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PIOTR Z. KOBAK AND ANDREW SWANN

L. INTRODUCTION

If G is a compact simple Lie group, then Kirillov, Kostant & Souriau showed that
any co-adjoint orbit in the complex Lie algebra g€ is naturally a complex symplectic
manifold (see for example [13]). In particular the real dimension of such an orbit is
divisible by four and it is natural to ask whether it carries some type of quaternionic
structure. A partial positive answer to this question was given by Kronheimer {16, 17]
who showed that there i1s a hyperKdhler structure on the co-adjoint orbits both of
semi-simple and of nilpotent elements. Thus these orbits carry Ricci-flat metrics.
Using Kronheimer’s results, it was shown in [25] that the nilpotent orbits also admit
an action of the multiplicative quaternions H* and that the quotient by this action is
a quaternionic Kahler manifold (so necessarily Einstein) of positive scalar curvature.
In the case of the smallest nilpotent orbit one obtains a symmetric space of the
form G/(K - Sp(1)) and these are precisely the spaces studied by Wolf [26]. Since
quaternionic Kahler manifolds have a twistor space there are techniques available for
studying certain harmonic maps via complex geometry. The purpose of this paper
1s to investigate the geometry of the regular (largest) nilpotent orbit of s{(3,C) and
of a class of harmonic maps of a compact Riemann surface into G,/ SO(4) in such
a way as to illustrate some general theory to be described elsewhere, but which has
been partially developed in [14, 23].

We start with a Morse theoretic description of the quaternionic Kahler manifold
associated to the regular nilpotent orbit of sI(3,C). The Grassmannian Gra(su(3)) of
oriented three-planes in su(3) = R® carries an SU(3)-invariant functional ¥ defined
by

P(V) = ler, e, e3) = —{es, [e2, €3]),
where (-, ) denotes the metric determined by the Killing form of s4(3) and (ey, €2, €3)
is an oriented orthonormal basis for V. The gradient flow of ¥ has two positive
critical values; we define C, to be the critical set corresponding to the least of these
and let M, be the associated unstable manifold, which by definition consists of the
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critical set C, together with all points lying on trajectories v(¢) of the gradient flow
of 1 such that lim,_,_,, ¥(¢) lies in C,. In §§2,3 we prove

Theorem 1.1. The unstable manifold M, is an eight-dimensional quaternionic Kdahler
manifold whose twistor space Z, is the projectivisation P(O,) of the regular nilpotent
orbit of s[(3,C). The critical set C, is the symmetric space PSU(3)/ SO(3) and M, is
isomorphic to the rank-three vector bundle associated to the Lie algebra of SO(3).

(Here PSU(3) denotes SU(3) modulo its centre Z;.)

In §4 we show that the quaternionic Kahler structure is locally symmetric by
identifying a triple cover as an open subset of G5/ SO(4). This renders some of the
earlier arguments superfluous; however, it is the Morse theoretic approach which
extends to arbitrary nilpotent orbits. Brylinski & Kostant [5] have recently classified
which nilpotent orbits are finite covers of other nilpotent orbits; many orbits do not
appear in this list and their associated quaternionic Kahler manifolds can not be
locally symmetric (cf. [24]).

Both the proof of Theorem 1.1 and the discussion of the local symmetric structure,
show that the complex contact structure on Z, agrees with that induced by the
complex symplectic structure on O, defined by Kirillov, Kostant & Souriau. The
complex contact structure on the twistor space is .particularly important for the
study of harmonic maps: if f: ¥ — Z is a holomorphic map of a Riemann surface
into a twistor space Z such that the pull-back of the contact form is zero, then the
composition of f with the projection Z — M is a harmonic map ¥ — M [6]. The
complex contact structure of Z, may be identified via the Springer resolution with
that on an open set of P7"* F,(C?), the projectivised holomorphic cotangent bundle
of the flag manifold of lines in planes in C*. Let L, and L, be the holomorphic
tangent line bundles of the fibres of the projections p; and p, from Fi5(C?) to CP(2)
and CP(2)" respectively. The fact that M, is locally isometric to G3/ SO(4) leads to

Proposition 1.2. There is a three-to-one correspondence between harmonic maps
f: ¥ — G3/SO(4) (avoiding « CP(2)) which have a horizontal holomorphic lift to
the twistor space of G/ SO(4) and triples (a, B,s), where

(1) (e, B) is a pair of holomorphic maps £ — CP(2) with the same ramification
divisor and such that 3, a;; = 0,

(2) if v = («a, B) is the corresponding map into Fy5(C?), then v* Ly = 4" L,

(3} s is a splitting of the inclusion v* Ly — *T"F\3(C*)/T'E.

This result may be regarded as generalisation of Loo’s [19] description of harmonic
maps S? — S* in terms of pairs of holomorphic maps 5% — CP(1).

It is well-known that G,/ SO(4) can be viewed as the totally geodesic submanifold
of Gry(R") consisting of co-associative four-planes [11]. It turns out that there is
another relationship between the geometry of these two manifolds.
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Proposition 1.3. The quaternionic Kihler manifold (—54(R7) admits an action of
U(1) such that the quaternionic Kihler quotient is the singular eight-dimensional

space M, UCP(2) = G3/(50(4) x Z3).

This result is proved in the final section of the paper where we also identify a specific
flow line used in the earlier Morse theoretic arguments. During the latter calcu-
lation it becomes possible to obtain the hyperKahler potential of the regular orbit
of s{(3,C), this is a function which is simultaneously a Kahler potential for each of the
Kahler structures. This also makes use of the hyperKahler quotient construction [12]
which Kronheimer observed may be used to construct nilpotent orbits in si(n,C).
Extensions to nilpotent orbits of other classical groups may be found in [15]. -

Acknowledgements. We wish to thank F. E. Burstall and P. B. Kronheimer for in-
forming us of their work and the organisers of the GADGET conference on Global
Analysis and Differential Geometry, 1992, for providing a stimulating atmosphere in
Miinster. Particular thanks go to S. M. Salamon who supervised both our doctoral
theses and who has been a constant source of inspiration. The last named author
would also like to thank H. Pedersen for useful conversations and the Max-Planck-
Institut fiir Mathematik, Boun, for hospitality.

2. THE NILPOTENT VARIETY AND MORSE THEORY

We introduce the following notation. The set of all nilpotent matrices in 5{3,C)
will be denoted by N = { A € s[(3,C}: A® = 0} and is called the nilpotent variety
of §[(3,C). The group SL(3,C) acts on A via the adjoint representation and has two
non-trivial orbits: the smallest is the eight-dimensional orbit of highest root vectors
On={A €N :A? =0,A # 0}; the other is the regular orbit O,, which is 12-
dimensional and is open and dense in M. It is the quaternionic geometry associated
to the regular orbit that is our main object of study.

Nilpotent elements are closely related to three-dimensional simple subalgebras. Let
X be a nilpotent element in the complexified Lie algebra g of a compact simple Lie
group G. The Jacobson-Morosov Theorem (see [7]) states that there exist H and
Y in g€ such that [X,Y] = H, {H,X] = 2X and [H,Y] = —2Y, so the linear
span of X, Y and H is a subalgebra of g€ isomorphic to s{2,C). When X is a
highest root vector, it is possible to take Y and H proportional to X and [X, 0 X],
respectively, where o is the real structure on g€ with fixed point set g. This allows
one to define an action of H* on the set of highest root vectors by (a+8j) - X = a?X —
b*o X —ab[X,0X] and the resulting quotient spaces are compact and symmetric [25,
§6], [26). When G = Sp{n + 1), this gives the quaternionic projective space HP(n) =
Sp(n + 1}/(Sp(n)Sp(1)). Two other examples are CP(2) = SU(3)/S(U(1) x U(2))
and G,/ SO(4) obtained by taking (7 to be SU(3) or G, respectively.
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Consider the gradient flow equations V = V(V) for the functional v on the
Grassmannian Gra(su(3)) defined in the introduction. These may be written as

éy = —[ez, €3] — ey,
ey = —[63, 61] — ey,
€3 = —[611 62] — e

and the right-hand sides of these equations are just the components of the Lie brack-
ets orthogonal to V. The critical points of ¢ correspond to Lie algebra homomor-
phisms p: suw2) — su(3) and the critical sets are manifolds of the form SU(3)/N,,
where N, is the normaliser of the subgroup with Lie algebra p(su(2)). The maximum
value of ¥ is /2 and the corresponding critical set Cy is the quaternionic Kahler
manifold CP(2) = SU(3)/S(U(2) x U(1)). According to Dynkin [8] the only other
positive critical value of 4 is 1/v/2 and its critical set C, is PSU(3)/ SO(3). The
corresponding subalgebra p(s5u(2)) may be taken to be the s0(3) consisting of those
matrices in su(3) with real entries. Changing the orientation of a three-plane V
changes the sign of ¥(V) so the remaining critical values are —/2 and —~1/v/2.

One motivation for the use of the gradient flow comes from the following lemma.
Let F be the subset of Gry(sw(3)) consisting of all oriented three-planes V such that
every isotropic element of V¢ is nilpotent. '

Lemma 2.1. The gradient flow of ¢ preserves the variety F and the nilpotent orbits
associated to elements of F.
Proof. Given an oriented, orthonormal basis e, e, €3 for an element V € F, let
e; = (1 = t)eg — tley, ea), etc.,
be a path parameterised by ¢ € R. Up to order %, e}, e}, €} are orthonormal, so we
need to show that (up to first order) €] + ze} is in the nilpotent orbit of e; + ie,.
However, the Jacobson-Morosov Theorem implies that there exists H € s(3,C) such
that e; +ie; = 1[H, e, + i€, and so
€ +rey = (1 = t3p)(eg + iex) + t[er + ey, tes]
= ¢ + l:t,'g + t[el + ieg,i(ig + %IIJH],

as required. O

The tangent space to the unstable manifold M, at C, is described by the Hessian
of ¥. The following calculation was communicated to us by F. E. Burstall.

Proposition 2.2 (Burstall). Let V be a point of the critical set C,. Then, as an
SU(2)-module, _
Ty Gra(su(3)) = S + 54 4+ §?
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and the Hessian of 1 is negative definite on the first summand, zero on the second
and positive definite on the third. Thus 1/v/2 is a non-degenerate critical value of ¥
in the sense of equivariant Morse theory and

Ty M, =54+ 5= 53 S,

Here S* = S*C? is the (k 4 1)-dimensional irreducible representation of SU(2).
When k& is even, this is the complexification of a real representation also denoted
by S*.

Proof. Identify Tv CTra(su(S)) with V" @ V+ C A?su(3), so the Hessian of 9 is given
by dbp(X,Y) = p(X.Y.e; A ey Aes). Now the Killing form of su(2) is B,ya)(e;, e;) =
—26,;4(V)* = —§;; and the Casimir operator of an SU(2)-representation p is

Cp == z -p(e,-)p(e,-),

1=1
which for the representation S* is multiplication by ((k+1)? —1)/8. Calculating the
negative of the Hessian we have
_d%"llb(X! Y) = (‘Xyelv [62, 63]) + (8], [XYCQ, 63]) + (cli [621 Xye3])
+ (Xe,, [62, YC;_;]) + (Yel, [62, )(63]) + (XCI, [YEQ, 83])
+ (Yeh [XCQ, 63]) + (el: [Xe2) YBa]) + <el} [Y62)X63])
= —<Y€1 y .\,[62, 63]) - <},62, X[Cg, 81]) - (Yeg, X[el, 62])
+ (Yel» [82: .Yfig] - [63: Xc?}) + (Ye'h [63, Xel] - [61, Xe3])
+ (Yﬂg, [61,.¥€2] - [62? -Xel])
= 7'5<Y6f, Xe) + (Yei, Axes),
where Ay = 2ad ¢; 0 X o ade;. The Casimir element of V* @ V< is given by
CV°®VJ-4¥ = —(6,'(])(6,')‘\’) — (p(e,-)X)e;) = —(6,'6,'X - QC;XC.' + Xe;e‘-)
= Cye X + XCy + V245 = 4X + V24y,

since Cy = Cq2 = | and Cy1 = Cs = 3. Thus d4(X,Y) = (Ye;, Cxe;), where
Cx = (3X - Cv-gv.LX)/\/'i. Now V'@ VL =829 5% = 5%+ S+ 5? and C has
eigenvalues —3/v/2, 0, and v/2 on these summands. [

Thus the real normal bundle of the critical set C, = PSU(3)/ SO(3) in the un-
stable manifold M, is the vector bundle associated to the representation S5%. Since
SO(3) acts transitively on the unit sphere in §? = R3, this shows that SU(3) acts
transitively on the set of trajectories lying in M\ C,. An example of such a trajectory
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is given (up to parameterisation) by V(z,y) = (ey, e, €3),

0 z% 0 iz? 0 0
61‘{'?.'82:2 0 0 y3 N 63:\{I2+y2 0 Z.(yz—ﬂ:z) 0 ,
00 0 0 0 —iy?

where 2(z® 4+ 3®) = | with z 2 y > 0. (One may check directly that this is a solution
to the equations, but a method of obtaining such three-planes will be given in the
last section.) Note that V(z,y) lies in C, when z = y = 27'/2 and is in C}, when
z =245 and y = 0. A straightforward calculation shows that if a®> + 2 +~42 =0
then X = ae; + Bez + vez has X = 0. Thus X is nilpotent and lies either in O, or
in O,. However, if X € O,,, then by Lemma 2.1 the limit of X under the backwards
flow must also be in @,. But such a limit lies in V¢ for some V € C, and such a
V¢ does not meet O, Thus isotropic elements of V¢(z,y) lie in O,.

3. TWISTOR SPACE STRUCTURE

In [25] it was shown that any quaternionic Kéhler manifold with positive scalar cur-
vature has a principal H*/Z,-bundle 4 (M) whose total space carries a hyperKahler
metric. Using the action of C* € H* one obtains a quotient manifold Z which is
a CP(1)-bundle over M. The total space of Z is a complex manifold called the
twistor space of M. For example if M = HP(n), then U(M) = (H™*! \ {0})/Z; and
Z = CP(2n +1). The action of j € H" on U(M) descends to an anti-holomorphic
involution o on Z preserving the fibres. The C*-action on U (M) preserves one of the
complex structures, say /. We may now construct a holomorphic two-form w; + twg
which gives a complex symplectic structure on A (M). Contracting this two-form with
the holomorphic vector field generating the C*-action gives a holomorphic bundle-
valued one-form ¢ on Z. This has the property that & A (df)" is nowhere vanishing,
in other words we have a complex contact structure on Z. Such information about Z
may be used to recover the structure of M via the Inverse Twistor Construction
(LeBrun [18], Pedersen & Poon [20]): '

Let Z be a compler manifold of dimension 2n +1 2 5 with e fized-point-free anti-
holomorphic involution o. Then the set N of o-invariant rational curves with normal
bundle 2nO(1) is naturally « quaternionic manifold of dimension 4n.

If in addition Z admits « complex contact structure § such that 0 = 8, then N is
pseudo-quaternionic Kahler.

Here a quaternionic manifold should be regarded as the non-Riemannian analogue
of a quaternionic Kahler structure (see [21] for a precise definition). The term pseudo-
quaternionic Kahler indicates that the metric obtained need not be positive definite.

Let V be a point of the critical set C, and let C denote the set of isotropic (null)
elements of Vo = V®C. Then V is p(su(2}) for some homomorphism p and C consists
of the nilpotent elements of p(s1u(2) @ C) C si3,C). Direct calculation shows that
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SL(2,C) acts transitively on the set of nilpotent elements of s{2, C), so the elements
of C are conjugate under the adjoint action of SL(3,C), and that C is contained in
the regular nilpotent orbit O, (see [7]).

Lemma 3.1. Let CP(1) be the projectivisation P(C). Then the normal bundle v
of CP(1) in P(O,) 1s
v = 40(1).

Proof. The Lie algebra s[(3,C) splits under the action of s{2,C) into a direct sum
of SU(2)-modules as s{3,C) = §% + S*. The tangent space to O, at X is TxO, =
(ad X)sl(3,C), so the normal bundle at z = [X] is v, 2 (ad X)S*.

Since V = s5u(2), there is an element H € V¢ such that [H,X] = 2X. On %,
ad H has eigenvalues 4, 2,0, —2 and —4. Restricting to the circle subgroup exp(itH),
we have a further splitting of v into U(1)-bundles which in this case are four line
bundles with Chern classes 4, 2, 0 and —2 (respectively). In particular,

Cl(ll) =4,

Now V¢ is a linear subspace of s{3,C), so TP(s{3,C))/TP(Ve) = 5(0(1) —
CP(2)). The map CP(1) — P(V¢) has degree 2 and n = TP(sl(3,C))/TP(V¢) =
Vg ® O(2) = 50(2). The normal bundle v is a rank four subbundle of 7 and so
v = Yic2a;0() with Fe; = 4. An O(2)-summand gives a non-zero holomorphic
section of v(~2) and hence of n(—2). This is a constant vector v € V& which lies
in T,P(O,) for all « € CP(1), that is v lies in

(| ad(X)s(3,C). (3.1)
[X)eCP(1)
However, since s{3,C) = 5%+ 5% this intersection is {0} so v has no O(2)-summand.
As ¢;(v) = 4, this implies that » = 40(1). O

Proposition 3.2. The unstable manifold M, is an eight-dimensional quaternionic
manifold with twistor space P(O,).

Proof. Consider the flow line V(z,y) defined at the end of §2 and let C(z,y) be the
set of isotropic elements in V(x,y)® C. Then C(z,y) is contained in O, and we need
to determine the normal bundle v of CP(1) = P(C(z,y)) in P(O,). As before we
have rank v = 4, ¢;(v) = 4 (since the stabiliser of V(z,y) under the action of SU(3)
is U(1)), v is non-negative and to show v = 40(1) it is sufficient to show that the
intersection (3.1) is {0}.

Write X(¢) = X(u+1v) = ue; + ve, + 1e3. This is an element of C(xz,y) if [(| = 1.
We have

2! A B
(D -a+f C) € ad(X(()) s1(3,C)
E F s
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which implies that
(A-(D= (1‘3(212 —y* )22 + yg) a+y°7(¢),

{C—(F= (y'e'(%r2 —z)yfz? + yQ) B - z>v(¢),
B+ B = - a+ %708 + (= + %) *(0),
for some complex number «((). Eliminating v({) gives
(2% +y*)*((A = (D) = (B + (*E) = 2(22° + 3y*)a — <°8,
(z* +¥*)*((C = (F) = 2*((*B + (*E) = ~y°a + y(3z" + 2%)8.

These equations hold for all (| = 1,s0 A=B=C =D =FE=F =0. The
determinant of the matrix of coefficients of the right hand side is 6zy(z? + y*)?, so
we also have o = § = 0, as required.

The real structure on si(3,C) induces a real structure on the CP(1)’s without
fixed points and we may use the Inverse Twistor Construction to get a quaternionic
structure on M,.

We now wish to identify the twistor space Z, of M, with P(O,). Note that we
already have a map ¢: Z, — P(O,) since the twistor lines lie'in P(Q,). As h'(v) =
0 = h'(v(—1)), this map is a local diffeomorphism and so the image of ¢ is open
(cf. [18]). Let (z;) be a sequence of points in the image of ¢ converging to a point z €
P(O,). There exist oriented three planes V; € M, such that a pre-image of z; lies
in V; @ C. We also have a subsequence converging to a point V in M, = M,UC, and
z € PV¢. However, if V € C), then £ € P(O;) which is a contradiction. Therefore
V € M, and z € ¢(Z,). Thus ¢ is a covering map.

It remains to show that ¢ is injective. Choose V = (e, e3,€e3) € C, and let X =
ey +ep. If V' € M, is another three-plane with X € V¢ then we can find e} € su(3)
such that (e, €2, €3) is an oriented orthonormal basis for V. Now,

(V') = ~([er, ea], €3) = (¥(V)es, e3) < $(V).
However, V' € M, and V € C; implies ¥(V’) 2 (V). Hence ¥(V') = ¢(V) and
(es,e3) = 1. Since ez and e are unit vectors this gives e3 = ¢, and V = V’. Hence
v 1s a bijection. O

Proposition 3.3. The unstable manifold M, is quaternionic Kahler.

Proof. The projectivised orbit P(O.) has a complex contact form @ defined at [X] €
P(O,) by 6([X, A]) = (X, A). (This is obtained by contracting the holomorphic vector
field generating the quotient O, — P(O,) with the complex symplectic form on O,
defined by Kirillov, Kostant & Souriau, see [13].) To show M, is pseudo-quaternionic
Kahler it suffices to show that CP(1) = P(C(z,y)) is transverse to 8, in other words
that f|cp() is non-zero. At X = e, + 1e, the tangent space to CP(1) is generated
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by eg, thus a non-zero tangent vector at X is given by [X, A], where

0 0 0
A=z 0 0
0 y'o

Now 8([X, A]) = 2(z* + y?) which is non-zero.

To complete the proof we need to show that the pseudo-quaternionic Kahler met-
ric ¢ on M, is positive definite. Note that by construction g is SU(3)-invariant, in
particular at a point V of C, = PSU(3)/ PSU(2) the metric g is SU(2)-invariant.
Now TyC, = S? + §% so any SU(2)-invariant metric is either positive definite or
has signature (3,5). However, the fact that g is pseudo-quaternionic Kahler implies
that ¢ has signature (4p,4q) for some p and ¢q. Thus the only possibility is that g is
positive definite and M, is quaternionic Kahler. O

This completes the proof of Theorem 1.1. Note that we have also identified O, —
P(O,) as the C*-bundle associated to the contact line bundle on the twistor space
of M, and this shows that O, — M, is the bundle U (M,).

4. LocAL SYMMETRIC SPACE STRUCTURE AND HARMONIC MAPS

It is well known that su(3) is a subalgebra of g,. This may be seen explicitly as
follows: let (0,1) be the highest root of g5 and suppose (1,0) is a short root such
that the long roots of g, are £(0,1), £(3,2), £(3,1), and the short roots are £(1,0),
+(1,1), %£(2,1); then s{(3,C) is the subalgebra generated by the long roots. The Lie
algebra g$ decomposes under the action of SU(3) as

g5 = s[(3,C) ® A'°C3 @ A™'C3.

The space G,/ SU(3) is 3-symmetric; the symmetry 7 comes from the centre Z,
of SU(3) and acts on this decomposition of g5 as (1,e*/3,e~?"/3), The projec-
tion of the highest root orbit of g§ contains elements of both the nilpotent orbits
of s{(3,C) and so, counting dimensions, the image must be the whole nilpotent vari-
ety of s[(3,C). To show that both orbits meet the image, we argue as follows. We
have a subgroup SO(4) = Sp(1)4+ Sp(1)- of G, and Salamon [22] shows that the Lie
algebra g5 decomposes under SO(4) as

0S =S, @ SU_ @ U, S,

where Uy = C? are the two-dimensional non-trivial representations of Sp(1)y. If

we take sp(l), to be the span of Eg1y, Hio1), E-(0,1), Where H,, E) is a Cartan

basis for g$, then sp(1)_ is spanned by E0y, Hizpy, E-(2,1) and the remaining roots

span U,S?U_. Now, for definiteness, identify (1) and E(3;) with the matrices
010 000 001

(0 0 0) and (0 01 ) This gives [Eo1), Egny) = E@g) = (0 0 0) and so Eg,1)+ Eaz) is

000 000 Aooo ) :
a highest root vector of su(3) and hence of g,. Consider the orbit of this element
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under Sp(1).. The first component lies in sp(1), so it is Sp(1)_-invariant. The other
component lies in the Sp(1)_-module S°U_ spanned by Es3), E1,1), E¢-1,0), £(<3,-1)-
In particular, there is an element in the Sp(1)_-orbit of Eo1) + E(3,2) which projects
to Ep) + aEag) + bE(.3,-1) with both a and & non-zero. Now this element lies in
the regular orbit of si3,C) and is the projection of a highest root element of 9%, as
required.

Quaternionically, we obtain the following. Let 1,1,7,k,¢e,1¢, je, ke be a basis of the
Cayley numbers @, then the Wolf space G,/ SO(4) is the space of quaternionic lines
in ©. The action of 7 € Z3 on Q@ is via right multiplication by e*/® = (=1 +e/3)/2.
The fixed point set of 7 consists of those quaternionic lines which are spanned by 1,
e and a complex line in C* = (7,4, k, e, je, ke), so this set is isomorphic to CP(2).

Proposition 4.1. There is an open set in the highest root orbit of gf which is a
three-fold cover of the regular nilpotent orbit in s(3,C). The quaternionic Kahler
manifold M, associated to this SL(3,C)-orbit is ((G,/ SO(4))\ CP(2))/Z,. O

In the previous section we saw that M, carries an SU(3)-invariant functional .
This functional defines an SU(3)-invariant functional on G,/ SO(4) which may be
described as follows. A quaternionic line in @ necessarily contains 1 and so is deter-
mined by a three plane (z,y,zy) in ImQ, the space spanned by C? and e. (This is
the usual identification of G,/ SO(4) with space of associative three-planes in R7.)
Any such three-plane meets C® in at least a two-dimensional subspace which we
may assume to be the span of z and y, with = and y orthogonal unit vectors. Since,
away from the singular set, (Gy/ SO(4))/ SU(3) is one-dimensional there is essentially
only one SU(3)-invariant functional given by (z,y,zy) — |(z,ey)|. This functional
is 0 on C, = PSU(3)/ SO(3) and | on Cy = CP(2). The gradient flow maps (z,y)

to (zcost — ysint,ezsint + eycost).

Corollary 4.2. Let V be a point of the critical set C, and let My, be the set of trajec-
tories v of i such that v(t) € M.\ C; and imy—~_,y(t) = V. Then V determines a
totally real three-dimensional subspace W of R® = C* and {limy_,o, 7(t) : v € M7 }
is a two-sphere consisting of those complez lines which meet W non-trivially. 0O

Twistor theory has found several applications in the study of harmonic maps;
the ones that are most relevant here are the existence theorem of Bryant [4] for
harmonic maps £ — S* and Loo’s [19] description of the moduli space when & =
S2. These arise from maps to the twistor space CP(3) of S* which are horizontal
with respect to the distribution defined by the complex contact structure and the
results are obtained via suitable choices of complex contact manifolds birationally
equivalent to (finite quotients of) CP(3). In our case the discussion above implies
that the Zs-quotient of the twistor space of G2/ SO(4) is birationally equivalent (as a
complex contact manifold) to the twistor space obtained from the regular nilpotent
orbit of s{3,C). We will now use the Springer resolution of the nilpotent variety



QUATERNIONIC GEOMETRY OF THE NILPOTENT VARIETY 11

of s[(3,C) to obtain a contact-structure-preserving birational map to PT"* F},(C?),
the projectivised holomorphic cotangent bundle of the flag manifold of lines in planes
in C>.

Regarding s{3,C) as a matrix algebra in the usual way we have an SL(3,C)-
equivariant map x: P(O,) — P(O,) defined by x{X] = [X?]. If we identify P(O})
with the flag F;5(C?) then x[X] = (ker X C Im X C C3). An infinitesimal calculation
shows that the fibres of x are contact, that is if ¢ is the complex contact form
on P(O;) then 8 is zero on T{y)x ™" x[X]. This enables us to define a map x: P(0,) —
PT"F]z(CS) by

1X] = x. kerbpxy = { [X?%, 4] : (X, 4) =0 }s

where [a] € PT. Fi5(C?) is identified with kera,. The projectivised holomorphic
cotangent bundle p: PT"F;3(C?) — Fj4(C®) has a natural complex contact structure
for which the contact distribution at a point [ is (p.)~! ker a.

Lemma 4.3. The map x maps the complex contact distribution on P(O,) into the
complez contact distribution on PT™F;,(C?).

Proof. This is follows from py = x. O

Proposition 4.4. The map x is injective and its image consists of those two-planes
in T'F\5(C?) which are transverse to the fibres of the projections py: F3(C?) — CP(2)
and py: F1,(C?) — CP(2)".

Proof. Recall [2] that the Springer resolution of the nilpotent variety of s{3,C) is
the map m: T"F3(C?) — s3,C) defined as follows. Differentiation of the action
of SL(3,C) on Fy(C®) = P(O4) gives the map

P(Oh) x 5[(3,C) -— T’P(Oh),
(Y], A) — [V, A].

To construct m, take the dual of this map, compose with projection to s{(3,C)" and
then identify this with sI(3, C) via the Killing form. Let Pr be the map PT"F)3(C?) —
Psl(3,C) induced by 7. Then Prla] = { A : o]V, A] = 0}* for [o] € PT P(Oh).
Thus the above formula for y shows that Proy = Id and ¥ is injective. The final state-
ment now follows from an examination of the orbits of SL(3,C) on PT" F\2(C?). O

We now turn to the proof of Proposition 1.2. Let O; be the orbit of highest root
vectors in g§. From the discussion above there is a triple cover ¢: B(O,) — P(O,UO})
branched over P(O}), which also gives a triple cover ¢: G,/ SO(4) — M, U CP(2)
branched over CP(2). This map is SL(3,C)-equivariant and preserves the contact
structures. By hypothesis the map 7: £ — F)3(C?) has a contact lift to PT"F;,(C3).
The contact distribution gives a rank two bundle n over ¥ containing T'Y as a
subbundle. Let L = 5/T'S and vy = y"T'Fi,(C?)/T'E. Transversality implies
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@Y L Zy T Fa(CP) Z ey Loy so v Ly "Ly, LB "Ly & vg and the result
follows.

Note that the condition that the inclusion be split may be rewritten as the vanish-
ing of the corresponding cohomology class in H'(y*L; ® L*). In principle one may
determine this class directly in terms of the maps a and §, but it is still necessary
to specify the splitting otherwise there need not be a unique choice for the lift of v
to PT"Fo(C?). For example, if vg = 247L, then there is at least a complex one-
dimensional family of such choices. Note also that a dimension count shows that the
condition in Proposition 1.2 that f(X) avoid CP(2) can always be satisfied by making
a suitable choice of SU(3) in G;.

5. QUOTIENT CONSTRUCTIONS AND THE HYPERKAHLER POTENTIAL

In [16, 17] Kronheimer describes semi-simple and nilpotent co-adjoint orbits as
moduli spaces of instantons on non-compact four-manifolds and exhibits these or-
bits as infinite-dimensional hyperl{ahler quotients. Often finite-dimensional moduli
spaces of instantons may also be constructed via a finite-dimensional hyperKahler
quotient [1, 3]. We now explain how to obtain M, from Grs(R”) via the finite-
dimensional quaternionic Kahler quotient construction of Galicki & Lawson [10] and
prove Proposition 1.3.

In the previous section we noted that G,/ SO(4 ) is the set of associative three-
planes in R7 = ImO. If we identify Grg(R”) with Gry(R7) by sending V to the
four-plane W = V<, then the set of associative three-planes becomes the set of
co-associative four-planes in ImO [11].

Lemma 5.1. Let W be an oriented four-plane in R? and let {f,,..., f4} be an ori-
ented orthonormal basis of W. Then W is co-associative if and only if {f1,..., fs}
satisfies

hf:+ fsfa=0. (5.1)

Proof. If W is co-associative we may use the action of G, to take W+ to the three-
plane spanned by z, 7 and k. It 1s then straightforward to verify the above identity.
Conversely, if fifa+ fafa = 0 then the co-associator (fi, f2, fs, fai] = =8 Alt(fz, fafa)
vanishes and W is either co-associative or anti-co-associative {11, Theorem IV.1.18].
However, if W is anti-co-associative then one may show that f, f, = f3f4 and hence
fifa =0, which is a contradiction. [J

The moment map for the action of a subgroup G < SO(7) on Gry(R7) is the map
j: G1‘4(IR )— 8" ®A2W

(where W is the tautological bundle) induced by composition of the inclusion A2 W —
s0(7) with projection to g. (Note that it is more usual to consider A2 W, but these
spaces differ only by a change in the orientation of W)
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Let = be a unit vector in ImQ and let ¢ be the G,-invariant three-form on Im QO
defined by ¢(a,b,c) = (ab,c). Then £ = z.¢ is an element of A’R” = 50(7) and so
defines a subgroup U(1) of SO(7). This subgroup U(1) is the centre of the sub-
group U(3) preserving the complex structure defined by left multiplication by z
on z*. If {fi,..., fs} is an oriented basis for a four-plane W, then this defines a
basis for A2 W and the moment map for the U(1)-action is given by

pW)=({(AAfa+ faNfa ) (AN S+ fanN o, 8, (A fa+ fa A f3,6)).

The quaternionic Kahler quotient construction now says that g is invariant under
the action of U(l) and that if we restrict to an open set on which U(1) acts freely,
then p='(0)/ U(1) is a quaternionic Kahler manifold of dimension dim Gry(R7) —
4dim U(1) = 8. Note that we may rewrite the components of u(W) as

(i A fat s A f0,6) = o(ffa + fafa, ), etc.,

so equation (5.1) implies that the co-associative planes lie in £~!(0) and hence U(1) -
(G2/ SO(4)) C p~Y(0).

Now U(1) N G2 = Z3 and so to prove Proposition 1.3 it only remains to show that
p~H0) = U(1) - (G2/ SO(4)). Let W be a four-plane in p~'(0). Then z* N W is
at least three-dimensional and we may choose an orthogonal set {u,v,w} of vectors
in zt N W. If (uv,z) # 0 replace v by (vw,z)v — (uv,z)w. Thus we may find an
orthonormal basis {f;,..., fi} of W such that z is orthogonal to f;, f; and ff5.
Using the action of G, we may assume that z = ¢, f; =1 and f, = j [11, Lemma
IV.A.15]. By changing the choice of oriented basis of W we may also assume that
(fa,e) = 0. Now U(3) acts fixing e and contains a circle subgroup which also fixes 1
and j. Using this circle action we may take {fq, k) = 0 and choose the sign of (f4, ke)
independently of the sign of {f3,e}). Thus we may write

f3 = Ak + age + ayie + agje + azke, fy = bize + byje + bake,

where A, q;, b; are real and agby < 0.

By Lemma 5.1 it is sufficient to show that f3f; = —f, f, = —k. The moment map
equations imply

Ab3 =0, by=a, and b = —ay
and the fact that {f3, f4} is orthonormal gives
azh3 =0, M +al+al+ai+ai=1 and d4+al+b2=1.

The difference of the last two equations gives b2 = A2 + a2 + a2. If by = 0 then
M t+ai+ad=0s0)=u0ay=0a3 =0 and f3fy = —k, as required. If b5 # 0 then
A =0 = a3 and b2 = af. However we assumed that b3 and a, had different signs so
b3 = —ap and one may now verify f3fy = —k completing the proof of Proposition 1.3.

Whenever one has a quaternionic Kahler quotient of M there is a corresponding
hyperKahler quotient for /() [25]. Combining the above construction with the
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description [9] of Grq(R7) as an Sp(1)-quaternionic Kihler quotient of HP(6) gives
U(M,) as a hyperKahler quotient of flat space. This is related to a construction of
Kronheimer (private communication) for nilpotent orbits in sl(n, C) as hyperKahler
quotients (see below).

Since O, — M, is precisely the bundle 2{( M, ) (see §3), not only is O, a hyperKahler
manifold, but its hyperKahler structure admits a hyperKdihler potential: this is de-
fined to be a function p which is simultaneously a Kahler potential for each of the
complex structures J of the hyperKahler structure on O,, that is each J satisfies
195050 = wy. The hyperKahler metric then has the form g = V?p. We calculate p
explicitly using the following construction of Kronheimer for the regular nilpotent
orbit of s(3,C). Let V; = C',i=1,2,3, let

M = Hom(V;, V3) @ Hom(V;, Vi) @ Hom(V,, V) @ Hom(Va, V2) = HP®
and let G = U(1) x U(2), where U(z) acts on V; = C' in the usual way. A point of M
is a complex of linear maps
o ag
We= 1 =V
5 B2
and moment maps for the action of GG are given by

ue = (Bren, Py — a1 ), ’

1= (/B — ajen,qe] — BB + BaB; — aqaa),
where the hyperKKahler moment map is ¢ = ip” + ju: M — g* @ ImH. Given such
a complex define X € End(C?®) by X = a,0,. If the complex lies in £~*(0) then we
have

Xt = 220282 = a1 B 2

and X* = 0. Thus such elements correspond to the nilpotent variety of s[(3,C)
and we have V; = Im X>" if each the o; and f; have maximal rank. Combining
Kronheimer’s construction with results in [25] gives

The open dense set of smooth points of = '(0)/G is a hyperKihler manifold isomor-
phic to O, and the quotient of this set by the right-action of H* is the quaternionic
Kdhler manifold M.,.

Since the proof of this is little different {from the general case we refer the interested
reader to [15] where this result is extended to all classical groups.
To proceed we need the following lemma.

Lemma 5.2. Under the action of G x SU(3), the a; and the endomorphism X are
equivalent to upper triangular matrices. [

Since we are assuming that the ; are injective, the complex moment map equations
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211 anz
_ {tan — 0
a = 0 ) Qg = Q22 |,
0 0

ﬁl = (0 ﬂnz) ) Bz = (g ﬂf}m g:;z) .

The remaining moment map equations are now

now imply

,32120’222 = CYmﬂnz, ﬂnsﬁzza = Q110212 |0111]2 = |,3112|2,

|B112]? + Jaara* + aggel* = |Bazal?, | * + |,3212f2 + |ﬁ213|2 = |0211|2-

Proposition 5.3. At
0 ¥ b
X = (‘(gﬂg =10 0 ¢
g 00

in the regular nilpotent orbit of s{3,C), the value of the hyperKdhler potential is

o(X) = 2/(Ja[*/3 + [c[#3)3 + [b]2.

Proof. The hyperKahler potential on ;=!(0)/G is the image of the restriction of the
radial function 2 on M = H®. So the moment map equations imply

o(X) = Te((ones + B1B1) @ (ana; + B36)) = 2(Jaaus|* + |Bazs)?).

Define R = |ag1|%, S = |Fsl|? aud T = |fB12]° so that o(X) = 2(R + S). Also, let
A=|a]}, B=|b? and C = |¢|*.

For X to lie in the regular orbit of si3,C) we must have that both a and ¢
are non-zero, which implies that S,; and f393 are also non-zero. Thus we may
write ag = a/fa12, Can = ¢/Paas, any = (bfnz — aBus)/(B212822s) and |05111|4 =
|Bri2l* = loan |} Baiz|? = CT/S. The second moment map equation now gives f213 =
@bf112/{ST + A) and hence by substituting into the previous equation we obtain
ans = VT Ba2a/(ST + A) = 0Tfps/(R + S). The last two moment map equations
give

BR

, A
ot =R ——"
|C\11]| + R =R (R-}- S)z, (52)
, C BS
6 2 — — ‘_ —
l/’llZI + AS. - 'S (R_l_ 5')2' (5'3)

Thus, using T = A/ R, we obtain
E_l‘\‘111|2+14/R_ V/};t_g"'% AS
g

CR’
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&2

Subtracting (5.3) from (5.2) and multiplying through by R gives

(1-20) (-9 (-

which implies

Hence by (5.4) we have

(A1/3+CI/3)3+B

2 __ A2/3
R =A (AI/B + 01/3)2

and the result follows. O

The H*-action on M = HP® is given by right multiplication. This action descends to
the hyperKahler quotient 1~'(0)/G and the manifold (;:='(0)/G)/H* is precisely M,
(see [25]). For a three-plane V € M,, V¢ is spanned by the isotropic elements.
However, these 1sotropic elements are precisely one orbit of the H*-action and we
obtain:

Proposition 5.4. For X = azf8; € ;=1(0) the complesification of the corresponding
three-plane 1w M, is spanned by cpfy, G305 and B38; — aqedy. In particular, one
obtains the three-planes V(z,y) used in §2.

03 0 .
Proof. 1t only remains to verify the last assertion. Let X = (0 7 ya) = -;-(el + 1€3).
00 o
Then e3 is proportional to f38; — ayaj. By the proof of the previous proposition

B3 8 — agey = diag(—R, R~ 5,5) and R =23/x?+ 3%, S =¢y*/2T+ 3% QO
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