GEOMETRY OF NEUMANN SUBGROUPS

Ravi S. Kulkarni

MPI/SFB 85-2

Max-Planck-Institut für Mathematik	Department of Mathematics
Gottfried-Claren-Strabe 26	Indiana University
D- 5300 Bonn 3	Bloomington, Indiana 47405
Federal Republic of Germany	USA

Geometry of Neumann Subgroups

Ravi S. Kulkarni

Contents §l Introduction

§2 Preliminaries
§3 Eulerian paths
§4 A structure theorem
§5 Maximal subgroups

ABSTRACT

A Neumann subgroup of the classical modular group is by definition a complement of a maximal parabolic subgroup. Recently Neumann subgroups have been studied in a series of papers by Brenner and Lyndon,cf.[1] - [3]. There is a natural extension of the notion of a Neumann subgroup in the context of any finitely generated fuchsian group Γ acting on the hyperbolic plane \mathcal{H} such that $r \mathcal{H}$ is homeomorphic to an open disk. Using a new geometric method we extend the work in $[1]-[3]$ in this more general context.

Geometry of Neumann Subgroups

Ravi S. Kulkarni ${ }^{+}$

$\oint 1$ Introduction (1.1) This note essentially consists of some remarks on a series of recent papers by Brenner and Lyndon concerned with the Neumann subgroups of the classical modular group, cf. [1] - [3]. We first recall their definition. Let $r=\left\langle x, y \mid x^{2}=y^{3}=e\right\rangle$ act as the modular group on the upper half plane \mathcal{H} in the standard way. Then the subgroup $p=\langle z$ def $x y>$ is a maximal parabolic subgroup of Γ and all such subgroups are conjugate. A subgroup Φ of Γ is said to be non-parabolic if it contains no parabolic element. If Φ is a complement of P in Γ, i.e. i) $P \cap \Phi=\{e\}$, and ii) $P \cdot \Phi=\Gamma$, then Φ is called a Neumann subgroup, cf. [1]. A Neumann subgroup is maximal among non-parabolic subgroups, cf. [1], (2.8).
(1.2) In connection with these subgroups, Brenner and Lyndon were led to study transitive triples (Ω, A, B), cf. [2], where Ω is a countable set, A and B are permutations of Ω of orders 2 and 3 respectively such that the group $\langle C$ def $A B$ is transitive on Ω. If (Ω, A, B) is a transitive triple then Γ, as in (1.1), acts on Ω in the obvious way so that the subgroup P is transitive on Ω. In particular $\Omega=\Gamma / \Phi$ for a suitable

[^0]subgroup Φ whose conjugacy class is well-defined. Since $P=\mathbb{Z}$ it is clear that either P acts simply transitively on Ω in which case Ω is an infinite set, or else P acts ineffectively on Ω in which case Ω is a finite set. In the first case Φ is a Neumann subgroup. In the second case $(\Gamma: \Phi)<\infty$ and $\Phi \mathcal{\ell}$ has only one cusp. Such a subgroup was called cycloidal by Petersson, cf. [9]. Thus the study of transitive triples amounts to a simultaneous study of Neumann and cycloidal subgroups of r. For the earliex work on Neumann subgroups, cf. [8], [6], [13], and also [7] pp. 119-122.
(1.3) A principal result in [1], which extends theorem 2 of [13] is a structure-and-realization theorem for Neumann subgroups. Similar and more general results were proved by Stothers [10] [12]. The proof in [1] is based on a correspondence between transitive triples and Eulerian paths in cuboid graphs i.e. the graphs with vertex-valences ≤ 3. For the triples associated with torsion-free Neumann-or-cycloidal subgroups the correspondence is 1-1, but in general to make the correspondence 1-1 one would need to put an extra structure on the cuboid graphs. The same method is used in [3] to produce maximal-among-non-parabolic subgroups which are not Neumann.
(1.4) In this note we extend this work to
$$
\text { (1.4.1) } \quad \Gamma=\prod_{i=1}^{* n} r_{i}, r_{i}=\left\langle x_{i}\right\rangle z \mathbb{Z}_{m_{i}}, 2 \leq m_{i}, n<\infty
$$

Except for $\mathrm{F} \approx \mathbb{Z}_{2}{ }^{*} \mathbb{Z}_{2}$, these groups can be realized as discrete subgroups of the orientation-preserving isometries of the hyperbolic plane \mathcal{H} such that $\Gamma \mathcal{H}$ has finite area, and x_{i} acts as a rotation through angle $\frac{2 \pi}{m_{i}}$ around its fixed point. Then the element $u=x_{1} \ldots \ldots x_{n}$ is parabolic.
(1.5) The above remarks are meant only for motivation. In the following, hyperbolic geometry will not be used explicitly. We start with r as in (1.4.1). Let $u=x_{1} \ldots \ldots x_{n}$. The conjugates of $u^{k}, k \neq 0$ are called parabolic elements of r. Let $P=\langle u\rangle$. A subgroup of P is called parabolic if all of its non-identity elements are parabolic. Clearly the maximal parabolic subgroups are precisely the conjugates of P. A subgroup of Γ is called non-parabolic if it contains no parabolic element. A complement Φ of P in Γ is called a Neumann subgroup. Thus, for a Neumann subgroup Φ one has i) $P \cap \Phi=\{e\}$, and ii) $P \cdot \Phi=\Gamma$. The latter implies ii)' $|P \backslash / \Phi|=1$. Conversely if ii)' holds and ($\Gamma: \Phi)=\infty$ then Φ is a Neumann subgroup. If ii)' holds and $(r: \Phi)<\infty$ then as in [5], Φ is called a l-cycloidal subgroup. $\oplus \quad$ One sees, af. (2.1), that a Neumann subgroup is maximal among non-parabolic subgroups.

[^1](1.6) Let r be as in (1.4.1). For $\leq r$, in [4], we attached a diagram X_{ϕ} and its thickening X_{ϕ} with canonical projections $X_{\phi} \rightarrow X_{\Gamma} X_{\phi} \rightarrow X_{\Gamma}$ Here X_{ϕ} is an orientable surface with non-empty boundary ∂X_{ϕ}. One may think of X_{r} as "r \mathcal{H} with the cusp cut off". This makes the "cuspidal infinity" more tangible - for example, one gets the following useful characterizations: $\Phi \leq \Gamma$ is Neumann (resp. l-cycloidal) iff ∂X_{ϕ} is connected and non-compact (resp. connected and compact). Pinching each circle in X_{ϕ} to a point one obtains a graph Y_{ϕ} whose structure suggests the notion of an $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graph, cf. (2.4). If Φ is a Neumann subgroup then the image of ∂X_{Φ} in Y_{Φ} is a special type of Eulerian path which we simply call admissible. This provides a natural explanation of the initially intriguing Brenner-Lyndon correspondence between Neumann and 1-cycloidal subgroups of the modular group and the Eulerian paths in cuboid graphs. A natural extension of their result is: the conjugacy classes of Neumann (resp. 1-cycloidal) subgroups of r are in 1^{-1} correspondence with the admissible Eulerian paths in $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graphs.
(1.7) For r as in (1.4.1) and $\Phi \leq r$ we have by Kurosh's theorem,
\[

$$
\begin{equation*}
\Phi=F_{I}^{* \|} \underset{i=1}{* n}\left(\underset{j \in J_{i}}{\|} \Phi_{i j}\right) \tag{1.7.1}
\end{equation*}
$$

\]

where F_{r} denotes the free group of rank r and $\Phi_{i j}=\mathbb{Z}_{d}$; $\mathrm{d} \mid \mathrm{m}_{\mathrm{i}}$ are conjugates to subgroups of Γ_{i}. In (1.7.1) we assume
that ${ }_{i j} \neq\{e\}$ with the understanding that if J_{i} is empty then ${\stackrel{H}{j \in J_{i}}}^{\Phi_{i j}}=\{e\}$. Let

$$
\text { (1.7.2) } \left.\quad r_{i}(d)=\# \mathbb{F}_{i j} \mid \Phi_{i j}=\mathbb{Z}_{m_{i} / d}\right\}, d \mid m_{i}, d<m_{i}
$$

The numbers $r_{i}(d)$ may be possibly infinite. In $§ 4$ we prove a structure-and-realization theorem for Neumann subgroups. For example, if at most one m_{i} is even, then Φ as in (1.7.1) is realizable as a Neumann subgroup iff either 1) $r=\infty$ or 2) $r=$ an even integer and $r_{i}(1)=\infty$ for $\geq n-1$ values of i. If there are two even m_{i} 's there is a curious new family of Neumann subgroups, cf. (2.11), of which there is no analogue In the case of the modular grour. This family makes the full structure theorem a bit complicated, but the underlying geometric idea is simple. For details cf. §4.
(1.8) Finally in $\S 5$ we give some geometric constructions of subgroups which are maximal, or maximal with respect to some additional properties such as Neumann, l-cycloidal, non-paraboino but non-Neumann....

I wish to thank W.W. Stothers for drawing my attention to [2].
(2.0) Throughout this section let r, r_{i}, x_{i}, u be as in (1.4) and (1.5), and we use the terminology introduced there.
(2.1) Proposition: A Neumann subgroup is maximal among. non-parabolic subgroups.

Proof: Let Φ be a Neman subgroup of r, and $\mathbf{P}=<u\rangle$. So P acts simply transitively on $\quad \Gamma / \$$. The isotropy subgroup of P at $a \Phi$ is $P \cap a \Phi a^{-1}=\{e\}$. So $a^{-1} P a \cap \phi=\{e\}$ i.e. Φ is a non-parabolic subgroup. If $\Phi \neq \Gamma$ then p acts transitively but not simply transitively on Γ / ψ. But since $p=\mathbb{Z}$ this means that the paction on Γ / ψ is ineffective and $|\Gamma / \psi|<\infty$. Hence $P \cap \psi \neq\{e\}$, i.e. ψ contains parabolic elements. So Φ is maximal among non-parabolic subgroups. q.e.d.
(2.2) As in [4] let X_{r} be a diagram for r and X_{r} its thickening:

A building block of type i has the form

and is denoted by $B_{i}(d)$. A diagram $\quad X_{\phi}$ is built out of such
$B_{i}(d)$'s and there is a canonical projection $X_{\Phi} \rightarrow X_{\Gamma}$. The thickening of $B_{i}(d)$ is

d arms.

The thickening \mathbf{X}_{Φ} of X_{Φ} is built out of \mathbb{B}_{i} (d)'s. Notice that \mathbf{X}_{Φ} is an orientable surface with boundary $\partial \mathbf{X}_{\Phi}$. There is a canonical projection ${ }^{\oplus} \mathrm{p}: \mathbf{X}_{\Phi}+\mathbf{X}_{\Gamma}$ and also a "thinning" map $X_{\Phi} \rightarrow X_{\Phi}$. The shape of $\mathbb{B}_{i}(d)$ may be described as "a closed disk with d arms". Each of the dotted edges at the end of an arm is its half-outlet; together they form an outlet. In \mathbf{X}_{Φ} the outlets come in groups of n. So we may use the obvious and suggestive terminology of an angle formed by the halfoutlets. For example the interior angle formed by the halfoutlets of an arm is $\frac{2 \pi}{n}$. In X_{Φ} one half-outlet of an arm of a $\mathbb{B}_{i}(*)$ is joined to a half-outlet of an arm of a $\mathbb{B}_{i+1}(*)$ and the other to a half-outlet of an arm of a $B_{i-1}(*)$, where the subscript i is counted mod n. In the sequel, it will be important to keep in mind that

[^2](2.2.4) $\quad \partial B_{i}(d)=\left\{B_{i}(d) \cap \partial X_{\phi}\right\} U$ \{the outlets $\}$.
(2.3) Pinching each circle in X_{Φ} to a point one gets a graph Y_{ϕ}. Again one has a canonical projection denoted by $p: Y_{\phi} \rightarrow Y_{r}$. Notice that the terminal vertices of Y_{ϕ} are precisely the images of m_{i} in X_{ϕ}. The vertices adjacent to terminal vertices will be called sub-terminal vertices. Now

has $n+1$ vertices - the image of m_{i} is numbered i, and the "base-vertex" is numbered 0 . So the vertices of Y_{Φ} are divided, into $n+1$ disjoint subsets:
(2.3.2) $\quad \alpha_{i}=\{v \mid p(v)$ has number 1$\}$.

The structure of Y_{Φ} motivates the following
(2.4) Definition: Let $m_{1}, m_{2}, \ldots, m_{n}$ be positive integers ≥ 2 and $n \geq 2$. An $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graph is a connected graph G whose vertices are divided into $n+1$ disjoint subsets $\alpha_{1}, i=0,1, \ldots, n$, such that

[^3]a) $v \in \alpha_{i} \Longrightarrow$ valence $v=n$ (resp. a divisor of m_{i}) $i f \quad i=0 \quad(r e s p . \geq 1)$,
b) each edge of G has one end in α_{O} and the other in $\alpha_{i}, i \geq 1$,
c) given $v \in \alpha_{0}$, and $i \geq 1$, there is a unique edge joining v to a vertex in α_{i}.

Clearly Y_{Φ}, as in (2.3), is an $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graph.

If $n=2$ (resp. some m_{i} is even) then the vertices in α_{0} (resp. certain vertices in α_{i}) have valence 2 , and if convenient may well be not counted as vertices. Thus for example, not counting the vertices in α_{0}, an (m_{1}, m_{2})-semiregular graph is a bipartite graph. Again if G is a ($2, k$)-semiregular graph such that all vertices in α_{1} resp. α_{2} have valence 2 resp. k, then not counting the vertices in α_{0} or α_{1} one has a k-regular graph in the usual sense. Thus if $\Gamma=\mathbb{Z}_{2}^{*} \mathbb{Z}_{k}$, and $\Phi \leq \Gamma$ is torsionfree then X_{Φ} may be considered as a k-regular graph. In particular corresponding to torsion-free subgroups of the modular group one gets cubic graphs.
(2.5) Remark: Let G be an $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graph. Then the edges at a vertex $\in \alpha_{0}$ come equipped with a natural cyclic order. Now suppose at each vertex $v \in \alpha_{i}$, $1 \geq 1$ we specify some cyclic order among the edges incident with v. Then we may replace each $v \in \alpha_{i}$, $i \geq 1$ by a circle
and attach the v-ends of the edges incident at v to the circle consistent with the prescribed cyclic order, and obtain a diagram X. This diagram has a canonical projection $p: X \rightarrow X_{\Gamma}$, so, cf. the proof of theorem 1 in [4], X may be considered as X_{Φ} for a subgroup Φ whose conjugacy classes is well-defined. Thus $G=Y_{\Phi}$ for some $\Phi \leq \Gamma$.
(2.6) Taking a base-point in ∂X_{T} we may represent $u=x_{1} \ldots x_{n}$ by the oriented boundary ∂X_{Γ}. Now $p^{-1}\left(\partial \mathbf{x}_{\Gamma}\right)=$ ∂X_{Φ}, so the components of ∂X_{Φ} are in $1-1$ correspondence with the double cosets $P \^{\Gamma} / \Phi$. If C is a component of $a X_{\Phi}$ and $\left.p\right|_{C}: C \rightarrow \partial X_{r}$ has degree d (possibly infinite), then d is the number of points in the corresponding p-orbit in Γ / Φ. In particular C is non-compact iff $d=\infty$, iff the p-action on the corresponding orbit is effective. Clearly one gets

Proposition: 1)	Φ is a non-parabolic subgroup iff ∂X_{Φ}
	has no compact component.
2) Φ is a Neumann (resp. l-cycloidal)	
	subgroup iff ∂X_{Φ} is connected and
	non-compact (resp. connected and compact).

(2.7) We recall some elementary facts from the topology of surfaces. Let M be any connected surface possibly with non-empty boundary. A connected, compact subsurface S of M is said to be tight if M-int S has no compact component. Notice that if S is a compact subsurface then $M-S$ has only finitely many components. So if S is compact and connected then

$$
S_{1}=S U\{\text { compact components of } M \text {-int } S\}
$$

is a tight subsurface. It is now clear that M admits an exhaustion by tight subsurfaces, i.e. a sequence $s_{i}, i=1,2 \ldots$ of tight subsurfaces such that $S_{i} \leq$ int S_{i+1}, and $M=U_{i} S_{i}$.

Now suppose that the fundamental group of M based at * is finitely generated. So there exist finitely many based loops C_{i} such that $\pi_{1}(M, *)=\left\langle\left[C_{i}\right]\right\rangle$ where $\left[C_{i}\right]$ denotes the homotopy class of C_{i}. One says that an arc-connected subset A of M carries π_{1} if the canonical map $\pi_{1}(A) \rightarrow \pi_{1}(M)$ is surjective. Clearly any arc-connected subser A containing $U C_{i}$ carries π_{1}. Now let S be a tight subsurface which contains U_{i}. In this case in fact the canonical map $\pi_{1}(S) \rightarrow \pi_{1}(M)$ is an isomorphism and it is easy to see that each component of M-S is either a cylinder or a disk. If $\partial M \neq \varnothing$ these cylinders or disks may also have non-empty boundary.
(2.8) We apply the considerations in (2.7) to X_{Φ}. Let S be a tight subsurface of X_{Φ}. Then for each building block $B_{i}(d)$ we see that a component of $S \cap \mathbb{B}_{i}(d)$ with a non-empty interior must be a closed disk, and $S \cup \mathbb{B}_{i}(d)$ is also tight. Let S_{1} be the union of s and all $\mathbb{B}_{i}(d)$'s which intersect S in a subset with non-empty interior. Then S_{1} has the additional property:
(2.8.1)

Now suppose Φ is as in (1.7.1). Then its free part F_{r} may be identified with $\pi_{1}\left(Y_{\Phi}\right)$ or $\pi_{1}\left(\mathbf{X}_{\Phi}\right)$, cf. the discussion in § 2 of [5]. Suppose that $r<\infty$. So there exist tight subsurfaces of X_{Φ} which carry π_{1}, of. (2.7). We call a tight subsurface characteristic if it carries π_{1} and has the additional property stated in (2.8.1).

From the above discussion it is clear that if $r<\infty, \mathbf{x}_{\Phi}$ admits an exhaustion by characteristic subsurfaces.
(2.9) Proposition: Let Φ as in (1.7.1) be a Neumann subgroup of r, and $r<\infty$. Let S be a characteristic subsurface of \mathbf{X}_{Φ}. Then $a S$ is connected and contains exactly one pair of half-outlets making an exterior angle $\frac{2 \pi}{n}$, cf. (2.2). Moreover int $\left(X_{\phi}-S\right)$ is homeomorphic to an open disk and $\partial\left(X_{\Phi}-S\right)$ has two components, each homeomorphic to an open interval.

Proof: Since S is characteristic

$$
\partial S=\left\{S \cap \partial X_{\varphi}\right\} \cup A
$$

where A is a union of half-outlets. Since ∂S is compact, ∂X_{Φ} is connected and noncompact, cf. (2.6), we see that each
component of ∂S must intersect A as well as $\partial \mathbf{x}_{\Phi}$. Notice that the half-outlets in A come in pairs each pair forms a connected arc, and different pairs form disjoint arcs.

First we claim that ∂S is connected. Suppose C_{1}, C_{2} are two disjoint components of ∂S. Since C_{1}, C_{2} contain points of ∂X_{ϕ}, and ∂X_{Φ} is connected, there is an arc $\alpha \underset{C}{ } \boldsymbol{C} X_{\Phi}$ joining a point p_{1} in C_{1} to a point p_{2} in C_{2}. But since S is connected there is an arc $\beta \in S$ joining p_{1} to p_{2} and passing through a base-point *. But then α U β forms a based loop whose homotopy class is clearly not contained in $\pi_{1}(S, *)$. This would contradict that S carries π_{1}. So $a S$ is connected.

Next suppose if possible that there are two pairs of halfoutlets, each pair forming an arc. Then $\partial S-A$ has two components which must be connected by an arc $\leq \partial X_{\Phi}$, and we get a contradiction exactly as above.

Next suppose that the pair w_{1}, w_{2} of half-outlets makes an exterior angle $>\frac{2 \pi}{n}$, cf. the figure in (2.9.1).
(2.9.1)

Then the arms A_{1}, A_{2} in X_{Φ}-int S incident with W_{1} and W_{2} are distinct. Again since ∂X_{Φ} is connected the components α_{1}, α_{2} of $A_{1} \cap \partial X_{\Phi}$ are joined by an arc $\alpha \leq \partial x_{\Phi}$. clearly
$a \cap s=\varnothing$. Now $\partial A_{1} U a$ forms a Jordan curve outside s. Since S carries π_{1} this Jordan curve must bound a disk. But then X_{Φ}-int S would have a compact component and S would not be tight. This contradiction shows that the exterior angle formed by w_{1}, w_{2} must be $\frac{2 \pi}{n}$, and so $w_{1} U w_{2}$ is an outlet of an arm lying outside int S. This arm connects X_{ϕ}-int s to S. In particular X_{ϕ}-int s has only one component. From the remarks in (2.7) it is now clear that $\operatorname{int}\left(X_{\Phi}-S\right)$ is homeomorphic to a disk and $\partial\left(X_{\phi}-S\right)$ has two components each sharing one endpoint of $\partial S-A$.
q.e.d.
(2.10) The above proposition may be used to get an intuitive understanding of a Neumann subgroup Φ with $r<\infty$. Let $s_{1} \subset s_{2} \subset \ldots$ be an exhaustion of \mathbf{X}_{Φ} by characteristic subsurfaces. Each S_{k+1}-int S_{k} is \approx a closed disk. Also each S_{k} has exactly one pair of half-outlets with exterior angle $\frac{2 \pi}{n}$. Inserting an appropriate $\dot{B}_{i}\left(m_{i}\right)$ in this outlet we obtain a new diagram $\tilde{S}_{k} \approx X_{\Phi_{k}}$ where Φ_{k} is a l-cycloidal subgroup. Thus we get a sequence $\Phi_{k}, k=1,2 \ldots$ of 1 -cycloidal groups so that $X_{\Phi_{k}}$ contains some $\mathbb{B}_{i}\left(m_{i}\right)$, and $X_{\Phi_{k+1}}$ is obtained from $X_{\Phi_{k}}$ by removing some $\mathbb{B}_{i}\left(m_{i}\right)$, and inserting some $\mathbb{B}_{1}(d)$, $d<m_{i}$, together with some other building blocks so that the union of the newly inserted building blocks is a subset $\approx a$ closed disk. We express this by saying that ϕ is obtained by unfolding a sequence of 1 -cycloidal subgroups Φ_{k}.
(2.11) We shall now describe a special "unfolding" of a single l-cycloidal subgroup. It will be important in the structure theory of Neumann subgroups in $\S 4$. Suppose we have two $m_{i}{ }^{\prime} s$ - say m_{a}, m_{b} - even integers. Let Φ_{o} be a l-cycloidal subgroup so that $X_{\Phi_{0}}$ contains either $B_{a}\left(m_{a}\right)$ or $B_{b}\left(m_{b}\right)$, say the first. Then we can obtain a Neumann subgroup Φ as follows, which is best described by its diagram X_{Φ}. Suppose

Let

Here all the unlabelled building blocks in the newly inserted portion are $B_{i}\left(m_{i}\right)$'s, $i \neq a, b$. We shall say that ϕ is a simple $\left(m_{a}, m_{b}\right)$-unfolding of a l-cycloidal subgroup ${ }^{\circ} O^{\circ}$
(2.12) Remark: Let Φ as in (2.7.1) be a Neumann subgroup with $r=\infty$. Then X_{Φ} contains no characteristic subsurface. But it is not difficult to see that still \mathbf{X}_{ϕ} admits an exhaustion $s_{k} k=1,2, \ldots$ by tight subsurfaces Which satisfy the property stated in (2.8.1) and such that ∂S_{k} is connected. Here ∂S_{k} may contain several pairs of
half-outlets. Filling these pairs by suitable $\mathbb{B}_{i}\left(m_{i}\right)$'s we obtain $\tilde{\mathbf{s}}_{\mathbf{k}} \approx \boldsymbol{X}_{\Phi_{\mathbf{k}}}$ where $\boldsymbol{\Phi}_{\mathbf{k}}$ is a l-cycloidal subgroup. In this sense Φ can still be considered as an "unfolding of a sequence of 1-cycloidal subgroups."

§3 Eulerian paths

(3.1) Let G be a graph. Each edge of G can be directed In two ways and so corresponds to two directed edges, each of which is the inverse of the other. A path in G is reduced if it contains no consecutive pair of inverse edges. An Eulerian path in G is a path which contains each directed edge once and only once and which is reduced except at the terminal vertices.
(3.2) Let G be a $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graph, of. (2.4). An admissible path in G is a path in which the vertices occur in the following consecutive order:

$$
\text { (3.2.1) } \quad \cdots v_{1} w_{1} v_{2} w_{2} \cdots \quad v^{\prime} s \in \alpha_{0}, \quad w_{i} \in \alpha_{k+1}
$$

where k is some fixed integer and $\alpha_{k+1}=\alpha_{j}$ where j is the unique positive integer, $1 \leq j \leq n, k+i \equiv j(n)$.
(2.11) We shall now describe a special "unfolding" of a single l-cycloidal subgroup. It will be important in the structure theory of Neumann subgroups in §4. Suppose we have two $m_{i}^{\prime} s$ - say $m_{a}, m_{b}-$ even integers. Let Φ_{O} be a l-cycloidal subgroup so that $X_{\Phi_{O}}$ contains either $B_{a}\left(m_{a}\right)$ or $\mathrm{B}_{\mathrm{b}}\left(\mathrm{m}_{\mathrm{b}}\right)$, say the first. Then we can obtain a Neumann subgroup Φ as follows, which is best described by its diagram X_{Φ}. Suppose

$$
\begin{equation*}
x_{\Phi_{0}}= \tag{2.11.1}
\end{equation*}
$$

Let
(2.11.2)

Here all the unlabelled building blocks in the newly inserted portion are $B_{i}\left(m_{i}\right)$'s, $i \neq a, b$. We shall say that Φ is a simple $\left(m_{a}, m_{b}\right)$-unfolding of a l-cycloidal subgroup Φ°
(2.12) Remark: Let Φ as in (2.7.1) be a Neumann subgroup with $r=\infty$. Then \mathbf{X}_{Φ} contains no characteristic subsurface. But it is not difficult to see that still X_{Φ} admits an exhaustion $S_{k} k=1,2, \ldots$ by tight subsurfaces which satisfy the property stated in (2.8.1) and such that ∂S_{k} is connected. Here ∂S_{k} may contain several pairs of
half-outlets. Filling these pairs by suitable $\mathbb{B}_{i}\left(m_{i}\right)$'s we obtain $\tilde{S}_{k} \approx X_{\Phi_{k}}$ where Φ_{k} is a l-cycloidal subgroup. In this sense Φ can still be considered as an "unfolding of a sequence of l-cycloidal subgroups."

§3 Eulerian paths

(3.1) Let G be a graph. Each edge of G can be directed in two ways and so corresponds tu two directed edges, each of which is the inverse of the other. A path in G is reduced if it contains no consecutive pair of inverse edges. An Eulerian path in G is a path which contains each directed edge once and only once and which is reduced except at the terminal vertices.
(3.2) Let G be a $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graph, cf. (2.4). An admissible path in G is a path in which the vertices occur in the following consecutive order:

$$
\text { (3.2.1) } \quad \cdots v_{1} w_{1} v_{2} w_{2} \cdots \quad v^{\prime} s \in a_{0} \quad w_{i} \in \alpha_{k+i}
$$

where k is some fixed integer and $\alpha_{k+i}=\alpha_{j}$ where j is the unique positive integer, $1 \leq j \leq n, k+i \equiv j(n)$.
(3.3) Theorem: Let Γ be as in (1.4.1). Then the conjugacy classes of Neumann (resp. l-cycloidal) subgroups of Γ are in $1-1$ correspondence with the admissible Eulerian paths in infinite (resp. finite) (m_{1}, \ldots, m_{n})-semiregular graphs.

Proof: Let Φ be a Neumann (resp. l-cycloidal) subgroup of Γ. Then Y_{Φ} is an $\left(m_{1}, \ldots, m_{n}\right)$-semiregular graph. Since Φ is Neumann (resp, l-cycloidal) Y_{Φ} is infinite (resp. finite). Now orient X_{Φ} which also orients $\partial \mathbf{X}_{\Phi}$. If A is an arm of a building block of \mathbf{X}_{Φ} then $A \cap \partial X_{\Phi}$ consists of two edges, which, under the canonical projection $X_{\Phi} \rightarrow X_{\Phi} \rightarrow Y_{\Phi}$, project onto a pair of mutually inverse directed edges. It follows that the image of $\partial \mathbf{X}_{\Phi}$ in Y_{Φ} is an admissible Eulerian path.

Conversely let G be an infinite (resp. finite) (m_{1}, \ldots, m_{n}) -semiregular graph, and E an admissible Eulerian path in G. Let $v \in \alpha_{i}, i \geq 1$. Introduce a cyclic order among the (undirected) edges incident with v as follows: an edge f cyclically follows e iff in E the directed edge e ending in v follows the directed edge f beginning at v. By the remark in (2.5) we can construct an infinite (resp. finite) diagram X which corresponds to a conjugacy class of a subgroup Φ. But the existence of E also shows that ∂X is connected and is non-compact (resp. compact) so Φ is Neumann (resp. 1-cycloidal).

It is easy to see that this establishes the 1-1 correspondence asserted in the theorem.
q.e.d.

§4 A structure theorem

(4.0) Throughout this section r is an in (1.4.1) and Φ is as in (1.7.1) and we use the notations used there. If $r \approx \mathbb{Z}_{2} *_{2} \mathbb{Z}_{2}$ it is easy to see that the two conjugacy classes of subgroups $\approx \mathbb{Z}_{2}$ precisely consist of all the Neumann subgroups in Γ. Henceforth we shall assume that $\Gamma \neq \mathbb{Z}_{2} *_{\mathbb{Z}}^{2}$.
(4.1) Proposition: If $r=\infty$ then Φ is realizable as a Neumann subgroup.

Proof: The details of this proof are similar to (and simpler than) those of theorem (1.7) of [5], which deals with the case of l-cycloidal subgroups. So we shall be brief. First of all, the diophantine condition, cf. (3.2) of [5], needed there is no longer necessary since the "difficulties can be thrown off to infinity." Recali that for $d \mid m_{i}, d<m_{i}$

$$
r_{i}(d)=\#\left\{\Phi_{i j} \mid \Phi_{i j} \simeq \mathbb{Z}_{m_{i}} / d^{\}}\right.
$$

which may be infinite. We set $r_{i}\left(m_{i}\right)=\infty$. Choose $r_{i}(d)$ copies of $B_{i}(d)$'s, cf. (2.2.2). The objective is to construct a diagram X with these building blocks so that X has infinite genus and ∂X is connected and non-compact. Using all $\mathbb{B}_{1}(*)$'s and some of the $\mathbb{B}_{2}(*)^{\prime}$'s construct a complex $H_{H} \approx$ the closed upper half space so that ∂H contains infinitely
many pairs of half-outlets. ${ }^{\oplus}$ Now attach the remaining building blocks appropriately at these half-outlets so as to get \boldsymbol{X} with the required properties.
q.e.d.
(4.2) Proposition: If Φ with $r<\infty$ is realizable as a Neumann subgroup then r is an even integer.

Proof: Indeed $F_{r} \approx \pi_{1}\left(X_{\Phi}\right)$. If S is a characteristic subsurface we observed in (2.7), (2.9) that $\pi_{1}(S) \approx \pi_{1}\left(X_{\Phi}\right)$ and S is a compact orientable surface with one boundary component. So $r=2 g$ where g is the genus of $s . \quad$ q.e.d.
(4.3) Proposition: Let Φ with $r=2 g<\infty$ be realizable as a Neumann subgroup. Then either

$$
\begin{aligned}
& \text { 1) } r_{i}(1)=\infty \text { for } \geq n-1 \text { values of } i, \\
& \text { or 2) A) } r_{i}(1)=\infty, r_{i}(d)<\infty, d \neq 1 \text { for } n-2 \text { values } \\
& \text { of } i \neq a, b \text { say, } \\
& \text { B) } r_{i}(2)=\infty, r_{i}(d)<\infty, d \neq 2 \text { for } i=a, b, \\
& \text { C) } \Phi \text { is a simple }\left(m_{a}, m_{b}\right) \text {-unfolding of } a \\
& \text { 1-cycloidal subgroup, cf. (2.11). }
\end{aligned}
$$

Proof: Let $S_{1} S_{2} \ldots$ be an exhaustion of X_{Φ} by characteristic subsurfaces. Let $D_{k}=S_{k+1}$-int $S_{k}, k=1,2 \ldots$.
$\oplus_{\text {That }} \mathbb{H}$ contains infinitely many pairs of half-outlets is obvious for $n \geq 3$. For $n=2$ this would fail exactly when $m_{1}=2=m_{2}$. We have explicitly excluded this case in (4.0).

As observed in (2.10) D_{k} is a closed disk, and
(4.3.1) $\partial D_{k}=\left\{D_{k} \cap \partial X_{\Phi}\right\} \quad U$ the two pairs of half-outlets

$$
\text { in } \left.\partial S_{k} \cup \partial S_{k+1}\right\}
$$

The projection of D_{k} in Y_{ϕ} has the following two possible forms.
(4.3.2)

(4.3.3)

Here O_{1}, O_{2} are the projections of the pairs of half-outlets in ∂D_{k}, and C is the shortest path joining O_{1} to O_{2}. (Since $D_{k}=a \operatorname{closed}$ disk, C is unique.) The large dark vertices are in $U \alpha_{i}, i \geq 1$ and the small ones are in α_{0}. The two forms are distinguished by the following fact. In (4.3.3) all vertices in α_{0} lie on C - hence each is subterminal, cf. (2.3), and is incident with $n-2$ terminal. vertices. In (4.3.2) there are some vertices in α_{0} which do not lie on C, and so there are some subterminal among them which are incident with $n-1$ terminal vertices. Now each
terminal vertex is an image of $a B_{i}(1)$ hence contributes to $r_{i}(1)$. So it follows that $r_{i}(1)=\infty$ for at least $n-2$ values of i. Suppose if possible that there actually exist two distinct values a, b of i such that $r_{a}(1)<\infty$, $r_{b}(1)<\infty$. Then the finitely many building blocks $\mathbb{B}_{a}(1)$'s and $\mathbb{B}_{b}(1)$'s are contained in some characteristic subsurface $\mathrm{S}_{\mathrm{k}_{\mathrm{O}}}$

But then for $k \geq k_{0}, D_{k}$ is necessarily of the form (4.3.3) and the building blocks with two arms in D_{k} are necessarily $\mathbb{B}_{a}(2)^{\prime} \mathrm{s}$ and $\mathbb{B}_{b}\left(2\right.$)'s. Since $S_{k_{0}}$ is compact it follows that $x_{i}(d)<\infty$ for $a \neq 1, i \neq a, b$, and for $d \neq 2$, $i=a, b$, as well. Finally the discussion in (2.11) shows that in this case Φ must be an (m_{a}, m_{b})-unfolding of a suitable l-cycloidal subgroup. q.e.d.
(4.4) Proposition: Let $r=2 g<\infty$, and suppose $r_{i}(1)=\infty$ for $\geq n^{-1}$ values of i. Then Φ is realizable as Neumann subgroup.

Proof: Suppose $r_{i}(1)=\infty$ for $i \neq 1$. The objective is to construct a diagram x with $r_{i}(d)$ copies of $B_{i}(d)$'s, $\mathrm{d}<\mathrm{m}_{i}$, and any (possibly infinite) number of copies of $\mathrm{B}_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{i}}\right)^{\prime} \mathrm{s}$ so that the thickened diagram \mathbf{x} is an orientable surface of genus g with $\partial \mathbf{X}$ connected and noncompact. Now using finitely many $B_{i}(d)$'s we can clearly construct a complex S whose
thickening is a compact, orientable surface of genus g such that ∂S is connected. ${ }^{+}$Now using all the remaining $B_{1}(d) ' s, \quad$ and $B_{i}(f)^{\prime} s i \geq 2, \quad f \neq 1$ construct a connected complex V whose thickening V is an orientable surface of genus g such that ∂V is connected, and contains infinitely many pairs of half-outlets where the infinitely many $\mathbb{B}_{i}(1)$'s, $i \geq 2$ can be inserted to form X. Clearly ∂X is connected, and $\mathbf{x}=\mathbf{x}_{\psi}$ where ψ is a Neumann subgroup $\approx \Phi$. q.e.d.
(4.5) Combining (2.11), (4.1) - (4.4), we get the following Structure theorem. Let Γ be as in (1.4.1), $; \neq \mathbb{Z}_{2}{ }^{*} \mathbb{Z}_{2}$, and Φ be given as an abstract group as in (1.7.1). Then Φ is realizable as a Neumann subgroup of r iff one of the following conditions holds.

1) $r=\infty$,
or 2) A) $r=$ an even integer ≥ 0,
B) $r_{i}(1)=\infty \quad$ for $\geq n-1$ values of i.

[^4]or 3) A) $r=$ an even integer ≥ 0,
B) $\quad r_{i}(1)=\infty, r_{i}(d)<\infty, d \neq 1$, for $n-2$ values of $i \neq a, b$ say,
C) $r_{i}(2)=\infty, r_{i}(d)<\infty, d \neq 2$ for $i=a, b$,
D) there exists Φ_{0}, realizable as a l-cycloidal subgroup such that Φ is a simple $\left(m_{a}, m_{b}\right)$ unfolding of ${ }^{\circ}{ }_{0}$.
(4.6) Remark: Suppose Φ is as in (1.7.1) and 3)A) - C) are satisfied. Let $\psi_{O}=$ the finite free product of F_{r} and $\Phi_{i j} \approx \mathbb{Z}_{m_{i}} / d \quad i \neq a, b$ and $d \neq 1$, or $i=a, b, d \neq 2$. If Φ is realizable as a Neumann subgroup then Φ_{0} referred to in 3)D) is $\approx \psi_{O} * \theta_{O}$ where θ_{0} is a finite free product of groups conjugate to $r_{i} i \neq a, b$ or conjugate to the subgroups of Γ_{a} (resp. Γ_{b}) isomorphic to $\mathbb{Z}_{a / 2}$ (resp. $\mathbb{Z}_{b / 2}$). Moreover Φ_{O} must contain at least one factor $\sim r_{a}$ or r_{b}. From the way $X_{\Phi_{O}}$ would be constructed, cf. (2.11), it is clear that there are only finitely many possibilities for θ_{0} - hence, also only finitely many possibilities for Φ_{0}. Now theorem (1.7) of [5] gives an effective procedure for deciding whether any of these Φ_{0} can be realized as a l-cycloidal subgroup. Thus one has an effective procedure for deciding realizability of Φ as a Neumann subgroup.
(4.7) Remark: The condition 3)D) is not a consequence of
3)A) - C). For example, take $\quad \Gamma=\mathbb{Z}_{4}{ }^{*} \mathbb{Z}_{4} \quad$ and $\quad \Phi={ }_{\|}^{*} \mathbb{Z}_{2}$ (infinite product). Write Φ as $\underset{i=1}{\|_{i}^{2}}\left(\underset{j \in J_{i}}{*} \Phi_{i j}\right), \Phi_{i j} z_{\mathbb{Z}_{2}}$ so that $\left|J_{i}\right|=\infty$. It is easy to see that 3)A) - C) hold, but Φ is not realizable as a Neumann subgroup.
(4.8) Remark: We should point out two possible interpretations for the phrase " as in (1.7.1) is realizable as...". If m_{i} 's are pairwise coprime then there is anique value of i for a finite factor of Φ to be conjugate to a subgroup of Γ_{i}. If two or more m_{i} 's have common factors then there may be a choice for a finite factor of Φ to be interpreted as a particular $\Phi_{i j}$. In our statement of the structure theorem we have tacitly assumed that these choices have already been made. Thus if Φ is only given as an abstract group there may be a bit more freedom first to put it in the form (1.7.1) and then realize as a
(4.9) Remark: The condition 3) C) of course requires that m_{a} and m_{b} are even integers. So if there is at most one m_{i} which is an even integer then the condition 3) is nonapplicable.

Maximal Subgroups

(5.0) In [3], [13] there are constructions of subgroups of the classical modular group which are maximal among non-parabolic subgroups, and which are different from the ones discovered by Neumann [8], or which are not Neumann subgroups in the sense of (1.1). These constructions are rather elaborate and require a very careful analysis. In terms of the diagrams $X_{\phi}{ }^{\prime} s$ one can give such constructions more readily, and in fact one may construct maximal, or maximal and Neumann, or maximal and l-cycloidal, or maximal and non-parabolic but not Neumann.... subgroups.
(5.1) Let r be as in (1.4.1) and $\Phi \leq \Gamma$. A symmetry of \mathbf{X}_{Φ} is simply a branched-covering-transformation of $p: \mathbf{X}_{\Phi} \rightarrow \mathbf{X}_{\mathrm{P}}$ 1.e. a homeomorphism $\sigma: \mathbf{x}_{\Phi} \rightarrow \mathbf{X}_{\Phi}$ such that
(5.1.1)

commutes. Then σ preserves orientation and carries building blocks into building blocks.

Notice that in an unbranched covering space a non-identity covering transformation has no fixed points. But in a branched covering it is not necessarily so.

We say that X_{Φ} has no fixed-point-free symmetry if every non-identity symmetry of X_{Φ} has a fixed point.

Notice also that a symmetry $\sigma: X_{\Phi} \rightarrow X_{\Phi}$ induces maps (again denoted by) $\sigma: X_{\Phi}+X_{\Phi}$ and $\sigma: Y_{\Phi}+Y_{\Phi}$, and these maps commute with the thinning map and the canonical projection $X_{\Phi} \rightarrow Y_{\Phi}{ }^{\circ}$
(5.2) Orient \mathbf{X}_{Φ} which also orients ∂X_{Φ}. Let C be a component of ∂X_{Φ}. The pattern along C is simply the finite or doubly infinite sequence of $\mathbb{B}_{i}(d)$'s one meets along C while walking in the "positive" direction. ${ }^{\oplus}$ The pattern is finite iff C is compact and in that case the number of terms in the pattern is a multiple of n. We say that the pattern along C is not periodic if either i) C is noncompact and the pattern has no finite period or ii) C is compact, the pattern contains $\alpha \cdot n$ elements, $\alpha \in \mathbb{Z}>0$, and (in the cyclic order) the pattern has no period < an.
(5.3) Let $B=B_{i}(d)$ be a building block of X_{Φ}. The neighbors of B are the building blocks at the end of the paths containing two edges emanating from B. So, in all B has

[^5]$d(n-1)$ neighbors.
(5.4) Theorem: Let Γ be as in (1.4.1) where all m_{i} 's are primes. Let $\Phi \leq \Gamma$ be as in (1.7.1). Assume that 1) each $B \sim B_{i}(1)$ in X_{Φ} has a $B_{j}\left(m_{j}\right)$ for each $j \neq i$ as a neighbor, 2) either $A) \quad r=0$ and X_{Φ} has no fixed-pointfree symmetry or B) the patterns along different components of $\partial \mathbf{X}_{\Phi}$ are pairwise distinct and none is periodic. Then Φ is maximal.

Proof: Suppose $\Phi \leq \psi \leq \Gamma$, and consider the branched covering $q: \mathbf{x}_{\Phi} \rightarrow \mathbf{x}_{\psi}$. Suppose \mathbf{X}_{ψ} contains a branch point. Since m_{i} 's are assumed to be primes this means that there is a building block $B \leq X_{\Phi}$ such that $B \approx_{i}(1)$ and $G(B) \approx B_{i}\left(m_{i}\right)$. But then 1) implies that $q\left(X_{\Phi}\right)=X_{\Gamma}$ i.e. $\psi=\Gamma$.

Now suppose $\psi \neq \Gamma$. Hence q is unbranched. Under the condition 2A) \mathbf{X}_{Φ} is simply connected. But then q is the universal (in particular regular) covering of \mathbf{x}_{ψ}. Since we assumed that \mathbf{X}_{Φ} has no fixed-point-Eree symmetry it follows that degree $q=1$ i.e. $\Phi=\psi$. Under the condition $2 B$) we see that $\left.q\right|_{\partial \mathbf{X}_{\Phi}}$ is a homeomorphism. Also clearly $q^{-1}\left(\partial \mathbf{X}_{\psi}\right)=$ $\partial \mathbf{W}_{\Phi}$. So again

$$
\text { degree } q=\text { degree }\left.q\right|_{\partial X_{\Phi}}=1
$$

and $\Phi=\psi$. Hence Φ is maximal.
(5.5) Remarks: 1) Clearly there are many varleties of sufficient sets of conditions for maximality in terms of $X_{\Phi}{ }^{\prime} s$. For instance one may assume that all but finitely many building blocks of X_{Φ} have the property stated in 1) and then "mess up" the diagram near these finitely many blocks.
2) If $n \geq 3$ or two $m_{i}^{\prime} s \geq 3$ the conditions in (5.4) are easy to ensure. For example $r=0$ means int $X_{\Phi} \approx \mathbb{R}^{2}$ and Y_{Φ} is a tree. The condition that \mathbf{x}_{Φ} has no fixed-point-symmetry is ensured if we have a compact subsurface $S \leq X_{\Phi}$ satisfying the condition (2.8.1) such that $S ~=~ a ~ c l o s e d ~ d i s k ~ a n d ~ t h e ~$ pattern of the building blocks in S does not repeat in X_{Φ} or at least the "distances" among its repetitions do not repeat. Then any symmetry of X_{Φ} would leave S invariant and would have a fixed point by Brouwer's theorem.
3) If $n=2$ and some $m_{i}=2$ then the direct application of (5.4) produces only finitely many examples, all of finite index. But excluding the degenerate case $\Gamma \approx \mathbb{Z}_{2} * \mathbb{Z}_{2}$ one may first pass to an appropriate 1 -cycloidal subgroup in Γ and then apply the above considerations. For example let $r=\mathbb{Z}_{2} *_{\mathbb{Z}} \mathbb{Z}_{3}$, and let $\Phi_{O} \leq \Gamma, \Phi_{O}=\mathbb{Z}_{3} * \mathbb{Z}_{3}$ whose diagram is

Consider $\Phi \leq \Phi_{O}$ whose diagram is

Clearly Φ is a Neumann subgroup of Φ_{0}, and in fact maximal in Φ. Also clearly Φ is a Neumann subgroup of Γ. As a subgroup of Γ, the diagram of Φ is obtained from (5.5.2) by sticking in $2 / 2$ on each edge. If we do this sticking and then replace one (2/2) (3) by -(2) we obtain a new Neumann subgroup of Γ which is clearly not contained in Φ_{O}. It would be also maximal in Γ. Making the pattern in (5.5.2) doubly infinite in the obvious way one obtains a subgroup $\dot{\Phi}_{1} \leq \Phi_{0}$ for which $\partial \mathbf{X}_{\Phi_{1}}$ contains two components both noncompact. This Φ_{1} is not Neumann and it is maximal among non-parabolic subgroups in. Φ_{0} and also in Γ but it is not maximal. For clearly $\Phi_{1} \leq \psi_{1} \leq \Phi_{0}$ where

so Φ_{1} is not maximal. On the other hand if $\Phi_{1} \lesseqgtr \psi \nmid \Phi_{0}$ then $q: X_{\Phi_{1}}+\mathbf{x}_{\psi}$ must be unbranched, $\mathbf{c f}$. the argument in (5.4). Now $\quad X_{\Phi_{1}}$ is simply connected so q must be a regular covering. One sees that the only symmetries of $\mathbf{X}_{\Phi_{1}}$ are the obvious "horizontal" translations, and so \mathbf{X}_{ψ} is compact i.e. $\left(\Phi_{0}: \psi\right)<\infty$. So ψ contains parabolic elements. So Φ_{1} is
maximal among non-parabolic subgroups. On the other hand one may start with a doubly infinite version of (5.5.2) where the attachment of (3)-is non-periodic. Then one would obtain a maximal-and-non-parabolic subgroup of ${ }_{0}$ which is not Neumann. By sticking in a -(2) somewhere (as described above) one would obtain such subgroups also in r.

References

[1] J.L. Brenner and R.C. Lyndon, Nonparabolic subgroups of the Modular Group, Journal of Algebra 77 (1982), 311-322.
[2] - Permutations and cubic Graphs, Pacific J. of Math. 104 (1983), 285-315.
[3] , Maximal nonparabolic subgroups of the Modular Group, Math. Ann. 263 (1983), 1 - 11.
[4] R.S. Kulkarni, An extension of a theorem of Kurosh and applications to Fuchsian groups, Michigan Math. J. 30 (1983), 259-272.
[5] -Geometry of free products, cycloidal groups and polynomial maps, to appear in the Proc. of the conference on Combinatorial Group Theory and Lowdimensional Topology, Alta, Utah (1984).
[6] W. Magnus, Rational representations of Fuchsian groups and non-parabolic subgroups of the modular group, Nachr. Akad. Wiss. Góttingen Math.-Phys. Kl. II 9 (1973), 179-189.
[7] , Noneuclidean Tesselations and Their Groups, Academic Press, New York (1974).
[8] B.H. Neumann, tber ein gruppen-theoretisch-arithmetisches Problem, Sitzungsber. Preuss. Akad. Wiss. Math.-Phys. K1. 10 (1933).
[9] H. Petersson, Uber einen einfachen Typus von Untergruppen der Modulgruppe, Arch. Math. 4 (1953), 308-315.
[10-12] W.W. Stothers, Subgroups of infinite index in the modular group I - III, Glasgow Math. J. 20 (1979), 103-114, ibid 22 (1981), 101 - 118, ibid 22 (1981), 119 - 131.
[13] C. Tretkoff, Non-parabolic subgroups of the modular group, Glasgow Math. J. 16 (1975), 91 - 102 .

[^0]: Partially supported by the Max-Planck-Institut für Mathematik, Bonn, Germany and the NSF grant 83-O1614.

[^1]: In the correspondence between subgroups of the fuchsian groups and holomorphic maps among Riemann surfaces, the l-cycloidal subgroups precisely correspond to meromorphic functions on closed Riemann surfaces with a single pole. These functions may be considered as generalizations of polynomial maps, cf. [5].

[^2]: ${ }^{\oplus}$ The restriction $\left.p\right|_{\text {int }} \mathbf{X}_{\Phi}:$ int $X_{\Phi} \rightarrow$ int X_{Γ} is a branched covering of surfaces. If r is realized as an orientationpreserving, properly discontinuous group of homeomorphisms of \mathbb{R}^{2} then $\left.\mathrm{p}\right|_{\text {int }} \mathbf{X}_{\Phi}$ is equivalent to the canonical map $\phi \mid R^{2} \rightarrow \Gamma \backslash R^{2}$.

[^3]: \oplus
 i.e. vertices of valence 1 .

[^4]: ${ }^{+}$If $\left(m_{1}, m_{2}\right) \neq(2,2)$ or if $g=0$ we can do this using only $B_{i}(d) ' s i \leq 2$. Otherwise we shall need to use $B_{i}(d)$'s,
 $i \leq 3$. Here, again, we are using the assumption that $\Gamma \not \subset \mathbb{Z}_{2}{ }^{*} \mathbb{Z}_{2}$.

[^5]: Notice that a block $\mathbb{B}_{i}(d)$ with $d>1$, $C f$. the picture in (2.2.3), is counted k times in the pattern along C if C contains k "circular arcs" on $\mathbb{B}_{i}(d)$ i.e. the components of $\partial \mathbb{B}_{i}(d)-\partial\{U$ arms $\}$.

