite covering of S. Next choose G-invariant closed subsets

W 1
i Ă S XWi such that the family pW 1

i qiPN˚ covers S as well. Put U0 :“ T0 “ ϕ0

`

Bpε0, E0

˘

and

define inductively Ui :“ Wi Y Ui´1 for i P N˚. Furthermore put U 10 :“ A and U 1i :“ W 1
i Y U 1i´1 for

i P N˚. Finally let U20 be a G-invariant relatively open neighborhhood of A in S such that U
2

i Ă U

and then choose inductively for all i P N˚ relatively open neighborhoods U2i of U 1i in S such that

U2i is contained in WiYU
2
i´1 and such that U2i can be decomposed into G-invariant relatively open

subsets Xi, Yi Ă U2i so that Xi ĂWizU
1
i´1, Y i Ă U2i´1 and so that Xi X Yi is relatively compact in

Wi.
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Now we inductively construct G-equivariant tubular neighborhoods Ti of U2i in M . The tubular

neighborhood T0 is the given one. Assume that for some i P N˚ a G-equivariant tubular neighbor-

hood Ti´1 of U2i´1 in M has been constructed and that it is compatible with f . By Step 1 there

exists a G-equivariant tubular neighborhood T1i of Wi X S in Wi which is compatible with f . So

we have two G-equivariant tubular neighborhoods over the G-invariant subset U2i XWi X S, the

corresponding restrictions of Ti´1 and T1i. By Theorem 2.8 there exists a G-quivariant diffeomor-

phism h of M which is compatible with f and has support within a sufficiently small relatively

compact neighborhood of Xi X Yi such that h˚Ti´1|XiXYi “ T1i|XiXYi . By h having a sufficiently

small support we in particular mean that h is the identity in a neighborhood of U 1i´1. One can now

glue together h˚Ti´1 and T1i to a G-equivariant tubular neighborhood Ti over U2i “ Xi Y Yi. By

construction Ti is compatible with f .

Since for all i P N˚ the tubular neighborhoods Ti´1 and Ti are isomorphic over a small neigh-

borhood of U 1i´1 in S there exists a G-equivariant tubular neighborhood T of S in M such that

T|U 1i „ Ti|U 1i for all i. This tubular neighborhood is compatible with f since all the Ti are and

fulfills the claim. The theorem is proved. �

2.4. Existence of equivariant control data. Before proving the existence of G-equivariant con-

trol data in Theorem 2.11 below, we first need the following equivariant analog of [10, Lem. 7.3].

Given a stratum S, a tubular neighbourhood T “ pE, ε, ϕq and a smooth function ε1 : S Ñ Rą0,

define T ˝ε1 :“ ϕpBε XBε1q.

Lemma 2.10. Let R and S be disjoint submanifolds of M which are preserved by G, such that

the pair pS,Rq satisfies condition (B). Let T be a G-equivariant tubular neighbourhood of R in M .

Then there exists a G-invariant smooth function ε1 : RÑ Rą0 such that the mapping

pπT , %T q : S X T ˝ε1 Ñ Rˆ p0,8q

is a smooth submersion.

Proof. Since G is compact, then the result follows from the non-equivariant version in [10, Lem.

7.3] by averaging over the G-orbits in R. �

Theorem 2.11. Let G be a compact Lie group and M,N smooth G-manifolds. Assume that pX, Sq

is a (B) regular stratified subspace of M , that X is invariant under the G-action and that the

induced G-action on X is compatible with the stratification S. Assume further that f : X Ñ N is

a G-equivariant smooth stratified submersion. Then there exists a system of G-equivariant control

data T “ pTS , πS , %SqSPS on pX, Sq compatible with f .

Proof. The proof is by induction on the dimension of the strata, following the strategy of [10, Sec.

7]. Let Sk be the subset of S consisting of strata of dimension less than or equal to k, and let Xk

be the union of all strata in Sk.

Since the strata in S0 all have dimension zero, then there exists a system of G-equivariant control

data T0 “ pTS , πS , %SqSPS0 on pX0, S0q which is compatible with f |X0
.
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Now suppose that there exists a system of G-equivariant control data Tk´1 “ pTS , πS , %SqSPSk´1

on pXk´1, Sk´1q which is compatible with f |Xk´1
.

Let S be a stratum of dimension k, and for each ` “ 0, . . . , k, define

U` :“
ď

YăS,dimYě`

TY , S` :“ U` X S.

For each `, we will construct a tubular neighbourhood T` of S` which satisfies the equivariant

control data relations (CC1)–(CC4). Using the approach of [10, Proof of Prop. 7.1], we will do this

by descending induction on `. Note that it is sufficient to construct T` separately for each stratum

Y of dimension `, since if Y, Y 1 both have dimension ` then TY X TY 1 “ H.

For the base case ` “ k, note that Sk “ H, and so there is nothing to prove.

Now suppose that we have constructed T``1 such that %``1 : T``1 Ñ R is G-invariant, π``1 :

T``1 Ñ S``1 is G-equivariant, and if Y ă S, dimY ě `` 1, m P T``1 X TY , then

%Y ˝ π``1pxq “ %Y pxq

πY ˝ π``1pxq “ πY pxq.
(2.4)

If necessary, shrink the neighbourhood T``1 so that x P T``1 implies that there exists a stratum

Z ă S with dimZ ě `` 1 such that if x is also in TZ then π``1pxq P TZ .

Given x P T``1XTY such that π``1pxq P TY , then there exists Z ă S with dimZ ě `` 1, x P TZ

and π``1pxq P TZ . Therefore π``1pxq X TY X TZ and so TY X TZ is non-empty, hence Y ă Z. Note

that the relations (CC1)–(CC4) hold for the pair pY,Zq by the inductive hypothesis, and also that

since dimZ ě `` 1 then (2.4) holds with Y replaced by Z. Therefore we have

%Y ˝ π``1pxq “ %Y ˝ πZ ˝ π``1pxq “ %Y ˝ πZpxq “ %Y pxq

πY ˝ π``1pxq “ πY ˝ πZ ˝ π``1pxq “ πY ˝ πZpxq “ πY pxq.

Again, since dimY ă k, then we can further suppose from (CC3) that pρY , πY q : TY X S Ñ Rˆ Y
is a submersion, and from (CC1) that %Y is G-invariant and πY is G-equivariant.

Therefore we have constructed a tubular neighbourhood T``1 X TY Ñ S``1 X TY and so it only

remains to extend it to a neighbourhood TS,Y Ñ S X TY and then to a neighbourhood TS Ñ S.

Now if S˝``1 is an open subset of S whose closure lies in S``1, then Theorem 2.9 shows that there

exists a tubular neighbourhood TS,Y of TY X S such that

%Y ˝ πS,Y pxq “ %Y pxq

πY ˝ πS,Y pxq “ πY pxq,

the map πS,Y is G-equivariant and the function %S,Y is G-invariant, and such that the restriction

of TS,Y to |TY | X S
˝
``1 is isomorphic to the restriction of T``1.

Now in the same way as the second step of [10, Proof of Prop. 7.1], we can inductively extend the

tubular neighbourhood to a neighbourhood TS of all of S, which is compatible with the submersion

f , where we use Theorem 2.9 and Lemma 2.10 in place of [10, Prop. 6.2 & Lem. 7.3] in order to
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guarantee that the tubular neighbourhoods are G-equivariant. This completes the inductive step,

and hence also the proof of the theorem. �

3. A stratification compatible with a given set of subvarieties

In this section we use a construction due to Wall [16] to prove the following theorem.

Theorem 3.1. Let G be a Lie group acting smoothly on a nonsingular affine variety M , and let

pArq
n
r“1 be a finite family of subvarieties, each of which is preserved by the action of G. Then there

is a (B) regular stratification of M in which each Ar is a finite union of G-invariant strata.

As a preliminary to the proof of Theorem 3.1, we prove the following results.

Lemma 3.2. Let M be a nonsingular variety, and let G be a connected Lie group acting smoothly

on M . If X is a subvariety of M preserved by G, then the singular set Xsing is also preserved by

G.

Proof. Given p P X, let tf1, . . . , fnu be the equations defining X in a neighbourhood of p. Any

g P G defines a diffeomorphism ψg : M Ñ M . In particular, since X is preserved by the action of

G then tf1 ˝ ψ
´1
g , . . . , fn ˝ ψ

´1
g u defines X in a neighbourhood of g ¨ p. Then the Jacobian of these

equations is df ˝dψ´1
g , which has the same rank as df . Therefore g ¨p is a singular point if and only

if p is singular, and so Xsing is preserved by the action of G. �

Lemma 3.3. Let M be a nonsingular variety, and let G be a group acting continuously on M . If

X Ă M is any subset preserved by the action of G, then X and XzX are also preserved by the

action of G.

Proof. Given p P XzX, let ppnqnPN Ă X be a sequence in X converging to p. Since the action of G

is continuous, then for any g P G the sequence pg ¨ pnqnPN Ă X converges to g ¨ p. Since G preserves

X and p R X then g ¨ p R X also. Therefore g ¨ p P XzX for all g P G, and therefore XzX is also

preserved by the action of G, hence so is X. �

Lemma 3.4. Let G be a Lie group acting smoothly on a nonsingular affine variety M , and let X

and Y be two disjoint strata in a stratification of M . Then G preserves the set of points x P X XY

where pX,Y q is (B) regular.

Proof. Given g ¨ x, let ψg : M Ñ M denote the diffeomorphism associated to the action of g P G.

Since G acts smoothly on M , then for each g P G a chart ϕ : U Ñ Rd around x PM determines a

chart ϕ ˝ ψ´1
g : gpUq Ñ Rd around g ¨ x PM . Since Whitney’s condition (B) is independent of the

choice of chart (cf. [12, Lem. 1.4.4]) then pX,Y q is (B) regular at x P X if and only if pX,Y q is

(B) regular at g ¨ x. �

We can now use the above results to prove the main theorem of the section.
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Proof of Theorem 3.1. We closely follow the proof of the corresponding result of Wall [16] when

the group action is trivial, and use the above results to show that the construction extends to the

equivariant setting.

Suppose that there exists a filtration Ti Ă Ti`1 Ă ¨ ¨ ¨ Ă Tm “M such that

‚ each Tj is a semivariety closed in M ,

‚ each Tj is preserved by the action of G,

‚ for each j “ i` 1, . . . ,m, the set Sj “ TjzTj´1 is a j-dimensional manifold, and

‚ each Ar X Sj is a union of components of Sj .

The above conditions are clearly satisfied for Tm “M , thus giving us the base case for the induction.

Define

B1 “

#

pTiqsing if dimTi “ i

Ti if dimTi ă i

and

B2 “
ď

r

´

Ar X pTiqregzAr

¯

,

Lemma 3.2 shows that B1 is preserved by G, therefore so is pTiqreg and so together with Lemma

3.3 this implies that B2 is also preserved by G. Therefore S1i :“ TizpB1 Y B2q is also preserved by

G.

To finish the proof, define the set B3 of points where some higher-dimensional stratum fails to be

(B) regular. Lemma 3.4 shows that this is preserved by G. Then define Ti´1 :“ TizpB1YB2YB3q

and Si “ TizTi´1. The above argument shows that these sets are both G-invariant. Moreover,

Wall [16] shows that this defines a regular stratification by semivarieties, and so we can continue

inductively to define a (B) regular G-invariant stratification by semivarieties such that each Ar is

a finite union of strata. �

4. Constructing the equivariant neighbourhood deformation retract

LetM be a smooth manifold equipped with the action of a compact Lie groupG, and let A Ă X Ă

M be closed subsets with inclusion map denoted i : A ãÑM . Suppose that X carries a (B) regular

G-invariant Whitney stratification tSuSPS, which restricts to a (B) regular G-invariant Whitney

stratification tSuSPSA of A. Theorem 2.11 shows that there exists a system of G-equivariant control

data on pX, Sq and Theorem 3.1 shows that these assumptions are satisfied when A and X are G-

invariant analytic subvarieties of M with A Ă X.

In this section we prove Theorem 4.4 which shows that the inclusion A ãÑ X is an equivariant

cofibration of stratified spaces. In particular, the result of Corollary 4.5 shows that the homotopy

equivalences in the Morse theory of [18] can be chosen to be G-equivariant.

Using Theorem 2.11, construct a system of G-equivariant control data pTS , πS , ρSqSPS for X.

Since A is a G-invariant stratified subspace of X then pTS , πS , ρSqSPSA is a system of G-equivariant

control data for A. On restricting to a small enough open neighbourhood of A, we can assume that
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(1) if S Ă X is a stratum of lowest dimension, then S Ă A, and

(2) if S Ă X is a stratum of X then S̄ XA ‰ H.

First we set up some notation and prove some preliminary results. On each tubular neighbour-

hood TS , fix a radial vector field B
BρS

as in [12, Cor. 3.7.4]. Since ρS is G-invariant then B
BρS

is

G-equivariant and so is its integral flow. Using the integral flow of radial vector fields, for each

stratum S and each x P S, there exists a neighbourhood Ux Ă TS and a real number r ą 0 together

with an isomorphism of stratified spaces

(4.1) Ux – pρ
´1
S prq X Uxq ˆ r0, rs{ „,

where py1, 0q „ py2, 0q if and only if πSpy1q “ πSpy2q. Equivalently, Ux is homeomorphic to the

mapping cylinder of πS |UxXρ´1
S prq and this homeomorphism is determined by the flow of the radial

vector field B
BρS

.

Given any stratum S0 P SA and a sequence of strata S0 ă S1 ă ¨ ¨ ¨ ă Sk Ă A of increasing

height, define

(4.2) TS0,...,Sk :“ TS0 X TS1 X ¨ ¨ ¨ X TSkz pS0 Y S1 Y ¨ ¨ ¨ Y Skq .

Given any x P TS0,...,Sk , there exists a neighbourhood U of x such that U is contained in a triviali-

sation for each of πS0 , πS1 , . . . , πSk . Therefore there exist r0, . . . , rk and ε ą 0 such that

V :“
k
č

`“0

ρ´1
S`
ppr` ´ ε, r` ` εqq Ă U.

Let Y :“
Şk
`“0 ρ

´1
S`
pr`q. Again using the integral flow of radial vector fields, we have

(4.3) V – Y ˆ
k
ź

`“0

pr` ´ ε, r` ` εq,

and for any x “ py, t0, . . . , tkq P V we have ρS`pxq “ t` for each ` “ 0, . . . , k.

For each stratum S`, let ϕS` be the integral flow of the radial vector field on the tubular neigh-

bourhoood TS` . Recall that these flows have the following properties

‚ ϕS` preserves the tubular distance functions ρSj for each j ‰ `,

‚ ϕS` is G-equivariant,

‚ the flow on the cylinder ρ´1
S`
pr`qˆ pr`´ ε, r`` εq is given by ϕS`ppy`, t`q, tq “ py`, t`` tq, and

‚ the flow preserves strata.

Therefore, on the neighbourhood V “
Şk
`“0 ρ

´1
S`
ppr` ´ ε, r` ` εqq – Y ˆ

śk
`“0pr` ´ ε, r` ` εq the

flow is given by

ϕS`ppy, t0, . . . , tkq, tq “ py, t0, . . . , t` ` t, . . . , tkq.

In particular, ϕS` is the flow of the vector field B
Bt`

on Y ˆ
śk
`“0pr` ´ ε, r` ` εq, the vector fields

t B
Bt`
u`“0,...,k are linearly independent, and the flows ϕS` for ` “ 0, . . . , k all commute and preserve

strata. Moreover, even though the above calculations have been done with respect to the local
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neighbourhood V , these vector fields and flows are well-defined and G-equivariant on the entire

neighbourhood TS0,...,Sk , since the radial vector fields are well-defined and G-equivariant on TS0,...,Sk .

Given functions a` : V Ñ R for each ` “ 0, . . . , k, the vector field

χpy, t0, . . . , tkq “
k
ÿ

`“0

a`py, t0, . . . , tkq
B

Bt`

is also tangent to strata, and so the flow preserves strata. Moreover, if the functions a` are inde-

pendent of y, then this vector field is G-equivariant and hence the flow is G-equivariant, since the

G-action preserves the radial distance functions ρS` .

The next lemma is used in the proof of Theorem 4.4.

Lemma 4.1. Let Q “ r´1, 1s, B “ r0, 1s ˆ r0, 1s and C “ pt0u ˆ r0, 1sq Y pr0, 1s ˆ t0uq Ă B. Then

there exists a proper continuous mapping H : Qˆ r0, 1s Ñ B such that

HpQˆ p0, 1qq Ă B zC, HpQˆ t0uq “ C

and H|Qˆp0,1q is a diffeomorphism onto its image.

Proof. Choose a smooth monotone function φ : r0, π2 s Ñ r0, πs such that φpθq “ θ if 0 ď θ ď π
3 and

φpθq “ θ` π
2 if 2π

3 ď θ ď π
2 . For notation, let P : tpx, yq P R2 | y ě 0, px, yq ‰ p0, 0qu Ñ Rą0ˆr0, πs

be the polar coordinate homeomorphism. Then the map h : B Ñ r´1, 1s ˆ Rě0 given by

h ˝ P´1pr, θq :“ P´1pr, φpθqq, hp0, 0q “ p0, 0q

is a homeomorphism onto its image, which restricts to a diffeomorphism of B zC onto hpB zCq.

Moreover (in Cartesian coordinates), the image of h contains r´1, 1s ˆ r0, 1
2 s. Now define H :

Qˆ r0, 1s Ñ B by Hpq, tq “ h´1pq, t2q. �

Let W Ă B be the image of H|Qˆr0,1q. The previous lemma shows that H restricts to a

diffeomorphism Q ˆ p0, 1q – W zC. Using the homeomorphism H, for any w P W we can write

w “ Hpqpwq, spwqq, where pqpwq, spwqq P Qˆ p0, 1q. Define a flow ϕ : W ˆ r0,8q ÑW by

ϕpw, tq “

#

Hpqpwq, e´tspwqq w R C

w w P C

Taking the vector field associated to this flow gives us the following lemma.

Lemma 4.2. There exist non-negative smooth functions a, b : W Ñ Rě0 such that the vector field

Xpx, yq “ ´apx, yq
B

Bx
´ bpx, yq

B

By

defined on W satisfies the boundary conditions Xpx, 0q “ 0 “ Xp0, yq,

(4.4) Xpx, 1q “ ´x
B

Bx
for all x P

“

0, 1
2

‰

, Xp1, yq “ ´y
B

By
for all y P

“

0, 1
2

‰

,

and the flow of X defines a smooth map

ϕ : W ˆ r0,8q ÑW
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such that limtÑ8 ϕppx, yq, tq P C for all px, yq PW .

Now define the sets

W1{2 :“ HpQˆ t1
2uq – Q

Wď1{2 :“ HpQˆ r0, 1
2 sq

Wă1{2 :“Wď1{2zW1{2.

Note that the flow ϕ of the vector field X from the Lemma 4.2 defines a deformation retract

of Wď1{2 onto C. Moreover, given such a vector field, for any w P W zC there exists a unique

t “ tpwq P r0,8q such that ϕpw,´tpwqq PW1{2.

Definition 4.3. Given ε1, ε2 ą 0, identify W1{2 – Q – r´1, 1s and choose a smooth monotone

function f : r´1, 1s Ñ R such that fp´1q “ ε1 and fp1q “ ε2. The modified radial distance

ρ̃ : W Ñ r0, 1s is given by

ρ̃px, yq “

#

e´tpwqfpϕpw,´tpwqqq if w PW zC

0 if w P C.

Now let h be the maximal height of a stratum in A. For each ` “ 0, . . . , h, let Ŝ` Ă A denote the

union of all the strata S P SA such that htpSq ď `. Consider a pair pU,ϕ`q consisting of an open

set U Ă X containing Ŝ` and a flow ϕ` defined on U . We say that pU,ϕ`q has property pR`q if all

of the following are satisfied.

(1) ϕ` is continuous.

(2) limtÑ8 ϕ`px, tq P Ŝ`.

(3) ϕpx, tq “ x for all x P Ŝ`.

(4) For any stratum S P S, if x P S then ϕpx, tq P S for all t P r0,8q.

(5) ϕ` is G-equivariant.

(6) For each t P r0, 1q, define Ut :“ ϕ`pU,´ logp1 ´ tqq, and define U1 :“ A. Then Ut satisfies

the following conditions

(a) Us is open in X for all s P r0, 1q,

(b) Ut Ă Us for all t ą s,

(c) Us “
Ť

tąs Ut and Us “
Ş

tăs Ut for all s P p0, 1q.

The following theorem is the main result of this section.

Theorem 4.4. Let M be a smooth manifold equipped with the action of a compact Lie group G, and

let A Ă X Ă M be closed subsets with inclusion map denoted i : A ãÑ M . Suppose that X carries

a G-invariant (B) regular Whitney stratification tSuSPS and that there exists a subset SA Ă S such

that A “
Ť

SPSA
S, therefore tSuSPSA is a G-invariant (B) regular Whitney stratification of A.

Then there exists a G-stratified space Ã, a proper continuous map η : Ã Ñ A an open neigh-

bourhood U of A in X and a G-equivariant homeomorphism of U onto the mapping cylinder
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ψ : U Ñ Zη “ pÃ ˆ r0, 1sq{ „ such that ψ|A is the identity and ψ|Aˆp0,1s is a homeomorphism of

stratified spaces.

Proof. The proof reduces to showing that there exists a pair pU,ϕhq which has property pRhq. We

inductively construct such a pair as follows. First consider the neighbourhood U p0q “
Ť

htpSq“0 TS

of Ŝ0, and define the vector field X0 “ ´ρS
B
BρS

(note that the vector field is well-defined as the

tubular neighbourhoods do not overlap since the strata S all have the same height). Since the radial

distance functions ρS are G-invariant and the radial vector field B
BρS

is G-equivariant, then X0 is

also G-equivariant and so the flow is G-equivariant. It is easy to check the first four conditions

of property pR`q. Since the flow is continuous and the tubular distance function ρS is strictly

decreasing, then the remaining condition of property pR`q is also satisfied.

Now suppose that we have a vector field X`´1 defined on a G-invariant neighbourhood U p`´1q

of Ŝ`´1 with G-invariant tubular distance function ρ̃`´1 and G-invariant tubular size function ε̃`´1

such that U p`´1q “ tρ̃`´1pxq ă ε̃`´1pxqu and such that the flow ϕ`´1 of X`´1 satisfies property

pR`´1q. In analogy with the non-equivariant case studied by Verona [15] (see also [12, Sec. 3.9]),

we define a G-invariant neighbourhood U p`q of Ŝ` and a vector field X` satisfying property pR`q by

“smoothing the corner” using Lemma 4.2 as follows. First we define X` on U p`´1qY
Ť

htpSq“` TS by

(1) On the subset U p`´1q z

´

Ť

htpSq“` TS

¯

, define X` “ X`´1.

(2) For each stratum S with htpSq “ `, on the subset pTS X tρSpxq ă εSpxquq zU
p`´1q define

X` “ ´ρSpxq
B
BρS

.

(3) For each stratum S with htpSq “ `, on the subset pTS X tρSpxq ă εSpxquq X U
p`´1q define

X`pxq “ ´a
´

ρSpxq
εSpxq

,
ρ̃`´1pxq
ε̃`´1pxq

¯

B

BρS
´ b

´

ρSpxq
εSpxq

,
ρ̃`´1pxq
ε̃`´1pxq

¯

X`´1pxq

where the functions a and b are given by Lemma 4.2.

Now restrict to the subset

U 1 :“
´

U p`´1q X tρ̃`´1pxq ă ε̃`´1pxqu
¯

Y
ď

htpSq“`

pTS X tρSpxq ă εSpxquq .

The result of Lemma 4.2 shows that the vector field X` is smooth on U 1. By setting ε1pxq “ εSpxq

and ε2pxq “ ε̃`´1pxq (both of which are G-invariant), we can glue the modified radial distance ρ̃`

of Definition 4.3 with the radial distance ρ̃`´1 on U p`´1q z

´

Ť

htpSq“` TS

¯

and the radial distance

ρS on TS zU
p`´1q for each stratum S of height `. Since ρS and ρ̃`´1 are both G-invariant then this

gives us a smooth G-invariant radial distance function ρ̃` : U 1 Ñ Rě0, together with a G-invariant

size function ε̃` : Ŝ` Ñ Rą0 such that tρ̃`pxq ă ε̃`pxqu Ă U 1. Moreover, for each stratum of height

`, on the subset TS zU
p`´1q we have ρ̃` “ ρS and ε̃` “ εS , and on the subset U p`´1q z

Ť

htpSq“` TS

we have ρ̃` “ ρ̃`´1 and ε̃` “ ε̃`´1.

Now define

U p`q :“ tx P U 1 : ρ̃`pxq ă ε̃`pxqu.
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It only remains to verify that the conditions of property pR`q are satisfied. Since the construction

of X` only depends on the G-invariant functions ρ̃`´1, ε̃`´1, ρS and εS , as well as the G-equivariant

vector fields X`´1 and B
BρS

then X` is G-equivariant. Since the vector fields X`´1 and B
BρS

commute

and their flows preserve strata, then the flow of X` also preserves strata. Since the vector field

from Lemma 4.2 satisfies the remaining conditions (1)–(3) and (6) of property pR`q, then X` also

satisfies these conditions.

Therefore we can inductively construct a vector field Xh whose flow ϕh has property pRhq. �

This immediately gives us the following result, which shows that the main theorem of Morse

theory from [18, Thm. 1.1] can be made to work in the equivariant setting.

Corollary 4.5. Let M be a smooth manifold equipped with the action of a compact Lie group G,

and let A Ă X Ă M be closed subsets with inclusion map denoted i : A ãÑ M . Suppose that X

carries a G-invariant (B) regular Whitney stratification tSuSPS, which restricts to a G-invariant

(B) regular Whitney stratification tSuSPSA of A.

Then there exists a neighbourhood U of A in X and a G-equivariant flow ϕ : U ˆ r0, 1s Ñ X

defining a deformation retract of U onto A such that Ut :“ ϕpU, tq satisfies the following conditions

(1) Us is open in X for all s P r0, 1q,

(2) Ut Ă Us for all t ą s,

(3) Us “
Ť

tąs Ut and Us “
Ş

tăs Ut for all s P p0, 1q.

Appendix A. Stratified spaces in the sense of Mather

In this paper we use stratified space in the sense of Mather [9]. Let us briefly recall the definition;

for further details see [12, Sec. 1.2].

By a prestratification or decomposition of a separable locally compact (Hausdorff) space X one

understands a partition Z of X into locally closed subspaces S Ă X each carrying the structure of a

smooth manifold such that the decomposition is locally finite and fulfills the condition of frontier.

The latter means that for each pair R,S P Z with the closure of S meeting R the relation R Ă S

holds true. The elements of Z are called the pieces or strata of the decomposition. If R,S are two

strata of X one calls R incident to S if R Ă S and denotes this by R ď S respectively by R ă S if

in addition R is not equal to S.

A stratification of a locally compact X now is a map S which assigns to every point x of X

a set germ Sx at x such that there exists for each x P X an open neighborhood U of x and a

decomposition Z of U with the property that for every point y in U the set germ Sy coincides

with the set germ rRsy at y of the piece R P Z containing y. One calls such a decomposition Z a

decomposition inducing the stratification S over U or a local S-decomposition around x.

By a stratified space we understand a pair pX, Sq consisting of a separable locally compact space

X called the total space together with a stratification S on it. In the following pX, Sq will always

denote a stratified space.
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Given an element x of a stratified space pX, Sq one defines its depth dppxq as the maximal number

d such that there exist pieces S0, S1, . . . , Sd of a local S-decomposition Z around x which fulfill

x P S0 ă . . . ă Sd .

The depth of x is actually not dependent on a local S-decomposition Z around x, see [9, Lem. 2.1]

or [12, Lem. 1.2.5]. The depth function is locally constant on each stratum of a local decomposition.

It allows to define a global decomposition of X inducing the stratification S. Namely for each pair

of natural numbers d,m let Sd,m be the set of points x P X of depth d and for which the dimension

of the set germ Sx equals m. Then Sd,m is a smooth manifold and the set tSd,m | d,m P Nu is a

global decomposition of X inducing S. It is the coarsest decomposition with that property, see [12,

Prop. 1.2.7]. We denote this decomposition by the symbol S also and call its pieces the strata of

pX, Sq. We often write S P S to denote that S is a stratum of pX, Sq. The supremum of all depths

dppxq, where x runs through the points of X, will be called the depth of the stratified space pX, Sq.

It can be infinite. Note that the depth is constant on each stratum so it is clear what is meant by

the depth of a stratum. It is denoted dppSq.

Closely related to the depth is the height htpRq of a stratum R. It is defined as the maximal

natural number h such that there exists strata R0 ă . . . ă Rh with R “ Rh.

If pX, Sq and pY,Rq denote stratified spaces, a continuous map f : X Ñ Y is called stratified, if

fpSxq Ă Rfpxq for all x P X and if the restriction of f to each connected component S of a stratum

of pX, Sq is a smooth map from S to the stratum RS of pY,Rq containing fpSq. If in addition all

the restrictions f|S : S Ñ RS are immersions (resp. submersions), one calls f a stratified immersion

(resp. stratified submersion).

A subspace A of a stratified space pX, Sq is called a stratified subspace if the map SA which

associates to each point x P A the set germ A X S is a stratification of A. In this case pA, SAq

becomes a stratified space and the canonical injection i : A ãÑ X is a stratified immersion. If in

addition i is a stratified submersion we call pA, SAq a submersed stratified subspace. A subspace

A Ă X is a closed submersed stratified subspace of pX, Sq if and only if it is a union of connected

components of strata of X.

Whitney’s regularity conditions (A) and (B) play a crucial role in stratification theory in partic-

ular in Mather’s proof of Thom’s isotopy lemmata [10]. They describe properties how a stratum

of a stratified space embedded in a smooth manifold M can approach an incident stratum near

its frontier. Let us recall the Whitney conditions following [12, 1.4.3]. A pair pR,Sq of smooth

submanifolds of M is said to fulfill Whitney’s condition (A) at x P R or that pR,Sq is (A) regular

at x if the following holds.

(A) Let pykqkPN be a sequence of points of S converging to x such that the sequence TykS, k P N, of

tangent spaces converges in the Graßmannian bundle of dimS-dimensional subspaces of TM

to some τ Ă TxM . Then TxR Ă τ .
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The pair pR,Sq is said to fulfill Whitney’s condition (B) at x P R or that pR,Sq is (B) regular at

x if for some chart χ : U Ñ Rd of M around x the following is satisfied.

(B) Let pykqkPN be a sequence in S and pxkqkPN a sequence in R such that both converge to x and

such that xk ‰ yk for all k P N. Assume that the sequence of lines χpxkqχpykq, where k is large

enough so that xk, yk P U , converges in projective space RPd´1 to some line `. Assume further

that the sequence of tangent spaces TykS, k P N, converges to some subspace τ Ă TxM . Then

` Ă τ .

By [12, Lem.1.4.4], Whitney’s condition (B) does not depend on the choice of the chart ϕ around

x. A stratified subspace pX, Sq of a smooth manifold M is said to be (A) respectively (B) regular if

every pair of strata pR,Sq with R incident to S is (A) respectively (B) regular at each point x P R.

(B) regularity implies (A) regularity but in general not vice versa. Complex algebraic varieties [17],

orbit spaces of compact Lie group actions [12] and of proper Lie groupoids [13], analytic varieties

[8], and subanalytic sets [1] all possess (B) regular stratifications.
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