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SKEwW PBW MONADS AND REPRESENTATIONS.

Alexander L. Rosenberg

INTRODUCTION.

Let R be an associative ring, © a map from some set 6 to the group
Aut(R) of automorphisms of the ring R such that the image of 6 is a semi-
group in  Aut(R). A skew PBW (Poincaré-Birkhoff-Witt) ring related to the map
6 is an associative ring R/6,§} which contains R as a subring and is a free
right R-module with a basis [xs[s € ©/ such that o= Bs(r)xs for any s €
® and all r € R. The symbol & stays for the multiplication table: XX, =
quE.,(s,t|u)A We assume that © has a marked element *  which the map 6
sends into idp; and x, = 1 - the identity element of the ring R.

Important special cases of skew PBW rings are (quantized) enveloping algeb-
ra of an arbitrary Kac-Moody Lie algebra, enveloping algebras of reductive Lie
algebras, Heisenberg and Weyl algebras (of an arbitrary rank) and their ’quan-
tum’ deformations, enveloping algebra of the Virasoro Lie algebra, crossed pro-
ducts.

The main result of this paper, Theorem 6.6.3, describes (gives a canonical
realization of) the spectrum of the category R{8,E/-mod in terms of the spect-
rum of R-mod.

Recall that annihilaters of modules from the spectrum are prime ideals, and
if the ring is left noetherian, any prime ideal is the annihilator of a module
of the spectrum (cf. [R2]).

Another fact 1is that the spectrum of a category contains isomorphy classes
of all simple objects. And Theorem 6.6.3 allows to single out immediately a se-
ries of irreducible representations of R{8,E} which could be called generali-
zed Harish-Chandra modules. A more involved application of Theorem 6.6.3 (and
some other facts of the developed in [R4}-[R6] noncommutative spectral theory)
allows to find some natural’ classes of non-diagonalizable irreducible represen-
tations of reductive Lie algebras and Kac-Moody Lie algebras.

Thus, Theorem 6.6.3 can be used (at least) in two ways: for classification
of prime ideals of skew PBW rings; and for the study of their irreducible repre-

sentations.

It happens that the language of rings and ideals is not convenient for the



study of the spectrum and simple objects which are of categorical nature. So, we
give to the problem a more appropriate setting, and, as a result, investigate a
more general object - modules over a skew PBW monad. Recall that a monad in a
category 4 is a pairr (F,u), where F is a functor from 4 to 4, and W
is a functor morphism from FoF to F such that poFU = pepuF and WeFn = pomF
for a (uniquely defined) morphism mn: Id —— F (- the unity). An (F,u)-module
is a pair (M,m), where M is an object of 4 and m is an arrow from F(M)
to M such that moFm = moy(M) and mon(M) = idM.

We say that a monad (F,u) is a skew PBW monad if F =@ @s, where all G)S,

se®
s € 0, are auto-equivalences of the category 4, and the image of the set

{G)sl s € © in the group Autd of isomorphy classes of auto-equivalences is a
semigroup. We assume that © has a marked object, *, and O, « Id &

A standart example: with any ring morphism R —— B  (respecting the iden-
tity elements) one associates a monad by taking as F  the functor B®R and as
p  the morphism B®R(B®R ) —— B®R induced by the multiplication in B.

If B is a skew PBW ring over R, then B®R defines a skew PBW monad in
the category R-mod. But, of course, there are lots of skew PBW monads of dif-
ferent nature. For instance, 4  might be the category of quasi-coherent modules
on some scheme and © a map taking values in (tensoring by) invertible sheaves
on this scheme.

The paper is organized as follows.

Section 1 contains some preliminaries about the spectrum of nonabelian ca-
tegories we need in the sequel.

In Section 2, we introduce the principal characters of this work - skew PBW
rings and skew PBW monads.

In Section 3, some auxiliary facts about the spectrum and associated points
are proved.

Section 4 is concerned with monads and modules having gradings related to a
triple (HmnX), where H is a semigroup, and ® an H-set surjection from H
onto X. The principal (for us) example is a special grading of this kind asso-
ciated with a point of the spectrum.

In Section 5, we get a description of the spectrum of the category ng[F-moa'
of X-graded F-modules.

Section 6 contains the main theorem of this paper. We show that all points
of the spectrum of F-mod which "grow up" over a given point of Specd can be
represented by a graded module with the grading associated to this point. So
that we can use the results of Section 5 to get a description of the spectrum.



Then follow ’Complementary facts and examples’. Most of them are motivated
by representation theory.

In Section CIl, we discuss shortly some of the functorial properties of our
setting.

Section C2 is concerned with gquasi-holonomic modules. Note that the conven-
tional representation theory is restricted to holonomic modules. The (much lar-
ger) class of quasi-holonomic modules is a natural domain of definition of the
formal character.

In Section C3 we show how to dualize the main results of the paper and to
apply them to the study of comodules over skew PBW comonads.

In Section C4, we study the spectrum of the Weyl algebras and their quanti-
zed versions.

In Section C5, we sketch some of the lying on the surface consequences of
our approach to the study of representations of reductive and Kac-Moody Lie al-
gebras. Namely, given a reductive (or Kac-Moody) Lie algebra, we single out a
natural class of representations which is, on a generic level at Ileast, related
with representations of certain hyperbolic ring. In the case of reductive Lie
algebras over a field of zero characteristic, this class coincides (conjectural-
ly) with the class of quasi-holonomic modules introduced in Section C.2. The si-
gnificance of this fact is that the spectrum of hyperbolic rings is much easier
to study.

In Appendix, we apply the main theorem to get the spectral picture of the
two-parameter deformation of the coordinate algebras of M(2) and GL(2).

This work was completed during my staying in Bonn. I am glad to express my
thanks to Max-Plank-Institut fiir Mathematik for the hospitality and support.

1, THE SPECTRUM OF A QUASI-EXACT CATEGORY.

Here we give a sketch of an extension of the developed in [R3] spectral
theory to nonabelian case (which is of independent interest) in the degree re-

quired by the main body of this work.

1.0. Quasi-exact categories. A quasi-exact category is a triple (€;M,¢), where
€ is a category, and M and €& are classes of arrows of © which enjoy the
following properties:

(a) Both- M and € are closed with respect to compositions, and contain
all isomorphisms of the category €.



(b) If a morphism f: X —— Y has a kernel and fog € ¢ for some arrow
g W —— X, then fe € Dually for morphisms in .

(c) Every diagram X —% 5> V « = ¥ suchthat ee ¢ and m e M can be
extended to a commutative square

where m” € M and ¢ € €.

(d) If g: X — X' and h: Y —— Y are morphisms from M (resp. from
€), then their product, g A X 1Y —— X' 1 ¥, belongs to M (resp. to
€) too.

1.1. Example. Let € be a full subcategory of an abelian category 4  which
contains all subobjects of any of its objects. Take as €  all morphisms in €
which are epimorphisms in « and set M to be all monoarrows in 6. Clearly
the conditions (a) - (d) above hold. Moreover, (c¢) follows from a much stronger
property:

(c’) Any arrow in € is represented as a composition moe, where m € M
and ¢ € C. =

1.2, Example: the category of torsion free objects. Let T be a topologizing
subcategory in an abelian category ; and let T denote the full subcategory
of 4  generated by T-torsion free objects. Clearly the subcategory fT satis-
fies the conditions of Example 1.1: every subobject of a T-torsion free object
is T-torsion free.
Note that fT is also closed under extensions in &  if in the exact se-
quence (in )
0 — M M M 0 (1)
M and M" are T-torsion free, then M is T-torsion free. In particular, the

subcategory fT is closed under finite products in £ =

1.3. Example. Let T be a topologizing subcategory of an abelian category .
Take as M the family of all arrows f in & such that Ker(f) € ObT. Dual-
ly, define € to be the class of arrows g such that Cok(g) € T.

An easy way to see that all the conditions hold (even (c’} in Example 1.1)
is to notice that the family M  (resp. €) is the preimage under the localiza-



tion 4 —— 4T of the class of all monomorphisms (resp. epimorphisms) of the
quotient category «T. =m

A quasi-exact functor  F: (€ME) —— (€M) between quasi-exact ca-
tegories is a functor F: € —— €  which carries morphisms in M  (resp. €)
into morphisms in M’ (resp. morphisms of ).

1.4. Examples. In Example 1.1, the natural embedding € —— & is a quasi-exact
functor. In particular, the inclusion functor fT —— & of Example 1.2.

Clearly the localization 4 —— AT in Example 1.3 is a quasi-exact
functor. m

14. A preorder in quasi-exact categories. Fix a quasi-exact category (4, M,E).
When it does not create an ambiguity, we shall write «£ instead of (&M, G).

For any two objects X and Y of the category «, we shall write X > Y
if there is a diagram (W)X «— U —% 5 ¥, where me M, ¢ € € and (KX
denotes the product of & copies of the object X.

1.1.1. Lemma. The relation > is a preorder in Obd.

Proof. In fact, let X > Y, and Y » Z; i.e. there exist the diagrams

X —— U257 (1)
and
Yy v £,z 2)

in which the arrows i, j € M, and e, ¢ € € The product

mkjx L oy (e | oy

of n copies of the diagram (1) is of the same type (cf. 1.0.1).
There exists a diagram

(n)e

(n)U —————— (n)Y

A

W —2%8 vy

where j € M and € € € Hence (n)icj’s W — (nk)X belongs to M and the
composition e’og : W —— Z is a morphism in € ie. X >Z =



1.5. The notation. Denote by |4|, or by [(&£ME)|, the ordered set of equi-
valence classes of objects of 4  with respect to the relation >  We save the
same symbol, >, for the induced order on |«|.

Clearly any quasi-exact functor F: (MG — 5 (&M ¢) defines a
morphism |F|: |§] ——— |€’| of the corresponding ordered sets.

1.6. The spectrum of a quasi-exact category. lLet M be a nonzero object of the
category 4. We write M € Spec(d;ME) (or Specd if classes M, ¢ are fixed),
if the existence of a nonzero arrow i: N —— M in M implies that N > M.

Since. M » N, we can say that M e Specd if and only if it is equivalent
with respect to the preorder > to any of its nonzero M-subobjects.

Denote by  Specd  the ordered set of equivalence classes (with respect to
> ) of elements of Specd. The set Specd shall be called the spectrum of the

quasi-exact category 4.

1.7. Spectrum and M-simple objects. Call an object M of (4ME) M-simple if
every nonzero morphism i: L —— M in M belongs also to €.

Clearly every M-simple object of the category £ belongs to the spectrum.

1.8. Example. If (€M) IS a quasi-exact category of Example 1.1, then the
preorder » on Ob€& is induced by the preorder > in Obd#, and Spec(6;MCE)
coincides with Specd ) |€].

In particular, for any topologizing subcategory T  of the category 4, we
can write: Specd = SpecT U SpecfT.

In fact, if T is a topologizing category, then any object M from Specd
is either in T, or in fT. Since, if M  is a nonzero subobject of M such
that M e ObT, then M’> M which implies that M € ObT. =

1.9. Example. For the quasi-exact category («;M,6) of Example 1.3, we have:
Spec(4;M,E) = Specd/T. =

2. FROM HYPERBOLIC RINGS TO SKEW PBW MONADS.

2.1. Hyperbolic rings. Fix an associative ring R and consider the following
data:

a set = (xili e J), y= (yl.|i € J} of indeterminates;

X

a sel = [8i|i € J} of automorphisms of the ring R;



aset &= (§]ie J] is of central elements of the ring R.
The corresponding to this data hyperbolic ring R{ZE} = R{xy,ZE} is de-
fined by the following relations:

O(r)x; = x;r and ry, = y8,r) (D
forany re R and i€ J;
xy; = & ¥ = ei"(gi) for all ie J. (2)
Besides, we assume that eioej = ejoei for all i, j, and
Xy = VP if %] (3)
XX = X VY= VY for all i, j e J 4)

2.2. Examples. (a) The n-th Weyl algebra An over a field k. Here R is the
ring k[&l,...,gn] of polynomials, and Bléj = E*j + 8’.1. for all 1<ij<n.

(b) Similarly with #n-th Heisenberg algebra Hn' Only this time R is the
ring of polynomials in éi’ zj, 1<ij<n, and the automorphisms Oi are given
by Blﬁj = E’j + SI.leﬁj, (-)izj = 2 | |

(c) A (generalized) algebra of q-differential operators: R is a polynomi-
al ring in & (as in (a)) ezf’j = quﬁj + Sij
are nonzero elements of the field %.

(d) Most of ’small’ algebras of mathematical physics to begin with the en-
veloping algebra Ufsl(2)) of the Lie algebra sl(2) and its quantized version
Uq(sl(z)), algebra of functions of SLq(Z), dispin algebra etc. (see [R10]). =

for all 4, j, where q:’j

2.3. Cross-products. Fix an associative ring R. Let G be a group, and 8 a
group morphism from G to Au#(R). Let { be amap G X G —— R such that

C(s.tu)-G(ru) = Lfstu)-8 L(st), (0
E(s1) =1 = L(1,s) forany s e G 2
Define a multiplication on the free right module © x R, where X, = 1
g e G
(here e is the unity element of G) by the formula:
(X xr(Z xr)= X x( ZBrr’C(s,r)). 3
se GS% te Gt') g€ Ggst=g'(“‘)t

The equalities (1) and (2) imply (are equivalent to the fact) that the for-

mula (3) defines an associative multiplication, &, on @ x R with the unity
geG
element X, = 1 Denote thus defined ring by R/9,{}). It is generated by its
subring R and the elements x , g € G, subject to the following relations:
xgxh = xghC(g,h), rxg = ngg(r) @



for all (gh) e Gx G and r e R

In the special case, C(gh) = 1, R(8L) is a skew group ring (cross-
product). If, in addition, the action of G on R is (i.e. the map 9) trivial,
then R(6,{) is the group ring of G with coefficients in R.

Clearly the hyperbolic ring defined in 2.1 is a very special case of the
ring R{G, (). Namely, take as © the group morphism of the product Z‘] of J

copies of Z to the group Aut(R) which assigns to the ith canonical genera-
tor of ZJ the automorphism Gi.

Usit) =« if st#1, and {(ss )= &
for all .

2.3. From the ring R{G{} to a skew PBW monad. It is very inconvenient to stu-
dy the spectrum in terms of rings and ideals. So, we need to switch to categori-
cal notions. While realizing this transition, we shall considerably extend the
set up.

Fix a category « Let Autd denote the category objects of which are au-
to-equivalences of &  and arrows are functor isomorphisms. Denote by  {6,0,&f
the following data:

(a) & is a set with a marked element 1 and ©O: & —— ObAutd is a map
such that @l = !dJ

(b) £ is a function which assigns to any triple stu € 6 a functor mor-
phism  &(s.t|u): 00, —— ©,  such that

(i) the family (&(s,t|u) | u € ® defines a morphism

E(s,1): 0.0, —— @ @u‘
ue o
(clearly the family /E(st|u) | u € & defines a morphism
G)so@t —>u 2 Geu;
so, what we really require is that this morphism should factor through the natu-

ral arrow ®© 6, —— 1 G)u);
uedo ueo
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(ii) for any s, f, ', u € 6,

> &(t',w|u)o®r,§(s,t|w) = “:j,(w,t|u)':~<";(t',.s'|w)@r
we B we 6
(iii) for any s, t € G,

E(s.1]t)
&(s,1]1)

E(us|t) = id if t =5
and

E(ns|t) = 0 if t# s




(c) Denote by  SAutd  the set of equivalence classes with respect to the
following equivalence relation on ObAutd : 0 = ¥ if their actions on  Specd
coincide; ie. <O(P’)> = <O(P’)> for every <P'> € Specd. Clearly SAutd is
a subgroup of the group of homeomorphisms of the topological space  (Specd,T).
Denote by SO the image of the composition of

©: 6 —— ObAutd and ObAutd —— SAutd.
We assume that SO is a subsemigroup of SAutd.

We relate to this data the monad F = (F,§), where F = @& ©f(s) and the
s € 0
multiplication &: FoF ——— F is defined by the morphisms &(s¢|u).

We call a monad of this type a skew PBW (Poincaré-Birkhoff-Witt) monad.
Note that any F-module (M,m) is described by the family of compositions
mg GI(M) — M, e B, (N
of the embedding G)I(M) —— F(M) and the action m: F(M) — M.
Conversely, a set of morphisms (1) defines an F-module structure on M  iff
the following conditions hold:

. g gmwoG)wﬁ(s,t]w) =m0 (m(t)), m = id

The spectrum of the forgetting functor F-mod —— 4, where F is a skew
PBW monad, shall be the object of our study. To refer to the base category «
and to the data {6,0,&/, we shall write sometimes «{©,f} instead of F-mod.

2.4. Skew PBW monads and skew PBW rings. The reflection of the notion of a skew
PBW monad in RINGS provides a useful generalization of Example 2.2. The
corresponding data is:

an associative ring R; and a set © with a marked element 1’

a map O 6 —— Au{R) which sends the marked element into idR;

amap & 6 X6 X6 —> R, (stu)—— E(st|u) which has the proper-

ties:

(i) For any (st) € 6 x 6, the set fu € G| &(st|u) = 0} is finite.

(i) For any s, t, 1, u € 6,

% & w|uwstiw) = X ﬁ(w,tlu)-@t(f,(t’,ﬂw)).
we B we b
(ii) For any s, t € G,
E(s,1]t) = &(s]t) = 851

where, as usual, Svt = if t=3s and 0 if ¢ # s.

We define the ring R/9,] as a free right R-module & xSR with the

s € 0
multiplication given by



XX, =u g @xui(s,tlu), rx. = x9(r) forall re R

Set d4:= R-mod, and denote by © the composition of ¥ with the natural
map Auf(R) ——— Autd. The map & defines the multiplication table

G(s,t

One can check that the equalities (i} - (iii) are equivalent to the
corresponding equalities in 2.5. So that the data (6,0,{) defines a skew PBW
monad F-mod in the category «:= R-mod.

It is easy to see that the categories F-mod and R{8,§}-mod are natural-
ly equivalent.

u): ®s°®t — G)u, (s,tu) € 6 X 6 X 6.

2.5. Example: Kac-Moody Lie algebras. Fix a field &k Let J be a finite set
(the index set of simple roots); and let h be a finite-dimensional k-vector
space. Assume that elements
hie h and o; € h*, i€ J,

are given which satisfy the following conditions:

(a) azj"= <hi’aj> form a generalized Cartan matrix; i.e.

a. =12 aji € ZSO if i#j, and aij = (0 iff aﬁ = 0

(b) {Oti} and lhi} are linearly independent.

Recall that the Kac-Moody Lie k-algebra associated to this data contains )
as a commutative subalgebra and is generated by h and elements {xi}, {yi]
subject to the following conditions:

[h,x!.] = <afh>xi, [h,yt.] = - <al.,h>yi

[x,ayj] = aijhi
forany he b and i, j e J;
1-d.. 1-a..
(ads) V=0, (ady) Yy=0 (i)
For any o € bh*

8= (x € g| [hx] = <0,h>x],

and
A:= {o € b*| g, # 0},
+._ - -
AT:=Apn 2 Z,0, A=A X I 0
ie 20 ic g0
Let =n and n  be the subalgebras generated resp. by [x!.} and {yi}.
Then nm= @& g, n.= ® g, and g=n ®hH & n
oae ATT¢ ae A ¥



The latter decomposition induces an isomorphism
Ulg) = Ufn’) ® U(h) ® U(n).

Now we shall reformulate this setting a little bit,

First, denote the ring Ufh) = S(h}) by R; and, for any o € A, let @
be the automorphism of the k-algebra R defined by

o

h—— h - <o,h>1 for all h e b

Fix a linear order in A. Set G&:= (2>0)A:= {maps from A to z>0]. The
enveloping algebra  Ufa) is a free right R-module with the basis (x(i)] i € 6/

Define the map ©: 6 — Aut(R) by i—— | ﬁal(a) , 1€ 6
ac A .
We shall identify any map i:r A —— Zy with the word n a'(a). For
- a € A
instance, o denotes the map i such that i) = 6043’ and off (with a < B)

replaces i Y—— Bay + BB'Y'
Define the multiplication table by
| &aBly) = 8og, if @ <B;
if B > o then

1 if vy =Ba
LapBly= |ayg if v= a+ P
0 foranyother y e A

Thus the enveloping algebra Ufg) of a Kac-Moody Lie algebra is a skew PBW
ring over the polynomial ring U(h) = S(h).

2.6. Remark. Suppose we are given the following data:

a ring R;

a set [ﬁil i € J} of pairwise commuting automorphisms of the ring R;

a set {hi| i € JJ of central elements of R;

a set {7LU| ij € J} of central invertible elements of R.

Denote the data {Gi; h? }”ij| ij € J} by Z. We relate to ZE an asso-
ciative ring R(Z) which contains R as a subring and is generated by R and
elements [xt.}, {yij subject to the following relations:

xr = ﬂi(r)xl., ry; = yiﬁl{r) (1)
* J 7Lth”jxi = aljhf (2)
forany r € R and i j € J;

Clearly R(ZE) is a skew PBW ring with 6 = 6+ n &, where ot (resp. 6)
is the set of all monomials in {xl.| i € J} (resp. in {yi| i € JN). The map

11



O: & — Auf(R) is defined by
Xp— B, y;r— ﬂi" forany i€ J
and by the requirement that the restrictions of © to 67 and © respect the

multiplication. Finally, the function & is defined by

Estlu) = 8, if (s1) € 6" ne)u o) U qoet)
and &(st|u) is determined by the relations (1) and (2) when (s1) € ot ne.
Clearly the image G of the map O is an abelian subgroup in  Aut(R).
The map © defines a partition of & (two elements, s and ¢ are in one
class iff  O(s) = O(¢)) and, therefore, a G-grading of the free right R-module

@ x(s)R. One can see that it is a G-grading of the ring R(E).
se b
Consider now a homogenious (with respect to the G-grading) two-sided ideal

3 of the G-graded ring R(Z). The ring of factors R(E)/ is, therefore, also
G-graded. If it happens to be a free R-module, then it is also a skew PBW.

One of the simplest occurences of this kind is the two-sided ideal S ge-
nerated by

xlxj - xjxi, yl.yj - yjyi, (i,j) € J xJ

Then the quotient ring R(E) is hyperbolic. Weyl and Heisenberg algebras,
and their quantum deformations are examples or this (cf. Examples 2.2).

A more sophisticated example is the enveloping algebra  U(g) of a Kac-
Moody Lie algebra gq. Here R = S(n), 7&3 =1 foral 4 j, and @; is the
automorphism defined by the ith simple root (cf. 2.5). The two-sided ideal 3
is generated by

1-a.. 1-a..
(adx) Y, (ady) Yy iz)

Clearly 3 is G-homogenious. And it follows from PBW theorem that R(Z) =
U(g) is a free R-module.

Another set of important examples of skew PBW rings of the form  R(E)S

are quantum enveloping algebras. m

2.7. Virasoro algebra. Recall that the Virasoro Lie algebra is the universal
central extension of the Lie algebra of regular vector fields. It has a Dasis
{dn’ c | n e z), where ¢ is a central element, and the following commutation
relations: )

[d d]=(n-md  +(/)n - njSyn-m, (1)

n'n m+n
for all m, n € Z.

12



Set R:= kfzc], and let O denote an automorphism of the ring R  defi-
ned by
Ofz.c):= flz-,c).
Let ©® denote the set of all functions i: Z —— 2Z +  Wwith finite sup-
port. And define by © the composition of the map

G > Z, i > 2 ni(n),
neZ
and the group morphism Z ——— Auf{R} which sends 1 into .

The multiplication table is defined by

1 ifv=34_ + 8
. n m
E(n,m|v)= 4y m if v = 6n+m
0 forany other vez

where a_ = max(n-m,0) if n+m # 0, and a, .= (1/|2)(n3 -njc if m+ n

nnr
is equal to zero.
Thus defined skew PBW ring coincides with the enveloping algebra of the Vi-

rasoro Lie algebra.
3. PREPARATION.

To get to the punch line, we need several auxiliary facts. First of them is

the following Lemma:

3.1. Lemma. Let G be a left exact functor from 4 to 4 and let A be an
arbitrary functor morphism from Id 4 0 G. Then, for any P € Specd, either
MP) = 0, or MP) is a monomorphism.

Proof. 1) Note that if MM) = 0, and M > L, then ML) = 0,

In fact, the relation M » L means that there is a diagram

(OM —* Kk _¢ .

where i is a monoarrow and e is an epiamorphism. Since the functor G is

left exact, the morphism Gi in the commutative diagram

(1M < j K—=®% 1L
(DMM)= 0 AK) ML)
(HG(M) S k) —5%° , G(L)

is a monoarrow. Therefore the equalities
GioMK) = (DMM)oi = 0ot = 0

13



imply that AK) = 0. Since e is an epimorphism the equalities
ML)oe = GeoMK) = Geo) = 0

imply that A(L) = 0.

2) Note now that, for any M € 0bd, MKerA(M)) = 0.

Indeed, let k(M) denote the canonical monoarrow KerA{M) — > M. Since
Ghk(M) is a monomorphism, the equalities

Gh(M)oMKerA(M)) = Aok(M) = 0

imply that A(KerMM)) = O.

3) Let now P € Specd. If KerMP) # 0, then KerM(P) > P. This and the
equality  A(KerMP)) = 0 (cf. 2)), implies, according to the heading 1) of the
argument, that AP) = 0. =

3.2. Example. Let F be a skew PBW monad defined by the data {6,0,/. By Lem-
ma 3.1, for any P € Specd and s,¢tu € 6 we have:
either &(st|u)(P) = 0, or &(st|u)(P) is a monomorphism. m

33. Lemma. Let & be a local category with a quasi-final object P. Let 0
and O be auto-equivalences of 4 and or 0 —— O a functor morphism. Then
either o(P) = 0, or o is an isomorphism.

Proof. Let a* ld —— 0"0 be the adjoint to o morphism and M an
arbitrary object of the category & If KeroNM) # 0, then Kero™M) > P.
This relation implies, since oM KeroMM)) equals to zero, that a™NP) = 0.
One can see that KeroMM) # 0 & KerofM) # 0, and oNP) = 0 & oP) = 0.

Similarly, consider the morphism o' 6o9* —— Id  which is the composi-
tion of o®r Qe —— Vo3 and the adjunction arrow Ve —— Id. If
Cokeroaf(M) # 0, then Cokero/(M) # 0 which implies that Cokero/(M) > P. The-
refore o (P) = 0 (we use the equality o' (Cokerc/(M)) = 0). Again, o(P) = 0
if and only if afP) = 0. =

4., GRADED MONADS AND MODULES.

Fix a semigroup H and an H-set X = (X,-). Here - denotes the action of

H on X, (hx)— hux

4.1. Graded monads. We call a monad F = (F,u) in the category « X-graded if

it is provided with decompositions

F= & Fh), F= & F[x]
he H xe X
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such that the restriction of the multiplication p  to  F(h)oF[x] takes values
in F[hx]; ie. the composition of the action F(h)eF[x] —— F and the pro-
jection F —— F[y] is zero if y # hx.

4.2. Graded F-modules. Fix an X-graded monad F = (F,u). An X-graded F-module
as an (F,p)-module (M,m) provided with a decomposition M = & M[x] which is

xeX
compatible with the action of F = @ F(h). This compatibility means that the
h e H
composition
F(h{(M[x]) —— F(M) —2— M > M[yl,

(where the first arrow is the canonical embedding, and the third one is the pro-
jection) equals to zero if hx # y.

A morphism from an X-graded F-module (M,m) to an X-graded F-module
(M',m’) is any (F,u)-module morphism g: (M;m) ——— (M’,m’) which has a dia-
gonal matrix; i.e. the composition (entry) g/x,y/

M{x] Ny - SN ¥ 4 s M'[y]
equals to zero if x # y.

The composition of arrows is inherited from 4.

We denote the category of X-graded F-modules by ng[F-mod.

4.3. The grading associated with a point of the spectrum. Fix a data (6,05}
(cf. 2.3) and a point <P> € Specd. Take as H the image SO of the composi-
tion of ©: & —— Autd and of the canonical map Autd —— Aut(Specd) (cf.
(c) in 2.3); and let X be the SO-orbit of the point <P>.

We identify this orbit with the set G<P>  of equivalence classes with res-
pect to the relation on 6: s =t iff GS(P) = @t(P).

Denote by =n the projection SO —— G<P>. Consider the full subcategory
8 of the category & generated by all objects M of & such that

(a) Supp(M) < U Supp(® (P);
se®

(b) M is the supremum of its subobjects from Specd.

Note that

1) The subcategory B depends only on the orbit X of the point <P>.

2) It follows from the property (sup) that the subcategory 8  contains all
subobjects of any of its objects and is closed under direct sums. But, in gene-
ral, it is not closed under taking quotients. In particular, B is not, usual-
ly, an abelian category.

An obvious exception is the case when the point <P> is closed.

15



3) Each auto-equivalence G)S, s € 6, induces an auto-equivalence, G)’S, of
the category B. For any h € SO and any class x € G<P>, set

F(h) = ® O'(s), Fix]:= & O1).
SO(s)=h te x
Thus, we have two decompositions of the functor F = & ©'(s) associated
s € 6
with the map O :
F= & F(h) and F = & Flx]. )
h e SO x € G(P)

4.3.1. Lemma. For any <P> € Specd, the decompositions (1) turn the associated
to the data (6,0,5} monad, ¥ = (F,E), into an ©<P>-graded monad.

Proof. Fix an x € G<P> and h e€ SO. Take an s € x; and let t € G be
such an element that the action of Gt on Specd coincides with A,

For any P € Specd4 and u € 6, the inequality &(rs|u)(P) # 0 implies
that OtoGS(P’) is a nonzero subobject of @u(P’ ) € Specda (cf. Example 3.2).
Hence Ou(P’) = G)toG)S(P'); ie. u e [hx]. 1t follows from the property (b)
of the category B that the composition of the action F(h)oF{x] —— F and
the projection F ——— Ffy] is zero if y # hx. =

Denote by 1" the equivalence class of the element 1 in G<P>; ie. 1
is the stabilizer of the point <P>.

4.3.2. Lemma. The subfunctor F[\'] —— F  defines a submonad, S = (F[U']V),
of the monad F.

’

Proof. In fact, for any st € 1, and any u € 6 such that &,(s,t|u) # 0,
we have: (aso@t(P) = Gu(P). But, ®s°et(P) = OV(P) =~ P; hence @u(P) = P, =

Note that the monad $ is the skew PBW monad defined by the data
’
{1 ,G)l,,?';l,}, where
91, is the restriction of the map © to the subset 1,
§ the restriction of the function E to " x1"x1.

4.4. Tensor products. Let F = (F,u) and 6 = (G,v) be monads in a category 4
and ¢ a morphism G —— F. The morphism ¢ induces the functor
Qy - F-mod —— G-mod, (M.m)—— (Mm-9(M)), fr— f.
The functor ¢, has left adjoint, [F®G, which sends a 6-module Vv = (Vo)
into the coequalizer, M, of the pair of arrows Fo, HeF@Q(V) : FoG(V) —— F(V)
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with the action m : F(M}) —— M being the unique arrow which makes the dia-
gram

FFGv) —f°  Fmy

i m

FG(V) —% s M

commutative. Here ¢ is the universal morphism.
We need a graded version of these facts. Consider the following data:
an H-set epimorphism n: H —— X = (X,-);
a monad F = (F,u); and a decomposition

F= & F(h) (D
he H
of the functor F. Set
Flx]:= ® _ F(h) )
hem(x)

for every x € X. The two decompositions, (1) and (2), define a structure of an

X-graded monad on (F,u) if and only if, for any s f u € H, the composition
F(s)oF(t) ——— FoF ——— F(u)

is zero when T(st) # mlu).

4.4.1. Example. The associated with a point of the spectrum of the category «
graded monad (cf. Example 4.3) is exactly of this kind. m

4.4.2, The functor 3. Note that, for any x € X, the component F{x] stands
the right action of F{fi’J, where 1:= m(1); ie. the composition

Flx]sF['] — 5 FoF B, F s Ffy]

equals to zero if x # y. In particular, the multiplication |  defines a mul-
tiplication, W', on F[\].

Denote the submonad (F[I'Ju’) by s, S = (Su).

The map which assigns to any X-graded F-module (M,m) its component M/[1']
with the induced by m action m': S(M[1'] ——— M[{’] and to any morphism f
of X-graded F-modules the morphism f{i’] is a functor from ng[F-mod to S-mod
which we denote by 3.

4.4.3. Lemma. For any S-module V = (V,v), the F-module [F®SW = (Vo) has a
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natural X-grading.

Proof. For every x € X, denote by V'[x] the coequalizer of the pair of
arrows  W(xJ(V), Fix](v) : F[x]eS(V) ——— Fix](V).

Here p/x/ is the induced by p action F[x]e§ —— F[x].

The commutativity of the diagram (with exact rows)

Flxjes(v) —REIV) - FIXIO) S prageyy 5 vipeg — s 0

ifx] (1)
N
> F(V) —— V — 0

FoS(V) Wv) - F(o)

implies the existence of unique mophism  ifxJ: V[x] —— V  such that the ad-
joining of ifx] to the diagram (1) does not disturb its commutativity.

The set of arrows ({ifx]| x € X} defines a morphism i & V/[x] —— V"
xeX
One can see that i is an isomorphism. We claim that i is a structure of

an X-graded F-module. This is easily seen from the commutative diagram

FoF(V) > F(V)

AN
F(h)eF[x[{V) ———— F[h-x](V)

F(h)(V'[x]) -mmemmee -» V'[h-x]

|/ , N

F(V') bt 5> vV’

The remaining details are left to the reader. m

Clearly the map which assigns to any S-module v  the X-graded F-module
gr[lf@sw extends uniquely to a functor 9rﬂ-‘®s : S-mod —— grxll-'-mod.

4.4.4. Proposition. The functor grﬂ-‘@s is left adjoint to the functor
S ng[F-mod — S-mod
(cf 4.4.2).

Proof is left to the reader. =m

4.5. The functor £  We continue to work in the setting of 4.4; ie. we are gi-
ven: an H-set X = (X,-), an H-set surjection n: H —— X, an X-graded mo-
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nad F = (Fu) with the grading F = @ F[x] defined by an ’H-decomposition’ F
xeX
=@ F(h), ie. Flx].= & . F(h) for every x € X.
he H hen(x)
For an X-graded F-module (M,m), consider the family Q of all X-graded

submodules  (M’,m’}) —— (M,m} such that M’'[i'] is zero. Clearly sup(Q) is
the largest X-graded submodule of (M,m)  having this property. We denote this
submodule by #(M,m). The map (M,m)—— J¥(M,m) extends naturally to a func-
tor 3 which is a subfunctor of the identical functor. Denote the quotient fun-
ctor Id/y by £ and the canonical epimorphism /d —— & by &

Consider the full subcategory f3 of the category ,grxn-'-mod generated by
all modules (M,m) such that 3J¥Mm) = 0. Clearly 3JMm) = 0 iff gMm) is
an isomorphism.

Another useful property: the restriction of the functor 5 to the subcate-
gory f3 s faithful; ie. if J(Mm) = 0 and FMm) = 0, then M = 0.

4.5.1. Proposition. (a) The functor & : ,ng[F—mod — ,ng[F-mod takes values
in the subcategory f),  and its corestriction, £, to 3 is left adjoint
to the embedding J: 1y ——— gryF-mod.

(b) The functor £ is exact.

Proof. (a) Tt is clear that 38 = 0 which means that £ takes values in
the subcategory 3. Denote the corestriction of £ to 3 by &. One can

L

see that the canonical epimorphism & Idgrxﬂ-‘-mo g —— £ = Jof and its ’in-

verse’, gl go) ——— Idf{S’ are adjunction arrows.
(b) Given an exact sequence
0 —s (M) ——s (Mm) —%s (M"m") —— 0
of X-graded F-modules, we have the following commutative diagram with exact
TOWS:

0 — s (M ') — s (M, m) —& s (M".m") — 0

[’l [ l [" J
o
O——s (Wow) —8 5 s (M’ ) =y s (M, m) 22 sM" m") — 0

Here the vertical arrows are the canonical epimorphisms.

Since ["oe is an epimorphism and ["oe = Reol, £e is also an epimor-
phism.

It follows from the definition of the functor 8  that the canonical arrows
Ufr] and If)’] are isomorphisms. Hence gifi’] is a monomorphism which im-
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plies that g/1’] = 0.

On the other hand, if the monoarrow g were nonzero, then, since Fof = 0,
the morphism  g/1’]  should be nonzero. Therefore g equals to zero; ie.  &i
is a monoarrow.

Denote by &” the composition ﬁogr[F@S : S-mod —— {3 and by 3F the
composition of the functor F ,grxu-'-moa’ ——— S-mod and the inclusion functor
Jo )y — ngIF—.'nod.

4.5.2. Proposition. (d) The functor £ s left adjoint to the functor ¥

(b) The adjunction arrow vy ldg . —— §'e8” is an isomorphism; i.e.
the functor 27 s fully faithful.

(c) The adjunction morphism ¢ : 76§’ —— IdeS is a monomorphism; i.e.
the functor 3§ is faithful.

(d) The functor ¥ is exact.

Proof. (a) By definition, &" = ii’ogr[F@s and ¥ = JoJ. The functor &
is left adjoint to the functor J (cf. Proposition 4.5.1), and the functor
gr[l-'@S is left adjoint to the functor ¥  (cf. Proposition 4.4.4). Therefore "
is left adjoint to the functor 3”.

(b) We have: 3} .2".= {yoJo&'ong@S = ﬁoﬁogru-@s .

It follows from the definition of the functors 3, gr[F@s and £ that the
composition, 7Yy, of the adjunction morphism : Id

S-mod
epimorphism  F(€): 5agrﬂ-‘®$ s goﬁogr[F(X)s is an isomorphism. One can see that

D }Sogr[F@S and the

Y 1is the adjunction arrow.
(c) The monomorphness of the second adjunction arrow,
O : Loyi= ﬁogrﬂ?@)s oo —— Idfis’

is equivalent to) the faithfulness of the functor J7:= FoJ.

(d) The functor F”, being a right adjoint functor to £, is left exact.
So, it remains to prove that it is right exact. Actually,

an arrow f: M —— M of the category {3 is an epimorphism if and only
if & is an epimorphism.

Since the functor £ is left adjoint to the embedding 3 —— ng[F-mod,
the object &(MM) is a cokernel of the arrow f in 3. Clearly J is an
epimorphism if and only if &mMM) = 0. In other words, f is an epimorphism
if and only if Jf is an epimorphism. =
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5. THE SPECTRUM OF THE CATEGORY OF X-GRADED MODULES.
First we need a couple of auxiliary facts.

5.1. Lemma. Let G: B —— € be a fully faithful functor which has a faithful
right adjoint functor, G*: € — B.
Then the functor G respects monomorphisms.

Proof. Let &+ V —— W be a monoarrow in B; and let gh: M —— G(V)
be arrows such that Gleg = Gieh. This implies that
G "GloG*g = G GleGh. (1)
Since the adjunction arrow  &: IalfB —— G"G is an isomorphism, the mono-
morphness of 1 implies that of G"Gu.  Therefore it follows from the equality
(1) that G* = G*g. Since the functor G is faithful, the equality G*h =
G"g means that g = h. This shows that Gt is a monoarrow. m

5.2. Proposition. Let G: B —— € be a fully faithful functor which has a
faithful right adjoint functor, G*: € —— B. Then the functor G  induces a
continuous injection SpG: (SpecB,1) —— (SpecE,T). _

If the functor G is right exact, then the map SpG is a homeomorphism.

Proof. Fix some P € SpecB and a nonzero monomorphism . M —— G(P).
Consider the diagram

G

orm) —CM s Grogrp) —(P)_ p.

where 8: Idgy —— G"-G s the adjunction arrow.

Since the functor G is fully faithful, the adjunction arrow ) is an
isomorphism. Since the functor G* is left exact (as any functor which has a
left adjoint), the arrow G is a monomorphism. Thanks to the faithfulness of
G», the monomorphism G*L is nonzero.

Thus, we have a nonzero monoarrow &(P)'eGM : GNM) — P.

Since P € SpecB, there is a diagram

(MGNM) e—_ K —% P (1)

where i is a monoarrow and e is an epimorphism.

Consider the diagram
(M M) G onmm) = Gimerm) S k) S8 G,

where € is the adjunction arrow. The faithfulness of the functor G  means
exactly that € is a monomorphism.
By Lemma 5.1, the functor G  respects monoarrows, and it is right exact as
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any functor which has a right adjoint functor. Therefore Gi is a monomorphism
and Ge is an epimorphism.

All together shows that G(P) € Spect.

The exactness of the functor G implies that it respects the preorder >
Hence G induces a morphism SpG: SpecB ——— Spec&  of ordered sets. It fol-
lows from the definition of the topology 1t that SpG is a continuous map from
(SpecB,t) to (Spect,T).

Since  §(P); P —— G"-G(P) is an isomorphism, it is clear that the func-
tor G* induces a map [Im(SpG) —— SpecB which is inverse to SpG (or, ru-
ther, to the corestriction of SpG  to its image). In particular, the map SpG
is injective.

(b) Suppose now that the functor G" is right exact.

Let V e Specé; and let [ L —— GV} be an arbitrary nonzero monomor-
phism. In the diagram

o) —S', .oy &),y

both €(V) and Gl are monoarrows, and Gl # 0, since G is a faithful func-

tor. Therefore, since V belongs to the spectrum of ©, there exists a diagram

(MWG(L) e——— W —% vy )

where t is a monomorphism and e is an epimorphism. Consider the diagram
(L <5 GrGUIL) = GHmG(L) S arywy —C2, Gayy)

Thanks to the right exactness of the functor G*,  the arrow Gfe is an
epimorphism, and the diagram above means that L > GNV). Thus, <GNV)> is a
point of SpecB. The exactness of the functor G* implies that it respects the
preorder >  In particular, G* induces a morphism, SpG”*: Spec& ——— SpecB,
of ordered sets. This implies that the map SpG* is continuous with respect to
the topology T.

The map SpG" s injective.

In fact, for any V € Spect, we have a nonzero monoarrow

g(V): GoGNV) —— V
which means that <G.GAV)> = <V>; ie. the functor G induces the map from
Im(SpG”) to Spect€ which is inverse to SpG”.
This shows that SpG” is the inverse to SpG map. »

5.3. Remark. Note that if, under the conditions of Proposition 5.2, the -category
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[£1 is abelian (or, more generally, if any bimorphism (i.e. mono- and
epimorphism) in € is an isomorphism), then the functor G is an equivalence
of categories (which implies immediately Proposition 5.2).

First note that, since G is fully faithful, the functor G* is a locali-
zation by Proposition 1.1.3 in [GZ].

If s € Homt& is such that G*s is invertible, then, thanks to the faith-
fulness of G*, the arrow s is a bimorphism. Therefore, by assumption, s is
an isomorphism. By the universal property of localizations, this implies that
G» (hence G) is an equivalence of categories. w

5.4. The spectrum of the category ng[F-mod. Return now to the setting of 4.4.
Note that
Specgrxn-'-mod = SpecKery U Specf3.

In fact, since the functor § is exact, Kery is a thick subcategory of
ng[F-mod. Therefore, if a module M belongs to Specgrx[l-'-mod, and M has a
nonzero subobject from Kery, then M is in  Kerd.

This shows that an object from Specgrxu-'-mod is either Kerg-torsion free,
or belongs to Ker3. By definition, 3 is the subcategory of Kerg-torsion
free modules.

Thus, the study of the spectrum of ger-mod splits in two parts, accor-
dingly with the decomposition (1). By the reason which shall become clear Ilater,
we are interested in the description of Specfd much more than in the descrip-
tion of SpecKer3.

5.4.1. Theorem. The functor &".= ﬁ’ogru—'®s : S-mod ——— 3 induces a homeo-
morphism  (SpecS-mod,t) ———— (Specf3, ).

Proof. 1) According to Proposition 4.5.2, the functor
2= E'ogrﬂ-’@s ! S-mod —— )
is fully faithful and has a faithful and exact right adjoint F”  which is equal
to the composition of the embedding J: 3 —— grxu-‘-mod and the functor

5 gerF-mod —— S-mod.

The assertion follows now from Proposition 5.2. m

6. THE SPECTRUM OF THE CATEGORY OF MODULES OVER A PBW MONAD.

Now fix a data (6,0} and consider the corresponding to this data monad
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F = (FE) (cf. 2.5). Denote by «#/0,} the category F-mod.

For any element <P> € Specd, denote by Spec <P>A{G),EJ the subset of all
<(M.m)> € Spec<P>34/@,§/ such that <P> e Ass(M).

Our goal is to describe Spec < P>ad/@,§} for all <P> € Specd

6.1. The case of a local category. Let the category & be local, and let P be
a quasi-final object of 4. This implies that <P> is Ofs)-stable, i.e.
<O(s)P> = <P>, for any s e 6.

It follows from Lemma 3.4 that, for any triple s, t, u € 6, either
E(s,t|u)(P) = 0, or &(stju) is an isomorphism.

Thus, the data (6,0,E] induces the same kind of data on the thick subca-
tegory #4(<P>) which allows us to replace the category 4 Dby its subcategory
#(<P>). In other words, we assume that the spectrum of «£ consists of a single
point <P>.

Now fix an object <(M,m)> € Spec<P>aa{®,§}.

Note that M is equivalent to its submodule (M’m’) such that M’'=3Y P(s),

se€Y
where Y is a subset of & and <P(s)> = <P> for any s € Y.

In fact, by assumption, there is a monomorphism = P —— M. Take the ad-

joint F-module morphism 1 F(P):= (@ O(1)(P)&P)) —— (Mm)  (which is
te®
uniquely defined by the fact that its composition with P —— @ O(t}P) coin-
te®
cides with ).

Since (M,m) € Specd{6,§), it is equivalent to the image of the morphism
*»  which we denote by (M',m’). Clearly M is the sum of images of ©O(1)(P).
Since P is a quasi-final object, ©O(t)(P) = P for every t, and any nonzero
image of O(1)(P) is equivalent to P.

Suppose that the category 4 has objects of finite type. Then any F-module
from  Specd(©,£}] is equivalent to an F-module (M’m’), such that the object
M’ of the category o is semisimple.

6.2. Stable case. Suppose that P = O(s}P) for any s € ©  or, equivalently,
the Serre subcategory <P> is ©f(s)-stable for all s. Hence each Ot), €0,
induces an auto-equivalence, ©’(t), of the quotient category &= &/<P>;, ie.
the map © induces a map ©: 6 —— Picd’.

To the monad F = (F.E), F=@& ©s), there corresponds a monad F'= (F.)
te®
defined as follows: F:= @ ©fs), and the multiplication is induced by &.
e &
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Denote by P’ the image of P in 4  which is the unique up to equiva-
lence quasi-final object of  4’.  Clearly the localization at <P>  provides an
injective map Spec<P>ad{®,E,/ e Spec<P,>£'{@’,E,’}.

Thus, if P is O(s)-stable for all se®, the description of SpecPad{G),E_,}
is reduced to the case of a local ’base’ category.

6.3. A general construction. Let G: 8 —— & be a functor which has an exact
right adjoint functor, G*.

Suppose that B and € are Grothendieck categories; and let T be a Ser-
re subcategory of the category 8.  Since the functor G is exact, the pre-
image G~'(1) of T is a Serre subcategory of the category €.

Let fT denote the full subcategory of the -category B generated by
T-torsion free objects. The embedding

J = Jt']I" fT —— B
has a left adjoint functor, A‘Iﬂr’ which assigns to any object M of B the
quotient of M by its T-torsion.

Thus, we have the following commutative diagram of functors:

fT 3 > T 3 > fT
AN Vev N/ ya
fT G G fT
B—m— € € —— 8
Here T denotes the subcategory G (T).
Note that the functor NepeG:= G1I is left adjoint to the functor

G"‘DJW,.: GF". So, we have a canonical arrow
A Idf'[r — 5"05

which is equal to the composition "va,'yJWoB", where
y: Idﬁ, s Gf"oG1T and &: AJfF°Jf'[r — Idﬂr
are adjunction morphisms.
As to the composition FeoF, we have the diagram:

~t o A ’”
503 = G'Il'o(Jf'ITOAJf'lT)G'ﬂ'A — G'l]' G'|]' _ ]df.u.

Here the right arrow is the adjunction morphism, the left arrow is the mor-

phism GFE‘EG A, where . Ide  — JﬁTo"Jf is the adjunction arrow.
The functor 7§ is faithful.
In fact, let fr M —— L be a morphism in fT" such that 3Ffi= AJﬂ]'OGAf

= 0. By definition, this means that the image of G% is a subobject of the

T
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T-torsion of  GA(L); or, equivalently, im(f) belongs to the subcategory T.
Since L 1is assumed to be T'-torsion free, im(f) = 0. =

6.3. Canonical gradings. Fix an element <P> of Specd. Let S = S<P> be the
corresponding submonad of F (cf. 4.3.2).

Denote by S$<P>-mod<P> the full subcategory of S<P>-mod formed by all
S<P>-modules (V,o) such that Supp(V) < Supp(P). And let F-mod<®|P> be the
full subcategory of the category F-mod formed by all F-modules (M,m) such
that

Supp(M) < U Supp(©(s)(P)).
se B

Clearly the functor [F®S induces a functor

[F®S! * 8<P>-mod<P> —— F-mod<© | P>.

<P>

6.3.1. Lemma. The functor [F®S|

adjoint functor is exact.

<P> has a right adjoint functor, and this right

Proof. For any Serre subcategory I  of the category &, the embedding
Joo X — 4 has a right adjoint functor, JI", which assigns to any object of
4 its I-torsion. In our case, when I coincides with S<P>-mod<P>,

Since the forgetting functor F-mod ——— S<P>-mod is right adjoint

's

to [F®S, the restriction to F-mod<®|P> of the composition JI,AO|S’ where I

is S<P>-mod<P>, is a right adjoint functor to the functor [F®S|<P>‘ Thanks to
A A 3

the exactness of the functors |S and JI , the functor [F®S| <ps’ 18 exact. m

Now we apply the construction of 6.3 to

B:= S<P>-mod<P>, 6€:= F-mod<®|P>, G:= F®S| and T.= <P>.

<P>’
Let <P>F (resp. <P>S) denote the full subcategory of the category €:=
F-mod<®|P> (resp. of the category B:= S-mod<P>) generated by those modules
{M,m) for which M is an object of the subcategory <P>. We have:
SpecF-mod = Spec<P>F U Specf<P>F,
and
Specs = Spec<P>3 U Specf<P>s,

where f<P>F is the full subcategory of the category F-mod<®|P> generated by
all <P>F-torsion free modules, and f<P>% is the subcategory of  <P>S-torsion
free modules. Clearly

Spec < P>[F-mod c Specf<P>F and Spec S-mod < Specf<P>F.

<P>



There is the following commutative diagram

grfF<P> ® > fF<P>

S

fs<P> fs<P>

where the functor & is fully faithful, and its right adjoint functor, A, ‘is
faithful and exact.

6.3.2. Lemma. Suppose that <P> € Specd is such that
<O(SHP)>" 0 <OP)>" =D iff s=1t
(for instance, <P> is a closed point). Then the functor
O: grfF<P> —— fF<P>
is an equivalence of categories.

Proof. This is a special case of the following fact:

Let  Supp(M) = U W be a disjoint union of closed (in the topology 1)
W e Q
subsets. Then M = @& M(W), where M(W)} is the 4(W)-torsion of the object M.
We Q

Indeed, under the conditions, Supp(M/( @ M(W))) = & which means that
W e Q

the quotient module M/( & M W)) is zero. m
We Q

6.5. The general case. Let now <P> be an arbitrary element of the spectrum of
the category 4. We cannot maintain any more that all modules from F-mod<®|P>
are (canonically) X-graded. However, as we shall see, it is still true for ele-
ments of Spec<P>lF-mod.

6.5.1. Lemma. For every V¥V € Spec <P>S-mod, the F<P>-torsion of [F®SW is an
X-graded submodule.

Proof. (a) Fix an S-module Vv = (Vo) from Spec <P>s-mod; and take the

F-module FV:= (F(V)u(V)) with the canonical G(P)-grading: F(V) = @ F{xj(V).
xeX
Consider [F®Sw = |[F®sw|.u'). One can see that |[F®SW| = @ v/x], where
xeX
vfx] = F[x]®sw for any x € X. Thus, we have a canonical X-grading on [F@S'U

such that the natural epimorphism
e: FV —— FO.VY (1)
is a morphism of X-graded F-modules.
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(b) Note that the <P>-torsion of F(V) coincides with & Fix](V).
xeX-N]
For any t € 6, denote by V/(t) the pullback of the pair of arrows

<P>F(V) ——— O(IF(V) «———— O(t)N<P>F(V)),
where the left arrow is the adjoint to the action Ot} <P>F(V)) ——— <P>F(V)
morphism, and the right arrow is ©(#)* of the embedding <P>F(V) — F(V).
Clearly V(1) 1s an X-graded subobject of  F(V), hence the intersection

n V) is an X-graded subobject of F(V). But, this intersection coincides
re®

with the F<P>-torsion of FV.

(c) The functor which assigns to an F-module its F<P>-torsion 1is (right)
exact. In particular, it sends the epimorphism (1) into the epimorphism of
F<P>-torsions; i.e. the F<P>-torsion of F@Sw is the image of the F<P>-torsion
of FV; therefore it is an X-graded submodule of |F®S\v. n

6.5.2. Corollary. For any V¥ € Spec < P>S-mod, the F-torsion free quotient module
t'IF<P>(lF®sw) has a canonical X-grading.

6.6. The spectrum of F-mod/4. The following two theorems give a complete des-
cription of the spectrum of the forgetting functor F-mod —— 4.

6.6.1. Theorem. For every <P> € Specd such that
Supp(O(1)(P)) n Supp(O(s)(P)) # D iff ©O(s)P) = O(t)(P),

the functor ™ °|F®S induces a homeomorphism

F<P>
(Specs-mod<P>,1) ——— (SpecF-mod<®|P>,1).
The functor AJEF <P>
classes of simple objects of the category S-mod<P> and the category

F-mod<® | <P>.

°|F®S induces a bijection between the sets of isomorphy

6.6.2. Note. Clearly if an element <P> of Specd  satisfies the condition of
Theorem 6.6.1, then this condition holds for all specializations of <P>. =

6.6.3. Theorem. For every <P> € Specd the functor 7

F <P>°[F®S induces a ho-
F-mod,T).

meomorphism (Spec < P)S-mod,t) —— (Spec <P>

A
The functor J"_. <P>

ticular, it induces a bijection

ofF ®s sends simple objects into simple objects. In par-

Simple < P>S-mod ———— Simple F-mod,

<P>
where
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Simple _,,_F-mod := Spec_p_F-mod 1 SimpleF-mod
and

Simple S-mod := Spec < P>S-mod N Simples-mod.

<P>
As usual, SimpleB  denotes the set of isomorphy classes of simple objects
of the category @B.

Proofs. Theorem 6.6.1 follows from Theorem 5.4.1 and Lemma 6.4.2. Theorem
6.6.3. is a direct consequence of the same Theorem 5.4.1 and Corollary 6.5.2.

6.7. The case of PBW rings. For the readers’ convenience, we will translate The-
orem 6.6.3 to the language of rings and modules.

Fix a PBW ring ®R:= R(HOE} = (@ st’E")’ where & is the multiplication
se¥
given by the table:

XX, =u§§xuf;(s,t|u) )
for all st e &, and

rx. = 135( r)xS 2)
forall re R and s e ¥ (cf. 2.4).
Fix P € Spec(R-mod). By abuse the language, we shall call the stabilizer

of P in R{9E} the ring ¥y = #5/(0E):= (& x RE), where § is the set
P P seg. S P
P

[s € 8] 3P = P/, & is induced by &; ie. the multiplication in fp is gi-
ven by
u) 3

XX, = )y xuﬁ(s,t
ue §’P

and (2) with & replaced by Sp

Note that  ¢p is usually not a subring in R{9,£}). Denote the minimal
subring in  R{®,§]/ which contains ¢p by Sp.

Consider the full subcategory ~Kp of the category R-mod  generated by
modules M  such that any nonzero cyclic submodule X in M belongs to the
spectrum and <X> = P. And let ?P—modP is the full subcategory of the catego-
ry ?P-mod generated by modules (M,m) such that M € ~Kp- Note that the ca-
tegory ?P-modP is isomorphic to the category SP-modP defined the same way.

Now we have functors:

inclusion yp-modP = SP-modP —_ SP-mod;

tensoring 72®SP : SP-mod —— R-mod,

factorization by ¢ 'P-torsion, where ¥ is the forgetting functor

R-mod ——— R-mod.
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The composition of these functors is the functor which establishes the iso-
morphism of spectra:
SpecP( S’P-mod) — SpecP( R-mod).
Thus the problem of computing SpecP(SQ-mod) splits into
a) finding SpecP(ff’P-mod);
b) factorizing R@SPM by ¥ 'P-torsion.

If the ring R is noetherian, the first problem can be simplified by using
the embedding SpecP(?P-mod) — Spec( ‘.‘PP—mod), where 'fFP = P®RJ(, K = K(P)
is the residue (skew) field of P, and ‘?P-mod is the category of representa-
tions of "Yp in K-vector spaces.

The situation is slightly more comfortable when the ’‘base’ ring R is com-
mutative. Since in this case the residue -category Kp is equivalent to the ca-
tegory Kp-vector spaces, where p = Ann(P) is the prime ideal corresponding to
P and Kp = R/p 1s its residue (commutative) field in the usual sense.

The second problem involves combinatorics related to the multiplication in
the ring R. The solution is pretty simple in the case of the so called hyper-
bolic rings (cf. [R10]).

COMPLEMENTARY FACTS AND EXAMPLES.

C1. Morphisms of graded monads and the spectrum. The most natural question
concerning our constructions of the spectrum is how they behave under a base (=
monad) change?

Let € denote the category of triples (H,nX), where H is a semigroup,
X = (X) an H-set, and T is an H-set epimorphism. A morphism from
(H,wX') to (HnX) is a pair (¢y), where ¢ + H —s H is a
semigroup morphism, and y is a map from X' to X - which is uniquely defined
by the compatibility condition: yon'= meg.

Fix a morphism & = (¢,y): (H ' X)) — > (HnX).

The morphism @ induces a map which assigns to any X-graded monad F
(F,u) in a category 4, the X’-graded monad O F = (<I>#F,u') in 4 which is
defined by CD#F(h'):: F(o(h')), and the multiplication " is induced by W.

Similarly, for any X-graded F-module ™ = (M,m), we denote by CD#JM =
(CI)#M,m') the X’-graded Cb#u-'-modulc defined by CD#M[x]:= My(x)] for any x € X
with the obvious action m’. Clearly the map M—— <I>#JM extends naturally to
a functor @, F-mod —— @ #{F—mod.

Now, we define the (meta)category of graded monads in 4 in the most stan-

dart way. Namely, a morphism from an X’-graded monad F to an X-graded monad

30



F is a pair (®@), where & = (o) is a morphism from (H & X’) to
(HnX), and ¢ : F—— O F is an X’-graded monad morphism. The definition
of the composition is standart as well. We denote the category of graded monads
in 4 by the symbol gr|d.

The map which assigns to any X-graded monad F = (F,u) its submonad F/1]
= (F[1/)') extends to a functor, [1], from the category ar|#4 to the cate-
gory Tlond of monads in 4.

Clearly any morphism &' = (&,¢) from an X'-graded monad F to an
X-graded monad F induces a functor &’,: F-mod —— F’-mod which is the com-
position of ®, and the functor @, @ F-mod —— F'-mod.

One can see that there is a commutative diagram

o’
F-mod F -mod

5 l J 5 (D
D 1],

Fli]-mod —— 5 F'[1 ]-mod

The diagram (1) induces the commutative diagram
fd’,
fKery > fKery'

) 5 )

[ 1],
1 ]-mod ————— F’ [1]-mod

The commutativity of (2) and (the proof of) Theorem 5.4.1 imply that

given a module M € SpectKery, the module (@' M is in  SpectKery if
and only if ®  [1]-F(M) € SpecF'[1]-mod.

The assertion above is not particularly applicable. A really useful fact is

the following lemma.

C1.1. Lemma. For any F-module W™ from f{Ker§, the functor ¥  induces a
bijection of Ass(fD (M) onto Ass(D’[1] o F(M)). In  particular, for any
F/1]-module V, the functor % induces a bijection

Ass(fD LoAF(V)) ———— Ass(D’ 1](v)).

Here AF 1is, as uvsually, a left adjoint to ¥ (cf. Theorem 5.4.1).
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S g,

C2. QUASI-HOLONOMIC MODULES AND CHARACTERS,

C2.1. Essential length. Let B be a local category. We say that an object M
of B is of finite length if either M = 0, or there is a finite filtration

0:= Mo > Ml > y Mn.'= M @)

such that every quotient Ml/Mi-l is a quasi-final object.

We define the essential length, el(M), of the object M  as the minimal
n having this property.

If B has simple objects, then Mi/Mi-1 is quasi-final iff it is semi-
simple of finite length. In particular, el(M) =  if and only if M is a se-
misimple object of finite length.

C2.1.1. Lemma. The full subcategory of objects of finite length of a local -cate-
gory B s thick.

Proof is a standart argument left to a reader. m

C2.2. Locally finite objects. We call an object M of a category 4 locally
finite if,

a) the support of any nonzero subobject of M is nonempty;

b) for any P € Specd, QP(M) € Ob«#/P has a finite length.

Let adg denote the full subcategory of #4  generated by locally finite ob-

jects in 4.

C2.2.1. Note. In ’real life’ examples of categories o, the only objects with
empty support are zero objects. So, the condition a) holds automatically. =

C2.2.2. Lemma. (a) If & is a local category, then Ob% is the family of all
objects of finite length in 4.
(c) For any . M € Obsdg, the support of M consists only of closed points.

(b) The subcategory .ﬂg is thick.

Proof. (a) Let 4 Dbe a local category. It follows from definition of ﬁg
that all its objects has a finite length (since the zero subcategory belongs to
the support of any nonzero object of ). Suppose now that M € Obd is of fi-
nite length; i.e. there is a filtration (1) such that each quotient M I/Mi-l is
a quasi-final object. This implies that Supp(M) = 0. Therefore QP(M) = (0 for
any P € Specsg which is not equal to 0.

(b) First note that if P € Supp(X) and P € Specd is any specialization
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of P (ie. PP cP), then P’ e Supp(X).

Fix an M € Obaflg. Let P € Supp(M); and let P’ be a specialization of the
point P. Since P € Supp(M), QP,(M) is a nonzero object of finite length in
the local category — AP It follows from the argument in (a) that the support
of QP’(M) is 0. But PP € Supp(QP,(M)). Therefore P = P,

(c} It follows from the definition of 4, that

4
4, = q Qp ((4/P),).
£ Pe Specd P ¢
Since all localizations QP are exact, it suffices to check that 4 is

thick when the category il is local. According to the assertion (a), in this
case, Ag is the category of objects of finite length. So the assertion follows
from Lemma C2.1.1. =

C2.3. Locally associated points. For any M € Obd, set

LAss(M) = {P € Specd| QP(P) € Ass(QP(M))} (1)
Clearly Ass(M) < LAss(M) for all M.
The inverse inclusion is true if & = R-mod, where R is a commutative
noetherian ring ([B], Ch.1V, 1.2, Cor. of Prop. 5).
It is still true if # = R-mod, where R is a left <-noetherian ring; i.e

a ring with maximality condition for left ideals with respect to the preorder <
(cf. {R3]). Recall that left <-noetherian becomes just noetherian if the ring R
is commutative.

In the non-affine situation, a sufficient condition is: o has  Gabriel-
Krull dimension and any Serre subcategory $ of 4 such that &5 is local
belongs to Specd. The category 4 = R-mod has these properties if R is left
<-noetherian.

We summarize the main properties of the map LAss in the following asser-

tion.

C2.3.1. Proposition. (a) LAss(M) < Supp(M) for all M.
(b) For any short exact sequence 0 > M’ s M > M" —— 0,
LAss(M’) ¢ LAss(M) < LAss(M’) U LAss(M").
(c) If Q s a directed family of subobjects of M and supS) = M, then
LAss(M) = U LAss(X).
Xe2

In particular, LAss( © Y) = U LAss(Y) whenever @ Y exists.
Ye= Ye= YeZ
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Proof is analogous to the proof of similar statements about — Ass( ) (cf.
[R5], Section §8). =

C2.3.2. Lemma. For any object M of the subcategory A#, Supp(M) = LAss(M).

Proof follows from definitions. m

C2.3.3. The category t’;'g(i’a‘). Fix an exact functor &+ B8 —— & between abelian
categories. Call an object M  of the category B  F-locally finite if F(M) is
locally finite: %(M) e Obﬂg. Denote the full subcategory of B  generated by
F-locally finite objects by t‘?#(?). When ¥ is the forgetting functor from
F-mod to 4 for some monad F in &, we could write 1‘3#([!-') instead.

Since the functor ¥ is exact, and ﬂg is thick, the category E’g(?) is
thick too.

An example to keep in mind: for a reductive Lie algebra g and its Cartan
subalgebra h, let ¥ be the forgetting functor from g-mod to Hh-mod. Note
that, the category tig(f;‘) contains the category O.

C2.4. Quasi-holonomic objects. We define the subcategory of quasi-holonomic ob-
jects in 4 as the full subcategory Qh«d  of the category 4  generated by all
M € Obs# such that

(a) for any nonzero subobject X of M, LAss(X) # &,

(b) for any <P> e LAss(M), the localization of M at <P> is an object
of finite length.

Clearly sdg C Qhd. The inverse inclusion does not hold if Specd has non-
closed points. In fact, any object P € Specd is quasi-holonomic. While P  be-
longs to 34# iff it is closed.

Given a functor ¥: B —— &, denote by QAh(¥) the preimage of the sub-
category S‘"(QM). We call the objects of QMF)  F-quasi-holonomic. Again, we
may write QA(F) if ¥ is the forgetting functor F-mod —— 4 for some monad
F in 4.

C2.4.1. Remarks. (a). If in the exact sequence
0 — M » M » M" y 0
the objects M" and M" are quasi-holonomic, then such is M.
If M € Qhd, then, certainly, M  is quasi-holonomic; but, M" might be

not. Which means that the subcategory Qhs# is not, in general, topologizing.
The same is true for F-quasi-holonomic objects for any exact functor ¥.
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{b) One can show that ‘lg is the largest thick subcategory of &  contai-
ned in Qhd. =

C2.5. Characters. The main reason for introducing the category  QA(F) is that,
for objects of QA(¥), there is a well defined notion of a (formal) character.

Denote by GSpecd the subset (or subspace) of all points P € Specd such
that &P has simple objects. For any M € Obd, set

GAss(M).= GSpecd  LAss(M), GSupp(M):= GSpecd y Supp(M).

Fix an exact functor %: B ——» 4 The formal character of an object M
of QA(F) is a function Chst, M= chM which assigns to any P e GAss(F(M)) the
length of QP(?(M)). In other words, formal character as an element of the free
abelian group generated by GAss(F(M)):

chy = % length(Qp(F(M)))eF. 1)
Pe GAss(M)

Note, that if the category £  has Gabriel-Krull dimension (e.g. 4 is lo-
cally noetherian) which is the case of most of examples, and in many other ca-
ses, GSpecd = Specd. (cf. [R3]).

C2.5.1. Lemma. Let 0 > M’ s M —— M" —— 0 be an exact sequence.
(a) If M e Eﬁ(?), then chM = chyp + chy o
(b) If M € QWNF) and, for all P € GAss(M"),
Qp(F(M)) = QP(?(M')) ® Qp(FM")), (2)
then chM = ChM' + C’le

Proof. (a) The assertion (a} follows from the equalities
GAss(M) = GSupp(M) = GSupp(M’) U GSupp(M") = GAss(M’) U GAss(M")
(cf. Lemma C2.3.2) and the equality length(M) = length(M’) + length(M") in the
case when M is of finite length.
(b) The splitting (2) implies that  GAss(F(M)) = GAss(¥(M’)) U GAss(F(M")).
The rest of the argument is the same as in (a). =

C2.5.2. Remarks. (a) A standart interpretation of the assertion (a) is that the
function

ch|€£(?) : Obﬁg(ﬁ) ——— Maps(GSpecs,Z), M+—— chyp

factorizes through the canonical map (%) —— Ko(l‘é’(?)). So that we have the
uniquely defined Z-module morphism cho: KO(G’(?)) —— Maps(GSpec4,2).
Clearly the morphism ch, is injective if GSpecd = Specd.
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(b) There is a similar interpretation of the whole map
ch: ObQh(¥) —— Maps(Gspecd, Z).

Only this time, one should replace Ko be the relative Grothendieck group
Ko,? corresponding to a class E of short exact sequences defined as follows:

An exact sequence E = (0 > M’ > M > M” > 0) in B belongs to
E = E9 iff M e ObQnF), and GAss(¥(M”)) < GAss(¥(M)) (this implies that E
belongs to QA(F)). According to Proposition C2.3.1, the class E contains all
exact sequences E  such that QP(E) splits for any P € GAss(M") (cf. the as-
sertion (b) of Lemma C2.5.1). m

C2.6. Quasi-holonomic modules over a skew PBW monad. We begin with the following
observation: for any exact functor %: B —— 4,

SpecB n QWF) = U SpecP(?) n (%) (D
Pe Specd

So that the description of the intersection SpecB n QME) is reduced to
that of SpecP(?) n Q(¥F) for all P € Specd.
Similarly,

SpecB n 6,(%) = U Specn(F) N C(F). (2)
n ¢ Pe Specd P/ N ¢

Note that, since G’g(?) is a topologizing (actually, thick) subcategory in
B, we can identify SpecB n Ge(?) with Spect?g(??) and Spec(?)Pn Qh(%) with
Specpté‘i( F).
Suppose now that F is a skew PBW monad in # and & is a forgetting
functor F-mod —— 4. The bijection
SpecP[F-mod — SpecPsP-moa'
of Theorem 6.6.3 induces an injection of
QhSpecPfF-mad:: {<(M.m)}> € SpecPEF—mod | M € ObQh4)
into
QhSpecPSP-mod:= [<(V.)> € SpecP[F-mod | <V> = P}
Under certain (pretty mild) finiteness conditions, this map
QhSpecP[F-mod —_ QhSpecPSP-mod
is also surjective. In particular, it is surjective for all examples of skew PBW

monads we consider here. =

C2.6.1. Lemma. An object M = (Mm) of SpecP!F-mod | ObQh(F) has nonzero cha-
racter iff P e GSpecd

Proof. Note that GSpecd is Autd-stable.
In fact, P e GSpecd if and only if there is an object V  which is simple
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modulo P; ie. V ¢ P, and, for any monoarrow g V——— V, ecither V € P,
or Cok(g) € P. Clearly simple modulo P  objects are exactly those objects
which are made simple by the localization at P.

For any auto-equivalence ¥ of 4 and a simple modulo P object V, the
object (V) is simple modulo GO(P).

The Autd-stability of GSpeed implies that Ass(¥(M)) < GSpecd iff one of
the points of GAss(¥(M)) belongs to GSpecd.

Actually, it is possible to get a more explicit picture.
Fix any point P of Specd. And consider the associated with P  submonad
Sp'= ( & ©Om&), where 5P:= [t e §| O()P = P).

t e gP
For any + € &P, the auto-equivalence ©(f) induces an auto-equivalence,

©(t), of the thick subcategory  #A(P7):= «(Supp(P))  which, in turn, defines an
auto-equivalence, ©(t)~, of the quotient category X P:= 4P7)/P.

Recall that the category K P is ‘“zero-dimensional”; i.e. (since K P s
local) SpeckK P consists of only one point.

Consider the full subcategory XP  of the category K P  generated by all
objects M of K P which are supremums of its subobjects V ——— M such that
<V> = P. One can check that the subcategory KP ' is topologizing which implies
that KXKP  inherits the nice properties of the category K P: it is local and
its spectrum consists of only one point.

Clearly the subcategory @ XP  is stable with respect to any auto-equivalence
® such that %P) = P. Therefore the monad SP defines a monad

Ksp = ( ® O(1),0)
t e gP
in the category KP. The localization at P provides an embedding

i SpecPSP-mocI —_— SpecJ(sP-mad.

C2.6.2. Lemma. Suppose that 4/P  has simple objects. Then the monad Xsp is
isomorphic to RP®K for a certain ring RP over the skew field K = KF

Proof. By Lemma 5.4.1 in [R3], the residue category XP of the point P
is equivalent to the category KP-mod = KP-Vec of KP-vector spaces for a skew

field K = KP - the residue skew field of P. The functor @ O(t)~ is iso-
t € 5P
morphic to RP®K for a K-module RP. The multiplication &~ of Sp defines

(uniquely) an associative ring structure H: RP®KRP —— Rp. =
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Thanks to the Lemma C2.6.1, we can identify the category J(Sp-mod with the
category Rp-mod/Kp  of Rp® -modules.

C27. Lemma. Let <(M,m)> be the image of an element <¥> = <(V,u)> under the
canonical bijection ¢P: SpecPSP-moa' —_— SpecPU-'-mod for some P € GSpecd
If the module (M,m) is quasi-holonomic, then i¥) is the coproduct of a

finite number of copies of a simple KP-ﬁnite dimensional RP-module (¢f. Lemma
C2.6.1).

Proof. 1If (M,m) is quasi-holonomic, then the image, V) = (QPV,u'), of
v = (Vi) in RP-moa’ is KP-finite dimensional. Since iv¥) is  K-finite di-
mensional, it 1s artinian; in particular, it contains a simple submodule, say
P. But, being an object of the spectrum, i(¥) is equivalent to P. The lat-
ter means, since P is simple, that ¥} is isomorphic to the coproduct of a
finite number of copies of 7. =

C2.8. Example: skew PBW monads of rank one. 'Rank one’ means that § = Z and ©
is a map from 2Z to Aut(#4) which sends n 2 0 into 0" and n < -1 into
2" where 0 is an auto-equivalence and 0" its right adjoint. The action is
given by the data
£ = (E(stlu): 8%80 —— 6% | stu e 7,

where 0°%:= 7%, if s s negative.

For any P € Specd, the stabilizer, $P:= [rez| ©O(1)P=P], coincides with
mz for some nonnegative integer m. Thus we have a partition:

Specd = U Spec"ad,
nz0
where Specnsd:= {P € Specd| P = nZj.

(0) Theorem 6.4.3 provides a map
: Specoad —— Specs/{BE].

One can easily find the preimage of the map ¢. Note first that, for any
P € Specd, the morphism E_,(s,r|u)(P): esoe’(P) _— Gu(P) equals to zero if
s+ tF U

In fact, if  &(st|u)(P) is nonzero, then it is a monomorphism. The latter
case implies that  0%0'P) = 6%P),  or, equivalently, <8"t"¥p)> = P
which, by hypothesis, means that s + 1 = w.

Let P = <P>. Set

Z P:=fs € N| &/1,-s|-s+1)(P)=0} U [-oo}, E+P.'={s € Z| &/-15|s-1)(P)=0} U {e],

and denote by ¢ +P the minimal element of Z +P and by ¢ P the maximal ele-
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ment of Z P. Let [P denote the interval '(E +P,£_P) and /PL := 7 - /P. One
can see that @ 0"(P) is a maximal F-submodule of F(P):=( @ 0"(p)&),
n € [PL nel
and the map ¢  assigns to the point P  the equivalence class of the quotient
F-module ®(P):= ( ® ©O"(P)E(P)).
n e
In particular, if E&/s,-s|O)(P) # O for every s € Z. Then

D(P) = <F(P)>:= <( & 8"(P)EP))>.
nez
Clearly

_ <9"(P)>
Cth(P) = lengrh(QP(P)) Eneme .

Chosing P in such a way that QP(P) 1s a simple object, we obtain:

5 e<9"(P)>'

ch =
D(P) nelP

(+) Let now P € Specmad; 1.e. the stabilizer &P of the point P is mZ

- —— mn . ..
for some m. Thus Sp = F, = (n EGB ZG (P),&m(P)), where &m is the restricti-

on of the multiplication table to m2Z.
The localization at P provides an embedding
i SpecP[Fm—mod —_— SpecJ{[Fm-mod, (1)
where KF = { & ﬁn,C) is the induced by Fo monad in the (semisimple) resi-

neZz
due category KP.

Suppose that P € GSpecd. Then the category XKP is equivalent to Kp-mod
for some skew field K = KP. And the monad KF is isomorphic to the monad
RP®K for a certain ring RP over a skew field K. According to Lemma C2.7,
the image, (M,m), of an element <V¥> = <(V,»)> under the canonical bijection

¢m: SpecP[Fm-mod — Sp-ecPﬂ-‘-mod
is quasi-holonomic if and only if V) is the coproduct of a finite number of
copies of a simple K-finite dimensional R-module.

In general, there might be lots of infinite dimensional (over KP) simple
objects in [Fm-moa'.

C2.9. Example: skew group monads (crossed products). Fix a group (. Consider a

skew PBW monad F in # defined by a map ©®: G —— Aut(d4), and morphisms
E(s,1|u): G)SoG)r —_ G)u, stu € G,

such that E&(s;t|u) = 0 if u # st. So that we can set {(st):= &(st|u).
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The fact that § defines an associative multiplication is given by:
Gsnl(nu) =Y(stu)® s,
L(s,1) = C,s) = id.

Suppose that P & Specs is such that GP:= (g € G| Gg(P) = P} is a normal

subgroup in G. Then the functor
SpecPSP-mod —_ SpecPu-'-mod (D

of Theorem 6.6.3 sends (quasi-)locally finite Sp-modulcs into  (quasi-)locally
finite F-modules. This follows from the fact that, under the assumptions, the
functor Il-'®SP sends any SP-module ¥V = (Vwu) such that <V> = P into a
quasi-holonomic F-module which is locally finite iff P is a closed point.

In particular, if the group G is commutative, this holds for all P.

Note that hyperbolic monads of any rank are special cases of the latter si-
tuation. m

C3. Dualization. Fix an abelian category 4. As usual, &  denotes its dual
category.

C3.1. Lemma. (a) The preorder > coincides with its dual.
(b) Speca™  Specsdt = (P € Obd| P > X # 0 = X » PJ.
In particular, Specd™ (y Specd < Maxd:= (P € Specd| <P> s closed).
(c) If any nonzero object in & has a nonempty support, then
SpecA N Specd = Maxd.

Proof. (a) By definition, X > Y iff Y is a subquotient of a direct sum
of a finite number of copies of X. Dualization saves finite direct sums; and if
Y is a subquotient of X’ in 4, then it is a subquotient of X' in 4. The
latter is due to the fact that if in the fiber coproduct

1
K—— X’

el ) le'

Y — — YlUX’
K

[

the arrow e (resp. 1) is an epimorphism (resp. monomorphism), then & is an
epimorphism (resp. U is a monomorphism).

(b) Suppose that P & Specd™ [ Specd. Then any nonzero object X such
that P > X is equivalent to P. In particular, P is closed.

40



In fact, P > X means that there exists a subobject K of (n)P for some
n and an epimorphism K —— X. Thus K = P. And, since X is nonzero and P
(hence K) belongs to Specd™, X = K.

(c) Suppose now that Supp(M) = & only if M = 0. And let <P> is a clo-
sed point of Specd. Let P > X # 0. Since X is nonzero, X » P’ for some
element P’ of Specd. Since <P> is closed, P = P’. Therefore P =X m

C3.2. Corollary. (a) A category 4 is local iff 4% is local.
(b) Spec”d:= [thick subcategories P < 4 such that /P is local} is self-
dual; i.e. Spec’sd = Specrd™.

We will indicate the dualization by °. For instance, Spec’4 denotes
Spec«™; Supp®(M) is the support of M in 4%, etc..

C3.3. Residue and coresidue category. Let 4 be a local category. Recall that
its residue subcategory  K(«4) is a full subcategory of &4  generated by objects
M which are supremums of their subobjects X  such that <X> = 0. The
coresidue category K°(#) is defined dually: K°(d):= K(«4°").

The subcategories K(#) and XK°(#) are topologizing.

If 4 has the property (sup), then the subcategory  K(#) is coreflective.
If 4 has the dual property (sup®):= [(sup) in 4], K°(d) is reflective.

For any P € Spec®d, we have the residue and coresidue categories at P:
Kp(d):= K(/P) and J(P"(sd).': KP"(A/P) respectively.

C34. Quasi-finite objects. We say that an object M  of the category 4 s
quasi-finite if, for any nonzero subobject M’ of M,
(a) Supp(M’) = LAss(M') # O,
(b) for any P e LAss(M'), p™M’ is finite for all n.
Denote the full subcategory of quasi-finite objects in 4 by o
Clearly "ﬂg o

-

cC 4

C3.4.1. Lemma. ‘dqi is a thick subcategory in 4.

Proof. The condition (a} for all nonzero subobjects defines a Serre subca-
tegory. The condition (b) defines a thick subcategory. Details are left to the
reader. m

Given an exact functor % B —— A, set Gqﬂ?}:: S‘"(Aq:), and call ob-
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jects of the subcategory 6 qﬁ(?) F-quasifinite. It follows from Lemma C.?2.4.1
that & qﬁ(?) is a thick subcategory of 3.

If % is a forgetting functor F-mod —— 4 for some monad F in 4,
we could write i‘é‘qe(ﬂ-‘) instead of § qﬁ(sz) and call objects of this category
quasi-finite F-modules.

C3.5. Quasi-cofinite  objects.  Actually, we are more interested in the
subcategory adq; of quasi-cofinite objects which is by definition (4) q;p,
and the corresponding relative subcategories € q;(%). One of the reasons of
this interest is the following example.

C3.5.1. Example. Let & be the category of quasi-coherent sheaves on a smooth
variety X; and let D be the sheaf of differential operators on X  which we
identify with the corresponding monad. Then G q;(SD) is the category of
holonomic D-modules. =

C3.6. Skew PBW comonads and their spectrum. A prototype (and a consequence) of
Theorem 6.6.3 is the description of highest weight representations as unique ir-
reducible quotients of Verma modules. Or a similar fact about Harish-Chandra mo-
dules. There is also a widely used (say, in representation theory of finite gro-
ups) dual way to get irreducible representations as unique subobjects of coindu-
ced representations. This dualization can be obtained as a corollary of Theorem
6.6.3 as follows.

A comonad G = (G,6:G —— GoG) in #& is a skew PBW comonad if the dual
monad &° in «° is PBW. Thus we can apply Theorem 6.6.3 to get a description
of SpeCOPG—Comoa’ for any element P of Spec’d in terms of SpecOPBP-comod,
where  Gp is the comonad generated by the stabilizer of P. The corresponding
("dual’) functor of Theorem 6.6.3 maps any V € Spec°PGP-comod into the uniquely
defined subcomodule of the coinduced G-comodule.

Suppose now that P € Spec’d  Specs (for instance, P = <P> for a simple
object P; or, every nonzero object of 4 has a nonempty support, and P is a
closed point in Specd; cf. Lemma C.3.1). And let the GP-comodule V be a clo-
sed point (resp. a simple comodule), then this uniquely defined subcomodule is a
closed point of Specpds-comod (resp. a simple G-comodule).
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C4. WEYL ALGEBRAS.

Presently, (at least) three types of Weyl algebras are known:

the ’classical’ Weyl algebra A j(k) over a field &;

the algebra Dq, J = Dq, J(k) of g-differential operators with polynomial
coefficients which is a most straightforward one-parameter deformation of the
classical Weyl algebra; |

the introduced by Hayashi [Ha] quantum deformation, Wq, J = Wq, J(k) of the
Weyl! algebra A 7 which is called the quantum Weyl algebra.

Recall their definitions.

The algebra Dq, J(k) is generated by the elements Xp Y i € J, sub-
ject to the relations

i D= XY= ()

for every i, j € J such that 1 # j. Here ¢ is an invertible element of the
field k.

The classical Weyl algebra Aj(k) coincides with D;,J(k)'

The quantum Weyl algebra Wq’ j(k) is generated by x, Yp T i e J

i [
which are related as follows:

T A WT Dyp

Wi DT Ay q-lyzxi - Zi-l;
AT X T e Y T LY
for any i, j € J such that § # j.
Denote by R the ring of polynomials in the indeterminates & J = (E_,i| i €
J) over a field k : R:= kfE J]. Let ﬁi denote the automorphism of R given
by ﬁl{éi) = q&i + | and ﬂi(l';j) = éj if i#]j
The algebra IDq J(k) is isomorphic to the constructed by the data (R, ﬂil
i € J} hyperbolic ring; i.e. ﬂ)q J(k) is defined by the relations

xr = 0(r)x, ydfr)=ry, forany re R (1)
_ _ q-l

Y= F’i’ Y& = ﬁi (t:-,) (2)

xl.yj = iji, szi = thj’ yl.zj = zjyi, 3

where i, j run through J, and 1§ # j.

Similarly, the algebra Wq,J(k) is given by the relations (1), (2), (3)
with different R and 131., i € J. Namely,

R is the ring of polynomials in §l., Z; zi", ieJ;
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B(8) = a5, + 1, V) = gz
and ﬂi acts identically on ﬁj, % for je J- {[i].

Denote by G the generated by the set {61" i € J] subgroup of Aut(R).
According to Theorem 6.6.3, we need to find, for any prime ideal in the ring R
its stabilizer in G. We shall do it for each of the three rings - A J(k),
Dq’ J(k), and Wq’ J(k) - separately.

C4.1. The case of the Weyl algebra. For any map o J —— %k, denote by 6
the translation by o; i.e. Baﬂéj) = ﬂﬁj + o) for any function fé R.

The translations Oa, o € L, form, obviuosly, an abelian subgroup,
Ir(R), in Awf(R). For any subgroup G in Zr(R), define rank(G) - the rank
of G - as the dimension of the k-vector space generated by all o  such that

GaeG.

o

The following assertion was, probably, known a hundred years ago; but, it
is easier to prove it than to find a reference.

C4.1.1. Lemma. Let G  be a finitely generated subgroup of the group  Ir(R).
Then the subspace SpecGR of G-stable prime ideals in R is naturally embedded
into the spectrum SpecRG of the subring RC of G-invariants of the ring R.

If chartk) = O, then this embedding is an isomorphism, and SpecRG is an
affine subspace in SpecR of the codimension r:= rank(G).

Proof. a) Consider first the case when G is a subgroup of rank 1; ie. G
is generated by one non-identical translation, say Ba,
Ga(ﬁj) = ij +afj), je L
Choose ¢ such that ofi) # 0, and denote by T<aq,i> the linear map
Z‘,jn-——-a a(i)éj - a(j)&l. for all j e J. (1)

Set {:= T<o,i>(g), i.e. Cj:=T<01;i>(§j) for all j e J. Clearly
ea(gj) = §j for all j e J.

Since  ofi) # 0, the operator T<q;i> is a surjection onto the subspace
of codimension .

Denote by R, the subring of polynomials in Cj’ je J- (i Let p be
an arbitrary Ba-stable prime ideal in R. Set P P N Ra; and let Ka deno-
te the field of fractions of the domain Ro/poz‘

The claim is that p is generated by Pp - P= (pa).

Take the image, p’, of the ideal p in the quotient ring R/(pa). The



o
into the ring Ka[};i] and the ideal p° into a prime ideal p” in the ring

Ka[ij,i]. Since K Ot[&l.] is a principal ideal domain, the ideal p"” is generated
by a polynomial, say f and the Ga-stability of the initial ideal P is
equivalent to the equality

localization at the multiplicative system R - P, transfers the ring R/(pa)

JE+ (i) = fig). (2)
Since ofi) # 0, the equality (2) is satisfied if and only if f e Kalﬁip-
&l.], where p:= char(k).
b) Now, pick another translation, 6,. Note that
eB(CJ') = Cj + {a.B)(ij) (3)
for all j e J - [ij. Here
foBi(ij):= a(i)B() - ali)B(i).
The formula (2) shows that BB(CJ.) = Cj for all j € J - {i] if and only
if B=Aa for some A € k.
So, if o and B are linearly independent, then there is an index j € J,
J#-i, such that {0, Bj(i,j)20. And we apply the transformation T<{o,B}(ij)j>
(cf. (1) to {Qt] t € J-{i}). And then apply the obtained in a) result to the
automorphism (-)B.
c) Etc.. m

C4.1.2. Stabilizers. Fix a subgroup G  of the group 3Ir(R). For any finitely
generated subgroup H in G, denote by S(H,G) the subgroup of all ¢t € G
such that every  H-stable prime ideal in R is t-stable. It is not difficult to
find S(H,G).

In fact, S(H,G) = H G, where H := S(HZIr(R))

It follows from Lemma C4.1.1 that H = {6a| o € Vec(H)], where Vec(H)
denotes the k-vector space spanned on (B| 8, € HJ.

Thus, S(HG) = {8a| o € Vec(H) n G).

C4.2. The case of the algebra of q-differential operators. Consider now a
subgroup G of Aut(R) generated by a set of automorphisms {ﬂi| i € JJ] which
act as follows:
61'(&1') = qi&i + O ﬁl(E"j) = g_] if =]

Set J:= (i € J| q; # 1) For every i € J', define a new element, t-'i’
by &y =& - Wi), where y(i):= a/i-q)).

Since 19!.(C’.) = qui, and ﬂj{(‘;i) = t-'i if i#j, the prime ideal (Ci):=
RC_,i is G-stable.

45



Denote by J'(m) the set (i e J| q’.m=|, qis¢1 for 1<s<m-1j, m>2; and let
J(0):= (i € J'| q; is not a root of onej. Set x(i)::C_,im for every ieJ(m).

We assume that char(k) = 0.

Clearly the subalgebra B in R generated by (x(i)] i € J} consists of
G-stable elements.

Now, fix a subgroup H of the group G. We want to describe the set
Spect’R  of H-stable prime ideals in R -
j» generated by {§i| ieJ":=J-J’)] is G-stable.
Let H" denote the induced by H subgroup of Aut(R,.).

Finally, Ry, denotes the subalgebra in R  generated by all Lf,i such that
ieJ' and ﬁi is H-stable.

According to Lemma C4.1.1, H"-stable primes of R g form an affine subspa-

Clearly the subalgebra R

ce, SpecRJ..’ I of codimension r = rank(H") in SpecRJ,h

Thus, we have an embedding

H
Ly SpecB 1 SpecRH M SpecRJ,,’H m ( m J’H{(Ci)}) ——— Spec 'R,

i €
where JH:= [i € J| &i is not H-stable}.

C4.2.1. Lemma. The embedding Yy is a homeomorphism.

Proof, similar to that of Lemma C4.1.1, is left to the reader. w

C4.3. Example: the second Weyl algebra. Consider the second Weyl algebra Az(k)
over a field k&  of characteristic zero. So that Az(k) is a hyperbolic ring,
R{OE}, where

R = k[él’ézj’ el’(E‘t]) = ;}, + 81_}"
X% = Xy xjyi = yij if @]
— — -l o
Xy, = ﬁi, yx; =6, (&i) for i = .2

Let G be the subgroup in ZXr(R) generated by 91 and 92. Fix a pair
(m,n) of nonzero integers, and consider the subgroup (0
by © —gMg"

mn 1 2

m,n) in G  generated

It follows from C4.1.3, that the following subgroups in G  are stabilizers
of nonzero prime ideals in R = k[E_,l,§2] :
G, (91), (62) and (ﬂm,n)’ where (m|n) = 1,
Here (m|n) denotes the highest common factor of m and n.
And the stabilizer of any nonzero prime ideal generated by a prime ideal in
the algebra  k[y/, where vy s resp. E,I, &2, or nE_,‘ - mE_,z, coincides with
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the corresponding subgroup from the list (1) (cf. Lemma C4.1).

Now, fix a stabilizer (Olmoﬁzn), where (m|n) = 1. Let p be a nonzero
prime (hence maximal) ideal in the corresponding ring  k[/y]. Consider the gene-
ric case: m # 0, n # 0.

Set x:= x"%" and y.= yl”yzm. The corresponding to the point p =
kfAylp ring is the hyperbolic ring R{x,y;9,(}.

Here R is the quotient ring k[AY//Ap) =~ K[A]; (p) is the generated by
p (prime) ideal in the ring k/AYy/;, K is the quotient field kf[yl/p; § =
&,lm&z"mod (p); & is the induced by el’"oez” automorphism of the ring KfAJ.
Clearly 9ffid) = fik + n + m).

The quotient ring over p is isomorphic to the ring K’[x,x'l;ﬂj of skew
Laurent polynomials over the field K':= K(A).

Now consider special cases.

(a) Let p be a nonzero prime ideal in k[§],§2] which is (8 )-stable;
ie. p = k[ﬁI,E_,sz, where p is some maximal ideal in k[&,z]. The correspon-
ding to the point p hyperbolic ring is R{ﬁl,ﬁlj = R{xl,yl,'ﬁl,E_,lj, where

R =KE] K=KEIp, DAEL) = fE+).

The quotient ring over p is isomorphic to the ring K’[xl,xl'l;elj of
skew Laurent polynomials over the field K = K(g‘ ).

Similarly, any © -stable nonzero prime ideal in k[§|,§2] is generated by
a maximal ideal p in k[E’;I J; and the corresponding to p hyperbolic ring is

R(9,E,) = Rfx;y,0,8 ).
where R = K[?;Z], K = k[F,z]/p, ) 2ﬂ§2) = f(§2+1). The quotient ring over p
is isomorphic to the ring K’[xz.xz";92] of skew Laurent polynomials over the
field K = K(E ).

(b) The -only remaining possibility is the stabilizer equal to the whole
group G. Since chartk) = 0, the only G-stable proper ideal in k[il,E_,z] is
the zero ideal. The localization at k[E,l,izj—,’O} provides an embedding of the
set SpecoR{Bl,Gz;&l,ézl-mod into SpecK[xl,xz,xl'l,xz";el,ez], where K is
the field of rational functions (€ .5 ). =

C4.4. Example: the second algebra of q-differential operators. Consider now the
k-algebra [Dq,2 of q-differential operators in two indeterminates with polyno-
mial coefficients. We assume that both q(1) and q(2) are not roots of one.

Consider the subgroup of G generated by the automorphism .= Blmoﬂzn,

where m and n  are nonzero integers. Set Ci:z (@i - yi), where Y; denotes
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1-q(i)), i =1, 2. We have:
oC) = a)"C, ¥C) = q()"¢,
which implies that the only nonzero primes in k[&I,E‘,z] = k[Cl,CZJ stabilized
by U are
(CI), (C), and (C,,Qz)- 4)

Note that the stabilizer of each of the ideals (4) is the whole group G.
Thus, the list of stabilizers is pretty short this time:
the group G, and its cyclic subgroups (Ol) and (02).

Consider each of these cases:

a) Fix a prime ideal p in k[él,ﬁz] the stabilizer of which is the
subgroup (Bl). According to Lemma C4.2.1, the ideal p is either generated by
some maximal ideal p in k[&,z] which is not equal to (Cz) (cf. the list
(4)), or it is generated by a maximal ideal p # (Cz) in k[§2] and by (C]).

The corresponding to the point p  ring is the hyperbolic ring  R'/8,E}.
Here R = k[&l,ézj/p is isomorphic either to  K/§ J, where K is the quoti-
ent field k[§ Jp, p:=k(E Jnp, or just to the field K (f ppk/E ] = (G )

¥ is the induced by (-)I automorphism of R’;

£ is the image of E,l.

If pn k[&lj = 0, then the hyperbolic ring R'{9,£} is isomorphic to the

ring |Dq of ordinary q -differential operators with coefficients in K[él 1.
1

And the quotient ring over p  is isomorphic to the ring K'[x],xl'l;Ol] of
skew Laurent polynomials over the field K':= K(e’;I ).

If pn k[E_,l] £ 0, le p = (p,Cl) for some maximal ideal p in k[§2],
then R is the field K:= k[&zj/p, and the image of &l in K coincides
with the invertible element Y, Clearly O is the identical map. All this im-
plies that the quotient ring over the point p is isomorphic to the ring
Kixx'] of Laurent polynomials over K.

b) Suppose now that the stabilizer of a prime ideal p  coincides with the
group G. There are four points in Speck[ﬁ},ﬁz] which have this property (cf.
the argument above): 0, (C_,l), (C_,z), and (CI,CZ).

Consider each of these possibilities in the inverse order.

(i) p= (C;'Co)' Then there is a natural isomorphism
k[élvgzj/p —_ k’ glb—_) Yl’ &2""_') YZ'

The corresponding to the point p ring is isomorphic to the ring
k[xl,x2,xl",x2" ] of Laurent polynomials over &.

48



—_—— = =

(i) p = (Cl). Then k[&l,izj/p = k[§2]. The quotient ring over p s
isomorphic to the ring K[xz,xz";ezj of skew Laurent polynomials over the
field K:= k(&z).

Dually, if p = (Cz), then k[l‘;],l‘,zj/p = k[&lj; and the quotient ring
over p is isomorphic to the ring K[xl.xl'l;BI] of skew Laurent polynomials
over the field K:= k(ﬁl).

(iii) There remains the case p = 0. So, we localize at the set k[§1,§2]
- {0}. The corresponding ring is isomorphic to the ring
K[x,x,x '\x,7;6,6,] of skew Laurent polynomials over the field K:=
k(il,ﬁz) of rational functions in two variables.

C4.5. Quantum Weyl algebras. Denote by Ic¢(R) the set of morphisms
<qo> R —— R, fi&z)—— fiq€+0z,qz),
where q is a function from J to k* and o is a function from J to &
Here & = (QI.), = (Zi); so that
(4§ + oz); = q(i)f; + ofi)z;.
Clearly Xc(R) is a subgroup in Aut(R).

C4.5.1. Lemma. Suppose that char(k)=0. Let G be a subgroup in Ic¢(R) gene-
rated by a set of automorphisms
<q,a>: fifz)—— flqf+0z,qz)
in G such that, for any i€ J, q(i}) =1, if ofi} = 0.
Then the natural map SpecR —— SpecRG induces a homeomorphism of the

subspace SpecGR of G-stable points of SpecR onto SpecRG.

Proof. It suffices to prove the assertion in the case when G is a cyclic
subgroup generated by an automorphism ©. Set
J(B):= {j € J| G)(&j) # ﬁj}, and JYO):= J - J(O)

Fix a O-stable prime ideal p in R. Set p'= RJ(@) AP and R':= R/Rp.

The localization at R J(@)/p - {0} transfers the ideal p/Rp of the ring
R’ into a prime ideal p” of the ring K"[(E_,j| j € JYO))], where K" de-
notes the field of rational functions (over k) in variables E—’t’ t e JO)
Clearly p = Rp iff p” = 0.

Therefore we can (and will) assume that J(©®) = &, hence K" coincides
with k&, p” with p. And what we need to show is that p equals to zero.

(a) Note first that the intersection of p  with the subring of polynomials

in (Zil i e J) 1is zero.
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Indeed, p:= p n k[(zi}] is G-stable, and the restriction of G  to the
subring k[(zl.)] consists of contractions, eq,O’ where q runs through a
certain subgroup, H, of (k*)“’. Since, for every { € J, there is q € H
such that qfi) is not a root of one, it follows from Lemma C4.2.1 that p s
either zero, or it is generated by (¢| i € JJ for some subset J° in J
But, the second issue cannot happen, because all z; are invertible.

(b) So, the localization at the set k[(zi)] - {0} transfers the prime
ideal p into a prime ideal p° in the polynomial ring K[(&i)] over the
field K = k((zi.)) of rational functions in the indeterminates (zi). And p =
0 if and only if p” = 0.

(c) Now, we shall show by induction in |J| that p’ = 0.

) Let |J| =1; ie. R = Kkz)€], and © acts by

Ofi&z) = figk + ozqz) for any f(Ez) € R.

The ideal p is generated by a polynomial f{§z), and the  O-stability

of p is equivalent to the equality
gk + ozq) = aflE). (m

for some rational function a = af(z). Write f as )Y §sfs(z). The equation
s 20
(1) is equivalent to

Fla)gs + 02)' = a()f ()€’

for all nonnegative integers s. Since o # 0, and chartk) = 0, the only so-
lution of (5) for s =2 1 is fs = 0, ie. f does not depend on &; hence f
is zero.

2) Let now J be a finite set. Let J” be the union of all subsets 7 of
J such that the ideal p° has zero intersection with the subring of polynomi-
als in éi’ i € I Localization at K[(§f|i € J")] sends the ideal p° into
a nonzero prime ideal p~  in the ring of polynomials in (§i|i € J-J") over
the field K':= K((§i|i € J")) of rational functions in (§i|i e I).

Note that, since p # 0, the set J - J” is nonempty. By definition of
J', for any { € J, the intersection p K’[&i] is a nonzero prime (hence

maximal) ideal in K’[&i] which is stable under the automorphism .
O: ﬂ&i)*—-?' ﬂﬂ‘?(i)E_.i + _Ot(i)z!.).

The ideal p~ n K’[E—'i] is generated by an irreducible polynomial, say f =
f(ﬁi); and the O-stability of p~ means that @f = af for some a € K, ie.

Ofq(i)e; + oijz) = aft). 2

Let D denote the derivative with respect to §i. Clearly the operator D
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commutes with . So, applying D to both parts of the equation (2), one gets
the system:
g(i)"dDflodi)z) = aD’f0), s 2 0. (3)

By the induction assumption, D°f0) € k for every s = 0. Since char(k)
= 0, this implies that f € k[&l.]. In particular, Of = f; ie. the equation
Q) is

Aqif, + afizz) = aflE,). (4)

But, this case was already considered in 1). =

C4.5.2. Stabilizers. Now, given a subgroup G in  Ic¢(R) such that any element
<q,a> € G has the property
ofi) = 0 = gqfi) =,
it is easy to describe stabilizers of prime ideals in G:
just single out a subset [ < J, and take the subgroup  G(I})  of all
<q,00> € G such that ofi) = 0 (hence q(i) = 1) forall i e I

C4.5.3. The second quantum Weyl algebra. The description of the spectrum of the
algebra W 2(k) follows the same pattern as in the case of the second Weyl
algebra Az(k) (cf. C4.3). We leave details to the reader.

C5. A REMARK ABOUT RELATIONS BETWEEN THE SPECTRUM OF REDUCTIVE
AND (QUANTIZED) KAC-MOODY LIE ALGEBRAS AND THE SPECTRUM
OF CERTAIN HYPERBOLIC RINGS.

Theorem 6.6.3 shows that the complexity of representation theory (or local
algebra in our approach) 1is concentrated in the stabilizers of points of the
spectrum of the base category 4. To see what is going on, consider one of the
most important examples: monads associated to the enveloping algebras of Kac-

Moody Lie algebras and their quantized versions.

C5.1. A hyperbolic ring associated to a Kac-Moody Lie algebra. Fix a Kac-Moody
(or a reductive) Lie algebra g with the Cartan subalgebra .

We shall use the notations of 2.5. Our ’base category’ 4 is the category
Um)-mod of modules over the Cartan subalgebra. Fix a point P € Specd. The
stabilizer fp of P is the submonad generated by all o(i), such that
o@ixP) = P. Clearly SPP contains the submonad

Zm):=®_0(i),

iel
EO
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where FO.'= (i € 6| i(a) = if-ac) for any root o. In other words, Z(m) 1is
isomorphic to G(n)@Um ) where 6(m) is the centralizer of the Cartan subal-
gebra. And if rank(m) 2 2, 6(m) 1is a pretty nasty noncommutative ring.

Theorem 6.6.3 shows that we cannot really avoid dealing with this ring, ex-
plicitly or implicitly. But, we can control the classes of representations (or
points of the spectrum) of Ufg) we want to study by choosing the class of ’ad-
missible’ representations of &(T).

Consider the quotient €’(m) of the ring €M) by its commutant. The ring
€’(m) is isomorphic to the ring of polynomials in ﬁa’ o e A, with coeffici-
ents in the enveloping algebra S(m) of the Cartan subalgebra 1; and the iso-

morphism is given by B &a for each positive root a.

o

Fix a prime ideal p in Sm). And let p be any prime ideal in 6€’(n)
such that p n S(m) = p. Now we choose any M e Specp(&’p-nwd) and map it using
the canonical functor to Spec p( U(g)-mod) (cf. Theorem 6.6.3).

Note that R = 6’(m) can be regarded as a coefficient ring of the hyperbo-
lic ring R{0,£), where 6 is a homomorphism from Maps(A +,Z) to AuiR) gi-
ven by:

9(1&[3 = §B + Sa,BhOL forany o, Be A,
Yoo = &a for all a e A_.

Denote this hyperbolic ring by H(a).

Since the stabilizer R(g)p of the ideal p in R{6,f} and .‘f’p have na-
turally isomorphic bases (of monomials), they are isomorphic as R-modules. But
not as rings.

(a) A generic point. Denote by Xo(n) the set of p € SpecS(ﬂ) such that
.‘Pp = &(n), hence, H(g) p - €’(m). Theorem 6.6.3 provides injective maps:

Spec,(#(g)-mod) 3 (R/p) —— X (M) —— Spec_(U(g)-mod) (1)

In other words, in a generic case, points of the spectrum of Ufg) are in
one-to-one correspondence with points of the spectrum of the associated hyperbo-
- lic ring.

(b) Degenerate cases. The relation with the spectrum of R(0,&}-mod still
might hold when the stabilizer of p € SpecR is nontrivial. This is clear for
the stabilizer generated by Ba, o € A + since in this case the stabilizer in
the hyperbolic ring is generated by R, X o and X o The rstabilizer in Ulg)
corresponding to the pair (p,p) is generated by €M), X and X o So that,
being restricted to the corresponding subcategory, it acts as R{Ga,ﬁa}.

A higher rank case: let the stabilizer be generated by a subset {9a| o € X/
such that {xa| o € X} pairwise commute. Then the stabilizer in Ufg) of the
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A.2. Special cases. If g = p, then 0 = id, so that ¢t and u commute be
tween themselves and with elements of R, and D is a central element in the
ring Mp'q(Z). In this case Mp'q(Z) is a hyperbolic ring over kftu D] cor-
responding to the automorphism

Y fituD)—— flqt.qu,D)

and the element D + gru; ie. xy = D 4+ gtu. One can see that Mq,q(z) coin-
cides with Mq(2), and D is the g-determinant.

If q = p", then O is identical; so that x and y commute with ele-
ments of R and between themselves. And Mp,q(‘?) is a hyperbolic ring over
k{x,y,D] with generators ¢, u corresponding to the automorphism

o' fixy.D)—— flgx.qy.q°D)
and the element (xy — D)/jp: tu = g(xy - D).

A.3. The spectrum. The ring Mp.q(z) given by the relations (6) - (9) in A.l is
not hyperbolic if g # p # q'l. But, of course, it is a skew PBW ring.

We assume that ¢ # p # ¢ ', and proceed following the general scenario im-
posed by Theorem 6.6.3.

AJ3.1. Stable points. There are the following stable points (with respect to 0
and 9) in SpecR, R = k[E D]

(a) the generic point O,

() (D);

(¢) (M);

(d) (.D).

Note that, for any stable point p of SpecR, the left ideal generated by
p in R = Mp,q(z) is two-sided: i.e. Rp defines a closed subscheme which de-
serves a special attention.

Consider each of these stable points in the inverse order.

(d) The corresponding ideal is maximal, and the generated by it left ideal
in Mp,q(Z) is two-sided. The quotient algebra is given by relations:

xy =y =0, tu=ut =0
(c) Here the relations are:
xy =D = yx.

The quotient algebra  RAM) is naturally isomorphic to kD], and t, u

generate a ring over k[D] defined by the relations:

tu = 0 = ut (N
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pair (p,p) is generated by ©(m) and {xa, x-al oo € X} and acts on modules
of the corresponding subcategory as the hyperbolic ring R{©,§} of rank |X| de-

fined by the data {(-)a,?;a] o e X/

C5.2. Quantized enveloping algebras and hyperbolic rings. Consider now the quan-
tized enveloping algebra Uq( a) of a Kac-Moody Lie algebra g. Of course, we
have a situation similar to that of the non-quantized case. Only instead of the
polynomial ring UM} = SM), we should consider the quantized version of enve-
loping algebra of the Cartan subalgebra - Laurent polynomials; and the automor-
phisms Ga are defined differently. The corresponding hyperblic ring, denote it
by ?ftq(g). can be regarded as a quantized version of the introduced in C5.1 hy-
perbolic ring #(ga).

APPENDIX: TWO-PARAMETER DEFORMATIONS OF M(2) AND GL(2).

We begin with (2) By definition [SW], this is a k-algebra with gene-
rators x, y, t, u subject to thc following relations:

Xt = ptx, xu = qux, xy = yx + (p — \/g)tu (1)

= (g/p)ut, ty = qyt, uy = puy. (2)

A.l. Rewriting the relations. Set n:= m, D:= xy - pn. We have:

= (p/g)m, Mu = (¢/phum; (1)
T = (Vgp)m, My = (gphm ot (2)
One can check that
Dx = xD, Dy = yD, (3)
Dt = (p/ghD, Du = (g/p)uD. 4)

Now take R = k/m,D] (= k[En)). Define automorphisms O and 6 of the
ring R by
Ofi€D) = flan,D), 6fnD) = fibn,bD) (5)
where a = 1/gp, b = q/p. Note that V.8 =
| Now the defining relations can be rewritten as follows:

xy =D + pn, yx = 9(D + pn); (6)
xr = Orjx, ry = yr), tr = 0(r)t, ru = ub(r) N
for all r e R;
=1, ut =6y (8)
Xt = ptx, Xu = qux, Ity = gy, uy = pyu. &)

Note that each of the pairs (xy) and (t,u) generates a hyperbolic ring
over R.
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tr = 0(r)t, ru = ud’(r) (2)
for all r € k[D], where O(r)D) = rbD). It follows from the relations (1),
(2) that the closed subscheme defined by the generated by D ideal is homeomor-

phic to . the fibered coproduct Speckb[t,D] u Speck /b[u,D] over Speck[D]
1
Speck[D]
of b- and 1/b-quantum planes.

The fiber of R over (n) is Speck,(D)t] U Speck ,(D)[u].
b speckpy VP
(b) We identify the quotient algebra RAD) with k/m]. The relations de-

scribing the closed subscheme defined by (D) are

xy = pn, yx = pd”'(n); 3)
xr = ¥(rix, ry = y¥(r), tr = O(r)t, ru = ub'(r) 4)
for all r € k[E]; here ¥'(m) = an, 6 = b1;
m=m, w=0"n (5)
Xt = pix, Xu = qux, Lty = qyt, uy = pyu. (6)

Note that the relations (3)-(6) describe a 4-dimensional quantum space.

To get the fiber of SpecR-mod (= Specl‘R) over (D), we should go to the
residue field k(m) of the point (D). The relations are the same, but over
k(m). In particular, m  becomes invertible which allows to get rid of half of
the variables. We drop y and wu. The remaining relations are:

xr = ¥(r)x, tr = 0'(r)t (7)
for all r e km), ¥M) =an, On = bn; and
xt = ptx. (8)

These are equations of an iterated skew polynomial ring.

(a) The fiber of Spec®R-mod over the generic point (() is the spectrum of
(the category of left modules over) the ring described by the relations (6)-(9)
in Al, but with R = km,D] replaced by its fraction field k(m,D). Thus, we
can drop variables y and . The remaining relations are:
xr = O(r)x, tr = 6(r); (9)
for all r € k(m,D);
. xt = ptx. (10)
Here 9%fn.D) = flanD), 9fm,D) = fibn,bD) for all rational functions
fin.D) (cf. (5) in A.D).
Again, we have an iterated skew polynomial ring (as in the case (b)), but,
with k(m) replaced by &(m,D).

A.3.2. Partially stable points. Any irreducible polynomial f in D  defines a
O-stable point in  SpecR. Suppose that f(0) = 0, and fib"'D) % fiD) for any
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m (eg b is not a root of one), then the subgroup (¥) generated by ¢ s
the stabilizer of the prime ideal . The corresponding subring :R(f) is
generated over RAf) = KMm] (here K = k[DJAf)) by x, y subject to the
relations:
xy =D +pn, yx =9"(D+pn) =D + a'pn (1
xr = ¥(r)x, ry = y¥(r) (2)
where ®fin) = flan) for any f e KMm].

Thus, ‘R(f) is a hyperbolic ring over K/mJ, and its spectrum can be des-
cribed explicitly using results of [R4]. Note that we need only the part of the
spectrum which ’sits” over the generic point of K/mJ/. This part coincides with
the spectrum of a skew polynomial ring given by the relations

xr = 3"(r)x for all r € KM) (3)
where 8"r(m) = ran).

In the gemeric cases (ie. when the equality 4&"b™ = 1 implies that m = n
= (), the primes listed above are the only points of SpecR  having nontrivial
stabilizer.

A3.2. Some of the degenerate cases. For all nonnegative integers m, n  and any
f € R, we have:

8" fm.D) = "™, "' D). (0
where a = 1/gp, b = q/p.

9™.stable points. If b = g/p is an m-th root of one, then any prime ideal
in R = k/m,D] generated by polynomials fin,D) = X niDiaij such that aij = 0
if  i+jim is 6™-stable. The 'stabilizing’ subring R(f) is generated over the
quotient RAf) = by zz=f" and  w:=u" satisfying the relations:

w = b""n, u ="y
= Gm(r)t, w = me(r)
for all r € RAY).

If (Gm) i1s the stabilizer of (f), then, by Theorem 6.6.3, the fiber of the
spectrum of R-mod  over (f) is in one-to-one correspondence with the points of
the spectrum of the skew polynomial ring given by

zr = 0™(r)z for all r e X,
where K is the field of fractions of RAf), &  the automorphism of XK in-
duced by 6.

9" -stable points. If a = 1/4gp is an n-th root of i, then any prime ideal
in R generated by a polynomial f in n" and D is 9-stable. If ") s
a stabilizer of (f), then, as above, the (left) spectrum of the skew polynomial
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ring in one variable over a skew field (residue field of (f)) describes the
fiber of SpecR-mod over (f).

9”6 -stable points. If '™ = 1, then any irreducible polynomial f € k/Mm]J
such that fl0} = 0  defines a 970" -stable prime ideal. We leave to a reader

the defining of the skew polynomial ring responsible for the fiber over (f).

Other degeneracies which might occur lead to the situations listed above,
only coefficients change.

A.4. The ring GLq,p(2). It follows from the relations (3), (4) in A.l1 that the
multiplicative set (D):= {Dn| n 2 0} satisfies (right and left) Ore conditi-
ons. By definition, the algebra GLq’p(Z) is the localization of Mq’p(Z) at
the Ore set (D). In other words, GLq’p(Z) is the ring corresponding to the
complement of the closed subset defined by the ideal Mq’p(Z)D.

The defining relations are given by the equalities (6)-(9) in A.l, only the

ring R should mean k[n.D,D-lj.
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commutes with O. So, applying D to both parts of the equation (2), one gets

the system:
q(i)"dD flafi)z,) = aD’f0), s 2 0. (3)

By the induction assumption, D’f(0) € k for every s 2 0. Since char(k)
= 0, this implies that f € k[ﬁi]. In particular, Of = f, 1e. the equation
(2) is

Aalife, + alizz) = afi&). )

But, this case was already considered in 1). m

C4.5.2. Stabilizers. Now, given a subgroup G in  I¢(R) such that any element
<q,0> € G has the property
i) =0 = gq(i) =1,
it is easy to describe stabilizers of prime ideals in G:
just single out a subset I c J and take the subgroup G(1) of all
<q,0> € G such that ofi) = 0 (hence q(i) = 1) for all ie I

C4.5.3. The second quantum Weyl algebra. The description of the spectrum of the
algebra W':l (k) follows the same pattern as in the case of the second Weyl
algebra Az(k) (cf. C4.3). We leave details to the reader.

C5. A REMARK ABOUT RELATIONS BETWEEN THE SPECTRUM OF REDUCTIVE
AND (QUANTIZED) KAC-MOODY LIE ALGEBRAS AND THE SPECTRUM
OF CERTAIN HYPERBOLIC RINGS.

Theorem 6.6.3 shows that the complexity of representation theory (or local
algebra in our approach) is concentrated in the stabilizers of points of the
spectrum of the base category 4. To see what is going on, consider one of the
most important examples: monads associated to the enveloping algebras of Kac-
Moody Lie algebras and their quantized versions.

C5.1. A hyperbolic ring associated to a Kac-Moody Lie algebra. Fix a Kac-Moody
(or a reductive) Lie algebra g with the Cartan subalgebra m.

We shall use the notations of 2.5. Our ’base category’ £ is the category
Um)-mod  of modules over the Cartan subalgebra. Fix a point P € Specd. The
stabilizer  ¥p of P is the submonad generated by all  ©(i), such that
o(i)(P) = P. Clearly SPP contains the submonad

Ime=®& o),
ie FO
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