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13.0. Introduction

In this chapter, we consider the Euler dilogarithm Liz(z) in connection with the problem
of calculating volumes of non-euclidean polytopes. In contrast to the euclidean case, where
the volume of an arbitrary simplex S C E™, n > 3, spanned by vectors po,...,pn, is given

by the "elementary” formula

1
VOl,,(S) = ;’fldet(PO, v 1pn)| 3 (13'1)

the corresponding volume problem for non-euclidean n-simplexes is considerably more
difficult, and - in full generality - an unsolved problem.

However, in 1852, Schlafli proved a very beautiful formula for the volume differential dvol,
on the set of spherical n-simplexes S (cf. [26], p.227 fF):

dvol,(S) = - i T Z volp—2(S; N Sk)dajr , volg:=1 (13.2)
1<5<k<n

where «j) is the dihedral angle formed by the facets S5;,Si of §. This formula, the

three-dimensional hyperbolic version of which was already known to Lobachevsky, was
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13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

very elegantly reproved and extended to the hyperbolic case by H. Kneser (see [16] and
[4, §5.1]).

However, the remaining single integration cannot be carried out even in the simplest case
of a three-dimensional simplex. Consequently, one has to look for polyhedral objects whose
geometry allows one to simplify the last but most difficult step.

We consider the class of d-truncated orthoschemes R4, 0 < d < 2, which are convex

polytopes bounded by n + d 4+ 1 hyperplanes Hy,...,Hp4q4 such that
HiLH; for 2<|i—j|<n

(for d = 2, indices are taken modulo n + 3). For d = 0, these polytopes are the ordinary
orthoschemes R, first introduced by Schliafli. They are determined (up to isometry) by
their n non-right dihedral angles.

For spherical orthoschemes, Schlafli derived a variety of results concerning his volume
function f,. Independently of him, in 1836, Lobachevsky expressed the volume of a three-
dimensional hyperbolic orthoscheme R = R(aj,a2,a3) in the form (see [4, (18), p.250])

vola(R) = 2 {M(cs +6) = Ji(es = 6) + (5 + 0 — ) + (G — a — )+ s
+ Jl(as +6) = J(as — ) + 2JL(5 — O)} '

where J(w) 1= — / log |2sint|dt denotes the Lobachevsky function, related to the
0

dilogarithm by
J(w) = -21-Im(Li2(62'.“")) ,

\/ 2 : .2 . 2

cos* a2 —sin“aysin“as 0w

and where 0 < @ := arctan < =
COS (r] COS a3 2

About 1935, Coxeter [8] reformulated and combined the results of Lobachevsky and Schlafli

by introducing the function

Ndr r
S(ar,az,a3) := Z ( 1'2) (cos 2ro — cos 2rag + cos 2raz — 1) —al+al-al | (13.4)

r=1

where

sinaj sinay — D

X =

with D = v/cos? a1 cos? az — cos? as

sin ovy sinag + D

He showed that )

7r ™ ™
S(E —an,az, 5 - az) = ?fa(m,az,aa) ,

2



13.0. Introduction

and, for hyperbolic orthoschemes R = R(ay,a2,a3),

2

45(% ~ a1, a2, = — as) = vol3(R)

2

In 1962, Bhm [4, §5] analyzed Coxeter’s method and generalized it to spaces of non-zero
constant curvature of arbitrary dimension without, however, solving the higher dimensional
volume problem. .

We shall see that the Bohm-Coxeter method is even applicable to d-truncated orthoschemes
in H? and that the volume formula (13.3) remains valid (up to a minor modification in

one case).

This chapter is organized as follows:

In paragraph 13.1., we collect some basic material about real hyperbolic space. Then, we
introduce the notion of schemes due to Schléfli and Vinberg [28, 29] to describe polytopes
with many right dihedral angles and, in particular, orthoschemes of degree (of truncation)
d. In 13.2., we discuss the volume problem for d-truncated orthoschemes in H? (cf.
[14]). For this, a ”schematic” version of Schlifli’s differential formula is presented for the
polytopes under consideration. By Schlafli’s differential formula, one can see that there is a
fundamental difference in the volume problems of even and odd dimensions; the Reduction
formula in 13.2.2. shows that the first problem can be reduced to the second one (cf. [15])!
Next, we generalize the integration method of B6hm and Coxeter to derive explicit volume
formulae for d-truncated orthoschemes that are analogous to (13.3) (Theorem 13.5 and
Theorem 13.6). In section 13.3., we discuss some applications; in particular, the volumes
of all Coxeter orthoschemes of degree d, forming fundamental polyhedra for hyperbolic
Coxeter groups, are determined. We append the corresponding list for the ten ordinary
Coxeter orthoschemes. By means of dissection into truncated orthoschemes, we calculate
the volumes of the totally asymptotic regular simplexes in H® for n = 2,3,4,6, as well
as the volumes of the four totally asymptotic regular polyhedra, the tetrahedron S7g,(%),
the hexahedron HY (§), the octahedron 0P, (T) and the dodecahedron D (§). Also by

reg reg reg

dissection, we derive some interesting functional equations for the Lobachevsky function
JI(w).

In 13.4., a few further aspects are considered. We survey results concerning small elements
in the volume spectrum of hyperbolic 3-space forms. By a result of Borel, volumes of arith-
metic 3-folds are computable in terms of Dedekind zeta functions, which we demonstrate
with two examples. Finally, in 13.4.2., we give a very lay introduction to the fascinating
circle of ideas around Hilbert’s Third Problem concerning scissors congruence. Following

the paper [9] of Dupont and Sah, we summarize definitions and properties of the different

3



13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

scissors congruence groups in hyperbolic space and describe how these groups admit a
more general homological treatment. By the works of Bloch, Wigner and Dupont, Sah,
we see at the end how geometrical notions such as volume and Dehn'’s invariant can be

unified on the level of scissors congruence.

13.1. A particular class of hyperbolic polytopes

13.1.1. Hyperbolic space

Let X™ denote either the n-dimensional euclidean space E™, the n-sphere S™ or the n-
dimensional hyperbolic space H". Let S™ be embedded in E**!, and use for H™ the model
in the Lorentz space E™! of signature (n, 1), i.e.: If E™? denotes the (n + 1)-dimensional
real vector space R, together with the bilinear form

(z,y) ;== —Zoyo + 11+ -+ Zuyn , VI,y€ R
of signature (n,1), then H" can be interpreted as
H" = {a € B™ | (a,a) = =1, > 0 ).

Or, in the projective model, H" is the interior IQn 1 of real projective space P" with

respect to the quadric
Qni:={[z)eP"|(z,z)=0}.

The closure H™ of H" in P™ represents the natural compactification of H™. Points of the
boundary 0H™ = H® — H™ are called points at infinity of H™. Points in P" lying outside
H" are said to be ideal points of H™ relative to @n,1, and the set of all such points is
denoted by AQn 1.

To every point in P® corresponds a hyperplane in P" and vice versa: Let P = [z] € P™.
A point [y] € P™ is said to be conjugate to [z] relative to @, 1 if (z,y) = 0 holds. The set

of all points which are conjugate to P = [z] form a projective hyperplane
IIp:={[y] € P" | (z,y) =0} ,

the polar hyperplane to P. P is called the pole to Ilp, and is denoted by Pole{Ilp). The

map pole — polar hyperplane is a bijection between the points and hyperplanes of P"
known as the duality principle of the projective space P™ (see [8], §4E). It has the following
properties (see (8], §4):

(a) P€ AQu 1, P € Qy,yor PEIQ,, if and only if Ilp intersects, touches or avoids the
quadric Qr 1.



13.1. A particular class of hyperbolic polytopes

(b) If two lines g, h in P? intersect at § := g Nk, then Ilg is the line determined by
Pole(g), Pole(h).
(c) If a line g in P? contains the point Pole(h) of the line k, then g_LA holds.

13.1.2. The scheme of a polytope
Let P C H™ denote a convex polytope bounded by finitely many hyperplanes H;, 7 € I,
which are characterized by unit normal vectors e; € E™! directed outwards with respect

to P, say, i.e. (for basic notations and properties, see [28, §1]):
H; = ef‘ ={z € H" | (z,ei) =0} with (ei,e;)=1

We always assume that P is acute-angled (i.e., all dihedral angles # 7 are of measure
strictly less than %) and of finite volume.

The Gram matrix G(P) := ((ei,e;))ijer of the vectors e;,7 € I, associated to P is
an indecomposable symmetric matrix of signature (n,1) with entries (ei,e;) = 1 and

(ei,e;) <0 for 7 # j, having the following geometrical meaning (see [28, §1]):
r 0 if H;LH;
cosaj; if H;, H; intersect on P at the angle a;;

—(ei,ej) = <
1 if H;, H; are parallel

( coshl;; if H;, H; admit a common perpendicular of length I;;

On the other hand, if G = (gi;) is an indecomposable symmetric m X m matrix of rank
n+ 1 with g;; = 1 and ¢;; £ 0, for ¢ # 7, then G can be realized as Gram matrix G(P) of
an acute-angled polytope P C X" of finite volume in the following way (see [28, §2}):
1. If G is positive definite (G is elliptic), then m = n + 1, and G is the Gram matrix of
a simplex in S™ uniquely defined up to a motion.
2. If G is positive semidefinite (G is parabolic), then m = n + 2, and G is the Gram
matrix of a simplex in E™*! uniquely defined up to a similarity.
3. If G is of signature (n,1) (G is hyperbolic), then G is the Gram matrix of a convex

polytope with m facets (faces of codimension 1) in H™ uniquely defined up to a motion.

The Gram matrix G(P) reflects combinatorial and metrical properties of an acute-angled
polytope P C H™ (see [28, §3-4]). In particular, every ordinary vertex p of P is character-
ized by an elliptic principal submatrix of G(P) of order n describing the spherical vertex
polytope P, (intersection of P with the surface of a sufficiently small ball around p) of
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13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

dimension n — 1 associated to p. To every vertex ¢ at infinity corresponds a parabolic prin-
cipal submatrix of G(P) of rank n — 1 indicating that the vertex polytope P, is euclidean
of dimension n — 1.

For the geometrical description of polytopes with many right dihedral angles, the language
of schemes is much more convenient (see [29, §3]). A scheme I is a weighted graph (see
[29, §2]) whose nodes n;,n; are joined by an edge with positive weight ¢;; or are not joined .
at all; the last fact will be indicated by c;; = 0. A subscheme of T is a subgraph of &
with each pair of nodes connected by the same weighted edge as in £. The number |Z|
of nodes is called the order of £. To every scheme £ of order m corresponds a symmetric
matrix A(Z) = (a;;) of order m with a;; = 1 on the diagonal and non-positive entries
aij;j = —ci; £ 0,23 7, off it. ¥ is connected if and only if A(T) is indecomposable.
Rank, determinant, permanent and character of definiteness of ¥ are defined to be the
corresponding ones of A(Z). Furthermore,  is said to be either elliptic, or parabolic, or
hyperbolic if either all its components are elliptic, or apart from elliptic components there
is at least one parabolic component, or exactly one component is hyperbolic.

In particular, if 3(1,...,m) denotes a linear scheme with nodes 1,...,m and weights ¢; :=
¢ii+1, 1 <1 <m—1, then the following useful recursion formulae hold for detZ(1,...,m)
and perZ(1,...,m):

LEMMA 13.1. Let m > 3. Then

detZ(1,...,m) = detS(1,...,m — 1) — ¢&,_,det2(1,...,m = 2) , (13.5)
per2(1,...,m) = perZ(1,...,m — 1)+ c%,_,perZ(l,...,m —2) . (13.6)
Proof. Equation (13.5) is well-known (cf. [26, p.258]). To prove (13.6), denote by
C:= A(Z(,...,m)) = (-cij)
the symmetric m X m matrix associated to £(1,...,m) with diagonal elements —c¢;; := 1.
Then, by definition,
perX(1l,...,m) = perC = Z (-1)"c16(1) " Cmo(m)
where ¢ runs through all permutations of {1,...,m}. Since the permanent of every sym-
metric m X m matrix M = (u;;) satisfies (cf. [23, Theorem 1.1(c) and (1.4)])
perM = z prmperM(kjm) = Z pmikperM(mlk) (13.7)

k=1 k=1



13.1. A particular class of hyperbolic polytopes

where M(i|j) is the matrix which is obtained from M by deleting row : and column j, we
obtain
perC = —cp_1perC(m — 1|m) + perC(m|m) . (13.8)

Applying (13.7) to the (m — 1) x (m — 1) matrix C,, := C(m — 1|m) we get
perCp, = —cp1perCp(m —1lm - 1) . (13.9)

Since C(m — 1lm — 1) = A(3(1,...,m — 2)), (13.8) together with (13.9) imply (13.6).
Q.E.D.

The scheme 3(P) of an acute-angled polytope P C X™ is defined to be the scheme whose
matrix A(X) coincides with the Gram matrix G(P), i.e. whose nodes i correspond to the
bounding hyperplanes H; = e;- (or equivalently to their normal vectors e;) of P and
whose weights equal —{e;,e;}xn, 1,5 € I.

Two acute-angled polytopes Py, P, C H" are said to be of the same schematic type if
their schemes (P;),X(P2) are of the same graphical type (i.e., their underlying graphs
as one-dimensional simplicial complexes are homeomorphic) and if corresponding weights
cij of Z(P1) and cZ; of T(P,) satisfy:

> >
el = 1 < = 1
< <

It follows that polytopes of the same schematic type are of the same combinatorial type
(see [3]).

For the schemes of Coxeter polytopes Pc C X" (all dihedral angles are of the form
2sPEN,p>2 ) the usual conventions are adopted and - for convenience - used sometimes
even in the non-Coxeter case: If two nodes are related by the weight cos% , then they are
joined by a (p — 2)-fold line for p = 3,4 and by a single line marked p (or a = 7) for
p > 5. If two bounding hyperplanes of Po C X", X™ # S", are parallel, then the
corresponding nodes are joined by a line marked oo; if they are divergent (occurring at
most in the hyperbolic case), then their nodes are joined by a dotted line and the weight
> 1 is dropped.

13.1.3. Orthoschemes of degree d
The simplest examples of schemes are the linear and cyclic ones. One class of acute-angled
hyperbolic polytopes described by such schemes is the following (see [13] and [14]):

7



13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

Definition. An n-dimensional orthoscheme of degree d, 0 < d < 2, is a convex polytope
in H*, n > 2, denoted by Ry such that its scheme £q := £(Ry) is connected and linear
of length n + d+ 1 for d = 0,1 or cyclic of order n + 3 for d = 2.

Hence, orthoschemes of degree d in H™ are bounded by n+d+1 hyperplanes Hg, ..., Hpta
such that

HiLH; for j#i—1,4,i+1, (13.10)

where, for d = 2, indices are taken modulo n + 3.
Orthoschemes of degree d allow the following geometrical description:

For d = 0, they constitute the class of (ordinary) orthoschemes introduced by Schléfli (see
[26, p.243]): An orthoscheme in X™ (n > 1) is a simplex bounded by n + 1 hyperplanes
Hy,...,H, such that H; LH; for 2 < |i — j| € n. Or, equivalently, it has vertices
P,,..., P, numbered in such a way that span(P,,...,P;) Lspan(P;,...,P,;) for 1 <:<
n —1. The initial and final vertices Py, P, of the orthogonal edge-path PyPy,...,Pa—1 P,
are called principal vertices, since they are distinguished in several ways. E.g. in H", at

most the principal vertices may be points at infinity (see [4, Satz 15, p.188]).

In the projective model for H” (see 13.1.1.), orthoschemes of degree d > 0 can be derived
from ordinary ones by allowing d of its principal vertices (and with them possibly further
vertices) to lie outside the quadric @, 1, and then by cutting off the ideal vertices by means
of the polar hyperplanes Hpyq := [Ip, resp. Hyy2 := Ilp, (inasmuch as they lie outside
@n,1). Hence, orthoschemes of degree d are d-times (polarly) truncated orthoschemes
bounded by hyperplanes Hy, ..., Hn4q with the property (13.10) (cf. 13.1.1.).

Remark. By adjoining to the bounding hyperplanes Hy,..., H, the polar hyperplanes
associated to the principal vertices of an orthoscheme, viewed as an object in projective
space, the configuration of the corresponding n + 3 outer normal vectors in E™! form a

Napier cycle in E™!. These were introduced and in the crystallographic case classified by
Im Hof [13].

By construction, orthoschemes R4 of degree d are of finite volume (cf. also [28, Theorem
4.1]).Furthermore, they have at most n 4+ 3 non-right dihedral angles (or essential angles)
ay,...,&m, m < n+3, and all of them are acute, ie.,, a; < § for i =1,...,m (see [4,
§4.8, Hilfssatz 2] and the definition).

Let d > 0, and denote by ¥4 the scheme of R4. Then, removing d non-connected nodes in

8



13.1. A particular class of hyperbolic polytopes

L4 leaves two disjoint components o1,02 of L4, which satisfy (see [13, Proposition 1.4])

elliptic, hyperbolic,
a1 parabolic, = g9 parabolic, (13.11)
hyperbolic, elliptic.

Therefore, if n > 4, £4 always contains a connected hyperbolic subscheme of order n + 1
all of whose weights ¢;,...,¢, are of the form 0 < ¢; = cosa; < 1,1 <1 < n (see [13,
Proposition 1.8]). Such schemes are said to be of type A.

In dimension three, however, the situation is principally different. First, if Ry C H? is
compact, then, by the Euler equation for compact polyhedra, the number m of essential
angles equals three. Moreover, all but one of the different schemes £, are of type A;
according to the degree d, the schemes of type A are of the form and likewise characterized
by angle inequalities as follows (see (13.11) and 13.1.2.):

Lo oM 5 &2 , & | yortae>F, a0 +a3 > 7, (13.12)
PN 0 5 92 , M ..., yartar < e 4a3 > %, (13.13)
Om —m g
/
/ \
/ \
Ty d % yortar < §,ar+a3< g (13.14)
“\ %&
o
Q.

9 % ,0<O.’1,(12,C!3<%. (1315)
N/

The corresponding polyhedron is a Lambert cube, i.e., a cube bounded by pairs of opposite
Lambert quadrangles with equal angle a;,1 < j <3, (see Figure 13.1).
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)
&y

Figure 13.1

13.2. The volume of a d-truncated orthoscheme

13.2.1. The Schlafli differential formula

For n > 1, let £ denote the elliptic linear scheme of order n + 1 > 2 associated to a
spherical n-orthoscheme R. The normalized volume function

n--1 n
Fa(E) = fn 1= cavolna(R) with cp = — 2 r("’“

Vol (S7) _ R > ) , for=1, (13.16)

is called the function of Schlafli (see [26, Nr.23, p.238]). The function f, is proportional
to vol,(R) such that f, = 1 for the orthoscheme with all dihedral angles equal to Z.
Moreover, the function of Schlafli satisfies the following factorization property (see [26,
Nr.23, p.238}):

LEMMA 13.2. Let ¥ denote an elliptic linear scheme of order n + 1 > 2 consisting of

disjoint components oy,...,0, of orders ny +1,...,n,+1 > 1. Then

fa(Z) = fay(01) - fa,(0r) - (13.17)

For spherical Coxeter orthoschemes, Schlifli determined explicitly all possible values of f,
(cf. [26, Nr.30, p.268 ff]); in particular, he found

2n+1

fa(Any1) = mEo

(13.18)

where An41 denotes the scheme

10



13.2. The volume of a d-truncated orthoscheme

of order n + 1. Interpreting hyperbolic n-space H" as upper half of the pseudosphere
of radius ¢ = /=1 in E"*! the notion of Schléfli’s function can be carried over to
orthoschemes Ry C H™ of degree d, 0 < d £ 2, with graph 3g:

The function
Fo(Z4) :=1"cyvol,(Ry) with 2 =-1 , Fp:=1 , (13.19)

where the constant ¢, is defined as in (13.16), is called the Schlafli function of Ry. Thus,

for even dimensions,

n

Fon (X)) =(-1)" (%)" . H (2p—1)-volgu(Rg) , n21 |,

r=1
is a real-valued function.

Denote by R, the set of compact d-truncated orthoschemes in H" of schematic type ¢ (cf.
13.1.2.). Since every element of R is acute-angled (see 13.1.2.), its congruence class is
uniquely determined by its dihedral angles (see [3, §3, Uniqueness Theorem]). Therefore,
Schlafli’s volume function F, = F,|R. restricted on R, may be expressed as a function
of the dihedral angles. The differential of F,, depending on the dihedral angles can be
represented by Schlafli’s formula as follows (see [15, 2.]):

THEOREM 13.3. (Schlafli’s differential formula). Let F,,, n > 2, be the Schlafli function
on the set R of compact d-truncated orthoschemes in H™ of schematic type ¢ with essential
angles o, ...,am() and with scheme Z;. Denote by F,_o(k) the Schlafli function of the

apex of codimension 2 associated to the essential angle ay of measure fi(k):= %ak, 1<

k < m(s). Then
m(<)
AFa(S) = Y Faoa(k)dfi(k) . (13.20)

k=1

Schlafli discovered this formula for spherical simplexes, and separately for the more ba-
sic orthoschemes. Much later, H. Kneser found a different, very elegant proof for both,
spherical and hyperbolic simplexes (see [16]). As Schlifli already remarked (cf. [26,
Nr. 25, p.246 ff, Nr.32, p.272 ff], and [28, Corollary, p.48]), the differential formula for or-
thoschemes can be generalized to arbitrary acute-angled polytopes by means of subdivision
into orthoschemes (cf. [15, 2.2]).

11



13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

13.2.2. The reduction formula

As can be read off from Schlafli’s differential formula, there is a fundamental difference in
calculating volumes of polytopes of even or odd dimensions. In fact, as the two-dimensional
case already indicates, the volume of an even-dimensional simplex can be expressed in terms
of the volumes of certain lower dimensional spherical ones. This reduction principle was
proved by Schlafli in the spherical case and extended by Hopf to the hyperbolic case by
means of analytic continuation (cf. [12, p.134ff]). In principle, for every class of even-
dimensional polytopes, an appropriate formula can be derived as soon as their schematic
type is known, namely by an inductive argument using Schlafli’s differential formula. In
terms of Schlédfli’s function, the reduction formula for orthoschemes Ry C W, n>1, of
degree d, 0 < d < 2, reads as follows (see [15, 3.]):

THEOREM 13.3. (Reduction formula). Denote by Ry C H>» , 0 < d <2,n> 1, a
2n-dimensional orthoscheme of degree d with scheme £4. Then

n _ k .
Fpu(Za) = Z (L__}_l‘)f (2;) Z fan—2r+)(o) Z faa=1 (13.21)

k=0

where o runs through all elliptic subschemes of order 2(n—k) of £4 all of whose components

are of even order.

Thus, in order to calculate volumes of non-euclidean polytopes, it is sufficient to consider

the volume problem for polytopes of odd dimensions.

13.2.3. The principal parameter and the fundamental relations
Let R4 C H?,0<d <2, denotea compact d-truncated orthoscheme with essential angles
oy, ag, 3 and scheme X4. For the integration of its Schlafli differential, the principal

parameter € is of fundamental importance. To introduce this notion, we begin with the

following

Deflnition. A connected subscheme ¢ of order 4 of T, is called mazimal if its number of

weights having the form cos « is maximal.
Hence, if ¥4 is of type A, then

« a4 (44
0102030

is the unique maximal subscheme of 4, whereas in case B, exactly the schemes

s o
LINPA J

o -0 o , 1<1<y3<3 ,

12



13.2. The volume of a d-truncated orthoscheme

are maximal. Furthermore, since every connected subscheme of order 4 of ¥4 is hyperbolic,
a maximal subscheme of Z; has negative determinant (see [13, Proposition 1.2]).

Definition. The principal parameter 6 of Ry is given by

pero + deto — 2)%

< M—
0 < 6 :=arccos (pera’ —deto —2

5% - (13.22)

where ¢ i1s a maximal subscheme of 4.

In the rion-degenera.te case, deto < 0 and pero + deto > 2. Consequently, the quotient in
(13.22) is positive and less than 1. Thus, if £4 is of type A, 8 is well-defined and takes the

form

COS2 a1 COS2 a3

cos? § = , or
2 2 2
cos® ay — sIn” ap + cos‘ as

cos? 8(cos? 8 — sin? ay) = (cos? § ~ cos® a; )(cos® § — cos® a3) . (13.23)

In case B, it remains to check that 8 is independent of the chosen maximal subscheme of
pIFE

LEMMA 13.3. Let & denote the scheme

7/ = A
V / \V
/ \
-]
N
[ 2 -]
2

of type B describing a Lambert cube in H®. For every maximal subscheme o}, 1< k < 3,

of ¥ with weights cosag—1,cosh Vi, cos a4y (indices are taken modulo 3), set

.+ detog — 2\
&1 := arccos pergy + detok , 0<€6: < z
peroy — detoy — 2 2
Then,9k=91for1§k<l§3.
Proof: We prove that cos? 8, = cos® 83, i.e.:
cos? ay cos? ag cos? a3 cos? a3
= or
cos? or; +sinh® Va + cos?ag  cos?asp +sinh® Vi +cos?ay
2 2 c 12y 2 2 s 12717
cos® a1(cos” az + sinh” V}) = cos” az(cos® az + sinh® V3) . (13.24)

13



13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

Since ¥ is of signature (3,1), the extensions

_ a3 Vi a2 Vs _ a1 Vs s W
o1 . fo) Oeorenne [o .. S PR o, O3 : o) Orsorenn Q——— QOrrreres o

of o1 and o3 in ¥ have vanishing determinant. Hence, by Lemma 13.1, (13.5), we obtain

det(77) = sinh® Va(cosh® Vi — sin? a3) —sin® ez cos’ o =0
det(33) = sinh? V;(cosh® V3 — sin® @) — sin® @ cos* ap =0,

and therefore

cos? ay cos? ay + sinh? V; sinh® V3 = cos

.42 .
cos? ag cos® a3 + sinh? V; sinh® V3 = cos

2 @y — cos? ay sinh? i,

2 &g — cos® ag sinh® V4
Subtraction yields

< 1.2 2 . 12
cos? ag(cos2 a; — cos? as) = cos? a3 sinh® V3 — cos® g sinh® 4 ,

which proves (13.24). By the same procedure, one derives the remaining equalities.

Q.E.D.
This lemma implies that the principal parameter § of a Lambert cube satisfies
2 cos® ag_1 cos? apq1
cos“ 8 = — , and
cos? ag_y + sinh® Vi + cos? avg41
cos 6%(cos? 6 + sinh? Vi) = (cos2 6 — cos® ap_g )((:os2 8 — cos? ak+1) (13.25)

where indices are taken modulo 3.

In the asymptotic cases, which form the transitions from one degree to another, the prin-
cipal parameter 8 is realizable as a dihedral angle in Rg C H3. E.g., if Ry is an ordinary

orthoscheme, then

Ry simply asymptotic <= 6= % —ay (13.26)
Ry, doubly asymptotic <= f=a; = % —ar=a3 . (13.27)

Let Ry denote a compact ordinary orthoscheme. Then, the following relationship holds
between the measures of the essential angles a; and the corresponding apices Vi, k =
1,2,3, (see [19] or [4, (11), p.229]):

1
2

cos(8 —ar)

_— .t o , =
tanh Vi = tan@-tanay or Vj cos(8 + @)

log , k=123 , (13.28)
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13.2. The volume of a d-truncated orthoscheme

where

sz, k=2 ’

o = (13.29)

7 —og, k=13
Now, similar relations hold for orthoschemes Ry of degree d > 0. In fact, in the projective
model for H?, a maximal subscheme of £4 describes an ordinary orthoscheme in P* with
d ideal principal vertices lying outside the quadric (@31. Since hyperbolic geometry admits
a complex continuation to the space AQs; of ideal points of H? such that the distance
between pole and polar line equals i% (cf. [24, Sect. 5)), the fundamental relations for

d-truncated orthoschemes can be summarized as follows (see [14, 3.3]):

PROPOSITION 13.1. Let R4 denote a compact orthoscheme of degree d,0 < d £ 2,
with essential angles ax , 0 < ax < 7, corresponding apices of lengths Vi, k =1,2,3, and
principal parameter 6. Then,

1 cos(6 — @) o .
tanh V; = 5 log o8 1 70)| k=1,2,3 , with (13.30)
az, if R4 of type A and k = 2,
T = (13.31)
7 — ok, else.

Proposition 13.1 induces the following important identity

OV sin ok COS Ok
= for k=1,2,3 , 13.32
08 cos? 8 — sin® @ or (13.32)

where @y satisfies (13.31).

The principal parameter characterizes also degenerations of R4 in the following way:

PROPOSITION 13.2. Let Rg, 0 < d < 2, denote a d-truncated orthoscheme with graph
¥4, essential angles 0 < a1, a2, 3 < % and principal parameter §. If § =0 or § = %, then
vols(Rg) = 0.

Proof: (i) Let § = 0. Then, by (13.22), deto = 0 for every maximal subscheme o of Zg.
Let ¥4 be of type A. First, if 0 < a1,02,a3 < ¥, Proposition 13.1 implies that the
corresponding apices are of lengths zero. Hence, Ry is point-shaped. Second, the condition
# = 0 implies that

COS (v = SIn o Sin o3

Thus,

3
=

a=0 & m=m=g or m=5 & m (and/or a3) =0

15



13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

In both cases, at least one vertex triangle of R4 degenerates, and therefore vols(Rq) = 0.
If £4 is of type B, 8 = 0 reads as

coshVi =sinag-1sinag+; =1 for kmod3

where Vi denotes the length of the apex associated to a;. Hence, oy = § and Vi = 0 for
k=1,2,3, and Ry is point-shaped.

(ii) Let § = §. By (13.22), pero + deto — 2 = 0 implies that at least one essential angle
equals Z. Let £g be of type A. If a; and/or az = £ then volz(Rg) = 0, since at least one
facet degenerates in dimension. Hence, it remains to consider the case a; = 7. If d > 0,
then at least one vertex triangle degenerates, and therefore volsg(R4) = 0. If d = 0, and if
0 < a1,a3 < I, then Proposition 13.1 yields V; = V3 = 0 and therefore vol3(Rg) = 0. In
the other case, where e.g. a; = 0 (or ), one vertex triangle (or one facet) degenerates.
If £4 is of type B, at least two opposite Lambert quadrangles of the cube R4 degenerate
to a point, from which vol3(Rg) = 0 follows.

Q.E.D.
13.2.4. The Euler dilogarithm and Lobachevsky’s function
As will be seen later, the volume of a hyperbolic polyhedron is expressible in terms of the
Euler dilogarithm and the Lobachevsky function related to it.

Let z € C, |z] £ 1. Denote by

Liy(z) := Z:f.z. - %/108(1_—2)(12

z
0

the Euler dilogarithm function. Splitting Liz(z) up into real and imaginary parts, one
deduces for

Liz(r, 4) := Re(Liz(re'?)) = Y ’“’%52(345) _ _/ log(1 —2ttcos¢+t2) i

a=1 0

the following properties (see [18, §5]):

Lis(r,0) = Lig(r) , Lis(r,7) = Liz(=r) ; (13.33)
Lig(r 7+ ¢) = Lig(—r ,¢) , Lig(r onm £ ¢) = Liz(r, 8 (13.34)
ng( , @)+ Lia(r, ¢) = ——log r+ = (7r— $)? — F ; (13.35)
Liz(r, —) —le(——r ) — —ng(—'r) : (13.36)

16



13.2. The volume of a d-truncated orthoscheme

For z = e'®,0< ¢ < 2m,

Lig(e®) = Z cos(r @) + iz sin(r @)

r=1 rt r=1 re
: gem-9) ] :
=% ~ “T —i / log |2sin 7 | dt

0

The Lobachevsky function is defined by

z

J(z) = —] log 2sint dt
0

Thus, for —% < Re(z) < ¥, one obtains

1 ; 72
J(z) = E{Lig(emz) + z(m —2)* - ?} .- (13.37)

Furthermore, if 0 < ¥ — f < a,7 < %, then (13.37) together with (13.33)-(13.35) yield
the following relation, which will be of use later (cf. 13.0., (13.4)):

S(-g_ —a, ﬁa % - 7) =Li2(7', 20[) - LiZ(T$ 2ﬂ) + Li2(T127) - LiZ(_T)_
~GretH -G
=Re(%{JI(a +i7) — J(a —471) — JI(% —-B+ir)+ (13.38)

+ (5 = B—in) + Ty +i7) = Wy = im) + 2005 = i)})

where
/sin® asin® ¥ — cos? 1—p 1
= COS (¥ COS Y >0, r= 1+p ° T= —Elogr . (13.39)
Let w € R. Then
1 . o2 1 o= sin(2rw)
JI(w) = ER,G(le(e w)) = E f; r—2
F-w (13.40)

=—/log|2sintldt=(%—w)log2+ / log | cost|dt
0 0

17



13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

which is closely related to the Clausen function (see [18, §4])

2%}

> sin(rw) .t
Cly(w) := Z —z =" log | sin §|a’t
r=1 0

according to
J(w) = %012(2“,) , WeR ,

and which satisfies the following

Properties. (see [18, §4])
(a) JI{w) is well-defined and continuous for all w € R. JI(w) is odd and w—periodic. It

assumes its maximum value at wy =5 + kv, k€2 )
(b) JI(w) satisfies the following distribution law:

Mrw)=n Y Jw+4) , VmneN,YweR

kmodn

In particular for n = 2, this relation yields the duplication law

J(2w) = 2/(w) + 2J(§ +w) , YweR

(c) For actual computation, the following representation of JI(w) is very useful (cf. [31,
Appendix 1, p.294]):

4

. k
Ji(nt) = nt{9 ~ log [2sinmt] = 3 (ext™*! + klog E i) +e}
k=1

with
c; = 0.14754863716 , ¢ = 0.00142852188 ,

cs = 0.00002919407 , ¢4 = 0.00000076258 |,

and |e| < 1.2 x 107" for |t < 3.

13.2.5. The volume formula for R4

Let Ry denote a compact orthoscheme of degree d, 0 < d < 2, with scheme T4, with
essential angles ar and corresponding apices of length Vi, & = 1,2,3. Then, by Schlafli’s
volume differential formula (see Theorem 13.3, 13.2.1.),

3
dvolz(Rq) = —% > Vidon (13.41)
k=1

18



13.2. The volume of a d-truncated orthoscheme

where, for k = 1,2, 3, the coeficients V) are given by (see Proposition 13.1, 13.2.3.)

1
Vk=§lo

cos(f — @)
& cos(f + @)

g, if Ry of type A and k£ =2,
with @y = (13.42)

% —ar, else.

Here, 6 denotes the principal parameter of R4 given by

pero -l—dei:cr——2>Jj <
—_ 2 )

< 8=
0= arccos (pera — deto — 2

where o is a maximal subscheme of ¥4; 8 depends on «y, ay, 3. Thus, V) are very compli-
cated expressions in the essential angles of Ry. However, by regarding oy, aq, 03,8 =: a4
as four parameters independent from each other, the differential (13.41) suitably extended
by day can be integrated and thereafter identified with the volume of R4. In this context,

set

~ 1 cos(ay — @) -
Vila, oy ) = glog | Tom =S| k=123 (13.43)
Then,
Vk|a4=e(a1,a,,aa) = Vi(ay,az,a3) , k=1,2,3

Consider the region
4 T T _
G:= {(a1,...,a4) ER" | OSal,..-,a,;SE;oq#E—ak,k=1,2,3] ,

and on G the following differential form

4
Q= Z Wyidar , with (13.44)
k=1
1 ~~
Wk(Ck’l,...,(¥4) = *—EVk(al,...,ad) y k= 1,2,3 , (1345)
and where W, € C1(G) is determined by
i W )
(I) W, satisfies the integrability conditions al = b for 1<i<k<4.
Oay o
(II) Wy =0 for a4 =08(c),aq,03).
By definition, Wi(a1,...,a4) depends only on ay and oy, i.e.:
oWy _ Wi _ for 1<i<k<3.
da; Oy,
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13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

On the other hand, 13.2.3., (13.32), yields

oWy 1 sinagcosog

= —= for £=1,2,3,
Oy 2 cos? ay — sin® @y ’

where @ is determined by (13.42). Hence, according to the type of T4, W is given as
follows (see [4, (11), p.237] for the case d = 0):

2 2

Type A: W, = 1 log (cos? ay — sin’ ag) cos? ay

4

2
SINn 4 COS4 [a 7

1
T B: Wy=-=1 .
ype t=78 (cos? a1 — cos? ay )(cos? ay — cos? aq)(cos? ag — cos? ay)

It is obvious that Wy € C'(G), and that it satisfies (I). By means of 13.2.3., (13.23)
and (13.25), one easily derives (II). Therefore, the differential form 2 restricted to the
hypersurface

(4 7] =9(a],a2,a3) in R4

is identical with Schlafli’s volume differential (13.41). Since Q satisfies (I), it is exact
and path-independently integrable in every connected component of G. To perform the

integration of §2, we distinguish between R; with scheme £, of type A or B.

A. Let Ry denote an ordinary orthoscheme with essential angles 0 < a1, 02,03 < T by
13.1.3., (13.12), these satisfy

i T
a1+a'2>§ s 0!2'{'03)5 y

and thus, by 13.2.3., (13.22),
s s
0§9<a1,§—a2,a3 < 5
Consider the convex region

is T iy
Gy :={(CI!1,...,0:4)€G| CY}-I'-Q’Q,az-I—CY:;>§,OSQ4<CY],§—C¥2,CE:3<§},

and on Gy, the differential form

4
Q=) Widm
k=1
where, for k = 1,2,3,
1 cos(ay — @k) 1 (cos? ay — sin? az) cos? ay
Wi =—=1 _— Wy ==1 :
¢ 18 cos(as +@x)| ’ 1518 (cos? aq — cos? a1 )(cos? ey — cos? a3)

20



13.2. The volume of a d-truncated orthoscheme

Take an arbitrary point P := (ay,...,a4) € Go and integrate Q along the line from
(a1, 2, a3,0) to P. Since Wi(ay,@2,a3,0) = 0 for k = 1,2, 3, the integral

V.= /W4(a1,a2,a3,t)dt
0 (13.47)

—1)* m ™ T
( i) {ﬂ(§+a4 +Ek)+ﬂ(§+a4—ak)} + %JI("z'—OM)

3
k=1
is an antiderivative of  in Gq. Restricted to ay = 8(a,y, a9, 3), v represents the volume

voly(Rp) of Ry, since:

(i) For a4 = 8(ay,asz,a3), Leibniz’ Rule yields together with (I),(II) and Proposition
13.2, 13.2.3.;

. )
v 3]
_aak = _6ak /W4(alaa2sa3ﬁt) dt
0
o8 / )5%
= Wy(o1,a9,03,0) - — + —4(a1,a2,a3,t)dt

Jday day,
0
= Wi(ay,a2,03,0) — Wiy, 0y, a3,0) = Wi(a,, az, a3, )

1 dvols(Ry)

= —"é' Vk(al,ag,a3)= aak ’ k=1,2,3

(ii) For a4 =6 =0, both ¥ and vols(R,) vanish according to (13.47) and Proposition
13.2, 13.2.3..

Furthermore, the antiderivative V of Q certainly extends to the cube
4 m
{(C!’],...,CM)ER l 05051,-'-;054S§}

in R*, still satisfying

%
aa_ = Wk(alaa%aﬁlag) for Oy =9(a1,a2,a3), 1<k< 3a
g
?(al,ag,ag,O) = 0

Hence, the restriction of ﬁ'(a],ag, az, a4 = 0oy, a2,a3)) to the domain of definition of
Ry, d > 0, is identical to vol3(Ry) (see 13.1.3., (13.13),(13.14)). Thus, we proved the

following
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13. THE DILOGARITHM AND VOLUMES OF HYPERBOLIC POLYTOPES

THEOREM 13.5. Let R4, 0 < d < 2, denote a d-truncated orthoscheme with scheme
L4 of type A and with essential angles 0 < a;, 3,3 < §. If 0 denotes the maximal
subscheme of 4, then
1
volg(Ry4) = Z{JI(CH +8) — JI(ag — 0) + JI( 5 +az—0)+ JI(— —ay — 0)+

+ J(as + 6) — J(as — 6) + 2JI(§ —6)} , where (13.48)

4 . .
0<8 perc + deto — 2\ 2 ; cos? ag — sin? o sin® a3 E <
= arccos = arctan —
- pero — deto — 2 cos? @y cos? ag -2

B. Let R be a Lambert cube with essential angles 0 < ax < § and corresponding apices
of length Vi, k =1,2,3. By 13.2.3., (13.25), the principal parameter 8 of R satisfies

2 cosh? Vi — sin® a1 sin? k41
tan“ 8 =

, kmod3

cos? ap_1 cos? gy

which implies that 8 > ¢, a2, @3 . Hence, consider the convex region

H:={(a1,...,00) ER* | 0<ar <ay < =

T
k=
23 1:2;3})

choose an arbitrary point P = (a1, a2, 03,a4) € H and integrate the differential form 2

from (a1,az2,a3,%) to P. Since Wi(a1,a2,03,%) =0 for k = 1,2,3, one obtains

= / W4(a1,a2,a3,t) dt

g

1 sin® ¢ cos® t
=7/! dt _
4 / ©8 (cos? a1 — cos? £)(cos? ag — cos? £)(cos? ag — cos? ) (13.49)
¥
=
4 Z { Mok + o) — J(cx — aq)} + JI(— —ay) — —JI(a4)

k=1

Restricting to the hypersurface ay = 6(a1,az2,23) in R*, we can identify ¥ with the
volume volz(R) of the Lambert cube R, since again (cf. A.):

(i) For a4 = (a1, a2,a3):

OV dvols(R)
dar ~ Oax

. k=1,2,3
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13.2. The volume of a d-truncated orthoscheme

(ii) For ey =8 =%, V and vols(?) vanish according to {13.49) and Proposition 13.3,
13.2.3.

Thus, we derived the following

THEOREM 13.6. Let R denote a Lambert cube with essential angles 0 < ay < 7 and
corresponding apices of length Vi, k =1,2,3. Then

3

1 1 1 _ .«
volz(R) = 7 3___1 {J(ak +8) — Tar - 6)} - ZJI(29) + EJI(—2- —8), where  (13.50)
cosh? Vi — sin® ax_; sin? ax 3 T
0 < 8 = arctan -1 +l <— , kmod3
cos? arp—7 €OS% Qg g 2

Remarks.
(a) By means of hyperbolic trigonometry, the quantities cosh? Vi in Theorem 13.6 can be

expressed as functions of the essential angles «;, a9, @3 according to

1 o . .
cosh’V, =1 + 3 (\/AI. + (2B sina)? — Ak) with (13.51)
Ap = cos> Qr_1 + cos’ Qp41 — BE. , Br= COS Pkt COS M+ , kmod3

coS

(b) In the limiting case of an asymptotic orthoscheme R» of degree 2 with scheme

2]
[ e " ]
/ \
/

\

/ \
o/ \
N

-

e—C)
==

the two formulae for volz(Rz) of Theorem 13.5 and Theorem 13.6 coincide. Apart from
this exceptional case, these two formulae are conceptually different and cannot be related
to each other by means of suitable functional equations for JI(w). This can be seen by

evaluating both expressions for the values oy = a; = a3 = £ using (13.51).
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13.3. Applications

13.3.1. Volumes of Coxeter polytopes

By means of Theorems 13.5, 13.6 and the Reduction formula 13.3, the volumes of all
Coxeter orthoschemes of degree d, 0 < d <€ 2, of dimension three and of even dimensions
(existing only up to dimension eight) can be explicitly calculated. In dimension three,
there are infinitely many of such Coxeter polyhedra. For d = 0, however, there are exactly

10 realizations with schemes and volumes according to the following list:

Scheme Volume
6
o o o 0 3J1(3) ~ 0.0423
o o=——o0=—=—0 1JI(%) ~ 0.0763
) 0 S o o ~ (0.0391
o o 6 o o 3JI(%) ~ 0.1692
) ) o 0 ) ~ 0.0359
6
0===0——0—-0 = JI(%) ~ 0.1057
0 o o o %JI(%)'E 0.2290
o > o o 5 o ~ 0.0933
0 5 0 0 6 o ~ (0.1715
6
02 o 0" o 3JI(£) ~ 0.2537

and with volume JI(%§) =~ 0.4560 is the simply truncated Coxeter orthoscheme of maximal
volume. For d = 2, the volume is maximal and equal to 2JI($) =~ 0.9160 for the totally
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asymptotic Lambert cube with scheme
o -}

7 ¥°

o

N/

-]

@

The values for the even-dimensional cases may be found in [15, Appendix]. By dissec-
tion into orthoschemes, R. Meyerhoff determined the volumes of all Coxeter simplexes of
dimension three (see [21, Appendix]).

13.3.2. Volumes of regular hyperbolic simplexes

Every simplex § C X™ with acute dihedral angles can be dissected into orthoschemes in
several ways. The dissection process xp := Xp(S) consists in taking a point p € S and in
drawing successively the perpendiculars to the faces of lower dimensions. If p is an interior
point of S, then § is subdivided into (n + 1)! orthoschemes. If p coincides with a vertex
v € S, then § is dissected into n! orthoschemes.

Denote by Sr., a regular simplex (implying that all facets and vertex simplexes are regu-
lar), which is therefore parametrized by the dihedral angle 2a, say. Then, the dissecting
orthoschemes with respect to x., where c is the center of 5, and with respect to x, are all
congruent, and described by the characteristic scheme

a
Ont1 = 0nt1(@) : o—o o cer ——0—o0

of order n + 1 for x. (cf. [4, Satz 1, p.271]), and by

Vnt1 = Unga(@) @ o o ) o cvs ——0—0

of order n + 1 for x,; this last result follows from the fact that x,(S5) induces the process
xc'(:S(v)) for the regular facet simplex S(v) opposite to v, where ¢’ is the center of S(v).
Then, S(v) and, simultaneously, the vertex simplex S, of v € S are dissected each into
n! congruent orthoschemes. Hence, the (n + 1)! congruent orthoschemes subdividing S.,

have principal vertices whose vertex orthoschemes are described by o, and vy, respectively.

In particular, if §7%,(2«) C H"™, n > 2, denotes a totally asymptotic regular simplex with
scheme Z3° ,, then

Fn(Eﬁ"_H) = (n + 1)' Fn(o'n-{-l) =n! Fn(U,-,+1) . (1352)
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Since the subschemes ¢, , v, are parabolic with deto, = detv, = 0, it follows by Lemma

13.1, (13.5), using (13.18) that
1

n-—1

cos 2o =

(13.53)

Thus, up to motion, there is only one totally asymptotic regular simplex in H", n >
2. Using Theorem 13.5 for the three-dimensional case, and for n = 2m > 2 even, the
Reduction formula 13.3
1
Fym(E9m41) = (2m + 1) Fom(02m41) = (2m + 1)! ;) (k+)1 ( ) 2 fam—(2k+1)(0),

(13.54)
where ¢ runs through all elliptic subschemes of order 2(m — k) of o2m41 all of whose
components are of even order, we obtain the following results:
(a) For n = 2, the area of a totally asymptotic triangle equals 7 ~ 3.1416.
(b) For n = 3, the condition (13.53) implies that a« = §. I R, denotes the doubly
asymptotic orthoscheme given by

v.i(-T—r-) i o o 6 0 °o ,
one gets by (13.52) (cf. [22, Corollary, p.20})
vola(5%,(3 Z)) = 3lvol3(Re) = 3JI(%) ~1.0149 . (13.55)

(¢) For n = 4, we have cos2a = 1. Using (13.54) and results from 13.2.1. we deduce

5 Fi(EF) = Fu(os)
= f3(As) + fi(o——0) fi(0——0) — (8f1(0—0) — fi(0——0)) + 2
2,1 «
=36
Thus, ,
voli(5%5,(20)) = T Fy(E5°) = 4;’ (m — 5a) ~ 0.2689 . (13.56)

(d) For n = 6, we have cos 2« = %, and

'—Fﬁ(E ) = Fe(a7)
= fs(As) + fa(Aa)fi(o2) + f1(Az2)fa(o4)—
— (3f3(Asg) + fa(o4) + 3f1(A2) fi(o2) + 3(f1(42))))+
+ 2(5f1(A2) + f](Uz)) -5

17
= ——{f3(0'4) 105 y
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from which it follows that

17 56m*

volg(Sre,(2a) =27r3{7f3(a4)+1_5 -

o . (13.57)

By Schlafli’s result for volumes of spherical orthoschemes (see 13.0., (13.4)), which can also
be deduced from Theorem 13.5, (13.48), by means of analytic continuation using 13.2.4.,
(13.38), we obtain

vole(Sre,(2a)) = %{Lig(a, 2a) + %(Lig(aa) — Lis(—a%)) — %(Liz(a) + Lig(—a)) } -
1

2 1
—5(1 —;0)2-}-6} , (1358)

where

3 \/5 -1 ) 2. a"
o= a.rccos(\/;) , a= it , Liz(a,2«a) = Z = cos(2ra)

r=1

—

This yields
volg(Sree(2c)) =~ 0.0102 . (13.59)

By a result of Haagerup and Munkholm [11], a simplex in H", n > 2, is of maximal
volume if and only if it is totally asymptotic and regular. Hence, for n = 2,3,4,6, (a)-(d)
provide an upper bound for the volume of an arbitrary simplex in H", and we see that

vol,(S7%,) is a decreasing function with respect to n verifying the inequality

n—1 _ vola41(S575) _ 1
n? = vol,(Sg,) T n

(13.60)

due to Haagerup and Munkholm (see (11, Prop.2, p.4]).

13.3.3. Geometrical functional equations for Jl(w)

Using different methods (e.g., cutting and pasting, limiting processes) for calculating the
volume of a given convex polyhedron, one simultaneously obtains functional equations for
the characteristic volume function JI(w). In the following paragraph, we will present some

examples which are derived by dissection into orthoschemes of degree d = 0,1, 2.

Examples.

(a) Every orthoscheme Rq C H® of degree d > 0 admits a dissection into exactly three or-
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thoschemes Ri,_l ,1=1,2,3, of degree d — 1. In the simplest case of a simply truncated
asymptotic orthoscheme given by the graph
7 = [ ] 84 ﬂ

g
0-+:+0 o o—o , where 0<a+ﬁ<§ )

this dissection (see Figure 13.2) implies the identity

2JI(a)+JI(%—a+ﬁ)—ﬂ(%+a+ﬁ)=2{ JI(a+¢)—.H(g+a)—JI(-;E+¢)}+
F I+ 6) + (Y = 9) +JI(5 — ¢ + ) + J(5 +d+a)+

PG +B-a—) = I(Z +B+a+y) | | (13.61)

i 29 a2
Wthe ¢,¢ € (0,%) with ¢ = arccos (:lna) y 11} = arctan (COS ﬁ S a)

sina cosa

os 3

Figure 13.2

Lewin (private communication) showed that the second part of (13.61) can be reduced to
the first part of (13.61) by two applications of Kummer’s equation for JI(w) = 3 Cl(2w)
(see [L, (4.68) and (4.69)]).

(b) Let R denote the totally asymptotic Lambert cube with dihedral angles £. Since

volg(R) = 2- JI($) = 4- 3JI(§) (cf. 13.3.1.), one could expect a dissection of R into 2
congruent simply truncated orthoschemes with graph

o oo |
o 0o=—=0 o o

)

and into 4 congruent orthoschemes with graph

In fact, Figure 13.3 shows such a dissection.
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Figure 13.3

More obvious is the subdivision of R into 2 congruent simplexes S with scheme

|
AN

Hence, vol3(S) = JI(§). (13.62)

(c) Denote by H7, the totally asymptotic regular hexahedron (or ”cube”) in H? all of
whose dihedral angles have to be equal to §. H7, may be viewed as totally asymptotic
regular tetrahedron S75, () to each of whose facets has been adjoined another tetrahedron.
On the other hand, the dissection x.(Hye,) (cf. 13.3.2.), where c-denotes the center of

HEZ,, yields a subdivision into 48 orthoschemes with graph

6

e} 0 o

Thus, by 13.3.1. and (13.55), one gets
OI(3) = 12(J1(75) ~ JI(32)
37 VN2 12
By 13.2.4., (a), this equation is equivalent to the distribution law

™ T km
T4 ) =4 > Mg+ )
1<k<3

By another geometrical construction, Thurston proved the distribution law for JI(3a), 0 <
a < %, (cf. [25, Prop. 4.12, p.201]).
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(d) Denote by gm = g(P1,...,Pm), m > 3, a plane regular hyperbolic m-gon with vertices
Py,..., P, and consider the pyramid C := Cn(a,28) C H® over gm with apex A such
that the dihedral angles formed by g,, and the laterals equal a and the angles between two
intersecting laterals equal 2. With respect to the dissection x 4(C'), C admits a simplicial

subdivision into 4m congruent orthoschemes given by

If all m + 1 vertices of C are points at infinity, then « = £ — f§ = L, and for the volume
of O = Cn(E, '"—,;lw), Theorem 13.5 yields

vola(C) = mﬂ(%) . (13.63)

In particular, for m = 3, we obtain again the formula (13.55) for the volume of 5%,. Now,
assume that the vertices P;,..., Py, of the basis g,, are ideal in such a way that all edges
P,P,y,,1 <1 <m—1, intersect the absolute quadric Q3 ;. Furthermore, let the apex
A € AQ; 1 be an ideal point; A can be chosen "near” the quadric Q3 ; such that the edges
AP;,i=1,...,m, are secants with respect to Q3,1 of equal hyperbolic length. Thus, polar
truncation of each vertex of C = Cn(a,2f) yields a 2m-gonal prism Pyym(a,a’) whose
mutually orthogonal laterals form by turns the angles «, § resp. o, % with one resp. the
other totally rectangular 2m-gon (see Figure 13.4 for the case m = 3). The dissection
x4(C) of the underlying pyramid C in P*® into orthoschemes induces a subdivision of

Pym(a, ') into 2m congruent Lambert cubes with essential angles o, o', Z-.

Figure 13.4

In the limiting case @ = «' = 0, Theorem 13.6 yields for the volume of Pg5, := P, (0,0)

volg(P§2) = 2mJI(8m) + Z{JH(Z + 6m) = JH(Z — ) — JI(20m) + 2JI(Z — 6,)} , (13.64)

0 < 8,, := arccot(cos l) <
m

o] N
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In particular, if m = 3, the prism FPg° is the totally asymptotic regular octahedron
Orey with dihedral angles £, which can be dissected by means of the "central” dissec-
tion x.(0r¢,) into 16 congruent orthoschemes given by

o} o} &) o}

as well as into 4 congruent simplexes S with scheme

I ———— 1]

.Therefore, we obtain the relations

6F3({—>-)=16F3(o o=—=0 o)=4F3( )

which, by 13.3.1. and (13.64), imply that vol3(0%,) = 8JI(§), vols(S§) = 2J(F), and

6J1(65 ) + %{JI(% +80) = JI(Z — 65) = JI(205) + 21(5 ~ 65)} = 8JI() =~ 3.6639, (13.65)
where 63 = arctan?2.

(e) Finally, consider the remaining totally asymptotic regular polyhedron, the dodeca-
hedron D2g, with dihedral angles §. The dissection x.(D7g,) starting from the center

c € D, yields a subdivision into 120 congruent orthoschem;;g
0 > o o 6 o ,
which leads to the equality
voly(D2,) = 30{20.11(%) + JI(% + %) - JI(% - %)} - (13.66)

13.4. Further Aspects

13.4.1. Volumes of hyperbolic 3-folds and Dedekind zeta functions
Denote by M™, n > 2, an n-dimensional complete hyperbolic space form H"/T of finite
volume (orientable or non-orientable), where T' is a discrete group of isometries of H™. If

I acts without fixpoints on H", then M" is a manifold; otherwise it is an orbifold locally
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modelled on R" modulo a finite linear group action. One of the most important (topo-
logical) invariants of M™ is its volume. By a result of Wang [30], the volumes vol, (™),
where M runs through all n-manifolds, form a discrete subset of R if n # 3 (for n even,
this is a consequence of the Gauss-Bonnet formula). For n = 3, however, Jgrgensen and

Thurston [27] proved that the volume spectrum
Vol := { vol3(M )| M hyperbolic 3-fold }

is a closed, non-discrete subset of R4, which is well-ordered and of order type w*. In
particular, there is a manifold (resp. orbifold) of minimum volume vy (resp. v}), and a
1-cusped manifold (resp. orbifold) of minimum volume v, (resp. v.). However, in contrast
to the manifold case, there are non-compact 3-orbifolds whose volumes are isolated (cf.
(20, p.278]). Up to now, very little is known about Vol and its smallest elements. In the

sequel, we shall collect what is known to us (the lower volume bounds are due mostly to
Meyerhoff [20]):

(v1) 0.00115 < vy < vols(W) =~ 0.9427 (13.67)

where W denotes the orientable Weeks manifold which is obtained by (5,1),(5,2) Dehn
surgery on the complement of the Whitehead link in S* (cf. [7]). Here, the lower bound
is due F. Gehring and G. Martin ( cf. [F. Gehring, G. Martin, Inequalities for Mébius

transformations and discrete groups, Preprint]) and improves the earlier result of 0.00082
found by Meyerhoff.

(v}) 0.0000013 < v} < vola(Q) =~ 0.0391 | (13.68)

where @ is the following orientable tetrahedral orbifold (cf. [21]): Consider the reflection

group I' associated to the Coxeter orthoscheme

5

o) o) o [e]

This simplex admits an inner twofold symmetry induced by a rotation of =. Denote
by I the isometry group generated by I' and this rotation, and by T", its subgroup of
orientation-preserving isometries. Then, @ is the quotient H" /T, of volume = 0.0391 (see
13.3.1.).

(vo) 0.5074 = £ < v, = vol3(G) = v ~ 1.0149 | (13.69)

where v = vol3(57%,), and where G denotes the Gieseking manifold; this is the unique

non-compact (non-orientable) 3-manifold of minimal volume (cf. [1]). G is obtained from
SOO

reg(3) by identifying two faces by means of a rotation of 2% about a common vertex and

by identifying the opposite two faces by a rotation about a common vertex.
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(vL) ¥ < v < vols(Q.) ~ 0.0846 , (13.70)

where @, denotes the 1-cusped orientable double-cover of the (non-orientable) tetrahedral

orbifold with Coxeter scheme 6

o] o} 0 o)

(vs) Kojima and Miyamoto [17] considered compact 3-manifolds with non-empty geodesic
boundary and showed that the one of minimum volume vs, which is necessarily orientable
but not unique, admits a subdivision into two regular truncated tetrahedra with dihe-

dral angles £ or, equivalently, into 6 doubly truncated Coxeter orthoschemes with graph

[ Y-
) -—o\

/ Y

Hence, by Theorem 13.5, vg ~ 5.8735.
(vix) Adams [2] investigated N-cusped 3-manifolds M.~ and proved that volz(M.~) >

N - v, where v := vol3(S75;) ~ 1.0149. These lower bounds are - in a unique way -
realizable for N = 1 (by the Gieseking manifold) and for N = 2, whereas for N > 2,
volg(M~)> N -v.

For arithmetically definable hyperbolic space forms, the volumes can be related to values
of Dedekind zeta functions at 2 (cf. [5] and [22]):

Denote by F' = Q(v/—d), d > 1 square-free, an imaginary quadratic number field with
discriminant d > 0, and by Oy its ring of integers. Then, the group T' = PSL(2,04) is a
discrete subgroup of PSL(2,C) and acts therefore on H® by isometries.

Let (r be the Dedekind zeta function associated to F', which can be written in the form
= (—d
Cr(s) =((s)- ; (T) r (13.71)

where (—_;é) is the Kronecker symbol with values 0 or £1 associated to F'. By a result of
Humbert, the volume of a fundamental domain D of T is given by (cf. [22, p.20])

vola(D) = di(r(2)/4n” . (13.72)

Borel [5] generalized Humbert’s formula (13.72) to arbitrary number fields F' having exactly
b complex places and at least a real places, where a,b are non-negative integers with
a+b>1 (see Example (b) for a =2,b=1.)
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Consider Humbert’s formula (13.72) and use (see [22, p.21])

(5 3, ()

Then, one obtains the following expression using 13.2.4., (13.40),

wMD);;z:(%gﬂé% : (13.73)

0<k<d

which together with (13.72) implies

—~d km

Q=22 > (—) J(=) . (13.74)
< 3\/- o<k<d d

In [31], Zagier extended this result for (#(2) to arbitrary number fields F' first in terms

of A(z) = 2J{arccotr). This motivated his Conjecture about the representation of

¢r(m), m > 1, in terms of (modified) polylogarithms (cf. [32]).

Examples.
(a) Consider the field F = Q(+/—3). Then, by a result of Meyerhoff (cf. [21}),

H®/PSL(2,0;3) = Q.

Hence, by (13.72) and (v.),

3%m¢m@yhj=mMQJ=%mgﬁﬂm&6, and

(Qv=(2) = JJK)NOM%

(b) Consider the field K = Q(1/3 + 2v/5) of discriminant -275 with a = 2,5 = 1. Choose a
maximal order D (all are mutually conjugate) of the Hamilton quaternion algebra over K.
Then, one can associate to it a discrete subgroup I'p of SL(2, C) such that H*/T'p = Q
(cf. [5, p.30] and [21, Remark (2), p.186]). Thus, the formula of Borel (cf. [6, 2.]) and
(v]) yield

2753

575 6K (2) = vola(Q) ~ 0.0391

Therefore, we obtain

256
275%

(x(2) = &ﬁ(-+m 2n@-m Ju +m+Jm——m+aﬂpL—m}~1ow7,
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where 8 = arctan(1/2V/5 — 3).

13.4.2. Scissors congruence and Dehn invariants
By cutting and pasting of polytopes in a space X" of constant curvature, one immediately
gets in touch with the notion of scissors congruence groups P(X™) and Hilbert’s Third

Problem concerning scissors congruence (equidecomposability of polytopes):

Let G denote the group of isometries of X™. Then, the scissors congruence group P(X")
is defined to be the free abelian group generated by symbols [P], one for each polytope
P C X", modulo the relations

(i) [P] = [P1] + [P], if P = P1 + P, in the sense of elementary geometry.
(ii) [gP]} = [P], where g € G.

The scissors congruence problem consists in finding a complete system of invariants for
the classes of polytopes in P(X™). By means of the Dehn invariants (suitably defined and
including volume) the scissors congruence problem was solved for n < 2 (this is a classical
result), in E® by Sydler and in E* by Jessen (for references, see [9, p.159]). We are mainly
interested in P(H") and, in particular, in the case n = 3. For the group P(H?), Milnor
conjectures that the scissors congruence class of a hyperbolic polyhedron is determined by

its volume and its Dehn invariant; recall that the classical Dehn invariant is given by
¥ : P(H?) — R®g R/27Z

associating to a class of P(H?), represented by a polyhedron P C H? with dihedral angles
a4 along edges A of length I(A), the expression

Y(Py=> A)®@as . (13.75)
A

Remark.

The Dehn invariant looks very similar to Schlafli’s volume differential (cf. 13.2.1., or [15,
2.2])

dvoly(P) = 3 3~ I(4)das
A

Like this Schléafli differential, the Dehn invariant can be extended to the set of asymptotic
polyhedra representing the elements of P(TI?) (cf. [9, p.168]).

Beside P(H™) and P(H™) there are other notions of hyperbolic scissors congruence groups,

e.g., the group P(OH?) generated by classes of totally asymptotic polytopes. Some of
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these groups are identical; by a result of Dupont (cf. [9, Theorem 2.1, p.162}), the groups
P(H™) and P(H") are isomorphic for n > 2. H P(H")e denotes the group associated
to all totally asymptotic simplexes in H”, then ’P(W) equals 'P(-ffm)w for k > 1
(cf. [25, Prop. 3.7, p.195]). Moreover, one can show that P(H") (resp. P(H")) can be
generated by classes of orthoschemes (resp. doubly asymptotic orthoschemes) (cf. [25, 4.]),
which implies that P(H™), n > 0, (resp. P(H") for n > 1) is 2-divisible. In particular,
P(H?) = P(H?)oo = P(H?) is 2-divisible.

Divisibility questions about P(H?) can be reduced to corresponding problems for doubly
asymptotic orthoschemes Ro, = Roo(@) with graph

a %—a o
) o o o

whose volumes equal 3JI(a) (cf. Theorem 13.5): Consider the map
L : R — P(H?

given by
L(a) := [Reo(a)] , (13.76)

L@)=-L(~a) , L{a+m)=L(a)

Then, one can show that L satisfies a distribution law analogous to 13.2.4., (a), for the
Lobachevsky function JI{a) (cf. [25, p.200-202]), which therefore admits a geometrical
interpretation in terms of cutting and pasting of totally asymptotic simplexes (see also
13.3.3., (¢)), and from which the divisibility of P(H?3) follows.

All these results can be brought into a more general context which allows a very elegant
description of volume and scissors congruence problems in H®. Consider the group P(0H3)
homologically defined by Dupont as follows (cf. [9, p.165-166]): Let P(OH™) be the abelian
group generated by (ag,...,a,), a; € GH", satisfying

(1) (@g,...,a,) =0, if ag,...,a, lie in a subspace of dimension < n.

(ii) . (-1)(ao,...,@,...,an) =0 for a; € BH" arbitrary.
0<i<n+1

(iii) (gao,...,9a,) = detg-(ao,...,a,) for a; € OH" and g an isometry of H".

This group is closely related to Thurston’s group P'(@H™) which is obtained from P(JH"™)
by replacing (i) and (iii) by
(i) (ao,...,a,) =0,if a; = a; for ¢ # j.
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(iii)’ (gao,...,9as) = (@o,...,as) for a; € 0H™ and g an orientation preserving isometry
of H™.

For n = 3, the group P'(0H?) can be viewed as a special case of a group Pr associated to
an arbitrary field F, studied independently by Bloch, Wigner and Thurston: Pp is defined
to be the abelian group generated by 4-tuples (:1:0,:1:1,:1:2,3:3) , z; € P1(F)= FU{oo} and
x; # ¢ for i # j, subject to the relations
(1) (9x0,9Z1,9%2,9%3) = (T0, 1, 22,23) for g € PGL(2, F).
Gi) Y (-1)(=zo,...,%i,...,74) =0 for distinct z; € P'(F).
0<i<4
Consider the case F = C, and use for H® the upper half space model C x R4+ bounded
by the Riemann sphere dH® = CU {00} = P(C). Then, PGL(2,C) = PSL(2,C) is the
group of orientation preserving isometries of H® acting on H? by

a b

az + b ) € PGL(2,C) .  (13.77)
d

cz+d

9(z) =

c

for zECU{&o} , gz(

Recall that the cross-ratio {ag : a; : a2 : a3} of four distinct points ag,a;,a2,a3 € P(C)
is defined by

{(10 1y Qg 0.3} = ((_10 - (12)((1] — ﬂa)/(ao - 03)((1] - 02) S C\{O,l} ) (1378)
and that one has
(a) {c0:0:1:2} =2.
(b) PSL(2,C) acts 3-transitively on P'(C).
(c) For two 4-tuples (ag,a1,a2,as3), (b, b1,b2,b3) of distinct points in P'(C), one has
{aoza1:a2:a3]={b0:b1:b2:bg} —
ag € PSL(21C) Wlth (bOablst:bB) = (gaﬁagalaga2:ga3)

Using this, one observes that P'(8H?®) is the abelian group generated by [z] := [(c0,0, 1, 2)]
for z € C\{0,1}, satisfying

z (-1) [{ag t@;:---:a4}] =0 for arbitrary a; € P'(C) . (13.79)
0<i<4

If all components ¢; in (13.79) are distinct, one can use (a)-(c) to express (13.79) in the

form
[z1] = [z2] + [z1/22] = [(1 = 21)/(1 = 22)] + [(1 — z2)21 /(1 — 21)22] =0, (13.80)
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where 21,22 € C\{0,1}, 21 # 22. In fact, Dupont and Sah showed that P'(8H3) is com-
pletely characterized by this relation, which implies that P'(0H") = Pc (see [9, Lemma
5.11, p.176)).

Denote by Seo C H? a totally asymptotic simplex. By the above, its vertices can be
brought into the form 00, 0,1, 2, where z € P!(C), and the volume of So.(z) = (00,0,1, 2)

becomes an expression in 2:

Denote by
D(z) :=Im(Liz(2)) + arg(1 — z)loglz| , z€ C\{0,1} , —-r<arg(l—2z)<m |,
the Bloch-Wigner Dilogarithm which has the following properties (cf. [9, p.172]):
(™) = 21(a)
~D(:)=D(z)=D(;)=D(1-2) ;

D(iz")=n- Z D(pz) ;

pt=1
D(z1) = D(22) + D(21/2z2) — D((1 — 21)/(1 = 22)) + D((1 — 22)21/(1 — 21)22) = 0
for z1,22 € C\{0,1}, z1 # 22
Then, by a result of Bloch and Wigner (cf. [9, (4.13), p.173)),

D(z) = vol3(Swo(2)) . (13.81)

Bloch considered D as (”imaginary”) part of a more general function, which, slightly
modified by Dupont and Sah (cf. [9, (4.14), p.173]), is of the following form:

e : C\{0,1} — A%(C) ,

o(z) = % log(z) A 2—17; log(1— 2) +1 A #Liz(z) —1A 4—?1;51,12(1 ~2) . (13.82)
is well-defined for 0 < Re(z) < 1 satisfying. 0(2) + o(1 — z) = 0 and can be analytically
continued to C\{0,1}. Here, AZ(C) is the second exterior power written additively (i.e.,
it consists of formal sums of symbols aA b, a,b € C, which are bimultiplicative and satisfy

aAa=0). Consider the map

A Po — AL(CX)
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defined by A[z] := 2 A(1—2). Then by a result of Dupont and Sah, the following diagram
commutes (cf. [9, p.171-172]):

PC — AL’Z (C x-)

! R

P(BHY) =% Ry R/21Z

where the left vertical arrow is given by the surjective map sending 2] onto {00,0,1,z);
on P(8H?), mapped canonically onto P(H?3), the extended Dehn invariant ¥, is given by

3
Ue(Seo) =2 Z log(2sinay) @ ay
k=1

for a totally asymptotic simplex S, with angles o, a3, a3 along edges intersecting in a
vertex (cf. [9, p.168-169]). The function —log™ sends r A 2™ onto —log|r| ® a.

Now, the function A[2] satisfies the 5-term-equation
Alz1] = Alz2] 4+ Al21/22] — A[(1 = 21)/(1 = 22)] + A[(1 — 22)21 /(1 — 2z1)22] =0 (13.83)

Thus, one could expect that g(z) has an analogous property. In fact, the induced additive
homomorphism
o : Po — A%(C)

even satisfies (cf. [9, (4.18), p.174])

D(z)
272

Img[2] = ! (13.84)
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