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_ VECTOR BUNDLES AND: THE BRAUER INDUCTION THEOREM

Arunas‘Liﬁlevicihsl

The aim of this paper i{s to show that the language of vector
bundles is- useful in thinking about representations of groups. We
give a simple- and self-contained proof of the Brauer induction
theorem which states that if G is a finite group, then each
complex representatioﬂ of G 1is a sum of virtual representations

induced up from elementary subgroups of G.

The paper is organized as follows: §1 starts with the structure
theorem on finite G-sets, introduces the notion of a family of
orbits, and discusses topological induction; §2 defines the notion
of aAG-vector bundle over a G-set and introduces the pullback and
transfer constructions on vector bundles -~ the key result here is
the Mackey theorem which shows that the two operations commute in
a pullback situation. Irreducible vector bundles are introduced,
and Schur's Lemma allows the calculation of inner products.
Topological induction and transfer combine to give us Frobenius
induction of vector bundles, which is shown to satisfy Frobenius
reciprocity. It is shown that if H 1is a finite group having an
abelian normal subgroup with quotient a p-group, then each vector
bundle over a finite H~set B is tﬁe transfer along an H-map
f: B'~p B of a line bundle L over B'. In §3 the language
of equivariant K-theory is introduced, as well as characters of

representations, and Brauer's induction theorem is proved.

The language of K-theory has been introduced by M.F. Atiyah,
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F. Hirzebruch and G.B. Segal [1],[2],(3],[11]. +The Burnside ring
has been introduced in the study of induction theorems by A. Dress
[8] and has been shown to be very useful in studying actions of
compact Lie groups by T.tom Dieck [7]. Brauer's theorem was

first proved in [4], and a new proof was presented by Brauer and
Tate in [5]. Our proof is inspired by D.M. Goldschmidt, I.M. Isaacs
and L. Solomon [10] (also see [6],[9]). Our treatmeant of charac-

ters is of course influenced by J.-P. Serre [12].
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1. Topological induction. A fun‘cbtion B: GXBewm—ep=B i3
called a left acﬁiqn of | G on B xf B(g.B8(h,b)) = B(gh,b),
8(e,b) '= b if_-or all g,h in G and all b in B, where e
denotes the iden-t.ity element of G. We normally write B(g,b) =
g.b = gb. If H«< G is a subgroup, we define a left action of
G on G/H by setting g.g'H = gg'H, and we call G/H with this
action a standard orbit. If X and Y are G-sets, a function
f: X——p¥ is said to be a G-map if for all g 4in G we have
£(g.x) = g.f(x) for each x in x. We denote the set of all
G-maps ff.qm_ X .to Y by» MapG(;(,Y), We will now determine the
set Map_(G/H,B). We let B" be the set of all b in B such
that h.b'- b‘ for all h in H. We call BH, the fixed point

set of H in B.

LEMMA 1. Evaluation at eH gives a one-to-one correspondence

Map_(G/H,B) ‘= 2.

Proof. The result is immediate, since a G-map f: G—>»B |is

determined by b = f(e), and f induces a G-map f: G/H—>» B

if and only if b is in BH.

COROLLARY 2. MapG(G/H,G/K) = {gK|H ngg-l}.

A G-map f: G/H———mG/K determined by £(eH) = aK with

i: H c aKa-l factors

: L . A-l
G/§ ————>» G/aka

G/K



with the vertical map induced by right multiplication by a in
G, so is a G-equivalence. This explains why we will emphasize

the maps j: G/H —p=G/J induced by inclusions of subgroups

j: B == J.

COROLLARY 3. Two standard orbits G/H and G/X are
G-equivalent if and only if H and K are conjugate subgroups aof

G.

We call a G-equivalence class of standard orbits an orbit
type of G. This means that an orbit type of G corresponds to
a conjugacy class of subgroups in G. Given a G-set B, we say
that b and b' in B are in the same orxbit if there exists a
g in G such that g.b - b'. Notice that if G, = {g € G/|g.b = b}
is the isotropy subgroup at b, then D: Gew==pr B induces a
G-equivalence .b: G/Gb-a-(orbit of b in B). Notice that Ghb =
thh-l, so an orbit in B cbrreiponds to a conjugacy class of
subgroups in G, or equivalently to an orbit type of G. We let
fo(G) be the set of finite orbit types of G. If X |is a

finite G-set, then it determines a counting function
(X): £0(G) wmmupmZ

defined by (X)(type G/H) = number of orbits in X of type G/H.
The function (X) 4is finitely non-zero and takes values in the

set of natural numbers.

THEOREM 4., If X and Y are finite G-sets, then X 1is

G-equivalent to Y if and only if (X) = (Y).



We let A(G) be the set of all finitely non-zero functions
£f0(G) ——» Z. We define addition in A(G) by pointwise addition,
or equivalently by setting (X) + (Y¥) = (XuyY), the counting
function of the disjoint sum of X "with Y. We define multipli-
cation by setting (X) x (Y) = (X x Y), where we give X x Y
the diagonal action of G: g.(x,y) .= (g.x,g.y). This defines a

ring structure on A(G) - it is called the Burnside ring of G.

If f1: xl——y-x' and fz: xz-—-rx' are G-maps, then the
pullback X = {(xl,xz) € x1 x *zlfl(xl) = fz(xz)}. with maps

pi(xl'x2) =X, i=1,2

has a unique G-structure making the maps pi into G-maps, namely
g.(xl,xz) = (gxl,gxz), ‘The case of the pullback of G-maps induced

by inclusions of subgroups

H —p= H*

that is



G/8 > G/H'®

is the archetypal case, as we have already seen. The reader

should check that the diagram

G/ 151082) -———a- 8132

G/B1 —= G/RH'’

is a pullback diagram if and only if H' = H R We shall exanmine

172°
the general case later once we introduce the notion of topological

induction.

We now introduce the notion of a family of orbits. A set
of orbit types ﬁ?’ is called a family if whenever we have a G-map
G/H ——»G/K and type G/K 1is in 9' then type G/E is also in
3:‘. Equivalently, a family is determined by a set of conjugacy
classes of subgroups having the property that if K is in the
family then every subgroup of K is in the family as well. If
S;'is a family of orbit types, we say that a G-set X is a
sr:set if all orbit types in X are in the family ﬁFf Notice
that if £: X~=)p¥ is a G-map and Y is a ?’-not. then X |is
also a ﬁr;set. This means that the set of Z-linear combinations
of (X) in the Burnside ring A(G) of % -sets X 1is an ideal

Aﬁr(c, of A(G), since if X is a % -set then X x Y is a



grlset, since érojection to xl is a G-map. Suppose we are given

a pullback diagram

—_——*x
—————

- X

1

and - x1 is an ‘?T:seé, then X is a quset. Of course the

special case with X = point was discussed just above.

Let us write G-Set for the category of G-sets and G-maps. If
£f: G—pG' is a homomorphism of groups, we have an obvious functor
f*: G'-Set —Pp G-Set called restriction along £: 4if X' is a
G'~-set, we define £¥X' to be the same set X' with the G-action
g.x' = £(g)x'. We also define a functor £’: G-Set «==p= G'-Set
(called induction along f)_‘by setting f’x = (G' x X)/G, where
G acts on the right.§£ G' x X by (g',x).g =’(g'f(g).g-lx).

If we lét [g',x] denote the orbit of (g',x) under this right
action of G, then we define the left.action of G' on f*x by
g".[g',x]) = [g"g*,x]. There is an obvious G-map 4i: X ——+-f*f’x

given by i(x) = [e,x].

. .- . . .
THEOREM 5. Composition with 4i: X ——p=f f*x gives a

natural one-to-one correspondence
-
@®: Mapc,(f*X.X')-——D»Mapc(x,f X').

Proof. Let us define a map ¥ Mapc(x,f’x')-r-uapc(f’x.x‘)



as follows. Given a G-map k: x-—a-f’X', consider the map
G' X X =3 X' given by (g',x) —=g'k(x). Since g'f(g)lk(x) =
g'k(gx), this map induces a G'-map ¥(k): fix-—o- X', It is

immediate that ¢ = 0-1.

A homomorphism of groups £: G —» G' induces a ring homomor-
phism £% A(G') = A(G). If the image of f is of finite index
in G', then f induces f.; A(G) =P A(G'). The map t. is
a homomorphism of the additive groups, but in general is not a
homomorphism of rings. For example, it maps the unit element of

A(G) into the element (G'/Im £). It does have one nice property

for multiplication which we now study.

THEOREM 6. Let £f: G == G' be a homomorphism of groups,
X a G-set, Y a G'~-set, then (t’x) x ¥ with the diagonal

action is G-equivalent to f’(x x f’Y).

Proof. Define K: f_(X x YY) (£,X) x ¥ by K[g',x,y] =
([g',x),9'y), and L: (£,X) x ¥ —» £_(Xx *x £7¥) by L(lg*,x],y)

= [g'lx,g'-ly]. It is immediate that L = K-l.

COROLLARY 7. If f£: G- G' is a homomorphism of groups
with Im £ of finite index in G', then the homomorphism of
additive groups f’: A(G) —»= A(G') has the property: §4u.£'v) =

f‘l(u).v.

»
COROLLARY 8. If £: G ~=iugG' as above, then t’f v =

(G7Im £).v.

If B 4is a G-set with action B: G X B-=pe B, then 8§



induces a map B8: i i B — B, where i: H —» G is the inclusion
of a subgroup H of G. Now Theorem 6 gives a C-equivalence

- A
K: i i B —>» G/H x B, and under K the map 8 corresponds to

projection into the second factor B.

If i: H-~» G 1is the inclusion of a subgroup, then the
following alternative notation ig common, and we shall use it
freely: i*x = Gxnx. Since %; H-Sets —» G-Sets is completely
determined by what it does on orbits, we have the following

description of i*.

LEMMA 9. i H/K = G/K.

Proof. The inclusion i: B/K —» G/K defines a G-map
I: 1 H/K —»G/K by 1I[g,hk] = ghk. The point [e,eK] 1in
1 ,B/Xk defines a G-map J: G/K —» i _H/K. We have IJ(gK) = (g, ek]

= gk, and JI[g,hKk] = J ghk = {gh,ex] = [g,hk].

Here is another application of Theorem 6. If H and J are
subgroups of G with i: BH—» G the iqqlusion, then Theorem 6
says that i*i*G/J is G-equivalent to G/H x G/J with the
diagonal action. This ﬁeaQs that if we knoﬁ the H-orbit structure

of i*G/J that is the double coset decomposition G = II Hng

k
then

» -
i"e/3 = -Il—‘-l- 8/(g Hg ' N ),

and according to Lemma 9

G/H *x G/JI = —&L-G/(gkag;l n 3y,



where of course G/(gkag;1 N J) corresponds to the orbit of

(qu,eJ) in G/H x G/J.

The notion of induction will help us to analyse the pullback

P 1in the following diagram

L

where ilz 81-—>»B' and 12 are inclusion maps. Define maps

fk: B'/B1 x B'/Hz-—’--G/Bk

for k = 1,2 by first projecting into 8‘/3k and then including

into G/Bk. Notice that the fk define a map into P, since

1,5, = £2£2 is the constant map to the point H'/H'. This means

that we have a G-map F: G xa,(s'/ﬁ1 x 8'/82)-—— P.
LEMMA 10. The map F i{is a G-~squivalence.

Proof. The map F 1is given by PF[g,aH ,b82] = (ganl,qbnz)-

1
First we show that the map is onto P. Suppose we have (951'9'32)

with gH' = g'H', that is there is an h' in H' with gh' = g
Then F [g,eal,h'nzj- (g8, ,g'H,). -Second, we show that P 1is
one-to-one: say P[q,anl,baz] - F[é',a'nl,b'azl, that is ga =

g'a'h gb = g'b'h2 for some h in 8 We want an x 4in BH'

1 i 1°
-1

with g' = g¢gx, anl - xa'Bl, bnz - xb'ﬁz. Now g' = qahzla' ¢



aH, = ah;ln

1 1’

thus setting x = ahIl -1 1 1
so we have [g,aH ,bHZT = [g',a'H

1 1

It is/also useful to remark that if f': G'—» G"
homomorphism, then (£'f)" = £*¢'*, (£0€), = £' £, 1t

for the identity map 1: G -~ G. That is, restriction

-1 =1 -
gb = q'b.'h2 = qah1 a' b'hz. s b = ahl

a' ., shows that aH,£ = xa'H,, bH

1a"lb'hz,

2 = xh'Bz,

,b'le, and F is one-to-one.

is a

:1’31

is a

contravariant functor, induction is a covariant functor.

If p': E' == G xnx is a G-map, we consider the pullback

diagram

[ o]

E = i!B' o=

where i!B’ = {(x,e') € X x E‘lix = p'e'}, p and i

restrictions of the projection maps.

THEOREM 11. The map i defines a G-equivalence

which makes the following diagram commute:

I
i*x -, !
ip p'
i Xx 1 2 { X
» - »° °

are the

I: { g— E!
*»

That is, G-maps over 1‘x correspond to H-maps over X.



Proof. The map I 4is given by 1I([g,x,e']) = ge'. We

wish to exhibit an inverse J: E'-—P-i.z. If p'(e') = [q.x]a

we set J(e') = [g,x,g-le']. Notice that this is well-defined,

for if h is in H, then [g,x] = [qh.h-lx]. but then

[gh.h-lx,lfqg-le']- [q.x.g-le']. It is immediate that J = !



2. Vector bundles over G-sets and the transfer., A complex

vector bundle p over a G-set B 15 a G-Eap p: B(b’—-v»h

such that for each b 4n B the fiber Py = p°1(b) hés the
structure of a complex VGcéot space and fot eacﬁ' g in G the tap
9.t py— Dy 18 a C-linear map. The set E(p) 1is called the
total spaca of the bundle p. Notice £hat the fiber ps ovet b
is a complex iepresentation of thé isctroéf qroub Gb‘ fe bhéii

now see that this completely deﬁe:miﬁéé p over asach otbit.

coadLLARY 12, A G-vector bundle over G/ﬁ has the form

Gxgn, whaere M is the fiber over ef.

Proof. This is Theorem i1 applied to the special case

X = pciﬂto
More denerally:

COROLLARY 13, If i: H—»G is the inclusion of a subgroup,
and p': B(p‘)-a-i*x is a G-vector bundle over L*X theh there

exists a unique H-vector bundle p over X such that p' = i‘b.

Proof. This is of course Theoram 11 over again. The unique-~
ness of p follows from the fact that p is the restriction of

p' to the subset X under the inclusion 1i: x-—*-i’x.

Let us denote by VQetGB the set of G-vector bundles over B.
We have just shown the fact that if L{: H-»G 4is the inclusion of E

a subgroup and X 1is an H-set, then topological induction

1’: Vectax -—-’» Vectc i’x



is a one-to-one correspondence.-

If f£: Y=—3»X is a G-map, p € Vect ¥, q € Vect_ X, we say

G G
that F: p—)p g is a map of G vector bundles over £ if ve

have a commutative diagram

E(p) -3 B(q)

Y

F is a G-map, and for each y in Y the :estriction Py: pi——w-

qf(y) is a C-linear map.

If £: Y—~»X is a G-map, q € Vect_X, then the pullback

G
f!q of q over f is a vector bundle over Y, £: f'q'—#-q is
a map of vector bundles over £, moreover any map of G-vector

- !
bundles F: p—q over f factors uniquely as a map F: p—wf g

over the identity map of Y followed by £: f!q——vvq.

i

E(p) Fe» e(t'q) - E(q)

<
| |
<
!
»

This takes care of maps into q over £, but what about maps
from a bundle p over f? We shall construct a G-vector bundle

f!p over X (called the transfer of p along f) which is



defined up to isomorphism by the following property: there is a
map of vector bundles f: p——s=f p such that if f: p—¥=q is
a map of vector bundles over £, then there exists a unique map

of vector bundles F: f'p-q>-q such that F = F £ :

E(p) S E(£,p) E o E(qQ)

P £,p q

Y
Y

PROPOSITION 14. The transfer f!p exists.

Proof. We define flp’ B(flp)-—-b-x by setting

(f!p)x = <:) Py

£(y)=x

and the map £: p-—a-f!p to be the structure map into the direct

sum fy: py—-y(flp)x. Given a map F: p-—»q of G vector

bundles over £, the definition of Ex: (flp)i——i-qx is
forced on us, since on the summand py with f(y) = x it must

be PF : e .
v PY - qx

We now have two constructions: given f: Y—»=X a G-map,

we have the pullback over f:

!
H ﬁ
£ vgctcxb Vectc

and the transfer over £:



H ————* .
f! vgctGY V.cth

Our first result is that transfers behave nicely with rasspect to

topological induction.

PROPOSITION 15. Let i: H-——$G be a subgroup, f: Y—pX

a map of H-sets, then the following diagram commutes:

io
VectBY Vectci’v
f1 (1’5)‘
10
Vectax v.ctci.x -

Proof. We have to show that i‘(flp) - (i’t)!(i’p)' for each
vector bundle p € Vect Y. The idea is simple - we check that
the left hand side has the defining property of the right hand side.

Given a commutative diagram

1,2(p) ’ P — B(q)
\ /f’
1 B(£,p)
i*p : q
i,(5,p)
Y 1f o Y
1Y > 1 X -1 X,

with P a map of G-~vector bundles, we have to show that there
exists a unique G-vector bundle map F: 1.(2!9)-i-q covering the

identity of 1,X. We use Theorea 5 vhich says that 1i_ is left



adjoint to restriction 1*: Mapc(i‘U,V) = MapB(U,i*V). The above

diagram becomes

E(p) P! A i*z(q)

\ F'—r

»
P flp igq

Y — X > X

where now we use the universal property of flp: there is a
unique H-bundle map PF': f‘p-;-’-i*q making this diagram commute.
The adjoint of PF' is our desired F: i.(f!p)——b—q. The key
result about transfers is that they work nicely in case we have a

-pullback diagram:

THEOREM 16. (Mackey). Given a pullback diagram of G-maps

*
»
~N

g
1 3 X'

»

then we have 9:92! - tllfé;

Proof. Let P be a vector bundle over xz, then we have

H



!
= (fllfzp)xl !

so g!g p = £ £l
1°21 1! 2p as claimed.

We will now study tensor products of vector bundles and will
see how they behave under transfers. Pirst, if p € vgctss,
p’' € VectG,a?, we define p x p' € v.ctc x G‘B x B' by setting
(p x p')(b,b'). = p, ®p'y,. We define the internal tensor
product of p,p' & VecﬁGB by setting (p ® p')b = pb® Py -
That is, p ® p' is the puilback of p x p* under the diagonal

map d: B~ B x B, d4(b) = (b,b).

Now suppose f': B'~—d»=B und £": B"—= B3 are G-maps,

then we have a pullback diagram

d

D 2 —pe B! x B"
d1 £' x £»
B d »> B x B

wvhere D = {(b,b',b") € B x B* x B*"|£'(b’) = b = £°(b")} and

a,(b,b’,b") = b, d,(b,b’',b") = (b',b"). Notice that G p,b',b")



G, NG NG so if we are given a family e;- and B'

b b' b '
g_—set, then D 1is a g:set as well.

CORQLLARY 17. Suppose EI is a family and B' is a

£f': Bp'~—»B, f": B"—3» B are G-maps, then
L L " " = ! 1 ”
f£ip' @ £yp d, (a,(p"xp")

is again the transfer of a bundle over a F-set.

It is helpful to examine the special case of f" = 1:

the identity map of B.

COROLLARY 18. Suppose P e.VectGB, p' e.VectGB', £:

a G-map. Then f!(p' ® flp) = (f!p') ® p.

Proof. Here D = {(b,b',b) € B x B' x B|£(b*) = b},

we can identify it with B' by mapping (b,b',b) to b'.

the pullback diagram

, (1x£)d"

- B' x B

rn
rh
x

[

we have

(£, ) @p = a' (£ x 1) (p' x p)

- fld'l(1 x £)'(p' x p)

is a

g—-set,

B ! el B

SO

In



- fld'!(p' x £'p)

= £, ®£'p),

as was to be shown.

Since we will be interested in finite dimensional vector
bundles, we will assume that the base spaces B are finite sets
(otherwise the transfer of a finite dimensional vector bundle
need not be finite dimensional). From now on we will assume that
the group G 1is finite, as well. These correspond to assuming

compactness in the topological setting.

PROPOSITION 19. If p € VoctGB and G is finite, then

there exists a G-invariant inner product on p.

Proof. Choose for each x in B a Hermitian inner product

( » )_: px * px-—b-c, and define for u,v in p

x X

<u,v> = I (y.u,y.v) .
YEG yx

We notice that if g is in G, then <gu,gv> = <u,v>, 8o <, >

is an invariant inner product on p.

If p,p' € VactGB, then p' 4is called a subbundle of p ({f

p;C: P, for all x in B, and in this case we will write p' ¢ P

COROLLARY 20, If p'C p € Vect_ B, then there exists a

G
p"&< p such that p = p' @ p".



Proof. Let < , > be a G-invariant inner product on p,

and set p; = {u € px|<u,v> 0 for all v € p;}. Then p"— P

and p = p' ® p“.

A non-zero vector bundle p over B is said to be irreducible

if the only subbundles of p are O and p itself.

LEMMA 21. (Schur's Lemma). If f: pe—s=g is a homomorphism
of vector bundles, then
1) if p 1is irreducible, then either f is O or Ker f =
o,

2) if q 1is irreducible, then either £ 1is O or Im f = q.

Schur's Lemma allows us to determine the irreducibles over

G-~sets for G an abelian group very easily.

COROQLLARY 22. Let A be an abelian group, B an A-set,
B € IrrAB. Then there exists a homomorphism L: D __+_cx of a
subgroup j: D——3 A into the multiplicative group of nonzero

complex numbers and an A-map £: A/D —3>» B such that f!j*L = B.

‘Proof. Let A/D be the unique orbit of B on which ﬁ is
non-zero. Notice that according to Schur's Lemma each 4@ in D
acts on p as a scalar multiple L(d)1 of the unit. The function
L: D-——U»Cx is a homomorphism of D into the multiplicative
group of complex numbers. This means that g = f!j*L, as claimed,

where f: A/D—p B 1is the inclusion of an orbit.

Line bundles over G-sets play such an important role that
they deserve to have a special home. We let PicGB be the set

of all complex line bundles p over B (that is, p: E(p)—> B



has the property that dimcpx = { for all x in B). Tensor
product defines a group structure in PicGB - it is called the

Picard group of the G-set B. If B is a point, then Picé’ is

the set of all linear characters of G, that is homomorphisas

G-——’-cx.

If p,q € VectGB, ve let HonG(p,q) be the set of all
bundle homomorphisms from p to q over the identity map of B.

We define the Schur inner product
(. ): VectGB x vgctGB—+ z

by setting (p,q) = dinc aonc(pr).

COROLLARY 23. I1f p,q € VectGB are irreducible, then

1 1if p 1is G-iso to q
(p,q) =

0 if p is not G-iso to q.

Proof. If f: p—Pq 1is an element of nonc(p,q), then
according to Schur's Lemma is either O or an isomorphism. This
means that Bonc(p.p) is a division algebra over the complex
numbers C. It is a finite dimensional algebra over C, since
B is finite and each P, is finite dimensional. Now a finite
dimensional division algebra D over C with C in the center
of D coincides with C, for given a 4 in D, left multiplica-
tion by 4 4is a C-map, 80 there exists a ¢ in C and a v ¥ 0

in D with A4dv = ¢v, or (d-¢c)v = 0. Since v is nonzero, this



means that 4 = c.

Given an inclusion of subgroups i: H——= G and a G-set
»
B: G x B—+» B, we have the map B8: i i B —» B. We define

i#z Vectai’B —p= Yact B by setting i# = B'i’ and call it

G
Frobenius induction, since in the special case of B = G/G = point

we have
1#: Rep H —u=Rep G,

which to a representation V of H associates the representation
cG ® cﬂv. and this is known as Frobenius induction of represen-
tations. Another helpful way of looking at i#v is to think

of it as the G-module of all sections of the vector bundle i.v.

We wish to show that Probenius induction satisfies the

famous Frobenius reciprocity condition:
THEOREM 24 (Frobenius reciprocity). Let 4i: H—3G Dbe

inclusion of subgroups, B a G-set,

» »
1 : VcctGB e g v‘ctai B

the restriction,

i#:: Vcctni’a e VoctGB

Probenius induction. Given p € v.ctai’a, q € Vect B, then

G



»
Honc(i# P.q) = nonu(p,i q).

Proof. Consider the following diagram

E(p) -—-—i—-y— E(i*p)'i’g(p) e e——— B(i*p) —-——E—-—.—YB(Q)
P i.P i#P

Given P: 1*tp-—--q, composition with g1 gives an H-map
p—»i’q. Conversely, given an H-mpap k: p—c-i’q, it defines a
G-map K: i’p-—a-q, hence by the universal property of the
transfer, a map K: B!i’p——'q such that Kgi = k. If k = Fgi,

then uniqueness gives K = P, and the proof is complete.

It is helpful to introduce the regular bundle «r € VectGB.

The bundle is given by E(r) = B x CG, where CG d&enotes the

group ring of G over C with thc G-action left multiplication,

and r: B x CG--»B 1is projection on the first factor.

LEMMA 2S. Por 'each q 4in Vect_ B, Boac(:,q) % q, the

G
correspondence being given by evaluation at (x,e) where e € G

is the unit element.

COROLLARY 26. The set Itrcs of G-isomorphism classes of

irreducible vector bundles over B 1is finite.

Let Bl"”'B: be representatives for the elements of



Irr B. Then given a p e€Vect

G B, there exists an isomorphism

G

where the natural numbers m, = (p,Bi). Given an irreducible
B, we define the B-isotypical part of p to be the subbundle of
P spannéd by the images of all £ € HomG(B,p) ~ we denote the

B-isotypical part of p .by (B;p). We then have
p = (p;Bl) + ...+ (p;Br).

and this direct snm.is canonical.

If B = -l—L G/Bi . then Vect B = &, Rep H and under

i G i i’

this correspondence an irreducible bundle 8 over B is deter-

mined by a sequence of representations r, of Bi such that

r, = 0 for i # 10 and r, is an irreducible representation.
N o

Also PicGB - @ PicG G/Bi o~ @ Lin ni + Where Lin H is the

L i

group of linear characters (= homomorphisms) H—sCc*

into the

multiplicative group of nonzero complex numbers.

This is a natural place to examine what can be said in the
situation of a normal subgroup of G - the results here are

usually called Clifford theory.

Suppose i: N——G 1is the inclusion of a normal subgroup,

let p € Vect B and q c,i’p E.Vectci*s. We notice that for

G

»
each a in G we have aq € Vectui B, since (aq)ax== qx, and



for each y 1in qx and n iﬁ N we have n.ay = a(a-lna)y €
(aq)nax' It is also immediate that if q is irreducible, then
80 is aq. This means that if q € Irr"i'n, q c;i’b; then
a(q;i’p) = (aq:i'p), that is a € G maps the g-isotypical

component of i*p into the agq-isotypical component of i’p.

THEOREM 27 (Clifford). Let i: N—p»G be the inclusion of

a normal subgroup, p € Irr B, q € Ixrui’l, q = (q;i’p) the

G
q-isotypical component of i*p. Set N = {a € Glaq = g}, i: N—ec

the inclusion. Then 4§ is a N-bundle over 1B, and p = g*é.

Proof. Since a(q:i’p)A- (aq;i*p) as we have already

noticed, the sum @ ag is a nontrivial G-subbundle of p, hence
aEG

is p itself, for p is irreducible. If we let S be a set of
coset representatives in G for G/N, then p = @ aq, which
- a€S

means that p = I*hq' as claimed.

COROLLARY 28 (Blichfeldt's Critexrion). Let 4i: A —»G Dbe
the inclusion of a normal abelian subgroup not in the center of
G, and let p € Irrcp be an irreducible G vector bundle on
which G acts faithfully (g. = 1 on E(p) implies g = e in G).
Let q < i, q € Irrhi’s. T = (q;14"p) the q-isotypical component

of i®p. Then & = (a € G|ag = q} 4is a proper subgroup of G.

Proof. If A = G, we first of all notice that G acts
trivially on B, 80 we may as well assume that B = », a point
(by focusing on the orbit on which p 4is nonzero). Since A 1is

abelian, we know that Irrdf'- Pic#= Lin A, the group of linear



characters, 8o q = L: Au—bcx, and given an element g of G,
the 'subbundle gq is the homomorphism L(g({( )g-l). This means
that the hypothesis A = G gives L(gng'l) = L(a), and a € A
acts on E(p) by multiplication via the scalar L(a), so this
means that A is in the center of G, a contradiction. This

“contradiction shows that A must be a proper subgroup of G,

as claimed.

Here is an important consequence, which shows that for a big

class of finite groups irreducibles are transfers of line bundles.

COROLLARY 29. Let G be a finite group having an abelian
normal subgroup with quotient group having order a power of a prime.

If p € Vect B, then there exists a G-map f£f: B'— B and a

G
line bundle L € PicGB'- such that p = tln.

gggég. We first reduce to the case of p irreducible.
Suppoﬁc p' = f;p' and p" = t:L“ for G-maps f£': B'—p 8,
£*: B®"~—3»B. We let L = L'wi L" the the obvious bundle over the
disjoint sui B'wl Bf. and let £: B'\W B"—3p B be the map which
.restricts to f£' and £%". Then flx. = p' @ p". This means that

it remains to prove the result for p € Irrcs.

We use induction on the order of G. If |G| =1, p is O,
except at one point b of B, wherxe Py = C. We let B' =)

and f£: B'~—p=B the inclusion map, then p = !ll.

Suppose the order of G is greater than 1, and the result is
true for groups with order less than |G|. If G does not act

effectively on Vt(p), we let K = (g € qu.-l on E(p)}, ¥: G=»G/X



» *
the quotient map, then B = T B is a G = G/K-set, p = ¥ p with
p € IrrGg. Now lgl < IGI, 80 there exists a G-map £f: B'—p=B

and a line bundle L over B' such that p = f L. Applying ¥
wa obtain that p = flh. This means that we can assume that G
acts effectively on E(p). We now let A be a maximal abelian
normal subgroup such that G/A has order a power of a prime. 1If
A = G, the result is an immediate consequence of Schur's Lemma
(this is Corollary 22), so we may assumse that lG/A\- st, s a
prime, t > O. We claim: A il not in the center of G - ({f
not, we choose an. i in G such that xA is in the center of
G/A and has order s, then the subgroup generated by x and A
is ahelian and normal, contradicting our hypothesis that A |is
maximal with this property. Now apply Blichfeldt's Criterion
(Corollary 28) - there exists a proper subgroup {i: A—pG and
g € Vectii.s with p = 1#& = $,1,, wvhere B: Gx ix'n —3 B

is induced by the action of - G on B. sinco p 1is irreducible,
so is q. Now |A| < |6] anda A satisfies the hypothesis of
the Corollary, so by induction there exists an i-nap £': B'anm
1’3, L' € Picis‘ witﬁ f;i'.- q. According to Proposition 15 ve
have L (£jL) = (1,£) (1,L'), and 1,L' is a line bundle over

i.B'. Thus we have

p - i*q
B,(1,9)

B, (1,2'),(1,L")

= (Beoi £') (1,L%),

which does the inductive step, so the corollary follows.



We apply this to a spacial situation. Suppose we have an

extensién
1] e C = H - H/C —p= |

where HB/C 1is of order st, s a prime. Such a group H (is
called hyperelementary. Let S be an s-Sylow subgroup of H,
then H = CS, a semidirect product. Let N = NB(S) = DS, where

D is the centralizer of S8 in € (this because n = cs 4in N

-1 -1 -1
X

and for x in» s ‘we have cxc in S, so c¢xc €ECNS =

{e}). We let i: N-»H be the inclusion.

COROLLARY 30. If 1G denotes the trivial representation of

G, then we have for 4i: N—pH above

+ L v

i#lu-la‘fjl*nl ...*jr*r

H —=p=H.

where L € Lin H jk: X

x X for proper subgroups

Caution: r = 0 is possible.

Proof. We apply Corollary 29 with B = point. We have

. .
(iakln’ln’ - (lu.i IB) = 1, so la appears exactly once in

i#kln' We have to exclude the possibility that Bk = H., Suppose

that L € Lin B and 1 &€ (L,41,,L) = (1,,1"L), that is

NC Ker L. We claim: L = 1. Given h € in &, nsh™! and s

are both s-Sylow subgroups of Ker L, so there exists an

X € Ker L such that xhsh™'x”' = 3, that is xh € N C Ker L,

80 h € Ker L, and L = 18' as claimed.



3. Equivariant K-theoxy. So far we have only talked about

vector bundles. Hé can add elements of VectGB, but we also wish

to be able to take differences of bundles. We let

h: VectGB —p KG(B)

be the universal homomorphism with an abelian group as target,

that is:
1) h(p) = h(p') 1if b is isomorphic to p' over 1: BB,
2) if p = p'+p", then h(p) = h(p')+h(p").
For example, we let KG(B) be the free abelian group on
isomorphism classes of G-vector bundles over B (write [p] for
the generator corresponding to p), and divide by the subgroup

generated by [p] -[p']}-[p*] for p = p'+p".
Notice that the Schur inner product
( , ): VQctGB x vQctGB — 7
passes by universality to

Co ) Kg(B) x xG(n) —_—z.

LEMMA 31. KG(B) is a free abelian group on p € IrrGB.

Proof. Mapping p to [p] defines a homomorphism

z(Irrcn) e KG(I)'



and the Schur inner product defines a homomorphisn
S: KG(B)-———a- Z(IrrGB)

by setting S(x)(p) = (x,p). We notice that SF(p) = p, that is
the function which takes value 1 on p and O on other isomorphism
classes of irreducibles. Conversely, to check that FS is the
identity on KG(B), it is enough to check this on [p] = P(p),

but FPFSF = P, and we are done.

wg notice that KG(B) is a ring with multiplication induced
by tensor product of vector bundles, and PicG(B) is a subgroup
of the group of units of the ring KG(B). In the case of B = #»,
a point, we have KG(*) = R(G), the complex representation ring
of G. The subgroup PicG(*) is the group of linear characters
of G. We will now identify R(G) with the character ring of
G. We define x: Rep G —» Map(G,C) by setting for a representation
vV of G,xv(q) = Trace g.: v-—&-v. Since xv+w = Xy + xw . and
XVQW. xvxw + X induces ¥x: R(G) - Map(G,C), a homomorphism
of rings. We wish to show that this is an inclusion. Our
strategy is to show that therxe is an inner product on Map(G,C)
for which (xv,xw) - (V,W). The first try works: let f_ ,f €

Map (G,C) and define

1 —
(£,,£,) = L £ (g)E_(qg) .
1772 lGl g€G 1 2

This means that wé wish to show that if vVv,W € Rep G, then



L (g)x;

We do this in two steps. Pirst, we notice that E = é L g

gEG
is a projection operator onto the fixed point set: given a
representation U of G, then E.: U-—sU has the property that

EE = E and Im E. = UG, the fixed point set of U. This means

in particular thgt Trace E. = dinc Im E. = dinéuc. Given repres-~

entations V and W, wve let U = Honc(v.W) and define the
action of g on T: V—»W by g#T = g.Tg-l. This means that

G - -1
U = Boch(V,W). We have: Tracauq. - Trace“g. T:acevg .+ SO

1
- L x,(9)
G geG U

-1
- T x.(g 7)
[G] geGg Y

-1
= T—r L Xgl(9)Xgy(g )
G gEG v w

(XV'XW) ’

the last because Xw(g-l) = xw(g) , 8since g.: W—>W 1is
diagonalizable (irreducible representations of cyclic groups over

C are one dimensional). We have proved:

PROPOSITION 32. The character map x: R(G)-—p»Map(G,C)

preservas inner products: (V,W) = (xv.xw).

We will be using this result to detect the unit element

1 € R(G): an element u € R(G) is 1 if and only if xu(q) - 1



for all g € G.

We have an:ébvious construction C: G-Sets —»=Rep G whleﬁ'to
a G-gset B associate§ the vector space CB with basis B. Since
G acts on B, this-defines a representation of G. We-can
describe this in another way: let c¢: B-—»#% be the collapsing
map, 1  the trivial bundle B * C —=B, ﬁhen CB = c 1.. The

B 1B

following result is immediate:

LEMMA 33. g (9) = |B9| = number of elements in B fixed

by g.

Given a family % ¢ fo(G), we let A g (G) C A(G) be the
ideal léee §1) consisting of all Z-linear combinations of
(G/H) E@'.- We will study under what conditions C: Ag_,(G) — R(G)

has. 1 € R(G) 4in its image. Caution: this need not mean that C

is onto!

PROPOSITION 34. Given a family f;_, there exists a
u€EA_(G) with Cu =1 if and only if for each element g of

4

G. there exists a Vv € A._ (G) -with |vq[ = 1,

F

Proof. If Cu = 1, then |uJ| =1 for each ¢ in G.
Conversely, suppose'the condition is satisfied. Por each g in
G choose a vg-e A (G) with |vg| = 1, and contemplate the

element

w = |! (1 - Cv

).
g€G 9

Since



x,(h) =1 U (1 - |v® ) = o,
g€G d

we have W = O, hence 1 € Im C: A__(G) —pR(G).

F

The way to show that the function | gl s Ag_(G)—>z is

onto for a given g in G is to exhibit for each prime p in

Z an orbit type u € 5F with 'ugl £ (p).

quc is'a family ae for which this works nicely. A subgroup
. B of G‘ is said to be hyporelinontary if H has a p-group
quotient x: H—p=P with Xer » a cyclic group of order prime
to p. It is immediate that a subgroup or a conjugate of a
hyp?rclonoutary group are again hyperelementary. We let ae

consist of orbit types (G/H) with H hyperelementary.

COROLLARY 35 (L. Solomon). There is an element u € A, _(G)

4

with C(u) = 1.

Proof. Given g € G and a prime p, we construct an
6/8 €30 such that |(G/H)?| € (p). The first thing to try is to
split the cyclic group <g> into «<g> = C x 5, where D is the
p~-Sylow subgroup of <g>. We let N = NG(C) be the normalizer
of C in G, and contemplate the quotient map =x: N —p=N/C.
Let P be a p-Sylow subgroup of N/C and let H = t-I(P). BY

its very definition we have an extension
| e C cntio H ceelip P i1,

so H is hyperelementary. We now inspect (G/!)q. If gaB = aH,



this means that a-ICa c a-1<g>a C H. Since the elements of
a‘ICa havg order prime to p, we have a-ICa < Ker m = C. This
means that a€ N, so we have |(6/H)9| = | (N/H)?|. Now since

C 1is normal in N, it acts trivially on N/H, so0o the action of
<g> factors through the quotient <g> / C =D which is a p-group.

Thus we have

| temy 9| = /w9

| (n/m) P

| (N/H)] mod (p)

F 4 o] mod (p),

since H/C is a p-Sylow subgroup of N/C.

THEOREM 36. If G is a finite group, B G-set, then there
exists a G-map f: B'—»B such that B' is an € -set and

fl: KG(B')-—_’-KG(B)_ is onto.

Proof. "We know that there exists an element u € Aae(c)
such that C(u) = 1 € R(G). Now u = (X) - (X'), the difference

of counting functions of two ge-mets X and X'. We thus have

1 = C(u) = CX - CX' = cllx - c;lx, where c¢: X=d g, ¢c': X'=—>»

are the collapsing maps. Let B' = B x X wB x X', £ = L h"i .

L}
B'—»B, the disjoint sum of projection maps. Let w = 18*1( J Bxx"
KG(B'). We claim: 1B = £l(w). This is a consequence of
11'(1’ x x) - 1B‘°llx' Given v € KG(B), we have v = v.la =

v.tt(w) - fl(flv).w), and we are done.



COROLLARY 37. If G 1is a finite group, B a finite set,

P € Vectcﬁ, then there exist ge-mots Bl and 32. G-iaps

(L

2).

£,(L) + P = £y

Proof. Let' f: B*~~—»B be a G-map, B' an Qe,-sct with

fl(w)'-<p for some w € KG(B'). Write w = ql, q1 € Vect 3'.

G
According to Corollary 29 there exist G-maps ki: Bi-—a-B' with

Letting fi = fk we

kilLi = qi, hence k, L.L + w = k !L i

1171 2172°

have the corollary.

We can use Corollary 30 to show that we can get along with

a smaller family of orxrbits.

Suppose we have inclusions

then Jj defines a map j: G/X —» G/H.
LEMMA 38. The following diagram commutes

X
R(K) — o K, (G/K)

3 i,
1"



Proof. We recall that p I

VectK(*) = Rep(K) = Vecta(H/K)
is a one to one cdrrespondence; Under this correspondence our

diagram becomes .

i

K, (H/K) —_— . K. (G/K)
€y ‘ i
i*
Ky (#) > K. (G/H) .

If we notice that j = i*c, the commutativity of this diagram is

precisely Proposition 15.

We say that H ¢C G is elementary if H = C x s,' S an
ngroup for a prime s, C a cyclic group of order prime to s.

Lét 8 be the family of orbits (G/H), H elementary.

THEOREM 39 (Brauer). If G is a finite group, B a finite
G-set, then there exists an E-set B" and a G-map k: B"—3 B

such that k!: KG(B“r—ebxc(B) is onto.

Proof. We need only to show that 18 = kl(“) for some
w € KG(B"), for then the argument proceeds as in Theorem 36: given

v € KG(B), we have v = f!(f!v).w).

We claim that the Corollary-Bo.implies that if B' is an
ae—sot, then there exists an g-set B* and a G-map f£':
BY«wpn B' such that f;(x) = 18' for some x € KG(B'). We'll
prove this in a moment - let's see how this will prove Theorem 39,

Now suppose £: B'—paB is a G-map such that £l is onto, and



let f!(y) = IB' We let w = x.f!(y): then setting k = £ f°',

we obtain- k!(w) - IB' and the theorem will be proved.

We still need to show that if H is a hyperelementary sub-
group of G then there exists an éi—aet X and a G-map f:
X —3»G/H such that fl is onto. We do this by induction on the
order of H. If |H| = 1, then H is elementary and G 1is an
eg@et. Let's assume that |H| > 1, H is hyperelementary but
not elementary, and that the result is true for (G/K) Ege with

|K| < |B|. Lemma 38 translates Corollary 30 to

i lg/m = Yo/m Y LBy e Y AL

whare i: N —3=H, jk: Bk——-y.ﬂ are inclusions of proper subgroups

and Lk € PicGG/Bk. By induction, there exist Ei-scts Yo""'yk

and G-maps foz Yo—b G/N, fka Yk-—?clsk such that fkl are onto.

G/N’ £r (9!

OLJ e es hstr, we define f: X —»G/H by setti

We let uy € KG(Yi) be elements such that tot(uo) - 1

= L . Letting X = ¥

£y, = if,. lek = 3 £ for k = 1,...,r. We thus have
fl(“op-ullooo'-ur) = lc/a 3

hence ft is onto, the inductive step works, and the claim (and

hence alsoc Theorem 39) is proved.

We immediately have:

COROLLARY 40. If G 4is a finite group, p € Vect_ B, then

G

there aexist Ei-sets 31,32, G-line bundles L1 over Bi and



G-maps fi: ai—;.a such that

fl!(Ll) + p = fzz('Lz).
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