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QUATERNIONIC GEOMETRY OF THE NILPOTENT VARIETY:
AN EXAMPLE

PIOTR Z. KOSAK AND ANDREW SWANN

1. INTRODUCTION

If G is a compact siInpie Lie group, then Kirillov, Kostant & Souriau showed that
any co-adjoint orbit in the cOIllplex Lie algebra gC is ~aturally a complex symplectic
manifold (see for example [13]). In particular the real dimension of such an orbit is
divisible by four anel it is natural to ask whether it carries some type of quaternionie
structure. A partial positive answer to this question was given by Kronheimer [16, 17J
who showed that there is a hype'T-/{/ihler structure on the co-adjoint orbits both of
semi-simple and of nilpotent elenlents. Thus these orbits carry Ricci-flat metrics.
Using Kronheimer's results, it. W~ shown in [25J that the nilpotent orbits also admit
an action of the nlultiplicative C}uaternions JH[* and that the quotient by this action is
a quaternionie Kähler manifold (so necessarily Einstein) of positive scalar eurvature.
In the ease of the smallest nilpotent orbit one obtains asymmetrie spaee of the
form G/(J( . Sp(l)) and these are precisely the spaees studied by Wolf [26]. Sinee
quaternionie Kähler manifolds have a twistor spaee there are teehniques availahle for
studying eertain harnlonic nlaps via complex geometry. The purpose of this paper
is to investigate the geonletry of the regular (largest) nilpotent orbit of .G~3, C) and
of a dass of hal'lllOnic Illaps of CL cOlllpact Riemann surface inta G2 / SO(4) in such
a way as to illustrate SOIne general theory to be described elsewhere, hut whieh has
been partially developed in [14, 23).

We start with a Morse theoretic description of the quaternianic Kähler manifold
associated to the regular nilpotent orbit of 51(3, C). The Grassmannian Gr3(su(3)) of
oriented three-planes in su(3) s= IR8 carries an SU(3)-invariant functional tP defined
by

.t,b( \I) = 'Ip( eh e2, e3) = -(eI, [e2, e3]),

where (., .) denotes the Illetric detenllined by the Killing form of su(3) and (eI, e2, e3)
is an oriented orthonornlal basis for V. The gradient flow of 7/J has two positive
critieal values; we define er to be the critical set corresponding to the least of these
and let MT be the associated unsta.ble nlanifold, which by definition eonsists of the
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eritieal set Cr together with all points lying on trajectories ,(t) oi the gradient fiow
oi "p such that limt_-oo ,(t) lies in Cr' In §§2,3 we prove

Theorem 1.1. The 'lLnstable manifohl M r is an eight-dimensional quaternionie [(ähler
'manifold whose twistor space Zr is the projectivisation r(Or) 0/ the regular nilpotent
orbit of5~3,C). The critieal set Cr is the symmetrie spaee PSU(3)/ 80(3) and Mr is
isomorphie to the 7·ank·three veetor bundle fLssoeiated to the Lie algebra of 80(3).

(Here PSU(3) denotes 8U(3) modulo its eentre Z3-)
In §4 we show that the quaternionie Kähler strueture is loeally symmetrie by

identifying a tri pie eover a.s an open subset of G2 / SO(4). This renders same oi the
earlier arguments superfiuousj however, it is the Morse theoretie approach whieh
extends to arbitrary nil potent orbits_ Brylinski & Kostant [5] have recently classified
which nilpotent orbits are finite covers of other nilpotent orbits; many orbits do not
appear in this list and their associated quaternionie Kähler manifolds eau not be
loeally symmetrie (cf. [24]).

Both the proof oi Theorem 1.1 anel the eliseussion of the loeal symmetrie strueture,
show that the eomplex eontaet strueture on Zr agrees with that indueed by the
eomplex sympleetie strueture on Or defined by Kirillov, Kostant & Souriau. The
complex eontaet strueture on the twistor space is .partieularly important for the
study of harmonie lnaps: if f; L: -t Z is a holomorphie map of aRiemann surfaee
into a twistor spaee Z such that the pull-back oi the eontact form is zero, then the
composition of f with the projeetion Z ---+ M is a harmonie map E ---+ M [6]. The
eomplex contact structure of Zr may be identified via the Springer resolution with
that on an open set of fPT'· F12 (C3

) , the projectivised holornorphie cotangent bundle
oi the fiag manifold of lines in planes in C3

. Let LI and L2 be the holomorphie
tangent line bundles of the fibres of the projeetions PI and P2 from F12 (C3) to CP(2)
and CP(2t respectively. The fact that Mr is loeally isometrie to G'J/ 80(4) leads to

Prop osition 1.2. Th e7'e is II th1'ee-to~ 0 n e eorrespo ndence between harmo nie maps
f: E --t G2 / SO( 4) (avoiding lL CP(2)) whieh have a horizontal holomorphie lift to
the twistor spaee of G2 / SO( 4) and t7'iples (a, ß, s) J where

(1) (a,ß) is a pair of holamorphie 7naps E ---+ CP(2) with the same ramijieation
divisor und such that Li aißi = 0,

(2) if, = (0', ß) is the e07'Tespondiu!) map into F12( (3) J then ,.LI ~ ,.L 21

(3) s is a splitting of the inclusion ,.LI '-t ,·T'F12(C3 )/T'E.

This result may be regarded a.s generalisation of Loo's [19] deseription of harmonie
lnaps S2 ---+ S4 in ternlS of pairs of holomorphie maps S2 --t CP(I).

It is well-known that G2 / SO(4) cau be viewed as the totally geodesie submanifold
of Gr4(1R.i) consisting of co-assoeia.tive four-planes [11]. It turns out that there is
another relatiouship between the geOInetry of these two manifolds.
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Proposition 1.3. The quaternionic !(ähler manifold Gr4(R?) admits an action 0/
U( 1) such that tlte quaternionic !(iihler quotient is the singular eight-dimensional
space MT U CP(2) = G2j(SO(4) x Z3)'

This result is proved in the final section of the paper where we also identify a specific
ftow line used in the earlier Morse theoretic arguments. During the latter calcu­
lation it becomes possible to obtain the hyperKähler potential of the regular orbit
of 5 ~3, C), this is a function which is simultaneously a Kähler potential for each of the

_ Kähler structures. This also Inakes use of the hyperKähler quotient construction [12J
which Kronheinler observed 111ay be useel to construct nilpotent orbits in s~n, C).
Extensions to nilpotent orbits of other classical greups may be fouod in [15] ..

Acknowledgeme71ts. We wish t.o thank F. E. Burstall and P. B. Kronheimer for in­
forming us of their werk anel the organisers of the GADGET conference on Global
Analysis and Differential Geolnetry, 1992, for providing a stimulating atmosphere in
Münster. Partictdar thank,s go to S. M. Salamon who supervised both Dur doctoral
theses and who ha.." been a constant source of inspiration. The last named author
would also like te thank H. Peden;en for liseful conversations and the Max-Planck­
Institut für Mathematik, BOHu, for hospitality.

2. THE NILPOTENT VARIETY AND MORSE THEORY

We introduce the following notation. The set of all nilpotent matrices in .G~3, C)
will be denoted by JV = { A E 5~:3, C) : A3 = O} and is called the nilpotent variety
of .5~3, Cl. The group 8L(3, C) acts on N via the adjoint representation and has two
non-trivial orbits: the slnallest is t.he eight-diInensional orbit of bighest root vectors
Oh = {A E )V : A 2 = 0, A ~ O} j the ether is the regular orbit Or, whieh is 12­
dimensional allel is open and dense in N. It is the quaternionie geometry associated
to the regular orbit that is our Inain object of study.

Nilpotent elements are closely related to three-dimensional simple subalgebras. Let
X be a nilpotent element in t.he cOillplexified Lie algebra ge of a compact simple Lie
group G. The Jacebson-f\10rosov Theorenl (see [71) states that there exist Hand
Y in gC such that P{, YJ = H, [H, XJ = 2..\'" and [H, YJ = -2Y, so the linear
span of )(, Y alld H is il. ,sl1balgebl'a of ge iSOInorphic to .5~2, C). When X is a
highest root vector 1 it is possi ble to take Y and H proportional to CfX and [X, CfXJ)
respectively, where (J' is tlle real structure on gC with fixed point set g. This allows
one to define an act.ion of 1II- on the set of highest root vectors by (a +bj). X = a2X ­
b2uX - ab[~X', u~\'J allel the result.ing quotient spaces are compact and symmetrie [25,
§6], [26]. \\fhen G = Sp(n +1), this gives the quaternionic projective space EIP(n) =
Sp(n + l)j(S'p(n)S'p(l)). Two ot.her exalllples are CP(2) = SU(3)jS(U(I) x U(2))
and G2 j SO(4) obtaineel Gy ta.king G to be S'U(3) or G2 respeetively.
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Consider the gradient flow equations V = V't.b(V) for the functional 1/1 on the
Gra'ismannian Gr3(.5 u(3)) defilled in the introduction. These may be written as

el = -fez, e3}- 'lj;e1)

e2 = -(e3l eIl - 1/J e2'

f3 = - (eIl e2J - 1/J e3

and the right-hand sides of these equations are just the components of the Lie brack­
ets orthogonal to V. The critical points of 'lj; correspond to Lie algebra homomor­
phisms p: su(2) ~ 5u(3) a.nd the critical sets are manifolds of the form SU(3)/Np ,

where Np is the normaliser of the subgroup with Lie algebra p(su(2)). The maximum
value of 1/J is J2 and the corresponding critical set eh is the quaternionie Kähler
manifold CP(2) = S'U(3)/S( U(2) x U(l)). According to Dynkin {S] the only other
positive critical value of 4' is 1/V2 anel its critical set er is PSU(3)/80(3). The
corresponding subalgebra p(su(2)) Inay be taken to be the .50(3) consisting of those
matrices in 5u(3) with real enÜies. Changing the orientation of a three-plane V
changes the sign of ljJ( V) so the reInaining critical values are -V2 and -1/-12.

One motivation for the use of the gradient flow comes from the following lemma.
Let F be the subset. of GrA5l~:3)) consisting of aB oriented three-planes V such that
every isotropie eleIuent of Vc i.s nilpotent.

Lemma 2.1. The 97YLllieut flom oJ 1/; preserves the variety :F and the ni/potent orbits
associated to e/em,ents 0/ :F.

Proo/. Given an oriented, ortllOIlOrJnal basis eh e2, e3 for an element V E :F, let

e~ = (1 - f't/J )eI - t[e2l e3], etc.,

be a path parameterised by f. E R. UP to order t2 , e; 1 e;, e; are orthonormal, so we
need to show that (up to first, order) e; + ie; is in the nilpotent orbit of el + ie2.
However , the Jacobson-Morosov Theoreln implies that there exists H E .s~3, C) such
that eI + ie2 = ~[H, el + ie2], and so

t~ 'I +i e; = (1 - t1/) )(el +i e2) + t [e1+i e2l i e3]

= t'1 + i.e'j + i(eI + ie2l ie3 + !7jJH],
as required. 0

The tangent space to the 1Illsta.hle Jua.nifold Mr at er is described by the Hessian
of 1/;. The following calcllla.tioll \Va...:; cOffirTIunicated to us by F. E. Burstall.

Proposition 2.2 (Burstall) . LeI. V Oe (l point 0/ the critica/ set er' Then, as an
SU(2).modulc J
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and the Hessian 0/ 'fjJ is negative definite on the first summand, zero on the second
and positive definite on the third. Thus 1/V2 is a non-degenerate critical value 0/ 'ljJ
in the sense 0/ equivariant 1\10rse theory and

TvAlr ~ 84 + 8z S:! 83 0 8 1
•

Here Sk = SkC'l is the (k + 1)-cliluensional irreducible representation of SU(2).
When k is even, this is the complexification of areal representation also denoted
by 5 k

.

Proo/. Identify Tv Gr3(su(3)) with V· 0 V.l C A'l su(3), so the Hessian of 1/J is given
by 41/J();, Y) = lPC.\"·Y.el /\ t-:2/\ e3). Now the Killing form of su(2) is Be~2)(ei, Cj) =
-2bii'fjJ(V)2 = -Oij antI the Ca.sin1ir operator of an SU(2)-representation p is

3

Gp = - LP(ei)p(ed,
i=l

which for the representatioll S'k is lTIultiplication by ((k + 1)2 -1)/8. Calculating the
negative of the Hessian we have

-d~1/J(X, Y) = (.\'Y CI, [t;'l, e3J) + (eI, [XYe2' e3J) + (eI, [e2, XYe3])
+(.\'Cl, [C'l' Y C3]) + (Y el, [e2'''~e3]) + (XeIl [Ye2, e3])
+(Yc I,[Xe 2,C3]) + (eI, [Xe2, Ye3]) + (eI, [Ye 'l, Xe3])

=-(YCl I .\'[ez, e3]) - (YC 2' X[C3, Cl]) - (Ye3, X[e), e2])

+ (YetI [eZ,.\'"C3] - [e3, Xe ZJ) + (Ye'l, [e3,Xed - [ell Xe3])
+ (Ye 3' [CI,.\'e2J - [cz,Xed)

= 72(Yei,.\'" ei) + (Y Ci, Axei),

where Ax = J2 ad ej o.}{. 0 ad Cj. The Casiluir element of V· ® V.L is given by

CV·~V.L.x = - (ei(p( ed·\'") - (1'( Ci ).\')ed = -(CjCi X - 2eiXei + X eie;)

= CV.lX + .\'Cv + V2A x = 4.\'" + V2A x ,

since Gv = CS;'J. = 1 aun G\,.L = CS. = 3. Thus rft,1/J(X, Y) = (Yei, Cxei), where
Cx = (3."\ - CV.~,\./.l )()/ Ji. Now V· 0 V.l = S2 (9 S4 = S6 + S4 + 52 and C has
eigenvalues -3/ V21 0, anel 12 Oll t.hese surnn1ands. 0

Thus the real nonnal bundle of the critical set er = P5U(3)/ SO(3) in the un­
stahle manifold l\lr is the ver.tor bundle associated to the representation 5'l. Since
50(3) acts transitively 011 t.he unit sphere in 52 ~ IR3 , this shows that SU(3) acts
transitivelyon the set of t.raject.ories lying in Alr \ er' An example of such a trajectory
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is given (up to pararneterisation) by V(x, y) = (eI, e2, f3),

eI + if2 = 2 (~ ~3 :3), e3 = Jx 2 + y2 (i~2 i(y2 ~ x 2) ~) ,
o 0 0 0 0 _iy2

where 2(x6 +y6) = 1 with x ~ y ~ O. (One may check directly that this is a solution
to the equations, but a method of obtaining such three-planes will be given in the
last section.) Note that V( x, y) lies in Cr when x = y = 2-1

/
3 and is in Ch when

x = 2-1/6 and y = O. A straightforward calculation shows that if 0'2 + ß2 +,2 = 0
then X = O'el + ße2 + ,ea ha.s X 3 = O. Thus X is nilpotent and lies either in Or or
in CJh . However, if )( E Oli, then by Lemma 2.1 the limit of X under the backwards
fiow must also be in Oh' Hut ~llch a. linIit lies in Vc for same V E Cr and such a
Vc does not Ineet ()". ThllS isotropie elements of Vc(x, y) lie in Or'

3. T\VISTOR SPACE STRUCTURE

In [25] it was ShOWll that any quateI'IlioIlic Kähler Inanifold with positive scalar cur­
vature has a principal lHI-/Z~-bundle U(A1) whose total space carries a hyperKähler
metric. Using the action of C· :s; IHI- one obtains a quotient manifold Z which is
a CP(l)-bundle over A1. The total space of Z is a complex manifold called the
twistor space of M. For exanlple if M = IHIP(n), then U(M) = (IHIn+l \ {O} )/Z2 and
Z = CP(2n + 1). The action of j E 1fI· on U(M) descends to an anti-holomorphic
involution" on Z preserving the fibres. The C·-action on U(M) preserves one of the
complex structures, say I. vVe Inay 1l0W construct a holomorphic two-form WJ + iWK

which gives a cOIllplex synlpleclic ~tructureon U(M). Contracting this two-form with
the holomorphic vector fielel genera,ting the C· -action gives a holomorphic bundle­
valued one-form 0 on Z. This h~ t.he property that B /\ (dB)n is nowhere vanishing,
in other words we have a com.p/ex contact stT1Lcture on Z. Such information about Z
may be used to recover the structure of M via the Inverse Twistor Construction
(LeBrun [18], Peclersen & Poon [20)): .

Let Z be a eomple.7: mani/olrl of dim.c1tsion 2n + 1 ~ 5 with a fixed-point-free anti­
holomorphie involution rr. TI/.f;1I th.e sd N 0/ "-invariant rational curves with normal
bundle 2nO( 1) L'i 1w.f:/LHLlly U (juuf.cruiouic UUL7Li/old 0/ dimension 4n.

1/ in addition Z (ulmits (I. (;omph:x (;outact structure B such thai "·0 = B, then N is
pseudo-quatcrnion ic !{liftln'.

Here a quaternionic I11i"luifolel sholtlel be regarded as the non-Riemannian analogue
of a quaternionic Kähler struct.ure (see [21] for a precise definition). The term pseudo­
quaternionic Kähler indicates t.hat the metric obtained need not be positive definite.

Let V be a point of the critical set er and let C denote the set of isotropic (null)
elements of Vc = V 0C. Thell V is p(.su(2)) for some homomorphism p and C consists
of the nilpotent eleillents of p(.s u( 2) 0 C) C .s ~3, C). Direct calculation shows that
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5L(2, C) acts transitivelyon the set of nilpotent elements of s ~2, C), so the elements
of C are conjugate under the adjoint action of 5L(3, C), and that C is contained in
the regular nilpotent orbit Or (see [7]).

Lernma 3.1. Let CP (1) be the projeet ivisation IP(C) . Th en the normal bundie 11

ofCP(l) in lP(Or) is
v ~ 40(1).

Proof. The Lie algebra .s~3, C) splits under the action of s~2, C) ioto a direct surn
_ of 5U(2)-modules as s~3, C) = S2 + 54. The tangent space to Or at X is TxOr ==

(ad X) sl(3, C), so the normal bundle at x = [X) is Vx ~ (ad ..\'")84
•

Since V ~ su(2), thel'e is an elenlent H E Vc such that [H, X] = 2X. On 54,
ad H has eigenvalues 4, 2,0, -2 and -4. Restrieting to the circle subgroup exp(itH),
we have a further splitting of v ioto U(l)-bundles which in this case are four line
bundles with ehern classes 4, 2, °and -2 (respectively). In particular,

Ct(v) == 4.

Now Vc is a linear subspace of s~3,C), so TlP(s~3,C))jTlP(Vc) ~ 5(0(1) ~
CP(2)). The map CP(1) -t IP(Vc ) has degree 2 and Tl = TlF(s~3, C))jTlF(Vc) ~

Vc.J.. 0 0(2) = 50(2). The normal bundle v is a rank four subbundle of Tl and so
v :: Li~2 aiO(i) with L (Li = 4. An O(2)-summand gives a non-zero holomorphic
section ~f v( -2) and hence of 1]( -2). This is a constant vector v E Vc.J.. which lies
in TxlP(Or) for all:r E CP(l), that is v lies in

n ad(X) 5~3, C). (3.1)
IXJECP{I)

However, since s~3, C) = 5'2 +5'4 this intersection is {O} so v has no O(2)-summand.
As Cl (v) = 4, this implies that v ~ 40(1). 0

Proposition 3.2. The unstable rrw,nifold Mr is an eight-dimensional quaternionic
manifold with twistor space P(Or)'

Proof. Consider the flow line V(:r,y) defined at the end of §2 and let C(x,y) be the
set of isotropie eleillents in V(:r., y) ® C. Then C(x, y) is eontained in Or and we need
to determine the nornlal bUlldle 11 of CP( 1) :::: !P(C( x, y)) in IF( CJr ). As before we
have rank v :::: 4, Ct(v) :::: 4 (1:iince the 1:itabiliser of V(x, y) under the action of SU(3)
is U(l)), v is non-negative alld to show v ~ 40(1) it is sufficient to show that the
intersection (3.1) is {O}.

Write X(() = X(u+iv) = uet +ve2+ie3' This is an element ofC(x,y) ifl(l:::: 1.
We have

(~ -~ ß ~) E ad(X(()) sl(3,Q
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which implies that

(A-(D=x J 2x2 -v)jzl+;a+;J,((),

Ce -F =; J 2; - zljzl +; ß - xJ,((),

(2B + (2 E = -X-
3]/Ci + x3y-3ß + (x2 + y2)3/2,((),

for some complex number ,((). Eliminating ,(() gives

(x 2+ y2)3f2 ((A - (D) - y3((2 B + (2 E) = x(2x2+ 3y2)Ci - x3ß,

(x 2 + y2)3/2((C _ (F) - x3((2 B + (2E) = _y3Ci + y(3x2+ 2y2)ß.

These equations hold for all 1(1 = 1, so A = B = C = D = E = F = O. The
determinant of the Inatrix of coefficients of the right hand side is 6xy(x2 + y2)2, so
we also have Ci = ß = 0, as required.

The real structure on 5~3,C) induces areal structure on the CP(l)'s without
fixed points anel we may use the Inverse Twistor Construction to get a quaternionie
structure on Mr.

We now wish to identify the twistor space Zr of Mr with IP( C\). Note that we
already have a map r.p: Zr -t IF( Or) since the twistor lines lie" in IP( Or)' As hI (v) =
o = h I (v( -1)), this map is a local cliffeomorphism and so the image of r.p is open
(cf. (IS]). Let (xd be a sequence of points in the image of ep converging to a point x E
IP( Or)' There exist oriented three planes Vi E M r such that apre-image of Xi lies
in Vi ® C. We also have a subsequence converging to a point V in Mr = Mr U eh and
x E PVc. However, if V E Ch then x E IP(Oh) which is a contradiction. Therefore
V E M r and x E r.p( Zr). Thus ep is a. covering map.

lt remains to show that r.p is injective. Choose V = (eb e2, e3) E Cr and let X =
el + ie2' If V' E }rlr is another three-plane with X E Vcthen we can find e; E su(3)
such that (ei, e2, e;) is an oriented orthonormal basis for V'. Now,

1/;(V') = - ([ei, e2], e;) = (1/;(V)e3, e;) ~ 1/;(V).

However, V' E Nlr alld V E C r iInplies 1/;(V') ~ 1/;(V). Hence 1/1(V') = 1/;(V) and
(e3' e;) = 1. Since e3 a.nel e; are unit vectors this gives e3 = e; anel V = V'. Hence
r.p is a bijection. 0

Proposition 3.3. The unstable nUl'lLifold Mr is quaternionie I(ähler.

Proo/. The projectivised orbit IF(Or) has a. complex contact form B defined at [X] E
IF( Or) by B([X, Al) = (X, A). (This is obtained by contracting the holomorphic vector
field generating the quotient Or -t f( Or) wi th the complex symplectic form on Or
defined by Kirillov, Kostant & Souriau, see [13].) To show M r is pseudo-quaternionic
Kähler it suffices to show that CP(I) = P(C(x,y)) is transverse to B, in other words
that 8IcP(1) is non-zero. At X = el + iez the tangent space to CP(l) is generated
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by e3, thus a non-zero tangent vector at X is given by [X, Al, where

9

A = (X~l ~ ~).
o y-l 0

Now B([X, Al) = 2(x2 + y2) which is non-zero.
To complete the proof we need to show that the pseudü-quaternionic Kähler met­

ric 9 on Mr is positive definite. Note that by construction 9 is SU(3)-invariant, in
- particular at a point V of er = PSU(3)j PSU(2) the metric 9 is SU(2)-invariant.

Now TvCr = 52 + 54 so any SU(2)-invariant metric is either positive definite or
has signature (3,5). However, the fact that 9 is pseudo-quaternionic Kähler implies
that 9 has signature (4p, 4'1) for some p and '1. Thus the only possibility is that 9 is
positive definite and M r is quaternionic Kähler. 0

This completes the proof of Theorenl 1.1. Note that we have also identified Or -+

IF(Or) as the C·-bundle associated to the contact line bundle on the twistor space
of Mr and this shows that Or -+ Mr is the bundle U(Mr).

4. LOCAL SYM~lETRIC SPACE STRUCTURE AND HARMONIe MAPS

It is weIl known that su(3) is a subalgebra of g2. This may be seen explicitly as
follows: let (0,1) be the highest root of gf and suppose (1,0) is a short root such
that the long roots of g2 are ±(O, 1), ±(3, 2), ±(3, 1), and the short roots are ±(1, 0),
±(1, 1), ±(2, 1); then 5((3, C) is the subalgebra generated by the long roots. The Lie
algebra g~ decomposes under the action of SU(3) as

g~ = s ~3, C) ffi A1,OC3 EB A0,IC3 .

The space G2 /5U(3) is 3-symmetric; the symmetry T comes from the centre Z3
of SU(3) and acts on this decolnposition of g~ as (1, e21fi

/
3

, e-21fi
/

3
). The projec­

tion of the highest root orbit of g~ contains elements of both the nilpotent orbits
of s~3,C) and so, counting dimensions, the inlage must be the whole nilpotent vari­
ety of s~3,C). To show that both orbits meet the image, we argue as folIows. 'vVe
have Cl subgroup 50(4) = S'p(l)+ 5p(l)- of G2 anel Salarnon [22] shows that the Lie
algebra g~ decomposes under S'O(4) a.s

g~ = S2U+ EB S2U_ ffi U+S3 U_,

where U± ~ C2 are the two-dimensional non-trivial representations of Sp(I)±. If
we take sP(l)+ to be the span of E(o,l}, H(o,l}, E_(o,l}, where Ho,E). is a Cartan
basis for g~, then sp(l)_ is spanned by E(2,1)' H(2,1)' E-(2,1) and the remaining roots
span U+S3 U_. Now, for definiteness, identify E(O,I) anel E(3,1) with the matrices

(g gg) anel (g g~). This gives [E(o,l}, E(3,l}] = E(3,2) = (g gg) anel so E(o,l} +E(3,2) is

a highest root vector of su(:l) and hence of 92. Consider the orbit of this element
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under Sp(l)_. The first component lies in sP(I)+ so it is Sp(l)_-invariant. The other
component lies in the Sp(l)_-module 53U_ spanned by E{3,2) , EU,l)' E{-l,O)l E(-3,-1)'

In particular, there is an element in the Sp(l)_-orbit of E{O,l) + E(3,2) whieh projeets
to E(O,l) + aE(3,2) + bE(-3,-I) with both a and b non-zero. Now this element lies in
the regular orbit of 5 ~3, tC) and is the projection of a highest root element of g~ l as
required.

Quaternionieally, we obtain the following. Let 1, i,J, k, e, ie,je, ke be a basis of the
Cayley numbers 0, then the Wolf space O2 /50(4) is the spaee of quaternionie lines
in 0. The action of T E Z3 on 11) is via right multiplication by e21re

/
3 = (-1 +eV3)/2.

The fixed point set of T consists of those quaternionie lines whieh are spanned by 1,
e and a eomplex line in C3

::::: (i,j, k, ie,je, ke), so this set is isomorphie to CP(2).

Proposition 4.1. There .is an open set in the highest root orbit 01 g~ which is a
three·fold cover of the regular nilpotent orbit in s~3, C). The quaternionic [{ähler
manifold Mr associated to this 5L(3, C)-orbit is ((G2 / 50(4)) \ CP(2))/ Z3' 0

In the previous seetion we saw that Mr earries an 5U(3)-invariant funetional 'ljJ.
This funetional defines an SU(3)-invariant functional on G2/50(4) whieh may be
deseribed as folIows. A quaternionie line in I{) neeessarily contains 1 and so is deter­
milled by a three plane (x, y, :cy) in Im 0, the space. spanned by C3 and e. (This is
the usual identification of G2 /50(4) with space of assoeiative three-planes in IR?)
Any such three-plane meets C3 in at least a two-dimensional subspace whieh we
may assume to be the span of x and y, with x and y orthogonal unit veetors. Since,
away from the singular set, (G2 / SO(4))/ SU(3) is oue-dimensional there is essentially
only one SU( 3)-invariant functional given by (x, y, xy) 1----+ I(x, ey) I. This functional
is 0 on er = PSU(3)/50(3) and 1 on eh = CP(2). The gradient flow maps (x, y)
to (x eos t - Y sin t, ex sin t + ey cos t).

Corollary 4.2. Let V be a point of the c7'itical set er and let Mv be the set 01 trajec­
tories 1 ol'lj; such that ,( t) E M r \ er and limt_-oo ,(t) == V. Then V determines a
totally real three-dimensional subspace W 0/ !RB == C3 and {limt_oo l'(t) : I E Mv }
is a two-sphere consisting 01 those complex lines which meet W non-trivially. 0

Twistor theory has fallnd several applieations in the study of harmonie maps;
the ones that are IUOSt relevant here are the existence theorem of Bryant [4J for
harmonie nlaps l: -+ S"~ and Loo's [19J deseription of the moduli spaee when E =
8'2. These arise fronl nlaps to the twistor spaee CP(3) of 54 whieh are horizontal
with respeet to the distribution defined by the eomplex eontaet strueture and the
results are obtained via suitable choiees of eomplex eontact manifolds birationally
equivalent to (finite qllotients of) CP(3). In our ease tbe discussion above implies
that the Z3-quotient af the twist.or spaee of G2 / SO(4) is birationally equivalent (as a
complex contact luanifold) to the twistor space obtained from the regular nilpotent
orbit of s~3, C). Vve will IlOW llse the Springer resolution of the nilpotent variety
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x[X] == x. ker8[x] = {[X 2
, Al: (X, A) = 0 },

where [al E lFT~·F12(C3
) is identified with kerox . The projectivised holomorphic

cotangent bundle p: rT'"'F12(C3
) -+ F12 (C3

) has a natural complex contact structure
for which the contact distribution at a point [a] is (p.)-l ker 0'.

of 5 ~3, C) to obtain a contact-structure-preserving bi rational map to 1FT'.F12 (C3 ) ,

the projectivised holomorphic cotangent bundle of the ftag manifold of lines in planes
in (:3.

Regarding 5 ~3, C) a.s a matrix algebra. in the usual way we have an 5L(3, C)­
equivariant map x: r(Or) -+ IP(V h) defined by X[X] == [X 2J. If we identify P(Oh)
with the Hag FI2 (C 3

) then X(XJ = (ker X C Im X C C3
). An infinitesimal calculation

shows that the fihres of X are contact, that is iE 8 is the complex contact form
on Ir(Or) then () is zero on T{x]X- 1X[X]. This enables us to define a map x: lP( Or) --+

PT'·F12(C3 ) by

Lemma 4.3. The mal) X ma]Js tILe c01nplex contaet distribution on Ir(Or) into the
cOTTl,piex contaet distribution on lPT'·PI2 ( C3

).

Proof. This is follows from VX = x· 0

Proposition 4.4. The map /y is iujeetive and its image consists of those two-planes
in T'FI2 (C3

) which are transverse to the /ibres 0/ the projeetions PI : F12(C3 ) -----t CP(2)
and P2: F12 (C3

) --+ CP(2)*.

Proof. Recall [2] that the Springer resolution of the nilpotent variety of 5 ~3, C) is
the lnap 1r: T'·FI2 (C3

) ~ 5~3, C) defined as folIows. Differentiation of the action
of 5L(3, C) on F12(C3

) = IP(Oh) gives the map

IP(Oh) x 5~3, C) ---. T'P(Oh),

([Y], A) t--+ [Y, AJ.
To construct 1r, take the dual of this map, compose with projection to 5~3, C)'" and
then identify this with 5 ~3, C) via the Killing form. Let lP1r be the map lPT'·F12(C3 ) --+

P5~3,C) induced by 1r. Then lP1r[O:] = {A: o:[Y,A] = O}.L for [al E PTrY]lP(Oh).
Thus the above formula for Xshows that lP1r0X = Icl and X is illjective. The final state­
ment now follows fronl an exalnination of the orbits of 5L(3, C) on IPT'''' F12(C3 ). 0

We now turn to the proof of Proposition 1.2. Let O2 be the orbit of highest root
vectors in g~. Frolll the discussioII above there is a tri pIe cover cjJ: lP( ( 2 ) -4 lP(OrUOh)
branched over lP(Oh), which also gives CL tripie cover cjJ: G2 /50(4) -4 Mr U CP(2)
branchecl over CP(2). This lllap is 8L(3, C)-equivariant and preserves the contact
structures. By hypothesis the nlap f: .E ~ FI2 (C3

) has a contact lift to PT'"'PI2(C3
).

The contact distri bution gives CL rank two bundle 1] over E containing T''E as a
subbundle. Let L == q/T'Y:. aud vr, == '"(T'F12(C})/T''E.. Transversality implies
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1] EB,·LI ~ '"(T'FI2 (C3
) ~ 1] EB,· L 2 , so ,.LI ~ ,.L2 , LEB,·LI ~ vI; and the result

folIows.
Note that the condition that the indusion be split may be rewritten as the vanish­

ing of the corresponding cohomology dass in H 1C,tLI 0 L·). In principle one may
determine this dass directly in terms of the maps 0' and ß, hut it is still necessary
to specify the spli tting otherwise there need not be a unique choice for the lift of ,
to lP'T'-FI2 ((?). For example, if VI; ~ 2,·LI then there is at least a complex one­
dimensional family of such choices. Note also that a dimension count shows that the
condition in Proposition 1.2 that I(~) avoid CP(2) can always be satisfied by making
a suitable choice of SU(3) in G2 .

5. QUOTIENT CONSTRUCTIONS AND THE HYPERKÄHLER POTENTIAL

In [16, 17] Kronheimer describes sel11i-simple and nilpotent co-adjoint orbits a.s
moduli spaces of instantons on non-compact four-manifolds and exhibits these or­
bits as infinite-dimensional hyperKähler quotients. Often finite-dimensional moduli
spaces of instantons 11lay also be constructed via a. finite-dinlensional hyperKähler
quotient (I, 3). \Ve now explain how to obtain M r from Gr4(1R?) via the finite­
dimensional quaternionie Kähler quotient construction of Galicki & Lawson (la] and
prove Proposition 1.3.

In the previous section we noted that G2 /50(4) is the set of associative three­

planes in R? = Im 0. If we identify Gr3(R7) with Gr4(R?) by sending V to the
four-plane W = V.L, then the set of associative three-planes becomes the set of
co-associative four- planes in Im 0 [11].

Lemma 5.1. Let ~V be au oneuted four-plane in IR7 and let {fI," . , /4} be an ori­
ented o1'lhonorrnal basis of ~V. Then ~V is co-associative if and only if {/1' ... , /4}
satisfies

(5.1 )

Proof. If W is co-associative we Illay use the action of G2 to take Wl. to the three·
plane spanned by i, j and k. It is then straightforward to verify the above identity.
Conversely, if 11/2+ /3/4 = 0 then the co-associator [/1,/2,/3, /41 = -8 Alt(/2' 1314)/1
vanishes and W is either co-associative or anti-co-associative (lI, Theorem IV.1.18].
However, if ~v is anti-co-associative then one may show that f1/2 = 13/4 and hence
/1/2 = 0, which is a contradiction. 0

The lllOInent lllap for the action of a subgroup G' ~ 50(7) on Gr4{IR.7) is the map

IL: Gr4(1R7) -t g* 0 A~W,

(where W is the tautological bllndle) induced by composition oi the indusion A~W ~

50(7) with projection to g. (Note that it is more usual to consider A: W, but these
spaces differ only by a change in the orientation of W.)
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Let x be a unit vector in Im (ll and let rf; be the GTinvariant three-form on Im (}I

defined by 4>(a, b, c) = (ab, c). Then ~ = x..Jt:P ia an element of A2IR? ~ 50(7) and so
defines a subgroup U(1) of 50(7). This subgroup U(1) is the centre of the sub­
group U(3) preserving the complex structure defined by left rnultiplication by x

on x.L. If {lI, ... ,/4} is an oriented basis for a four-plane W, then this defines a
basis for A~ ~V and the moment map for the U(1)-action is given by

jJ.(W) = ((11 1\ 12 + /3 1\ /4, e), (lI /\ /3 + /4 /\ /2, e), (/1 /\ /4 + /2 /\ /3, e)) .

_ The quaternionie Kähler quotient construction now says that p. is invariant under
the action of U( 1) and that if we restrict to an open set on which U( 1) acts freely,
then p.-1(O)/ U(l) is a quaternionie Kähler manifold of dimension dimGr4(IR?) ­
4 dirn U(l) = 8. Note that we 1nay rewrite the components of j.l(W) as

(/1/\12 + /3/\ 14, e) = rf;(/1/2 + /3/4, x), etc.,

so equation (5.1) iInplies that the co-associative planes lie in p.-l (0) and hence U( 1) .
(G2 / 80(4)) C j.l-1(0).

Now U(l) n G2 ~ Z3 anel so to prove Proposition 1.3 it only remains to show that
p.-1 (0) = U( 1) . (G2 / 50(4)). Let W be a four-plane in Il- 1(0). Then x.L n W is
at least three-elimensional and we may choose an orthogonal set {u, v, w} of vectors
in x.L n W. If (uv, x) =f 0 replace v by (uw, x)v - (uv, x)w. Thus we may find an
orthonormal basis {/h"" 14} of W such that x is orthogonal to /1, 12 and 11/2'
Using the action of G2 we rnay assunle that x = e, 11 = i and /2 = j [11, Lemma
IV.A.15]. By changing the choice of oriented basis of W we mayaiso Msume that
(/4, e) = O. Now U(3) acts fixing e and contains a circle subgroup which also fixes i
and j. Using this circle action we ulay take (/4, k) = 0 and choose the sign of (/4, ke)
independently of the sign of (/31 e). Thus we rnay write

}3 = .-\k +aue + lLIie + a2je + lL3ke, /4 = b1ie + b2je + ~ke,

where .-\, ai, bi are real anel fl ob3 :::; O.

By Leulma 5.1 it is sufficient to show that /3/4 = - 11/2 = -k. The moment map
equations imply

Ab3 = 0, b2 = lLI and bl = -(12

a.nd the fact tha.t {}3, f4} is orthonormal gives

a3b3 = Ol .-\2 + a~ + (Li + a~ + a; = 1 and (L~ + ai + b; = 1.

The difference of the last two equations gives b5 = .-\2 + fl6 + a5. If b3 = 0 then
.-\2 + a~ + a~ = 0 so .-\ = (1.0 = a3 = 0 and /3/4 = -k, as required. If b:i =f 0 then
.-\ = 0 = a3 and b5 = a5' However we assumed that b3 and ao had different signs so
b-,j = -aa and one Inay uow verify 13/4 = -k completing the proof oi Proposition 1.3.

Whenever oue has Cl. quaternionie Kähler quotient of M there ia a corresponding
hyperKähler quotient for U( 1\1) [25]. Combining the above construction with the
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description [9] of Gr4 (1R7
) as an Sp( 1)-quaternionic Kähler quotient of IHIP(6) gives

U(A1r ) as a hyperKähler quotient of flat space. This is related to a construction of
Kronhein1er (private cOffirTIunication) for nilpotent orbits in 5~n, C) aB hyperKähler
quotients (see below).

Since CJr --+- l\1r is precisely the bundle U( Mr ) (see §3), not only is Or a hyperKähler
manifold, but its hyperKähler structure admits a hyperI(ühler potential: this is de­
fined to be a function e which is simultaneously a Kähler potential for each of the
complex structures J of the hyperKähler structure on Or, that is each J satisfies
i8j 8j e = Wj. The hyperKähler nletric then has the form 9 = 'V2 e. We calculate e
explicitly using the following construction of Kronheimer for the regular nilpotent
orbit of 5~3,C). Let Vi = Ci, i = 1,2,3, let

lv! = HOlll(V1, V2 ) EB HOlU(V2, Vd EB Horu(V2 , V3 ) EB Hom(V3 , \12) ~ EI8

and let G = U(l) X U(2), where U(i) acts on Vi =Ci in the usual way. A point of M
is a cOIllplex of linear maps

0'1 0'2

V}( IV
2

( IV3
ßl ß'l

and moment maps for the action of Gare given by

IL c = (ßl 0'1, ß20'2 - O'lßd,

pr = (ßIß; - O'i O'b 0'1 O'i: - ß; ßl + ß2ß; - 0';0'2)'

where the hyperKähler moment map is IL = ipr + j Itc: M --+- g* 0 Im 1fIT. Given such
a complex define X E End(C3

) by X = C'f.2ß2' If the complex lies in p-l (0) then we
have

..}[2 = Q;2ß2Q;2ß2 = 0::20::1ßIß2

and X 3 = O. Thus such eleluents correspond to the nilpotent variety of 5~3, C)
and we have Vi s= Im X 3-

i if each the Q'i and ßi have rnaximal rank. Combining
Kronheimer's construction with results in [25] gives

The open dense set of smooth [Joints of It-1(O)/G is a hyperI(ühler manifold isomor­
phie to Or and the quotient 01 this set by the right.aetion 01 lHI* is the quaternionie
!{ähler munifolll NJr .

Since the proof of this is little different from the general case we refer the interested
reader to [15] where this result is extended to all classical groups.

To proceed we lleed the following lelnnla.

Lemma 5.2. Under the action 01 G X SU(3), the O'i and the endomorphism X are
equivalent to upper tr'iunyulru' matriees. 0

Since we are a.':istuuing that the Q'i are injective, the complex moment nlap equations
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now imply

15

_ (0111)
01 - 0 '

ßl = (0 ß1l2) ,

The remainillg lllol11ellt lllap equatiou::l are now

- -- 2 2
ß212 0 222 = O'lllßI12, ß213ß223 = Q2110'212, 10'1111 = Iß1l21 ,

Iß1121 2+ 10:2121 2 + 10:2221 2 = Iß'223f.!, 1011t12+ Iß21212+ Iß213j2 = 10 2111 2.

Proposition 5.3. At

){ = ('(1.ß2 = (~ ~ ~)
000

in the regu.lar nilpott:nt oTbit of 5~;1, 11:), tltt vfLlu.e 01 the hyper/{ähler potential is

[J(){) = 2VU a 12/
3 + Ic1 2

/
3P+ Ib1 2

•

Proo! The hyperKii.lder pot.eutial Oll Jl-
1(O)/G is the image of the restrietion of the

radial function '1'2 Oll !vI = JH[~. So tlle lTIOlnellt lTIap equations imply

e(X) = Tl'((O'lO'; +ß;ßd EEt (0:20; + ß;ß2)) = 2(j0:2111 2 + Iß2231 2
).

Define R = 10:2111 2, 5' = Iß·.!'231 2
alld T = Iß212j2 SO that e(X) = 2(R + S). Also, let

A = lal2, B = Ibl:.? allel C = Icl'.!·
For X to lie in the regular orbit of 5~3, C) we fiust have that both a and c

are non-zero, which ilnplies that ß:l.12 anel ß223 are also non-zero. Thus we may
write 0211 = fLl ß212' 0:222 = c/ ß2'l3l (l'1.12 = (bß212 - aß213)/ (ß212ß223) and 10 11114 =
lß1121 4 = 10:1ltl21ß11212= CT/S'. The ::lecond moment map equation now gives ß213 =
abß212/(ST + A) a.nel hence by substituting into the previous equation we obtain
0212 = bTß223/(ST + A) = hT(J223/(R + S). The last two moment map equations
glve

'.! A ER
I°ll d + R. = R - (R +S) 2 '

, '2 C , ES
1/111'21 + S' = .5 - (R. + 8)2·

Thus, using T = AI R, we obt.a.in

R IÜllll:.! + A/R IN + ~ [AB
S = 1/'II'2I~ +CIS = JE + f. = VeR'VFfS s

(5.2)

(5.3)
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(5.4)

Subtracting (5.3) {roln (5.2) anel multiplying through by R gives

Henee by (5.4) we have

allel the result follows. 0

The IHI*-action on M e:: lHI8 i8 givell by right 111l1ltiplieation. This action descends to
the hyperKähler quotient 11,-I(O)/G a.nel the manifold (JL-l(O)/G)/IHI* is precisely Mr

(see [25]). For CL three-pliine V E MT, Vc is spanned by the isotropie elements.
However , these isotropie elelnents a.re preeisely one orbit of the Ifi*-action and we
obtain:

Proposition 5.4. FOT X = D:2ß2 E 11,-1 (0) lhe con/'plexificalion 0/ the corresponding
lh7'ee-plaue in Mr is spa.nnet! by 0:2{J2, ß;a; a.nti ß'2 ß2 - 0'20:;. In particularJ one
obtains the three-p/aues V(:c, y) used in §2.

Proof. It only relnains to verify the last assertion. Let X = (g x; y~) = ~(el + ie2)'
o 0 0

Then e3 is proportional to ß;{J2 - 0:20:;. By the proof of the pl'evious proposition
ß'2ß2 - 0'20:; = eliag( -R, R - 5',5') anel R = x 2J:C 2 + y2, 5' = y2Jx2 + y2. 0
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