TWO GENERATORS FOR THE MAPPING CLASS GROUP OF A SURFACE

Bronislaw Wajnryb

Department of Mathematics
Technion-Israel Institute of Technology
Haifa 32000

Israel

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-53225 Bonn

Germany

TWO GENERATORS FOR THE MAPPING CLASS GROUP OF A SURFACE

Bronislaw Wajnryb ${ }^{1}$

Abstract

Let F be an orientable surface of genus $g \geq 1$, either closed or with one boundary component. Let M be the mapping class group of F. Then M can be generated by two elements.

1. Introduction.

Let $F_{n, r}$ be a compact orientable surface of genus n with r boundary components. Let $M_{n, r}$ be the mapping class group of $F_{n, r}$, i.e. the group of isotopy classes of orientation preserving homeomorphisms of $F_{n, r}$ which leave the boundary pointwise fixed. We shall only consider the case of $r=0$ or $r=1$. Dehn proved in [D] that $M_{n, r}$ is generated by twists with respect to simple closed curves (see definition 1.) Lickorish proved in [L1] that twists with respect to curves $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}$, $\delta_{2}, \delta_{3}, \ldots, \delta_{n}$ (Fig.1) suffice. He also proved that if we do not require the generators to be twists then four generators suffice. In fact it is easy to find three generators for $M_{n, r}$. We can find homeomorphisms S (defined later) and E, a "rotation", such that the conjugation by S acts transitively on Dehn twists with respect to $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}$ and the conjugation by E acts transitively on Dehn twists with respect to $\delta_{1}, \delta_{2}, \delta_{3}, \ldots, \delta_{n}\left(\delta_{1}=\alpha_{1}\right.$.) Thus S, E, and the twist with respect to α_{1} generate $M_{n, r}$. Humphries proved in [H] that $M_{n, r}$ can be generated by $2 n+1$ twists with respect to curves $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 n}, \delta_{2}$ and that this is the minimal number of twist generators for $M_{n, r}$.

In this paper we prove that $M_{n, r}$ can be generated by two elements.
Theorem. Let F be a compact orientable surface of genus n, either closed or with one boundary component. Let M be the mapping class group of F. Then M can be generated by two elements.

The result is known for $n \leq 2$. For $n=0$ the group M is trivial. For $n=1$ the group M is generated by twists with respect to curves α_{1} and α_{2}. For $n=2$ the group M is a quotient of the braid group B_{6} (see $[\mathrm{B}]$) and hence can be generated by two elements. So it suffices to prove the Theorem for $n \geq 3$.

[^0]
2. Deflnitions and notation.

We assume that $n \geq 3$ and that F is a surface of genus n represented on Fig. 1. The curve Δ on the right side of the picture is either the boundary of F or F is closed and Δ bounds a disk on $F . F$ is oriented in such a way that the part of F facing us has the usual orientation of the plane. On an oriented surface we have the notion of left and right. If we move along a curve in some direction and u is the velocity vector and v is a normal vector then v is to the right of u if the pair (u, v) is negatively oriented.

Figure 1
Definition 1. A (positive) Dehn twist with respect to a simple closed curve α (or along α) is an isotopy class of a homeomorphism h of F, supported in a tubular neighbourhood N of α, obtained as follows: we cut F along α, we rotate one side of the cut by 360 degrees to the right (clockwise) and then glue the surface back together damping the rotation to the identity at the boundary of N. If β is a curve on F which meets α transversely at one point and if β^{\prime} is the image of β under the twist then β^{\prime} is obtained by splitting $\alpha \cup \beta$ at the intersection point and reglueing it together into one simple closed curve, where β extends to the right into α (Fig. 2). If α and β meet at the far side of F, where the curves are denoted by broken lines, then β^{\prime} turns "left" into α, which means right according to the orientation of the far side of F. For the inverse of a twist we have to interchange left and right.

Figure 2
A Dehn twist with respect to α depends on the orientation of the surface F but not on the orientation of the curve α. The twist along α will be denoted T_{α}.

By a curve we always mean a simple closed curve on F. We shall say that curves are equal if they are isotopic on F.

We compose homeomorphisms from left to right and we write the symbol of a homeomorphism on the right side of the curve on which it acts. A conjugate of A by B is denoted (A) $B=B^{-1} A B$.

We let

$$
S=T_{\alpha_{1}} T_{\alpha_{2}} \ldots T_{\alpha_{2 n}} \quad \text { and } \quad R=T_{\delta_{n-1}} T_{\delta_{n}}^{-1}
$$

We denote by G the subgroup of M generated by R and S.

3. Proof of the Theorem.

We assume as before that $n \geq 3$. In order to prove the Theorem it suffices to prove the following proposition
Proposition. $G=M$, i.e. the group M is generated by R and S.
Lemma 1. If α is a curve, h is a homeomorphism and $\alpha^{\prime}=(\alpha) h$ then $T_{\alpha^{\prime}}=\left(T_{\alpha}\right) h$.
Proof: Homeomorphism h^{-1} takes a neighbourhood N^{\prime} of α^{\prime} onto a neighbourhood N of α. Then T_{α} twists N along α and h takes N back to N^{\prime}.

Lemma 2. Let α and β be simple closed curves on F.
(i) If α does not meet β then $T_{\alpha} T_{\beta}=T_{\beta} T_{\alpha}$.
(ii) If α and β meet transversely at one point then $T_{\alpha} T_{\beta} T_{\alpha}=T_{\beta} T_{\alpha} T_{\beta}$.

Proof: The first case is obvious. The second case is equivalent to $T_{\alpha}^{-1} T_{\beta} T_{\alpha}=$ $T_{\beta} T_{\alpha} T_{\beta}^{-1}$. By Lemma 1 this is equivalent to the fact that the curves $(\beta) T_{\alpha}$ and $(\alpha) T_{\beta}^{-1}$ are equal, which is clear from definition 1 .

Lemma 3. $\left(T_{\alpha_{i}}\right) S=T_{\alpha_{i-1}}$ for $i=2,3, \ldots, 2 n$.
Proof: By Lemma $2\left(T_{\alpha_{i}}\right) T_{\alpha_{j}}=T_{\alpha_{i}}$ for $|i-j|>1$ and $\left(T_{\alpha_{i+1}}\right) T_{\alpha_{i}}=\left(T_{\alpha_{i}}\right) T_{\alpha_{i+1}}^{-1}$ for $i=1,2, \ldots, 2 n-1$. Lemma 3 follows .

Lemma 4. $\left(\delta_{n}\right) S^{m}=\sigma_{2 n-m}$ for $m=0,1, \ldots, 2 n-1$ (Fig.3.)
Proof: For $m=0$ we have $\delta_{n}=\sigma_{2 n}$ (Fig. 3.) Suppose (δ_{n}) $S^{m}=\sigma_{2 n-m}$ for some m . Let us apply S. For $j<2 n-m$ the curve $\sigma_{2 n-m}$ is disjoint from α_{j} so $\left(\sigma_{2 n-m}\right) T_{\alpha_{j}}=\sigma_{2 n-m}$. Clearly $\left(\sigma_{2 n-m}\right) T_{\alpha_{2 n-m}}=\sigma_{2 n-m-1}$ by definition 1, and $\sigma_{2 n-m-1}$ is disjoint from α_{j} for $j>2 n-m$, thus $\left(\delta_{n}\right) S^{m+1}=\sigma_{2 n-m-1}$. Lemma 4 follows by induction.

Figure 3
Lemma 5. $\left(\delta_{n-1}\right) S^{2 n-2}=\rho_{2} \quad$ and $\quad\left(\delta_{n-1}\right) S^{2 n-4}=\rho_{4}$ (Fig.4.)

Figure 4

Proof: Let $\theta_{a, r}=\left(\delta_{n-1}\right) S^{a} T_{\alpha_{1}} T_{\alpha_{2}} \ldots T_{\alpha_{r}}$ for $a=0,1, \ldots, 2 n-3$ and $r=$ $1,2, \ldots, 2 n . \theta_{a, 2 n}=\left(\delta_{n-1}\right) S^{a+1}$.

For $k=0,1 \ldots, n-2$ we define curves $\lambda_{k, 1}, \lambda_{k, 2}, \lambda_{k, 3}$ (Fig. 5a) and curves $\mu_{k, 1}$, $\mu_{k, 2}, \mu_{k, 3}$ (Fig. 5 b for $k<n-2$ and Fig. 5 c for $k=n-2$.) We prove by induction on k that
(a) $\theta_{2 k, 2 n-2 k-3+i}=\lambda_{k, i}$ for $i=1,2,3$.
(b) $\theta_{2 k+1,2 n-2 k-4+i}=\mu_{k, i}$ for $i=1,2,3$.
(c) $\left(\delta_{n-1}\right) S^{2 k+2}=\mu_{k, 3}$.

We start with $k=0(a=0)$ and apply the consecutive factors of S to δ_{n-1}. For $j<2 n-2$ curve α_{j} is disjoint from δ_{n-1} so $\left(\delta_{n-1}\right) T_{\alpha_{j}}=\delta_{n-1}$. By definition 1 $\left(\delta_{n-1}\right) T_{\alpha_{2 n-2}}=\lambda_{0,1}$ (Fig. 5a) so $\theta_{0,2 n-2}=\lambda_{0,1}$ as required. Suppose that for some $k \leq n-2$ we have $\theta_{2 k, 2 n-2 k-2}=\lambda_{k, 1}$. Clearly $\left(\lambda_{k, 1}\right) T_{\alpha_{2 n-2 k-1}}=\lambda_{k, 2}$ and $\left(\lambda_{k, 2}\right) T_{\alpha_{2 n-2 n}}=\lambda_{k, 3}$ so the equations (a) are true by the definition of $\theta_{a, r}$. For $j>2 n-2 k$ curve α_{j} is disjoint from $\lambda_{k, 3}$ so $\left(\delta_{n-1}\right) S^{2 k+1}=\lambda_{k, 3}$. We apply again the consecutive factors of S. For $j<2 n-2 k-3$ curve α_{j} is disjoint from $\lambda_{k, 3}$. Now we apply $T_{\alpha_{2 n-2 k-3}}$ to $\lambda_{k, 3}$. If $k<n-2$ we get the curve $\mu_{k, 1}$ on Fig. 5b. If $k=n-2$ then $2 n-2 k-3=1$ so we apply $T_{\alpha_{1}}$ to $\lambda_{n-2,3}$. It is easy to see that we get the curve $\mu_{n-2,1}$ on Fig. 5 c . Thus $\mu_{k, 1}=\left(\delta_{n-1}\right) S^{2 k+1} T_{\alpha_{1}} \ldots T_{\alpha_{2 n-2 k-3}}=$ $\theta_{2 k+1,2 n-2 k-3}$ as required. Clearly $\left(\mu_{k, 1}\right) T_{\alpha_{2 n-2 k-2}}=\mu_{k, 2}$ and $\left(\mu_{k, 2}\right) T_{\alpha_{2 n-2 k-1}}=$ $\mu_{k, 3}$ so equations (b) are satisfied. For $j>2 n-2 k-1$ curve α_{j} is disjoint from $\mu_{k, 3}$ so $\left(\delta_{n-1}\right) S^{2 k+2}=\mu_{k, 3}$ which proves (c). If $k<n-2$ we go on and apply again the consecutive factors of S to $\mu_{k, 3}$. For $j<2 n-2 k-4$ curve α_{j} is disjoint from $\mu_{k, 3}$. It is easy to see that when we apply $T_{\alpha_{2 n-2 k-4}}$ to $\mu_{k, 3}$ we get $\lambda_{k+1,1}$. Thus $\theta_{2 k+2,2 n-2 k-4}=\theta_{2(k+1), 2 n-2(k+1)-2}=\lambda_{k+1,1}$. This completes the induction step. From (c) we get

$$
\begin{aligned}
& \left(\delta_{n-1}\right) S^{2 n-4}=\mu_{n-3,3}=\rho_{4}(\text { Fig. } 5 \mathrm{~b} \text { and Fig. } 4) \\
& \left(\delta_{n-1}\right) S^{2 n-2}=\mu_{n-2,3}=\rho_{2}(\text { Fig. } 5 \mathrm{c} \text { and Fig. } 4 .)
\end{aligned}
$$

Figure 5a

Figure 5b

Figure 5c
Lemma 6. $\left(\gamma_{i}\right) S^{2}=\delta_{i-1}$ for $i=2,3, \ldots, n$ (Fig. 1.)
Proof: This is an easy exercise for a reader who followed the proof of Lemma 5.

Let $U=(R) S^{2 n-2}$. Then $U \in G$ and by Lemmas 4 and $5 U=T_{\rho_{2}} T_{\sigma_{2}}^{-1}$.
Lemma 7. $\left(\delta_{k}\right) U=\gamma_{k}$ for $k=2,3, \ldots, n$ (Fig.1.)
Proof: Fig. 6a shows curves δ_{k} and ρ_{2}. Clearly $\left(\delta_{k}\right) T_{\rho_{2}}=\nu_{1}$ (Fig. 6b .) Now in $\left(\nu_{1}\right) T_{\sigma_{2}}^{-1}$ (Fig. 6b) most of the picture "contracts" and we are left with γ_{k}.

Figure 6a

Figure 6b
Lemma 8. $T_{\alpha_{1}} T_{\delta_{2}}^{-1}, T_{\alpha_{3}} T_{\gamma_{3}}^{-1}$ and $T_{\delta_{2}} T_{\delta_{3}}^{-1}$ belong to G.
Proof: By Lemmas 6 and 7 we have $\left(\delta_{k}\right) U S^{2}=\delta_{k-1}$ for $k=2,3, \ldots, n$. Thus $(R)\left(U S^{2}\right)^{n-3}=T_{\delta_{2}} T_{\delta_{3}}^{-1}$. Now by Lemma $7(R)\left(U S^{2}\right)^{n-3} U=T_{\gamma_{2}} T_{\gamma_{3}}^{-1}=T_{\alpha_{3}} T_{\gamma_{3}}^{-1}$. Applying S^{2} we get, by Lemma $6, T_{\delta_{1}} T_{\delta_{2}}^{-1}$ which is equal to $T_{\alpha_{1}} T_{\delta_{2}}^{-1}$.

Lemma 9. $T_{\alpha_{1}} T_{\alpha_{3}} T_{\alpha_{3}} T_{\delta_{3}}=T_{\epsilon} T_{\delta_{2}} T_{\gamma_{3}}$ (Fig.1.)
Every factor on the left hand side commutes with every other factor in the relation.
Proof: When we cut F along the curves $\alpha_{1}, \alpha_{3}, \alpha_{5}$ and δ_{3} we get a disk with 3 holes (Fig. 7 .) The relation in Lemma 9 is the so called "lantern relation" . It was proven in $[J]$.

Figure 7
Let $W=T_{\alpha_{3}} T_{\gamma_{3}}^{-1} T_{\delta_{3}} T_{\delta_{2}}^{-1}$. By Lemma $8 W \in G$. By Lemma 9 $W=T_{\epsilon} T_{\alpha_{1}}^{-1} T_{\alpha_{s}}^{-1}$.
Let $V=(R) S^{2 n-4}$. Then $V \in G$ and by Lemmas 4 and $5 V=T_{\rho_{4}} T_{\sigma_{4}}^{-1}$ (Fig. 3 and Fig. 4 .)
Lemma 10. $(\epsilon) V^{-1}=\delta_{3},\left(\alpha_{1}\right) V^{-1}=\alpha_{1},\left(\alpha_{5}\right) V^{-1}=\gamma_{3}$.
Proof: Clearly $(\epsilon) T_{\sigma_{4}}=\nu_{2}$ (Fig. 8a and Fig. 8b.) When we apply $T_{\rho_{4}}^{-1}$ to ν_{2} (Fig. 8b) most of the picture "contracts" and we are left with δ_{3}.

Clearly α_{1} is disjoint from σ_{4} and ρ_{4} so $\left(\alpha_{1}\right) V=\alpha_{1}$.
Finally $\left(\alpha_{5}\right) T_{\sigma_{4}}=\nu_{3}$ (Fig. 8a and Fig. 8c .) When we apply $T_{\rho_{4}}^{-1}$ to ν_{3} again most of the picture "contracts" and we are left with γ_{3}.

Figure 8a

Figure 8b

Figure 8c
We can now complete the proof of the Proposition. By Lemma 1 and Lemma 10 we have $(W) V^{-1}=T_{\delta_{3}} T_{\alpha_{1}}^{-1} T_{\gamma_{3}}^{-1} \in G$. Now by Lemma 8

$$
\left(T_{\alpha_{1}} T_{\delta_{2}}^{-1}\right)\left(T_{\delta_{2}} T_{\delta_{3}}^{-1}\right)\left(T_{\delta_{3}} T_{\alpha_{1}}^{-1} T_{\gamma_{3}}^{-1}\right)\left(T_{\gamma_{3}} T_{\alpha_{3}}^{-1}\right)=T_{\alpha_{3}}^{-1} \in G .
$$

By Lemma $3 T_{\alpha_{i}} \in G$ for each i. In particular $T_{\alpha_{1}} \in G$. Now $T_{\delta_{2}} \in G$ by Lemma 8 and $G=M$ by the result of Humphries in [H]. This concludes the proof of the Proposition and of the Theorem.

Acknowledgements. This paper was completed when I was a guest of Max-Planck-Institute for Mathematics in Bonn. I wish to thank the Max-Planck-Institute for its hospitality. I also wish to thank Bernard Maskit who asked me about the minimal number of generators for the mapping class group and made me working on this problem.

References

[B] J.S. Birman, Braids, Links and Mapping Class Groups, Annals of Math. Studies 82, Princeton University Press (1975).
[D] M. Dehn, Die Gruppe der Abbildungsklassen, Acta Math. 69 (1938), 135-206.
[H] S. Humphries, Generators for the mapping class group of a closed orientable surface, Lecture Notes in Math. 722 (1979), 44-47.
[J] D. Johnson, Homeomorphisms of a surface which act trivially on homology, Proc. of Amer. Math. Soc. 75 (1979), 119-125.
[L1] W.B.R. Lickorish, A finite set of generators for the homeotopy group of a 2-manifold, Proc. Cambridge Phil. Soc. 60 (1964), 769-778.
[L2] , On the homeotopy group of a 2-manifold (Corrigendum), Proc. Cambridge Phil. Soc. 62 (1966), 679-681.

Max-Planck-Institut für Mathematik, Gottrried-Claren-Strasse 26, 53225 Bonn.

August 1994

[^0]: ${ }^{1}$ Technion, Haifa and Max-Planck-Institute, Bonn.

