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Introduction 

It is well known that the diffeomorphisms on a closed, connected, 

orientable surface of genus g, Mg, induce the full group of automorphisms 

of HI(Mq~) which preserve the associated intersection pairing. With 

respect to the standard basis ofHl(Mg'~)' this group is identified 

with the group of integer symplectic matrices, Sp(2g,Z). Clebsch and 

Gordon discovered generators for Sp(2g,~) in 1866. Consequently, in 1890 

Burkhardt [Bu] gave the first proof of this fact by showing that these 

generators are induced by diffeomorphisms of Mg. A similar algebraic 

proof involves the set of four generators discovered by Hua and Reiner 

[HR], [si]. Meeks and Patrusky (MPJ gave a topological proof in 1978. 

In the case of a closed, connected, nonorientable surface of genus p, 

Fp. there is only a Z2-valued intersection pairing. (Here, the genus 

of a nonorientable surfaceis defined to be the number of projective 

planes in a connected sum decomposition.) Ne~ertheless, we shall show 

in this article that the above result extends in a natural way to nonorientable 

surfaces. More precisely, we shall prove the following theorem. 

Theorem 1 If L is an automorphism of HI(Fp'Z) which preserves the 

associated Z2-valued intersection pairing, then L is induced by a 

diffeomorphism of Fp • 

Our arguments are essentially algebraic and elementary. After 

describing the action of certain diffeomorphisms on Hl(Fp'~2)' we prove 



the following theorem. 

Theorem 2 If L is an endomorphism of HI (Fp ,Z2) which preserves the 

associated Z2- valued intersection pairing, then L is induced by a 

diffeomorphism which is a product of Dehn twists. 

We then compute the action of certain crosscap slides (the Y-homeomorphisms 

of Lickorish [L1, [Ch]) on HI(Fp~). By a purely algebraic argument, 

similar to the ~tandard argument for es·tablishing the generation of 

GL(n~) by elementary matrices and permutation matrices, we deduce the 

following theorem. 

Theorem 3 If L is an autol!lOrphism of HI (Fp.z> which induces the trivial 

automorphism of HI (F P,Z2) '0 then L is induced by a diffeomorphism which 

is a product. of crosscap slides. 

Actually, we shall prove more precise versions of all three of 

the above theorems, versions which provide finite sets of generators 

(Theorem 3.1, Theorem 2.2 and Theorem 1.1). In particular, in the 

case of Theorem 1, we shall prove that L is induced by a diffeomorphism 

of Fp which is generated by a specific set of four maps, a crosscap 

transposition, a crosscap p-cycIe, a Dehn twist and a crosscap slide 

(Theorem 3.1) • 

Here is an outline of the paper. In section 1, we describe the 

collection of diffeomorphisms used in the proof of Theorem 2 I compute 

their action on Hl(Fp~2) and prove Theorem 2. In section 2, W4 describe 

the corresponding collection of cross cap slides used in the proof of 

Theorem 3, compute their action on H1(Fp'Z) and deduce Theorem 3. 

Finally, in section 3, we deduce Theorem 1 from Theorems 2 and 3. 
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Section 1 

Consider the following model for Fp' Let Sp be a sphere with p 

open discs removed. We denote the boundary components of Sp by bl,.,rbp • 

To each component, bi, we attach a Moebius band, Mi, with core circle, 

ct. ~e resulting surface, Fp, is depicted in figure 1 (for p=3). 

'lbe Moebius bands are drawn as "crosseaps". 

Figure 1 

If p~2, choose a diffeomorphism of F p' T, which exchanges the pairs 

We 

reter to ,; as .. cro.scap transposition. The action of T is depicted 



in figure 2. 

11/ //y/; 

1T 

Figure 2 

In a similar manner, if p~J, choose a diffeomorphism of Fp, " 

which permutes the cross caps cyclically in the given order •. We refer to , 

as a crosscap p=cycle. (We could, of course,. define , as an APpropriate 

product of crosscap transposi tiona. ) '!'he action of , is depicted in 

figure 3 (for p-J). 
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/ / 

/ / 

Figp.::e 3 

Finally, if p~4, we construct a simple closed curve, ci, which "runs 

r::e around each Koebius band, MI' K21 M3' and M4 , in the given ·order". as 

figure 4. 

Figure 4 
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Since d is orientation preserving: and, hence, two .... idad, we uy 

construct the Dahn twist about d ([Li> I 4. . ; 

Bema.Xk Por nonorientab:le surfaces, it i8 not possible to distinquish 

between right and left twists. Nevertheless, we could choose an 

orientation of a regular aeiqhborhood of d and let 6 denote the 

riqht twist about d with respect to this orientation. 

The Z2-homology classes represented by the cores, which we also 

The Z2-valued intersection pairinq,( , >, is given by the following 

conditions. 

(1.2) (Ci-Cj> ,. 0 

( ci ' '1. > ... 1 • 

(In other verds, with respect to the <.liven basis, the pairing is 

identified with the standard inner product on ~.) 

The characteristic class, c, is gi van as the sua of the basis. 

(1.3) c - c l + •••• + Cpo 

It is easy to check that it is the unique Z2-class which satisfies 

the following identity. 

(1.4) (c,x) -(x,x) 
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The z2-homology class of d, which we also denote as d, is given 

by the following sum. 

The actions of T; " and a on HI (F p ,z2) are given by the following 

conditions. 

(1.6) T .. (C 1) - c 2 

T.(C2) - °1 

T .. (c i ) - c ... 
l. 

(1.7) '.(ci ) ,. c i +l 
l,::.i,::.p (modulo p) • 

(1.8) c5 .. (x) "" x + <d,x>d 

Remark The Z-homology classes corresponding to the cores, which We 

also denote as cl' •.•• ,cp ' generate Hl(Fp)t). Formulas (1.6) and (1.7) 

also hold for the actions of T and 'f respectively on Hl(Fpl~)' A 

formula similar to (1.B) holds for the corresponding action of 0 . 

We must replace (d,.x) with a "local intersection number", nd{x) I 

which is defined with respect to a given local orientation in a neighborhood 

of d. 

d 

y 



8 

Suppose that L is an endOlDOrphilJlll of 81 (P P ,s2) which preserves 

the pairinq. Since the pairing is nondeqenerate', L BlUSt be an autolllOrphism 

of Hl (P p "&2) • 

Let k be the least positive integer which satisfies the following 

condition. 

k<j~p • 

Observe that k=p if L fixes no basis vector and k<p otherwise. 

(1.10) 1~S>. 

It follows from the assumption that L preserves the pairing, 

(1.2), (1.3) and (1.9) that L(~) has the following form. 

(l.ll) =c. + ••• +c. 
l.l l.t 

(1.12) t is .an odd inteqer. 

Since the coefficients are inz2 , we obtain a unique expression (1.11) 

by imposing the following condition. 

In particular, t is bounded by k. 

(1.14) l:!~k. 
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From (1.6) and (1.7), we observe that T. and ~. generate a group 

of automorphisms of H1 (Fp ,Z2) which acts by permutations of the given 

basis, {cl' •• • •• cpl. In fact, they generate the full group of such 

automorphisms, which is isomorphic to the symmetric group on p-symbols, 

t. (Note that under the above conventions this assertion holds for all p 

values of p.) Hence, we identify this group with E. Likewise, for 
p 

each integer k with l~k<PI we identify the subgroup of E which fixes 
p 

We are now able to state and prove a more precise version of 

Theorem 2. (For the sake of uniformity, we adopt the conventions that 

T is the identity map when p~l, V is the identity map when p~2, 

and 6 is the identity map when p~3.) 

Theorem 1.1 If L is an endomorphism of Hl (Fp ,Z2} which preserves 

the associatedZ2-valued intersection pairing, then L is generated by 

't*, '* and ~ •• 

Proof: The proof 

is by induction on the lexicographical ordering on the pair (k,i) or 

(k (L) ,t(L) ) • 

(1) (k,t) < (k', t') if and only if either (i) k<k' 

or (ii) k=k' and l<l' . 

(Due to the inequality (1.14), this is ordinary induction on the 

integer [(k-l)k+2t]/2.) 

The initial step of the induction is given by k=i=l, in which case 

L is the identity and the theorem is immediate. Henceforth, we assume 



10 

that k>2. 

Suppose that t-k. By (1.11) and (l.ll), it follows that 

L(~)=cl+."'~' Applying (1.9), we conclude that L(Ck + t c.)" c. 
k<j~ ) 

From the characteristic property of c (1.4) and the assuaption that L 

preserves the pairing, it follows that L preserves c. Since L is in-

vertible, we conclude that c
k 

+ t' c
j 

- c or k ... 1. This contradicts 
k<j~ 

our assumption on k. Hence, l~<k. 

Suppose that: l=l. Choose a permutation in t k , P, such that 

PL(ck)~" Since P is in t k , PL(cj)aCj for each j>k-l. By the induction 

hypothesis, PL is generated by L., '. and 6 •. By the previous 

remarks about Ek , L is generated by L., '. and 6 •• 

Suppose that l=3. Choose a permutation in E
k

, Q, such that 

QL(~)=C2+c3+C4' By (l~2) and (1.8), it follows that 6.QL(Ck )=cl . 

Since l~<k, we observe that ~~4. Therefore, by the same" formulas 

and the fact that Q is in t k , we compute that 0 .QL (c j) ac j for each 

j>k. By the induction hypothesis, o.QL (and hence L) is generated 

Finally, suppose that l>5. Choose a permutation in t
k

, R, 

such that RL(~)=c2+c3+c4+C5+"",+cl+l' As before, we conclude that 

o.RL (and hence L) is generated by L., '. and 6." 

This completes the proof of Theorem 1.1. 

with "respect to the basis given above, we can identify HI (Fp ,Z2) 

with the standard vector space over Z2 of dimension p, Cl: 2)P. In addition, 

as previously observed, under this identification, the intersection 

p 
pairing on Hl (Fp ,Z2) is the standard inner product on (Z2) . Hence, 

Theorem 1.1 is a statement about the generation of O(P,z2)' the group of 

orthogonal transformations of Cl2)P. 
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The "transposition", T., is also a transvection. 

By our remarks concerning E , ~. is a product of transpositions. In p 

fact, it is generated by the following transvections. 

(1.16) T. (x)=x+( c.+c·+l,x > (c.+c. 1) 
1. 1. 1. 1. 1.+ 

Finally, we have already observed that 0* is a transvection (1.8), 

which we shall denote as D. 

(1.17) D(x) =x+( d,x) d 

Hence, we have the following immediate corollary. 

Corollary 1. 2 O(P,Z2) is generated by the p transvections, 

Remark All of the above transvections are induced by Dehn twists. 

For example, T. is induced by a Dehn twist about any simple closed 

c~ which represents c l +c2 •. Such a curve can be constructed in the same 

manner as d. In fact, this construction can be used to show that every 

invertible transvection of HI {Fp ,Z2) is induced by a Dehn twist. 

(The reader can easily check that a transvection in the d~rection 

of a. given z2-homology class is invertible if and only if the given 

class is orientation preserving.) 

Bence, the corollary above is very similar to, although considerably 
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simpler than, the correspondinq statement for Sp (2q,z). Furthermore, 

the oriqinal statement of Theorem 2 which was formulated in the introduction 

follows immediately. 

Section 2 

In this section, we consider the same moder for F which was used 
p 

in section I (figure 1). However, we need to introduce SOllie additiorial 

notation. 

If p>2, choose a curv.e, b, which separates Ml and M2 from the other 

crosscaps. Let B be the component of F p'b which contains MI and M2 , as 

in figure 2. 

There is a standard diffeomorphism of Ii' , C1, which is supported on p 

B and known as a Y-homeomorphism ([Ll). This diffeomorphism is constructed 

by "sl1dinq the crosscap, M
I

, over the crosscap, M2 , and back to itself." 

Hence, we shall refer to C1 as a crosscap slide. 

We may describe C1 more explicitly as follows. Consider B\MI , which 

is a Moebius band with one open disc removed as in figure 6. 

---, .. ,-----9 
b 

Figure 6 
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Construct a diffeol1'K)rphism of B\Ml t which fixes b, by "dragging 

b
1 

once around c2 ". Of course i b1 comes back to itself with a change 

of orientation as in figure 7. 

Figure 7 

Hence, we may extend this map to a diffeomorphism of F which is supported p 

on B, preserves Ml and reverses the orientation of the core circle, c l " 

This is the crosscap slide, 0'. 

From this description and figure 7, we easily calculate the 

action of a on HI (F p,zz;) . 

(2.1) 0'.(c1>=-c1 

0'.(c2)=c2+b1=2Cl+c2 

<1.(c
j
).c

j
. 

2<j~p 

We pre.viously observed that the actions of T and 'II on HI (Fp'zt) , 

are given by (1.6) and (1. 7) of Section 1. Hence, 'as for HI (Fpl~2)' 

T. and '. generate a group which we identify with!. By conjugating 
p 

0'. by elements of L , we obtain the following collection of automorphisros p 

of Hl(Fp~)which are induced by appropriate crosscap slides. 
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(2.2) Yij(Ci)--Ci l~i~l 1~S" l~kS' 

Yij(Cj)-2Ci+cj l,rj j,rk k,ri 

Yij(Ck)-Ck • 

!2.!:!. Each of these automorphisms acts tlrivially on H1 (F p'z2) • 

The characteristic class of Hl (P ,s), c, is given as the sum • p 

of the generators. 

(2.3) 

It is the unique class of order 2. In particular, it is preserved 

by every automorphism of H1 (F p,z) • 

Let Rp denote the quotient, Hl (Fp ,Z)!-C2' where Z2 is the span 

of c. As a Z-module, Hl (Fp'Z) has the following presentation. 

(2.4) 

It is immediate that Rp is a free Z-module with basis given by the 

images of cl, ••• ,cp-l in Rp' (We shall denote the images of clt ••. ,cp 

in R by the same symbols.) p 

(2.5) Rp'" < c 1 ' •.. ICpl c 1 + .•. +cp -0 > 
Rp" < c l' ... I C p-l > . 

Since every automorphism of Hl(Pp'S) preserves c, Rp is a characteristic 

quotient of Hl(Fp'z). That is, every automorphism of Hl(Fp,z), L, 

covers an automorphism of Rpt I:. 
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L 

(2.6) HI (Fp,z) " HI (F p,z) 

~ L t 
R .. R 

P P 

In particular I the automorphisms defined above in (2. 2.) induce the 

following automorphisms of R • 
P 

(2 ° 7) Y .. (c., :::-c. 1.) 1. 1. 

Yij(Cj>:::2ci+Cj 

Yij ('1<'=Ck ' 

(2.8) T(c.)=-c. 1.p 1. 1. 

YiP(Ck )= cko 

l~i~p-l l.9~p-l l~k~p-l 

i;o!j j~ k;o!i 

l~i~p-l l~k~p-l i~ 

We refer to the automorphisms in (2.8) as sign change transformations 

of R • 
--p 

(2.9) F.=Y. 
1. l.P 

From these automorphisms of R I we generate the following p 

element~ transformations of R • p. 

----(2.10) E •. =Y •. 0y. 
l.) 1.) lop 

E .. (c. ) ==c. 
l.) 1. lo 

Eij(Cj)=2ci+Cj 

Eij ('1<) =ck • 

i;o!j k;o!i 

The reader will recognize these transformations as the squares 

of the standard elementary transformations of zp-l {under the obvious 



16 

identification of R with ZP-l) , the so-called row and column operations. 
p 

In the terminology of matrices I these standard elementaxy 

transformations together with the permutation matrices generate 

GL(n,Z). A standard proof of this fact uses a type of Euclidean 

algorithm on the rOW's and columns of the corresponding matrices. 

~ proof of Theorem 2 uses the same idea. In order to employ 

the appropriate Euclidean algorithm, we shall need ~~e following elementary 

lemma. 

Lemma 2.1 Let a and b be nonzero integers. Suppose that a is 

odd and b is even. Then one of the following inequalities must be 

satisfied: 

Proof: 

(i) la-2bl<lal 
(H) I a+2bl< I al 

(Hi) l·b-2a1-<lbl 
(iv) Ib+2al<lbl. 

Suppose a and b are as above and none of the inequalities 

is satisfied. In other words: 

From this it follOW's that: 

(2) lal 2
,!. laI 2-4Iallbl+4IbI 2

• 

Ib12~ \bI 2-4Ial Ibl+4IaI2. 

This latter pair of inequalities implies: 
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Since a and b are nonzero: 

(4) lal-Ib\. 

This is clearly contradictory to the hypotheses. Hence, the lemma 

is established. 

We are now prepared to state and prove a more precise form of 

~eorell1 3. 

Theorem 2.2 Let L be an automorphism of HI (Fp':.I:) which acts trivially 

on HI(F ,ZZ'). Then L is generated by {Yijl l~i~p-l , l~j~p, i~j} . 
p 

Proof: Suppose that L is as above and the induced automorphism 

of R , L, is the identity. p 

For any index, i, either L(c.)=c. or L(c.)~c.+c. Since L acts 
~ 1. ~ ~ 

trivially on Hl (Fp ,Z2) and c represents a nonzero :.r;2-homology class, 

the latter equality cannot hold. Hence, L must be the identity. 

Therefore, it suffices to prove that L is generated by 

~Il<i<o-ll l<j~, i~j}. In fact, by our definitions, it suffices 
1.j . - -- -

to show that L is generated by the elementary transformations, 

{Eijll~i~l, l~j~-l, i1j}, and the sign change transformations, 

{Fill~i~-l}. This is what we now proceed to demonstrate. 

As suggested by our previous comments, our proof requires that 

we consider matrices with respect to the Z-basis for R , {c1'····,c I}' p p-
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We shall denote automorphisms of Rp and their corresponding matrices 

wi th respect to this basis by the same symol. In particular, by 

our assumptions, L is congruent modulo 2 to the identity JDatrix:. 

(2) Liillp-l (modulo 2). 

Moreover, since L is invertible overZ, its determinant must be 

a unit of Z. 

(3) deteL)=!l. 

Given a matrix, H, let k(M) denote the gum of the absolute 

values of the entries of the first column of M. 

p-l 
(4) k(M)= L IM(i,l) I. 

i=l 

Let k=k(L) ~ By (2), k is odd. If k'::'3., we apply e) to conclude 

that Lej,l) is nonzero for some j~2. Choosing such a j, we apply 

(2.10) to compute: 

p-l 
(5) k(E

1j
L)=\L(l,l)+2L(j,l} I + t IL(i,l) I. 

i=2 

In an equivalent form, we conclude: 

In similar fashion, we have the following identities: 
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C8} k(Ej1L)+IL(j,1} l-k(L}+IL(j,1)+2L(1,1} I, 
(9) k(Ej~~)+IL(j,l} lak(L}+IL(j,1)-2i(I,1)I. 

If we apply Lemma 2.1 with a=L(l,l) and b=L(j,l), we conclude that 

one of the following inequalities must hold. 

(10) (i) k(EljL) <k(L} 

(i1) k(El;l!:} <k(L) 

(iii) . k(Ej{L) <k(L) 

(iv) k(E.~lL}<k(L) • 
.J 

Therefore, by repeated multiplications on the left by elementary 

transformations, we may reduce to the case where k=l. If k=l, 

however, .J: must have the following form. 

(11) k""l e: . . . 
o 

L "" 
M 

o 

Here e:-.:t,l, 11\2' •• ,mp_1 are integers and M is a 

(p-2)x(p-2) integer matrix. In this case, therefore, one easily computes 

the 'following product. 

(12) k-1 1 0 . . . 0 

0 
_ UJ

2 m p-l 
FiLE12 . .E = 1,p-l 

Ll 

0 
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'Here 1.1 is a (p-2) x(p-2) matrix. The theorem follows by an obviou induction. 

Remark By our remarks concerning the automorphisms in (2.2), we 

see that each of these automorphisms is induced by a conjugate of 

(J by a diffeolOOrphism which is generated by T and , - Hence, 

each of these automorphisms .is induced by a crosscap slide. The 

original statement of Theorem 3 which was formulated in the introduction 

follows immediately. 

As a consequence of our observations at the beginning of the 

proof, we have identified the group of autolOOrphisms of Hl(Fp'Z) which 

act trivially on H1 (Fp ,Z2) with a subgroup of the group of automorphisms 

of R which act trivially on R ~Z2' Since there is a natural p p . 

way of liFting automorphisms of Rp to automorphisms of Hl (Fp'z), it 

is easy to see that this subgroup is actually the full group of 

such automorphisms. On the other hand, this full group is isomorphic, 

under the obvious identifications, with the congruence subgroup modulo 2 

of GL(p-l~), r2(p-l~). Hence, we have the following immediate corollary. 

~rol1arx 2.3 r 2 (p-l,Z) is generated by the squares of standard 

elementary matrices, 

and the sign change transformations I 

F l' • • • • I F l' p-
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Section 3 

Finally, we state and prove a more precise formulation of Theorem 1. 

The notation refers to the discussion in sections 1 and 2. 

'l'heorem 3.1 If L is an automorphism of H1 (Fp 'Z) which preserves the associated 

Z2 -vaJ.ued intersection pairing,' then L is induced by .; 

diffeomorphism of F which is generated by the crosscap transpo~ition, 
p 

'[ I the croascap p-cycle, " the Oehn twist, 0, and the crosscap slide, 

G. 

~: Let L' be an automorphism of HI (F p ,Z) as above. Let L2 be 

the ·tndUeed automorphism of HI (F p .%2)' By Theorem 1.1, L2 is induced 

by ~ diffeomorphism, v, which is generated by T,~ and o. -1 
Let L'=(v )*oL 

-1 -1 
where (v). is the action of v on H1{Fp 'Z). Clearly, L' acts trivially 

on Hl (Fp ,z2) • 

By Theorem 2.2, Lt is generated by {Yo .Il<i<p-l, l<j<p itj}. 
l.) - - - - , 

We have previously observed that each transformation, Y I is induced 
ij 

by an appropriate conjugate of a by a diffeomorphism in the group 

generated by 't and ". Hence, L' is induced by a diffeomorphism of 

. the desired type. 

Since L-v.oL', L is also induced hy a diffeomorphism of the 

desired' type • 

This formulation of the result corresponds to the result for 

orientable surfaces Which was obtained from Hua and Reiner's system 

of generators for Sp(2g~) [BR],[Bi]. Here, the symplectic group is 

replaced. by a -Z2-ort~ group". 
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