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Abstract

Consider a Morse closed 1-form w on a closed orientable surface Mg. We
study a Hamiltonian flow on Mg2 determined by a multivalued Hamiltonian w. In
generic situation, when w has maximal rank, ( i.e., all periods of w are rationally
independent) corresponding Hamiltonian system splits into several components
filled with periodic trajectories, and several minimal components. Each minimal
component is a surface of genus g; with several holes; the sum g¢; + ... + gz of
genuses of minimal components equals original genus g.

We show, that for a generic Morse 1-form w the flow on each minimal com-
ponent is ergodic, and is equivalent to a special flow over interval exchange
transformation of 4¢g; — 4 intervals on a circle, where g; is a genus of the minimal
component. The proof is based on a theorem due to H.Masur and W.Veech on
unique ergodicity of a generic interval exchange transformation .

1 Structure of Hamiltonian flow, determined by a
multivalued Hamiltonian.

Consider a closed 1-form w on a closed orientable surface M; of genus g. We assume,
that w is a Morse form, i.e, w has a finite collection of nondegenerate critical points
(which in our case are minima, maxima, and saddles). We also assume, that different
critical points of w do not belong to the same critical values, i.e., any two different
saddles are not connected by a level of w. We consider only generic case, when w is of
maximal rank, rkw = 2g, i.e, all periods of w are rationally independent.

Proposition 1.1 Hamiltonian system determined by a multivalued Hamiltonian w on

a closed orientable surface Mg2 splits into several components filled with periodic tra-
jectories, and several minimal components 1\04;, ceey ﬁf;ﬁ, 1 € k < g; each nonsingular

trajectory is dense on a minimal component., Each minimal component is a surface of
genus g; with several holes; the sum g + ... + gx of genuses of minimal components
equals original genus g.



The flow on a minimal component Aef:'., 1=1,...,k, is isomorphic to a special flow
over interval exchange transformation of 4g; — 4 intervals on a circle — a closed line
in Aelgzl. transversal to the flow.

For a generic Morse 1-form w the corresponding interval exchange transformation
is uniquely ergodic; ergodic measure on the circle is determined by restriction of w to
the closed transversal, representing the circle.

A notion of a generic Morse 1-form is precisely specified below. Proposition 1.1 is
proved in sections 1.1-1.4.

When genus ¢; of a minimal component equals 1, one should understand an “in-
terval exchange transformation of 0 intervals” just as a rotation of a circle; the case of
genus one is considered by V.I.Arnold, in [2]. Paper of Ya.G.Sinai and K.M.Khanin [16)
proves, that these kind of special flows over rotation of a circle possesses mixing prop-
erty.

Problem 1.1 Consider generic special flow over interval exchange transformation on
a circle as in Proposition 1.1. Does it possess mizing property?

After distributing a preliminary version of the paper the author realized, that a
major part of Proposition 1.1 is somehow known to those specializing in flows on
surfaces or dynamical properties of leaves of closed 1-forms. In particular one can find
a comment on unique ergodicity of a generic closed 1-form in the Thesis of G.Levitt {8].
Still, since part of the story belongs rather to unverbalized mathematical folklore, than
to some accessible sources of information, one has to take care of the proofs, once he
needs rigorous results. Besides there are many specialists, for whom the results are
unknown yet. This exposition is addressed to them.

The author wishes to thank V.I.Arnold — his articles {2] and [3] and stimulating
discussions with him inspired me to continue a study in this area. I am much obliged
to A.Katok for several very essential conversations. In particular, it was his suggestion
to use Sataev’s example. Besides the proof of unique ergodicity of a generic closed
1-form was in fact outlined by A.Katok. I wish to thank G.Levitt, who clarified me,
which parts of the preliminary version of the paper have overlaps with the facts already
described in the literature. I am grateful to S.P.Novikov, who once introduced me to
this area, and whose challenging problems and conjectures stimulated this work. I
am grateful to Ya.G.Sinai, who convinced me to print this paper. 1 would like to
express my gratitude to Max-Plank-Institut fiir Mathematik in Bonn for hospitality
while preparation of this and other papers.



1.1 Decomposition of the surface into components.

A connected component of a singular level of w passing through a saddle point may have
a loop +, or even two loops. Integral of w over v is obviously zero. Since w is of maximal
rank, it means, that cycle v is homologous to zero, [y] = 0, [y] € (M2, Z). Hence,
when we cut M? over y we obtain two components' M? = W; U W5, It may happen,
that restriction w|w, or w|w, is exact on one of the components. Component W, where
the form is exact, may contain other components W/, obtained by the cuts over loops
on levels passing through the other saddles inside W. We will call (after V.I.Arnold,
see [2]) a maximal component W of that type by a {rap. Since by definition w is exact
on any trap, all trajectories are closed inside the trap. Each trap is homeomorphic to
a disk D?.

Let us cut off all the traps. Since we did not lose any nontrivial cycles, we obtain
a surface M, of genus g with several holes. The boundaries of the holes are closed
loops on singular levels of w. When g > 1 we may still have closed trajectories inside
M;. Note, that we got rid of minima and maxima — all critical points of w on M,
are of saddle type only. Let us count the number of inner saddles, without taking into
consideration the saddles, which belong to the cuts.

Lemma 1.1 There are 29 — 2 inner saddles of w on M. ‘

< Let us paste temporarily the holes on M, with disks. Consider a smooth extension
of w to the disks, placing a single additional critical point on each disk — maximum or
minimum. Count the Euler characteristic of a closed surface of genus g thus obtained
as an algebraic sum of numbers of critical points of our extended 1-form:

2g — 2 = (#inner saddles) _
+ [(#saddles on the cuts) — (#minima + #maxima)]

Since by construction there is a one-to-one correspondence between saddles on the cuts
and cuts, the number inside rectangular brackets equals zero.

Let us proceed with a surgery on M;. Some of 29— 2 inner saddles on M, may have
loops of singular levels, passing through these saddles. Let us cut M, over all such
loops. We remind, that any such loop v is homologous to zero in M. Consider those
connected components Agfgzl, . fﬁlgzk thus obtained, for which w restricted to ]\?I:i is

not exact. Kach A?Igz__ is a surface of genus g; > 1 with several holes.
Lemma 1.2 The following equation is valid:
Nt +g=9g

< To prove Lemma it is sufficient to show, that we can construct a basis of cycles
on 11/[92, which does not intersect any cuts ;. Since all v; are homologous to zero, a
desired basis can be easily constructed. b

!Here and below we always consider closed components.
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Figure 1: Construction of a closed transversal.

It is easy to see (cf. Lemma1.1), that the number of inner saddles on the component
A‘}I;‘_, of genus ¢g;, 1 = 1,...,k, equals 2g; — 2. By necks we call maximal components
N, obtained by cutting of M over loops of critical levels, for which restriction w|y,
1s exact. Each neck is diffeomorphic to a cylinder with several holes. Necks are of no
interest for us, since all trajectories are closed on the necks.
Consider now some component ﬂ?[gi"., 1=1,...,k

Lemma 1.3 The Hamiltonian flow defined by w on M;’ preserves traps, necks, and
components 112’;.., t=1,...,k. Fach component ﬁgfy?.. is a minimal component of the

flow.

(=} « .
One can construct a closed transversal on each component M2 (which obviously

does not intersect neither boundary of A?[gz" nor critical points of w).

In fact, the first part of the statement is trivial, and the second one is well-known.
As for me, I know this method of constructing of a transversal from [D.B.[uchs, and
from A.Katok.

< By construction each component 1131'92‘, does not contain any closed nonsingular
trajectory. By assumption there are no saddle connections by trajectories between
saddles inside J\OJ;_. Hence each nonsingular trajectory is dense in A‘}[;._, le., f&g{ is a
minimal component.

Let us remind the way of constructing a closed transversal on Il"’[jl_. Consider a small
open interval [ inside ﬂ?gl_, which is transversal to the flow, which neither intersects the
boundary of Mgz‘, nor contains singular points of w. Consider a nonsingular trajectory
t = z(t), starting at some point zo € I, g = x(0). Due to Poincare recurrence
theorem after some time ¢; our trajectory will come back and will intersect /. Let
zy € I, z; = z(t1), t1 > 0 be this first intersection of our trajectory x = x() with I.
Consider a narrow tubular neighborhood of our piece of trajectory z(t), 0 <t < 1.
We suppose, that the neighborhood is narrow enough, so that it avoids critical points
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of w. Hence, we may assume, that it is bounded from “bottom” by subinterval Iy C 7,
zg € Ip; it is bounded from “top” by I} C I, x) € I; it is bounded from sides by pieces
of trajectories. We suppose, that IoN I} = . Deform now our piece of trajectory z(t),
0 <t <1, inside the tubular neighborhood as indicated on the figure 1. Smoothing
conjugations with corresponding piece of / we complete a construction of a smooth
closed line T transversal to our flow. b

Hamiltonian flow determined by w generates a mapping Ty, : 7 — 7 of our closed
transversal 7 to itself. Recall another well-known fact.

Lemma 1.4 Mapping Ty, of a closed transversal T to itself generated by the flow on
.. O, . . . .

the minimal component 1\'192‘ is an interval exchange transformation of 4g; — 4 intervals

on a circle 7.

< Suppose for a while, that 1\?1';'. does not have any holes at all. Recall, that ﬁcflrj__
is a minimal component of the flow, and there are no saddle connections by singular
trajectories inside A?[;i. Hence all trajectories, starting at the points of 7, except 4g; — 4
ones, which hit the saddles (two trajectories for each saddle), would come back to
at a finite time. As for these 4¢g; — 4 points at 7, they are essentially singular — a left
hand side limit of Ty, at such point differs from a right hand side limit. Consider a
measure ;1 on 7, determined by restriction of w to 7. By construction of 7 the form w
is nondegenerate on 7. Hence our measure is isomorphic to a canonical measure on a
circle. It is easy to see, that the mapping Ty, preserves this measure. Hence, in the case
when Mgz'_ does not have any holes at all, T}, is an interval exchange transformation of
4¢; — 4 intervals on the circle 7.

Now recall, that we may have some holes on M;‘,. Actually we cheated slightly in
formulation of the lemma. Mapping T}, may have several additional singularities inside
exchanging intervals. These singularities correspond to the saddles on the boundary
of AOJ;, i.e., on the singular levels of w, which bound our holes. But the mapping Ty,
can be easily extended to these singularities — for each singular point of that kind a
left hand side limit of T}, at this point coincides with a right hand side limit. b

Lemma 1.5 The flow determined on a minimal component Agfgzi is tsomorphic to a
special flow over interval ezchange transformation Ty, of 4g; — 4 intervals on a circle.

A function, determining a special flow, is a time interval between two consecutive
intersections of the transversal by a trajectory. This funclion is smooth, except a finite
collection of points, where it has logarithmical singularities. The set of singularities is
a union of two sets — a set of singular points of the interval exchange transformation,
and @ set of singularities inside exchanged intervals; singularities of the second type
correspond to saddles on the boundary of 1\319‘2‘.

< The proof is analogous to the proof of Theorem 4 in [2]. b
Lemma 1.5 proves the first part of Proposition 1.1. Note that this result is very
close to a more general one obtained in [10].



1.2  Properties of interval exchange transformations 7.

To avoid multiple indexes suppose for a while, that we have only one minimal compo-
nent 11?; of the flow determined by w. Consider inner saddles of w inside 112’3 and chose
all but one from them. We will denote these 29 — 3 chosen saddles by S1,...,S3,-3.
We will study now in more details an interval exchange transformation T' induced by
the flow on a smooth closed curve 7 C ﬁgfgz transversal to the flow.

Let us cut our closed transversal 7 at some point to get an interval X. It would
be convenient to cut 7 at a singular point of T’ corresponding to a “nonchosen” saddle
Sag—2 (we recall, that each inner saddle on a minimal component J\c}[; determines two
singular points of the mapping T'). Mapping T on 7 determines an interval exchange
transformation of 4¢9 — 4 + 1 = 4g — 3 subintervals of the interval X, which we will
denote by T' as well. We remind, that 7' preserves a natural measure ¢ on X, defined
by restriction wj,.

We remind briefly the basic properties of interval exchange transformations. Fix
the permutation o, corresponding to the interval exchange transformation 7' on X. Let
A1y .--, Aqg-3 be lengths of exchanging subintervals measured by means of the measure
. Interval exchange transformations having the same permutation o of subintervals
are parametrized by points of a simplex

A4g—4 = {(ll, ceey ng—3) l [,' Z 0, 10 +...+ 149_3 = COHSt}

where [y, ..., l4y—3 represent lengths of exchanged subintervals. It is convenient to chose
a constant, determining the simplex to be equal to [, w. In this notation, our interval
exchange transformation T is identified with a point A = (Ay,..., Ayy_3) € A4
An interval exchange transformation 7' € A%~ translates each of 4g—3 subintervals
by some shift 3;, ¢ =1,...,4¢9 — 3 as follows.
z+ 5 for z € X,
T(z)={ --- e
T4 ,843_3 for z < .:\’49_3
Vector B3 = (fi,...,P4g-3) is represented by
B =A(o)A

where linear transformation A(c) depends only on permutation o. The explicit form
of A(o) is as follows:

1 ifi<jand 71(3) > o~1(3)
A(o)y=( =1 ifi>jand o7'(i) <o7'(j)
0 otherwise

Matrix A(c) is a skew-symmetric (4g — 3) x (4g —~ 3) matrix.
Lemma 1.8 Let permutation o be oblained by construction above. Then

rkA(o) = 2g



/’—@\‘—(ﬂ

2 =

Figure 2: Construction of a special basis of cycles

< Lemma 1.6 follows immediately from lemmas 1.8, 1.9 and lemma 1.7 below. b

Lemma 1.7 All numbers By,...,Bag—3 represent integrals of w over cycles in ﬂgfgz.
Dimension of a rational span of the numbers 31, ..., Bag-3 equals 2g:

dim(,gla v 7;843;—-3)@ = 29

<1 Consider a 2g-dimensional space Q% = Q% — R over Q generated by rational
span of integrals a; = [, w of w over some basis of cycles ¢;, ¢ = 1,...,2g9, ¢ €

Hy(M2,Z), where Q¥ = (0, .., azy)q. We are going to prove, that

(ﬁlu"‘aﬁ4g—3)Q =Q29 = (ala“')a%)Q (1'1)

We suppose for simplicity that 11?(92 does not have any holes at all, i.e., ﬁod'; = M?. The
proof is easily generalized to the case ﬂc}[;. First let us prove the inclusion

(B, Bag-s)g = Q¥ (1.2)

To prove this we will construct cycles by,...,b045-3 on Mg?, such that f,, w = —g;. The
construction of the cycle b; is illustrated at figure 2. Our cycle b; is a composition of
three paths. The first one — from the left endpoint of our interval X, i.e., from the
point, where we cut our closed transversal 7, to some inner point p € X; of subinterval
X;. The next one — a piece of trajectory, starting at this inner point of p € X; and
coming back to X at the point T'(p). The last one connects T'(p) with the left endpoint
of X along X.

At figure 2 intervals X and T(X) are distinct, but actually we have to identify
them, so we really obtain a cycle in Mﬁ. A piece of trajectory gives no impact to the
integral over cycle b;. Hence f,. w equals the difference of the lengths of the first and
the third pieces of our path, which equals —f;. We proved inclusion 1.2.



Figure 3: Construction of a cell complex.

To prove 1.1 we will construct a specific cell decomposition of M2. Consider subin-
terval X;. Consider a closure of a union of pieces of nonsingular trajectories, which
start at the points p € X; and end at the points T'(p) € T(X;) (see fig. 3). We get a
closure of a 2-cell of our complex. It may be of two types, as indicated at figure 3.

Consider 2-cells determined by all subintervals X;, 2 =1,...,4¢9 — 3. They provide
us with a 2-dimensional skeleton of our cell complex. Cells of dimension 1 and 0
are obviously determined by construction. Any l-cycle on Mg can be represented
by a l-cycle of our cell complex. It is not difficult to represent now any cycle on
M? as a combination of cycles b;. -As an illustration we show how to get a cycle
represented by our closed transversal T as a combination of b;. Recall, that when we
cut 7 we had to complete our initial set of 4¢ — 4 singular points of interval exchange
transformation on 7 with additional point T=!(P,), where P is a point of the cut. (By
convention we cut 7 over a singular point of 7.) Let 7-'(P,) = Pi41. By construction
Br = A1 + Akgz + -+ Aggez and Grqr = =M — A — ... — Ag (see fig. 4). It is easy
to see, that (7] = [brs1) — [bk), where cycles b and b4y are as constructed above.

Figure 4: Cycle [bx41] — [bx] represents the closed transversal 7.



1.3 Deformations of the embedding.

As it was shown in [14] a flow on M:‘ like ours may have k nontrivial invariant ergodic
measures for any k, 1 < k < g;. On the other hand, due to [9] and [17] a generic interval
exchange transformation is uniquely ergodic. It is rather natural to conjecture, that
a generic closed 1-form w of maximal rank on M} determines generic, i.e., uniquely
ergodic interval exchange transformations on transversals 7; related to components
1\2’;". The last statement is exactly the formulation of Proposition 1.1. To prove the
proposition we have to specify a notion of a “generic closed 1-form w of maximal rank”.

In order to do this we shall construct some natural finite-dimensional space of
smooth deformations of w. A small deformation of w does not change the topology
of decomposition of M: into “traps”, “necks”, and minimal components — a slight
change of their boundaries, caused by deformation of w does not affect the structure
of this decomposition. In this sense the deformation would not change the flow on
the components filled with periodic orbits. Still the behavior of the flow on minimal
components may change drastically. We are going to prove, that those forms, which
determine a uniquely ergodic interval exchange transformation are represented by a set
of a complete measure in the space of deformations of the initial form.

Note, that due to V.I.Arnold (see [2]) the flow is always ergodic on the minimal com-
ponents of genus one, provided that pairs of periods of the form on these components
are rationally independent.

* ok ok

Consider a vector space R™ provided with a cubic lattice. Consider a natural
projection p : R* — Tor™ = R*/Z". A differential dH of any linear function H € R™
can be induced by p* [rom a uniquely determined closed 1-form on Tor™, which we will
denote by dH as well. Fix coordinates on T'or™ corresponding to natural coordinates
in R™. We will call closed differential 1-forms as described above by linear 1-forms on
Tor™. '

Having arbitrary closed 1-form on a surface M ; of genus ¢ one can easily construct
an embedding i : MZ = Tor™ and a linear form dH on the torus, such that w coincides
with the restriction 7*(dH) to M? (see remark 2 in [2]). A dimension of the torus in this
construction is rather large: n = 2g+3, but it is easy to see, that it can not be seriously
reduced. Since for a generic w € Q'(MZ,R), rk(w) = 2¢, i.e., integrals of w over 2g
basic cycles on M; are rationally independent, in order to induce w from a 1-form on
a torus, one has to consider only those embeddings, which induce monomorphism of
the first homology groups: 7. : H\(M2?,Z) — H,(Tor",Z) = Z". Hence n > 2g.

Let 1-form w on M} be defined by a pair (io, dHo), where iq : My — Tor™ is an
embedding, which induces monomorphism of first homology groups, dHg is a linear
1-form on the torus, and w = 15(dHy). We assume, that rk (w) = 2g. We assume also,
that all critical points of w are nondegenerate, and distinct critical points of w belong
to distinct critical levels.

We will construct a space of small deformations of w, which will be locally described



as a direct product of two spaces:
D(2g) x D(w) = (deformations of i) x (linear deformations of linear [unction Hy)

We start with deforming the embedding .

Consider a local deformation of the embedding 7 which deforms embedding only in
some small neighborhood of j-th inner saddle point S;, 1 < 7 < 2¢—3. ( Note, that we
skipped one of our saddles.) We suppose, that each deformation does not add any new
critical points, it just shifts slightly one particular saddle. By d;(¢) we will denote a 1-
parameter family of deformations as above, where parameter € indicates, that the 7-th
critical point 5; moved from original level ko = H(S5;) to level hg + ¢ = H(S!), where
w = dH, and 5 is the corresponding saddle point of dH on a deformed submanifold

ﬁ(/)ff We suppose, that the neighborhoods of the critical points 5;, where our deformation
d;(e€) act, do not intersect for different 7, and that values of parameters of deformation
¢ are small enough. Hence we may suppose, that our closed transversal 7 does not
pass through any of this neighborhoods. Moreover, we assume, that deformed interval
exchange transformation on the transversal is described by the same permutation o as
the original one.

Consider an action of deformation d;(¢) on the interval exchange transformation of
4g — 4 intervals on our closed transversal, or, what is almost the same, the action on
the interval exchange transformation of 4g — 3 intervals on the interval X, obtained
by cutting 7. (We remind, that by construction, we cut 7 over one of those two
singular points of interval exchange transformation , which correspond to the saddle
Sag-2, which we excluded from the set of saddles under deformation.) Deformation
d;(€) determines some translation of the initial point g = (A1,..., Ayy—3) € A¥™Y
A+ ..o+ dgg—a = const = [, w inside the simplex A*~" parametrizing the space of
interval exchange transformations with fixed permutation . We will denote this action
by the same symbol d;(€) : Ao = N € A3,

Consider a saddle Sj,1 < 7 £ 2g—3. There are exactly two trajectories, starting at
7, which hit S;, i.e., there are only two singular points P and F; of interval exchange
transformation 7" corresponding to the saddle S;. [t is easy to sce, that P and P
are separated from both sides on 7 by other singular points of 7'. Hence there are
four distinct subintervals Xg_y, X%, Xi—;, X; having one of the points Pr, F; as an
endpoint. We assume, that numeration of the subintervals is compatible with the
natural orientation on r. The action of d;(€) on the point Ag = (A,..., Ayg-3) is just
a shift by ¢

dj(f) : (/\1, e .,)\49_3) —
(/\1,---,)\!.-4 + €, A - € Akt1y s Aot + €A — C,/\I+1,---,)\4g-3)
along vector
V}=(D,...,0,1,—1,0,...,0,1,—1,0,...,0) (1.3)

The first pair of nontrivial components of our vector has indices k —1 and k, the other
one — indices | — 1 and {. (Note, that by construction we will never get vector like
(-1,0,...,0,1,—1,0,...,0,1), since we never deform the saddle Sz,_2, corresponding
to a point of cut of transversal 7.)
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Lemma 1.8 Vectors Vi,..., Vag_3 are linearly independent.

< Consider a linear combination ¢;, Vi, +... + ¢, Vi,, ¢, # 0. Consider a subset in
{1,2,...,4g — 3} obtained as a union of numbers, enumerating nonzero components of
Viis -+, Vi,. Consider a maximal number in this subset, denote it by m. Then the m-th
component of our linear combination in usual coordinates (A;,...,Asyy—3) is nonzero.
Indeed, there are at most two vectors V,, and Vj, having nonzero m-th component. By
choice of m only one of them can occur in our linear combination. B>

Lemma 1.9 Vectors Vi, ..., Va,_3 belong to KerA(c), i.e.,

A@)V, =0, i=1,...2g—3

H

< Since our deformation affects only some small neighborhoods of a finite number
of points (i.e., our saddles), we may chose a basis of cycles in H, (ﬁ(/ifg, Z) represented
by curves, which do not intersect with deformed domains. Hence our deformations
preserve the periods of w, i.e., they preserve the cohomology class of w.

If some V; does not belong to the kernel of A(c), then B(e) = A(c)(Ao + Vi) is
nonconstant with respect to e. But as we showed in Lemma 1.7 all components of 3
represent integrals of w over some cycles in A?Igz, which are supposed to be preserved.
The contradiction obtained proves the lemma. b

Combining results of lemmas 1.9 and 1.8 with result of lemma 1.6 we obtain

Corollary 1.10 Vectors Vi,..., Va,_3 generate a basis of KerA(o).

Corollary 1.11 A family of deformations D*~3(iy), generated by deformations d;(¢),
embeds naturally into affine subspace of the space A~ parallel to the (29 — 3)-
dimenstonal kernel of A(o).

1.4 Deformations of the cohomology class.

Consider now a space D*¥~!(w) of deformations of the closed 1-form w as follows.
By convention we define our 1-form w as a restriction to ﬂ’[; of a linear 1-form dH,
in Tor", w = i5(dHy), where ig : M? — Tor™ is our initial embedding. Consider
an affine hyperplane H%-! in the vector space HI(M;,]R) generated by cohomology
classes [p] € H?9~!, which have the same coupling with the cycle [7] represented by our
closed transversal: [ p = const = [ w. Since homomorphism of cohomology groups
iy : H'(Tor™,R) = H'(M?,R) is an epimorphism in our case, we can chose a (2g —1)-
dimensional affine subspace in H!(Tor™,R), which maps onto H*~!. We chose the
affine subspace so that dHy belongs to it. We will denote this affine subspace by the
same symbol H%*~! ¢ H'(Tor",R). We define now D%~ (w) as a small neighborhood
of dHy in H*¥~!'. By “small” we mean the following. We identify the linear spaces
H(Tor™,R) and the space of linear 1-forms on Tor™. We assume, that for any linear
I-form dH € D*~1(w) the form i5(dH) has the same number of critical points of the
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same type as i5(dHy), that the quantitative structure of decomposition of M’; into
minimal and periodic components does not change, that our closed transversal 7 is
transverse to i3(dH), and that the permutation, determining interval exchange trans-
formation on T induced by the flow corresponding to i (dH) coincides with permutation
o corresponding to d Hy. Roughly speaking we assume that the whole quantitative pic-
ture remains the same for all forms 75(dH ), where dH € H*~1.

Let us study now how deformations from D2~! affect corresponding interval ex-
change transformations, i.e., consider a mapping D¥ '(w) — A%~1 where A%9~4
parametrizes interval exchange transformations on the interval X, obtained by cut-
ting our closed transversal T over a point (see above). Recall that in the proof of
Lemma 1.7 we represented shifts 5; = (A(c)A); of the exchanged intervals as inte-
grals over the cycles b; in M? (up to multiplication by —1). A small deformation
of the form does not change the homology classes of cycles b;. Since cycles b; gen-
erate a basis in H;(M?,R), a set of integrals —8; of the form w = i5(dH) over
these cycles determines the cohomology class [w] € H'(M?,R). Thus we get a lin-
ear isomorphism between Im (A(o)) and H'(MZ,R). By construction a composition
D21 () = A1 4 Im (A(0) = HY(MZ,R)) D D¥~'(w) maps D*¥~'(w) onto itself,
and this mapping is just the identity-mapping.

Hence we proved

Lemma 1.12 The mapping D*¥~1(w) — AY™ is an embedding. It is transversal to
the fibration of A%~ by affine (2g — 3)-dimensional subspaces parallel to the space
Ker A(o).

Combining results of lemma 1.12 and corollary 1.11 we get the following picture.
Our simplex A%~1 C R*%~3 is naturally fibered by intersections with the family of
affine planes in R*~3 parallel to KerA(o). Dimension of a generic fiber is 2¢g — 3.
Deformations D?*~3(75) of the embedding ig result translations along a fiber, while
deformations D%~ !(w) of the cohomology class produce some transversal section of
the fibration.

Let us construct a local section D29~ (w) for each point of a neighborhood D2973(4;)
of the fiber passing through A. It is easy to see, that local sections, corresponding
to different points of D*~3(ip) do not intersect. Hence we obtain a difleomorphism
between D¥3(44) x D¥~!(w) and some neighborhood of the initial point A € A%~
Since due to theorem of H.Masur [9] and W.Veech [17] the set of uniquely ergodic
interval exchange transformation has a complete measure in A%~3, we conclude, that
almost all deformations from D?73(iy) x D*¥~!(w) determine a uniquely ergodic interval
exchange transformation on the transversal 7. This proves Proposition 1.1 for the case,
when we have the only one minimal component ﬁ%’;. In general case, when we have

several minimal components 115731, Ceey ﬂsfgzk we just repeat all constructions for each
minimal component separately, and consider corresponding direct products of spaces
and mappings arising here. Note, that we just skip minimal components of genus 1,
tﬁ[;',, g; = 1, since the flow is uniquely ergodic on these components, whenever pairs of
periods on these components are rationally independent (see [2]).

Proposition 1.1 is proved.
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Remark Note, that considerable part of our construction is reduced to the fol-
lowing. A choice of transversal provides us with a collection of (co)cycles in the first
relative (cojhomology of the surface with respect to subset of saddle points. In fact we
proved, that this collection forms a basis in H'(M?, {saddles}; R). Note, that values A;
represent integrals over the basic relative 1-cycles. Note also, that values §; represent
integrals of the 1-form over cycles b; (see Lemma 1.7). Consider the following terms of
exact sequence of a pair (set of saddle points)C(Riemann surface M?):

... = H(saddles;R) — H'(M}, {saddles};R) = H'(M};R) — H'(saddles; R) =0

Under identification with cohomology suggested above operator A(¢) can be considered
as a mapping from relative to absolute cohomology from the exact sequence of the pair,
while the set of vectors V; defined by equation 1.3 represents

Im (HO({saddles};lR) — HY(M?, {saddles};R)) =
Ker (H'(M?, {saddles}; R) — H'(MZ;R))

1.5 Identification with homology.

Consider a vector space R*9~3 and linear operator A(c) acting on R*~3. Consider
subspace Im A(g) C R*™3, According to Lemma 1.6 dimension of the subspace ImA(c)
equals 2¢. Fix natural coordinates in R*~2. Subspace ImA(o) is spanned by rows of
matrix A(o). Consider a linear function A on our subspace ImA(c) obtained as a
restriction of a linear function in R*~2 which has components (A, ..., Ayy-3). (We
stress, that A is a function on 2g-dimensional space.) Since A(o) is skew-symmetric,
we have

-7 = ~(A(@)N)" = =2 AT (o) = AT A(0)

Hence

A(A;) = AIA,‘J +...+ A4g—3Ai,4g—3 = —ﬁi

and according to lemma 1.7 tk (81, .., fag-3)qQ = 29.

Consider now one more 2g-dimensional vector space H;(MZ,R). Consider a set of
cycles by, ..., byy—3in H; (M;, R) as constructed in the proof of lemma1.7. By construc-
tion the values of the cocycle [w] (i.c., of a linear function on the space H,(MZ,R)) on
cycles b; are as follows: w(b;) = —f;,;1 = 1,...,49—3. We have two 2g-dimensional vec-
tor spaces, a collection of 4g —3 vectors, in each of them, and a linear functions, having
the same values ; on corresponding vectors. The condition rk (8,..., Big-3)0 = 29
enables us to construct an isomorphism A of the two spaces,

h:ImA(c) = Hy(M?,R)

which identifies corresponding vectors from our collections, and identifies linear func-
tions. (Note, that instead of vector spaces, we could deal with corresponding lattices;
in this case we would get isomorphism with homology group Hi(MZ,Z) with integer
coefficients.)

13



Lemma 1.13 Consider a nonzero vector ¢ = (qu,. .., qug—3) with nonnegative compo-
nents g; > 0,1 =1,...,4¢ — 3. The following inequality is valid:

Afo)g# 0

< The structure of Ker A(o) is described by lemma 1.9 and corollary 1.10. It follows
immediately from equation 1.3, that for any vector from Ker A(o) the sum of its com-

ponents equals zero. Since by assumption ¢ +. ..+ qq9-3 > 0, vector ¢ does not belong
to Ker A(o). b

Corollary 1.14 A linear combination of cycles b;, 1 = 1,...,4g — 3, with nonnega-
tive coefficients, which do not vanish stmultaneously determines a nonlrivial cycle in

Hy(M2,R).

< The statement of corollary is just reformulation of lemma 1.13 after identification
of cycles b; with rows A(c); of matrix A(o) constructed above. >

1.6 Behavior of trajectory in the covering space.

Consider a spaceR™ provided with a cubic lattice. Consider a simply-connected surface
Mg2 in R™ invariant under translations over vectors of the lattice. We do not assume

that Mgz is necessarily connected. Consider lines of intersection of ﬂ:I: with a family of
parallel affine hyperplains in R?, determined by a linear hyperplane of generic direction.

Proposition 1.2 Almost all nonclosed intersection lines of a generic simply-connected
periodic surface in R™ with a generic family of parallel hyperplanes have some fized
direction as they go to oo. The set of possible directions is finite for a given surface
and family of hyperplanes; nonclosed lines of intersection passing nearby have the same
direction.

The proposition follows from existence of asymptotic cycle proved in [15]. Another
way to prove the proposition is to use proposition 1.1 and Ergodic theorem. Indeed,
if we consider a quotient of R™ by the action of Z", we get a torus, and a compact
surface embedded in it. Hyperplanes would be projected to levels of corresponding
closed 1-form on the torus with constant coefficients. Hence hyperplanes crossections
of initial surface would project to leaves of the restriction of the 1-form to the surface,
and we can assume, that we are under assumptions of proposition 1.1.

Consider a piecewise constant function F on the interval X, where X is obtained
by cutting our closed transversal T at some point, as described above. Function F
is a “vector-valued” function with values in H,(M?,R). The valuc of F on the j-th
exchanging subinterval X; equals the cycle b; € H;(M7,R). Note, that we can identify
H{(M?,R) with a linear 2g-dimensional subspace of the space R of universal cover

R” = Tor™. Consider a piece of trajectory of the flow on M;, which starts at some
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point p € X and comes back to X after & iterations of the mapping T'. Consider a lift
of this piece to the manifold M? C R, covering M?. Consider a vector 9(p, k) joining
the endpoints of corresponding nonclosed curve. Let us represent v(p, k) as a sum
p, k) = F(p) + F(T(p) + ... + F(T*(p)) + € (1.4)
Let us estimate an error € Consider a parametrization v : [0,1] — 7 C M?, ¥(0) =
(1) = Py, of our closed transversal 7, where P; is a point, where we cut our closed
transversal to get an interval X. Consider a corresponding lift 4 : [0,1] — Mj C R~
Let d = maxo<i<i ||¥(t) —4(0)|| , where norm is understood in the sense of usual norm
in R Then ||€]| < d. Note, that we got an estimate of an error in 1.4, which does not
depend neither on the point p € X, nor on the number of iterations k.
Consider limits

lim ! t(p,k) and  lim- % (p, k)

k=+oo k—4—co K
It is natural to call these limits by positive and negative directions of trajectory passing
through the point p. In the case, when corresponding interval exchange transformation
T is ergodic under natural measure on X, we use the ergodic theorem to get

1 1 koo -
lim Zf)’(p, k) = lim Zf;’(p,k) = lim - (Z F(T'(p)) + 5) = f F(p)dp =
1=0 X

1
k400 £ k—-—-co K k-0 k

Arhy + o4 Aggoabagos (1.5)

Due to corollary 1.14 the latter sum represents a nonzero vector in R™ Hence in
the case, when the flow is uniquely ergodic on a minimal component ﬁ?{gz'., almost all
lifts of trajectories from 1\3[_3.. to the covering space have one and the same direction,
determined by formula 1.5. Note that the homology class in (1.5) represent Poincare
dual to the cocycle [w] (cf. [15]).

Consider now our initial Z™invariant surface M; C R” covering compact surface
M'g2 C Tor™. Consider a connected component of a submanifold in ]\;[g?, covering
minimal component Ac;[gzj. It is easy to see, that this connected component belongs to
a tubular neighborhood of a 2¢;-dimensional affine plane in R", where the “thickness”
of the tubular neighborhood is uniformly bounded by some constant. The direction of
the 27-dimensional plane is determined by the image of Hl(ﬂ?fgzj, R) under embedding
into R™ (see above). Hence, each intersection of the closed component of the cover
of ﬁsfgzj with a hyperplane Hy = const in R”, w = ¢3(dHy), belongs to a tubular
neighborhood of an affine (2g; — 1)-dimensional plane. Note, that these intersection
lines, are exactly lifts of trajectories. Direction of the (2¢g; — 1)-dimensional plane is
defined by intersection of 2g;-dimensional plane in R™ determined by the image of
Hl(ﬂz’;j,R), with hyperplane Hy = const. >

2 Example of a nontypical flow.

In this section we remind a peculiar Hamiltonian flow on a surface of genus two deter-
mined by a multivalued Hamiltonian w. This example is due to E.Sataev [14). We use
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Figure 5: Example of a nontypical flow on a surface of genus 2 due to E.Sataev.

this example to illustrate a nontypical behavior of hyperplane sections of a Z*invariant
surface in R*. The Morse form w under consideration has only two critical points — two
saddles; the flow does not have any “traps” or “necks” at all; the whole M? represents
a unique minimal component of the flow. The interval exchange transformation arising
in the construction is not uniquely ergodic in this example, this explains a peculiar
behavior of the flow.

First we remind briefly Sataev’s example {14] of a topologically transitive low of
class C™ on a surface of genus 2, having two nontrivial invariant normalized ergodic
measures and two fixed points, which are nondegenerate saddle points.

We consider a “Riemann surface” of genus 2 having two tori as leaves, which are
pasted over cuts as shown at figure 5.

The flow on the upper leaf is generated by a constant vector field (z,y) = (e, 1),
where o is some special irrational number; th low on the lower leaf is generated by a
vector fleld (z,y) = (—a,1). (One can see [14], for a more detailed smooth realization
of this flow.) In fact, the flow has only two critical points — endpoints of the cut.
Each of these two critical points joins four trajectories, so the critical points are of a
saddle type.

Lengths of the sides of squares, representing the tori at figure 5 are equal to 1. The
cuts are chosen to belong to a circle y = const; z-coordinates of their endpoints are
B and 7,. It is shown in [14], that under special choice of numbers a, 8, and 7,
the flow has exactly two nontrivial invariant ergodic normalized measures. Roughly
speaking, under this special choice of parameters, some trajectories would live mostly
on the upper leaf, and the other — mostly on the lower one.

More specifically the flow is described in [14] as a special flow over an automorphism
Ty, of two disjoint circles. The automorphism is defined as follows. Consider two
disjoint circles S! x {0,1} of length 1. Let ~(z) be the following function on S' with
values in the group {1,0,} of permutations of two elements:

oo :cé[ﬁl,%]
h(rﬂ)-{ 1z eS8\ [Bi,m)

Then
Tpol,i) = (z+ o, h(z) i), where (z,7) € S' x {0,1}
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Figure 6: Basis of cycles on the surface of genus two, embedded into Tor®.

It is shown in [14], that under appropriate choice of e, £, v, the automorphism T,f’a
1s topologically transitive and has two ergodic components.

Let us construct a realization of the described flow by a Hamiltonian flow, generated
by a closed 1-form w on our surface M? of genus two. Our form w would have the
following integrals over the cycles ay, by, as, b2 (see figures 5 and 6)

L, w=—1 fblw=i Jpyw=1 fbwzé

Consider now an auxiliary closed 1-form w; of rank 1 on M2, having the following
integrals over basic cycles:

/w1=/w1='0 /wlzjwlzl
a4 a; by ba

We can obtain the form w; as a restriction wy = 7*(dz2) of the form dz, under em-
bedding i : M? < Tor® illustrated at figure 6, where by z;, 73, T3 we denote natural
coordinates on Tor. The immersion i maps cycles ¢, and a, to the cycle e, in Tor®;
cycles b, and b, to the cycle e; in Tor®.

Let us approximate now the irrational number é by a rational one i = E—i- €. Then

a l-form w; = w — ew; would have rational integrals over cycles on M«f. Consider a
mapping f,, : MZ = S! as follows. Fix a point zo € M2, and for any z, € M? let
T~ ;fo' wg (mod %) Consider now an embedding MZ — Tor* obtained as a product
of mappings ¢ and f,,, i.e., i X f,, : M2 < Tor® x Tor' = Tor*. Consider a connected
component of a surface M? C R* induced in the universal covering RY — Tor'. We
obtained a Z3-periodic surface in R* invariant under translations over vectors €, €z,
and &. By construction our initial form w on M2 < Tor' is a restriction of a linear
1-form dz4 + edz, (see analogous construction in [2]). Hence level curves of w lifted to
il;ﬁf are represented by intersections of 1\/[22 with hyperplanes z4 + €x2 = const.

Let us describe the images of the cycles a;,by,az,by in Tor* under the embedding

17



1 X fup + M2 = Tor".

1iay e Jun 1 a1 — —qey
i:blHEQ fw;ibl?—}p€4
1:ag e fun a2 = qey
1: by e Sun 2 b2 = pey

Intersection of a 2-plane, spanned by Ima, = €, — ¢é; and Imb; = & + ¢gé4 with a
hyperplane z, + ez = const is a line having direction

pPHe.L o -
= €1 + €2 — eey

L

1
Intersection of a 2-plane, spanned by Ima; = € + ¢€4 and Imb; = &, + g€5 with a
hyperplane z, + ez = const is a line having direction

L —pte. -
Vg = e; + e — cey

Roughly speaking, trajectories of one type on M2 would go in R* mostly in direction
close to ¥}, and trajectories of the other type would go mostly in direction close to ¥;
the two directions are obviously different. Note, that now our trajectories can not be
restricted inside any cylinder D? x R — one can find pieces of trajectories of arbitrary
“length”, where trajectory behaves in a “wrong” way, i.e., goes along the alien direction.

Remark We would like to mention, that example by H.B.IKeynes and D.Newton [7]
of a minimal, non-uniquely ergodic interval exchange transformation is closely related
to Sataev’s construction.

One can consider a transformation T on either of two components of the cut,
induced by a transformation T,}‘a. It is easy to see, that the transformation T is a
square of an interval exchange transformation of three intervals, with permutation
(1,3). Varying length of the cut and angle ¢, we may get specific values Ay, Az, Az of
exchanging intervals as in [7], and hence get an interval exchange transformation with
two nontrivial ergodic measures constructed there.

Remark We have to admit, that the form w considered in the example does not
satisfy our usual assumptions — it is not of a maximal rank.
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