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ABSTRACT 

A Neumann subgroup of the classical modular group 
is by definition a complement of a maximal parabolic sub­
group. Recently Neumann subgroups have been studied in a 
series of papers by Brenner and Lyndon,cf.(l] - (3]. There 
is a natural extension of the notion of a N~umann subgroup 

in the context of any finitely generated fuch~ian group r 
acting on the hyperbolic plane ~ such thatr\1t is homeo­
morphic to an open disk. Using a new geometric method we 
extend the work in [11 - [3] in this more general context. 



Geometry of Neumann Subgroups 

+ Ravi S. Kulkarni 

§1 Introduction (1.1) This note essentially consists of 

some remarks on a series of recent papers by Brenner and Lyndon 

concerned with the Neumann subgroups of the classical modular 

group, cf. [1] - [3]. We first recall their definition. Let 

r = <x,ylx2 = y3 = e> act as the modular group on the upper half 

~ def plane JL in the standard way. Then the subgroup P = <z === xy> 

is a maximal parabolic subgroup of r and all such subgroups 

are conjugate. A subgroup t of r is said to be non-parabolic 

if it contains no parabolic element. If ~ is a complement of 

P in r, i.e. i) P n t = {e}, and ii) p·t = r, then t 

is called a Neumann subgroup, cf. [1). A Neumann subgroup is 

maximal among non-parabolic subgroups, cf. [1], (2.8). 

(1.2) In connection with these subgroups, Brenner and Lyndon 

were led to study transitive triples (a,A,B), cf. [2], where n 

is a countable set, A and B are permutations of a of orders 

2 and 3 respectively such that the group <C def AS> is 

transitive on O. If (O,A,B) is a transitive triple then r, 

as in (1.1), acts on 0 in the obvious way so that the subgroup 

P 1a tranaitive on o. In particular n= r/~ for a suitable 

+ Partially supported by the Max-Planck-Institut fUr Mathematik, 
Bonn, Germany and the NSF grant 83-01614. 
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subgroup t whose conjugacy class is well-defined. Since P: ~ 

it is clear that either Pacts simely transitively on 0 

in which case 0 is an infinite set, or else P acts ineffectively 

on 0 in which case 0 is a finite set. In the first case t 

is a Neumann subgroup. In the second case (r:t) < m and t\dl 

has only one cusp. Such a subgroup was called gycloidal by 

Petersson, cf. [9]. Thus the study of transitive triples amounts 

to a simultaneous study of Neumann and cycloidal subgroups of r. 

For the earlier work on Neumann subgroups, cf. [8], [6], [13], 

and also (7] pp. 119 - 122. 

(I.3) A principal result in [1), which extends theorem 2 of 

[13] is a structure-and-realization theorem for Neumann subgroups. 

Similar and more general results were proved by Stothers [10] -

[12]. The proof in [1) is based on a correspondence between 

transitive triples and Eulerian paths in cuboid graphs i.e. 

the graphs with vertex-valences < 3. For the triples associated 

with torsion-free Neumann-or-cycloidal subgroups the correspondence 

is 1-1, but in general to make the correspondence 1-1 one would 

need to put an extra structure on the cuboid graphs. The same 

method is used in [3] to produce maximal-among-non-parabolic 

subgroups which are not Neumann. 

(1.4) In this note we extend this work to 

(1.4.1) 
*n 

r = n r i , r i = <Xi> 
i=1 

::: ZZm ' 2 ~ mi , n < GO. 

i 
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Except for r:::?Z2 *?Z2' these groups can be realized as 

discrete subgroups of the orientation-preserving isometries of the 

hyperbolic plane Ii such that r\~ has finite area, and xi 

acts as a rotation through angle 21T 
m. 
~ 

around its fixed point. 

Then the element is parabolic. 

(1.5) The above remarks are meant only for motivation. In 

the following, hyperbolic geometry will not be used explicitly. 

We start with r as in (1. 4.1 ) • Let The 

conjugates of uk, k F 0 are called parabolic elements of r. 

Let P = <u>. A subgroup of r is called earabolic if all of 

its non-identity elements are parabolic. Clearly ... the maximal 

parabolic subgroups are precisely the conjugates of P. A sub­

group of r is called non-earabo1!£ if it contains no parabolic 

element. A complement ~ of P in r is called a Neumann sub­

groue. Thus, for a Neumann subgroup ~ one has i) P n ~ = {el, 

and ii) p.~ = r. The latter implies ii)1 Ip\r/~1 = 1. Conversely 

if ii) 1 holds and (r:~) =.~ then ~ is a Neumann subgroup. If 

ii)' holds and (r:~) < ~ then as in [5], ~ is called a 

l-cycloidal subgroue. ffi One sees, cf. (2.1), that a Neumann 

subgroup is maximal among non-parabolic subgroups. 

(D 
In the correspondence between subgroups of the fuchsian groups 
and holomorphic maps among Riemann surfaces, the 1-cycloidal 
subgroups precisely correspond to meromorphic functions on 
closed Riemann surfaces with a single pole. These functions may 
be considered as generalizations of polynomial maps, cf. {5]. 
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(1.6) Let r be as in (1.4.1). For • ~ r, in [4], 

we attached a diagram X. and its thickening ll. with canonical 

projections x ...... Xr , S • .... Sr. Here X. is an orientable surface 

wi th non-empty boundary ax. . One may think of ::Xr as "r';H.. 
with the cusp cut off". This makes the "cuspidal infinity" more 

tangible - for example, one gets the fol1.0wing useful charac­

terizations: • < r is Neumann (resp. 1-cycloidal) iff ax. is 

connected and non-compact (resp. connected and compact). Pinching 

each circle in X. to a point one obtains a graph Y. whose 

structure suggests the notion of an (m1 , ••• ,mn )-semiregular 

graph, cf. (2.4). If • is a Neumann subgroup then the image 

of ax. in Y. is a special type of Eulerian pat~ which we simply 

call admissible. This provides a natural explanation of the 

initially intriguing Brenner-Lyndon correspondence between Neumann 

and l-cycloidal subgroups of the modular group and the Eulerian 

paths in"cuboid graphs. A natural extension of their result is: 

the conjugacy classes of Neumann (resp. l-gycloidal) subsroups 

of r are in 1-1 correspondence with the admissible Eulerian 

paths in (m1, ••• ,mn)-semiregular graphs. 

(1.7) For r as in (1.4.1) and • ~ r we have by Kurosh's 

theorem, 

(1.7.1) 

where F r denotes the free group of rank rand • ij .:;. 2Zd ' 

dlmi are conjugates to subgroups of fi" In (1.7.1) we assume 
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that ~ij 1{e} with the understanding that if J i is empty then 

* rrjEJi~ij = {e}. Let 

(1.7.2) r.;(d) = =ft{4J.].!4J.). :::: 2l }, dim., d < m .• 
.... ~ ~ mild ~ ~ 

The numbers r. (d) may be possibly infinite. In §4 we prove a 
~ 

structure-and-realization theorem for Neumann subgroups. For 

example, if at most one mi is even, then ~ as in (1.7.11 

is realizable as a Neumann subgroup iff either 1) r = ~ or 

2) r = an even inteser and ri(l) = ~ for ~ n-lvalues of i. 

If there are two even m. 's 
~ 

there is "a curious new family of 

Neumann subgroups, cf. (2.11), of which there is no analogue 

in the case of the modular grol,;r;:.-,. This family makes the full 

structure theorem a bit complicated, but the underlying geometric 

idea is simple. For details cf. §4. 

(1.8) Finally in §5 we give some geometric constructions 

of subgroups which are maximal, or maximal with respect to some 

additional properties such as Neumann, l-cycloidal, non-parabolic 

but non-Neumann •••• 

I wish to thank W.W. Stothers for drawing my attention to 

[2 ). 
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§2 Preliminaries 

(2.0) Throughout this section let r, ri , xi' u be as in 

(1.4) and (1.5), and we use the terminology introduced there. 

(2.1) Proposition: A Neumann subgroup is maximal among. 

non-parabolic subgroups. 

Proof: Let • be a Neumann subgroup of r, and P == <u>. 

So P acts simply transitively on r/.· The isotropy subgroup 

of P at a. is -1 
P nata == {e}. So a-lpa n • = {e} i.e. 

• is a non-parabolic subgroup. If ·at'~ r then P acts 

transitively but not simply transitively on r/,- But since 

p z ~ this means that the P-action onrl, is ineffective and 

Ir/,1 <~. Hence P n ~ ~ {el, i.e. , contains parabolic 

elements. So • is maximal among non-parabolic subgroups. q.e.d. 

(2.2) As in [4] let Xr be a diagram for r and ~ 

its thickening: 

(2.2.l) 

A building block of type i has the form 

(2.2.2) JI---l d edqea 

and is denoted by Bi(d). A diagr~ Xt is built out of such 
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Bi(d)'s and there is a canonical projection X~ + Xr . The 

thickening of B. Cd) 1. 

(2.2.3) ~i (d) = 

is 

d arms. 

The thickening :x~ of X~ is built out of lBi (d) 's. Notice 

that X~ is an orientable surface with boundary ax~. There 

i . 1 . t' (9 II S a canon1.ca proJec 1.on P::¥!J:> + lCr and also a "thinning 

map X~ + X 4l • The shape . of JB i (d) may be descr ibed as II a 

closed disk with d arms". Each of the dotted edges at the 

end of an arm is its half-outlet; together they form an outlet. 

In X~ the outlets come in grt)ups of n. So we may use the 

obvious and suggestive terminology of an angle formed ~~ half­

outlets. For example the interior angle formed by the half-

outlets of an arm is 211" 
u" In one half-outlet of an arm 

of a lBi (*) is joined to a half-outlet of an arm of a lBi +1 (*) 

and the other to a half-outlet of an arm of a where 

the subscript i is counted mod n. In the sequel, it will be 

important to keep in mind that 

----------------------------------------.----------------------------------
GJ The restriction pi int XI): int"~ + int lCr is a branched 

covering of surfaces. If r is realized as an orientation­

preserving, properly discontinuous group of homeomorphisms of 
2 

lR then P!int XI) is equivalent to the canonical map 

tVR2 
-+- r\m2

• 
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(2.2.4) 

(2.3) Pinching each circle in x. to a point one gets a 

graph Y.. Again one has a canonical projection denoted by 

p: Y. ~ Yr' Notice that the terminal vertices· of Y. are 

precisely the images of ~ in X.' The vertices'adjacent to 

terminal vertices will be called sub-terminal vertices. Now 

(2.3.1) y == r 

has n+l vertices - the image of ~ is numbered 

"base-vertex" is numbered O. So the vertices of 

divided, into n+l disjoint subsets: 

(2.3.2) a1 == {vlp(v) has number i}. 

The structure of Y. motivates the following 

i, and the 

Y. are 

(2.4) Definition: Let m
1

,m2 , ••• ,mn be positive integers 

> 2 and n ~ 2. An (ml, ••• ,mn)-semiregular graph is a 

connected graph G whose vertices are divided into n+l 

disjoint subsets ai' i = O,l"",n, such that 

$ 
i.e. vertices of valence 1. 
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a) v E a i --> valence v = n (resp. a divisor of ro
i

) 

if i = 0 (resp. ~ 1), 

p) each edge of G has one end in and the other 

in i > 1, 

c) given v E aO' and i ~ 1, there is a unique 

edge joining v to a vertex in a
i

. 

Clearly y~, as in (2.3), is an (m1, ..• ,mn)-semiregular 

graph. 

If n = 2 Crespo some mi is even} then the vertices in 

aO (resp. certain vertices in ail have valence 2, and if 

convenient may well be not counted as vertices. Thus for example, 

not counting the vertices in aO' an (m1 ,m2 )-semiregular 

graph is a bipartite graph. Again if G is a (2,k}-semiregular 

graph such that all vertices in a
i 

resp. a 2 have valence 2 

resp. k, then not counting the vertices in aO or a
i 

one 

has a k-regular graph in the usual sense. Thus if r = ?Z2*?Zk ' 

and t < r is torsionfree then Yt may be considered as a 

k-regular graph. In particular corresponding to torsion-free 

subgroups of the modular group one gets cubic graphs. 

(2.5) Remark: Let G be an (m1, •.• ,mn}-semiregular 

graph. Then the edges at a vertex E aO come equipped with a 
, 

natural cyclic order. Now suppose at each vertex v E ai' 

i > 1 we specify some cyclic order among the edges incident 

with v. Then we may replace each v E ai' i > 1 by a circle 
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and attach the v-ends of the edges incident at v to the 

circle consistent with the prescribed cyclic order, and obtain 

a diagram X. This diagram has a canonical projection p: X ~ Xr ' 

so, cf. the proof of theorem 1 in [4], X may be considered as 

X
t 

for a subgroup t whose conjugacy classes is well-defined. 

Thus G = Yt for some • < f. 

(2.6) Taking a base-paint in a~ we may represent 

by the oriented boundary N~ 

3'i' so the components ofaX~ are in 1-1 correspondence 

with the double cosets p\[/t. If C is a component of ~. 

and pic: c ~ aXr has degree d (possibly infinite), then 

d is the number of points in the corresponding P-orbit in r/t. 

In particular C is non-compact iff d =~, iff the P-action 

on the corresponding orbit is effective. Clearly one gets 

Proposition: 1) • is a non-parabolic subgroup iff ax. 
has no compact component. 

2) • is a Neumann (resp. l-cycloidal) 
• 

subgroup iff ~X. is connected and 

non-compact (resp. connected and compact). 

(2.7) We recall some elementary facts from the topology 

of surfaces. Let M be any connected surface possibly with 

non-empty boundary. A connected, compact subsurface S of M 

is said to be tight if M-int S has no compact component. 

Notice that if S is a compact subsurface then M-S has only 

finitely many components. So if S is compact and connected then 
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Sl = S U {compact componen.ts of M-int S} 

is a tight subsurface. It is now clear that M admits an 

exhaustion by tight subsurfaces, i.e. a sequence S1' 1 = 1,2 ••• 

of tight subsurfaces such that Si ~ int Si+l' and M = UiS i • 

Now suppose that the fundamental group of M based at * 
is finitely generated. So there exist finitely many based loops 

Ci such that 1fl (M,*) = <[Ci ]> where [Ci ] denotes the homotopy 

class of Ci • One says that an arc-connected subset A of M 

carries 'IT 1 if the canonical map 1T 1 (A) + 1T
1

(M) is surjective. 

Clearly any arc-connected subset A containing UC. carries 
1. 

1f 1 • Now let S be a tight subsurface which contains UCi • In 

this case in fact the canonical map 'lT 1 (S) + 'lT 1 (M} is an 

isomorphism and it is easy to see that each component of M-S 

is either a cylinder or a disk. If aM ~ ¢ these cylinders or 

disks may also have non-empty boundary. 

(2.8) We apply the considerations in (2.7) to ;X~. Let 

S be a tight subsurface of X~. Then for each building block 

::Bi (d) we see that a component of S n lB i (d) with a non-empty 

interior must be a closed disk, and S UlBi(d) is also tight. 

Let Sl be the union of S and all lB i (d) 's which intersect 

S in a subset with non-empty interior. Then 51 has the 

additional property: 



12 

(2.8.1) where A is the union of the half-outlets 

on some arms of the building blocks. 

Now suppose ~ is as in (1.7.1). Then its free part Fr 

may be identified with ~l(Y~) or ~IQ(~), cf. the discussion 

in §2 of [5]. Suppose that r < 00. So there exis~ tight 

subsurfaces of X~ which carry ~I' cf. (2.7). We call a tight 

subsurface characteristic if it carries wI and has the additional 

property stated in (2.8.I). 

From the above discussion it is clear that if 

admits an exhaustion by characteristic subsurfaces. 

r < 00, lit 
~ 

(2.9) Proposition: Let ~ as in (1.7.1) be a Neumann 

subgroup of r, and r <~. Let S be a characteristic sub-

surface of X~. Then as is connected and contains exactly 

211" one pair of half-outlets making an exterior angle Il' cf. (2.2). 

Moreover int(X~-S) is homeomorphic to an open disk and 

a(X~~S) has two components, each homeomorphic to an open interval. 

Proof: Since S is characteristic 

where A is a union of half-outlets. Since as is compact, 

ax~ is connected and noncompact, cf. (2.6), we see that each 



13 

component of as must intersect A as well as ax~. Notice 

that the half-outlets in A come in pairs-- each pair forms 

a connected arc, and different pairs form disjoint. arcs. 

First we claim that as is connected. Suppose CI, C2 

are two disjoint components of as. Since CI , C2 contain points 

of ax~, . and ax~ is connected, there is an arc a C aX'~ 

joining a point PI in C1 to a point P2 in C2 " But since 

S is connected there is an arc f3 £: S joining Pl to P2 and 

passing through a base-point *. But then a U f3 forms a based 

loop whose homotopy class is clearly not contained in ~1(S,*). 

This would contradict that S carries So as is connected. 

Next suppose if possible that there are two pairs of half-

outlets, each pair forming an arc. Then as-A has two components 

which must be connected by an arc = ax~, and we get a contra­

diction exactly as above. 

Next suppose that the pair wI' w2 of half-outlets makes 

an exterior angle 

(2.9.1) 

2~ 
> n ' cf. the figure in (2.9.1). 

.. - -_ .. - .... 

Then the arms AI' A2 in X~-int S incident with wI and w2 

are distinct. Again since ax~ is connected the components 

aI' a 2 of Al () ax~ are joined by an arc a.E aXif>' Clearly 
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a n S = ¢. Now aA1 U a forms a Jordan curve outside S. 

Since S carries this Jordan curve must bound a disk. But 

then Xt-int S would have a compact component and S would not 

be tight. This contradiction shows that the exterior angle 

must be is an outlet 

of an arm lying outside int S. This arm connects Xt-int S 

to S. In particular Xt-int S has only one component. From 

the remarks in (2.7) it is now clear that int(~.-S) is homeomor­

phic to a disk and 3 (Xt-S) has two components each sharing one 

endpoint of as-A. q.e.d. 

(2.10) The above proposition may be used to get an intuitive 

understanding of a Neumann subg=oup • with r < m. Let 

be an exhaustion of let by characteristic sub-

surfaces. Each Sk+1-int Sk is a closed disk. Also each 

Sk has exactly one pair of half-outlets with exterior angle 

21T Inserting an appropriate mi(mi ) in this outlet we obtain -n 

a new diagram Sk ::: X. where tk is a l-cycloidal subgroup. 
k 

Thus we get a sequence t k , k = 1,2 ••• of l-cycloidal groups 

so that X. contains some lBi (mi ), and :x is obtained 
k t k+1 

from X. by removing some lBi (mi ) I and inserting some lBi (d) I 

k 

d < mi , together with some other building blocks so that the 

union of the newly inserted building blocks is a subset ::: a 

closed disk. We express this by saying that • is obtained by 

unfolding a sequence of 1-cycloidal subgroups t k • 
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(2.11) We shall now describe a special lIunfolding" of 

a single 1-cycloidal subgroup_ It will be important in the 

structure theory of Neumann subgroups in §4. Suppose we have 

two m 's -i say even integers. Let be a 

1-cycloidal subgroup so that X~ contains either Ba(ma ) or 
o 

Bb(~)' say the first. Then we can obtain a Neumann subgroup 

~ as follows, which is best described by its diagram Xt " 

Suppose 

(2.11.1) 

Let 

(2.11.2) 

= 

..... "". ,. 
0' 

X~ = !' .. .' ........ 
. :---... 
• 

Here all the unlabelled building blocks in the newly inserted 

portion are Bi(mi)'s, i F a,b. We shall say that ~ ~ 

simple (ma,~)-unfoldin2 of a 1-cycloidal subgroup $0' 

(2.12) Remark: Let ~ as in (2.7.1) be a Neumann 

SUbgroup with r = w. Then ~t contains no characteristic 

SUbsurface. But it is not difficult to see that still "t 
admits an exhaustion Sk k = 1,2, ••• by tight subsurfaces 

which satisfy the property stated in (2.8.1) and such that 

aSk is connected. Here aSk may contain several pairs of 
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half-outlets. Filling these pairs by suitable Ei(mi)'s we 

obtain S : X where t is a 1-cycloidal subgroup. In 
k tk k 

this sense • can still be considered as an "unfolding of a 

sequence of l-cycloidal subgroups." 

§3 Eulerian paths 

(3.1) Let G be a graph. Each edge of G can be directed 

in two ways and so corresponds to two directed edges, each of 

which is the inverse of the other. A path in G is reduced 

if it contains no consecutive pair of inverse edges. An ....... 
Eulerian Eath in G is a path which contains each directed edge 

once and only once and which is reduced except at the terminal 

vertices. 

(3.2) Let G be a (m1 , ••• ,mn )-semiregular graph, cf. 

(2.4). An admissible path in G is a path in which the vertices 

occur in the following consecutive order: 

(3.2.1) 

where k is some fixed integer and ak +i = a j where j is 

the unique positive integer, 1 ~ j ~ n, k+i = j(n). 
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(2.11) We shall now describe a special "unfolding" of 

a single 1-cyc1oida1 subgroup. It will be important in the 

structure theory of Neumann subgroups in §4. Suppose we have 

two m 's -i even integers. Let 4>0 be a 

l-cyc1oida1 subgroup so that X~ contains either Ba{ma ) or 
o 

Bb(~)' say the first. Then we can obtain a Neumann subgroup 

~ as follows, which is best described by its diagram X~. 

Suppose 

(2.11.1) 

Let 

(2.11.2) 

X~ 
o 

= 

.......... ,. . 
X... =,/ ~:.-. ---t 
'If' • .. ' .. " ... ., .. 

Here all the unlabelled building blocks in the newly inserted 

portion are Bi(mi)'s, i F a,b. We shall say that ~ ~ 

!,imple (ma,~)-unfolding of a 1,·clcloida1 subgroup q,o' 

(2.12) Remark: Let ~ as in (2.7.1) be a Neumann 

Subgroup with r =~. Then ~~ contains no characteristic 

Subsurface. But it is not difficult to see that still X~ 

admits an exhaustion Sk k = 1,2, ••• by tight subsurfaces 

~hich satisfy the property stated in (2.8.1) and such that 

aSk is connected. Here aSk may contain several pairs of 
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half-outlets. Filling these pairs by suitable lBi (mi ) t s we 

obtain Sk ::: lC 
tk 

where tk is a l-cycloidal subgroup. In 

this sense t can still be considered as an "unfolding of a 

sequence of 1-cycloidal subgroups." 

§3 Eulerian paths 

(3.1) Let G be a graph. Each edge of G can be directed 

in two ways and so corresponds to two directed edges, each of 

which is the inverse of the other'. A path in G is reduced 

if it contains no consecutive pair of inverse edges. An 

Eulerian path in G is a path which contains each directed edge 

once and only once and which is reduced except at the terminal 

vertices. 

(3.2) Let G be a (m1, ••• ,mn)-semiregular graph, cf. 

(2.4). An admissible path in G is a path in which the vertices 

occur in the following consecutive order: 

(3.2.1) 

where k is some fixed integer and == a j where j is 

the unique positive integer, 1 ~ j ~ n, k+i = j(n). 
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(3.3) Theorem: Let r be as in (1.4.1). Then the 

conjugacy classes of Neumann (resp. l-cycloidal) subgroups of 

r are in 1-1 correspondence with the admissible Eulerian 

paths in infinite (resp. finite) (ml, ••• ,mn)-semiregular graphs. 

Proof: Let ~ be a Neumann (resp. 1-cycloidal) subgroup 

of r. Then y~ is an (m1 , .•• ,mn )-semiregular graph. Since 

~ is Neumann (resp. l-cycloidal) y~ is infinite (resp. finite). 

Now orient ~~ which also orients ax~. If A is an arm of a 

building block of X~ then A n ax~ consists of two edges, 

which, under the canonical projection X~ ~ X~ ~ y~, project 

onto a pair of mutually inverse directed edges. It follows 

that the' image ofaX~ in y~ is an admissible Eulerian path. 

Conversely let G be an infinite (resp. finite) (ml, ••• ,mn ) 

-semiregular graph, and E an ~dmissible Eulerian path in G. 

Let v E ~i' i > 1. Introduce a cyclic order among the 

(undirected) edges incident with v as follows: an edge f 

cyclically follows e iff in E the directed edge e ending 

in v follows the directed edge f beginning at v. By the remark 

in (2.5) we can construct an infinite (resp. finite) diagram X 

which corresponds to a conjugacy class of a subgroup ~. But 

the existence of E also shows that aX is connected and is 

non-compact (resp. compact) so w is Neumann Crespo l-cycloidal). 

It is easy to see that this establishes the ... 1-1 correspondence 

asserted in the theorem. q.e.d. 
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§4 A structure theorem 

(4.0) Throughout this section r is an in (1.4.1) and 

t is as in (1.7.1) and we use the notations used there. If 

r ::: 2Z2 *2Z2 it is easy to see that the two conjugacy classes 

of subgroups ::: 2Z2 precisely consist of all the Neumann sub-
. 

groups in r . Henceforth we shall assume that r J 2Z2 *2Z2 • 

{4.1} Proposition: If r = ~ then t is realizable 

as a Neumann subgroup. 

Proof: The details of this proof are similar to (and 

simpler than) those of theorem (1.7) of [5], which deals with 

the case of l-cycloidal subgroups. So we shall be brief. First 

of all, the diophantine condition, cf. (3.2) of [5], needed 

there is no longer necessary since the "difficulties can be 

thrown off to infinity." Recall that for dlmi , d < mi 

which may be infinite. We set ri(mi ) = co. Choose ri(d) 

copies of Bi(d)'s, cf. (2.2.2). The objective is to construct 

a diagram X with these building blocks so that lC has 

infinite genus and ax is connected and non-compact. Using all 

construct a complex :H ::: 

the closed upper half space so that alii contains infinitely 



19 _ 

many pairs of half-outlets.$ Now attach the remaining building 

blocks appropriately at these half-outlets so as to get X 

with the required properties. q.e.d. 

(4.2) Proposition: If ~ with r < 00 is realizable as 

a Neumann subgroup then r is an even integer. 

Proof: Indeed Fr : n1(X~). If S is a characteristic 

subsurface we observed in (2.7), (2.9) that n1 {S) ~ nl(X~) 

and S is a compact orientable surface with one boundary compo-

nent. So r = 2g where g is the genus of S. q.e.d. 

(4.3) Proposition: Let ~ with r = 2g < ~ be realizable 

as a Neumann subgroup. Then either 

or 

1) for > n-l values of i, 

2) A) r. (d) < ~, d ~ 1 
, 1 

for n-2 values 

B) 

of i ~ a,b say, 

r. (d) < ~, d ~ 2 for i = a,b, 
1 

C) ~ is a simple (ma,mb)-unfolding of a 

1-cycloidal subgroup, cf. (2.11). 

Proof: Let S1 be an exhaustion of X~ by 

characteristic subsurfaces. Let Dk = Sk+l-int Sk' k = 1,2 •••• 

aThat E contains infinitely many pairs of half-outlets is 

obvious for n~ 3. For n = 2 this would fail exactly when 

m1 = 2 ~ m2 • We have explicitly excluded this case in (4.0). 
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As observed in (2.10) Ok is a closed disk, and 

(4.3.1) aOk = {Ok n ax~} u {the two pairs of half-outlets 

The projection of Ok in Y
t 

has the following two possible 

forms. 

, ...... . 01. C 0 
(4.3.2) I ~1~------~r-~-.~--~----~--...~2 . , 

(4.3.3) 

, .. 
... ---

.,····.D1 ¥c ¥ O2 I :!j----~.~--------~~:-~.~-------~----~.~----. . , . , ........ 

Here 01' 02 are the projections of the pairs of half-outlets 

in aok , and C is the shortest path joining 01 to 02' 

(Since ° = a closed disk, k 

vertices are in Uai , i > 1 

C is unique.) The large dark 

and the small ones are in 

The two forms are distinguished by the following fact. In 

(4.3.3) all vertices in lie on C - hence each is sub-

terminal, cf. (2.3), and is incident with n-2 terminal. 

vertices. In (4.3.2) there are some vertices in which do 

not lie on C, and so there are some subterminal among them 

which are incident with n-l terminal vertices. Now each 
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terminal vertex is an image of a 

to riel). So it follows that 

Bi (I) 

r. (I) = "" 
1. 

hence contributes 

for at least n-2 

values of i. Suppose if possible that there actually exist 

two distinct values a,b of i such that r (1) < 0>, 
a 

rb(l) < "". Then the finitely many building blocks lBa (l) 's 

and lBb (l)'S are contained in some characteristic subsurface 

Sk2 
o But then for is necessarily of the form 

(4.3.3) and the building blocks with two arms in Dk are 

necessarily lBa (2) 's and lBb (2) 'so 

follows that ri(d) < "" for d ~ 1, 

Since Sk is compact it 
o 

i F arb, and for 

d F 2, i = a,b, as well. Finally the discussion in (2.11) 

shows that in this case ~ must be an (ma,~)-unfolding of a 

suitable l-cycloidal subgroup. g.e.d. 

(4.4) Proposition: Let r = 2g < <Xl, and suppose r. (1) = "" 
1. 

for > n-l values of i. Then ~ is realizable as Neumann 

subgroup. 

Proof: Suppose 

to construct a diagram 

r. (1) = co 
1. 

X with 

for i ~ 1. The objective is 

copies of B. (d) • S, 
.1. 

d < mi , and any (possibly infinite) number of copies of Bi(mi)'s 

so that the thickened diaqr~ X is an orientable surface of 

genus g with aX connected and noncompact. Now using finitely 

many B1 (d)'s we can clearly construct a complex S whose 
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thickening S is a compact, orientable surface of genus g such 

that as is connected.+ Now using all the remaining 

B 1 (d) • s, and B i (f) lsi .=:.. 2, f 'I 1 cons truct a· ·connected 

complex V whose thickening '\7 is an orientable surface of 

genus g such that av is connected, and contains infinitely 

many pairs of half-outlets where the infinitely many E i (l)'S, 

i > 2 can be inserted to form ~. Clearly ax is connected, 

and where is a Neumann subgroup ~ i q.e.d. 

(4.5) Combining (2.11), (4.1) - (4.4), we get the following 

Structure theorem. Let r be as in (1.4.1) , r J 'l.l.2*'l.l.2 ' 

and t be given as an abstract group as in (1.7.1). Then 

t is realizable as a Neumann subgroup of r iff one of the 

following conditions holds. 

1) r = 00, 

or 2) A) r = an even integer ~ 0, 

B) r i (l) = flO for> n-l values of i. 

+ If (m1 ,rn2 ) ~ (2,2) or if g = 0 we can do this using only 

Bi(d)'s i < 2. Otherwise we shall need to use Bi(d)'s, 

i < 3. Here, again, we are using the assumption that 

r t 'l.l.2*'l.l.2 • 
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or 3) A) r = an even integer ~ 0, 

B) r i (1) = "9, ri(d) < 00, d~ I, for n-2 values of 

i F a,b say, 

C} r i (2) = "", ri{d) < <0, d F 2 for i = a,b, 

D) there exists <PO' realizable as a l-cycloidal 

subgroup such that ~ is a simple (ma,mb )­

unfolding of ~O' 

(4.6) Remark: Suppose ~ is as in (1.7.1) and 3)A} - C) 

are satisfied. Let $0 = the finite free product of F r and 

~ .. ::; 
~J 

2Z 
mild 

i ~ a,b and d F 1, or i = a,b, d 'f; 2. If \P 

is realizable as a Neumann subgroup then 41
0 

referred to in 

3)D) is z ~0*00 where 00 is a finite free product of groups 

conjugate to r i 

r a (resp. r b ) 

i F a,b or conjugate to the subgroups of 

isomorphic to 'll.a/2 (resp. 'll.b/2)' Moreover 

<PO must contain at least one factor: fa or r b • From the 

way X<p would be constructed, cf. (2.11), it is clear that 
o 

there are only finitely many possibilities for 00 - hence, 

also only finitely many possibilities for \PO' Now theorem 

(1.7) of (5) gives an effective procedure for deciding whether 

any of these ~O can be realized as a l-cycloidal subgroup. 

Thus one has an effective procedure for deciding realizability 

of <p as a Neumann subgroup. 

(4.7) Remark: The condition 3)D) is ~ a consequence of 



3)A) - C). For example, take 

(infinite product). Write • 

24 

r = 
as 

.. 
so that IJ· I = .... ]. 

It is easy to see that 3)A) - C) hold, but 

~ is not realizable as a Neumann subgroup. 

(4.8) Remark: We should point out two possible inter-

pretations for the phrase ". as in (1.7.1) is realizable as ••• ". 

If m. 's 
l. 

are pairwise coprime then there is a unique value of 

for a finite factor of • to be conjugate to a subgroup of riO 

If two or more m 's i have common factors then there may be a 

choice for a finite factor of • to be interpreted as a 

particular t ij • In our statement of the structure theorem we 

have tacitly assumed that these choices have already been made. 

Thus if ~ is only given as an abstract group there may be a 

bit more freedom first to put it in the form (1.7.1) and then 

realize as a .••• 

(4.9) Remark: The condition 3) C) of course requires 

that and are ~ integers. So if there is at most 

one which is an even integer then the condition 3) is non-

applicable. 

i 
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§5 Maximal Subgroups 

(5.0) In (3J, [I3J there are constructions of subgroups 

of the classical modular group which are maximal among non-parabolic 

subgroups, and which are different from the ones discovered by 

Neumann [8], or which are not Neumann subgroups in the sense of 

(I.I). These constructions are rather elaborate and require a 

very careful analysis. In terms of the diagrams x 's 
$ 

one can 

give such constructions more readily, and in fact one may 

construct maximal, or maximal and Neumann, or maximal and 

I-cycloidal, or maximal and non-parabolic but not Neumann •••• 

subgroups. 

(5.1) Let r be as in (1.4.1) and $ ~ r. A srmmetr~ 

of X$ is simply a branched-covering-transformation of 

p: .x $ -to X r i • e. a homeomorphism a: 1C $ -to X til such that 

(5.1.1) 

commutes. Then a preserves orientation and carries building 

blocks into building blocks. 

Notice that in an unbranched covering space a non-identity 

covering transformation has no fixed points. But in a branched 

covering it is not necessarily so. 
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We say that X
t 

has no fixed-point-free s~try if every 

non-identity symmetry of X
t 

has a fixed pOint. 

Notice also that a symmetry a: X
t 

+ X
t 

induces maps 

(again denoted by) a: X
t 

+ X
t 

and a: Y
t 

+ Y
t

, and these maps 

commute with the thinning map and the canonical projection 

(5.2) Orient X
t 

which also orients ax
t

• Let C be a 

component ofax
t

. The pattern along C is simply the finite 

or doubly infinite sequence o~ Ei(d)'s one meets along C 

while walking in t'he Jlpositive" direction. ED The pattern is 

finite iff C is compact and in that case the number of terms 

in the pattern is a multiple of n. We say that the pattern 

along C is not periodic if either i) C is noncompact and 

the pattern has no finite period or ii) C is compact, the 

pattern contains a-n elements, a E ~)O' and (in the cyclic 

order) the pattern has no period < an. 

(5.3) Let B = Bi(d) be a building block of X
t

• The 

neighbors of B are the building blocks at the end of the paths 

containing two edges emanating from B. So, in all B has 

$Notice that a block mi(d) with d > 1, cf. the picture in 

(2.2.3), is counted k times in the pattern along C if C 

contains k "circular arcsJl on m i (d) i.e. the components 

of alBi (d) - a {U arms}. 
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d(n-I) neighbors. 

(5.4) Theorem: Let r be as in (1.4.1) where all m. 's 
~ 

are primes. Let 41 < r be as in (1.7.1). Assume that -
1) each B ::: Bi (l) in X

41 
has a Bj(m j ) for each j l- i 

as a neighbor, 2) either A) r = 0 and )[4> has no fixed-point-

free symmetry or B) the patterns along different components of 

ax~ are pairwise distinct and none is periodic. Then ~ is 

maximal. 

Proof: Suppose ~ ~ ~ ~ r, and consider the branched 

Suppose X~ contains a ~ranch point. 

Since m 's i are assumed to be primes this means that there is a 

building block B C X~ such that B ~ Bi (l) and g{B) = Bi(mi ). 

But then 1) implies that q(X~) = Xr i.e. ~ = r. 

Now suppose ~ I- r. Hence q is unbranched. Under the 

condition 2A) X41 is simply connected. But then q is the 

universal (in particular regular) covering of X~. Since we 

assumed that X~ has no fixed-paint-free symmetry it follOWS 

that degree q = 1 i.e. ~ =~. Under the condition 2B) we 

I -1 see that q o~ is a homeomorphism. Also clearly g (ax~) = 
t 

aXt' So again 

degree q = degree q1ax = 1, 
t 

and t =~. Hence t is maximal. q.e.d. 
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(5.5) Remarks: 1) Clearly there are many varieties of 

sufficient sets of conditions for maximality in terms of Xt's. 

For instance one may assume that all but finitely many building 

blocks of X~ have the property stated in 1) and then "mess up" 

the diagram near these finitely many blocks. 

2) If n > 3 or two mils > 3 the conditions in (5.4) are 

easy to ensure. For example r = 0 means int X~ :.lR2 and Yt 

is a tree. The condition that Xt has no fixed-point-symmetry 

is ensured if we have a compact subsurface S ~ x~ satisfying 

the condition (2.8.1) such that S ~ a closed disk and the 

pattern of the building block.s in S does not repeat in Xc) 

or at least the "distances" among its repetitions do not repeat. 

Then any symmetry of X
t 

would leave S invariant and would 

have a fixed point by Brouwer's theorem. 

3) If n = 2 and some m. = 2 then the direct application 
~ 

of (5.4) produces only finitely many examples, all of finite 

index. But excluding the degenerate case r::: Zl2 * Zl2 one may 

first pass to an appropriate l-cycloidal subgroup in rand 

then apply the above considerations. For example let r = ?l2 *?l3 I 

and let to'::' r, to ::: 113 *Zl3 whose diagram is 

(5.5.1) 

Consider ~ < to whose diagram is 
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(5.5.2) 

Clearly ~ is a Neumann subgroup of ~O' and in fact maximal 

in ~. Also clearly ~ is a Neumann subgroup of r. As a 

subgroup of r, the diagram of ~ is obtained from {5.S.2} by 

sticking in ~ on each edge. If we do this sticking and then 

replace one ~ by --0 we obtain a new Neumann 

subgroup of r which is clearly not contained in ~O. It 

would be also maximal in r. Making the pattern in (S.S.2) 
." 

doubly infinite in the obvious way one obtains a subgroup 

iP < t for which 
1 - 0 aXtJ 

1 
contains two components both non-

compact. This .1 is not Neumann and it is maximal among 

non-parabolic subgroups in ~o and also in r but it is not 

maximal. For clearly tl ~ ljI1 ~ ~O where 

(5.5.3) XljI 
1 

= , 

so +1 is not maximal. On the other hand if .1 ~ w * ~o 
then q: oX. +XljI must be unbranched, cf. the argument in (5.4). 

1 

Now X. is simply connected so q must be a regular covering. 
1 

One sees that the only symmetries of X. are the obvious 
1 

"horizontal" translations, and so "w is compact i.e. 

(.o:ljI) <~. So ljI contains parabolic elements. So Wi is 
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maximal among non-parabolic subgroups. On the other hand one 

may start with a doubly infinite version of (5.5.2) where the 

attachment of 0--iS non-periodic. Then one would obtain 

a maximal-and-non-parabolic subgroup of .0 which is not 

Neumann. By sticking in a -® somewhere (as described above) 

one would obtain such subgroups also in r. 
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